WO2016127768A1 - 一种电磁转换器件以及包含这种电磁转换器件的信息存储器 - Google Patents

一种电磁转换器件以及包含这种电磁转换器件的信息存储器 Download PDF

Info

Publication number
WO2016127768A1
WO2016127768A1 PCT/CN2016/071447 CN2016071447W WO2016127768A1 WO 2016127768 A1 WO2016127768 A1 WO 2016127768A1 CN 2016071447 W CN2016071447 W CN 2016071447W WO 2016127768 A1 WO2016127768 A1 WO 2016127768A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic conversion
conversion device
layer
magnetoelectric coupling
magnetoelectric
Prior art date
Application number
PCT/CN2016/071447
Other languages
English (en)
French (fr)
Inventor
孙阳
柴一晟
尚大山
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所 filed Critical 中国科学院物理研究所
Priority to JP2017541666A priority Critical patent/JP2018507554A/ja
Priority to US15/548,204 priority patent/US10062834B2/en
Priority to CN201680003091.1A priority patent/CN106796960B/zh
Priority to EP16748569.7A priority patent/EP3258501A4/en
Publication of WO2016127768A1 publication Critical patent/WO2016127768A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • H10N35/85Magnetostrictive active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the present invention belongs to the field of information technology, and in particular, to an electromagnetic conversion device and an information memory including the same.
  • resistors In the traditional circuit theory, resistors, capacitors, and inductors are the most basic three types of components. Resistors are devices that convert current and voltage. Capacitors are devices that convert voltage and charge, while inductors convert current and magnetic. Pass the device. In 1971, Leon Chua of the University of California, USA, based on symmetry considerations, first proposed that there should be a fourth basic circuit component defined by the conversion relationship between charge and flux (Article name: Memristor–the missing circuit Element; Journal: IEEE Transactions on Circuit Theory; Volume 18; Page: 507-519; Year: 1971), as shown in equation (1).
  • Leon Chua Since no physical examples of the converted charge and flux were found at the time, Leon Chua derived the formula (2) by deriving the time t on both sides of the formula (1), and then obtained the formula (3). However, the circuit element M defined by the formula (3) is equivalent to one resistor R, and thus has no meaning. In order to make M different from the conventional resistance, Leon Chua assumes that M may not be a constant, but a variable that depends on the charge q and time t, thereby obtaining equation (4). Leon Chua believes that a nonlinear resistor, called a memristor, can be defined by equation (4) and treated as a missing fourth basic circuit component.
  • the memristor has important application prospects due to its non-linear memory function, it does not serve as a true fourth basic circuit component.
  • the memristor does not satisfy the original definition of the fourth basic element (Equation 1), which is defined directly by the conversion relationship between charge and flux;
  • the memristor is essentially a resistive device, its operation and operation It can be completely independent of the magnetic flux, and does not have the magnetic flux memory function.
  • the memristor as a nonlinear device is not equivalent in price to the other three linear basic components, resulting in a theoretical contradiction in the basic circuit.
  • the memristor is essentially a resistive device, the power consumption is high, and the difference between the ideal charge and the lower power consumption of the flux-switching device is very large, so its application is limited. Therefore, the fourth basic circuit component that directly satisfies the original definition and directly realizes the charge-flux mutual conversion is still missing.
  • an electromagnetic conversion device comprising: an intermediate layer and an electrode layer on both sides of the intermediate layer, wherein the intermediate layer is a magnetoelectric coupling dielectric layer.
  • the magnetoelectric coupling dielectric layer is composed of a material having a linear magnetoelectric coupling effect, thereby forming a linear coupler.
  • the magnetoelectric coupling medium layer having a linear magnetoelectric coupling effect is composed of BaSrCoZnFe 11 AlO 22 single crystal, Cr 2 O 3 single phase material, BiFeO 3 single phase material, NiSO 4 ⁇ 6H 2 O single phase material, CoFeB/PMN-PT composite material or FeGaB/PZN-PT composite material.
  • the magnetoelectric coupling dielectric layer is composed of a magnetoelectric coupling dielectric material having a butterfly-shaped nonlinear hysteresis curve, thereby forming a nonlinear methanator.
  • the butterfly has a nonlinear hysteresis curve
  • the magnetoelectric coupling medium material is a single-phase magnetoelectric coupling material or a ferromagnetic/ferroelectric composite material.
  • the single-phase magnetoelectric coupling material having a butterfly-shaped nonlinear hysteresis curve is CaBaCo 4 O 7 , Ba 0.5 Sr 1.5 Co 2 Fe 11 AlO 22 , Ba 0.5 Sr 1.5 Zn 2 (Fe 0.92 Al 0.08 ) 12 O 22 , BaFe 10.4 Sc 1.6 O 19 , GaFeO 3 or Tb 2 (MoO 4 ) 3 .
  • the ferromagnetic layer of the ferromagnetic/ferroelectric composite material having a butterfly-shaped nonlinear hysteresis curve is Tb (1-x) Dy x Fe 2-y (0 ⁇ x ⁇ 1, y ⁇ 0.06), SmFe 2 , Tb(CoFe) 2 , Tb(NiFe) 2 , TbFe 3 , Pr 2 Co 17 , Ni 1-x Co x (0 ⁇ x ⁇ 1), Ni 1-x Fe x (0 ⁇ x ⁇ 1), Fe 1-x Co x (0 ⁇ x ⁇ 1), FeAl, FeCoV, FeGaB, CoFeB, Fe 80 B 15 Si 5 , Fe 66 Co 12 B 14 Si 8 , Fe 3 O 4 , CoFe 2 O 4 or NiFe 2 O 4 , the ferroelectric layer is (1-x)Pb(Mg 1/3 Nb 2/3 )O 3 -xPbTiO
  • the intermediate layer is in the form of a sheet.
  • the electrode layer is a metal material layer.
  • the metal material is silver or copper or gold.
  • the electrode layer is a non-metallic material layer having good electrical conductivity.
  • the electromagnetic conversion device of the present invention realizes direct conversion of charge and magnetic flux, and can be used as a fourth basic circuit component, thereby adding a new degree of freedom to the design of electronic circuits and information function devices.
  • the electromagnetic conversion device of the present invention can be classified into an electric coupler and a mesogen according to the material selection of the magnetoelectric coupling medium layer in the middle thereof, when the magnetoelectric coupling medium layer is composed of a material having a linear magnetoelectric coupling effect.
  • An electric coupler which is an optocoupler when the magnetoelectric coupling dielectric layer is composed of a magnetoelectric coupling dielectric material having a butterfly-shaped nonlinear hysteresis curve.
  • a significant advantage of the comeback coupler in applications is the ability to implement next-generation non-volatile memory at very low power. Since the coupler and the meristor are composed of an insulated magnetoelectric coupling medium, the internal current is extremely small when used as a device, and the Joule loss is also extremely low. It has a huge advantage of low power consumption compared to current-driven resistive devices.
  • the present invention also provides a four-terminal device comprising an inductor and an electrical coupler in accordance with the present invention, wherein the coupler is in full communication with the inductor on the magnetic circuit.
  • the present invention also provides another four-terminal device comprising two electrical couplers according to the present invention, In the middle, the two couplers are fully connected on the magnetic circuit.
  • the present invention provides an information memory comprising a memory cell array composed of one or more memristors according to the present invention, further comprising a read coil surrounding the memory cell array, the read coil preferably For metal solenoids.
  • the information memory has the following advantages: (1) high-speed read and write, ultra-low power consumption and unlimited writes; (2) when the power is turned off or suddenly powered off, the written data does not disappear, that is, non-volatile (3)
  • the structure is simple, which is conducive to large-scale integration and high-density storage. Therefore, it has important applications in the field of information technology.
  • FIG. 1 is a diagram showing a complete circuit component relationship including a fourth basic circuit component in accordance with the present invention.
  • FIG. 2a is a schematic view showing the working principle of the vertical type electric coupling device of the present invention.
  • 2b is a schematic view showing the working principle of the lateral type electric coupling device of the present invention.
  • FIG. 3 is a circuit characteristic response curve of a linear coupler and a nonlinear comeback coupler of the present invention
  • Figure 4 is a schematic diagram of a nonlinear memristor as an information memory in accordance with the present invention.
  • Figure 5 is a schematic structural view of an electromagnetic conversion device of the present invention.
  • Figure 6 is a performance measurement result of the linear coupler of the present invention.
  • Figure 7 is a performance measurement result of the nonlinear memristor of the second embodiment of the present invention.
  • Figure 8 is a performance measurement result of the nonlinear memristor of the third embodiment of the present invention.
  • 9a and 9b are schematic diagrams showing the design of a four-terminal coupling device of the present invention.
  • Figure 10 (a) is a schematic structural view of a nonlinear methanator as a magnetoelectric coupling information memory according to the present invention
  • Figure 10 (b) is a graph showing the variation of the in-plane magnetization of the magnetoelectric coupling information memory shown in Figure 10 (a) with an applied electric field;
  • Fig. 10 (c) is a graph showing changes in the magnetoelectric coupling coefficient of the magnetoelectric coupling information memory shown in Fig. 10 (a) with an applied electric field.
  • Figure 11 is a schematic illustration of a magnetoelectric coupling information memory including a mestoror array and a read coil in accordance with the present invention.
  • the present invention proposes a device for realizing direct conversion of charge and magnetic flux using a magnetoelectric coupling effect, which can be used as a fourth basic circuit component that satisfies the strict definition.
  • Such devices can have both linear response behavior and nonlinear response memory behavior, which are called linear couplers and nonlinear methanators (hereinafter referred to as couplers and meristors).
  • couplers and meristors linear couplers and nonlinear methanators
  • a complete symmetrical spectrum of the basic circuit components can be obtained (including four linear components of a resistor, a capacitor, an inductor, an electric coupler, and a memristor, a memristor, a memristor, a methanator, and four nonlinear components).
  • 1 is a complete circuit component relationship diagram including a fourth basic circuit component in accordance with the present invention.
  • the electrocouple device of the present invention is composed of a magnetoelectric coupling dielectric layer 2 and parallel electrode layers 1 and 3 on both sides thereof, and FIGS. 2a and 2b respectively show a vertical type electric coupling device according to the present invention. And the working principle of the horizontal type of electrical coupling device.
  • the electrocouple device of the present invention has a vertical type (the direction of the electric field and the magnetic flux are parallel to each other, as shown in FIG. 2a) and a horizontal type (the direction of the electric field and the magnetic flux are mutually opposite) Vertical, as shown in Figure 2b) Both configurations.
  • the Landau Theory (OF: L.D.Landau, E.M.Lifshitz; works: Electrodynamics of continuous media; Publisher: Pergamon Press; Year: 1980), magnetic coupling medium free energy equation (5):
  • ⁇ 0 and ⁇ e are coefficients vacuo electrode dielectric permittivity and magnetic; ⁇ 0 and ⁇ ⁇ are respectively the magnetic permeability of vacuum dielectric susceptibility; [alpha] is the coefficient of magnetic coupling magnetic medium.
  • D ⁇ 0 E + P is the electrical displacement in the magnetoelectric medium
  • S is the surface area of the electrode layer
  • B ⁇ 0 (H + M) is the magnetic magnetic induction within the dielectric
  • the electrocouple device can directly realize the mutual conversion of charge and magnetic flux, thereby fundamentally satisfying the original definition of the fourth basic circuit component.
  • the coefficient ⁇ / ⁇ 0 ⁇ r or ⁇ / ⁇ 0 ⁇ r that relates the charge-flux relationship as a new physical quantity called an electrical coupling. Since the magnetoelectric coupling coefficient ⁇ can be either positive or negative, the value of the electrical coupling can also be positive or negative, which is completely different from the other three basic circuit components (resistors, capacitors, inductors).
  • Circuit characteristics as shown in Figure 3, A, B, C, D of Figure 3 show the iv relationship of the resistor, the vq relationship of the capacitor, the inductor Relationship and the electrical coupler of the present invention relationship. Therefore, the coupler cannot be obtained by mutual combination of three basic components of a resistor, a capacitor, and an inductor.
  • Resistors, capacitors, and inductors all have corresponding non-linear memory devices, which are called memristors, memory containers, and memory sensors.
  • the coupler also has a corresponding non-linear memory device called an optocoupler.
  • the nonlinear response behavior is significantly different from that of the other three, showing a unique butterfly shape nonlinear hysteresis curve, as shown in Figure 3, E, F, G, and H of Figure 3 respectively show the iv relationship of the memristor Recall the vq relationship of the container, the sensory Relationship and the methanator of the present invention relationship.
  • the nonlinear response behavior of the etalon exhibits a nonlinear hysteresis behavior with a butterfly shape.
  • the magnetic moment M corresponds to the change of the applied electric field E (or voltage V) and also exhibits
  • the nonlinear hysteresis curve of the butterfly shape is shown in Figure 4.
  • the magnetoelectric coupling coefficient ⁇ dM / dE, that is, the slope of the ME curve, may be positive or negative, and may be switched between positive and negative as the voltage changes. Therefore, we can define positive ⁇ as data 0 and negative ⁇ as data 1. At low voltage, ⁇ is positive (data 0).
  • the magnetoelectric coupling coefficient changes from positive to negative (data 1). Thereafter, even if the applied voltage is removed, ⁇ remains negative (data 1). , that is, non-volatile.
  • the state (positive and negative) of the magnetoelectric coupling coefficient ⁇ is used as binary data (0 and 1), and nonvolatile storage of data can be realized.
  • the reading of the data is converted into the measurement of the magnetoelectric coupling coefficient ⁇ , which can be accomplished in the following two ways: (1) Static magnetoelectric coupling measurement method.
  • dM / dE ⁇ dP / dH.
  • the coupler and the comeback coupler of the present invention and the four-terminal device including the coupler and the magnetoelectric information memory including the mesogenizer are explained below by way of specific embodiments.
  • Figure 5 shows the composition of a linear coupler according to the present invention comprising: an intermediate BaSrCoZnFe 11 AlO 22 single crystal layer and an Ag electrode layer on both sides thereof.
  • the BaSrCoZnFe 11 AlO 22 single crystal is a sheet-like layer having a length, a width, and a thickness of 2 mm, 2 mm, and 0.3 mm, respectively, and the large surface thereof is a (001) plane.
  • the relationship between the polarization strength of the linear coupler of the present embodiment and the applied magnetic field was characterized by experiments. The experimental characterization was performed in a physical property measuring instrument (PPMS) manufactured by Quantum Design Inc., and the measurement temperature was 100K.
  • PPMS physical property measuring instrument
  • the scanning magnetic field ranged from -100 Oe to 200 Oe during the measurement, and the amount of change in charge on the electrodes at both ends was measured by a Keithley 6517B ammeter. It can be seen from the ⁇ P-H relationship as shown in FIG. 6 (the ⁇ P-H relationship reflects the relationship between charge and magnetic flux) as shown in FIG. 6 that the device is driven by a magnetic field and the polarization intensity is The applied magnetic field changes linearly, and the conversion slope is negative, indicating that the charge has a linear conversion relationship with the magnetic flux, which is the behavior of a typical linear coupler.
  • the composition of the nonlinear methanator according to the second embodiment of the present invention is substantially the same as that of the linear coupler of the first embodiment, except that the intermediate layer is a CaBaCo 4 O 7 single crystal layer.
  • the CaBaCo 4 O 7 single crystal is a sheet-like layer having a length, a width, and a thickness of 2 mm, 1 mm, and 0.4 mm, respectively, and the large surface thereof is a (001) plane.
  • the relationship between the polarization strength of the nonlinear methanator of the present embodiment and the applied magnetic field was characterized by experiments. The experimental characterization was performed in a physical property measuring instrument (PPMS) manufactured by Quantum Design Inc., and the measurement temperature was 5K.
  • PPMS physical property measuring instrument
  • the range of the scanning magnetic field during the measurement is plus or minus 120 kOe, and the amount of change in the charge on the electrodes at both ends is measured by a Keithley 6517B ammeter. It can be seen from the measurement result of the ⁇ P-H relationship curve shown in Fig.
  • the two curves shown in the figure are the results of the scanning directions of different magnetic fields, respectively) that the device is driven by the magnetic field along the plane of the vertical electrode, the electrode
  • the intensity varies with the forward and negative scanning magnetic fields, exhibiting a nonlinear hysteresis behavior with a butterfly shape, and the slope can be changed between positive and negative, indicating that the charge and the magnetic flux have a nonlinear transformation relationship of the butterfly shape, and With memory function, it is the behavior of a typical methanator.
  • the composition of the nonlinear methanator according to the third embodiment of the present invention is substantially the same as that of the linear coupler of the first embodiment, except that the intermediate layer is Ba 0.5 Sr 1.5 Co 2 Fe 11 AlO 22 Single crystal layer.
  • the Ba 0.5 Sr 1.5 Co 2 Fe 11 AlO 22 single crystal is a sheet-like layer having a length, a width, and a thickness of 2.36 mm, 2.36 mm, and 0.39 mm, respectively, and the large surface thereof is a (001) plane.
  • the relationship between the polarization strength of the nonlinear methanator of the present embodiment and the applied magnetic field was characterized by experiments.
  • the experimental characterization was performed in a physical property measuring instrument (PPMS) manufactured by Quantum Design Inc., and the measurement temperature was 300K.
  • the range of the scanning magnetic field during the measurement is plus or minus 2000 Oe, and the amount of change in the charge on the electrodes at both ends is measured by a Keithley 6517B ammeter. It can be seen from the measurement result of the ⁇ P-H relationship curve shown in Fig.
  • the two curves shown in the figure are the results of the scanning directions of different magnetic fields, respectively) that the device is driven by the magnetic field along the plane of the vertical electrode, the electrode
  • the intensity varies with the forward and negative scanning magnetic fields, exhibiting a nonlinear hysteresis behavior with a butterfly shape, and the slope can be changed between positive and negative, indicating that the charge and the magnetic flux have a nonlinear transformation relationship of the butterfly shape, and With memory function, it is the behavior of a typical methanator. It can be seen that the nonlinear hysteresis of the embodiment exhibits a more regular nonlinear hysteresis behavior of the butterfly shape, and the magnetic field required to be applied during the measurement process is smaller and can operate at room temperature.
  • the coupler obtained in the first embodiment is combined with other components to form a novel device.
  • T 1 and T 2 are the values of the electrical couple 1 and the electrical couple 2, respectively.
  • Figure 10 (a) is a view of a mestor as an information memory in accordance with the present invention. It uses a methanator based on the nonlinear magnetoelectric coupling effect of ferromagnetic/ferroelectric heterostructures, utilizing the magnetostrictive effect of ferromagnetic materials and the piezoelectric effect of ferroelectric materials.
  • the ferromagnetic layer uses a Terfenol-D (Tb 0.3 Dy 0.7 Fe 2 ) multi-wafer with a large magnetostriction coefficient and a thickness of 1 mm; the ferroelectric layer is 0.7 Pb (Mg 1/3 Nb 2/3 ) O 3 – A 0.3 PbTiO 3 (PMN-PT) single wafer having a thickness of 0.5 mm and a device area of 5 mm ⁇ 5 mm.
  • the ferromagnetic layer and the ferroelectric layer are bonded together by silver glue, and a layer of Ag electrodes are respectively covered on the upper and lower surfaces.
  • MPMS magnetic measurement system manufactured by Quantum Design Inc.
  • the device was placed in a read coil (solenoid).
  • a DC/AC power meter (Keithley 6221) outputs an AC current with a frequency of 100 kHz and an amplitude of 2 mA, producing an AC magnetic field of 1.2 Oe in the solenoid. Due to the magnetoelectric coupling effect, the alternating magnetic field induces an alternating voltage of the same frequency between the upper and lower electrodes of the device.
  • the lock-in amplifier (Stanford Research System, Model SR830) to detect the amplitude and phase of the AC voltage, the magnitude and sign of the magnetoelectric coupling coefficient ⁇ can be calculated.
  • a positive or negative pulse voltage is applied to the Ag electrodes at both ends by a voltmeter (Keithley 6517B) to change the direction of the ferroelectric polarization, and then the magnetoelectric coupling coefficient ⁇ is measured as a function of the applied electric field.
  • the test results are shown in Fig. 10(c), and Fig. 10(c) shows the correspondence relationship between the magnetoelectric coupling coefficient ⁇ and the applied electric field E over time.
  • This embodiment provides an information memory that includes a mestoror array and a read coil that surrounds the memristor array, as shown in FIG.
  • the memristor is used as a memory unit, and the read coil is composed of a metal solenoid for generating a direct current or alternating current magnetic field, and all memory cells can share a single read coil.
  • the metal electrodes at each end of each memristor are used to apply voltage pulses to write data, as well as to measure small voltages generated by magnetoelectric coupling effects to read data, and to combine read and write circuits, which greatly simplifies The structure of the memory.
  • the preparation of the etalon array is carried out by methods well known in the art, such as preparing a large area film and then cutting into a plurality of minute cells by micromachining to form an array.
  • the intermediate layer of the electromagnetic conversion device may employ other magnetoelectric coupling media known in the art, wherein the intermediate layer of the linear coupler may have a linear magnetoelectric coupling effect as known in the art.
  • Materials such as single-phase materials such as Cr 2 O 3 , BiFeO 3 , NiSO 4 ⁇ 6H 2 O, and composite materials such as CoFeB/PMN-PT, FeGaB/PZN-PT; the intermediate layer of the nonlinear methanator can be used Magnetoelectric coupling materials having a butterfly-shaped nonlinear hysteresis curve known in the art, including single-phase magnetoelectric coupling materials and ferromagnetic/ferroelectric composite heterostructures, single-phase magnetoelectric coupling materials such as Ba 0.3 Sr 1.7 Co 2 Fe 11 AlO 22 , Ba 0.5 Sr 1.5 Zn 2 (Fe 0.92 Al 0.08 ) 12 O 22 , BaFe 10.4 Sc 1.6 O 19 , CaBaCo 4 O 7
  • the intermediate layer of the electromagnetic conversion device has a cubic shape
  • the electrode layer of the electromagnetic conversion device may be any other electrode material known in the art, including a metal material and a non-metallic material having good conductivity, such as copper, gold, conductive oxide, graphite, and the like;
  • the electrode layers on both sides of the electromagnetic conversion device do not completely cover the intermediate layer
  • the intermediate layer thereof is preferably a ferromagnetic/ferroelectric composite heterostructure, and the thickness of the ferromagnetic layer and the ferroelectric layer are both 10 nm to Within the range of 1mm;
  • the thickness of the magnetoelectric coupling medium layer is set accordingly, for example, the mestor is used as an information memory, wherein the thickness of the magnetoelectric coupling medium layer should be less than 1 mm.
  • the application of an electric coupler to a four-terminal device typically requires a magnetoelectric coupling medium having a large magnetic flux and a thickness of from 1 mm to 10 cm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)

Abstract

一种电磁转换器件,包括:中间层和位于该中间层两侧的电极层,其中,中间层为磁电耦合介质层。该电磁转换器件可以作为第四种基本电路元件,具有电荷与磁通相互转换的功能,为电子电路与信息功能器件的设计增加了新的自由度。另外,该电磁转换器件可以作为存储单元构成一种非易失性磁电信息存储器。

Description

一种电磁转换器件以及包含这种电磁转换器件的信息存储器
交叉引用
本申请要求2015年2月13日提交的申请号为2015100785406的中国专利申请的优先权,其全部内容通过引用包含在本发明中。
技术领域
本发明属于信息技术领域,尤其涉及一种电磁转换器件以及包含这种电磁转换器件的信息存储器。
背景技术
在传统的电路理论里,电阻器、电容器、电感器是最基本的三类元器件,电阻器是转换电流与电压的器件,电容器是转换电压和电荷的器件,而电感器是转换电流与磁通的器件。1971年,美国加州大学的Leon Chua基于对称性的考虑,首先从理论上提出应该存在第四种基本电路元器件,它由电荷与磁通的转换关系来定义(文章名称:Memristor–the missing circuit element;期刊:IEEE Transactions on Circuit Theory;卷号18;页码:507~519;年份:1971),如公式(1)所示。由于当时找不到转换电荷与磁通的物理实例,Leon Chua通过公式(1)的两边对时间t求导得到了公式(2),进而得到了公式(3)。然而,由公式(3)定义的电路元件M等同于一个电阻R,因而没有什么意义。为了使M不同于常规的电阻,Leon Chua假定M可以不是一个常数,而是一个依赖于电荷q和时间t的变量,由此得到了公式(4)。Leon Chua认为,由公式(4)可以定义一个非线性电阻,称为忆阻器(memristor),并把它当作缺失的第四种基本电路元件。
Figure PCTCN2016071447-appb-000001
Figure PCTCN2016071447-appb-000002
v=Mi           (3)
v(t)=M(q(t))i(t)             (4)
在这一理论提出了近40年之后,美国惠普公司的研究人员发现一个简单的Pt/TiO2/Pt三明治结构表现出与理论预言的忆耦器相似的i-v关系曲线,从而宣布在实验上发现了忆阻器(参见D.B.Strukov,G.S.Snider,D.R.Stewart,R.S.Williams在Nature上发表的The missing memristor found,卷号:453;页码:80~83;年份:2008)。
虽然忆阻器由于具有非线性记忆功能而拥有重要的应用前景,但是它并不能作为真正的第四种基本电路元件。首先,忆阻器不满足第四种基本元件的原始定义(公式1),即直接由电荷与磁通之间的转换关系来定义;其次,忆阻器实质上是电阻器件,其运行与操作可以与磁通完全无关,也不具备磁通记忆功能;第三,忆阻器作为非线性器件与其他三个线性基本元件在地位上不等价,造成基本电路理论上的矛盾。最后,由于忆阻器实质上是电阻器件,操纵功耗较高,与理想的电荷与磁通转换器件的较低功耗相比差距非常大,因而它的应用很受限制。所以,严格满足原始定义直接实现电荷-磁通相互转换的第四种基本电路元件依然缺失。
发明内容
因此,本发明的目的在于提供一种电磁转换器件,包括:中间层和位于所述中间层两侧的电极层,其中,所述中间层为磁电耦合介质层。
根据本发明的电磁转换器件,优选地,所述磁电耦合介质层由具有线性磁电耦合效应的材料构成,由此形成线性电耦器。
根据本发明的电磁转换器件,优选地,具有线性磁电耦合效应的所述磁电耦合介质层由BaSrCoZnFe11AlO22单晶、Cr2O3单相材料、BiFeO3单相材料、NiSO4·6H2O单相材料、CoFeB/PMN-PT复合材料或FeGaB/PZN-PT复合材料构成。
根据本发明的电磁转换器件,优选地,所述磁电耦合介质层由具有蝴蝶形非线性回滞曲线的磁电耦合介质材料构成,由此形成非线性忆耦器。
根据本发明的电磁转换器件,优选地,所述具有蝴蝶形非线性回滞曲线 的磁电耦合介质材料为单相磁电耦合材料或者铁磁/铁电复合材料。
根据本发明的电磁转换器件,优选地,具有蝴蝶形非线性回滞曲线的所述单相磁电耦合材料为CaBaCo4O7、Ba0.5Sr1.5Co2Fe11AlO22、Ba0.5Sr1.5Zn2(Fe0.92Al0.08)12O22、BaFe10.4Sc1.6O19、GaFeO3或Tb2(MoO4)3
根据本发明的电磁转换器件,优选地,具有蝴蝶形非线性回滞曲线的所述铁磁/铁电复合材料的铁磁层为Tb(1-x)DyxFe2-y(0≤x≤1,y≤0.06)、SmFe2、Tb(CoFe)2、Tb(NiFe)2、TbFe3、Pr2Co17、Ni1-xCox(0≤x≤1)、Ni1-xFex(0≤x≤1)、Fe1-xCox(0≤x≤1)、FeAl、FeCoV、FeGaB、CoFeB、Fe80B15Si5、Fe66Co12B14Si8、Fe3O4、CoFe2O4或NiFe2O4,铁电层为(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3(0≤x≤1)、(1-x)Pb(Zn1/3Nb2/3)O3–xPbTiO3(0≤x≤1)、Pb(Zr1-xTix)O3(0≤x≤1)、(Ba1-xSrx)TiO3(0≤x≤1)、BiFeO3、LiNbO3、SrBi2Ta2O9、BaxSr1-xNb10O30(0≤x≤1)、Ba2NaNb5O15、磷酸二氢钾(KDP)、聚偏氟乙烯(PVDF)、聚三氟乙烯(PTrFE)、聚偏氟乙烯、聚三氟乙烯的二元共聚物、聚氨脂或奇数尼龙。
根据本发明的电磁转换器件,优选地,所述中间层为片状。
根据本发明的电磁转换器件,优选地,所述电极层为金属材料层。
根据本发明的电磁转换器件,优选地,所述金属材料为银或铜或金。
根据本发明的电磁转换器件,优选地,所述电极层为导电性能良好的非金属材料层。
本发明的电磁转换器件实现了电荷与磁通的直接转换,可以作为第四种基本电路元件,从而为电子电路与信息功能器件的设计增加了新的自由度。另外,本发明的电磁转换器件根据其中间的磁电耦合介质层的材料选择不同可以分为电耦器和忆耦器,当磁电耦合介质层由具有线性磁电耦合效应的材料构成时为电耦器,而当磁电耦合介质层由具有蝴蝶形非线性回滞曲线的磁电耦合介质材料构成时为忆耦器。忆耦器在应用上的一个显著优势是可以非常低的功耗实现新一代非易失性存储器。由于电耦器和忆耦器是由绝缘的磁电耦合介质构成,作为器件使用时内部电流极小,因而焦耳损耗也极低。与电流驱动的电阻型器件相比,具有低功耗的巨大优势。
本发明还提供了一种四端器件,包括一个电感器和一个根据本发明的电耦器,其中,电耦器与所述电感器在磁路上完全联通。
本发明还提供了另外一种四端器件,包括两个根据本发明的电耦器,其 中,两个电耦器在磁路上完全联通。
另外,本发明还提供了一种信息存储器,其中包括由一个或多个根据本发明的忆耦器构成的存储单元阵列,还包括包围所述存储单元阵列的读取线圈,读取线圈优选地为金属螺线管。
该信息存储器具有如下优点:(1)高速读写,超低功耗和无限次写入;(2)在关闭电源或突然断电时,写入的数据不会消失,即具有非易失性;(3)结构简单,有利于实现大规模集成和高密度存储。因此在信息技术领域具有重要的应用。
附图说明
以下参照附图对本发明实施例作进一步说明,其中:
图1为包含根据本发明的第四种基本电路元件的完整电路元件关系图;
图2a为本发明的纵型电耦器件的工作原理示意图;
图2b为本发明的横型电耦器件的工作原理示意图;
图3为本发明的线性电耦器和非线性忆耦器的电路特征响应曲线;
图4为根据本发明的非线性忆耦器作为信息存储器的原理图;
图5为本发明的电磁转换器件的结构示意图;
图6为本发明的线性电耦器的性能测量结果;
图7为本发明的第二实施例的非线性忆耦器的性能测量结果;
图8为本发明的第三实施例的非线性忆耦器的性能测量结果;
图9a和9b为本发明的四端耦合器件的设计示意图;
图10(a)为根据本发明的作为磁电耦合信息存储器的非线性忆耦器的结构示意图;
图10(b)为图10(a)所示的磁电耦合信息存储器的面内磁化强度随外加电场的变化曲线;
图10(c)为图10(a)所示的磁电耦合信息存储器的磁电耦合系数随外加电场的变化。
图11为根据本发明的包含忆耦器阵列和读取线圈的磁电耦合信息存储器的示意图。
具体实施方式
为了使本发明的目的,技术方案及优点更加清楚明白,以下结合附图通过具体实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明提出一类利用磁电耦合效应实现电荷与磁通直接转换的器件,可作为满足严格定义的第四种基本电路元件。该类器件既可以具有线性响应行为,也可以具有非线性响应记忆行为,分别称之为线性电耦器与非线性忆耦器(以下简称为电耦器和忆耦器)。由此,可以得到基本电路元件的完整对称谱图(包括电阻器、电容器、电感器、电耦器四个线性元件和忆阻器、忆容器、忆感器、忆耦器四个非线性元件),如图1所示,图1为包含根据本发明的第四种基本电路元件的完整电路元件关系图。
如图2所示,本发明的电耦器件由磁电耦合介质层2与位于其两侧的平行电极层1和3组成,图2a和图2b分别示出根据本发明的纵型电耦器件和横型电耦器件的工作原理。根据磁电耦合效应的不同(横向耦合或纵向耦合),本发明的电耦器件有纵型(电场与磁通的方向相互平行,如图2a所示)与横型(电场与磁通的方向相互垂直,如图2b所示)两种构型。根据Landau理论(作者:L.D.Landau,E.M.Lifshitz;著作:Electrodynamics of continuous media;出版社:Pergamon Press;年份:1980),磁电耦合介质中的自由能如公式(5)所示:
Figure PCTCN2016071447-appb-000003
其中ε0与χe分别是真空介电常数与磁电介质的电极化系数;μ0与χυ分别是真空磁导率与磁电介质磁化率;α是磁电介质的磁电耦合系数。在公式(5)的基础上求自由能最小值,通过分别对电场与磁场求导,得到公式(6)与公式(7):
Figure PCTCN2016071447-appb-000004
Figure PCTCN2016071447-appb-000005
对于如图2a所示的纵型电耦器件,两侧的电极层1和3上束缚的电荷与磁 通分别如公式(8)与(9)所示:
q=DS=(ε0E+P)S=ε0εrES+αHS             (8)
Figure PCTCN2016071447-appb-000006
其中D=ε0E+P是磁电介质内的电位移,εr=χe+1是磁电介质的相对介电率,S是电极层的表面积;B=μ0(H+M)是磁电介质内的磁感应强度,μr=χυ+1是磁电介质的相对磁导率。
当外加电场恒定时,沿着如图2a中箭头所示的方向施加磁场H时,由于磁电耦合效应,该器件两端束缚的电荷发生改变dq,由公式(8)和(9)可以得到此时磁通和电荷的关系式,如公式(10)所示:
Figure PCTCN2016071447-appb-000007
当外加磁场恒定时,在电极两端施加电场E后,由于磁电耦合效应,磁通发生变化
Figure PCTCN2016071447-appb-000008
由公式(8)和(9)可以得到此时磁通和电荷的关系式,
Figure PCTCN2016071447-appb-000009
对于如图2b所示的横型电耦器件,假设磁电耦合介质的竖直方向截面积为S',则电荷与磁通分别如公式(12)与(13)所示:
q=DS=(ε0E+P)S=ε0εrES+αHS           (12)
Figure PCTCN2016071447-appb-000010
式中各参数含义同前,只是公式(13)中与磁通相关的面积由S'替代了S。同样的,在施加磁场H或电场E后,该器件两端电荷发生改变dq,由于磁电耦合效应,诱导的磁通变化将分别如公式(14)与公式(15)所示:
Figure PCTCN2016071447-appb-000011
Figure PCTCN2016071447-appb-000012
从以上推导可以看出,该电耦器件可以直接实现电荷与磁通的相互转换,从而在根本上满足第四种基本电路元件的原始定义。我们把联系电荷-磁通关系的系数α/ε0εr或者α/μ0μr定义为一个新的物理量,称为电耦。由于磁电耦合系数α既可以为正,也可以为负,则电耦的值亦可以为正也可以为负,这是与其他三种基本电路元件(电阻器、电容器、电感器)完全不同的电路特征,如图3所示,图3的A、B、C、D分别示出电阻器的i-v关系、电容器的v-q关系、电感器的
Figure PCTCN2016071447-appb-000013
关系以及本发明的电耦器的
Figure PCTCN2016071447-appb-000014
关系。因此,电耦器不可能通过电阻器、电容器、电感器三个基本元件的相互组合获得。
电阻器、电容器、电感器都存在着对应的非线性记忆器件,分别被称为忆阻器、忆容器、忆感器。类似地,电耦器也具有对应的非线性记忆器件,称之为忆耦器。其非线性响应行为与其它三者显著不同,表现出独特的蝴蝶形状的非线性回滞曲线,如图3所示,图3的E、F、G、H分别示出忆阻器的i-v关系、忆容器的v-q关系、忆感器的
Figure PCTCN2016071447-appb-000015
关系以及本发明的忆耦器的
Figure PCTCN2016071447-appb-000016
关系。
忆耦器的非线性响应行为(
Figure PCTCN2016071447-appb-000017
关系)表现出具有蝴蝶形状的非线性回滞行为,从前述公式(8)和(9)可以看出,磁矩M随外加电场E(或电压V)的变化与之相对应,也表现出蝴蝶形状的非线性回滞曲线,如图4所示。在这种情况下,磁电耦合系数α=dM/dE,即M-E曲线的斜率,可以为正也可以为负,并且随着电压的变化在正负之间转换。因此,我们可以把正α定义为数据0,负α定义为数据1。在低电压时,α为正(数据0),当外加电压足够大时,磁电耦合系数从正转变为负(数据1),此后,即使外加电压撤除,α依然保持为负(数据1),即具有非易失性。要重新写入数据0,只需施加一个反向的高电压,使得α从负转变到正(数据0),即使撤除电压后,α依然保持为正(数据0)。因此,本发明的忆耦器可以用作信息存储器并且实现非易失性存储。
这样,基于非线性磁电耦合效应,利用磁电耦合系数α的状态(正和负)来作为二进制数据(0和1),就可以实现数据的非易失性存储。数据的读取即转化为对磁电耦合系数α的测量,可以分别采用以下两种方式来完成:(1)静态磁电耦合测量法。根据磁电耦合系数的定义,α=dM/dE≈dP/dH。当在 磁电耦合介质上施加一个较小的直流磁场H产生一个电极化的变化ΔP,进而产生一个较小的直流电压V,通过测量磁电耦合诱导的直流电压V,就可以计算出α的数值和符号。(2)动态磁电耦合测量法。当在磁电耦合介质上施加一个较小的交流磁场H时,会产生一个同频率的交流电压,利用锁相放大器测量这个交流电压的数值和相位,就可以计算出磁电耦合系数的数值和符号。由于施加的磁场较小,产生的电压较低,因此数据的读取不会破坏存储的状态。
以下通过具体实施例说明本发明的电耦器与忆耦器以及包含电耦器的四端器件和包含忆耦器的磁电信息存储器。
第一实施例
图5示出了根据本发明的线性电耦器的组成结构,包括:中间的BaSrCoZnFe11AlO22单晶层及位于其两侧的Ag电极层。其中,BaSrCoZnFe11AlO22单晶为长度、宽度和厚度分别为2mm、2mm和0.3mm的片状层,其大面为(001)面。通过实验表征本实施例的线性电耦器的电极化强度随外加磁场的变化关系,实验表征在量子设计公司(Quantum Design Inc.)制造的物性测量仪器(PPMS)中完成,测量温度在100K,测量过程中扫描磁场范围为-100Oe-200Oe,两端电极上电荷的变化量由Keithley 6517B电流计测量。由如图6所示的ΔP-H关系(本领域技术人员很容易理解,ΔP-H关系反映电荷与磁通的关系)曲线测量结果可以看出,该器件在磁场驱动下,电极化强度随外加磁场线性变化,且转换斜率为负,表明电荷与磁通具有线性的转换关系,是典型的线性电耦器的行为。
第二实施例
根据本发明的第二实施例的非线性忆耦器的组成结构与第一实施例的线性电耦器的组成结构基本相同,不同之处在于中间层为CaBaCo4O7单晶层。其中,CaBaCo4O7单晶为长度、宽度和厚度分别为2mm、1mm和0.4mm的片状层,其大面为(001)面。通过实验表征本实施例的非线性忆耦器的电极化强度随外加磁场的变化关系,实验表征在量子设计公司(Quantum Design Inc.)制造的物性测量仪器(PPMS)中完成,测量温度在5K,测量过程中扫描 磁场范围为正负120kOe,两端电极上电荷的变化量由Keithley 6517B电流计测量。由如图7所示的ΔP-H关系曲线测量结果(图中示出的两条曲线分别是不同磁场扫描方向的结果)可以看出,该器件在沿垂直电极平面方向的磁场驱动下,电极化强度随正向和负向扫描磁场变化不同,表现出具有蝴蝶形状的非线性回滞行为,斜率可以在正负之间改变,表明电荷与磁通具有蝴蝶形状的非线性的转换关系,并具有记忆功能,是典型的忆耦器的行为。
第三实施例
根据本发明的第三实施例的非线性忆耦器的组成结构与第一实施例的线性电耦器的组成结构基本相同,不同之处在于中间层为Ba0.5Sr1.5Co2Fe11AlO22单晶层。其中,Ba0.5Sr1.5Co2Fe11AlO22单晶为长度、宽度和厚度分别为2.36mm、2.36mm和0.39mm的片状层,其大面为(001)面。通过实验表征本实施例的非线性忆耦器的电极化强度随外加磁场的变化关系,实验表征在量子设计公司(Quantum Design Inc.)制造的物性测量仪器(PPMS)中完成,测量温度在300K,测量过程中扫描磁场范围为正负2000Oe,两端电极上电荷的变化量由Keithley 6517B电流计测量。由如图8所示的ΔP-H关系曲线测量结果(图中示出的两条曲线分别是不同磁场扫描方向的结果)可以看出,该器件在沿垂直电极平面方向的磁场驱动下,电极化强度随正向和负向扫描磁场变化不同,表现出具有蝴蝶形状的非线性回滞行为,斜率可以在正负之间改变,表明电荷与磁通具有蝴蝶形状的非线性的转换关系,并具有记忆功能,是典型的忆耦器的行为。可以看出,该实施例的非线性忆耦器表现出的蝴蝶形状的非线性回滞行为更加规则,并且测量过程中所需要施加的磁场更小,可以工作在室温下。
第四实施例
在该实施例中,将第一实施例得到的电耦器与其他元件组合形成新型器件。如图9a所示,把一个电耦器与一个电感器通过一个磁芯在磁路上完全联通起来(本领域技术人员公知的是,磁芯有约束磁通的功能,磁路就是磁通沿着磁芯的形状构成回路),形成一个新的四端器件,它具有反倒逆的电压-电流关系:v1=-gi2,v2=gi1,类似于一个回转器(gyrator)的行为,其中g是回转系数(单位是欧姆)。而如图9b所示,把两个电耦器通过一个磁芯在 磁路上完全联通起来,形成一个新的四端器件,它具有关系方程i2=(T1/T2)i1和i1=(T2/T1)i2,其中T1和T2分别是电耦1与电耦2的数值。但是对于两边的电压关系来说,还需要考虑两个电耦器本身的电容值。而它们很可能是不同的。因此,这个新器件中电流转换关系跟电压转换关系的系数不同,这与变压器和回转器的特性都是完全不一样的,是一个全新的四端电路器件。
第五实施例
图10(a)为根据本发明的作为信息存储器的忆耦器的视图。其采用基于铁磁/铁电异质结构的非线性磁电耦合效应的忆耦器,利用铁磁材料的磁致伸缩效应和铁电材料的压电效应。铁磁层采用具有较大磁致伸缩系数的Terfenol-D(Tb0.3Dy0.7Fe2)多晶片,厚度为1毫米;铁电层为0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3(PMN-PT)单晶片,厚度为0.5毫米,器件面积为5毫米×5毫米。铁磁层与铁电层通过银胶粘接在一起,在上下表面分别覆盖一层Ag电极。
首先,利用量子设计公司(Quantum Design Inc.)制造的磁性测量系统(MPMS)测量了室温下样品的磁化强度随外加电压(电场)的变化关系。由如图10(b)所示的测量结果可以看出,该器件的面内磁化强度随外加电压(电场)表现出蝴蝶形状的非线性回滞曲线,在矫顽场附近(E=±2kV/cm),铁电极化发生反转,同时磁电耦合系数α=dM/dE发生由正到负或者由负到正的变化。将α>0作为二进制数据0,α<0作为二进制数据1,因此,该器件可以用来作为本发明提出的磁电耦合非易失性存储器。
为了测试该器件的非易失性存储性能,将该器件放置在一个读取线圈(螺线管)中。由一个直流/交流电源表(Keithley 6221)输出一个频率为100kHz幅值为2mA的交流电流,在螺线管中产生1.2Oe的交流磁场。由于存在磁电耦合效应,该交流磁场会在器件的上下两电极之间诱导出一个同频率的交流电压。利用锁相放大器(Stanford Research System,Model SR830)探测该交流电压的幅值和相位,就可以计算出磁电耦合系数α的大小和符号。通过一个电压表(Keithley 6517B)在两端Ag电极上施加一个正或负脉冲电压来改变铁电极化的方向,然后测量磁电耦合系数α随外加电场的变化。测试结果如图10(c)所示,图10(c)示出磁电耦合系数α和外加电场E随时间的对应关系,当施加完一个正电压(电场),该器件的磁电耦合系 数α为正值,并且随时间一直保持正值;此后,当施加一个负电压(电场)后,磁电耦合系数α由正转变为负,并且随时间一直保持负值。该转换可以重复很多次而没有明显衰减。因此,这些测试结果成功地演示了本发明提出的非易失性存储器。
第六实施例
本实施例提供了包含忆耦器阵列和包围忆耦器阵列的读取线圈的信息存储器,如图11所示。忆耦器用作存储单元,读取线圈由一个金属螺线管构成,用于产生一个直流或交流小磁场,所有存储单元可以共用一个读取线圈。每个忆耦器的两端金属电极既用于施加电压脉冲来写入数据,也用于测量磁电耦合效应产生的小电压来读取数据,将读写电路合并在一起,从而大大简化了存储器的结构。忆耦器阵列的制备采用本领域公知的方法,例如先制备出大面积薄膜,然后再通过微加工技术切割成很多微小单元,形成阵列。
根据本发明的其他实施例,电磁转换器件的中间层可以采用本领域公知的其他的磁电耦合介质,其中,所述线性电耦器的中间层可以采用本领域公知的具有线性磁电耦合效应的材料,例如Cr2O3,BiFeO3,NiSO4·6H2O等单相材料以及CoFeB/PMN-PT,FeGaB/PZN-PT等复合材料;所述非线性忆耦器的中间层可以采用本领域公知的具有蝴蝶形非线性回滞曲线的磁电耦合材料,包括单相磁电耦合材料和铁磁/铁电复合异质结构,单相磁电耦合材料例如Ba0.3Sr1.7Co2Fe11AlO22、Ba0.5Sr1.5Zn2(Fe0.92Al0.08)12O22,BaFe10.4Sc1.6O19,CaBaCo4O7,GaFeO3或Tb2(MoO4)3等,铁磁/铁电复合异质结构的铁磁层例如Tb(1-x)DyxFe2-y(0≤x≤1,y≤0.06),SmFe2,Tb(CoFe)2,Tb(NiFe)2,TbFe3,Pr2Co17,Ni1-xCox(0≤x≤1),Ni1-xFex(0≤x≤1),Fe1-xCox(0≤x≤1),FeAl,FeCoV,FeGaB,CoFeB,Fe80B15Si5,Fe66Co12B14Si8,Fe3O4,CoFe2O4或NiFe2O4,铁电层例如(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3(0≤x≤1),(1-x)Pb(Zn1/3Nb2/3)O3–xPbTiO3(0≤x≤1),Pb(Zr1-xTix)O3(0≤x≤1),(Ba1-xSrx)TiO3(0≤x≤1),BiFeO3,LiNbO3,SrBi2Ta2O9,BaxSr1-xNb10O30(0≤x≤1),Ba2NaNb5O15,磷酸二氢钾(KDP),聚偏氟乙烯(PVDF),聚三氟乙烯(PTrFE),聚偏氟乙烯,聚三氟乙烯的二元共聚物,聚氨脂或奇数尼龙;另外,本领域技术人员很容易理解,某些磁电耦合介质的磁电耦合效应会随着 外加电场的增加从线性变换为非线性。
根据本发明的其他实施例,电磁转换器件的中间层为立方体形状;
根据本发明的其他实施例,电磁转换器件的电极层可以采用本领域公知的任意其他的电极材料,包括金属材料和导电性良好的非金属材料,例如铜、金、导电氧化物、石墨等;
根据本发明的其他实施例,电磁转换器件两侧的电极层不完全覆盖中间层;
根据本发明的其他实施例,对于用作信息存储器的非线性忆耦器,其中间层优选地为铁磁/铁电复合异质结构,并且铁磁层和铁电层的厚度都在10nm到1mm的范围内;
虽然实施例中给出了本发明的电耦器和忆耦器的磁电耦合介质层的多个具体尺寸,但是本领域技术人员很容易理解,可以根据实际应用中对磁通的具体要求,相应地设置磁电耦合介质层的厚度,例如,将忆耦器作为信息存储器,其中的磁电耦合介质层的厚度应小于1毫米。将电耦器应用在四端器件,通常要求磁电耦合介质具有较大的磁通,其厚度可在1毫米至10厘米。
虽然本发明已经通过优选实施例进行了描述,然而本发明并非局限于这里所描述的实施例,在不脱离本发明范围的情况下还包括所做出的各种改变以及变化。

Claims (15)

  1. 一种电磁转换器件,包括:中间层和位于所述中间层两侧的电极层,其中,所述中间层为磁电耦合介质层。
  2. 根据权利要求1所述的电磁转换器件,其中,所述磁电耦合介质层由具有线性磁电耦合效应的材料构成。
  3. 根据权利要求2所述的电磁转换器件,其中,所述磁电耦合介质层由BaSrCoZnFe11AlO22单晶、Cr2O3单相材料、BiFeO3单相材料、NiSO4·6H2O单相材料、CoFeB/PMN-PT复合材料或FeGaB/PZN-PT复合材料构成。
  4. 根据权利要求1所述的电磁转换器件,其中,所述磁电耦合介质层由具有蝴蝶形非线性回滞曲线的磁电耦合介质材料构成。
  5. 根据权利要求4所述的电磁转换器件,其中,所述具有蝴蝶形非线性回滞曲线的磁电耦合介质材料为单相磁电耦合材料或者铁磁/铁电复合材料。
  6. 根据权利要求5所述的电磁转换器件,其中,所述单相磁电耦合材料为CaBaCo4O7、Ba0.5Sr1.5Co2Fe11AlO22、Ba0.5Sr1.5Zn2(Fe0.92Al0.08)12O22、BaFe10.4Sc1.6O19、GaFeO3或Tb2(MoO4)3
  7. 根据权利要求5所述的电磁转换器件,其中所述铁磁/铁电复合材料的铁磁层为Tb(1-x)DyxFe2-y(0≤x≤1,y≤0.06)、SmFe2、Tb(CoFe)2、Tb(NiFe)2、TbFe3、Pr2Co17、Ni1-xCox(0≤x≤1)、Ni1-xFex(0≤x≤1)、Fe1-xCox(0≤x≤1)、FeAl、FeCoV、FeGaB、CoFeB、Fe80B15Si5、Fe66Co12B14Si8、Fe3O4、CoFe2O4或NiFe2O4,铁电层为(1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3(0≤x≤1)、(1-x)Pb(Zn1/3Nb2/3)O3–xPbTiO3(0≤x≤1)、Pb(Zr1-xTix)O3(0≤x≤1)、(Ba1-xSrx)TiO3(0≤x≤1)、BiFeO3、LiNbO3、SrBi2Ta2O9、BaxSr1-xNb10O30(0≤x≤1)、Ba2NaNb5O15、磷酸二氢钾(KDP)、聚偏氟乙烯(PVDF)、聚三氟乙烯(PTrFE)、聚偏氟乙烯、聚三氟乙烯的二元共聚物、聚氨脂或奇数尼龙。
  8. 根据权利要求1-7中任一项所述的电磁转换器件,其中,所述中间层为片状。
  9. 根据权利要求1-7中任一项所述的电磁转换器件,其中,所述电极层为金属材料层。
  10. 根据权利要求9所述的电磁转换器件,其中,所述金属材料为银或 铜或金。
  11. 根据权利要求1-7中任一项所述的电磁转换器件,其中,所述电极层为导电性能良好的非金属材料层。
  12. 一种四端器件,包括一个电感器和一个根据权利要求2或3所述的电磁转换器件,其中,所述电磁转换器件与所述电感器在磁路上完全联通。
  13. 一种四端器件,包括两个根据权利要求2或3所述的电磁转换器件,其中,两个所述电磁转换器件在磁路上完全联通。
  14. 一种信息存储器,其中包括由一个或多个根据权利要求4-7中任一项所述的电磁转换器件构成的存储单元阵列,还包括包围所述存储单元阵列的读取线圈。
  15. 根据权利要求14所述的信息存储器,其中,所述读取线圈为金属螺线管。
PCT/CN2016/071447 2015-02-13 2016-01-20 一种电磁转换器件以及包含这种电磁转换器件的信息存储器 WO2016127768A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017541666A JP2018507554A (ja) 2015-02-13 2016-01-20 電磁変換デバイスおよびそれを含む情報メモリ
US15/548,204 US10062834B2 (en) 2015-02-13 2016-01-20 Electromagnetic conversion device and information memory comprising the same
CN201680003091.1A CN106796960B (zh) 2015-02-13 2016-01-20 一种电磁转换器件以及包含这种电磁转换器件的信息存储器
EP16748569.7A EP3258501A4 (en) 2015-02-13 2016-01-20 Electromagnetic transduction device and information storage comprising electromagnetic transduction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510078540.6 2015-02-13
CN201510078540.6A CN104681710A (zh) 2015-02-13 2015-02-13 一种电磁转换器件

Publications (1)

Publication Number Publication Date
WO2016127768A1 true WO2016127768A1 (zh) 2016-08-18

Family

ID=53316508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071447 WO2016127768A1 (zh) 2015-02-13 2016-01-20 一种电磁转换器件以及包含这种电磁转换器件的信息存储器

Country Status (5)

Country Link
US (1) US10062834B2 (zh)
EP (1) EP3258501A4 (zh)
JP (1) JP2018507554A (zh)
CN (2) CN104681710A (zh)
WO (1) WO2016127768A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880349A (zh) * 2019-11-20 2020-03-13 中国科学院物理研究所 逻辑器件及其逻辑控制方法
US20210043829A1 (en) * 2017-12-25 2021-02-11 Institute Of Physics, Chinese Academy Of Sciences Magnon spin valve, magnon sensor, magnon field effect transistor, magnon tunnel junction and magnon memory

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681710A (zh) * 2015-02-13 2015-06-03 中国科学院物理研究所 一种电磁转换器件
KR102130670B1 (ko) * 2015-05-29 2020-07-06 삼성전기주식회사 코일 전자부품
JP6814916B2 (ja) * 2015-12-18 2021-01-20 アドバンストマテリアルテクノロジーズ株式会社 膜構造体、アクチュエータ、モータ及び膜構造体の製造方法
CN107500764A (zh) * 2017-08-09 2017-12-22 上海师范大学 铌镁酸铅‑钛酸铅‑铁酸铋多铁性陶瓷材料及其制备方法
CN108763789B (zh) * 2018-06-01 2022-05-31 杭州电子科技大学 基于忆容器的回转忆感器电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587936A (zh) * 2009-06-10 2009-11-25 中国科学院宁波材料技术与工程研究所 基于铁酸铋薄膜体系的电阻式随机存储器及其制备方法
CN101794601A (zh) * 2009-01-29 2010-08-04 希捷科技有限公司 多铁性存储介质
CN104681710A (zh) * 2015-02-13 2015-06-03 中国科学院物理研究所 一种电磁转换器件

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477405A (en) * 1991-11-27 1995-12-19 Mitsubishi Denki Kabushiki Kaisha Plural track head magnetic recording/reproducing arrangement
JPH117623A (ja) * 1997-06-17 1999-01-12 Sony Corp 磁気記録媒体及びその製造方法
US7023206B2 (en) * 2002-10-18 2006-04-04 Virginia Tech Intellectual Properties, Inc. Magnetoelectric magnetic field sensor with longitudinally biased magnetostrictive layer
US7952349B2 (en) * 2002-12-09 2011-05-31 Ferro Solutions, Inc. Apparatus and method utilizing magnetic field
US20080211491A1 (en) * 2002-12-09 2008-09-04 Ferro Solutions, Inc. High sensitivity, passive magnetic field sensor and method of manufacture
US7199495B2 (en) * 2004-04-01 2007-04-03 The Hong Kong Polytechnic University Magnetoelectric devices and methods of using same
US6946938B1 (en) * 2004-06-07 2005-09-20 Pedersen Brad D Method and apparatus for coil-less magnetoelectric magnetic flux switching for permanent magnets
US7528688B2 (en) * 2005-07-29 2009-05-05 Oakland University Ferrite-piezoelectric microwave devices
JP5002996B2 (ja) * 2006-03-30 2012-08-15 富士通株式会社 半導体記憶装置及びその製造方法並びにそのデータ書込み方法及びデータ読出し方法
WO2009111829A1 (en) * 2008-03-12 2009-09-17 Elektroncek D.D. Gaming system and gaming controller
EP2342756A4 (en) * 2008-06-09 2012-10-17 Sdsu Res Foundation ORGANIC PHOTOVOLTAIC CELL AND LIGHT-EMITTING DIODE WITH AN ARRAY OF THREE DIMENSIONAL PRODUCED ELECTRODES
US8836329B2 (en) * 2008-06-20 2014-09-16 Weinberg Medical Physics Llc Ultra-fast pre-polarizing magnetic resonance imaging method and system
US20100102369A1 (en) * 2008-10-29 2010-04-29 Seagate Technology Llc Ferroelectric memory with magnetoelectric element
CN100559595C (zh) * 2008-10-31 2009-11-11 济南大学 用于铁电存储器的BiFeO3-基三明治结构薄膜及其制备方法
US9184496B2 (en) * 2009-07-08 2015-11-10 The Charles Stark Draper Laboratory, Inc. Inductors having fluidic constructs that permit reconfiguration of the inductors
JP5704383B2 (ja) * 2010-06-17 2015-04-22 株式会社村田製作所 電気磁気効果材料及びその製造方法
FR2961632B1 (fr) * 2010-06-18 2013-04-19 Centre Nat Rech Scient Memoire magnetoelectrique
DE102011008866A1 (de) * 2011-01-18 2012-07-19 Christian-Albrechts-Universität Zu Kiel Verfahren zur Magnetfeldmessung mit magnoelektrischen Sensoren
US8921962B2 (en) * 2011-04-19 2014-12-30 Virginia Commonwealth University Planar multiferroic/magnetostrictive nanostructures as memory elements, two-stage logic gates and four-state logic elements for information processing
EP2538235B1 (de) * 2011-06-24 2013-07-31 Christian-Albrechts-Universität zu Kiel Magnetostriktives Schichtsystem
WO2013116616A1 (en) * 2012-02-01 2013-08-08 Virginia Tech Intellectual Properties, Inc. Low-temperature co-firing of multilayer textured piezoelectric ceramics with inner electrodes
CN102593348B (zh) * 2012-03-13 2013-10-23 清华大学 一种非易失性电场调控磁化强度的信息存储器件
US20130314765A1 (en) * 2012-05-25 2013-11-28 The Trustees Of Boston College Metamaterial Devices with Environmentally Responsive Materials
US8841739B2 (en) * 2012-09-08 2014-09-23 The Regents Of The University Of California Systems and methods for implementing magnetoelectric junctions
US9853053B2 (en) * 2012-09-10 2017-12-26 3B Technologies, Inc. Three dimension integrated circuits employing thin film transistors
US9340902B2 (en) * 2012-11-16 2016-05-17 Snu R&Db Foundation Magnetoelectric material and method of manufacturing the same
US9576088B2 (en) * 2013-01-23 2017-02-21 Toyota Motor Engineering & Manufacturing North America, Inc. Methods for orienting material physical properties using constraint transformation and isoparametric shape functions
WO2014142318A1 (ja) * 2013-03-14 2014-09-18 株式会社村田製作所 電気磁気効果材料、及びセラミック電子部品
US9299485B1 (en) * 2013-10-09 2016-03-29 University Of Puerto Rico Micro and nanoscale magnetoelectric multiferroic lead iron tantalate-lead zirconate titanate
US9524709B2 (en) * 2014-10-21 2016-12-20 The Regents Of The University Of California Multiferroic transducer for audio applications
JP2016111102A (ja) * 2014-12-03 2016-06-20 国立大学法人東北大学 マルチフェロイック素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794601A (zh) * 2009-01-29 2010-08-04 希捷科技有限公司 多铁性存储介质
CN101587936A (zh) * 2009-06-10 2009-11-25 中国科学院宁波材料技术与工程研究所 基于铁酸铋薄膜体系的电阻式随机存储器及其制备方法
CN104681710A (zh) * 2015-02-13 2015-06-03 中国科学院物理研究所 一种电磁转换器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3258501A4 *
SHANG DA-SHAN ET AL.: "Toward the complete relational graph of fundamental circuit elements", CHIN. PHYS. B, vol. 24, no. 6, 20 May 2015 (2015-05-20), pages 068402 - 1 -068402-6, XP020286002 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210043829A1 (en) * 2017-12-25 2021-02-11 Institute Of Physics, Chinese Academy Of Sciences Magnon spin valve, magnon sensor, magnon field effect transistor, magnon tunnel junction and magnon memory
US11937513B2 (en) * 2017-12-25 2024-03-19 Institute Of Physics, Chinese Academy Of Sciences Magnon spin valve, magnon sensor, magnon field effect transistor, magnon tunnel junction and magnon memory
CN110880349A (zh) * 2019-11-20 2020-03-13 中国科学院物理研究所 逻辑器件及其逻辑控制方法
CN110880349B (zh) * 2019-11-20 2021-11-02 中国科学院物理研究所 逻辑器件及其逻辑控制方法

Also Published As

Publication number Publication date
JP2018507554A (ja) 2018-03-15
CN106796960A (zh) 2017-05-31
US20180026177A1 (en) 2018-01-25
EP3258501A4 (en) 2018-10-31
US10062834B2 (en) 2018-08-28
EP3258501A1 (en) 2017-12-20
CN106796960B (zh) 2020-12-22
CN104681710A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2016127768A1 (zh) 一种电磁转换器件以及包含这种电磁转换器件的信息存储器
Ma et al. Recent progress in multiferroic magnetoelectric composites: from bulk to thin films
Versluijs et al. Magnetoresistance of half-metallic oxide nanocontacts
Bhoi et al. Unravelling the nature of magneto-electric coupling in room temperature multiferroic particulate (PbFe0. 5Nb0. 5O3)–(Co0. 6Zn0. 4Fe1. 7Mn0. 3O4) composites
Zhou et al. Self-biased magnetoelectric composites: an overview and future perspectives
Vopson Fundamentals of multiferroic materials and their possible applications
Tsymbal et al. Ferroelectric and multiferroic tunnel junctions
Wang et al. Colossal magnetoelectric effect in core–shell magnetoelectric nanoparticles
JP6219819B2 (ja) 磁歪層システム
KR102006671B1 (ko) 자기 소자, 스커미온 메모리, 스커미온 메모리 탑재 고체 전자 장치, 데이터 기록 장치, 데이터 처리 장치 및 통신 장치
Wu et al. Electrical and mechanical manipulation of ferromagnetic properties in polycrystalline nickel thin film
WO2004059745A1 (ja) 磁性スイッチ素子とそれを用いた磁気メモリ
Wang et al. Electric field-tunable giant magnetoresistance (GMR) sensor with enhanced linear range
JP2016111102A (ja) マルチフェロイック素子
JP2012009786A (ja) メモリ素子
Rafique et al. Dependence of magnetoelectric properties on the magnetostrictive content in 0–3 composites
Channagoudra et al. Magnetoelectric coupling in ferromagnetic/ferroelectric heterostructures: A survey and perspective
CN102593348B (zh) 一种非易失性电场调控磁化强度的信息存储器件
Kumar et al. Anisotropic magnetoelectric functionality of ferromagnetic shape memory alloy heterostructures for MEMS magnetic sensors
Li et al. Study of enhanced magnetoelectric coupling behavior in asymmetrical bilayered multiferroic heterostructure with two resonance modes
Boukari et al. Voltage assisted magnetic switching in Co50Fe50 interdigitated electrodes on piezoelectric substrates
Merodio et al. Electric field control of the resistance of multiferroic tunnel junctions with magnetoelectric antiferromagnetic barriers
CN1631666A (zh) 一种具有巨大磁电耦合效应的新型复合材料及应用
Srinivasan et al. Special issue on magnetoelectrics and their applications
Grechishkin et al. Magnetoelectric effect in metglas/piezoelectric macrofiber composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748569

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15548204

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017541666

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016748569

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE