WO2017092669A1 - 色轮装置 - Google Patents

色轮装置 Download PDF

Info

Publication number
WO2017092669A1
WO2017092669A1 PCT/CN2016/107956 CN2016107956W WO2017092669A1 WO 2017092669 A1 WO2017092669 A1 WO 2017092669A1 CN 2016107956 W CN2016107956 W CN 2016107956W WO 2017092669 A1 WO2017092669 A1 WO 2017092669A1
Authority
WO
WIPO (PCT)
Prior art keywords
color wheel
heat
heat dissipation
dissipation plate
air
Prior art date
Application number
PCT/CN2016/107956
Other languages
English (en)
French (fr)
Inventor
胡飞
谭大治
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610398000.0A external-priority patent/CN106814526B/zh
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to KR1020187016204A priority Critical patent/KR102437947B1/ko
Priority to EP16869979.1A priority patent/EP3385613B1/en
Priority to JP2018528751A priority patent/JP6773786B2/ja
Priority to US15/781,037 priority patent/US20200271301A1/en
Publication of WO2017092669A1 publication Critical patent/WO2017092669A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • F21V29/65Cooling arrangements characterised by the use of a forced flow of gas, e.g. air the gas flowing in a closed circuit
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating

Definitions

  • the present application relates to a color wheel device, and more particularly to a high power fluorescent color wheel device.
  • the color wheel device is widely used in the fields of laser light source illumination, projection, optical photorangement, and optical storage.
  • 3DLP Digital Light In a laser projection device
  • a laser generated by a laser light source is used to excite a fluorescent color wheel to generate white light.
  • the thermal power consumption on the fluorescent color wheel also increases.
  • the efficiency of the phosphor's excitation light decreases with increasing temperature, and when the temperature exceeds a certain critical point, the efficiency decreases rapidly. Therefore, if the color wheel heat dissipation problem cannot be solved well, it will affect the normal use of the projection device.
  • the heat dissipating device of the fluorescent color wheel of the common 3DLP laser projection device is as shown in FIG. 1 : the heat dissipating device comprises a sealing cavity 101 assembled with a plurality of structural members, and an inner air passage is formed in the sealing cavity body, and the wind direction is as shown by the arrow arrow 106. Show or vice versa.
  • the color wheel 103 is mounted on the motor 102, and the motor 102 is fixed to the inner wall surface of the cavity 101.
  • the motor 102 drives the shaft A1 to rotate, thereby causing the color wheel 103 to rotate, so that the air in the color wheel chamber 107 flows, thereby performing heat exchange with the outside.
  • the heated air enters the heat exchanger cavity 108 under the driving of the fan 104, is cooled in the heat exchanger 105, and returns to the color wheel cavity 107 along the air passage to complete an endothermic and heat release cycle. Therefore, the circulating air duct for heat dissipation of the fluorescent color wheel of the common 3DLP laser projection device has a large wind resistance, and a fan with a large air volume and a high back pressure must be used to drive the air circulation, and the fan is disposed outside the color wheel cavity. It is not possible to take away the heat generated when the color wheel works in time, affecting the working efficiency of the color wheel.
  • the application provides an improved color wheel device.
  • the present application provides a color wheel device comprising:
  • a wavelength conversion layer for irradiating with excitation light and generating a laser beam
  • a sealing housing having a color wheel cavity for accommodating the wavelength conversion layer, the color wheel cavity including an air inlet and an air outlet, the air inlet being located at a first position of the color wheel cavity The first position is opposite to the wavelength conversion layer, the air outlet is located at a second position of the color wheel cavity, and the second position is parallel to an air inlet direction of the air inlet;
  • a heat exchanger disposed in the sealed casing and outside the color wheel cavity, the heat exchanger including a heat exchange inlet and a heat exchange outlet;
  • a color wheel module disposed in the color wheel cavity and carrying the wavelength conversion layer for providing power flow from the air inlet of the color wheel cavity and discharged from the air outlet, thereby forming an air flow from the color wheel cavity
  • the air inlet passes through the air outlet, the heat exchange inlet and the heat exchange outlet, and then to the circulation duct of the air inlet.
  • the color wheel module includes:
  • the wavelength conversion layer is disposed on an end surface of the light receiving surface of the heat dissipation plate
  • the driving device is fixed on the sealing housing, and the rotating shaft of the driving device is connected to the heat dissipation plate and drives the heat dissipation plate and the plurality of blades to rotate synchronously.
  • a substrate is further disposed between the wavelength conversion layer and the heat dissipation plate, and an end surface of the substrate facing away from the light receiving surface is bonded or soldered to the heat dissipation plate, and the wavelength conversion layer is disposed on On the end surface of the light receiving surface of the substrate.
  • the plurality of blades extend in a radial direction of the heat dissipation plate, and the plurality of blades are annularly uniform.
  • the plurality of blades are integrally formed with the heat dissipation plate.
  • the heat dissipation plate is made of a metal material.
  • the heat dissipation plate is prepared by using a ceramic material, and the wavelength conversion layer is fixedly disposed on the surface of the heat dissipation plate by sintering.
  • the color wheel module further includes a cover body having a first opening in the middle of the cover body, the edge having one or more second openings, the cover body being located at the wavelength conversion layer and the Between the heat exchangers, and forming a color wheel cavity together with the sealing housing, the first opening faces the central axis portion of the heat dissipation plate to form an air inlet, and the second opening forms an air outlet.
  • the heat exchanger surface is further provided with heat dissipation fins, and the heat dissipation fins extend through the sealing housing to extend outward.
  • the first opening is circular, the heat dissipation plate is circular, and the first opening has a diameter smaller than the diameter of the heat dissipation plate.
  • the heat exchanger is fixed on an inner wall of the sealed casing or on the cover body, and the heat exchange outlet and the heat exchange inlet of the heat exchanger are respectively disposed opposite to the heat exchanger. On both outer sides, and the heat exchange outlet is adjacent to the air inlet.
  • the direction in which the heat exchange inlet and the heat exchange outlet are defined coincides with the axial direction of the heat dissipation plate, and the heat exchange outlet is in close contact with the air inlet.
  • the color wheel device of the present invention there are two heat exchangers, and two heat exchangers are respectively disposed on the two sides of the air inlet, and the heat exchange inlets of the two heat exchangers are oppositely disposed.
  • the utility model has the beneficial effects that the airflow is sucked into the color wheel cavity from the air inlet, is fully sucked in the color wheel cavity, and is taken out from the air outlet, and the extracted airflow is cooled into the heat exchanger to be cooled again.
  • Inhaling the color wheel cavity that is, a complete circulation air passage for heat dissipation is formed in the color wheel device, and the driving force of the circulation air passage is directly realized by the color wheel module in the color wheel cavity, so that the color
  • the color wheel module in the wheel device can exchange heat with the airflow in the circulating air channel, so that the heat generated by the color wheel module can be taken away in time, the working efficiency of the color wheel module is improved, and the color wheel device is extended. Service life.
  • FIG. 1 is a schematic structural view of a heat sink of a fluorescent color wheel of a conventional 3DLP laser projection device
  • FIG. 2 is a schematic structural view of a color wheel device in an embodiment of the present application.
  • FIG. 3 is a schematic structural view of the color wheel module of FIG. 2;
  • FIG. 4A is a schematic view showing the assembly of the color wheel cavity of FIG. 1;
  • FIG. 4B is an exploded perspective view of the color wheel cavity of FIG. 1;
  • FIG. 5 is a schematic structural diagram of a color wheel device according to another embodiment of the present application.
  • Figure 6 is a schematic view showing the assembly of the color wheel cavity of Figure 5;
  • FIG. 7 is a schematic structural diagram of a color wheel device according to still another embodiment of the present application.
  • Figure 8 is a schematic structural view of the heat exchanger of Figure 7; wherein, 20, a wavelength conversion layer;
  • color wheel cavity 221, air inlet; 222, air outlet;
  • color wheel module 241, heat sink; 242, fan blade; 243, driving device; 244, substrate; 245, cover;
  • FIG. 1 to 8 show a color wheel device in the present invention, which is mainly used in a 3DLP laser projection device. It can be understood that the color wheel device can also be used for other common illumination systems or projections. In the lighting device of the system.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the color wheel device includes a wavelength conversion layer 20, a sealed casing 21, a color wheel module 24, and a heat exchanger 25.
  • the wavelength conversion layer 20 is mainly used to absorb excitation light and generate a laser light, and the wavelength conversion layer 20 includes a wavelength conversion material.
  • the most commonly used wavelength converting material is a phosphor such as yttrium aluminum garnet (YAG). A phosphor that absorbs blue light and is excited to produce a yellow laser.
  • the wavelength converting material may also be a material having wavelength conversion ability such as a quantum dot or a fluorescent dye, and is not limited to a phosphor.
  • the wavelength converting material tends to be powdery or granular, and it is difficult to directly form the wavelength converting material layer. In this case, it is necessary to use an adhesive to fix the respective wavelength converting material particles together and form a specific shape. , such as a layered layer.
  • the main function of the sealing housing 21 is to provide a sealed cavity isolated from the outside of the heat dissipation device such as the wavelength conversion layer 20 and the color wheel module 24 and the heat exchanger 25, that is, a color wheel cavity 22 is formed in the sealing housing, and the color wheel
  • the cavity 22 includes an air inlet 221 and a air outlet 222.
  • the air inlet 221 is generally located at a first position of the color wheel cavity 22.
  • the first position is opposite to the wavelength conversion layer 20, and the air outlet 222 is generally located at the color wheel cavity 22.
  • the second position is parallel to the air inlet direction of the air inlet 221 . As shown in FIG.
  • the air inlet 221 in this embodiment may be located in the middle of the color wheel cavity, and the air outlet 222 may be located at the edge of the color wheel cavity.
  • the wavelength conversion layer 20 and the color wheel module 24 are housed in the color wheel cavity 22, and the heat exchanger 25 is disposed outside the color wheel cavity 22.
  • the sealing housing 21 may be formed by splicing a plurality of structural members, or may be integrally formed by an injection molding process.
  • the color wheel module 24 is disposed in the color wheel cavity 22, and the color wheel module 24 is mainly used to allow gas outside the color wheel cavity 22 to enter the color wheel cavity 22 from the air inlet 221, and then from the air outlet.
  • the 222 is discharged to the outside of the color wheel chamber 22 to form an air flow from the air inlet 221 of the color wheel chamber 22 through the air outlet 222, the heat exchange inlet 251 and the heat exchange outlet 252, and to the circulation duct 23 of the air inlet 221 .
  • the color wheel module 24 may include a heat dissipation plate 241, a plurality of blades 242, and a driving device 243.
  • the driving device 243 can generally be a conventional micro motor or a micro motor or the like.
  • the plurality of blades 242 are preferably integrally formed with the heat dissipation plate 241.
  • the wavelength conversion layer 20 is disposed on the light receiving surface of the heat dissipation plate 241, and the plurality of blades 242 are disposed on the end surface of the heat dissipation plate 241 facing away from the light receiving surface, and the driving device 243 is fixed on the sealing housing 21, and the driving device 243
  • the rotating shaft is connected to the heat dissipation plate 241 and drives the heat dissipation plate 241 and the plurality of blades 242 to rotate synchronously.
  • the heat dissipation plate 241 and the blade 242 are both made of a material having a high thermal conductivity, such as aluminum or copper, or a ceramic material such as aluminum nitride, silicon carbide, alumina, etc., and the heat dissipation plate 241 and the blade may be used in the process. 242 is directly integrated.
  • the wavelength conversion layer 20 is directly coated and sintered on the heat dissipation plate 241. Moreover, the heat generated by the laser irradiation wavelength conversion layer 20 is transmitted to the heat dissipation plate 241 and the fan blade 242 by heat conduction, thereby greatly increasing the heat exchange area for convection heat dissipation.
  • the color wheel module 24 corresponds to a centrifugal fan, and the gas is sucked into the color wheel cavity 22 from the air inlet 221, and is accelerated under the action of the color wheel module 24, and the gas is in the color wheel cavity.
  • the inside of the heat exchange plate 241 and the fan blade 242 are heated and exchanged, and then the fine wheel cavity 22 is smashed from the air outlet 222 by the color wheel module 24, thereby taking away the laser irradiation in the color wheel cavity 22.
  • the heat generated by the wavelength conversion layer 20 is a centrifugal fan, and the gas is sucked into the color wheel cavity 22 from the air inlet 221, and is accelerated under the action of the color wheel module 24, and the gas is in the color wheel cavity.
  • the inside of the heat exchange plate 241 and the fan blade 242 are heated and exchanged, and then the fine wheel cavity 22 is smashed from the air outlet 222 by the color wheel module 24, thereby taking away the laser irradiation in the color wheel cavity 22.
  • a substrate 244 may be disposed between the wavelength conversion layer 20 and the heat dissipation plate 241.
  • the end surface of the substrate 244 facing away from the light receiving surface is bonded or soldered to the heat dissipation plate 241.
  • the wavelength conversion layer 20 is disposed on the substrate 244.
  • the substrate 244 is mainly used to carry the wavelength conversion layer 20 described above and to reflect the generated laser light.
  • directly coating the wavelength conversion layer 20 on the heat sink 241 is a preferred embodiment of the embodiment. That is, it is preferable that the substrate 244 for carrying the wavelength conversion layer 20 is not separately provided on the premise that the reflectance of the heat dissipation plate 241 can satisfy the requirements.
  • the plurality of blades 242 extend in a radial direction of the heat dissipation plate 241, and the plurality of blades 242 are annularly uniform.
  • the heat transfer area of the heat dissipation plate 241 can be effectively increased by the fan blade 2427, and the heat transferred to the heat dissipation plate 241 is quickly dissipated into the air inside the color wheel cavity 22, thereby improving the color wheel cavity 22.
  • the internal heat exchange efficiency improves the heat dissipation effect, thereby lowering the temperature of the wavelength conversion layer 20, improving the reliability of the color wheel module 24, and prolonging the service life.
  • the blade 242 may extend in a straight line along the radial direction of the heat dissipation plate 241, but such an arrangement may cause the wind resistance of the heat dissipation plate 241 to increase when rotating, so that the driving device 243 for driving the heat dissipation plate 241 needs to have a larger driving force.
  • the preferred blade 2427 extends in a radial direction along the radial direction of the substrate 2443, thereby effectively reducing the substrate for driving the substrate 2443.
  • the driving force of rotation is applied to reduce the wind resistance.
  • the heat exchanger 25 is disposed in the sealed casing 21 and located outside the color wheel cavity 22.
  • the heat exchanger 25 includes a heat exchange inlet 251 and a heat exchange outlet 252.
  • the heat exchange inlet 251 is connected to the air outlet 222.
  • the heat exchange outlet 252 is in communication with the air inlet 221 described above. Then, the hot gas stream which is taken out from the air outlet of the color wheel chamber 22 passes through the heat exchange inlet 251, enters the heat exchanger 25, and exchanges heat with the refrigerant in the heat exchanger 25.
  • the cooled air stream is again drawn into the color wheel cavity 22 through the heat exchange outlet 252 and the air inlet 221 .
  • the airflow is sucked by the color wheel module to cool the wavelength conversion layer after being cooled by the color wheel module, and the heat exchanger is circumferentially abutted against the sealing housing and the baffle, so that the airflow passes through the air outlet 222 and The heat exchange inlet 251 enters the heat exchanger 25 for heat exchange, and the heat exchanged airflow can also be drawn into the color wheel cavity 22 only through the heat exchange outlet 252 and the air inlet 221 .
  • the color wheel module 24 further includes a cover 245 between the wavelength conversion layer 20 and the heat exchanger 25, the outer edge of which is fixedly coupled to the sealing housing 21.
  • the color wheel module 24 is spaced apart from the heat exchanger 25 and forms a color wheel cavity 22 with the sealed housing.
  • the middle portion of the cover body 245 has a first opening, and the edge has one or more second openings. The first opening faces the central axis portion of the heat dissipation plate 241 to form an air inlet, and the second opening forms an air outlet.
  • the air inlet 221 of the color wheel cavity 22 corresponds to the center position of the heat dissipation plate 241, and only one air outlet 222 of the color wheel cavity 22 is disposed along the radial direction of the wavelength conversion layer, understandably,
  • the air outlet 222 in this embodiment is preferably disposed perpendicular to the plane of the heat dissipation plate 241.
  • the design is such that the airflow drawn by the blade 242 along its radial direction flows directly through the air outlet 222 to the heat exchanger 25, so that the wind pressure at the air outlet 222 of the color wheel cavity 22 is high, resulting in a high flow rate.
  • the first opening at the center of the cover 245 is preferably circular, that is, the air inlet 221 of the color wheel cavity 22 is circular, and the center of the air inlet 221 is on the rotation axis of the heat dissipation plate 241.
  • the air inlet 221 is smaller than the diameter of the heat dissipation plate 241.
  • the high-speed airflow drawn by the blade 242 is slightly blocked by the heat radiating plate 241 at the edge of the heat radiating plate 241, and moves toward the axial direction of the heat radiating plate 241 to form a spoiler.
  • the partial turbulence is blocked by the cover body 245 disposed axially at the edge of the heat dissipation plate 241, and the airflow which is mostly moved radially along the heat dissipation plate 241 is excluded from the air outlet 222 of the color wheel cavity 22.
  • the effect of eliminating the turbulence is achieved, preventing the unheated spoiler from flowing back to the heat exchanger 25 in reverse, or disturbing the airflow flowing out of the heat exchange outlet 252 of the heat exchanger 25, resulting in the entire circulation duct. Unstable problem.
  • the heat exchanger 25 is fixed on the inner wall of the sealed casing 21 or on the cover body, and the heat exchange outlet 252 and the heat exchange inlet 251 of the heat exchanger 25 are respectively disposed at the heat exchanger 25
  • the two outer sides are facing each other, and the heat exchange outlet 252 is adjacent to the air inlet 221 .
  • the heat exchange inlet 251 and the heat exchange outlet 252 define a direction that coincides with the axial direction of the heat dissipation plate 241, and the heat exchange outlet 252 is adjacent to the air inlet 221 .
  • the circulation duct 23 further includes a first duct 231 extending in the width direction of the seal housing 21, and a second duct 232 extending in the height direction of the seal housing 21.
  • the heat exchanger 25 is mainly an air-liquid heat exchanger, and in other embodiments of the present application, an air-air heat exchanger may also be employed. That is, a heat dissipating fin is disposed on the surface of the heat exchanger 25, and the end of the heat dissipating fin extends through the sealing housing 21 to the outside, and then the heat of the surface of the heat dissipating fin is taken away by an external forced convection device, thereby reducing the temperature. .
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the color wheel device provided in this embodiment has the same or similar functions as the color wheel device provided in the first embodiment, and details are not described herein again. The following only describes the differences between the two.
  • the air inlet 221 of the color wheel cavity 22 is similar to the center position of the heat dissipation plate 241, and the air outlet 222 of the color wheel cavity 22 is provided with a plurality of air vents 222.
  • the air outlets 222 are evenly distributed along the outer circumferential direction of the heat dissipation plate 241. The advantage of this design is that the area of the air outlet 222 of the color wheel cavity 22 is large and the air volume is large.
  • the heat exchange inlet 251 of the heat exchanger 25 is also disposed on the outer side of the heat exchanger 25 away from the air inlet 221, and the heat exchange outlet 252 of the heat exchanger 25 is also disposed in the heat exchanger. 25 is adjacent to the outer side surface of the air inlet 221 .
  • the circulation duct 23 includes a first duct 231 extending in the width direction of the seal housing 21, and a second duct 232 extending in the height direction of the seal housing 21.
  • the circulation duct 23 includes at least one first duct 231, and in the embodiment, the circulation duct 23 includes at least two first ducts 231.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the color wheel device provided in this embodiment has the same or similar functions as the color wheel device provided in the second embodiment, and details are not described herein again. The following only describes the differences between the two.
  • the heat exchanger 25 may be a hollow rectangle or a ring heat exchanger 25 as shown in FIG. That is, the middle portion of the heat exchanger 25 may be provided with an annular opening, and the arrangement of the heat exchange inlet 251 and the heat exchange outlet 252 of the heat exchanger 25 is changed as follows:
  • the heat exchange outlet 252 of the heat exchanger 25 is disposed on the outer side surface of the annular opening near the air inlet 221 . If the annular opening is disposed in the middle of the heat exchanger 25, the heat exchange outlet 252 of the heat exchanger 25 can be disposed at a position consistent with the set position of the heat exchange outlet 252 in the second embodiment. That is, the heat exchange outlet 252 axially corresponds to the annular opening, and the heat exchange outlet 252 is disposed on the outer side surface of the heat exchanger 25 near the air inlet 221 .
  • the heat exchange inlet 251 of the heat exchanger 25 may be provided in plurality, and in general, the heat exchange inlet 251 may be evenly distributed along the outer circumferential direction of the annular opening. When the heat exchanger 25 is the annular heat exchanger 25, the heat exchange inlet 251 is evenly distributed along the outer circumferential direction of the annular heat exchanger 25.
  • the heat exchange inlet 251 is evenly distributed along the outer circumferential direction of the annular heat exchanger 25, one end of the heat exchanger 25 can be fitted to the inner side wall of the sealed casing 21, so that the circulation duct 23 includes only
  • the first air passage 231 extends in the width direction of the seal housing 21.
  • the heat exchanger 25 may have two, two heat exchangers 25 are respectively disposed on the two sides of the air inlet 221, and the heat exchange inlets 251 of the two heat exchangers 25 are oppositely disposed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种色轮装置,其包括波长转换层(20)、密封壳体(21)、色轮模块(24)和换热器(25)。波长转换层(20)用于经激发光照射并产生受激光。密封壳体(21)内形成有用于容纳该波长转换层(20)的色轮腔体(22),该色轮腔体(22)包括进风口(221)和出风口(222)。换热器(25)设置在该密封壳体(21)内并位于该色轮腔体(22)外,其至少朝向该波长转换层(20)的一侧表面设有热交换进口(251)和热交换出口(252)。该换热器(25)内部设有与该热交换进口(251)及该热交换出口(252)分别对应的进风通道及出风通道,该进风通道与该出风通道之间相互分隔设置。色轮模块(24)设置在该色轮腔体(22)内并承载该波长转换层(20),用于提供气流从色轮腔体(22)的进风口(221)进入并从出风口(222)排出的动力,从而形成气流从色轮腔体(22)的进风口(221)依次经色轮模块(24)、色轮腔体(22)的出风口(222)、热交换进口(251)、热交换出口(252),再回到进风口(221)的循环风道。

Description

色轮装置 技术领域
本申请涉及色轮装置,尤其是涉及一种大功率荧光色轮装置。
背景技术
色轮装置在激光光源照明、投影、光学照排以及光存储等领域中应用广泛。例如,在3DLP(Digital Light Procession)激光投影装置中,使用激光光源产生的激光激发荧光色轮来生成白光。随着光源输出光功率的提高,荧光色轮上的热功耗也随之上升。荧光粉受激发光的效率随温度升高而下降,当温度超过某临界点时,效率则快速下降。因此若色轮散热问题不能很好的解决,会影响投影装置的正常使用。
技术问题
常见的3DLP激光投影装置的荧光色轮的散热装置如图1所示:该散热装置包括多个结构件组装而成的密封腔体101,密封腔体内形成有内风道,风向如106箭头所示或者相反亦可。色轮103安装在马达102上,马达102固定在腔体101内壁面。马达102驱动轴A1旋转,从而带动色轮103旋转,使得色轮腔体107内空气产生流动,从而与外界进行热交换。被加热的空气在风扇104的驱动下进入换热器腔体108,在换热器105内被冷却后沿风道返回色轮腔体107,完成一个吸热、放热循环。因此,常见的3DLP激光投影装置的荧光色轮的散热用的循环风道的风阻较大,必须使用大风量、高背压的风扇来驱动气流循环,且风扇设置在色轮腔体的外部,不能够及时的带走色轮工作时产生的热量,影响色轮的工作效率。
技术解决方案
本申请提供一种改进的色轮装置。
根据本申请的第一方面,本申请提供一种色轮装置,其包括:
波长转换层,用于经激发光照射并产生受激光;
密封壳体,所述密封壳体内形成有用于容纳所述波长转换层的色轮腔体,所述色轮腔体包括进风口和出风口,所述进风口位于色轮腔体的第一位置,所述第一位置与所述波长转换层相对,所述出风口位于色轮腔体的第二位置,所述第二位置与所述进风口的进风方向平行;
换热器,设置在所述密封壳体内并位于所述色轮腔体外,所述换热器包括热交换进口和热交换出口;
色轮模块,设置在所述色轮腔体内并承载所述波长转换层,用于提供气流从色轮腔体的进风口进入并从出风口排出的动力,从而形成气流从色轮腔体的进风口经出风口、热交换进口和热交换出口,再到进风口的循环风道。
本发明的色轮装置中,所述色轮模块包括:
散热板,所述波长转换层设置于所述散热板的受光面的端面上;
多个扇叶,设置于所述散热板背离受光面的端面上;
驱动装置,固定在所述密封壳体上,所述驱动装置的转轴与所述散热板相连并带动所述散热板及多个扇叶同步旋转。
本发明的色轮装置中,所述波长转换层与所述散热板之间还设置有基板,所述基板背离受光面的端面与所述散热板粘接或焊接,所述波长转换层设置于所述基板的受光面的端面上。
本发明的色轮装置中,所述多个扇叶沿所述散热板的径向延伸,所述多个扇叶呈环形均布。
本发明的色轮装置中,所述多个扇叶与所述散热板一体成型。
本发明的色轮装置中,所述散热板采用金属材质。
本发明的色轮装置中,所述散热板采用陶瓷材质制备,所述波长转换层通过烧结固定设置于所述散热板表面。
本发明的色轮装置中,所述色轮模块还包括盖体,所述盖体中部具有第一开口,边缘具有一个或多个第二开口,所述盖体位于所述波长转换层与所述换热器之间,并和密封壳体一起形成色轮腔体,所述第一开口对向所述散热板的中心轴部位,形成进风口,第二开口形成出风口。
本发明的色轮装置中,所述换热器表面还设有散热鳍片,所述散热鳍片延伸穿过所述密封壳体向外侧延伸。
本发明的色轮装置中,所述第一开口为圆形,所述散热板为圆形,所述第一开口直径小于所述散热板直径。
本发明的色轮装置中,所述换热器固定在密封壳体的内壁上或盖体上,所述换热器的热交换出口和热交换进口分别设置在所述换热器正对的两个外侧面上,且热交换出口紧临所述进风口。
本发明的色轮装置中,所述热交换进口和所述热交换出口限定的方向沿所述散热板的轴向一致,且所述热交换出口紧贴所述进风口。
本发明的色轮装置中,所述换热器有两个,两个换热器相互隔离地分别设置在所述进风口的两侧,且两个换热器的热交换进口相对设置。
有益效果
本申请的有益效果是:气流从进风口处被吸入色轮腔体内,在色轮腔体内充分吸热后从出风口处甩出,甩出的气流至换热器中进行充分冷却后再次被吸入色轮腔体,即该色轮装置中形成了一个完整的散热用的循环风道,且该循环风道的驱动力是直接通过色轮腔体内的色轮模块来实现的,使得该色轮装置中的色轮模块能够与循环风道中的气流进行充分的热交换,从而能够及时的带走色轮模块工作时产生的热量,提高了色轮模块的工作效率,延长了色轮装置的使用寿命。
附图说明
图1为常见的3DLP激光投影装置的荧光色轮的散热装置的结构示意图;
图2为本申请一种实施例中的色轮装置的结构示意图;
图3为图2中的色轮模块的结构示意图;
图4A为图1中的色轮腔体的组装示意图;
图4B为图1中的色轮腔体的分解示意图;
图5为本申请另一种实施例中的色轮装置的结构示意图;
图6为图5中的色轮腔体的组装示意图;
图7为本申请又一种实施例中的色轮装置的结构示意图;
图8为图7中的换热器的结构示意图;其中,20、波长转换层;
21、密封壳体;
22、色轮腔体;221、进风口;222、出风口;
23、循环风道;231、第一风道;232、第二风道;
24、色轮模块;241、散热板;242、扇叶;243、驱动装置;244、基板;245、盖体;
25、换热器;251、热交换进口;252、热交换出口。
本发明的最佳实施方式
下面通过具体实施方式结合附图对本申请作进一步详细说明。
图1至图8示出了本发明中的一种色轮装置,该色轮装置主要用于3DLP激光投影装置中,可以理解地,该色轮装置还可以用于其他常见的照明系统或者投影系统的发光装置中。
实施例一:
请参阅图2和图3,该色轮装置包括波长转换层20、密封壳体21、色轮模块24和换热器25。
该波长转换层20主要用于吸收激发光并产生受激光,波长转换层20包括波长转换材料。最常用的波长转换材料是荧光粉,例如钇铝石榴石(YAG) 荧光粉,它可以吸收蓝光并受激产生黄色的受激光。波长转换材料还可能是量子点、荧光染料等具有波长转换能力的材料,并不限于荧光粉。在很多情况下,波长转换材料往往是粉末状或颗粒状的,难以直接形成波长转换材料层,此时就需要使用一种粘接剂把各个波长转换材料颗粒固定在一起,并形成特定的形状,如片层状。
该密封壳体21的主要作用是为波长转换层20及色轮模块24和换热器25等散热设备提供一个与外界隔离的密封腔,即密封壳体内形成有色轮腔体22,该色轮腔体22包括进风口221和出风口222,进风口221一般位于色轮腔体22的第一位置,该第一位置与波长转换层20相对,出风口222一般位于色轮腔体22的第二位置,该第二位置与进风口221的进风方向平行。如图2所示,本实施例中的进风口221可位于色轮腔体的中部,出风口222可位于色轮腔体的边缘。本发明实施例中,波长转换层20和色轮模块24容纳在色轮腔体22中,换热器25设置在色轮腔体22外部。该密封壳体21可以是由多个结构件拼接而成,也可以是采用注塑的工艺一体成型。
该色轮模块24设置在上述色轮腔体22内,该色轮模块24主要用于使该色轮腔体22外的气体从进风口221进入上述色轮腔体22内,再从出风口222排至上述色轮腔体22外,从而形成气流从色轮腔体22的进风口221经出风口222、热交换进口251和热交换出口252,再到进风口221的循环风道23。
具体地,参考图3,色轮模块24可包括散热板241、多个扇叶242和驱动装置243。驱动装置243一般可采用常见的微型马达或微型电机等。该多个扇叶242优选的与该散热板241一体成型。上述波长转换层20就设置于该散热板241的受光面上,而多个扇叶242设置于该散热板241背离受光面的端面上,驱动装置243固定在密封壳体21上,驱动装置243的转轴与散热板241相连并带动该散热板241及多个扇叶242同步旋转。散热板241与扇叶242都采用高导热率的材料,例如铝或铜等,还可以采用陶瓷材质,比如氮化铝,碳化硅,氧化铝等陶瓷等,工艺上可以采用散热板241与叶片242直接一体成型。将波长转换层20是直接涂敷烧结在散热板241上的。并且,激光辐照波长转换层20所产生的热量通过热传导传到散热板241及扇叶242上,从而极大地增加对流散热的换热面积。
当驱动装置243高速旋转时,色轮模块24相当于一个离心风扇,气体从进风口221被吸入色轮腔体22内,在色轮模块24的作用下加速加压,气体在色轮腔体22内与散热板241及扇叶242进行热交换被加热,再在色轮模块24的作用下从出风口222处被甩出色轮腔体22,从而带走色轮腔体22内激光辐照波长转换层20所产生的热量。
进一步地,上述波长转换层20与该散热板241之间还可以设置有基板244,该基板244背离受光面的端面与该散热板241粘接或焊接,该波长转换层20设置于该基板244的受光面上。该基板244主要用于承载上述波长转换层20并对产生的受激光进行反射。事实上,若在工艺可行的情况下,散热板241如能达到反射要求,将上述波长转换层20直接涂敷烧结在散热板241上为本实施例的优选的实施方案。即在散热板241反射率能够满足要求的前提下最好无需另设用于承载波长转换层20的基板244。
更进一步地,该多个扇叶242沿该散热板241的径向延伸,该多个扇叶242呈环形均布。通过扇叶2427可有效地增大散热板241的换热面积,将传递到散热板241上的热量更快地发散到色轮腔体22的内部的空气中,从而提高色轮腔体22的内部的热交换效率,提高散热效果,进而降低了上述波长转换层20的温度,提高色轮模块24的可靠性,延长了使用寿命。
其中,扇叶242可沿散热板241的径向呈直线延伸,但这样设置会使得散热板241在旋转时风阻增大,从而使得驱动散热板241的驱动装置243需要具有更大的驱动力。
为了降低风阻,优选的扇叶2427 沿基板2443 的径向里弧形延伸,进而有效地降低用于驱动基板2443 旋转的驱动力。
该换热器25设置在上述密封壳体21内并位于上述色轮腔体22外,该换热器25包括热交换进口251和热交换出口252,该热交换进口251与上述出风口222相连通,该热交换出口252与上述进风口221相连通。则从色轮腔体22的出风口处被甩出的热气流会经过热交换进口251后进入换热器25内,并与换热器25中的冷媒进行热交换。冷却后的气流再次通过热交换出口252和进风口221被吸入色轮腔体22内。
需要说明的是,气流被色轮模块吸入色轮腔体冷却波长转换层之后被甩出色轮腔体22,换热器周向紧靠密封壳体和挡板,因此气流是经过出风口222和热交换进口251进入换热器25内进行换热,且换热后的气流也只能通过热交换出口252和进风口221被吸入色轮腔体22内。
参阅图4A和4B,该色轮模块24还包括盖体245,盖体245位于波长转换层20与换热器25之间,其外缘与密封壳体21固定连接。将色轮模块24与换热器25分隔开来,并与密封壳体一同形成色轮腔体22。盖体245中部具有第一开口,边缘具有一个或多个第二开口,该第一开口对向该散热板241的中心轴部位,形成进风口,第二开口形成出风口。即色轮腔体22的进风口221与散热板241的中心位置相对应,而色轮腔体22的出风口222仅设置有一个,并沿着波长转换层的径向设置,可以理解地,本实施例中的出风口222优选的垂直于散热板241所在平面设置。这样设计可以使得叶片242沿其径向甩出的气流直接径直的通过出风口222流向换热器25,使得色轮腔体22的出风口222处的风压高,形成较高的流速。
较佳的,盖体245中心处的第一开口优选的为圆形,即色轮腔体22的进风口221为圆形,并且进风口221的圆心在散热板241旋转轴线上。进风口221小于散热板241的直径。扇叶242甩出的高速气流在散热板241的边缘处会有少部分受散热板241的阻挡,向散热板241的轴向运动,形成扰流。该部分扰流受到散热板241边缘处轴向上设置的盖体245的阻挡,被大部分沿散热板241径向运动的气流裹挟由色轮腔体22的出风口222排除。这样就达到了消除扰流的效果,防止未经换热的扰流逆向流回换热器25,或对换热器25的热交换出口252流出的气流起到干扰作用,导致整个循环风道不稳定的问题。
进一步地,本实施例中,该换热器25固定在密封壳体21的内壁上或盖体上,该换热器25的热交换出口252和热交换进口251分别设置在该换热器25正对的两个外侧面上,且热交换出口252靠近该进风口221。该热交换进口251和该热交换出口252限定的方向沿该散热板241的轴向一致,且该热交换出口252紧临该进风口221。相应地,循环风道23还包括沿该密封壳体21的宽度方向延伸的第一风道231,以及沿该密封壳体21的高度方向延伸的第二风道232。
本实施例中,换热器25主要为空气-液体型换热器,在本申请其他实施例中,还可以采用空气-空气型换热器。即在换热器25的表面设置散热鳍片,散热鳍片端部穿过密封壳体21向外部伸展,再通过外部的强制对流设备将散热鳍片表面的热量带走,从而起到降温的效果。
实施例二:
请参阅图5和图6,本实施例中提供的色轮装置,其与实施例一提供的色轮装置相比,其大体结构和基本功能相同或类似,在此不再赘述。下面仅以二者的不同之处加以描述。
本实施例中,色轮腔体22的进风口221同样的与散热板241的中心位置相正对,而色轮腔体22的出风口222设置有多个,一般情况下,本实施例中的出风口222可沿该散热板241的外圆周方向均匀分布。这样设计的好处在于色轮腔体22的出风口222处的面积大,风量较大。
进一步地,本实施例中,换热器25的热交换进口251同样设置在该换热器25远离进风口221的外侧面上,换热器25的热交换出口252同样设置在该换热器25靠近进风口221的外侧面上。相应地,循环风道23包括沿该密封壳体21的宽度方向延伸的第一风道231,以及沿该密封壳体21的高度方向延伸的第二风道232。但实施例一中,循环风道23包括至少一条第一风道231,而本实施例中,循环风道23包括至少两条第一风道231。
实施例三:
请参阅图7和图8,本实施例中提供的色轮装置,其与实施例二提供的色轮装置相比,其大体结构和基本功能相同或类似,在此不再赘述。下面仅以二者的不同之处加以描述。
本实施例中,换热器25的结构发生了变化,该换热器25可以是中空矩形,也可以是如图8所示环状换热器25。即换热器25的中部可设置有环形开口,则换热器25的热交换进口251和热交换出口252的设置就发生了变化,具体如下:
换热器25的热交换出口252设置在环形开口靠近进风口221的外侧面上。如环形开口的设置在该换热器25的中部,则换热器25的热交换出口252的设置位置可与实施例二中的热交换出口252的设置位置保持一致。即该热交换出口252与该环形开口轴向相对应,该热交换出口252设置在该换热器25靠近该进风口221的外侧面上。而换热器25的热交换进口251可设置有多个,一般情况下,该热交换进口251可沿该环形开口的外圆周方向均匀分布。当换热器25为环状换热器25时,该热交换进口251可沿该环状换热器25的外圆周方向均匀分布。
另外,因该热交换进口251沿该环状换热器25的外圆周方向均匀分布,则该换热器25的一端可与密封壳体21的内侧壁贴合,使得循环风道23只包括沿该密封壳体21的宽度方向延伸的第一风道231。这样设计的好处在于使得该色轮装置宽度方向的尺寸更小,从而本实施例中的色轮装置的整体尺寸变小。
进一步地,该换热器25可有两个,两个换热器25相互隔离地分别设置在该进风口221的两侧,且两个换热器25的热交换进口251相对设置。
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请发明构思的前提下,还可以做出若干简单推演或替换。

Claims (13)

1、一种色轮装置,其特征在于,包括:
波长转换层,用于经激发光照射并产生受激光;
密封壳体所述密封壳体内形成有用于容纳所述波长转换层的色轮腔体,所述色轮腔体包括进风口和出风口;
换热器,设置在所述密封壳体内并位于所述色轮腔体外,所述换热器至少朝向所述波长转换层的一侧表面设有热交换进口和热交换出口;所述换热器内部设有与所述热交换进口及所述热交换出口分别对应的进风通道及出风通道,所述进风通道与所述出风通道之间相互分隔设置;所述换热器热交换进口与所述色轮腔体的进风口相正对,所述换热器的热交换出口与所述出风口相正对;
色轮模块,设置在所述色轮腔体内并承载所述波长转换层,用于提供气流从色轮腔体的进风口进入并从出风口排出的动力,从而形成气流从色轮腔体的进风口依次经色轮模块、色轮腔体的出风口、热交换进口、热交换出口,再回到进风口的循环风道。
2、根据权利要求1所述的色轮装置,其特征在于,所述色轮模块包括:
散热板,所述波长转换层设置于所述散热板的受光面的端面上;
多个扇叶,设置于所述散热板背离受光面的端面上;
驱动装置,固定在所述密封壳体上,所述驱动装置的转轴与所述散热板相连并带动所述散热板及波长转换层和多个扇叶同步旋转。
3、根据权利要求2所述的色轮装置,其特征在于,所述波长转换层与所述散热板之间还设置有基板,所述基板背离受光面的端面与所述散热板粘接或焊接,所述波长转换层设置于所述基板的受光面的端面上。
4、根据权利要求2所述的色轮装置,其特征在于,所述多个扇叶沿所述散热板的径向延伸,所述多个扇叶呈环形均布。
5、根据权利要求4所述的色轮装置,其特征在于,所述多个扇叶与所述散热板一体成型。
6、根据权利要求2至5任一项所述的色轮装置,其特征在于,所述散热板采用金属材质。
7、根据权利要求2至5任一项所述的色轮装置,其特征在于,所述散热板采用陶瓷材质制备,所述波长转换层通过烧结固定设置于所述散热板表面。
8、根据权利要求2至5任一项所述的色轮装置,其特征在于,所述色轮模块还包括盖体,所述盖体中部具有第一开口,边缘具有一个或多个第二开口,所述盖体位于所述波长转换层与所述换热器之间,并和密封壳体一起形成色轮腔体,所述第一开口对向所述散热板的中心轴部位,形成进风口,第二开口形成出风口。
9、根据权利要求2至5任一项所述的色轮装置,其特征在于,所述换热器表面还设有散热鳍片,所述散热鳍片延伸穿过所述密封壳体向外侧延伸。
10、根据权利要求8所述的色轮装置,其特征在于,所述第一开口为圆形,所述散热板为圆形,所述第一开口直径小于所述散热板直径。
11、根据权利要求8所述的色轮装置,其特征在于,所述换热器固定在密封壳体的内壁上或盖体上,所述换热器的热交换出口和热交换进口分别设置在所述换热器正对的两个外侧面上,且热交换出口靠近所述进风口。
12、根据权利要求11所述的色轮装置,其特征在于,所述热交换进口和所述热交换出口限定的方向沿所述散热板的轴向一致,且所述热交换出口紧临所述进风口。
13、根据权利要求12所述的色轮装置,其特征在于,所述换热器有两个,两个换热器相互隔离地分别设置在所述进风口的两侧,且两个换热器的热交换进口相对设置。
PCT/CN2016/107956 2015-12-02 2016-11-30 色轮装置 WO2017092669A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187016204A KR102437947B1 (ko) 2015-12-02 2016-11-30 컬러 휠 장치
EP16869979.1A EP3385613B1 (en) 2015-12-02 2016-11-30 Colour wheel device
JP2018528751A JP6773786B2 (ja) 2015-12-02 2016-11-30 カラーホイール装置
US15/781,037 US20200271301A1 (en) 2015-12-02 2016-11-30 Color wheel apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510875143 2015-12-02
CN201510875143.1 2015-12-02
CN201610398000.0 2016-06-07
CN201610398000.0A CN106814526B (zh) 2015-12-02 2016-06-07 色轮装置

Publications (1)

Publication Number Publication Date
WO2017092669A1 true WO2017092669A1 (zh) 2017-06-08

Family

ID=58796333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107956 WO2017092669A1 (zh) 2015-12-02 2016-11-30 色轮装置

Country Status (1)

Country Link
WO (1) WO2017092669A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188811A (zh) * 2020-10-17 2021-01-05 张莲莲 一种电力物联网的电路传输监控装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202065853U (zh) * 2010-10-09 2011-12-07 南宁市立节节能电器有限公司 具有定时功能的led水族多彩照明灯
US20120013854A1 (en) * 2009-03-30 2012-01-19 Yoshifumi Nishimura Projection type display device
CN203365896U (zh) * 2013-07-24 2013-12-25 台达电子工业股份有限公司 应用于激光投影仪的光学组件
CN103807810A (zh) * 2012-11-14 2014-05-21 深圳市光峰光电技术有限公司 波长转换装置及相关发光装置
CN104661005A (zh) * 2013-11-21 2015-05-27 深圳市光峰光电技术有限公司 色轮装置及其光源设备以及投影系统
CN104676492A (zh) * 2015-01-31 2015-06-03 杨毅 波长转换装置和发光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120013854A1 (en) * 2009-03-30 2012-01-19 Yoshifumi Nishimura Projection type display device
CN202065853U (zh) * 2010-10-09 2011-12-07 南宁市立节节能电器有限公司 具有定时功能的led水族多彩照明灯
CN103807810A (zh) * 2012-11-14 2014-05-21 深圳市光峰光电技术有限公司 波长转换装置及相关发光装置
CN203365896U (zh) * 2013-07-24 2013-12-25 台达电子工业股份有限公司 应用于激光投影仪的光学组件
CN104661005A (zh) * 2013-11-21 2015-05-27 深圳市光峰光电技术有限公司 色轮装置及其光源设备以及投影系统
CN104676492A (zh) * 2015-01-31 2015-06-03 杨毅 波长转换装置和发光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3385613A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188811A (zh) * 2020-10-17 2021-01-05 张莲莲 一种电力物联网的电路传输监控装置

Similar Documents

Publication Publication Date Title
TWI417635B (zh) 電子裝置及投影機
WO2017211131A1 (zh) 色轮装置
JP5469168B2 (ja) 半導体ダイを冷却するための冷却装置
WO2018024013A1 (zh) 一种色轮模组、光源系统和投影系统
WO2017008689A1 (zh) 一种色轮散热装置
TW201105013A (en) Motor with thermal conductive paste
WO2017215345A1 (zh) 色轮散热装置及具有该散热装置的投影设备
TWI658234B (zh) Led散熱結構、led燈具及其散熱方法
CN107608168B (zh) 一种色轮模组
WO2018028262A1 (zh) 一种色轮模组、光源模组和投影系统
TW201237317A (en) Lamp
JP6773786B2 (ja) カラーホイール装置
WO2017092669A1 (zh) 色轮装置
WO2022001620A1 (zh) 色轮散热装置及应用其的投影设备
JP2019525244A (ja) カラーホイール装置及びプロジェクタ
CN205942233U (zh) 一种散热装置及投影设备
TW201104341A (en) Projector
CN113048454A (zh) 灯体散热系统
CN209496237U (zh) 一种荧光轮散热装置
CN109884844B (zh) 一种荧光轮散热装置
CN214405981U (zh) 灯体散热系统
WO2018010485A1 (zh) 一种散热装置及投影设备
CN210950971U (zh) 舞台灯具散热系统
CN219775660U (zh) 具有高散热性能的灯具
CN220043158U (zh) 直驱电机装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869979

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018528751

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187016204

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016869979

Country of ref document: EP