WO2016127935A1 - 波长转换装置和发光装置 - Google Patents

波长转换装置和发光装置 Download PDF

Info

Publication number
WO2016127935A1
WO2016127935A1 PCT/CN2016/073721 CN2016073721W WO2016127935A1 WO 2016127935 A1 WO2016127935 A1 WO 2016127935A1 CN 2016073721 W CN2016073721 W CN 2016073721W WO 2016127935 A1 WO2016127935 A1 WO 2016127935A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
rib
airflow
dial
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2016/073721
Other languages
English (en)
French (fr)
Inventor
杨毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of WO2016127935A1 publication Critical patent/WO2016127935A1/zh
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a wavelength conversion device and a light-emitting device using the same.
  • the fluorescent color wheel is a core optical component whose reliability determines the performance of the entire light source module. Since the fluorescent color wheel rotates at a high speed and it emits a large amount of heat itself, in the current scheme, the fluorescent color wheel is exposed to the air, that is, at least a small section of the light path before and after the fluorescent color wheel is exposed to the air. middle. There is a lot of water vapor and dust in the air, which will cause hidden dangers to the reliability of this section of light. Directly closing the optical path with a casing will cause the temperature of the enclosed air around the fluorescent color wheel to rise sharply, which not only affects the efficiency of the fluorescent color wheel, but also the service life of the motor that drives the color wheel to rotate.
  • the object of the present invention is to simultaneously achieve the sealing and heat dissipation of the wavelength conversion device by a reasonable heat dissipation design.
  • the invention provides a wavelength conversion device, comprising a wavelength conversion rotary disk and a motor, wherein the motor is used for driving the wavelength conversion rotary disk to rotate;
  • the wavelength conversion rotary disk comprises a series of first ribs arranged along the circumferential direction of the wavelength conversion rotary disk, wherein at least part of the A rib is oriented along the radial direction of the wavelength conversion disk for generating an airflow that flows outward in the radial direction as the wavelength conversion disk rotates.
  • a housing for enclosing the wavelength conversion turntable therein.
  • the housing includes a first light transmissive window for receiving excitation light that is transmissive to the excitation light while capable of functioning as a closed wavelength conversion dial.
  • the invention also provides a light-emitting device comprising an excitation light source and the above-mentioned wavelength conversion device, wherein the excitation light emitted from the excitation light source passes through the first light-transmissive window of the outer casing of the wavelength conversion device, is incident on the wavelength conversion carousel and is stimulated to generate laser.
  • the airflow loop is guided by the rotation of the wavelength conversion dial and the airflow formed by the first rib, and the air passage formed by the first rib and the outer casing, so that the airflow can effectively convert the heat of the wavelength conversion turntable Passed to the shell.
  • 1A is a schematic structural view of a first embodiment of a wavelength conversion device of the present invention.
  • Figure 1B is a front elevational view of the first rib of the embodiment of Figure 1A;
  • Figure 1C is a front elevational view of the second rib of the embodiment of Figure 1A;
  • Figure 1D is a front elevational view of the wavelength conversion layer of the embodiment of Figure 1A;
  • FIG. 1E and 1F are elevational views of two other possible arrangements of the first rib of the embodiment of Fig. 1A;
  • FIG. 2A is a schematic structural view of another embodiment of a wavelength conversion device of the present invention.
  • Figure 2B is a front elevational view of the second rib of the embodiment of Figure 2A;
  • FIG. 3 is a schematic structural view of another embodiment of the wavelength conversion device of the present invention.
  • FIG. 4A is a schematic structural view of another embodiment of a wavelength conversion device of the present invention.
  • Figure 4B is a front elevational view of the first rib of the embodiment of Figure 4A;
  • Figure 4C is a front elevational view of the second rib of the embodiment of Figure 4A;
  • Figure 5A is a schematic structural view of another embodiment of the wavelength conversion device of the present invention.
  • Figure 5B is a front elevational view of the second rib of the embodiment of Figure 5A;
  • 6A is a schematic structural view of another embodiment of a wavelength conversion device of the present invention.
  • Figure 6B is a front elevational view of the second rib of the embodiment of Figure 6A;
  • FIG. 7 is a schematic structural view of another embodiment of the wavelength conversion device of the present invention.
  • Figure 8 is a schematic structural view of another embodiment of the wavelength conversion device of the present invention.
  • Figure 9 is a schematic view showing the structure of another embodiment of the wavelength conversion device of the present invention.
  • FIG. 1A A schematic structural view of a first embodiment of the wavelength conversion device of the present invention is shown in Fig. 1A.
  • the wavelength conversion device includes a wavelength conversion dial 101 and a motor 105 for driving the wavelength conversion dial 101 to rotate.
  • the wavelength conversion carousel 101 includes a series of first ribs 103 arranged along the circumferential direction of the wavelength conversion disk.
  • the front view of the first rib is as shown in FIG. 1B, wherein at least a portion of the first ribs 103 are oriented along the wavelength.
  • the radial direction of the changeover disk is used to generate an airflow that flows outward in the radial direction as the wavelength conversion disk rotates (indicated by arrow 141a in Figures 1A and 1B).
  • the air between the adjacent first ribs 103 flows out along the direction of the first rib toward the periphery of the wavelength conversion dial due to the centrifugal force, and at the same time, due to the negative pressure Air of the first rib near one end of the center of the wavelength conversion dial flows between the first ribs.
  • the airflow flowing between the first ribs can carry the heat generated by the wavelength conversion device along the flow direction of the airflow while simultaneously switching from the wavelength conversion dial
  • the airflow from the periphery is heated by the wavelength conversion carousel and the first rib.
  • the first rib is in a centripetal direction, but may not be fully centripetal in practical applications (such as shown in FIG. 1E), or may be curved (eg, as shown in FIG. 1F) or other Shape, which can be designed according to existing methods.
  • the first rib is oriented along the radial direction of the wavelength conversion turntable, meaning that the distance from one end of the first rib to the center of the wavelength conversion turntable is less than the other end to the wavelength The distance between the center of the turntable is changed, so that the airflow flowing outward in the radial direction when the wavelength conversion dial is rotated can be achieved.
  • the outward flow of the airflow in the radial direction is not limited to flowing out in the centrifugal direction, for example, the airflow 141a in Figs. 1E and 1F, as long as it flows out from the periphery of the wavelength conversion dial. Therefore, it is within the scope of the present invention that the first ribs satisfying the above requirements are included.
  • the wavelength conversion device of this embodiment further includes a housing 121 for enclosing the wavelength conversion dial 101 therein.
  • the inner wall of the outer casing 121 includes a series of second ribs 123, at least partially adjacent second ribs forming an air passage for guiding the airflow 141a flowing radially outward from the wavelength conversion disk 101 at least partially back.
  • an air flow 141b is formed to form an air flow loop that flows again between the first ribs.
  • the top view of the second rib is as shown in Fig. 1C.
  • this gas stream 141b enters the next gas stream again (i.e., when entering between the first fins), it has become cold air, so that the wavelength conversion carousel and the first rib can continue to be absorbed while forming the gas stream 141a.
  • the heat of the piece i.e., when entering between the first fins
  • the airflow is formed by using the rotation of the wavelength conversion dial and the airflow formed by the first rib, and the air passage formed by the first rib and the second rib, so that the airflow can be made. Effectively transfer heat from the wavelength conversion turntable to the housing. In this way, the use of the outer casing to close the wavelength conversion color wheel is realized, and the heat can be effectively radiated to the outer casing, thereby ensuring the wavelength conversion efficiency and the service life of the motor.
  • a wavelength conversion layer 102 is included on the wavelength conversion disk 101.
  • the outer casing 121 includes a first light-transmissive window 125 for receiving the excitation light 161, the first light-transmissive window being capable of transmitting the excitation light while functioning as a closed wavelength conversion turntable.
  • the first light-transmissive window is a convex lens 125 capable of transmitting and focusing the excitation light 161 on the wavelength conversion layer 102, and also functions to close the wavelength conversion disk 101.
  • the first light transmission window It can also be a transparent glass sheet, or other light transmissive components, and is not limited herein.
  • FIG. 1D A top view of the wavelength conversion layer 102 is shown in FIG. 1D, and it is seen that the wavelength conversion layer 102 is an annular coating attached to the wavelength conversion disk.
  • each wavelength of the wavelength conversion layer is only rotated to the optical path of the excitation light 161 as the wavelength conversion disk rotates. The moment is excited and heated, and then begins to cool down after the turn, until the next cycle turns to the excitation light path again and then illuminates again.
  • This pulsed excitation method makes the temperature of the wavelength conversion layer not too high, ensuring luminous efficiency. .
  • the ingenuity of the present invention is that the motor 105 drives the wavelength conversion dial 101 to rotate to achieve two effects simultaneously: the wavelength conversion layer operates in a pulse mode to ensure its luminous efficiency, and also generates a flow in the first The air flow on the ribs and the second ribs to achieve heat exchange.
  • the wavelength conversion layer 102 is a uniform ring shape, and in practical applications, it may also be a plurality of segments of the ring segment distributed along the circumferential direction, each ring segment containing different wavelength conversion properties, such as different
  • the wavelength converting material or different formulation may not even include the wavelength converting material such that the excitation light is directly reflected or transmitted to form a portion of the outgoing light.
  • different ring segments are periodically excited by the excitation light to produce different color lights, which has a specific application in projection display.
  • FIG. 2A Another embodiment of the wavelength conversion device of the present invention is shown in Figure 2A. Different from the embodiment shown in Fig. 1A, the second rib 223 on the inner wall of the outer casing 221 of the wavelength conversion device of the present embodiment is more simplified, and Fig. 2B is a front view of the arrangement of the second rib.
  • the second rib 223 includes a first guiding segment 223 adjacent the end of the first rib 203 remote from the center of the circle for receiving the airflow generated when the wavelength conversion dial rotates.
  • the first guide section of the adjacent second rib 223 forms a first air passage that directs the inflowing airflow toward the end of the first rib near the center of the circle and forms an air flow 241a.
  • the airflow 241b is formed due to the negative pressure generated by the rotation of the first rib, thereby being sucked into between the first ribs to form an air flow loop.
  • this embodiment removes the second rib near the airflow 241b, which has the advantage of weight reduction, but the problem is that the degree of heat exchange between the airflow 241 and the outer casing is reduced, and the airflow 241b
  • the temperature at which the first rib is blown is slightly higher than in the case of Fig. 1A.
  • the second rib 323 of the inner wall of the outer casing 321 includes a second guiding section 323, and one end of the second guiding section is adjacent to one end of the first rib close to the center of the circle for flowing out the airflow 341b to the first A fin 303 forms a gas flow loop.
  • the second guiding section of the adjacent second rib forms a second air passage which brings the airflow 341a generated when the wavelength conversion dial rotates to the first rib 303 in the radial direction of the wavelength conversion dial One end of the center is guided to form an air flow 341b.
  • the outer casing 321 includes a recess 321a for better guiding the airflow 341a to flow into the second guiding section 323. In fact, even if there is no recess 321a, most of the airflow 341a flows into the second guiding section 323 due to the presence of the negative pressure, and the recess 231a increases the flow of the air flowing into the second guiding section.
  • the second rib of FIG. 1A is equivalent to the combination of the second rib of FIG. 2A and the second rib of FIG. 3, that is, FIG.
  • the second guiding section 323 can be used to receive the airflow flowing out of the first guiding section 223 in Fig. 2A, thus constituting the same airflow loop and heat exchange mode as in Fig. 1A.
  • the second air duct includes a partitioning plate 323a between the second guiding section of the second rib and the first rib for the first rib and The flow in the second rib is separated by opposing gas flows, which has the advantage of better guiding the flow of the gas stream, thereby making heat exchange more efficient.
  • the specific position of the second rib as long as at least a portion of the adjacent second ribs form a duct, and the duct is used to guide the radial direction from the wavelength conversion dial.
  • the outwardly flowing gas stream at least partially returns to the end of the first rib near the center of the circle to form a gas flow circuit, which satisfies the requirements of the present invention and is capable of producing the benefit of heat exchange.
  • both the first rib and the second rib are substantially circumferentially symmetrically distributed, i.e., heat exchange occurs over the entire circumference. In practice, heat exchange can also occur on a portion of the circumference, as shown in Figure 4A.
  • the housing 421 further includes a second light transmission window 427 for transmitting light 463 transmitted from the wavelength conversion disk.
  • the front view of the wavelength conversion dial 401 and the second rib of the outer casing is shown in Figs. 4B and 4C, respectively.
  • the wavelength conversion color wheel 4B also functions to form an air flow, but the wavelength conversion color wheel further includes a The annular light transmitting portion 401a; corresponding thereto, the second rib 423 on the inner wall of the outer casing 421 also functions to guide the air flow to the vicinity of the center of the circle, but the difference further includes the second light transmitting window 427.
  • the annular light transmitting region 401a periodically passes through the optical path of the excitation light 461, at which time the excitation light is transmitted through the annular light transmitting region and transmitted through the second light transmission window 427 of the outer casing.
  • first rib 403 and the second rib 423 are not circumferentially symmetrically distributed, but only cover a part of the circumference, that is, heat exchange is effective only in a part of the circumferential area; It is also possible to achieve efficient heat exchange without greatly affecting the heat dissipation effect.
  • the airflow flowing out of the air passage formed by the first ribs is turned to the end of the first rib near the center of the circle after two 90-degree turning, but this is not the only one. the way.
  • Other airflow loop modes will be described in the embodiments shown in Figures 5A-6B below.
  • FIG. 5A A structure of another embodiment of the present invention is shown in Fig. 5A.
  • the second rib 523 of the inner wall of the outer casing 521 has a front view as shown in Fig. 5B.
  • the airflow between the first ribs is the same as in the previous embodiment.
  • the airflow between the second ribs is divided into two sections of airflows 541a and 541b.
  • FIG. 5B the airflow directed from the first ribs first flows into the second rib 523, and is guided by the air passage formed by the second rib 523 to flow in the circumferential direction at the periphery of the wavelength conversion dial to form the airflow 541a.
  • the second rib 523 flows downward and flows into the center of the circle to form the air flow 541b.
  • FIG. 6A A structure of another embodiment of the present invention is shown in Fig. 6A.
  • the air passage between the second ribs 623 of the inner wall of the outer casing 621 also extends in the circumferential direction.
  • the airflow between the first ribs is the same as in the previous embodiment, and the airflow between the second ribs is divided into two sections of airflows 641a and 641b.
  • FIG. 6B the airflow directed from the first ribs first flows into the second rib 623, and is guided by the air passage formed by the second rib 623 to flow in the circumferential direction at the periphery of the wavelength conversion dial to form the airflow 641a.
  • the second rib 623 flows downward and flows into the center of the circle to form the air flow 641b.
  • the arrangement of the second ribs of the inner wall of the outer casing and the manner of flow of the air flow are variously selected, and those skilled in the art can design themselves according to the spirit of the present invention, and thus the present invention.
  • the examples are given by way of illustration only and not as a limitation of the invention.
  • At least a portion of the adjacent second ribs form an air passage for guiding the airflow flowing radially outward from the wavelength conversion disk to at least partially return to the end of the first rib near the center of the circle
  • An air flow loop is formed and flows again between the first ribs.
  • the airflow naturally returns from the periphery of the wavelength conversion dial to the first rib due to the negative pressure at the end of the first rib near the center of the circle and the positive pressure at the periphery of the wavelength conversion dial.
  • the sheet is near one end of the center of the circle, and the second rib is guided so that the airflow during the reflow process is better able to exchange heat with the outer casing.
  • the second rib on the inner wall of the outer casing 921 is deleted; Due to the rotation of the wavelength conversion disk 901 and the air flow 941a generated by the presence of the first rib 903, the air flow 941b is formed due to the difference in air pressure and is returned to the end of the first rib near the center of the circle to form an air flow circuit. During the flow of the gas stream 941b, some heat exchange occurs with the inner wall of the outer casing.
  • the embodiment can also achieve the effect of efficiently dissipating heat to the outer casing while enclosing the wavelength conversion color wheel using the outer casing, thereby ensuring the wavelength conversion efficiency and the service life of the motor.
  • the heat exchange between the airflow 941b and the outer casing is much less. Therefore, the cooling effect of the wavelength conversion color wheel of this embodiment is inferior to that of the embodiment shown in FIG. 1A, but this embodiment It has the advantage of low cost, which can be traded according to the actual situation in practical applications.
  • the inner wall of the outer casing 921 includes an undulating shape to increase the surface area thereof, for example, some bumps, lines, and the like may be processed on the inner wall of the outer casing 921.
  • undulations do not necessarily lead to the formation of the airflow loop by the airflow 941a as in the embodiment shown in Fig. 1A, but still improve the heat exchange between the airflow 941a and the inner wall of the outer casing 921. effectiveness.
  • the heat from the wavelength conversion turntable is also transferred to the motor connected to it.
  • the safe working temperature of the motor generally does not exceed 85 degrees, so the service life of the motor must also be taken into account.
  • the wavelength conversion turntable and the motor are connected by using a heat insulating material, so that the temperature of the motor can be effectively reduced.
  • the wavelength conversion disk includes a wavelength conversion layer, the wavelength conversion layer being opposite to the first ribs on both sides of the wavelength conversion disk.
  • This is advantageous in that the arrangement of the first ribs is not limited by the wavelength conversion layer and is therefore a preferred solution.
  • the relative positions of the wavelength conversion layer, the first ribs and the motor can be designed and optimized according to actual needs, and thus the examples of the present invention do not constitute a limitation thereto.
  • the outer wall of the wavelength conversion device housing 721 of the present embodiment includes a series of third ribs 724, which can effectively lower the temperature of the housing, thereby indirectly reducing the temperature of the wavelength conversion dial.
  • the outer wall of the outer casing is thermally coupled to the heat sink and even to a refrigeration unit (e.g., a semiconductor refrigerator) to reduce the temperature of the outer casing.
  • the wavelength conversion turntable includes a mark 709
  • the outer casing 721 includes a third light transmission window 729 through which the rotation of the mark 709 on the wavelength conversion turntable can be observed, thereby The rotational speed of the wavelength conversion dial can be detected by a detector. This will be applied in the projection display.
  • the housing 821 includes a printed circuit board 891 having a first side and a second side facing the inside of the housing and the inside of the housing, respectively.
  • the first side of the printed circuit board 891 includes a first electrical connection that is electrically coupled to electronics within the housing.
  • the first electrical connection device supplies power to the motor 805 via line 892.
  • the second surface of the printed circuit board 891 includes a second electrical connection device, and the first electrical connection device and the second electrical connection device are electrically connected through the printed circuit board 891, so that the external power source can be inside the outer casing through the second electrical connection device.
  • the electronics are powered or driven.
  • Line 893 in the figure illustrates the line to which the second electrical connection is connected.
  • the printed circuit board 891 maintains the closed integrity of the housing while addressing the power supply to the electronics inside the housing.
  • the arrangement and function of the printed circuit board in this embodiment are independent of the airflow loop and heat exchange mentioned in the previous embodiment, that is, the printed circuit board can be used as long as the outer casing is used to close the wavelength conversion dial.
  • the way to power the motor while ensuring the tightness of the outer casing has nothing to do with whether the first rib and the second rib are used to form the airflow return path.
  • the outer casing of the wavelength conversion device is a single unit. In practical applications, the outer casing It may be made up of multiple parts.
  • a common situation is when the wavelength conversion carousel is mounted on an optical structure and a wavelength conversion carousel is covered with a housing. At this point, the housing and the optical structure together act to close the wavelength conversion carousel, so that the two together form the outer casing; obviously this is also within the scope of the invention.
  • the invention also provides a light-emitting device comprising an excitation light source and the above-mentioned wavelength conversion device, wherein the excitation light emitted from the excitation light source passes through the first light-transmissive window of the outer casing of the wavelength conversion device, is incident on the wavelength conversion carousel and is stimulated to generate laser.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Filters (AREA)

Abstract

一种波长转换装置和发光装置,该波长转换装置包括波长转换转盘(101)和马达(105),所述马达(105)用于带动波长转换转盘(101)转动;所述波长转换转盘(101)上包括沿该波长转换转盘(101)圆周方向排布的一系列第一肋片(103),其中至少部分第一肋片(103)的走向是沿着所述波长转换转盘(101)的径向方向的,用于在所述波长转换转盘(101)转动时产生沿径向方向向外流出的气流;波长转换装置还包括外壳(121),用于将所述波长转换转盘(101)封闭在其内部,并用于引导从所述波长转换转盘(101)径向向外流出的气流至少部分地回到第一肋片(103)靠近圆心的一端,以形成气流回路。本实施方案能够在封闭波长转换转盘(101)的同时,将波长转换转盘(101)的热量传递到外壳(121)上。

Description

波长转换装置和发光装置 技术领域
本发明涉及显示技术领域,特别是涉及一种波长转换装置和使用这种波长转换装置的发光装置。
背景技术
利用激光激发荧光色轮来产生高亮度的时序光,是目前投影行业公认的下一代高亮度光源解决方案。该方案相比传统汞灯或氙灯,有着高亮度、长寿命的优点。在这个方案中,高强度激光入射于匀速转动的荧光色轮,这样的好处在于在一个转动周期内每一处的荧光材料都只被激光激发一个瞬间,有效的避免了荧光过热而失效。
在这个系统中,荧光色轮是一个核心光学部件,其可靠性决定了整个光源模组的性能。由于荧光色轮是高速转动的,而且它本身又发出大量的热,因此目前的方案中荧光色轮都是敞开暴露于空气中的,也就是至少荧光色轮前后的一小段光路是暴露于空气中的。空气中有大量的水汽和灰尘,长时间工作下会对这一段光路的可靠性形成隐患。而直接用一个外壳对这段光路进行封闭,则会导致荧光色轮周围的封闭的空气温度剧烈上升,不仅影响荧光色轮的效率,也影响驱动色轮转动的马达的使用寿命。
发明内容
本发明的目的是通过合理的散热设计同时实现波长转换装置的封闭和散热。
本发明提出一种波长转换装置,包括波长转换转盘和马达,马达用于带动波长转换转盘转动;波长转换转盘上包括沿波长转换转盘圆周方向排布的一系列第一肋片,其中至少部分第一肋片的走向是沿着波长转换转盘的径向方向的,用于在波长转换转盘转动时产生沿径向方向向外流出的气流。还包括外壳,用于将波长转换转盘封闭在其内部。该外壳包括用于接收激发光的第一透光窗口,该第一透光窗口对激发光能够透射同时又能够起到封闭波长转换转盘的作用。
本发明还提出一种发光装置,包括激发光源和上述的波长转换装置,激发光源发出的激发光透过波长转换装置的外壳的第一透光窗口入射于波长转换转盘并使其受激产生受激光。
利用波长转换转盘的转动和第一肋片所形成的气流,以及利用第一肋片、外壳所形成的风道对该气流进行引导形成气流回路,能够使得该气流有效的将波长转换转盘的热量传递到外壳上。
附图说明
图1A是本发明的波长转换装置的第一实施例的结构示意图;
图1B是图1A所示实施例中第一肋片的排布正视图;
图1C是图1A所示实施例中第二肋片的排布正视图;
图1D是图1A所示实施例中波长转换层的正视图;
图1E和图1F是图1A所示实施例中第一肋片的另外两种可能的排布正视图;
图2A是本发明的波长转换装置的另一个实施例的结构示意图;
图2B是图2A所示实施例中第二肋片的排布正视图;
图3是本发明的波长转换装置的另一个实施例的结构示意图;
图4A是本发明的波长转换装置的另一个实施例的结构示意图;
图4B是图4A所示实施例中第一肋片的排布正视图;
图4C是图4A所示实施例中第二肋片的排布正视图;
图5A是本发明的波长转换装置的另一个实施例的结构示意图;
图5B是图5A所示实施例中第二肋片的排布正视图;
图6A是本发明的波长转换装置的另一个实施例的结构示意图;
图6B是图6A所示实施例中第二肋片的排布正视图;
图7是本发明的波长转换装置的另一个实施例的结构示意图;
图8是本发明的波长转换装置的另一个实施例的结构示意图;
图9是本发明的波长转换装置的另一个实施例的结构示意图。
具体实施方式
本发明的波长转换装置的第一实施例的结构示意图如图1A所示。该波长转换装置包括波长转换转盘101和马达105,马达105用于带动波长转换转盘101转动。波长转换转盘101上包括沿波长转换转盘圆周方向排布的一系列第一肋片103,第一肋片的正视图如图1B所示,其中至少部分第一肋片103的走向是沿着波长转换转盘的径向方向的,用于在波长转换转盘转动时产生沿径向方向向外流出的气流(在图1A和1B中以箭头141a表示)。当波长转换转盘101被马达105带动转动时,相邻的第一肋片103之间的空气会由于离心力而沿着第一肋片的走向向波长转换转盘的外围流出,同时由于负压会有第一肋片靠近波长转换转盘中心的一端的空气流入第一肋片之间。这部分流动于第一肋片之间的气流能够将波长转换装置所产生的热量沿着气流流动方向带走,同时从波长转换转盘 外围流出的气流会被波长转换转盘以及第一肋片所加热。
在本实施例中,第一肋片是向心方向的,但实际应用中可能不是完全向心的(例如图1E所示的),或者可能会是弯曲的(例如图1F所示)或其它形状,这是可以根据现有的方法进行设计的。值得说明的是,在本发明中,第一肋片的走向是沿着波长转换转盘的径向方向的,指的是第一肋片的一端到波长转换转盘中心的距离小于其另一端到波长转换转盘中心的距离,这样就可以实现在波长转换转盘转动时产生沿径向方向向外流出的气流的目的。此处气流沿径向方向向外流出也不仅限于沿离心方向流出,例如图1E和1F中的气流141a,只要从波长转换转盘外围向外流出就可以达到目的。因此,只要满足上述要求的第一肋片就属于本发明的保护范围。
本实施例的波长转换装置还包括外壳121,用于将波长转换转盘101封闭在其内部。该外壳121的内壁包括一系列第二肋片123,至少部分相邻的第二肋片形成风道,该风道用于引导从波长转换转盘101径向向外流出的气流141a至少部分地回到第一肋片靠近圆心的一端,形成气流141b,以形成气流回路,再次流入第一肋片之间。在本实施例中,第二肋片俯视图如图1C所示。同时参考图1A和图1C可以看出,被加热的气流141a进入到第二肋片所形成的风道后,首先会被该风道所引导向下(图1A中的下方向)流动,然后再向圆心方向弯折,最后沿着径向排列的第二肋片(如图1C所示的)所形成的风道向圆心方向流动,最终形成气流回路再次流入到第一肋片之间。在这个过程中,气流141b会将热量传递给第二肋片123以及外壳121,同时气流的温度会由于热量的传出而降低。因此当这个气流141b再次进入下一个气流循环时(即进入到第一肋片之间时),它已经变成了冷空气,这样就可以在形成气流141a时继续吸收波长转换转盘和第一肋片的热量。
综上所述,利用波长转换转盘的转动和第一肋片所形成的气流,以及利用第一肋片、第二肋片所形成的风道对该气流进行引导形成气流回路,能够使得该气流有效的将波长转换转盘的热量传递到外壳上。这样在实现了使用外壳封闭波长转换色轮的同时,又能够将热量有效的散发到外壳上,保证了波长转换效率和马达的使用寿命。
如图1A所示的,波长转换转盘101上包括波长转换层102。其中,外壳121包括用于接收激发光161的第一透光窗口125,该第一透光窗口对激发光能够透射同时又能够起到封闭波长转换转盘的作用。例如在本实施例中,第一透光窗口为一个凸透镜125,它能够透射并聚焦激发光161于波长转换层102上,同时也能够起到封闭波长转换转盘101的作用。在实际应用中,第一透光窗口 也可以是透明玻璃片,或者其它透光元器件,此处并不做限制。
波长转换层102的俯视图如图1D所示,可见波长转换层102就是依附于波长转换转盘的一个环形涂层。参考图1A,当激发光161透过第一透光窗口125入射于波长转换层时,随着波长转换转盘转动,波长转换层的每一个被激发点都只会在转动到激发光161的光路的瞬间被激发而发热,转过去后就开始降温,直到下一个周期再次转到激发光光路后再次发光,这种脉冲式的激发方式使得波长转换层的温度不会过高,保证了发光效率。由此可见,本发明的巧妙之处还在于,马达105驱动波长转换转盘101转动能够同时达到两个效果:使波长转换层工作于脉冲模式以保证其发光效率,同时也产生了流动于第一肋片和第二肋片上的气流以实现热交换。
在本实施例中,波长转换层102是均匀的一个环形,而在实际应用中,也可能是沿着圆周方向分布的多段的环形段,每个环形段包含不同的波长转换属性,例如不同的波长转换材料或不同的配方,甚至可能不包括波长转换材料而使得激发光直接反射或透射而形成出射光的一部分。这样,随着波长转换转盘的转动,不同的环形段周期性的依次被激发光激发而产生不同颜色光,这在投影显示中有特定的应用。
本发明的波长转换装置的另一个实施例如图2A。与图1A所示的实施例不同的是,本实施例的波长转换装置的外壳221内壁上的第二肋片223更为简化,图2B为第二肋片的排布正视图。具体来说,参考图2A和2B,第二肋片223包括第一引导段223,该第一引导段靠近第一肋片203远离圆心的一端,用于接收波长转换转盘转动时产生的气流。相邻的第二肋片223的第一引导段形成第一风道,该第一风道引导流入的气流向着第一肋片靠近圆心的一端转向,并形成气流241a。该气流流出第二肋片后,会由于第一肋片旋转所产生的负压而形成气流241b,从而被吸入第一肋片之间,形成气流回路。
本实施例与图1A所示的实施例相比,去除掉了气流241b附近的第二肋片,这样的好处在于重量减轻了,但问题是气流241与外壳的热交换程度降低了,气流241b吹进第一肋片的温度要比图1A的情况稍高一些。
本发明的波长转换装置的另一个实施例如图3所示。与图1A所示实施例不同的是,外壳321内壁的第二肋片323包括第二引导段323,第二引导段的一端靠近第一肋片接近圆心的一端,用于流出气流341b至第一肋片303以形成气流回路。相邻的第二肋片的第二引导段形成第二风道,该第二风道将波长转换转盘转动时产生的气流341a沿着波长转换转盘的径向方向向第一肋片303的接近圆心的一端进行引导从而形成气流341b。
本实施例中,外壳321包括凹陷321a,用于更好的引导气流341a流入第二引导段323。实际上,即使没有凹陷321a,由于负压的存在气流341a也会大部分的流入第二引导段323,而凹陷231a提高了流入第二引导段的气流量。
结合图1A、图2A和图3可以看出,实际上图1A中的第二肋片就等同于图2A中的第二肋片与图3中的第二肋片的组合,即图3中的第二引导段323可以用于接收图2A中的第一引导段223中流出的气流,这样也就构成了与图1A中一样的气流回路和热交换方式。
优选的,在图3所示的本实施例中,第二风道包括位于第二肋片的第二引导段和第一肋片之间的分隔板323a,用于将第一肋片和第二肋片中的流向相反的气流分隔开,其好处在于更好的引导了气流的流向,从而使热交换更为高效。
综合上述几个实施例可以看出,第二肋片的具体位置存在多种可能,只要至少部分相邻的第二肋片形成风道,且该风道用于引导从波长转换转盘径向向外流出的气流至少部分地回到第一肋片靠近圆心的一端以形成气流回路,就满足本发明的要求,就能够产生热交换的有益效果。
前述实施例中,无论第一肋片还是第二肋片都基本是圆周对称分布的,即热交换是发生在整个圆周上的。在实际中,热交换也可以发生在部分圆周上,如图4A所示。图4A所示的波长转换装置中,外壳421还包括第二透光窗口427,用于透过从波长转换转盘透射的光463。其中,波长转换转盘401和外壳的第二肋片的正视图分别如图4B和4C所示。与图1B和图1C所示的实施例相比,图4B所示的波长转换转盘401上的第一肋片403同样起到了形成气流的作用,但不同的是波长转换色轮上还包括一个环形透光区401a;与之相对应的,外壳421内壁上的第二肋片423同样起到了引导气流到圆心附近的作用,但不同的是还包括第二透光窗口427。这样,当波长转换转盘转动时,环形透光区401a周期性的经过激发光461的光路,此时激发光透射该环形透光区并透射外壳的第二透光窗口427出射。该本实施例中,第一肋片403和第二肋片423都不是圆周对称分布的,而是只覆盖了部分圆周,也就是只在部分圆周区域有效的进行热交换;实验证明这种情况也可以高效的实现热交换,并不会对散热效果产生太大影响。
在上述实施例中,第一肋片所形成的风道流出的气流,都是经过两次90度的弯折转向后流向第一肋片靠近圆心的一端的,而实际上这并不是唯一的方式。在后面图5A至图6B所示的实施例中将阐述其它的气流回路方式。
本发明的另一个实施例的结构如图5A所示。其中,外壳521的内壁的第二肋片523,其正视图如图5B所示。第一肋片间的气流走向与前述实施例相同, 而第二肋片间的气流走向分为气流541a和541b两段。如图5B所示,从第一肋片引导流出的气流首先流入第二肋片523,并经由第二肋片523所形成的风道引导在波长转换转盘的外围沿着圆周方向流动形成气流541a,然后再如图5A和5B所示的,从第二肋片523向下流出并向圆心流入形成气流541b。
本发明的另一个实施例的结构如图6A所示。其中,外壳621内壁的第二肋片623之间的风道也是沿圆周方向延伸的。第一肋片间的气流走向与前述实施例相同,而第二肋片间的气流走向分为气流641a和641b两段。如图6B所示,从第一肋片引导流出的气流首先流入第二肋片623,并经由第二肋片623所形成的风道引导在波长转换转盘的外围沿着圆周方向流动形成气流641a,然后再如图6A和6B所示的,从第二肋片623向下流出并向圆心流入形成气流641b。
综上所述,本发明中外壳内壁的第二肋片的排布方式以及气流的流动方式都是有多种选择的,本领域技术人员完全可以根据本发明的精神来自己设计,因此本发明所给出的实施例只是举例而不构成对本发明的限制。
在上述实施例中,至少部分相邻的第二肋片形成风道,该风道用于引导从波长转换转盘径向向外流出的气流至少部分地回到第一肋片靠近圆心的一端以形成气流回路,再次流入第一肋片之间。而实际上,即使没有第二肋片的引导,由于第一肋片靠近圆心的一端处的负压和波长转换转盘外围的正压的存在,气流自然会从波长转换转盘外围回到第一肋片靠近圆心的一端,而第二肋片的引导是使得该气流回流的过程中能够更好的与外壳发生热交换。
因此在本发明的另一个实施例中(其结构如图9所示),相对于图1A所示的实施例不同的是,外壳921的内壁上的第二肋片被删除了;此时,由于波长转换转盘901的转动和第一肋片903的存在所产生的气流941a,会由于气压差的原因而形成气流941b并回流到第一肋片靠近圆心的一端以形成气流回路。在气流941b的流动过程中也会与外壳的内壁发生一定的热交换。因此本实施例也能够达到使用外壳封闭波长转换色轮的同时,又能够将热量有效的散发到外壳上,保证了波长转换效率和马达的使用寿命的效果。当然,由于没有第二肋片,气流941b与外壳之间的热交换要少得多,因此本实施例对波长转换色轮的降温效果会比图1A所示的实施例差,但本实施例具有成本低的优点,这在实际应用中可以根据实际情况来取舍。
为了提高本实施例中气流941a与外壳921内壁的热交换效率,优选的,外壳921内壁包括起伏的形状以增大其表面积,例如可以在外壳921内壁上加工一些凸点、线条等。这些起伏并不一定会像图1A所示的实施例那样能够引导气流941a形成气流回路,但是依然能够提高气流941a与外壳921内壁的热交换 效率。
在实际应用中,波长转换转盘上发出的热量,也会传递给与之相连接的马达。而马达的安全工作温度一般不超过85度,因此马达的使用寿命也必须考虑进来。优选的,波长转换转盘与马达之间使用隔热材料进行连接,这样可以有效的降低马达的温度。
在上述实施例中,波长转换转盘包括波长转换层,该波长转换层与第一肋片相对的位于波长转换转盘的两侧。这有利于第一肋片的排布不受波长转换层的限制,因此是优选的方案。而在实际应用中,波长转换层、第一肋片以及马达的相对位置都是可以根据实际需要设计和优化的,因此本发明的举例并不构成对此的限制。
本发明的另一个实施例的结构如图7所示。与图1A所示实施例不同的是,本实施例的波长转换装置外壳721的外壁包括一系列第三肋片724,这样可以有效降低外壳的温度,从而间接的降低波长转换转盘的温度。或者,外壳的外壁与散热装置热连接,甚至与制冷装置(例如半导体制冷器)相连,从而起到降低外壳温度的作用。
本实施例的另一个不同点在于,波长转换转盘上包括标志709,外壳721上包括第三透光窗口729,通过第三透光窗口729可以观察到波长转换转盘上的标志709的转动,从而可以通过探测器探测波长转换转盘的转动速度。这在投影显示中将得到应用。
本发明的另一个实施例的结构如图8所示。与图7所示的实施例不同的是,外壳821上包括印刷电路板891,该印刷电路板891的第一面和第二面分别面向外壳内部和外壳内部。印刷电路板891的第一面包括第一电连接装置,该第一电连接装置与外壳内部的电子器件电连接。例如第一电连接装置通过线路892为马达805供电。该印刷电路板891的第二面包括第二电连接装置,第一电连接装置与第二电连接装置通过印刷电路板891电连接,这样外部电源就可以通过第二电连接装置为外壳内部的电子器件供电或驱动。图中线路893示意与第二电连接装置所连的线路。通过印刷电路板891,在解决了为外壳内部的电子器件供电的同时,还保持了外壳的封闭完整性。
显然本实施例中的印刷电路板的设置和作用与前面实施例提到的气流回路和热交换是独立作用的,也就是说,只要使用了外壳来封闭波长转换转盘,就可以使用印刷电路板的方式来为马达供电同时保证外壳的封闭性,与是否使用第一肋片、第二肋片形成气流归路没有关系。
在上述实施例中,波长转换装置的外壳都是一个整体。在实际应用中,外壳 可能是由多个部件构成的。一种常见的情况是,波长转换转盘安装于一个光学结构上,再使用一个壳体将波长转换转盘罩住。此时壳体和光学结构合在一起对波长转换转盘起到封闭的作用,因此两者共同构成了外壳;显然这种情况也属于本发明的保护范围以内。
本发明还提出一种发光装置,包括激发光源和上述的波长转换装置,激发光源发出的激发光透过波长转换装置的外壳的第一透光窗口入射于波长转换转盘并使其受激产生受激光。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种波长转换装置,其特征在于:
    包括波长转换转盘和马达,所述马达用于带动波长转换转盘转动;所述波长转换转盘上包括沿该波长转换转盘圆周方向排布的一系列第一肋片,其中至少部分第一肋片的走向是沿着所述波长转换转盘的径向方向的,用于在所述波长转换转盘转动时产生沿径向方向向外流出的气流;
    还包括外壳,用于将所述波长转换转盘封闭在其内部,并用于引导从所述波长转换转盘径向向外流出的气流至少部分地回到第一肋片靠近圆心的一端,以形成气流回路。
  2. 根据权利要求1所述的波长转换装置,其特征在于:所述外壳的内壁包括一系列第二肋片,至少部分相邻的第二肋片形成风道,该风道用于引导从波长转换转盘径向向外流出的气流至少部分地回到第一肋片靠近圆心的一端,以形成气流回路。
  3. 根据权利要求1所述的波长转换装置,其特征在于:所述外壳的内壁包括起伏的形状。
  4. 根据权利要求2所述的波长转换装置,其特征在于,所述第二肋片包括第一引导段,该第一引导段靠近第一肋片远离圆心的一端,用于接收波长转换转盘转动时产生的气流;相邻的第二肋片的第一引导段形成第一风道,该第一风道引导流入的气流向着第一肋片靠近圆心的一端转向。
  5. 根据权利要求2或4所述的波长转换装置,其特征在于,所述第二肋片包括第二引导段,第二引导段的一端靠近第一肋片接近圆心的一端,用于流出气流至第一肋片以形成气流回路;相邻的第二肋片的第二引导段形成第二风道,该第二风道将波长转换转盘转动时产生的气流沿着波长转换转盘的径向方向向第一肋片的接近圆心的一端进行引导。
  6. 根据权利要求5所述的波长转换装置,其特征在于,所述第二风道包括位于第二肋片的第二引导段和第一肋片之间的分隔板。
  7. 根据权利要求5所述的波长转换装置,其特征在于,所述外壳包括凹陷,用于更好的引导气流流入第二引导段。
  8. 根据权利要求2所述的波长转换装置,其特征在于,相邻的第二肋片形成的风道引导从波长转换转盘径向向外流出的气流在波长转换转盘的外围沿着圆周方向流动。
  9. 根据权利要求1所述的波长转换装置,其特征在于,所述外壳上包括印刷电路板,该印刷电路板的第一面和第二面分别面向外壳内部和外壳外部;该印刷电路板的第一面包括第一电连接装置,该第一电连接装置与外壳内部的电子器件电连接;该印刷电路板的第二面包括第二电连接装置,第一电连接装置与第二电连接装置通过印刷电路板电连接。
  10. 一种发光装置,其特征在于,包括激发光源和根据权利要求1至9中任一项所述的波长转换装置,所述激发光源发出的激发光入射于波长转换转盘并使其受激产生受激光。
PCT/CN2016/073721 2015-01-31 2016-02-06 波长转换装置和发光装置 Ceased WO2016127935A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510055572 2015-01-31
CN201510071022.1A CN104676492B (zh) 2015-01-31 2015-02-10 波长转换装置和发光装置
CN201510071022.1 2015-02-10

Publications (1)

Publication Number Publication Date
WO2016127935A1 true WO2016127935A1 (zh) 2016-08-18

Family

ID=53311892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073721 Ceased WO2016127935A1 (zh) 2015-01-31 2016-02-06 波长转换装置和发光装置

Country Status (2)

Country Link
CN (3) CN106054510A (zh)
WO (1) WO2016127935A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744360B (zh) * 2016-08-30 2021-11-01 日商索尼股份有限公司 投射型顯示裝置
EP4400910A1 (en) * 2023-01-06 2024-07-17 Seiko Epson Corporation Phosphor unit, light source device, and projector

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054510A (zh) * 2015-01-31 2016-10-26 杨毅 波长转换装置和发光装置
WO2017064866A1 (ja) 2015-10-16 2017-04-20 セイコーエプソン株式会社 波長変換装置、照明装置及びプロジェクター
CN105319824A (zh) * 2015-11-07 2016-02-10 杨毅 发光装置和投影显示装置
CN106814526B (zh) * 2015-12-02 2020-10-20 深圳光峰科技股份有限公司 色轮装置
WO2017092669A1 (zh) * 2015-12-02 2017-06-08 深圳市光峰光电技术有限公司 色轮装置
CN107479306B (zh) * 2016-06-07 2019-08-20 深圳光峰科技股份有限公司 色轮装置
CN206321931U (zh) * 2016-12-09 2017-07-11 深圳市光峰光电技术有限公司 色轮装置及投影设备
CN112034671B (zh) * 2016-12-09 2022-02-18 深圳光峰科技股份有限公司 色轮组件、光源装置及投影设备
US10955734B2 (en) * 2016-12-19 2021-03-23 Sony Corporation Light source apparatus and projection display apparatus
JP7102849B2 (ja) * 2018-03-28 2022-07-20 セイコーエプソン株式会社 波長変換装置、光源装置及びプロジェクター
JP7070146B2 (ja) * 2018-06-25 2022-05-18 株式会社リコー 光源モジュール、及び光学装置
CN110658668B (zh) * 2018-06-29 2022-02-01 青岛海信激光显示股份有限公司 一种荧光轮装置及投影显示系统
CN112272794A (zh) * 2018-07-27 2021-01-26 美题隆精密光学(上海)有限公司 具有对流冷却的波长转换元件
CN110161785A (zh) * 2019-04-24 2019-08-23 苏州佳世达光电有限公司 色轮散热系统及投影机
CN111273508B (zh) * 2020-03-16 2025-06-10 广东联大光电有限公司 一种组装式波长转换装置
CN212749383U (zh) 2020-08-24 2021-03-19 中强光电股份有限公司 波长转换元件及投影机
CN214504112U (zh) 2021-04-25 2021-10-26 中强光电股份有限公司 波长转换模块与投影装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1797181A (zh) * 2004-12-29 2006-07-05 精碟科技股份有限公司 色轮及其盖片
US20080049345A1 (en) * 2006-08-28 2008-02-28 Minebea Co., Ltd. Color wheel unit
CN101393312A (zh) * 2007-09-19 2009-03-25 鸿富锦精密工业(深圳)有限公司 色轮
CN104676492A (zh) * 2015-01-31 2015-06-03 杨毅 波长转换装置和发光装置
CN204629367U (zh) * 2015-01-31 2015-09-09 杨毅 波长转换装置和发光装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798595B1 (ko) * 2001-06-04 2008-01-28 엘지전자 주식회사 투사장치의 칼라 휠 냉각 장치
CN101276133A (zh) * 2007-03-27 2008-10-01 精碟科技股份有限公司 色轮组件
TWI460525B (zh) * 2011-12-29 2014-11-11 Hon Hai Prec Ind Co Ltd 投影機色輪裝置
CN202546620U (zh) * 2011-12-30 2012-11-21 深圳市光峰光电技术有限公司 波长转换装置及发光装置
CN103226283A (zh) * 2012-01-31 2013-07-31 鸿富锦精密工业(深圳)有限公司 投影机色轮装置
CN103807810B (zh) * 2012-11-14 2015-07-29 深圳市光峰光电技术有限公司 波长转换装置及相关发光装置
CN103885274B (zh) * 2012-12-20 2018-05-15 深圳市光峰光电技术有限公司 发光装置及相关投影系统
CN203311071U (zh) * 2013-02-06 2013-11-27 深圳市光峰光电技术有限公司 色轮组件及其相关光源系统
CN203549686U (zh) * 2013-10-16 2014-04-16 深圳市绎立锐光科技开发有限公司 波长转换装置及相关光源系统、投影系统
CN203643734U (zh) * 2013-12-11 2014-06-11 深圳市光峰光电技术有限公司 色轮装置
CN103836349B (zh) * 2013-12-31 2023-04-07 吴震 发光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1797181A (zh) * 2004-12-29 2006-07-05 精碟科技股份有限公司 色轮及其盖片
US20080049345A1 (en) * 2006-08-28 2008-02-28 Minebea Co., Ltd. Color wheel unit
CN101393312A (zh) * 2007-09-19 2009-03-25 鸿富锦精密工业(深圳)有限公司 色轮
CN104676492A (zh) * 2015-01-31 2015-06-03 杨毅 波长转换装置和发光装置
CN204629367U (zh) * 2015-01-31 2015-09-09 杨毅 波长转换装置和发光装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI744360B (zh) * 2016-08-30 2021-11-01 日商索尼股份有限公司 投射型顯示裝置
EP4400910A1 (en) * 2023-01-06 2024-07-17 Seiko Epson Corporation Phosphor unit, light source device, and projector

Also Published As

Publication number Publication date
CN104676492A (zh) 2015-06-03
CN104676492B (zh) 2016-08-17
CN204534444U (zh) 2015-08-05
CN106054510A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
WO2016127935A1 (zh) 波长转换装置和发光装置
JP6259906B2 (ja) 波長変換装置及び関連する発光装置
EP2871519A2 (en) Light source apparatus and image projection apparatus
CN204629367U (zh) 波长转换装置和发光装置
CN104375366A (zh) 光源装置以及具备该光源装置的图像投影装置
CN101963743A (zh) 投影机
CN101650517B (zh) 投影机
JP5950630B2 (ja) ヘッドライト用led光源モジュール
WO2016185851A1 (ja) 光変換装置および光源装置、ならびにプロジェクタ
JP2013250422A (ja) 画像投影装置
KR102437947B1 (ko) 컬러 휠 장치
CN101217099A (zh) 灯泡密封内循环式散热系统
JP2006319103A (ja) 発光ダイオードの冷却装置
TWI393989B (zh) 投影機
KR100451359B1 (ko) 마이크로 웨이브를 이용한 조명기기
CN110242902A (zh) 一种液冷散热探照灯
JP5879554B2 (ja) 照明装置及び浴室照明装置
RU2219619C1 (ru) Система охлаждения осветительного устройства, использующего микроволновую энергию (варианты)
CN109185719A (zh) 一种led灯具
WO2014013923A1 (ja) 固体照明装置
CN209590513U (zh) 高效散热的荧光粉轮装置
JP2018084685A (ja) 画像投影装置および画像投影システム
CN205003433U (zh) 发光装置、投影显示装置和灯具
JP5157792B2 (ja) プロジェクタ及び光源装置
CN110454710B (zh) 一种大功率led远照灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16748736

Country of ref document: EP

Kind code of ref document: A1