WO2014013923A1 - 固体照明装置 - Google Patents

固体照明装置 Download PDF

Info

Publication number
WO2014013923A1
WO2014013923A1 PCT/JP2013/068919 JP2013068919W WO2014013923A1 WO 2014013923 A1 WO2014013923 A1 WO 2014013923A1 JP 2013068919 W JP2013068919 W JP 2013068919W WO 2014013923 A1 WO2014013923 A1 WO 2014013923A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength conversion
conversion layer
lighting device
solid
Prior art date
Application number
PCT/JP2013/068919
Other languages
English (en)
French (fr)
Inventor
順一 木下
慶暁 松葉
Original Assignee
東芝ライテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝ライテック株式会社 filed Critical 東芝ライテック株式会社
Publication of WO2014013923A1 publication Critical patent/WO2014013923A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion

Definitions

  • Embodiments of the present invention relate to a solid state lighting device.
  • SSL White solid state lighting
  • LEDs Light Emitting Diodes
  • a white light emitting unit having a phosphor is provided so as to cover the LED chip, a substrate for heat dissipation and power supply of the LED chip is required. If the white light emitting unit is composed only of an optical system, heat generation is small, the size and weight are reduced, and the design flexibility of the lighting device can be increased.
  • the output from a high-intensity solid-state light emitting device in the blue-violet to blue wavelength range may be efficiently coupled to an optical fiber or the like, and irradiated with a separated phosphor to obtain white light emission.
  • a semiconductor laser element (LD: Laser Diode) having a narrower beam divergence angle than the LED is used, it can be efficiently optically coupled to the optical fiber.
  • LD Laser Diode
  • a solid state lighting device in which the temperature increase of the wavelength conversion layer is suppressed and high brightness is easy.
  • the solid-state lighting device of the embodiment includes a semiconductor laser capable of emitting laser light in a blue-violet to blue wavelength range, a heat conduction unit, and a wavelength conversion layer.
  • the wavelength conversion layer includes a first surface bonded to the heat conducting unit and a second surface opposite to the first surface, and has a thickness t1 (m) and an area S (m 2 ), and thermal conductivity ⁇ 1 (Wm ⁇ 1 K ⁇ 1 ).
  • the wavelength conversion layer absorbs the light beam of the laser light irradiated on the second surface to emit wavelength conversion light and generate heat.
  • the wavelength conversion layer converts the laser light into scattered light by multiple reflection or multiple scattering.
  • the light conversion vertical brightness on the second surface of the mixed light of the scattered light and the wavelength converted light is Lv (cd ⁇ m ⁇ 2 ), and the heat conversion obtained by dividing the heat generation amount of the wavelength conversion layer by the light flux.
  • the efficiency is ⁇ th (W ⁇ lm ⁇ 1 ), and Holds.
  • a solid state lighting device is provided in which the temperature rise of the wavelength conversion layer is suppressed and high brightness is easy.
  • FIG. 1A is a partial schematic perspective view of a light emitting unit of the solid state lighting device according to the first embodiment
  • FIG. 1B is a schematic cross-sectional view taken along line AA
  • FIG. 2A is a partial schematic perspective view of the light emitting unit of the solid state lighting device according to the second embodiment
  • FIG. 2B is a schematic cross-sectional view taken along the line BB.
  • It is a model perspective view of the light emission part of the solid-state lighting apparatus concerning 3rd Embodiment.
  • It is a model perspective view of the solid-state lighting device which has the light emission part of this embodiment.
  • FIG. 5A is a schematic perspective view of a light emitting unit having an optical unit
  • FIG. 5B is a schematic cross-sectional view taken along the line CC.
  • FIG. 6A is a schematic perspective view of the light emitting unit of the solid state lighting device according to the fourth embodiment, and FIG. 6B is a schematic cross-sectional view taken along the line DD.
  • FIG. 7A is a schematic perspective view of the solid-state lighting device according to the fifth embodiment, and FIG. 7B is a schematic cross-sectional view taken along the line EE.
  • FIG. 8A is a partial schematic perspective view of the light emitting unit of the solid state lighting device according to the sixth embodiment, and FIG. 8B is a schematic cross-sectional view taken along the line FF.
  • It is a schematic diagram which shows the structure of the projector which is an example of the application example of a solid-state lighting apparatus. It is a block diagram which shows the function of a projector.
  • FIG. 1A is a partial schematic perspective view of a light emitting unit of the solid state lighting device according to the first embodiment
  • FIG. 1B is a schematic cross-sectional view taken along line AA.
  • the solid-state lighting device includes a semiconductor laser (LD) 11 capable of emitting laser light in a blue-violet to blue wavelength range (405 to 490 nm), a heat conducting unit 34, and a wavelength conversion layer 32.
  • the wavelength conversion layer 32 includes a first surface 32a bonded to the heat conducting unit 34, and a second surface (light emitting surface of the wavelength conversion layer) 32b opposite to the first surface 32a.
  • the laser light irradiates the wavelength conversion layer 32 containing a phosphor or the like, and emits yellow light having a wavelength longer than the wavelength (for example, 540 to 570 nm) as the wavelength converted light.
  • the scattered light and the wavelength-converted light that are multiple-reflected or scattered by the wavelength conversion layer 32 are mixed to become white light.
  • the wavelength conversion layer 32 has a thermal conductivity of ⁇ 1 and a thickness of t1 mm. As shown in FIG. 1B, a model is assumed in which the heat generated in the wavelength conversion layer 32 that has absorbed the laser light becomes a heat flow HF that flows from the wavelength conversion layer 32 through the heat conduction unit 34 and is discharged to the outside.
  • the temperature of the point P2 on the surface of the heat conducting part 34 that is directly below the center of gravity P1 of the second surface 32b of the wavelength conversion layer 32 and is in contact with the first surface 32a of the wavelength conversion layer 32 is the ambient temperature of general illumination. Or the maximum value of the temperature of the heat radiating part of a general electric product, which is 60 ° C. or less.
  • the temperature of the center of gravity P1 of the second surface 32b of the wavelength conversion layer 32 is 140 ° C. as a maximum value.
  • This is a deterioration limit value of the silicone resin, and is also a limit value capable of maintaining the conversion efficiency of the phosphor. That is, the allowable value of the temperature rise ⁇ T from the heat conducting unit 34 is 80 ° C.
  • the wavelength conversion layer 32 is a circle
  • its center of gravity P1 is the center of the circle.
  • the amount of heat generated is determined by considering the phosphor and standard chromaticity from the specifications of the total luminous flux for large light applications.
  • the thermal conversion efficiency ⁇ th represents a coefficient converted into thermal power per luminous flux, and what percentage of the efficiency of the wavelength converting layer 32 and the incident power is absorbed by the wavelength converting layer 32, the luminous flux at that time Determined by. These relationships are expressed by the formula (2).
  • the temperature increase ⁇ T of the wavelength conversion layer 32 is a temperature difference between the center of gravity P1 of the second surface 32b and the point P2 on the surface of the heat conducting portion 34 immediately below the center of gravity P1, and is expressed by the equation (3).
  • R th (KW ⁇ 1 ) represents the thermal resistance of the wavelength conversion layer 32.
  • Equation (1) From Equation (1) to Equation (3), the relationship of Equation (4) is established.
  • the ratio between the thickness t1 of the wavelength conversion layer 32 and the thermal conductivity ⁇ 1 is determined by the light emitting surface vertical luminance Lv and the wavelength conversion layer 32. It shows that it depends only on the heat conversion efficiency ⁇ th of the . That is, the ratio between the thickness t1 and the thermal conductivity ⁇ 1 of the wavelength conversion layer 32 is not dependent area of the wavelength conversion layer 32 S, the heating value P th of the total flux F and the wavelength conversion layer 32.
  • Equation (4) gives the following important suggestions, for example.
  • the thickness t1 of the wavelength conversion layer 32 should be reduced and a material having a high thermal conductivity ⁇ 1 of the wavelength conversion layer 32 should be used.
  • a high-intensity LED with a large amount of light is generally provided with a wavelength conversion layer on a chip of 1 mm ⁇ 1 mm. Even with a chip size larger than this, it is difficult to obtain a luminous flux value of approximately 125 lumens (lm) because of the droop phenomenon in which the light emission efficiency at high current density decreases.
  • the light emitting surface vertical luminance Lv at this time is approximately 40 Mcd ⁇ m ⁇ 2 . In this case, it is difficult to obtain a solid state lighting device having a large light amount and a small light emitting area.
  • the light emitting surface vertical luminance Lv per lamp is 40 Mcd ⁇ m ⁇ 2 or more. Can be easily done. That is, in the first embodiment, the light emitting surface vertical luminance Lv is set to a range represented by Expression (5).
  • the right side of the equation (4) is preferably in the range represented by the equation (6).
  • the wavelength conversion layer 32 since the wavelength conversion layer 32 has phosphor particles dispersed in a silicone layer or a glass layer, the thickness thereof may be determined in consideration of its thermal conductivity and density. In this way, deterioration of the resin such as silicone constituting the wavelength conversion layer 32 can be suppressed, the conversion efficiency of the wavelength conversion layer 32 can be maintained, and the light emitting surface vertical luminance Lv can be increased.
  • FIG. 2A is a partial schematic perspective view of the light emitting unit of the solid state lighting device according to the second embodiment
  • FIG. 2B is a schematic cross-sectional view taken along the line BB.
  • a reflective layer 35 provided between the wavelength conversion layer 32 and the heat conducting unit 34 and a heat radiator 72 attached to the outside of the heat conducting unit 34 are further provided.
  • a plurality of laser beams are emitted from the plurality of LDs (11a to 11e) toward the wavelength conversion layer 32, respectively. If the wavelength conversion layer 32 contains red or green phosphor, it is easy to improve color rendering.
  • the reflectance may decrease in the wavelength range of blue-violet to blue light.
  • the reflective layer 35 having a thermal conductivity higher than the thermal conductivity of the wavelength conversion layer 32 and a reflectance of the surface in contact with the wavelength conversion layer 32 is higher than the reflectance of the thermal conduction unit 34, the wavelength conversion layer 32 It becomes easy to discharge heat to the heat conducting portion 34 while increasing the light extraction rate on the second surface 32b side.
  • Formula (8) is formed from Formula (1), (2), (7).
  • R th (KW ⁇ 1 ) represents the thermal resistance of the laminated body of the wavelength conversion layer 32 and the reflective layer 35.
  • the right side of the equation (8) is The range represented by (9) is preferable.
  • FIG. 3 is a schematic perspective view of a light emitting unit of the solid state lighting device according to the third embodiment.
  • the laser beam may be guided using the optical fiber 24 (24a to 24e).
  • laser light can be introduced into one end of the optical fiber 24 and can be directly irradiated toward the wavelength conversion layer 32 from the other end of the optical fiber 24 separated from the LD.
  • the wavelength conversion layer 32 can be irradiated after laser light is introduced from the optical fiber 24 to the optical unit provided on the wavelength conversion layer 32 and guided in the optical unit.
  • the coherent laser light can be multiple scattered or multiple reflected and emitted to the outside as scattered light.
  • the wavelength conversion light can be generated more uniformly.
  • FIG. 4 is a schematic perspective view of the solid-state lighting device having the light emitting unit shown in FIGS.
  • the solid-state lighting device 5 includes a light source unit 10, a light guide unit 20, and a light emitting unit 30.
  • the light source unit (light engine) 10 includes an LD 11 and a drive circuit 12.
  • the LD 11 is made of a nitride-based semiconductor material and emits laser light in a blue-violet to blue wavelength range.
  • the light emitting point on the end face of the chip of the LD 11 has a size of 10 ⁇ m or less, and its radiation angle (beam divergence) is also narrow, about 25 ° ⁇ 40 °. For this reason, LD11 and the optical fiber 24 can be optically coupled efficiently.
  • the drive circuit 12 supplies a predetermined voltage or current to the LD 11. It is also possible to have a control circuit that provides a predetermined light output. Further, it is possible to detect the return light RL1 (broken line) and to have a function of stopping the driving of the LD 11 when, for example, an abnormality is detected.
  • the light guide unit 20 transmits the laser beam G1 to the light emitting unit 30 via the connector.
  • the light guide 20 can include an optical fiber 24.
  • the optical fiber 24 may include a plurality of fibers and transmit a plurality of laser beams, respectively.
  • the light emitting unit 30 includes a heat conducting unit 34 and a wavelength conversion layer 32. As shown in FIG. 4, the light emitting unit 30 can further include an optical unit 39. In this case, the laser beam G1 incident on the optical unit 39 is guided and then irradiates the wavelength conversion layer 32. The wavelength converted light is emitted from the optical unit 39 to the outside. The laser light becomes blue-violet to blue light scattered light by multiple scattering or multiple reflection. The mixed light GT of the scattered light and the wavelength conversion light is emitted above the wavelength conversion layer 32.
  • the connector 26 is provided between the light emitting unit 30 and the optical fiber 24 as shown in FIG. 4, the connection between the light emitting unit 30 and the light source 10 can be facilitated.
  • FIG. 5A is a schematic perspective view of a light emitting unit having an optical unit
  • FIG. 5B is a schematic cross-sectional view taken along the line CC.
  • the optical part 39 can be provided so as to cover the upper part of the wavelength conversion layer 32, for example.
  • a ferrule 29 can be provided at one end of the optical fiber 24.
  • a plurality of through holes 34c are provided in the heat conducting section 34 so as to surround the wavelength conversion layer 32, and the ferrule 29 is inserted into the through holes 34c.
  • the laser light g ⁇ b> 1 introduced into the optical unit 39 is guided inside the optical unit 39 and irradiates the wavelength conversion layer 32.
  • the laser beam g1 may be incident from the side surface of the optical unit 39.
  • the optical part 39 it becomes easy to irradiate the wavelength conversion layer 32 uniformly, and the wavelength conversion layer 32 can be sealed and its deterioration can be suppressed.
  • FIG. 6A is a schematic perspective view of the light emitting unit of the solid state lighting device according to the fourth embodiment
  • FIG. 6B is a schematic cross-sectional view taken along the line DD.
  • the heat conducting unit 70 is made of an insulating material having high heat conductivity and translucency, and has a tube shape.
  • the wavelength conversion layer 33 is provided on the inner wall 70 a of the tubular heat conducting unit 70.
  • One end of the heat conducting unit 70 is bonded to the heat radiator 72.
  • the laser beam B is emitted in the radial direction while being guided through the light guide rod 74 provided along the central axis of the heat conducting unit 70.
  • the laser light B is multiple-scattered and becomes scattered light.
  • the mixed light is emitted radially from the outer edge 70e of the tubular heat conducting unit 70.
  • the heat generated in the wavelength converting layer 33 is externally caused by the heat flow HF that flows through the heat conducting unit 70 and the radiator 72. Discharged.
  • the radial thickness of the wavelength conversion layer 33 is t1.
  • the area of the inner wall 70a of the heat conducting unit 70 is S.
  • the area S is expressed by L1 ⁇ H when the inner circumference L1 of the tube and the height H of the heat conducting unit 70 are used.
  • the deterioration of the resin such as silicone constituting the wavelength conversion layer 33 is suppressed, and the conversion efficiency of the wavelength conversion layer 33 is maintained to emit light.
  • the surface vertical luminance Lv can be increased.
  • the mixed light GT can be emitted radially from the heat conducting portion 70 in the radial direction.
  • FIG. 7A is a schematic perspective view of the solid-state lighting device according to the fifth embodiment
  • FIG. 7B is a schematic cross-sectional view taken along the line EE.
  • the laser light emitted from the LD 11 is optically coupled to one end 24a of the optical fiber 24 and introduced into an optical unit 76 disposed in the vicinity of the other end 24b.
  • the wavelength conversion layer 32 having a thickness t1 and a thermal conductivity ⁇ 1 is provided on the lower surface of the optical unit 76.
  • a reflective layer 35 having a thickness t2 and a thermal conductivity ⁇ 2 is provided on the lower surface of the wavelength conversion layer. Furthermore, the reflective layer 35 is bonded to, for example, the heat conducting unit 34.
  • the optical unit 76 becomes a linear illumination device that can emit the mixed light GT radially toward the outer edge of the optical unit 76.
  • the equations (5) and (9) the deterioration of the resin such as silicone constituting the wavelength conversion layer 32 is suppressed, the conversion efficiency of the wavelength conversion layer 32 is maintained, and the light emitting surface vertical luminance is obtained. Lv can be increased.
  • FIG. 8A is a schematic perspective view of a solid state lighting device according to the sixth embodiment
  • FIG. 8B is a schematic cross-sectional view taken along the line FF.
  • a first wavelength conversion layer 32 having a thickness t1 and a thermal conductivity ⁇ 1 is provided.
  • a plurality of optical functional layers are provided between the first wavelength conversion layer 32 and the heat conducting unit 34.
  • a light guide layer 36 is provided on the lower surface of the first wavelength conversion layer 32 as an optical functional layer having a thickness t2 and a thermal conductivity ⁇ 2.
  • a second wavelength conversion layer 37 is provided as an optical functional layer having a thickness of t3 and a thermal conductivity of ⁇ 3.
  • a reflective layer 35 is provided as an optical functional layer having a thickness of t4 and a thermal conductivity of ⁇ 4.
  • the reflective layer 35 is bonded to the heat conducting unit 34, for example.
  • the light guide layer 36 is thinned to improve heat dissipation, and the first wavelength conversion layer 32 and the second wavelength conversion layer 37 are provided on the upper and lower sides to provide a color with less blue light transmission component.
  • a light emitting portion having a low temperature can be formed.
  • the first wavelength conversion layer 32 converts the laser light into scattered light by multiple reflection or multiple scattering, and sets the light emitting surface vertical luminance on the second surface of the mixed light of the scattered light and the wavelength converted light to Lv (cd M ⁇ 2 ), and when the heat conversion efficiency obtained by dividing the calorific value by the luminous flux is ⁇ th (W ⁇ lm ⁇ 1 ), and It is adjusted to meet.
  • the optical functional layer can be freely selected from (N-1) layers having optical functions such as a reflective layer, a light transmitting layer, a scattering layer, and a second wavelength conversion layer (however, N is an integer of 2 or more).
  • N is an integer of 2 or more.
  • the combination of these functional layers is not limited to the configuration of the sixth embodiment and can be freely set.
  • the number of stacked optical function layers (N ⁇ 1) is not limited to the configuration of the sixth embodiment, and can be freely set.
  • another optical unit may be provided on this structure.
  • FIG. 9 is a schematic diagram illustrating a configuration of a projector that is an example of an application example of the solid-state lighting device.
  • the LD and the drive circuit that generate a large amount of heat are housed in the light source unit 10.
  • the light emitting unit 30 connected to the light source unit 10 by the optical fiber 24 or the like can be small in size and light in weight and low in heat generation although it can emit light with a large amount of light and high luminance. If the light source unit 10 is installed, for example, under a desk or the like, the desk is widened, and exhaust heat and noise caused by a cooling fan can be suppressed.
  • the projection unit 60 that projects an image on the screen 64 is provided with a shutter composed of a liquid crystal device or the like in front of the light emitting unit. Since the liquid crystal device has low power consumption, it generates little heat.
  • the optical fiber 24 may be provided with a connector for optical signal transmission. Of course, an electrical signal transmission connector can also be provided.
  • FIG. 10 is a block diagram showing functions of the projector.
  • the projector includes a projection unit 60, the solid-state lighting device 5, a sweep signal drive unit 71, a return light sensor unit 73, and a video signal drive unit 72.
  • the projection unit 60 includes an image unit 63, a sweep optical unit 61, and an external signal sensor unit 62.
  • the video unit 63 may have a liquid crystal shutter.
  • the laser beam G 1 emitted from the light source unit 10 propagates through the optical fiber 24 and enters the light emitting unit 30.
  • the white light WL emitted from the light emitting unit 30 acts as a backlight for the video unit 63.
  • the light source unit 10 can transmit the laser light G ⁇ b> 2 to the sweep optical unit 61.
  • the return light RL1 from the optical unit 39 enters the return light sensor unit 73.
  • the return light RL1 includes laser light and wavelength converted light reflected by the light emitting unit 30.
  • the return light sensor unit 73 detects this decrease and stops driving the LD provided in the light source unit 10. be able to. That is, since the solid-state lighting device 5 has a self-diagnosis function for detecting that the emitted light is in the abnormal mode, it is possible to prevent the blue light and the like from being excessively emitted and to ensure safety.
  • the video signal 63 is input to the video unit 63 from the video signal driving unit 72 and projected onto the screen 64. Further, the sweep optical unit 61 receives the sweep signal S2 from the sweep signal driving unit 71.
  • the signal transmission system is only light
  • the solid-state lighting device 5 can suppress the temperature increase of the wavelength conversion layer and can emit white light with high luminance and large light quantity.
  • the illumination system that guides the laser beam to the light emitting part of the illumination with an optical fiber cable and unlike the illumination system using LEDs, filament light bulbs, HID lamps, etc., it is necessary to perform electrical wiring near the light emitting part of the illumination. Disappear. As a result, it can be widely used in places where installation / wiring requires waterproof / explosion-proof measures, environmental places where special equipment is required, and places where electric wiring is difficult.
  • stage lighting can be used for projection and spot lighting. In this case, the color and brightness of the local part of the minute light emitting part can be adjusted, and although the resolution is low, a great effect can be obtained as an effect.
  • both functions can be realized by using one small head. This can greatly change the concept of the stage and studio, and the effect is great.
  • the external signal light sensor unit 62 detects an external light signal such as infrared rays
  • the signal RL2 such as infrared rays or electricity can be transmitted to the light source unit 10 and the LD can be controlled to be turned on or off.
  • Such a solid state lighting device can be used as illumination for explosion-proof equipment, crime prevention lighting capable of image recording, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

 固体照明装置は、青紫色~青色波長範囲のレーザー光を放出可能な半導体レーザー(11)と、熱伝導部(34)と、波長変換層(32)と、を有する。波長変換層は、第1の面(32a)および第2の面(32b)を含み、厚さt1(m)、面積S(m)、熱伝導率σ1(Wm-1-1)を有し、第2の面に照射されたレーザー光の光束を吸収して波長変換光を放出するとともに発熱を生じる。波長変換層により多重反射または多重散乱された散乱光と波長変換光との混合光の第2の面上の発光面垂直輝度をLv(cd・m-2)とし、波長変換層の発熱量を光束で除した熱変換効率をηth(W・lm-1)とするとき、Lv≧40×10および(t1/σ1)×ηth≦2×10-6/π(m・K・lm-1)が成り立つ。

Description

固体照明装置
 本発明の実施形態は、固体照明装置に関する。
 固体発光素子を用いた白色固体照明(SSL:Solid State lighting)装置は、LED(Light  Emitting Diode)を用いたものが主流である。
 この場合、蛍光体を有する白色発光部がLEDチップを覆うように設けられると、LEDチップの放熱と給電のための基板が必要である。もし、白色発光部が光学系のみで構成されれば、発熱も少なく、小型軽量化され、照明装置のデザインの自由度を高めることができる。
 そのためには、たとえば、青紫色~青色の波長範囲の高輝度固体発光素子からの出力を光ファイバーなどに効率よく結合させ、離間した蛍光体に照射して白色発光を得る構造とすればよい。
 この場合、LEDよりもビーム広がり角が狭い半導体レーザー素子(LD:Laser Diode) を用いると、光ファイバーに効率よく光結合することができる。
 LDを用いて蛍光体を励起する白色照明装置の場合、LDにおける発熱は蛍光体とは離間した放熱経路により排出できる。このため、発光部では蛍光体のみの発熱に限られる。従って、LEDを用いた白色照明装置よりも、放熱性を遙かに高めることができる。しかし、より高輝度で発光させたい場合、蛍光体の発熱により蛍光体自身が劣化することがある。
特許4823300号公報
 波長変換層の温度上昇が抑制され、高輝度化が容易な固体照明装置を提供する。
 実施形態の固体照明装置は、青紫色~青色波長範囲のレーザー光を放出可能な半導体レーザーと、熱伝導部と、波長変換層と、を有する。前記波長変換層は、前記熱伝導部に接着された第1の面および前記第1の面とは反対の側となる第2の面とを含み、厚さt1(m)、面積S(m)、および熱伝導率σ1(Wm-1-1)を有する。前記波長変換層は、前記第2の面に照射された前記レーザー光の光束を吸収して波長変換光を放出するとともに発熱を生じる。前記波長変換層は前記レーザー光を多重反射または多重散乱により散乱光とする。前記散乱光と前記波長変換光との混合光の前記第2の面上の発光面垂直輝度をLv(cd・m-2)とし、前記波長変換層の発熱量を前記光束で除した熱変換効率をηth(W・lm-1)とするとき、下記式
Figure JPOXMLDOC01-appb-M000007
および
Figure JPOXMLDOC01-appb-M000008
が成り立つ。
 波長変換層の温度上昇が抑制され、高輝度化が容易な固体照明装置が提供される。
図1(a)は第1の実施形態にかかる固体照明装置の発光部の部分模式斜視図、図1(b)はA-A線に沿った模式断面図、である。 図2(a)は第2の実施形態にかかる固体照明装置の発光部の部分模式斜視図、図2(b)はB-B線に沿った模式断面図、である。 第3の実施形態にかかる固体照明装置の発光部の模式斜視図である。 本実施形態の発光部を有する固体照明装置の模式斜視図である。 図5(a)は光学部を有する発光部の模式斜視図、図5(b)はC-C線に沿った模式断面図、である。 図6(a)は第4の実施形態にかかる固体照明装置の発光部の模式斜視図、図6(b)はD-D線に沿った模式断面図、である。 図7(a)は第5の実施形態にかかる固体照明装置の模式斜視図、図7(b)はE-E線に沿った模式断面図、である。 図8(a)は第6の実施形態にかかる固体照明装置の発光部の部分模式斜視図、図8(b)はF-F線に沿った模式断面図、である。 固体照明装置の応用例の一例であるプロジェクタの構成を示す模式図である。 プロジェクタの機能を示すブロック図である。
 以下、図面を参照しつつ本発明の実施の形態を説明する。
 図1(a)は第1の実施形態にかかる固体照明装置の発光部の部分模式斜視図、図1(b)はA-A線に沿った模式断面図、である。
 固体照明装置は、青紫色~青色波長範囲(405~490nm)のレーザー光を放出可能な半導体レーザー(LD)11と、熱伝導部34と、波長変換層32と、を有する。波長変換層32は、熱伝導部34と接着された第1の面32aと、第1の面32aとは反対の側の第2の面(波長変換層の発光面)32bと、を含む。
 レーザー光は、蛍光体などを含む波長変換層32を照射し、波長変換光として、レーザー光に波長よりも長い波長(たとえば、540~570nm)の黄色光を放出する。波長変換層32により多重反射または多重散乱された散乱光と波長変換光とは、混合されて白色光となる。
 波長変換層32は、熱伝導率をσ1、厚さをt1 、で表すものとする。図1(b)に表すように、レーザー光を吸収した波長変換層32で生じた熱は、波長変換層32から熱伝導部34を流れる熱流HFとなり外部に排出されるモデルを仮定する。
 波長変換層32の第2の面32bの重心P1の直下であり、波長変換層32の第1の面32aと接する熱伝導部34の表面の点P2の温度は、一般的な照明の雰囲気温度の最大値、もしくは一般的な電気製品の放熱部の温度の最大値、である60℃以下とする。また、波長変換層32が蛍光体を含むものとすると、波長変換層32の第2の面32bの重心P1の温度は、140℃を最大値とする。これは、シリコーン樹脂の劣化限界値でもあり、蛍光体の変換効率を維持できる限界値でもある。つまり、熱伝導部34からの温度上昇ΔTの許容値は、80℃であるものとする。たとえば、波長変換層32が円であると、その重心P1は円の中心である。
 このようなモデルにおいて、物理パラメータの記号を以下のように定義する。

    Lv:波長変換層(の発光面)垂直方向輝度(cd・m-2)
    F:全光束(ルーメン:lm)
    S:波長変換層の面積(m
    t1:波長変換層の厚さ(m)
    σ1:波長変換層の熱伝導率(Wm-1-1
    Rth:熱抵抗(KW-1
    Pth:波長変換層の発熱量(W)
    ηth:熱変換効率(Wlm-1
    ΔT:波長変換層表面の温度上昇(K)
 また、発光面垂直方向輝度Lvと全光束Fとの関係は、式(1)で表される。

    Lv=F/πS    式(1)
     
 大光量用途の全光束の仕様から、蛍光体と標準的な色度を考慮して、発熱量が決まる。また、熱変換効率ηthは、光束あたりの熱パワーに変換される係数を表し、波長変換層32の効率と入射パワーの何割が波長変換層32で吸収されるかが、そのときの光束で決まる。これらの関係は、式(2)で表される。

    Pth=ηth×F     式(2)
 このとき、波長変換層32の温度上昇ΔTは、第2の面32bの重心P1と重心P1の直下の熱伝導部34の表面の点P2との温度差であり、式(3)で表すものとする。なお、Rth(KW-1)は、波長変換層32の熱抵抗を表す。
Figure JPOXMLDOC01-appb-M000009
 式(1)~式(3)から、式(4)の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000010
 式(4)は、波長変換層32の温度上昇ΔTの許容値を決定すれば、波長変換層32の厚さt1と熱伝導率σ1との比は、発光面垂直輝度Lvと波長変換層32の熱変換効率ηthとだけに依存することを表している。すなわち、波長変換層32の厚さt1と熱伝導率σ1との比は、波長変換層32の面積S、全光束Fおよび波長変換層32の発熱量Pthに依存しない。 
 式(4)は、たとえば、次のような重要な示唆を与える。灯具の光学構造を小さくするには、波長変換層32の面積Sを小さくすることが必要である。大光量で、そのような構造を実現するには、必然的に発光面垂直輝度Lvを高くすることが必要にある。この場合、式(4)から波長変換層32の厚さt1を小さくし、かつ波長変換層32の熱伝導率σ1が高い材料を用いればよいことを示唆する。
 大光量の高輝度LEDは、おおむね1mm×1mmのチップ上に波長変換層が設けられている。これ以上のチップサイズとしても、高電流密度での発光効率が低下するドループ(droop)現象のため、略125ルーメン(lm)の光束値を得ることが困難である。この時の発光面垂直輝度Lvは略40Mcd・m-2である。これでは、大光量でかつ一灯の発光面積の小さい固体照明装置を得ることは困難である。これに対して、第1の実施形態では広がり角の狭いLDを用いかつ波長変換層32の発光面積Sを小さくすることにより、一灯当たりの発光面垂直輝度Lvは、40Mcd・m-2以上とすることが容易にできる。すなわち、第1の実施形態では、発光面垂直輝度Lvは、式(5)で表す範囲とする。
Figure JPOXMLDOC01-appb-M000011
 また、発光面垂直輝度Lvを40Mcd・m-2以上、かつ温度上昇ΔTの許容値を80℃とすると、式(4)の右辺は、式(6)で表す範囲とすることが好ましい。
Figure JPOXMLDOC01-appb-M000012
 この結果、たとえば、波長変換材としてYAG(Yttrium Alminum Garnet)などからなる黄色蛍光体を用い、白色の色度(CIE1931で、(Cx、Cy)=(0.33、0.33)を考えると、ηth=10-3W・lm-1となる。波長変換層32が蛍光体とその下方に設けられたシリコーン層σ1=0.16Wm-1-1)とを含むものとすると、シリコーン層の厚さは略0.1mm以下とすればよい。また、波長変換層32が蛍光体とその下方に設けられたガラス層(σ1=1Wm-1-1)とを含むものとすると、ガラス層の厚さは略0.63mm以下とすればよいことがわかる。
 なお、実際には、波長変換層32は、シリコーン層やガラス層に蛍光体粒子などが分散配置されているので、その熱伝導率と密度とを考慮してその厚さを決めるとよい。このようにして、波長変換層32を構成するシリコーンなどの樹脂の劣化を抑制し、かつ波長変換層32の変換効率を維持し発光面垂直輝度Lvを高めることができる。
 図2(a)は第2の実施形態にかかる固体照明装置の発光部の部分模式斜視図、図2(b)はB-B線に沿った模式断面図、である。
 第2の実施形態では、波長変換層32と熱伝導部34との間に設けられた反射層35と、熱伝導部34の外部に取り付けられた放熱体72と、がさらに設けられている。また、複数のLD(11a~11e)から複数のレーザー光が波長変換層32に向けてそれぞれ放出される。なお、波長変換層32が赤色や緑色蛍光体などを含むものとすると、演色性を高めることが容易となる。
 熱伝導部34が金属である場合、青紫色~青色光の波長範囲において反射率が低下することがある。熱伝導率が波長変換層32の熱伝導率よりも高く、かつ波長変換層32と接する面の反射率が熱伝導部34の反射率よりも高い反射層35を設けると、波長変換層32の第2の面32bの側で光取り出し率を高めつつ、熱を熱伝導部34へ排出することが容易となる。
 反射層35の熱伝導率をσ2、その厚さをt2、とすると、式(7)が成り立つ。
Figure JPOXMLDOC01-appb-M000013
 また、式(1)、(2)、(7)から、式(8)が成り立つ。なお、Rth(KW-1)は、波長変換層32と反射層35との積層体の熱抵抗を表す。
Figure JPOXMLDOC01-appb-M000014
 第1の実施形態のように、発光面垂直輝度Lvを式(5)で表す40Mcd・m-2以上、かつ温度上昇ΔTの許容値を80℃とすると、式(8)の右辺は、式(9)で表す範囲とすることが好ましい。
Figure JPOXMLDOC01-appb-M000015
 この結果、波長変換層32を構成するシリコーンなどの樹脂の劣化を抑制し、かつ波長変換材の変換効率を維持し発光面垂直輝度Lvを高めることができる。
 図3は、第3の実施形態にかかる固体照明装置の発光部の模式斜視図である。
 レーザー光は、光ファイバー24(24a~24e)を用いて導光してもよい。この場合、光ファイバー24の一方の端部にレーザー光を導入し、LDから離間した光ファイバー24の他方の端部から波長変換層32へ向かって直接照射することができる。または、波長変換層32の上部に設けられた光学部へ光ファイバー24からレーザー光を導入し、光学部内を導光したのち波長変換層32を照射することもできる。これらのようにすると、コヒーレントなレーザー光を多重散乱または多重反射し散乱光として外部に放出することができる。また、複数のレーザー光が波長変換層32の表面の異なる領域をそれぞれ照射すると、より均一に波長変換光を生成することができる。
 図4は、図1~3に表した発光部を有する固体照明装置の模式斜視図である。
 固体照明装置5は、光源部10と、導光部20と、発光部30と、を有している。光源部(ライトエンジン)10は、LD11と、駆動回路12と、を有する。LD11は、窒化物系半導体材料からなり、青紫色~青色の波長範囲のレーザー光を放出する。LD11のチップの端面の発光点は10μm以下のサイズであり、その放射角(ビーム広がり角:beam divergence)も25度×40度程度と狭い。このため、LD11と、光ファイバー24と、を効率良く光結合させることができる。
 駆動回路12は、LD11に所定の電圧または電流を供給する。また、所定の光出力となるような制御回路を有することもできる。さらに、戻り光RL1(破線)を検出し、たとえば、異常を検出した場合にLD11の駆動を停止する機能を有することもできる。
 導光部20は、コネクタ26を介してレーザー光G1を発光部30へ伝送する。この場合、導光部20は、光ファイバー24を含むことができる。光ファイバー24は複数のファイバーを含み、複数のレーザー光をそれぞれ伝送してもよい。
 発光部30は、熱伝導部34と、波長変換層32と、を有する。なお、図4のように、発光部30は、光学部39をさらに有することができる。この場合、光学部39に入射したレーザー光G1は導光されたのち波長変換層32を照射する。波長変換光は、光学部39から外部に放出される。また、レーザー光は、多重散乱または多重反射により、青紫色~青色光の散乱光となる。その散乱光と波長変換光との混合光GTは、波長変換層32の上方へ放出される。
 なお、図4のように、発光部30と、光ファイバー24と、の間にコネクタ26を設けると、発光部30と光源10との接続を容易にすることができる。
 図5(a)は光学部を有する発光部の模式斜視図、図5(b)はC-C線に沿った模式断面図、である。
 光学部39は、たとえば、波長変換層32の上部を覆うように設けることができる。光ファイバー24を用いて光学部39にレーザー光を導入する場合、光ファイバー24の一方の端部にフェルール29を設けることができる。他方、熱伝導部34には、たとえば、波長変換層32を囲むように複数の貫通穴34cを設け、フェルール29を貫通孔34cに挿入する。光学部39へ導入されたレーザー光g1は、光学部39の内部を導光されて波長変換層32を照射する。なお、レーザー光g1は、光学部39の側面から入射してもよい。このように、光学部39を設けると、波長変換層32を均一に照射することが容易となり、かつ波長変換層32を封止してその劣化を抑制できる。
 図6(a)は第4の実施形態にかかる固体照明装置の発光部の模式斜視図、図6(b)はD-D線に沿った模式断面図、である。
 第4の実施形態では、熱伝導部70は、熱伝導率が高くかつ透光性を有する絶縁材からなり、管の形状を有する。波長変換層33は、管状の熱伝導部70の内壁70aに設けられる。熱伝導部70の一方の端部は、放熱体72に接着されている。また、レーザー光Bは、熱伝導部70の中心軸に沿って設けられた導光棒74内を導かれつつ径方向に放出される。さらに、導光棒74の表面74aにフロスト処理などによる粗面を設けると、レーザー光Bは多重散乱され、散乱光になる。混合光は、管状の熱伝導部70の外縁70eから放射状に放出される。
 熱伝導部70の肉厚t3を波長変換層33の厚さt1よりも大きくすると、波長変換層33で生じた熱は、熱伝導部70と、放熱体72と、を流れる熱流HFにより外部に排出される。第4の実施形態では、波長変換層33の径方向の厚さをt1とする。また、熱伝導部70の内壁70aの面積をSとする。面積Sは,管の内周L1と熱伝導部70の高さHとを用いると、L1×Hで表される。
 このような形状とし、さらに式(5)および式(6)を満たすことにより、波長変換層33を構成するシリコーンなどの樹脂の劣化を抑制し、かつ波長変換層33の変換効率を維持し発光面垂直輝度Lvを高めることができる。また、熱伝導部70から径方向に混合光GTを放射状に放出することができる。
 図7(a)は第5の実施形態にかかる固体照明装置の模式斜視図、図7(b)はE-E線に沿った模式断面図、である。
 図7(a)に表すように、LD11から放出されたレーザー光は、光ファイバー24の一方の端部24aと光結合し、他方の端部24b近傍に配置した光学部76に導入される。
 図7(b)に表すように、光学部76の下面には、厚さがt1、熱伝導率がσ1の波長変換層32が設けられる。また、波長変換層の下面には、厚さがt2、熱伝導率がσ2の反射層35が設けられている。さらに、反射層35は、たとえば、熱伝導部34に接着されている。このようにすると、光学部76は、混合光GTを光学部76の外縁方向に放射状に放出可能な線状照明装置となる。この場合、式(5)および式(9)を満たすことにより、波長変換層32を構成するシリコーンなどの樹脂の劣化を抑制し、かつ波長変換層32の変換効率を維持し、発光面垂直輝度Lvを高めることができる。
 図8(a)は第6の実施形態にかかる固体照明装置の模式斜視図、図8(b)はF-F線に沿った模式断面図、である。
 図8(b)に表すように、厚さがt1、熱伝導率がσ1の第1の波長変換層32が設けられる。第1の波長変換層32と熱伝導部34との間には、複数の光学機能層が設けられている。第1の波長変換層32の下面には、厚さがt2、熱伝導率がσ2の光学機能層として導光層36が設けられている。さらに、その下面には、厚さがt3、熱伝導率がσ3の光学機能層として第2の波長変換層37が設けられている。さらにその下には厚さがt4、熱伝導率がσ4の光学機能層として反射層35が設けられている。反射層35は、たとえば、熱伝導部34に接着されている。このようにすると、導光層36を薄くして、放熱を良くしながら、上下に第1の波長変換層32と第2の波長変換層37とを設けて、青色光の透過成分の少ない色温度の低い発光部を形成できる。
 第1の波長変換層32は前記レーザー光を多重反射または多重散乱により散乱光とし、前記散乱光と前記波長変換光との混合光の前記第2の面上の発光面垂直輝度をLv(cd・m-2)とし、前記発熱量を前記光束で除した熱変換効率をηth(W・lm-1)とするとき、下記式

Figure JPOXMLDOC01-appb-M000016

および

Figure JPOXMLDOC01-appb-M000017

を満たすように調整されている。
 ここで、光学機能層は、反射層、透光層、散乱層、第2の波長変換層などの光学機能を有する(N-1)個の層の中から自由に選択することができる(但し、Nは2以上の整数)。これらの機能層の組み合わせは、第6の実施形態の構成に限定されず、自由に設定することができる。また、光学機能層の積層数(N-1)も、第6の実施形態の構成に限定されず、自由に設定することができる。また、さらに、この構造の上に、別の光学部を設ける構成でも良い。
 図9は、固体照明装置の応用例の一例であるプロジェクタの構成を示す模式図である。
 発熱の大きいLDと駆動回路とは、光源部10に収納されている。光ファイバー24などにより、光源部10と接続された発光部30は、大光量高輝度発光が可能であるにもかかわらず、小型軽量で低発熱とできる。光源部10を、たとえば、机の下などに設置すれば、机上は広くなり、冷却ファンによる排熱や騒音を抑制できる。
 映像をスクリーン64に投影する投影部60には、発光部の前に液晶デバイスなどからなるシャッターが設けられる。液晶デバイスは、消費電力が低いので、発熱は少ない。また、マイクロ波でワイアレス給電する場合、光ファイバー24には光信号伝送用のコネクタを設ければよい。もちろん、電気信号伝送用のコネクタを設けることもできる。発光部30は自在に首の角度を調整できるように、自在パイプの中に光ファイバー束を通すと、照射位置の調整がワンタッチで可能である。
 図10は、プロジェクタの機能を示すブロック図である。
 プロジェクタは、投影部60と、固体照明装置5と、掃引信号駆動部71と、戻り光センサー部73と、映像信号駆動部72と、を有する。投影部60は、映像部63と、掃引光学部61と、外部信号センサー部62と、を有する。また、映像部63は、液晶シャッターを有してもよい。
 光源部10から放出されたレーザー光G1は、光ファイバー24内を伝搬し、発光部30へ入射する。発光部30から放出された白色光WLは、映像部63に対するバックライトとして作用する。また、光源部10は、掃引光学部61へレーザー光G2を伝送することができる。
 光学部39からの戻り光RL1は、戻り光センサー部73へ入射する。戻り光RL1は、発光部30で反射されたレーザー光および波長変換光を含む。たとえば、戻り光の黄色光成分の強度が、青色光成分の強度に対して低下した場合、戻り光センサー部73がこの低下を検出し、光源部10内に設けられたLDの駆動を停止することができる。すなわち、固体照明装置5は、放出光が異常モードになったことを検出する自己診断機能を有するので、青色光などが過剰に放出されることを防ぎ安全を確保することができる。 
 映像部63には、映像信号駆動部72からの映像信号S1が入力され、スクリーン64に向けて映像を投影する。また、掃引光学部61へは、掃引信号駆動部71からの掃引信号S2が入力される。
 また、信号伝送系を光のみにする場合、高出力レーザーの出力の一部を利用して発光ヘッド側で光発電を行い、制御信号用電力も光ファイバーなどで伝送することも可能である。
 第1~第6の実施形態にかかる固体照明装置5は、波長変換層の温度上昇が抑制され、高輝度・大光量白色光を放出可能である。また、レーザー光を光ファイバーケーブルで照明の発光部まで導光させる照明システムとしたことで、LEDや、フィラメント電球・HIDランプなどを用いた照明システムと異なり照明の発光部近傍に電気配線する必要がなくなる。その結果として、これまで、設置・配線に防水防爆対策や、特殊装備の着用を必要とする環境箇所・電気配線が困難な箇所などに広く用いることができる。たとえば、舞台照明の場合、プロジェクションやスポット照明に使用できる。この場合、微小発光部のローカル部分の色や輝度を調光でき、分解能は低いが演出としては大きな効果が得られる。
 発光部の発熱が大きい照明装置の場合、スポットやプロジェクション型の舞台照明とレーザー光掃引による演出とは、別の大型装置を用いる必要があった。これに対して、第1~第5の実施形態によれば、1台の小型ヘッドを用いて、両方の機能を実現することができる。このため、舞台やスタジオのコンセプトを大きく変えることができ、その効果は大きい。
 また、外部信号光センサー部62が赤外線などの外部光信号を検出すると、光源部10に向けて、赤外線や電気などの信号RL2を伝送し、LDのオンまたはオフに制御することができる。このような固体照明装置は、防爆設備用照明や画像録画可能な防犯照明などとして用いることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (20)

  1.  青紫色~青色波長範囲のレーザー光を放出可能な半導体レーザーと、
     熱伝導部と、
     前記熱伝導部に接着された第1の面と前記第1の面とは反対の側の第2の面とを含み、厚さt1(m)、面積S(m)、および熱伝導率σ1(Wm-1-1)を有する波長変換層であって、前記第2の面に照射された前記レーザー光の光束を吸収して波長変換光を放出するとともに発熱を生じる波長変換層と、
     を備え、
     前記波長変換層は前記レーザー光を多重反射または多重散乱により散乱光とし、
     前記散乱光と前記波長変換光との混合光の前記第2の面上の発光面垂直輝度をLv(cd・m-2)とし、
     前記波長変換層の発熱量を前記光束で除した熱変換効率をηth(W・lm-1)とするとき、下記式
    Figure JPOXMLDOC01-appb-M000001
    および
    Figure JPOXMLDOC01-appb-M000002
    を満たす固体照明装置。
  2.  前記レーザー光を導光する導光棒をさらに備え、
     前記熱伝導部は、透光性を有する絶縁材からなる管の形状を有し、
     前記波長変換層は、前記管の内壁に設けられかつ前記導光棒を囲み、
     前記混合光は、前記管の外縁から放射状に放出される請求項1記載の固体照明装置。
  3.  前記半導体レーザーと前記波長変換層との間に設けられ、前記レーザー光を導光する導光部と、
     前記波長変換層を覆うように前記熱伝導部の上面に設けられ、前記導光部から放出された前記レーザー光を導光し前記波長変換層に向けて放出する光学部と、  
     をさらに備えた請求項1記載の固体照明装置。
  4.  前記導光部は、複数の光ファイバーを含む請求項3記載の固体照明装置。
  5.  前記光学部は、前記レーザー光を導光しつつ多重散乱または多重反射により散乱し放出する請求項3記載の固体照明装置。
  6.  前記波長変換層を覆うように前記熱伝導部の上面に設けられ、前記半導体レーザーから放出された前記レーザー光が直接導入される光学部をさらに備え、
     前記光学部に導入された前記レーザー光は、前記光学部内を導光されて前記波長変換層を照射する請求項1記載の固体照明装置。
  7.  前記レーザー光は、前記光学部内を導光されつつ多重散乱または多重反射により散乱され放出される請求項6記載の固体照明装置。 
  8.  前記波長変換層は、複数の波長変換光を放出する請求項1記載の固体照明装置。
  9.  前記半導体レーザーは、複数のレーザー素子を含む請求項1記載の固体照明装置。
  10.  青紫色~青色波長範囲のレーザー光を放出可能な半導体レーザーと、
     熱伝導部と、
     第1の面と前記第1の面とは反対の側の第2の面とを含み、厚さt1(m)、面積S(m)、および熱伝導率σ1(Wm-1-1)を有する波長変換層であって、前記第1の面は前記熱伝導部に接着され、前記第2の面に照射された前記レーザー光の光束を吸収して波長変換光を放出するとともに発熱量を生じる波長変換層と、
     前記波長変換層と前記熱伝導部との間に設けられ、厚さt2、面積S、熱伝導率σ2を有する反射層と、
     を備え、
     前記波長変換層は前記レーザー光を多重反射または多重散乱により散乱光とし、
     前記散乱光と前記波長変換光との混合光の前記第2の面上の発光面垂直輝度をLv(cd・m-2)とし、
     前記発熱量を前記光束で除した熱変換効率をηth(W・lm-1)とするとき、下記式
    Figure JPOXMLDOC01-appb-M000003
    および
    Figure JPOXMLDOC01-appb-M000004
    を満たす固体照明装置。
  11.  前記半導体レーザーと前記波長変換層との間に設けられ、前記レーザー光を導光する導光部と、
     前記波長変換層を覆うように前記熱伝導部の上面に設けられ、前記導光部から放出された前記レーザー光を導光し前記波長変換層に向けて放出する光学部と、  
     をさらに備えた請求項10記載の固体照明装置。
  12.  前記導光部は、複数の光ファイバーを含む請求項11記載の固体照明装置。
  13.  前記光学部は、前記レーザー光を導光しつつ多重散乱または多重反射により散乱し放出する請求項11記載の固体照明装置。
  14.  前記波長変換層を覆うように前記熱伝導部の上面に設けられ、前記半導体レーザーから放出された前記レーザー光が直接導入される光学部をさらに備え、
     前記光学部に導入された前記レーザー光は、前記光学部内を導光されて前記波長変換層を照射する請求項10記載の固体照明装置。
  15.  前記レーザー光は、前記光学部内を導光されつつ多重散乱または多重反射により散乱され放出される請求項14記載の固体照明装置。 
  16.  前記波長変換層は、複数の波長変換光を放出する請求項10記載の固体照明装置。
  17.  前記半導体レーザーは、複数のレーザー素子を含む請求項10記載の固体照明装置。
  18.  青紫色~青色波長範囲のレーザー光を放出可能な半導体レーザーと、
     熱伝導部と、
     第1の面と前記第1の面とは反対の側の第2の面とを含み、厚さt1(m)、面積S(m)、および熱伝導率σ1(Wm-1-1)を有する波長変換層であって、前記第1の面は前記熱伝導部に間接的に接着され、前記第2の面に照射された前記レーザー光の光束を吸収して波長変換光を放出するとともに発熱量を生じる第1の波長変換層と、
     前記波長変換層と前記熱伝導部との間に設けられ、面積S、厚さtj(但し、2≦j≦N、jとNは正の整数)、熱伝導率σj(但し、2≦j≦N、jとNは正の整数)をそれぞれ有する(N-1)個の層が積層された光学機能層と、
     を備え、
     前記波長変換層は前記レーザー光を多重反射または多重散乱により散乱光とし、
     前記散乱光と前記波長変換光との混合光の前記第2の面上の発光面垂直輝度をLv(cd・m-2)とし、
     前記発熱量を前記光束で除した熱変換効率をηth(W・lm-1)とするとき、下記式
    Figure JPOXMLDOC01-appb-M000005
    および
    Figure JPOXMLDOC01-appb-M000006
    を満たす固体照明装置。
  19.  前記光学機能層は、導光層と、散乱層と、反射層と、第2の波長変換層と、のうちの少なくとも一つを含む請求項18記載の固体照明装置。
  20.  前記半導体レーザーと前記第1の波長変換層との間、および前記半導体レーザーと前記光学機能層との間に設けられ、前記レーザー光を導光する導光部と、
     前記第1の波長変換層および前記光学機能層とを覆うように前記熱伝導部の上面に設けられ、前記導光部から放出された前記レーザー光を導光し前記第1の波長変換層および前記光学機能層に向けて放出する光学部と、  
     をさらに備えた請求項18記載の固体照明装置。
PCT/JP2013/068919 2012-07-17 2013-07-10 固体照明装置 WO2014013923A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-159075 2012-07-17
JP2012159075A JP2014022160A (ja) 2012-07-17 2012-07-17 固体照明装置

Publications (1)

Publication Number Publication Date
WO2014013923A1 true WO2014013923A1 (ja) 2014-01-23

Family

ID=49948753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068919 WO2014013923A1 (ja) 2012-07-17 2013-07-10 固体照明装置

Country Status (2)

Country Link
JP (1) JP2014022160A (ja)
WO (1) WO2014013923A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6688965B2 (ja) 2016-03-07 2020-04-28 パナソニックIpマネジメント株式会社 照明器具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088531A (ja) * 2007-09-28 2009-04-23 Osram Opto Semiconductors Gmbh 光源
JP2010257603A (ja) * 2009-04-21 2010-11-11 Harison Toshiba Lighting Corp 発光装置及びこの発光装置を用いた表示装置
JP2012009381A (ja) * 2010-06-28 2012-01-12 Sharp Corp 発光体、発光装置、照明装置および車両用前照灯
JP2012074273A (ja) * 2010-09-29 2012-04-12 Stanley Electric Co Ltd 光源装置および照明装置
WO2013081069A1 (ja) * 2011-12-01 2013-06-06 東芝ライテック株式会社 固体照明装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088531A (ja) * 2007-09-28 2009-04-23 Osram Opto Semiconductors Gmbh 光源
JP2010257603A (ja) * 2009-04-21 2010-11-11 Harison Toshiba Lighting Corp 発光装置及びこの発光装置を用いた表示装置
JP2012009381A (ja) * 2010-06-28 2012-01-12 Sharp Corp 発光体、発光装置、照明装置および車両用前照灯
JP2012074273A (ja) * 2010-09-29 2012-04-12 Stanley Electric Co Ltd 光源装置および照明装置
WO2013081069A1 (ja) * 2011-12-01 2013-06-06 東芝ライテック株式会社 固体照明装置

Also Published As

Publication number Publication date
JP2014022160A (ja) 2014-02-03

Similar Documents

Publication Publication Date Title
WO2017138412A1 (ja) 光源装置および投光装置
JP6045571B2 (ja) 熱伝導体を有する発光モジュール、ランプ及び照明器具
JP4492472B2 (ja) 照明器具
WO2013161462A1 (ja) 固体照明装置
US20130107523A1 (en) Light Source Device
WO2013073701A1 (ja) 照明装置、車両用前照灯、およびダウンライト
JP2013016277A (ja) レーザ光利用装置および車両用前照灯
JP2007324137A (ja) 照明装置
JP6644081B2 (ja) 発光装置、照明装置、および発光装置が備える発光体の製造方法
JP5285688B2 (ja) 発光装置、照明装置および車両用前照灯
JP6804448B2 (ja) 発光デバイス
JP2013080638A (ja) 集合線状照明装置およびその駆動方法、並びに灯具
WO2014080705A1 (ja) 発光装置およびその製造方法、照明装置、ならびに前照灯
JP2012221634A (ja) 照明装置及び前照灯
JP5059166B2 (ja) 発光装置、照明装置および車両用前照灯
JP6192903B2 (ja) 光源装置、照明装置および車両用前照灯
JP2012059454A (ja) 発光装置、照明装置および車両用前照灯
JP5053418B2 (ja) 発光装置、照明装置および車両用前照灯
JP2012204072A (ja) 発光装置、照明装置および車両用前照灯
JP2014235859A (ja) 固体照明装置
WO2014013923A1 (ja) 固体照明装置
WO2013081069A1 (ja) 固体照明装置
JP2013211252A (ja) 固体照明装置
JP5025682B2 (ja) Led照明装置
JP6085204B2 (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13820486

Country of ref document: EP

Kind code of ref document: A1