WO2016129051A1 - ひずみ測定方法、及びひずみ測定システム - Google Patents

ひずみ測定方法、及びひずみ測定システム Download PDF

Info

Publication number
WO2016129051A1
WO2016129051A1 PCT/JP2015/053616 JP2015053616W WO2016129051A1 WO 2016129051 A1 WO2016129051 A1 WO 2016129051A1 JP 2015053616 W JP2015053616 W JP 2015053616W WO 2016129051 A1 WO2016129051 A1 WO 2016129051A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
displacement meter
laser displacement
measured
laser
Prior art date
Application number
PCT/JP2015/053616
Other languages
English (en)
French (fr)
Inventor
秀雄 石丸
田中 誠
栄 今田
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2015/053616 priority Critical patent/WO2016129051A1/ja
Priority to JP2016538123A priority patent/JP6150014B2/ja
Publication of WO2016129051A1 publication Critical patent/WO2016129051A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures

Definitions

  • the present invention relates to a strain measuring method and a strain measuring system.
  • Patent Document 1 as a method of detecting a crack in a longitudinal welded portion of a high-temperature pipe for a thermal power plant, the amount of strain fluctuation that varies with the pressure inside the tube in the vicinity of the longitudinal welded portion and on the same circumference as the portion concerned. Is measured with a strain gauge, the difference between the strain fluctuations at these two locations is obtained, and a plurality of sample tubes having the same shape as the high-temperature pipe to be inspected are prepared. Form cracks and measure the difference in strain variation in the pipe base near the longitudinal weld and the same circumference as the high temperature pipe to be inspected.
  • an optical strain gauge that is attached to a measurement object, can reflect light, and includes a plurality of reflection surfaces whose angles change with strain deformation of the measurement object, and a plurality of reflection surfaces Angle change of multiple reflective surfaces by irradiating light, detecting reflected light reflected from multiple reflective surfaces, and comparing reflected light reflected from multiple reflective surfaces before and after strain deformation of the measurement object
  • An optical strain measurement device includes an angle measurement unit that measures the distortion and a strain calculation unit that calculates the strain of the measurement object from the angle change measured by the angle measurement unit.
  • the present invention has been made in view of the above problems, and provides a strain measuring method and a strain measuring system capable of accurately measuring the strain generated on the surface of the object to be measured with a simple configuration. It is aimed.
  • One aspect of the present invention for achieving the above object is a method for measuring strain generated on the surface of an object to be measured, wherein a first laser displacement meter and a second laser are disposed on a structure separated from the surface of the object to be measured by a predetermined distance.
  • a laser displacement meter is provided, and the first reflector and the second reflector are arranged adjacent to each other with the reflecting surface facing the structure in the vicinity of the measurement target portion on the surface of the object to be measured.
  • the distance between the reflecting surface of the first reflector and the first laser displacement meter changes according to the amount of displacement of the first reflector due to the strain generated on the surface of the object to be measured.
  • the reflecting surface of the second reflector has a shape, and the distance from the second laser displacement meter does not change even if the first reflector is displaced due to the strain generated on the surface of the object to be measured.
  • a first laser that has a shape and is emitted from the light emitting portion of the first laser displacement meter toward the first reflector.
  • the amount of change in the first path which is the path of the first laser light, is reflected by the reflecting surface of the first reflector and is incident on the light receiving portion of the first laser displacement meter.
  • the second laser beam emitted from the light emitting portion of the second laser displacement meter toward the second reflector is reflected by the reflecting surface of the second reflector, and the light receiving portion of the second laser displacement meter.
  • the amount of change in the second path which is the path of the second laser light when incident on the second laser beam, is measured by the second laser displacement meter, and the difference between the amount of change in the first path and the amount of change in the second path Based on the above, the strain generated in the measurement target part is obtained.
  • distortion generated on the surface of the object to be measured can be accurately measured with a simple configuration using a laser displacement meter and a reflector.
  • the laser displacement meter (including the light emitting unit and the light receiving unit) is provided at a location away from the object to be measured, it is not affected by heat even when the object to be measured becomes high temperature, and laser displacement is performed at room temperature.
  • the strain can be measured with high accuracy.
  • a structure using a displacement measured based on a laser beam reflected by a reflector having a slope-shaped reflecting surface and a displacement measured based on a laser beam reflected by a reflector having a planar reflecting surface is used.
  • the strain can be measured with high accuracy.
  • the laser displacement meter including the light emitting unit and the light receiving unit
  • the installation location is highly flexible, and the present invention can be applied to various environments.
  • Another aspect of the present invention is the above-described measurement method, wherein a third laser displacement meter and a fourth laser displacement meter are provided on a structure separated from the surface of the object to be measured by a predetermined distance, A third reflector and a fourth reflector are arranged adjacent to each other on the surface in the vicinity of the measurement target portion, with their reflecting surfaces facing toward the structure, and the first reflector and the second reflector. A set of bodies and a set of the third reflector and the fourth reflector are arranged so as to sandwich the measurement target portion therebetween, and the reflection surface of the third reflector is the surface of the object to be measured.
  • the third reflector has a shape in which the distance from the third laser displacement meter changes according to the amount of displacement of the third reflector due to the strain generated in the third reflector, and the reflection surface of the fourth reflector is the object to be measured
  • the third laser light emitted from the light emitting portion of the third laser displacement meter toward the third reflector is reflected by the reflecting surface of the third reflector and incident on the light receiving portion of the third laser displacement meter.
  • the amount of change in the third path which is the path of the third laser light when measured, is measured by the third laser displacement meter and emitted from the light emitting portion of the fourth laser displacement meter toward the fourth reflector.
  • the amount of change in the fourth path which is the path of the fourth laser light, is reflected when the fourth laser light is reflected by the reflecting surface of the fourth reflector and is incident on the light receiving portion of the fourth laser displacement meter.
  • the displacement measured by the pair of the first reflector and the second reflector, and the displacement measured by the pair of the third reflector and the fourth reflector, which are arranged with the measurement target part interposed therebetween Based on the amount, the absolute amount of strain generated on the surface of the object to be measured can be obtained with high accuracy.
  • Another aspect of the present invention is the measurement method described above, wherein the distance between the reflection surface of the first reflector and the second laser displacement meter changes linearly along the direction in which the distortion occurs.
  • the reflecting surface of the second reflector is a planar shape parallel to the direction in which the distortion occurs, and the reflecting surface of the third reflector is along the direction in which the distortion occurs.
  • the distance between the third laser displacement meter and the third laser displacement meter has a slope shape that changes linearly, and the reflection surface of the fourth reflector has a planar shape parallel to the direction in which the distortion occurs.
  • the reflective surface of the first reflector and the reflective surface of the second reflector are made of, for example, a metal plate or a ceramic plate.
  • the reflecting surface of the first reflector and the reflecting surface of the second reflector have, for example, a structure in which a sapphire glass is coated on the surface of a mirror-finished metal film.
  • the reflecting surfaces of the first to fourth reflectors are made of, for example, a metal plate or a ceramic plate.
  • the reflection surfaces of the first to fourth reflectors have a structure in which sapphire glass is coated on the surface of a mirror-finished metal film.
  • the object to be measured is, for example, a high-temperature pipe of a thermal power plant, and the structure is a part of a building in which the thermal power plant is accommodated.
  • distortion generated on the surface of the object to be measured can be accurately measured with a simple configuration.
  • FIG. 1 is a diagram illustrating a schematic configuration of a strain measurement system 1.
  • FIG. It is the perspective view which expanded and drew the 1st reflector 12 and the 2nd reflector 22.
  • FIG. It is the perspective view which expanded and drew the 3rd reflector 32 and the 4th reflector 42.
  • FIG. 2 is a configuration diagram of a laser displacement meter 100 shown as an example of a first laser displacement meter 10, a second laser displacement meter 20, and a third laser displacement meter 30.
  • FIG. It is a figure explaining the measurement principle of a laser displacement meter. It is a figure explaining the measuring method of distortion.
  • FIG. 1 shows a schematic configuration of a strain measurement system 1 described as an embodiment.
  • the strain measuring system 1 measures the strain generated on the surface of the object 2 to be measured, which becomes a high temperature at the time of measurement, such as a steel boiler reburning steam pipe (hereinafter also referred to as high temperature piping) of a thermal power plant.
  • high temperature piping steel boiler reburning steam pipe
  • strain generated on the pipe surface due to creep damage or the like is measured at any time during operation of the power generation facility.
  • the DUT 2 has a crack 3 that has occurred in the past and a weld 4 that is formed when the crack 3 is repaired.
  • the surface of the object to be measured 2 is covered with the heat insulating material 5, the heat insulating material 5 is removed and the surface of the object to be measured 2 is exposed in a partial region in the vicinity of the welded portion 4 which is a strain measurement target portion. I am letting.
  • a set of a first reflector 12 and a second reflector 22 (hereinafter referred to as a first reflection) on one side of the welded portion 4 so as to sandwich the welded portion 4 on the surface of the workpiece 2 near the welded portion 4.
  • a set of the third reflector 32 and the fourth reflector 42 (hereinafter also referred to as a second reflector set) is disposed on the other side of the welded portion 4.
  • Each of the first reflector 12 to the fourth reflector 42 has a reflective surface that faces the direction of the building structure 6 (roof, beam, wall, etc.) in which the thermal power plant is accommodated, for example. .
  • the light emitting unit 11 and the light receiving unit 13 of the first laser displacement meter 10 and the light emission of the second laser displacement meter 20 are located on the surface of the DUT 2 at a position away from the first reflector set by a predetermined distance in the + z direction.
  • the unit 21 and the light receiving unit 23 are provided.
  • the light emitting unit 31 and the light receiving unit 33 of the third laser displacement meter 30 and the fourth laser displacement meter 40 are located at a position on the surface of the DUT 2 that is a predetermined distance away from the second reflector set in the + z direction.
  • a light emitting unit 41 and a light receiving unit 43 are provided.
  • the first to fourth laser displacement meters 10, 20, 30 and 40 are all fixed at predetermined positions of the structure 6.
  • the reflection surface 12a of the first reflector 12 has a shape in which the distance from the first laser displacement meter 10 changes according to the amount of displacement of the first reflector 12 due to the strain generated on the surface of the DUT 2.
  • the reflection surface 22a of the second reflector 22 has a distance from the second laser displacement meter 20 even if the second reflector 22 is displaced due to the strain generated on the surface of the object 2 to be measured. It has a shape that does not change.
  • FIG. 2 is a perspective view illustrating the first reflector 12 and the second reflector 22 provided on the surface of the part to be measured 2 in an enlarged manner while maintaining the respective arrangement states.
  • the upper surface (reflecting surface 12a) of the first reflector 12 is linearly formed at a predetermined angle along the direction in which the surface of the DUT 2 is distorted (the direction along the y-axis). The slope shape is inclined, and the upper surface (reflecting surface 22a) of the second reflector 22 is a planar shape parallel to the direction in which the surface of the DUT 2 is distorted.
  • the first reflector 12 has a triangular prism shape
  • the second reflector 22 has a rectangular parallelepiped shape.
  • the angle formed by the upper surface (reflection surface 12a) of the first reflector 12 and the upper surface (reflection surface 22a) of the second reflector 22 is ⁇ .
  • the first reflector 12 is configured as a separate block from the object 2 to be measured.
  • the first reflection 12 is formed by forming a reflecting surface with the surface of the object 2 to be inclined.
  • the body 12 may be configured as a part of the DUT 2.
  • the second reflector 22 is configured as a separate block from the DUT 2, but the second reflector 22 is formed by using the surface of the DUT 2 as a reflecting surface. You may comprise as a part of to-be-measured object 2.
  • the reflection surface 32 a of the third reflector 32 has a shape in which the distance from the third laser displacement meter 30 changes according to the amount of displacement of the third reflector 32 due to the strain generated on the surface of the DUT 2.
  • the reflection surface 42a of the fourth reflector 42 has a distance from the fourth laser displacement meter 40 even if the fourth reflector 42 is displaced due to the strain generated on the surface of the object 2 to be measured. It has a shape that does not change.
  • FIG. 3 is a perspective view illustrating the third reflector 32 and the fourth reflector 42 provided on the surface of the measurement target part 2 in an enlarged manner while maintaining the respective arrangement states.
  • the upper surface (reflecting surface 32a) of the third reflector 32 is linearly formed at a predetermined angle along the direction in which the surface of the DUT 2 is distorted (the direction along the y-axis).
  • the upper surface (reflective surface 42a) of the fourth reflector 42 has a planar shape parallel to the direction in which the surface of the DUT 2 is distorted.
  • the third reflector 32 has a triangular prism shape
  • the fourth reflector 42 has a rectangular parallelepiped shape.
  • the angle formed by the upper surface (reflecting surface 32a) of the third reflector 32 and the upper surface (reflecting surface 42a) of the fourth reflector 42 is ⁇ .
  • the third reflector 32 is configured as a separate block from the object to be measured 2, but by forming a reflective surface with the surface of the object to be measured 2 as a slope shape, the third reflection is formed.
  • the body 32 may be configured as a part of the DUT 2.
  • the fourth reflector 42 is configured as a separate block from the device under test 2, but the surface of the device under test 2 is used as a reflecting surface, so that the fourth reflector 42 is formed. You may comprise as a part of to-be-measured object 2.
  • the first laser displacement meter 10 and the first reflector 12 constitute a first measurement system.
  • the first laser displacement meter 10 emits laser light (hereinafter referred to as first laser light) emitted from the light emitting unit 11 of the first laser displacement meter 10 toward the first reflector 12.
  • Changes in the path of the first laser beam (hereinafter referred to as the first path) when the light is reflected by the upper surface (reflection surface 12a) of the first reflector 12 and is incident on the light receiving unit 13 of the first laser displacement meter 10. Measure the amount.
  • the first laser displacement meter 10 measures the amount of change in the first path using a diffuse reflection component generated by the first laser beam being reflected by the upper surface (reflection surface 12a) of the first reflector 12. .
  • the second laser displacement meter 20 and the second reflector 22 constitute a second measurement system.
  • the second laser displacement meter 20 emits laser light (hereinafter referred to as second laser light) emitted from the light emitting unit 21 of the second laser displacement meter 20 toward the second reflector 22.
  • Changes in the path of the second laser light (hereinafter referred to as the second path) when the light is reflected by the upper surface (reflection surface 22a) of the second reflector 22 and is incident on the light receiving unit 23 of the second laser displacement meter 20. Measure the amount.
  • the second laser displacement meter 20 changes the first path by using a regular reflection component or a diffuse reflection component generated when the second laser beam is reflected by the upper surface (reflection surface 22a) of the second reflector 22. Measure the amount.
  • the third laser displacement meter 30 and the third reflector 32 constitute a third measurement system.
  • the third laser displacement meter 30 emits laser light (hereinafter referred to as third laser light) emitted from the light emitting unit 31 of the third laser displacement meter 30 toward the third reflector 32.
  • Changes in the path of the third laser light (hereinafter referred to as the third path) when the light is reflected by the upper surface (reflecting surface 32a) of the third reflector 32 and is incident on the light receiving unit 33 of the third laser displacement meter 30. Measure the amount.
  • the third laser displacement meter 30 measures the amount of change in the third path by using a diffuse reflection component that is generated when the third laser light is reflected by the upper surface (reflection surface 32a) of the third reflector 32. .
  • the fourth laser displacement meter 40 and the fourth reflector 42 constitute a fourth measurement system.
  • the fourth laser displacement meter 40 emits laser light (hereinafter referred to as fourth laser light) emitted from the light emitting portion 41 of the fourth laser displacement meter 40 toward the fourth reflector 42.
  • Changes in the path of the fourth laser light (hereinafter referred to as the fourth path) when the light is reflected by the upper surface (reflection surface 42a) of the fourth reflector 42 and is incident on the light receiving unit 43 of the fourth laser displacement meter 40. Measure the amount.
  • the fourth laser displacement meter 40 changes the first path by using a regular reflection component or a diffuse reflection component that is generated when the fourth laser beam is reflected by the upper surface (reflection surface 42a) of the fourth reflector 42. Measure the amount.
  • Each of the first to fourth reflectors 12, 22, 32, and 42 has a property that the side facing the object to be measured 2 has stable properties (not deformed or melted) even at high temperatures (about 600 ° C.). It is composed of materials.
  • the reflection surfaces 12a, 22a, 32a, and 42a of the first reflector 12, the second reflector 22, the third reflector 32, and the fourth reflector 42 are all made of materials that are difficult to attach water droplets or the like. It is configured using.
  • These reflecting surfaces 12a, 22a, 32a, 42a are made of, for example, a metal plate (SUS plate, platinum plate, etc.), a ceramic plate, or the like.
  • the laser displacement meter for example, a time difference type laser displacement meter or a part of a highly accurate triangulation type laser displacement meter is used.
  • the reflective surfaces 12a, 22a, 32a, and 42a of the first reflector 12, the second reflector 22, the third reflector 32, and the fourth reflector 42 are mirror-finished metal films (platinum film or the like).
  • the surface of the metal film may be coated with sapphire glass or the like to prevent corrosion or contamination.
  • FIG. 4 shows an example of a laser displacement meter (first to fourth laser displacement meters 10, 20, 30, 40) (hereinafter referred to as a laser displacement meter 100).
  • the laser displacement meter 100 includes a processor 111, an input device 112, an output device 113, a laser drive circuit 114, a light emitting element 115, a light receiving element 116, a displacement detection circuit 117, and an optical element 118.
  • the processor 111 is configured using, for example, a microcomputer, an MPU (Micro Processing Unit), a CPU (Central Processing Unit), and the like, and inputs information detected by the overall control of the laser displacement meter and the displacement detection circuit 117. Various arithmetic processes are performed.
  • the input device 112 is a user interface (such as operation buttons and a touch panel) that accepts various input operations on the laser displacement meter 100.
  • the output device 113 is a user interface (such as a liquid crystal panel) that outputs various measurement results.
  • the laser driving circuit 114 includes a circuit (ACC (Automatic Current Control) circuit, APC (Automatic Power Control) circuit, etc.) that generates a driving current for the light emitting element 115.
  • ACC Automatic Current Control
  • APC Automatic Power Control
  • the light emitting element 115 is a constituent element of the above-described light emitting units 11, 21, 31, 41, and is configured using, for example, a semiconductor laser element (laser diode or the like).
  • the light receiving element 116 is a component of the light receiving units 13, 23, 33, and 43 described above, and is configured using a PSD (Position Sensitive Detector), a CMOS (Complementary metal Oxide Semi-conductor), or the like.
  • the displacement detection circuit 117 includes an amplification circuit for a signal output from the light receiving device 116, and outputs information indicating the displacement of the DUT 2.
  • the optical element 118 includes, for example, a light projecting lens that condenses the laser light emitted from the light emitting element 115 and a light receiving lens that condenses the laser light incident on the light receiving element 116.
  • the measurement principle (triangular distance measuring method) of the laser displacement meter 100 will be described with reference to FIG.
  • the laser light emitted from the light emitting element 115 is condensed by the light projecting lens 118 and irradiated to the object 2 to be measured.
  • Laser light (regular reflection component or diffuse reflection component) reflected from the DUT 2 is collected by the light receiving lens 118 and forms a spot on the light receiving surface of the light receiving element 116. Since the spot moves when the DUT 2 moves, information indicating the displacement of the DUT 2 can be obtained by detecting the position of the spot.
  • the above measurement principle is only an example, and the laser displacement meter 100 may be based on another measurement principle.
  • the measurement of the strain generated on the surface of the object to be measured 2 is performed by executing measurements by the first to fourth measurement systems as needed, and performing calculations described below based on the measurement results.
  • the first reflector group and the second reflector group are displaced along the y-axis direction.
  • the first reflector set is displaced in the y-axis direction.
  • the upper surface (reflecting surface 42a) of the fourth reflector 42 has a planar shape parallel to the direction in which the surface of the DUT 2 is distorted, the second reflector set is displaced in the y-axis direction.
  • the absolute amount of strain generated on the surface of the DUT 2 is the sum of the displacement amount of the first reflector set in the y-axis direction and the displacement amount of the second reflector set in the y-axis direction. It can be obtained from the following equation using Equation 2.
  • the strain generated on the surface of the object to be measured can be accurately measured with a simple configuration using the laser displacement meter and the reflector.
  • a laser displacement meter (including the light emitting unit and light receiving unit) is provided at a location away from the object to be measured, so even if the object to be measured is at a high temperature, it is not affected by heat, and laser displacement is performed at room temperature.
  • the strain can be measured with high accuracy.
  • a structure using a displacement measured based on a laser beam reflected by a reflector having a slope-shaped reflecting surface and a displacement measured based on a laser beam reflected by a reflector having a planar reflecting surface is used.
  • the strain can be measured with high accuracy. Further, since the laser displacement meter (including the light emitting unit and the light receiving unit) can be installed in any structure in the building, the installation location is highly flexible, and the strain measurement system 1 of the present embodiment has various environments. Can be applied to.
  • the above description is for facilitating understanding of the present invention, and does not limit the present invention.
  • the present invention can be changed and improved without departing from the spirit thereof, and the present invention includes equivalents thereof.
  • a laser displacement meter is used to measure the path change, but the path change may be measured using a laser distance meter.
  • 1 strain measurement system 2 object to be measured, 3 cracks, 4 welds, 5 heat insulating material, 6 structure, 10 first laser displacement meter, 11 light emitting unit, 12 first reflector, 13 light receiving unit, 20 second laser Displacement meter, 21 light emitting part, 22 second reflector, 23 light receiving part, 30 third laser displacement meter, 31 light emitting part, 32 third reflector, 33 light receiving part, 40 fourth laser displacement meter, 41 light emitting part, 42 4th reflector, 43 light receiving part, 100 laser displacement meter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 被測定物2の表面に生じたひずみを簡素な構成にて精度よく測定する。被測定物2の表面から所定距離離れた構造物6に第1乃至第4レーザ変位計10~40を設け、また第1反射体12及び第2反射体22の組と第3反射体32及び第4反射体42の組とを、測定対象部位を夫々の間に挟むように配置する。第1反射体12及び第3反射体32の反射面は、被測定物2の表面に生じたひずみに因る夫々の変位量に応じて第1レーザ変位計10又は第3レーザ変位計30との間の距離が変化する形状を呈し、第2反射体22及び第4反射体42の反射面は、被測定物2の表面に生じたひずみに因り第3反射体32又は第4反射体42が変位しても第3レーザ変位計30又は第4レーザ変位計40との間の距離が変化しない形状を呈する。第1乃至第4レーザ変位計10~40により測定される変化量に基づき、測定対象部位に生じるひずみを求める。

Description

ひずみ測定方法、及びひずみ測定システム
 この発明は、ひずみ測定方法、及びひずみ測定システムに関する。
 特許文献1には、火力発電プラント用高温配管の長手溶接部の亀裂を検出する方法として、長手溶接部近傍および当該個所と同一円周上の管母材に管内圧力にともない変化するひずみ変動量をひずみゲージで測定し、これら2箇所のひずみ変動量の差を求め、検査すべき高温配管と同じ形状のサンプル管を複数個用意し、これらサンプル管毎に長手溶接部近傍に深さの異なる亀裂を形成し、検査すべき高温配管と同様に長手溶接部近傍および当該個所と同一円周上の管母材における各ひずみ変動量の差を測定し、数値解析により亀裂の有無と亀裂の深さを算出し、高温配管におけるひずみ変動量を数値解析によって求めた亀裂の深さとひずみ変動量の差との関係と比較することにより高温配管の長手溶接部の亀裂の有無と深さを測定することが記載されている。
 特許文献2には、測定対象物に取り付けられ、光を反射可能であり且つ記測定対象物のひずみ変形に伴って角度が変化する複数の反射面を備える光学ひずみゲージと、複数の反射面に光を照射し、複数の反射面から反射された反射光を検出し、測定対象物のひずみ変形前後において複数の反射面から反射された反射光を比較することにより、複数の反射面の角度変化を測定する角度測定部と、角度測定部により測定された角度変化から、測定対象物のひずみを算出するひずみ算出部とを備えた光学的ひずみ測定装置が開示されている。
特開2002-286444号公報 特開2011-163896号公報
 特許文献1に開示されているように、火力発電プラント用配管の亀裂の測定は、金属や半導体のひずみ量に応じた電気抵抗値の変化を利用したひずみゲージを用いて行われている。しかし火力発電プラントにおけるボイラ配管等の配管は600℃以上の高温となるため、とくに実機運転中はひずみケージの出力が安定せず、十分な測定精度が得られないという課題があった。
 本発明は上記課題に鑑みてなされたもので、被測定物の表面に生じたひずみを簡素な構成にて精度よく測定することが可能な、ひずみ測定方法、及びひずみ測定システムを提供することを目的としている。
 上記目的を達成するための本発明の一つは、被測定物の表面に生じるひずみの測定方法であって、被測定物の表面から所定距離離れた構造物に第1レーザ変位計と第2レーザ変位計とを設け、被測定物の表面の測定対象部位の近傍に、第1反射体と第2反射体とを、いずれもその反射面を前記構造物の方向に向けて隣接して配置し、前記第1反射体の反射面は、前記被測定物の表面に生じたひずみに因る前記第1反射体の変位量に応じて前記第1レーザ変位計との間の距離が変化する形状を呈し、前記第2反射体の反射面は、前記被測定物の表面に生じたひずみに因り前記第1反射体が変位しても前記第2レーザ変位計との間の距離が変化しない形状を呈し、前記第1レーザ変位計の発光部から前記第1反射体に向けて出射した第1レーザ光を前記第1反射体の反射面で反射させて前記第1レーザ変位計の受光部に入射させた場合における前記第1レーザ光の行路である第1行路の変化量を前記第1レーザ変位計により測定し、前記第2レーザ変位計の発光部から前記第2反射体に向けて出射した第2レーザ光を前記第2反射体の反射面で反射させて前記第2レーザ変位計の受光部に入射させた場合における前記第2レーザ光の行路である第2行路の変化量を前記第2レーザ変位計により測定し、前記第1行路の変化量及び前記第2行路の変化量との差に基づき、前記測定対象部位に生じるひずみを求めることとする。
 本発明によれば、レーザ変位計と反射体とを用いた簡素な構成により、被測定物の表面に生じるひずみを精度よく測定することができる。またレーザ変位計(発光部及び受光部を含む)は被測定物から離れた場所に設けているので、被測定物が高温になる場合でも熱の影響を受けることがなく、常温下でレーザ変位計により精度よくひずみを測定することができる。また斜面形状の反射面を有する反射体で反射させたレーザ光に基づき測定した変位量と平面形状の反射面を有する反射体で反射させたレーザ光に基づき測定した変位量とを用いて、構造物と被測定物との間の距離が変化することに因り生じる誤差を補正するので、精度よくひずみを測定することができる。またレーザ変位計(発光部及び受光部を含む)は建屋内の任意の構造物に設置することができるので、設置場所の自由度が高く、本発明は様々な環境に適用することができる。
 本発明の他の一つは、上記測定方法であって、前記被測定物の表面から所定距離離れた構造物に第3レーザ変位計と第4レーザ変位計とを設け、前記被測定物の表面の測定対象部位の近傍に、第3反射体と第4反射体とを、いずれもその反射面を前記構造物の方向に向けて隣接して配置し、前記第1反射体及び第2反射体の組と前記第3反射体及び第4反射体の組とを、前記測定対象部位を夫々の間に挟むように配置し、前記第3反射体の反射面は、前記被測定物の表面に生じたひずみに因る前記第3反射体の変位量に応じて前記第3レーザ変位計との間の距離が変化する形状を呈し、前記第4反射体の反射面は、前記被測定物の表面に生じたひずみに因り前記第4反射体が変位しても前記第4レーザ変位計との間の距離が変化しない形状を呈し、前記第3レーザ変位計の発光部から前記第3反射体に向けて出射した第3レーザ光を前記第3反射体の反射面で反射させて前記第3レーザ変位計の受光部に入射させた場合における前記第3レーザ光の行路である第3行路の変化量を前記第3レーザ変位計により測定し、前記第4レーザ変位計の発光部から前記第4反射体に向けて出射した第4レーザ光を前記第4反射体の反射面で反射させて前記第4レーザ変位計の受光部に入射させた場合における前記第4レーザ光の行路である第4行路の変化量を前記第4レーザ変位計により測定し、前記第1行路の変化量から前記第2行路の変化量を差し引いた値と、前記第3行路の変化量から前記第4行路の変化量を差し引いた値との和を求めることにより、前記測定対象部位に生じるひずみを求めることとする。
 本発明によれば、測定対象部位を間に挟んで配置した、第1反射体及び第2反射体の組により測定した変位量と、第3反射体及び第4反射体の組により測定した変位量とに基づき、被測定物の表面に生じたひずみの絶対量を精度よく求めることができる。
 本発明の他の一つは、上記測定方法であって、前記第1反射体の反射面は、前記ひずみが生じる方向に沿って前記第2レーザ変位計との間の距離が直線的に変化するように傾斜する斜面形状であり、前記第2反射体の反射面は、前記ひずみが生じる方向に平行な平面形状であり、前記第3反射体の反射面は、前記ひずみが生じる方向に沿って前記第3レーザ変位計との間の距離が直線的に変化する斜面形状であり、前記第4反射体の反射面は、前記ひずみが生じる方向に平行な平面形状であることとする。
 尚、前記第1反射体の反射面及び前記第2反射体の反射面は、例えば、金属板又はセラミックス板で構成されている。
 また前記第1反射体の反射面及び前記第2反射体の反射面は、例えば、鏡面加工が施された金属膜の表面にサファイアガラスをコーティングした構造を有する。
 また前記第1反射体乃至前記第4反射体の反射面は、例えば、金属板又はセラミックス板で構成されている。
 また前記第1反射体乃至前記第4反射体の反射面は、鏡面加工が施された金属膜の表面にサファイアガラスをコーティングした構造を有する。
 また前記被測定物は、例えば、火力発電プラントの高温配管であり、前記構造物は、前記火力発電プラントが収容されている建屋の一部である。
 その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。
 本発明によれば、被測定物の表面に生じたひずみを簡素な構成にて精度よく測定することができる。
ひずみ測定システム1の概略的な構成を示す図である。 第1反射体12及び第2反射体22を拡大して描いた斜視図である。 第3反射体32及び第4反射体42を拡大して描いた斜視図である。 第1レーザ変位計10、第2レーザ変位計20、及び第3レーザ変位計30の一例として示すレーザ変位計100の構成図である。 レーザ変位計の測定原理を説明する図である。 ひずみの測定方法を説明する図である。
 以下、本発明の一実施形態について図面とともに説明する。
 図1に一実施形態として説明するひずみ測定システム1の概略的な構成を示している。ひずみ測定システム1は、火力発電プラントの鋼製ボイラ再燃蒸気管等(以下、高温配管とも称する。)の、測定時に高温となる被測定物2の表面に生じるひずみを測定する。尚、火力発電プラントにおいては、発電設備の寿命延伸等を目的として、クリープ損傷等に起因して配管表面に生じるひずみの測定が発電設備の運転中に随時行われる。
 同図に示すように、被測定物2は、過去に生じた亀裂3並びに当該亀裂3の補修時に形成された溶接部4を有する。被測定物2の表面は保温材5によって被覆されているが、ひずみの測定対象部位である溶接部4の近傍の一部領域においては保温材5を除去して被測定物2の表面を露出させている。
 溶接部4の近傍の被測定物2の表面には、溶接部4を挟むように、溶接部4の一方の側に第1反射体12及び第2反射体22の組(以下、第1反射体組とも称する。)が、溶接部4の他方の側に第3反射体32及び第4反射体42の組(以下、第2反射体組とも称する。)が、夫々配置されている。第1反射体12乃至第4反射体42は、いずれも、例えば、火力発電プラントが収容されている建屋の構造物6(屋根、梁、壁等)の方向を向く反射面を有している。
 被測定物2の表面の、第1反射体組から+z方向に所定距離だけ離れた位置には、第1レーザ変位計10の発光部11及び受光部13、並びに第2レーザ変位計20の発光部21及び受光部23を設けている。また被測定物2の表面の、第2反射体組から+z方向に所定距離だけ離れた位置には、第3レーザ変位計30の発光部31及び受光部33、並びに第4レーザ変位計40の発光部41及び受光部43を設けている。第1乃至第4レーザ変位計10,20,30,40は、いずれも構造物6の所定位置に固定されている。
 第1反射体12の反射面12aは、被測定物2の表面に生じたひずみに因る第1反射体12の変位量に応じて第1レーザ変位計10との間の距離が変化する形状を呈し、一方、第2反射体22の反射面22aは、被測定物2の表面に生じたひずみに因り第2反射体22が変位しても第2レーザ変位計20との間の距離が変化しない形状を呈している。
 図2は、被測定部2の表面に設けられる第1反射体12及び第2反射体22を、夫々の配置の状態を維持しつつ拡大して描いた斜視図である。同図に示すように、第1反射体12の上面(反射面12a)は、被測定物2の表面のひずみが生じる方向(y軸に沿った方向)に沿って所定の角度で直線的に傾斜する斜面形状であり、第2反射体22の上面(反射面22a)は、被測定物2の表面のひずみが生じる方向に平行な平面形状である。同図に示すように、この例では、第1反射体12は三角柱状であり、第2反射体22は直方体状である。また本例では、第1反射体12の上面(反射面12a)と第2反射体22の上面(反射面22a)とがなす角はαであるものとする。
 尚、この例では、第1反射体12を被測定物2とは別体のブロックとして構成しているが、被測定物2の表面を斜面形状として反射面を形成することにより、第1反射体12を被測定物2の一部として構成してもよい。同様に、この例では、第2反射体22を被測定物2とは別体のブロックとして構成しているが、被測定物2の表面を反射面とすることにより、第2反射体22を被測定物2の一部として構成してもよい。
 第3反射体32の反射面32aは、被測定物2の表面に生じたひずみに因る第3反射体32の変位量に応じて第3レーザ変位計30との間の距離が変化する形状を呈し、一方、第4反射体42の反射面42aは、被測定物2の表面に生じたひずみに因り第4反射体42が変位しても第4レーザ変位計40との間の距離が変化しない形状を呈している。
 図3は、被測定部2の表面に設けられる第3反射体32及び第4反射体42を、夫々の配置の状態を維持しつつ拡大して描いた斜視図である。同図に示すように、第3反射体32の上面(反射面32a)は、被測定物2の表面のひずみが生じる方向(y軸に沿った方向)に沿って所定の角度で直線的に傾斜する斜面形状であり、第4反射体42の上面(反射面42a)は、被測定物2の表面のひずみが生じる方向に平行な平面形状である。同図に示すように、この例では、第3反射体32は三角柱状であり、第4反射体42は直方体状である。また本例では、第3反射体32の上面(反射面32a)と第4反射体42の上面(反射面42a)とがなす角はαであるものとする。
 尚、この例では、第3反射体32を被測定物2とは別体のブロックとして構成しているが、被測定物2の表面を斜面形状として反射面を形成することにより、第3反射体32を被測定物2の一部として構成してもよい。同様に、この例では、第4反射体42を被測定物2とは別体のブロックとして構成しているが、被測定物2の表面を反射面とすることにより、第4反射体42を被測定物2の一部として構成してもよい。
 第1レーザ変位計10及び第1反射体12は、第1測定系を構成している。第1測定系において、第1レーザ変位計10は、当該第1レーザ変位計10の発光部11から第1反射体12に向けて出射したレーザ光(以下、第1レーザ光と称する。)を第1反射体12の上面(反射面12a)で反射させて第1レーザ変位計10の受光部13に入射させた場合における第1レーザ光の行路(以下、第1行路と称する。)の変化量を測定する。尚、第1レーザ変位計10は、第1レーザ光が第1反射体12の上面(反射面12a)で反射されることにより生じる拡散反射成分を利用して第1行路の変化量を測定する。
 第2レーザ変位計20及び第2反射体22は、第2測定系を構成している。第2測定系において、第2レーザ変位計20は、当該第2レーザ変位計20の発光部21から第2反射体22に向けて出射したレーザ光(以下、第2レーザ光と称する。)を第2反射体22の上面(反射面22a)で反射させて第2レーザ変位計20の受光部23に入射させた場合における第2レーザ光の行路(以下、第2行路と称する。)の変化量を測定する。尚、第2レーザ変位計20は、第2レーザ光が第2反射体22の上面(反射面22a)で反射されることにより生じる正反射成分又は拡散反射成分を利用して第1行路の変化量を測定する。
 第3レーザ変位計30及び第3反射体32は、第3測定系を構成している。第3測定系において、第3レーザ変位計30は、当該第3レーザ変位計30の発光部31から第3反射体32に向けて出射したレーザ光(以下、第3レーザ光と称する。)を第3反射体32の上面(反射面32a)で反射させて第3レーザ変位計30の受光部33に入射させた場合における第3レーザ光の行路(以下、第3行路と称する。)の変化量を測定する。尚、第3レーザ変位計30は、第3レーザ光が第3反射体32の上面(反射面32a)で反射されることにより生じる拡散反射成分を利用して第3行路の変化量を測定する。
 第4レーザ変位計40及び第4反射体42は、第4測定系を構成している。第4測定系において、第4レーザ変位計40は、当該第4レーザ変位計40の発光部41から第4反射体42に向けて出射したレーザ光(以下、第4レーザ光と称する。)を第4反射体42の上面(反射面42a)で反射させて第4レーザ変位計40の受光部43に入射させた場合における第4レーザ光の行路(以下、第4行路と称する。)の変化量を測定する。尚、第4レーザ変位計40は、第4レーザ光が第4反射体42の上面(反射面42a)で反射されることにより生じる正反射成分又は拡散反射成分を利用して第1行路の変化量を測定する。
 第1乃至第4反射体12,22,32,42は、いずれも被測定物2に面する側が、高温下(600℃程度)でも性状が安定している(変形や溶融等しない)性質の素材を用いて構成されている。また、第1反射体12、第2反射体22、第3反射体32、及び第4反射体42の反射面12a,22a,32a,42aは、いずれも水滴等が付着しにくい性質の素材を用いて構成されている。またこれらの反射面12a,22a,32a,42aは、例えば、金属板(SUS板、白金板等)やセラミックス板等で構成されている。尚、レーザ変位計(第1乃至第4レーザ変位計10,20,30,40)として、例えば、時間差方式のレーザ変位計や一部の高精度な三角測量方式のレーザ変位計を用いる場合、第1反射体12、第2反射体22、第3反射体32、及び第4反射体42の反射面12a,22a,32a,42aについては、鏡面加工が施された金属膜(白金膜等)で構成され、金属膜の表面に腐食や汚れ防止のためにサファイアガラス等でコーティング処理されていてもよい。
 図4に、レーザ変位計(第1乃至第4レーザ変位計10,20,30,40)の一例(以下、レーザ変位計100と称する。)を示している。同図に示すように、レーザ変位計100は、プロセッサ111、入力装置112、出力装置113、レーザ駆動回路114、発光素子115、受光素子116、変位検出回路117、及び光学素子118を備える。
 プロセッサ111は、例えば、マイクロコンピュータ、MPU(Micro Processing Unit)、CPU(Central Processing Unit)等を用いて構成され、レーザ変位計の統括的な制御や、変位検出回路117により検出される情報を入力とした各種演算処理等を行う。入力装置112は、レーザ変位計100に対する各種入力操作を受け付けるユーザインタフェース(操作ボタンやタッチパネル等)である。出力装置113は、各種測定結果を出力するユーザインタフェース(液晶パネル等)である。
 レーザ駆動回路114は、発光素子115の駆動電流を生成する回路(ACC(Automatic Current Control)回路、APC(Automatic Power Control)回路等)を備える。
 発光素子115は、前述した発光部11,21,31,41の構成要素であり、例えば、半導体レーザ素子(レーザダイオード等)を用いて構成されている。受光素子116は、前述した受光部13,23,33,43の構成要素であり、PSD(Position Sensitive Detector)やCMOS(Complementary metal Oxide Semi-conductor)等を用いて構成されている。
 変位検出回路117は、受光装置116が出力する信号の増幅回路を含み、被測定物2の変位を示す情報を出力する。光学素子118は、例えば、発光素子115から出射したレーザ光を集光する投光レンズや受光素子116に入射するレーザ光を集光する受光レンズを含む。
 続いて、図5とともにレーザ変位計100の測定原理(三角測距方式)について説明する。同図において、発光素子115から出射したレーザ光は、投光レンズ118で集光されて被測定物2に照射される。被測定物2から反射されたレーザ光(正反射成分又は拡散反射成分)は、受光レンズ118で集光されて受光素子116の受光面にスポットを結ぶ。そして被測定物2が移動すると上記スポットも移動するので、上記スポットの位置を検出することで被測定物2の変位を示す情報を得ることができる。尚、以上の測定原理は一例に過ぎず、レーザ変位計100として他の測定原理によるものを採用してもよい。
 続いて、図6とともに、以上の構成からなるひずみ測定システム1によって行われる、測定対象部位に生じるひずみの具体的な測定方法について説明する。
 被測定物2の表面に生じるひずみの測定は、第1乃至第4測定系による測定を随時実行し、それらの測定結果に基づき以下に説明する演算を実施することにより行われる。
 まず前述した第1行路は、第1レーザ変位計10の発光部11から出射して第1反射体12に入射し、第1反射体12で反射して第1レーザ変位計10の受光部13に入射する第1レーザ光の行路(=d1)である。
 また前述した第2行路は、第2レーザ変位計20の発光部21から出射して第2反射体22に入射し、第2反射体22で反射して第2レーザ変位計20の受光部23に入射する第2レーザ光の行路(=d2)である。
 また前述した第3行路は、第3レーザ変位計30の発光部31から出射して第3反射体32に入射し、第3反射体32で反射して第3レーザ変位計30の受光部33に入射する第3レーザ光の行路(=d3)である。
 また前述した第4行路は、第4レーザ変位計40の発光部41から出射して第4反射体42に入射し、第4反射体42で反射して第4レーザ変位計40の受光部43に入射する第4レーザ光の行路(=d4)である。
 ここで被測定物2にひずみが生じると、第1反射体組及び第2反射体組はy軸方向に沿って変位する。この場合、第1反射体12の上面(反射面12a)は、被測定物2の表面のひずみが生じる方向(y軸に沿った方向)に沿って当該方向に対して所定の角度αで直線的に傾斜する斜面形状であるので、第1反射体組がy軸方向に変位すると第1レーザ光の行路(=d1)が変化する。一方、第2反射体22の上面(反射面22a)は、被測定物2の表面のひずみが生じる方向に平行な平面形状であるので、第1反射体組がy軸方向に変位しても第2レーザ光の行路(=d2)は変化しない。従って、第1反射体組のy軸方向の変位量は次式から求めることができる。
 第1反射体組のy軸方向の変位量×tanα
   =((第1レーザ光の行路の変位量(=Δd1)
          -第2レーザ光の行路の変位量(=Δd2))
                            ・・・式1
 尚、式1において第1レーザ光の行路の変位量(=Δd1)から第2レーザ光の行路の変位量(=Δd2)を差し引いているが、これにより構造物6と被測定物2の間の距離が気温の変化等の何らかの理由で変化した場合でも、精度よく第1反射体組のy軸方向の変位量を求めることができる。
 一方、第3反射体32の上面(反射面32a)は、被測定物2の表面のひずみが生じる方向(y軸に沿った方向)に沿って当該方向に対して所定の角度αで直線的に傾斜する斜面形状であるので、第2反射体組のy軸方向の変位に伴い、第3レーザ光の行路(=d3)は変化する。一方、第4反射体42の上面(反射面42a)は、被測定物2の表面のひずみが生じる方向に平行な平面形状であるので、第2反射体組がy軸方向に変位しても第4レーザ光の行路(=d4)は変化しない。従って、第2反射体組のy軸方向の変位量を次式から求めることができる。
 第2反射体組のy軸方向の変位量×tanα
   =(第3レーザ光の行路の変位量(=Δd3)
          -第4レーザ光の行路の変位量(=Δd4))
                            ・・・式2
 尚、式2において第3レーザ光の行路の変位量(=Δd3)から第4レーザ光の行路の変位量(=Δd4)を差し引いているが、これにより構造物6と被測定物2の間の距離が気温の変化等の何らかの理由で変化した場合でも、精度よく第2反射体組のy軸方向の変位量を求めることができる。
 そして被測定物2の表面に生じたひずみの絶対量は、第1反射体組のy軸方向の変位量と第2反射体組のy軸方向の変位量との和であり、式1及び式2を用いて次式から求めることができる。
 ひずみの絶対量×tanα
   =(第1レーザ光の行路の変位量(=Δd1)
          -第2レーザ光の行路の変位量(=Δd2))
   +(第3レーザ光の行路の変位量(=Δd3)
          -第4レーザ光の行路の変位量(=Δd4))
                            ・・・式3
 以上に説明したように、本実施形態のひずみ測定システム1によれば、レーザ変位計と反射体とを用いた簡素な構成により、被測定物の表面に生じるひずみを精度よく測定することができる。またレーザ変位計(発光部及び受光部を含む)を被測定物から離れた場所に設けているので、被測定物が高温になる場合でも熱の影響を受けることがなく、常温下でレーザ変位計により精度よくひずみを測定することができる。また斜面形状の反射面を有する反射体で反射させたレーザ光に基づき測定した変位量と平面形状の反射面を有する反射体で反射させたレーザ光に基づき測定した変位量とを用いて、構造物と被測定物との間の距離が変化することに因り生じる誤差を補正するので、精度よくひずみを測定することができる。またレーザ変位計(発光部及び受光部を含む)は建屋内の任意の構造物に設置することができるので、設置場所の自由度が高く、本実施形態のひずみ測定システム1は、様々な環境に適用することができる。
 ところで、以上の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。例えば、以上に説明したひずみ測定システム1では、行路の変化量の測定にレーザ変位計を用いているが、レーザ距離計を用いて行路の変化量を測定するようにしてもよい。
1 ひずみ測定システム、2 被測定物、3 亀裂、4 溶接部、5 保温材、6 構造物、10 第1レーザ変位計、11 発光部、12 第1反射体、13 受光部、20 第2レーザ変位計、21 発光部、22 第2反射体、23 受光部、30 第3レーザ変位計、31 発光部、32 第3反射体、33 受光部、40 第4レーザ変位計、41 発光部、42 第4反射体、43 受光部、100 レーザ変位計

Claims (11)

  1.  被測定物の表面に生じるひずみの測定方法であって、
     被測定物の表面から所定距離離れた構造物に第1レーザ変位計と第2レーザ変位計とを設け、
     被測定物の表面の測定対象部位の近傍に、第1反射体と第2反射体とを、いずれもその反射面を前記構造物の方向に向けて隣接して配置し、
     前記第1反射体の反射面は、前記被測定物の表面に生じたひずみに因る前記第1反射体の変位量に応じて前記第1レーザ変位計との間の距離が変化する形状を呈し、
     前記第2反射体の反射面は、前記被測定物の表面に生じたひずみに因り前記第1反射体が変位しても前記第2レーザ変位計との間の距離が変化しない形状を呈し、
     前記第1レーザ変位計の発光部から前記第1反射体に向けて出射した第1レーザ光を前記第1反射体の反射面で反射させて前記第1レーザ変位計の受光部に入射させた場合における前記第1レーザ光の行路である第1行路の変化量を前記第1レーザ変位計により測定し、
     前記第2レーザ変位計の発光部から前記第2反射体に向けて出射した第2レーザ光を前記第2反射体の反射面で反射させて前記第2レーザ変位計の受光部に入射させた場合における前記第2レーザ光の行路である第2行路の変化量を前記第2レーザ変位計により測定し、
     前記第1行路の変化量及び前記第2行路の変化量との差に基づき、前記測定対象部位に生じるひずみを求める
     ひずみ測定方法。
  2.  請求項1に記載のひずみ測定方法であって、
     前記被測定物の表面から所定距離離れた構造物に第3レーザ変位計と第4レーザ変位計とを設け、
     前記被測定物の表面の測定対象部位の近傍に、第3反射体と第4反射体とを、いずれもその反射面を前記構造物の方向に向けて隣接して配置し、
     前記第1反射体及び第2反射体の組と前記第3反射体及び第4反射体の組とを、前記測定対象部位を夫々の間に挟むように配置し、
     前記第3反射体の反射面は、前記被測定物の表面に生じたひずみに因る前記第3反射体の変位量に応じて前記第3レーザ変位計との間の距離が変化する形状を呈し、
     前記第4反射体の反射面は、前記被測定物の表面に生じたひずみに因り前記第4反射体が変位しても前記第4レーザ変位計との間の距離が変化しない形状を呈し、
     前記第3レーザ変位計の発光部から前記第3反射体に向けて出射した第3レーザ光を前記第3反射体の反射面で反射させて前記第3レーザ変位計の受光部に入射させた場合における前記第3レーザ光の行路である第3行路の変化量を前記第3レーザ変位計により測定し、
     前記第4レーザ変位計の発光部から前記第4反射体に向けて出射した第4レーザ光を前記第4反射体の反射面で反射させて前記第4レーザ変位計の受光部に入射させた場合における前記第4レーザ光の行路である第4行路の変化量を前記第4レーザ変位計により測定し、
     前記第1行路の変化量から前記第2行路の変化量を差し引いた値と、前記第3行路の変化量から前記第4行路の変化量を差し引いた値との和を求めることにより、前記測定対象部位に生じるひずみを求める
     ひずみ測定方法。
  3.  請求項2に記載のひずみ測定方法であって、
     前記第1反射体の反射面は、前記ひずみが生じる方向に沿って前記第2レーザ変位計との間の距離が直線的に変化するように傾斜する斜面形状であり、
     前記第2反射体の反射面は、前記ひずみが生じる方向に平行な平面形状であり、
     前記第3反射体の反射面は、前記ひずみが生じる方向に沿って前記第3レーザ変位計との間の距離が直線的に変化する斜面形状であり、
     前記第4反射体の反射面は、前記ひずみが生じる方向に平行な平面形状である
     ひずみ測定方法。
  4.  被測定物の表面に生じるひずみの測定システムであって、
     被測定物の表面から所定距離離れた構造物に設けられる、第1レーザ変位計及び第2レーザ変位計と、
     被測定物の表面の測定対象部位の近傍に、いずれもその反射面を前記構造物の方向に向けて隣接して配置される、第1反射体と第2反射体と、
     を備え、
     前記第1反射体の反射面は、前記被測定物の表面に生じたひずみに因る前記第1反射体の変位量に応じて前記第1レーザ変位計との間の距離が変化する形状を呈し、
     前記第2反射体の反射面は、前記被測定物の表面に生じたひずみに因り前記第1反射体が変位しても前記第2レーザ変位計との間の距離が変化しない形状を呈し、
     前記第1レーザ変位計は、前記第1レーザ変位計の発光部から前記第1反射体に向けて出射した第1レーザ光を前記第1反射体の反射面で反射させて前記第1レーザ変位計の受光部に入射させた場合における前記第1レーザ光の行路である第1行路の変化量を測定し、
     前記第2レーザ変位計は、前記第2レーザ変位計の発光部から前記第2反射体に向けて出射した第2レーザ光を前記第2反射体の反射面で反射させて前記第2レーザ変位計の受光部に入射させた場合における前記第2レーザ光の行路である第2行路の変化量を測定する
     ひずみ測定システム。
  5.  請求項4に記載のひずみ測定システムであって、
     前記被測定物の表面から所定距離離れた構造物に設けられる、第3レーザ変位計と第4レーザ変位計と、
     前記被測定物の表面の測定対象部位の近傍に、いずれもその反射面を前記構造物の方向に向けて隣接して配置される、第3反射体と第4反射体と、
     を更に備え、
     前記第1反射体及び第2反射体の組と前記第3反射体及び第4反射体の組とは、前記測定対象部位を夫々の間に挟むように配置され、
     前記第3反射体の反射面は、前記被測定物の表面に生じたひずみに因る前記第3反射体の変位量に応じて前記第3レーザ変位計との間の距離が変化する形状を呈し、
     前記第4反射体の反射面は、前記被測定物の表面に生じたひずみに因り前記第4反射体が変位しても前記第4レーザ変位計との間の距離が変化しない形状を呈し、
     前記第3レーザ変位計は、前記第3レーザ変位計の発光部から前記第3反射体に向けて出射した第3レーザ光を前記第3反射体の反射面で反射させて前記第3レーザ変位計の受光部に入射させた場合における前記第3レーザ光の行路である第3行路の変化量を測定し、
     前記第4レーザ変位計は、前記第4レーザ変位計の発光部から前記第4反射体に向けて出射した第4レーザ光を前記第4反射体の反射面で反射させて前記第4レーザ変位計の受光部に入射させた場合における前記第4レーザ光の行路である第4行路の変化量を測定し、
     ひずみ測定システム。
  6.  請求項5に記載のひずみ測定システムであって、
     前記第1反射体の反射面は、前記ひずみが生じる方向に沿って前記第2レーザ変位計との間の距離が直線的に変化するように傾斜する斜面形状であり、
     前記第2反射体の反射面は、前記ひずみが生じる方向に平行な平面形状であり、
     前記第3反射体の反射面は、前記ひずみが生じる方向に沿って前記第3レーザ変位計との間の距離が直線的に変化する斜面形状であり、
     前記第4反射体の反射面は、前記ひずみが生じる方向に平行な平面形状である
     ひずみ測定システム。
  7.  請求項4に記載のひずみ測定システムであって、
     前記第1反射体の反射面及び前記第2反射体の反射面は、金属板又はセラミックス板で構成されている、
     ひずみ測定システム。
  8.  請求項4に記載のひずみ測定システムであって、
     前記第1反射体の反射面及び前記第2反射体の反射面は、鏡面加工が施された金属膜の表面にサファイアガラスをコーティングした構造を有する、
     ひずみ測定システム。
  9.  請求項5に記載のひずみ測定システムであって、
     前記第1反射体乃至前記第4反射体の反射面は、金属板又はセラミックス板で構成されている、
     ひずみ測定システム。
  10.  請求項5に記載のひずみ測定システムであって、
     前記第1反射体乃至前記第4反射体の反射面は、鏡面加工が施された金属膜の表面にサファイアガラスをコーティングした構造を有する、
     ひずみ測定システム。
  11.  請求項4乃至10のいずれか一項に記載のひずみ測定システムであって、
     前記被測定物は、火力発電プラントの高温配管であり、前記構造物は、前記火力発電プラントが収容されている建屋の一部である
     ひずみ測定システム。
PCT/JP2015/053616 2015-02-10 2015-02-10 ひずみ測定方法、及びひずみ測定システム WO2016129051A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/053616 WO2016129051A1 (ja) 2015-02-10 2015-02-10 ひずみ測定方法、及びひずみ測定システム
JP2016538123A JP6150014B2 (ja) 2015-02-10 2015-02-10 ひずみ測定方法、及びひずみ測定システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/053616 WO2016129051A1 (ja) 2015-02-10 2015-02-10 ひずみ測定方法、及びひずみ測定システム

Publications (1)

Publication Number Publication Date
WO2016129051A1 true WO2016129051A1 (ja) 2016-08-18

Family

ID=56614460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053616 WO2016129051A1 (ja) 2015-02-10 2015-02-10 ひずみ測定方法、及びひずみ測定システム

Country Status (2)

Country Link
JP (1) JP6150014B2 (ja)
WO (1) WO2016129051A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167572A (zh) * 2018-12-04 2021-07-23 优尼冲压株式会社 冲压成型品的缩颈判定方法、冲压成型品的缩颈判定装置以及程序

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101987892B1 (ko) * 2017-12-27 2019-06-12 한국전력공사 Gis 탱크 편심측정장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344395A (ja) * 1998-06-02 1999-12-14 Systemseiko Co Ltd 回転軸の変形検出方法および装置
JP2002162252A (ja) * 2000-09-18 2002-06-07 Mitsubishi Electric Corp 回転位置検出装置
JP2005129155A (ja) * 2003-10-23 2005-05-19 Hitachi Ltd 光ピックアップおよび光ディスク装置
JP2013217851A (ja) * 2012-04-11 2013-10-24 Toshiba Corp ガス絶縁機器用水分検出装置及びガス絶縁機器用水分検出方法
JP5563169B1 (ja) * 2013-01-25 2014-07-30 中国電力株式会社 距離測定システム、距離測定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214097A (ja) * 2001-01-17 2002-07-31 Sumitomo Chem Co Ltd ゴム・プラスチックの引張試験方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344395A (ja) * 1998-06-02 1999-12-14 Systemseiko Co Ltd 回転軸の変形検出方法および装置
JP2002162252A (ja) * 2000-09-18 2002-06-07 Mitsubishi Electric Corp 回転位置検出装置
JP2005129155A (ja) * 2003-10-23 2005-05-19 Hitachi Ltd 光ピックアップおよび光ディスク装置
JP2013217851A (ja) * 2012-04-11 2013-10-24 Toshiba Corp ガス絶縁機器用水分検出装置及びガス絶縁機器用水分検出方法
JP5563169B1 (ja) * 2013-01-25 2014-07-30 中国電力株式会社 距離測定システム、距離測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167572A (zh) * 2018-12-04 2021-07-23 优尼冲压株式会社 冲压成型品的缩颈判定方法、冲压成型品的缩颈判定装置以及程序

Also Published As

Publication number Publication date
JP6150014B2 (ja) 2017-06-21
JPWO2016129051A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
CN201803699U (zh) 测量镜面反射表面的相对位置的装置
JP6256380B2 (ja) 歪センサー及び歪量測定方法
EP2950041B1 (en) System and method for distance measurement
EP2799809A1 (en) Method for measuring shape of threaded tube end portion
JP2016045107A (ja) 管の表面までの距離測定装置、及びこれを用いた管の形状測定装置
JP6150014B2 (ja) ひずみ測定方法、及びひずみ測定システム
JP4316643B2 (ja) 形状測定装置,形状測定方法
KR101381652B1 (ko) 레벨 및 거리 측정 레이저 검출기
JP6090538B2 (ja) ひずみ測定方法、及びひずみ測定システム
JP2008014959A (ja) コーティング部材の界面欠陥検査方法
JP6203502B2 (ja) 加工品に対して加工工具を位置決めするための構造および方法
JP2012159209A (ja) 伝熱管の検査装置及び検査方法
Machacek et al. Non-contact measurement system analysis for metallurgical slabs proportion parameters
RU2686801C1 (ru) Оптическое измерительное устройство
JP2012083248A (ja) 円形状機械部品の測定装置および測定方法
JP2011117823A (ja) 配管肉厚測定装置
JP5599335B2 (ja) 厚さ測定装置
WO2018016447A1 (ja) ガス検知システム
US11359910B2 (en) Inspection method, correction method, and inspection device
WO2013050007A1 (en) Method and apparatus for measuring shape deviations of mechanical parts
RU2783678C1 (ru) Оптико-электронный способ измерения диаметра цилиндрического объекта
JP2011069702A (ja) クリープ量測定装置
JPH0781841B2 (ja) 厚み測定装置
US20160123891A1 (en) Apparatus for inspecting
JP2012220232A (ja) 変位測定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016538123

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881926

Country of ref document: EP

Kind code of ref document: A1