WO2016125876A1 - 車載用アンテナ装置 - Google Patents

車載用アンテナ装置 Download PDF

Info

Publication number
WO2016125876A1
WO2016125876A1 PCT/JP2016/053432 JP2016053432W WO2016125876A1 WO 2016125876 A1 WO2016125876 A1 WO 2016125876A1 JP 2016053432 W JP2016053432 W JP 2016053432W WO 2016125876 A1 WO2016125876 A1 WO 2016125876A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
radiating element
antenna
antenna device
vehicle body
Prior art date
Application number
PCT/JP2016/053432
Other languages
English (en)
French (fr)
Inventor
佳紘 新原
佑一郎 山口
千葉 洋
官 寧
博育 田山
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015083421A external-priority patent/JP6383322B2/ja
Priority claimed from JP2015129117A external-priority patent/JP6444272B2/ja
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP16746707.5A priority Critical patent/EP3176871B1/en
Priority to CN201680002500.6A priority patent/CN106797071B/zh
Priority to US15/509,138 priority patent/US10186763B2/en
Priority claimed from JP2016020333A external-priority patent/JP6639933B2/ja
Publication of WO2016125876A1 publication Critical patent/WO2016125876A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/20Two collinear substantially straight active elements; Substantially straight single active elements

Definitions

  • This invention relates to the vehicle-mounted antenna apparatus arrange
  • an antenna device having an antenna built in a spoiler disposed at the rear end of a roof of a vehicle body is known.
  • the radiating element of the digital television antenna and the radiating element of the radio antenna are built in a spoiler attached to the vehicle body so as to be horizontal.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2008-283609 (published on November 20, 2008)
  • the antenna structure of the in-vehicle antenna device described in Patent Document 1 has a problem that the radiation gain to the front of the vehicle body is small.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a vehicle-mounted antenna device having a larger radiation gain in the direction crossing the roof when mounted on the end of the roof of the vehicle body. Is to realize.
  • an in-vehicle antenna device is an in-vehicle antenna device disposed at an end of a roof of a vehicle body.
  • An antenna having a radiating element including a first radiating element drawn in one direction and a second radiating element drawn from the other feeding point in a second direction different from the first direction, or And a single radiating element drawn in one direction from one of the pair of feeding points and drawn in a second direction different from the first direction from the other feeding point.
  • the first direction is a direction that intersects a horizontal plane when the vehicle-mounted antenna device is mounted on the vehicle body.
  • the radiating element only needs to have a section including one feeding point pulled out in the first direction and a section including the other feeding point pulled out in the second direction.
  • the extending direction of the radiating element is not particularly limited. For example, when the antenna is a dipole antenna, the starting end of the first radiating element including one feeding point is drawn out in the first direction, and the starting end of the second radiating element including the other feeding point is The extension direction of the termination
  • an in-vehicle antenna device is an in-vehicle antenna device disposed at an end of a roof of a vehicle body, and the in-vehicle antenna device is mounted on the vehicle body.
  • an antenna having a second radiating element drawn out is an overlapping portion that overlaps with the metal member constituting the end of the roof and is separated from the metal member, and includes a tip of the second radiating element. It has a superimposition part, The length of the said superposition part is 64.5% or less of the full length of a said 2nd radiation element, It is characterized by the above-mentioned.
  • an in-vehicle antenna device is an in-vehicle antenna device mounted on an end portion of a roof of a vehicle body, and the in-vehicle antenna device is mounted on the vehicle body.
  • a first radiating element drawn in a first direction that intersects the horizontal plane from one feeding point of the pair of feeding points, and a first direction that is different from the first direction from the other feeding point.
  • the position of the radiating element in the in-vehicle antenna device is as follows: (1) When the in-vehicle antenna device is mounted on the vehicle body, (1) at least a part of the radiating element is on the metal member constituting the end of the roof. And (2) a metal structure that is electrically connected to the end of the roof and extends in a direction that intersects the horizontal plane.
  • the shortest distance from the body to the radiating element is determined to be not less than 1/3 times and not more than 2/3 times the wavelength of the center frequency of the operating band of the radiating element.
  • an in-vehicle antenna device having a radiation gain in a direction crossing the roof that is larger than that of the conventional one.
  • (A) is a perspective view which shows the external appearance of the vehicle body which mounts the vehicle-mounted antenna apparatus which concerns on the 1st Embodiment of this invention
  • (b) is a part of said vehicle body which mounts the said vehicle-mounted antenna apparatus. It is an enlarged plan view.
  • (A) is the arrow sectional drawing which expanded the one part of the said vehicle body which mounts the said vehicle-mounted antenna apparatus, Comprising: It is arrow sectional drawing along the AA 'line shown to (b) of FIG.
  • (B) is an expanded view of the antenna with which the said vehicle-mounted antenna apparatus is provided.
  • (A) is a partial enlarged plan view of a vehicle body on which the vehicle-mounted antenna device according to the second embodiment is mounted.
  • (B) is an arrow sectional view in which a part of the vehicle body on which the vehicle-mounted antenna device is mounted is enlarged, and is a sectional view taken along line L-L ′ shown in (a).
  • (A) is arrow sectional drawing of the vehicle body which mounts the vehicle-mounted antenna apparatus which concerns on the 3rd Embodiment of this invention.
  • (B) is an expanded view of the antenna with which the said vehicle-mounted antenna apparatus is provided.
  • (A) is the arrow sectional drawing which expanded a part of vehicle body which mounts the vehicle-mounted antenna apparatus which concerns on 4th Embodiment.
  • (B) is an expanded view of the antenna with which the said vehicle-mounted antenna apparatus is provided.
  • (A) is an expanded view of the antenna which concerns on the 1st modification of this invention
  • (b) is an arrow side view of the said antenna.
  • (C) is an expanded view of the antenna which concerns on the 2nd modification of this invention
  • (d) is an arrow side view of the said antenna.
  • It is an expanded view of the antenna which concerns on a 3rd modification.
  • It is an expanded view of another antenna which concerns on a 3rd modification.
  • FIG. 7 is a cross-sectional view taken along the line A-A ′ of FIG. 1B, in which a part of a vehicle body on which the vehicle-mounted antenna device according to the fifth embodiment is mounted is enlarged.
  • FIG. 15 is a development view in which two types of antennas included in the in-vehicle antenna device shown in FIG. 14 are developed on a plane.
  • each of the second radiating elements constituting the two types of antennas shown in FIG. 15 the shapes of two edges connecting the feeding point and the corners away from the feeding point in the longitudinal direction of each radiating element are represented by broken lines and It is explanatory drawing shown with a dashed-dotted line.
  • (A)-(c) is the expanded view which each expanded the antenna with which the antenna apparatus which concerns on the 5th-7th Example is equipped.
  • (A) is a graph showing the frequency dependence of the radiation gain of the antenna devices according to the fifth to sixth embodiments.
  • (B) is a graph showing the frequency dependence of the VSWR of the antenna devices according to the fifth to sixth embodiments.
  • (A) is a graph showing the frequency dependence of the radiation gain of the antenna devices according to the sixth to seventh embodiments.
  • FIG. (B) is a graph showing the frequency dependence of the VSWR of the antenna devices according to the sixth to seventh embodiments. It is the expanded view which expand
  • A) is the development which developed another modification of the antenna shown in Drawing 7 in the plane.
  • (B) is a plan view of the antenna.
  • (A) is a graph which shows the frequency dependence of VSWR of the antenna apparatus which concerns on a 5th Example.
  • (B) is a graph which shows the frequency dependence of VSWR of the antenna apparatus which concerns on an 8th Example.
  • (A) is a perspective view which shows the external appearance of the vehicle body which mounts the vehicle-mounted antenna apparatus which concerns on the 6th Embodiment of this invention
  • (b) is a part of said vehicle body which mounts the said vehicle-mounted antenna apparatus. It is an enlarged plan view.
  • (A) is an arrow cross-sectional view in which a part of the vehicle body on which the vehicle-mounted antenna device is mounted is enlarged, and is a cross-sectional view along the line AA ′ shown in (b) of FIG.
  • (B) is an expanded view of the antenna with which the said vehicle-mounted antenna apparatus is provided.
  • (A) is a graph showing the correlation between the radiation gain and the length Lx obtained by the vehicle-mounted antenna devices according to the ninth embodiment, the seventh to eleventh modifications, and the comparative example of the present invention.
  • (B) is a graph showing the result of fitting the radiation gain shown in (a).
  • (A) is a graph showing the correlation between the radiation gain and the distance Dz obtained by the in-vehicle antenna device according to the ninth embodiment and the twelfth to fifteenth modifications of the present invention, (b) ) Is a graph showing the result of fitting the radiation gain shown in (a).
  • FIG. 1 is a perspective view which shows the external appearance of the vehicle body which mounts the vehicle-mounted antenna apparatus which concerns on the 1st Embodiment of this invention
  • (b) is a part of said vehicle body which mounts the said vehicle-mounted antenna apparatus.
  • FIG. It is an expanded view of the radiation element with which the said vehicle-mounted antenna apparatus is provided.
  • (A) is a top view which shows the structure of the model of the vehicle body carrying the vehicle-mounted antenna apparatus used in order to calculate the radiation gain of a vehicle-mounted antenna apparatus in each Example of this invention.
  • B) is a side view showing the configuration of the model.
  • (A) is the top view which expanded a part of the said model shown to (a) of FIG. FIG.
  • FIG. 30B is an enlarged side view of a part of the model shown in FIG. It is a graph which shows the shortest distance Dx dependence of the front radiation gain of the vehicle-mounted antenna apparatus mounted in the vehicle body shown in FIG. 30, and the vehicle-mounted antenna apparatus mounted in the vehicle body shown in FIG.
  • (A) is a top view which shows the structure of the model of the vehicle body carrying the vehicle-mounted antenna apparatus used in order to calculate the radiation gain of a vehicle-mounted antenna apparatus in the comparative example of this invention.
  • (B) is a side view showing the configuration of the model.
  • FIG. 31 is a graph showing the shortest distance Dx dependency of the front radiation gain of the vehicle-mounted antenna device of the embodiment of the present invention and the vehicle-mounted antenna device of the first modification mounted on the vehicle body shown in FIG.
  • FIG. 30 The shortest distance Dx of the forward radiation gain of the vehicle-mounted antenna device of the embodiment of the present invention, the vehicle-mounted antenna device of the second modified example, and the vehicle-mounted antenna device of the third modified example mounted on the vehicle body shown in FIG. It is a graph which shows dependence.
  • the forward direction of the vehicle body 1 (the positive y-axis direction in each drawing of FIGS. 1, 24, and 28) is referred to as “forward direction”, and the backward direction (FIGS. 1, 24, and 28).
  • the negative y-axis direction in each drawing is referred to as “rear direction”.
  • the right-hand direction of the vehicle body 1 (the positive x-axis direction in each of FIGS. 1, 24 and 28) is referred to as “right direction”
  • the left-hand direction of the vehicle body 1 (negative x-axis direction in FIG. 1) is “left”. It is called “direction”.
  • the direction from the chassis of the vehicle body 1 to the roof (the positive direction of the z axis in FIGS.
  • an in-vehicle antenna device having a spoiler disposed at the rear end of the roof as a casing will be described, but the present invention is not limited to this. That is, the present invention can also be applied to a vehicle-mounted antenna device disposed at the front end, right end, or left end of the roof.
  • FIG. 1A is a perspective view showing an external appearance of a vehicle body 1 on which an in-vehicle antenna device 10 according to this embodiment is mounted.
  • FIG. 1B is an enlarged plan view of a part of the vehicle body 1 on which the vehicle-mounted antenna device 10 according to this embodiment is mounted. Specifically, it is an enlarged plan view of the in-vehicle antenna device 10 mounted on the vehicle body 1.
  • a vehicle body 1 shown in FIG. 1 (a) is a hatchback type vehicle body.
  • the outer plate (body panel) including the roof 20 is configured by a metal member such as a steel plate and an aluminum plate, and the surface formed by the roof 20 is substantially horizontal. That is, the roof 20 is formed along a horizontal plane and intersects the vertical direction of the vehicle body 1.
  • the direction along the roof is synonymous with the direction along the horizontal plane
  • the direction crossing the roof is synonymous with the direction crossing the horizontal plane.
  • the vehicle-mounted antenna device 10 according to the present embodiment is a vehicle-mounted antenna device having a spoiler 16 as a casing, and is mounted on the rear end of the roof 20.
  • the hatch gate 21 of the vehicle body 1 is composed of a hatch gate panel 21a constituting the lower part, a frame 21c constituting the upper part, and a rear glass 21b.
  • the frame body 21c is composed of a pair of vertical columns and a pair of horizontal columns, and a rear glass 21b is provided in the frame.
  • the horizontal column on the side close to the roof 20 (upper side) is attached to the rear end of the roof 20 by a hinge (not shown).
  • the rear glass 21b secures a rear view from the driver and also functions as a windshield.
  • the hatch gate panel 21a and the frame body 21c are made of a metal member.
  • a spoiler fixing portion 21d (antenna device fixing portion described in claims) is provided in a part of the upper horizontal column of the pair of horizontal columns of the frame body 21c. A part of the horizontal column on the upper side of the frame 21c is pushed rearward, and the protruding part is used as a spoiler fixing part 21d (see FIG. 2A).
  • fixed part 21d is comprised with the metal member similarly to the frame 21c.
  • the surface to which the spoiler 16 of the spoiler fixing portion 21d is attached is substantially directed to the zenith direction and is along the horizontal plane, like the surface formed by the roof 20. Therefore, the spoiler fixing portion 21 d forms the rear end portion of the roof 20.
  • the spoiler fixing portion 21d is a metal member formed integrally with the frame body 21c, but is a metal member that is formed separately from the frame body 21c and fixed to the frame body 21c with bolts or the like. Also good.
  • the spoiler 16 is attached to the spoiler fixing portion 21d by fixing means (not shown) such as a bolt. By being fixed to the spoiler fixing part 21d, the upper surface of the spoiler 16 and the upper surface of the entire roof 20 are arranged substantially flush with each other.
  • the spoiler 16 has functions such as improving the aesthetics of the vehicle body 1 and improving the aerodynamic characteristics of the vehicle body 1, and also functions as a casing of the vehicle-mounted antenna device 10 in the present invention.
  • the spoiler 16 includes an antenna 11 and a stop lamp 19.
  • the spoiler 16 is made of a dielectric (for example, resin) and transmits electromagnetic waves.
  • the antenna 11 is arranged at a position where it does not interfere with the stop lamp 19 inside the spoiler 16. Specifically, the antenna 11 is arranged to be shifted to the left side of the stop lamp 19 while avoiding the stop lamp 19 arranged at the center of the spoiler 16 in the left-right direction.
  • FIG. 2 shows a configuration of the in-vehicle antenna device 10 according to the present embodiment.
  • FIG. 2A is an enlarged cross-sectional view of a part of the vehicle body 1 on which the vehicle-mounted antenna device 10 is mounted, and is a cross-sectional view taken along the line AA ′ shown in FIG.
  • FIG. 2B is a development view in which the antenna 11 included in the vehicle-mounted antenna device 10 is developed on a plane.
  • the vehicle-mounted antenna device 10 is configured to be placed inside the spoiler 16 with the antenna 11 being bent.
  • fixing means for fixing the antenna 11 to the spoiler 16 include an adhesive sheet, a double-sided tape, a resin fastener, and the like.
  • the fixing means is not limited, but is preferably made of a material that is not a conductor so as not to prevent transmission and reception of electromagnetic waves. A specific method of bending the antenna 11 will be described later with reference to FIG.
  • the antenna 11 includes a dielectric substrate, a radiating element formed on the surface of the dielectric substrate, and a connection portion that connects a coaxial line (not shown) and the radiating element.
  • the dielectric film 12 is employed as the dielectric substrate. Examples of the material constituting the dielectric film 12 include polyimide resin, but are not limited thereto.
  • the antenna 11 configured as described above can be regarded as a film antenna or an FPC (Flexible printed circuits) substrate.
  • a radiating element including a first radiating element 14 and a second radiating element 15 is formed on the surface of the dielectric film 12.
  • the first radiating element 14 and the second radiating element 15 are thin plate members made of a conductor.
  • copper foil is used as the first radiating element 14 and the second radiating element 15, but is not limited thereto.
  • the connecting portion 13 is a portion where a coaxial line (not shown) is connected to the radiating elements 14 and 15, and includes two feeding points (a pair of feeding points) 13a and 13b. Each of the feeding points 13a and 13b is formed on the surface of each of the radiating elements 14 and 15, respectively.
  • One end of the coaxial line can be connected to the connecting portion 13.
  • the vehicle-mounted antenna device 10 can transmit and receive radio waves.
  • One of the pair of conductors constituting the coaxial line (for example, the inner conductor) is connected to the first radiating element 14 at a first feeding point 13a that is one feeding point of the connecting portion 13.
  • the other conductor (for example, the outer conductor) of the coaxial line is connected to the second radiating element 15 at a second feeding point 13 b that is the other feeding point of the connection portion 13.
  • a dipole antenna is employed as the antenna 11, but a loop antenna, a monopole antenna, and an inverted F-type antenna may be used as the antenna 11.
  • Each radiating element may be a planar radiating element like the radiating elements 14 and 15 of the present embodiment, or may be a linear radiating element.
  • the antenna 11 is valley-folded along the B-B ′ line and the C-C ′ line shown in FIG. As a result, the antenna 11 bent into a U-shape (or a U-shape) in which the dielectric film 12 is disposed outside and the radiating elements 14 and 15 are disposed inside is formed.
  • the vehicle-mounted antenna apparatus 10 employ adopts the structure which fixes the antenna 11 bent in the U shape along the inner wall of the spoiler 16. As shown in FIG.
  • the vehicle-mounted antenna device 10 when the vehicle-mounted antenna device 10 is mounted on the rear end of the vehicle body 1, the first radiating element 14 of the antenna 11 is in a direction intersecting the roof 20 from the feeding point 13a.
  • the second radiating element 15 is drawn in a downward direction of the vehicle body 1 (corresponding to the first direction described in the claims), and the second radiating element 15 intersects the roof 20 from the feeding point 13b. It is drawn in the upward direction (corresponding to the second direction described in the claims), which is a direction different from the downward direction.
  • the vehicle-mounted antenna device 10 employs a configuration in which the first direction and the second direction intersect the roof 20.
  • a line drawn downward from the feeding point 13a that is, a line that is valley-folded from the starting end (base) of the first radiating element 14 connected to the feeding point 13a.
  • a portion up to a certain CC ′ line is defined as a feeding point vicinity portion 14a.
  • the direction of the current flowing through the feeding point vicinity portion 14a is mainly the vertical direction. Further, the current density of the current flowing through the first radiating element 14 is highest at the start end (connection portion with the feeding point 13a) of the first radiating element 14, and decreases as the end approaches. Therefore, a relatively high current density flows in the vertical direction of the vehicle body 1 in the vicinity of the feeding point 14a. As a result, the first radiating element 14 can increase the proportion of the vertically polarized component contained in the radiated electromagnetic wave as compared to the conventional (the on-vehicle antenna device described in Patent Document 1).
  • the vertical polarization has a characteristic that it is difficult to receive the attenuation effect by the roof 20 when compared with the horizontal polarization.
  • the vehicle-mounted antenna device 10 including the first radiating element 14 has a vertically polarized radiation gain with respect to a direction crossing the roof 20 (here, the front direction) even if the roof 20 is made of metal. Can be large enough. As a result, even if the roof is made of metal, the radiation gain of electromagnetic waves in the direction crossing the roof can be sufficiently increased.
  • the width W 14a of the feeding point vicinity 14a is preferably 1 ⁇ 2 or less of the shortest wavelength of the electromagnetic wave radiated from the antenna 11.
  • the vicinity of the feeding point 14a is also rectangular, and the width W 14a is constant from the feeding point 13a to the CC ′ line.
  • the maximum value of the width W 14a is 1 ⁇ 2 or less of the shortest wavelength of the electromagnetic wave radiated from the antenna 11.
  • the current supplied from the feeding point 13 a is suppressed from flowing along the left-right direction of the vehicle body 1 in the feeding point vicinity portion 14 a, and the vertical direction of the vehicle body 1.
  • the radiation gain of the vertically polarized wave can be further increased as compared with the case where the width W 14a exceeds 1/2 of the shortest wavelength of the electromagnetic wave radiated from the antenna 11.
  • the radiation gain of the electromagnetic wave with respect to the front direction of the vehicle body 1 can be further increased.
  • a portion up to a certain line BB ′ is defined as a feeding point vicinity 15a.
  • the feeding point vicinity 15 a of the second radiating element 15 is drawn upward in the vehicle body 1.
  • the feeding point vicinity 15a configured in this way can further increase the proportion of the vertically polarized component contained in the electromagnetic wave radiated by the vehicle-mounted antenna device 10.
  • the width W Each of 14a and width W 15a is preferably 1 ⁇ 2 or less of the shortest wavelength of the electromagnetic wave radiated from antenna 11. However, if either of the width W 14a and the width W 15a is 1/2 or less of the shortest wavelength of an electromagnetic wave antenna radiates the shortest of the electromagnetic waves each having a width W 14a and the width W 15a antenna 11 radiates Compared with the case where the wavelength exceeds 1/2 of the wavelength, the radiation gain of the vertically polarized wave can be further increased.
  • the widths W 14 and W 15 of the radiating elements other than the feeding point neighboring portions 14a and 15a are more preferably 1 ⁇ 2 or less of the shortest wavelength of the electromagnetic wave radiated from the antenna.
  • both widths W 14 and W 15 have the shortest wavelength of the electromagnetic wave radiated by the antenna. It is preferable that it is 1/2 or less.
  • the current supplied from the feeding point 13 a to the first radiating element 14 and the current supplied from the feeding point 13 b to the second radiating element 15 are each in the left-right direction of the vehicle body 1. And the flow along the vertical direction or the vertical direction of the vehicle body 1 is promoted. That is, the direction of the main current flowing through the first and second radiating elements 14 and 15 can be limited to the vertical direction and the front-rear direction of the vehicle body 1. As a result, for example, even when another antenna in which a radiating element extending in the left-right direction of the vehicle body 1 is attached to the rear glass is provided in the vicinity of the vehicle-mounted antenna device 10 having the spoiler 16 as a casing. The influence of the radiating elements 14 and 15 of the antenna 11 on the other antenna (the radiating element extending in the left-right direction of the vehicle body 1) or the influence of the other antenna can be suppressed.
  • the radiating element is pulled out from the one feeding point in the first direction, and this first direction is a direction intersecting the roof.
  • the polarization plane of the vertically polarized wave is a direction that intersects the roof that is a metal body. Therefore, when compared with the horizontal polarization, the vertical polarization is not easily affected by the above-described attenuation effect by the roof in the process of crossing the vehicle body, and can cross the roof without losing the radiation gain. .
  • the in-vehicle antenna device 10 disposed at the rear end portion of the roof 20 has a larger radiation gain in the direction crossing the roof 20 (forward direction) than that in the past even if the roof 20 is a metal body.
  • An antenna device can be realized. Therefore, the vehicle-mounted antenna device 10 can be suitably used as a vehicle-mounted antenna device that uses a frequency band with a short wavelength typified by an LTE electromagnetic wave.
  • the electromagnetic wave radiated from the antenna has horizontal polarization as the main polarization component, so the influence of the attenuation effect by the roof is reduced.
  • the in-vehicle antenna device of the present invention has a vertical polarization as a main polarization component. Since polarized waves can be radiated, it can be suitably used as an antenna system that requires communication with a base station installed on the ground such as 3G or LTE.
  • the vehicle-mounted antenna device 10 can radiate not only vertically polarized waves but also horizontally polarized waves.
  • FIG. 3A is a partially enlarged plan view of the vehicle body 1 on which the in-vehicle antenna device 10A according to the present embodiment is mounted.
  • FIG. 3B is an enlarged cross-sectional view of the vehicle body 1 on which the in-vehicle antenna device 10A is mounted, and is a cross-sectional view taken along the line LL ′ shown in FIG. .
  • the in-vehicle antenna device 10A changes the antenna 11 and the spoiler 16 included in the in-vehicle antenna device 10 according to the first embodiment to a spoi antenna 11A and a spoiler 16A described below, respectively. Obtained by.
  • the antenna 11A is a top view of the vehicle-mounted antenna device 10 according to the first embodiment when viewed from above (see FIG. 1B), and the antenna 11 is rotated 90 degrees counterclockwise.
  • the direction in which the terminal end of the first radiating element 14 is extended is reversed from the left side to the right side of the vehicle body 1.
  • the feeding point vicinity 14Aa including one feeding point is drawn downward in the vehicle body 1 that is the first direction
  • the feeding point vicinity 14Ab including the other feeding point is the second direction. 1 is drawn upwards.
  • the end of the first radiating element 14A extends to the right of the vehicle body 1, and the end of the second radiating element 15A extends to the left of the vehicle 1 ((b) of FIG. 3). reference). Focusing on how the radiating elements are bent, the radiating elements 14 and 15 are bent in a U shape (or a U-shape), whereas the radiating elements 14A and 15A have a step shape (or a Z shape). It is bent.
  • the spoiler 16A is provided with an antenna mounting table 16Aa for mounting the antenna 11A.
  • the antenna mounting table 16Aa includes a plane that intersects the roof 20 and a plane that is along the roof 20 and is located inside the spoiler 16A. More specifically, the surface intersecting the roof 20 is the yz plane on the seat axis shown in FIG. 3B, and the plane along the roof 20 is the xy plane on the coordinate axis shown in FIG.
  • the antenna mounting table 16Aa is a step for mounting the antenna 11A, and forms a step protruding inside the spoiler 16A.
  • the antenna 11A can be fixed in the spoiler 16A by using a fixing means similar to the fixing means for fixing the antenna 11 in the spoiler 16.
  • a fixing means similar to the fixing means for fixing the antenna 11 in the spoiler 16.
  • the shape of the spoiler 16 ⁇ / b> A when viewed in plan is short with respect to the longitudinal direction of the vehicle body 1 and is long with respect to the lateral direction of the vehicle body 1.
  • the space in the rear region greatly exceeds the space in the front region. This is because a spoiler fixing portion 21d is provided in the front region of the spoiler 16A, and the upper surface of the spoiler and the upper surface of the entire roof 20 are substantially flush with each other.
  • the length from the start end to the end of the radiating element is designed to be longer than that of the radiating elements 14 and 15 of the antenna 11. can do.
  • the antenna 11A can improve the radiation gain compared to the antenna 11.
  • the space 11 may be placed in the rear region of the spoiler 16A.
  • the feeding point vicinity portion 14Aa is drawn downward in the vehicle body 1, and the feeding point vicinity portion 15Aa is drawn upward in the vehicle body 1. Therefore, the in-vehicle antenna device 10A can radiate vertical polarization as a main polarization component. Therefore, even if the roof 20 is a metal body, the vehicle-mounted antenna device 10A can realize a vehicle-mounted antenna device having a radiation gain in a direction (front direction) crossing the roof 20 that is larger than that of the conventional antenna device.
  • an in-vehicle antenna device 30 according to a third embodiment of the present invention will be described with reference to FIG.
  • the in-vehicle antenna device 30 is obtained by changing the antenna 11 provided in the in-vehicle antenna device 10 according to the first embodiment to an antenna 31 described below.
  • FIG. 4A is a cross-sectional view of the vehicle body 1 equipped with the vehicle-mounted antenna device 30 according to the present embodiment.
  • FIG. 4B is a development view of the antenna 31 provided in the vehicle-mounted antenna device 30.
  • the antenna 31 is different from the antenna 11 in the position to be bent into a U-shape.
  • the antenna 31 is configured in the same manner as the antenna 11 except for the bending position.
  • a straight line including the feeding point 33 b and the end side that is the starting end of the second radiating element 35 is employed as the D-D ′ line corresponding to one of the bending positions.
  • the E-E ′ line a straight line closer to the end of the first radiating element 34 is adopted as compared with the C-C ′ line shown in FIG.
  • the antenna 31 bent in a U shape along the D-D ′ line and the E-E ′ line is placed inside the spoiler 16 as shown in FIG. Specifically, when the vehicle-mounted antenna device 30 is mounted on the rear end of the vehicle body 1, the power supply point vicinity portion 34a of the first radiating element 34 from the power supply point 33a is the lower direction of the vehicle body 1. A configuration is adopted in which the second radiating element 35 is drawn out (in the direction intersecting the roof 20) and the second radiating element 35 is drawn out from the feeding point 33b in the front direction of the vehicle body (direction along the roof 20).
  • the antenna 31 further includes an overlapping portion 35b that overlaps with the metal member (spoiler fixing portion 21d) constituting the rear end portion of the roof 20 and is separated from the metal member.
  • the overlapping portion 35 b is provided in a portion including the end of the second radiating element 35.
  • the position where the overlapping portion 35b is provided is not limited to the portion including the end, and may be provided in at least a part of the portion extending in the direction along the roof 20 of the second radiating element 35.
  • emission element 35 is employ
  • the overlapping portion provided in a part of the first radiating element 34 overlaps with the spoiler fixing portion 21d.
  • Which of the radiating elements 34 and 35 is provided with the overlapping portion depends on the position of the connecting portion 33, the shape of each of the radiating elements 34 and 35, the shape of the spoiler 16, and the relative relationship between the antenna 31 and the spoiler fixing portion 21d. What is necessary is just to determine suitably according to a positional relationship.
  • an in-vehicle antenna device 60 according to a fourth embodiment of the present invention will be described with reference to FIG.
  • the in-vehicle antenna device 60 is provided with the in-vehicle antenna device 30 after changing the spoiler 16 that functions as a housing of the in-vehicle antenna device 30 (see FIG. 4) according to the third embodiment to a spoiler 66. It is obtained by changing the existing antenna 31 to the antenna 61.
  • FIG. 5 is the arrow sectional drawing which expanded a part of the vehicle body 1 which mounts the vehicle-mounted antenna apparatus 60.
  • FIG. 5B is a development view of the antenna 61 provided in the vehicle-mounted antenna device 60.
  • the spoiler 66 is provided with an antenna mounting table 66a for mounting the antenna 61 on the rear end portion of the inner wall thereof.
  • the antenna mounting base 66a consists of the plane which cross
  • the antenna mounting table 66a includes a plane extending in the vertical direction of the vehicle body 1 (zx plane in the seat axis shown in FIG. 5A) and a plane extending in the front-rear direction of the vehicle body 1 (the same figure).
  • the antenna mounting table 66a forms a step protruding inside the spoiler 66.
  • the in-vehicle antenna device 60 is configured to place the antenna 61 in a state where the antenna 61 is bent along the internal shape of the spoiler 66.
  • a fixing means for fixing the antenna 61 to the spoiler 66 a fixing means similar to the fixing means for fixing the antennas 11 and 31 to the spoiler 16 can be used.
  • the vehicle-mounted antenna apparatus 60 Since the antenna 61 is placed on the spoiler 66, the antenna 61 is folded along the line FF ′ shown in FIG. 5B and along the line GG ′ shown in FIG. 5B. And then folded up. As a result, the antenna 61 bent into a Z shape is formed. As shown to (a) of FIG. 5, the vehicle-mounted antenna apparatus 60 has employ
  • the vehicle-mounted antenna device 60 when the vehicle-mounted antenna device 60 is mounted on the rear end of the vehicle body 1, the first radiating element 64 of the antenna 61 is in a direction intersecting the roof 20 from the feeding point 63a.
  • the second radiating element 65 is drawn in a downward direction of the vehicle body 1 (corresponding to the first direction described in the claims), and the second radiating element 65 intersects the roof 20 from the feeding point 63b. It is drawn in the upward direction (corresponding to the second direction described in the claims), which is a direction different from the downward direction.
  • the vehicle-mounted antenna device 60 employs a configuration in which the first direction and the second direction intersect the roof 20.
  • a line drawn downward from the portion drawn downward from the feeding point 63 a that is, from the starting end (base) of the first radiating element 64 connected to the feeding point 63 a.
  • a portion up to a certain GG ′ line is defined as a feeding point vicinity portion 64a.
  • the direction of the current flowing through the feeding point neighborhood 64a is mainly the vertical direction. Further, the current density of the current flowing through the first radiating element 64 is highest at the start end (connection portion with the feeding point 63a) of the first radiating element 64, and decreases as the end approaches. For this reason, a current having a relatively high current density flows in the vertical direction of the vehicle body 1 in the vicinity of the feeding point 64a. As a result, the first radiating element 64 can increase the proportion of the vertically polarized component contained in the radiated electromagnetic wave as compared to the conventional (the vehicle-mounted antenna device described in Patent Document 1).
  • the vertical polarization has a characteristic that it is difficult to receive the attenuation effect by the roof 20 when compared with the horizontal polarization.
  • the vehicle-mounted antenna device 10 including the first radiating element 14 has a vertically polarized radiation gain with respect to a direction crossing the roof 20 (here, the front direction) even if the roof 20 is made of metal. Can be large enough. As a result, even if the roof is made of metal, the radiation gain of electromagnetic waves in the direction crossing the roof can be sufficiently increased.
  • the second radiating element 65 a portion that is drawn upward from the feeding point 63b, that is, a line that is valley-folded from the start end (root) of the second radiating element 65 connected to the feeding point 63b.
  • a portion up to a certain FF ′ line is defined as a feeding point vicinity portion 65a.
  • the second radiating element 65 has a ratio of the vertically polarized wave component included in the electromagnetic wave radiated in the same manner as the first radiating element 64 compared to the conventional (vehicle-mounted antenna device described in Patent Document 1). Can also be more. Therefore, the antenna 61 can further increase the proportion of the vertically polarized component contained in the radiated electromagnetic wave as compared with the conventional case (the on-vehicle antenna device described in Patent Document 1).
  • the antenna 61 further includes a superimposing portion 65b that overlaps the roof 20 and superimposes on the spoiler fixing portion 21d.
  • the overlapping portion 65 b is provided in a portion including the end of the second radiating element 35, similarly to the overlapping portion 35 b included in the antenna 31.
  • emission element 65 is employ
  • a configuration in which the overlapping portion provided in a part of the first radiating element 64 is overlapped with the spoiler fixing portion 21d may be employed.
  • FIG. 6A is a development view of the antenna 41 which is the first modification
  • FIG. 6B is a side view of the antenna 41 as viewed from the direction of the arrow
  • FIG. 6C is a development view of the antenna 51 which is the second modified example
  • FIG. 6D is a side view of the antenna 51 as viewed from the arrow.
  • the spoiler 16 which is a housing
  • FIG. 7 is a development view of an antenna 71 which is a third modification
  • FIG. 8 is a development view showing another example of the antenna 71 which is the third modified example shown in FIG.
  • FIG. 9 is a development view of an antenna 81 which is a fourth modified example.
  • the antenna 41 is pulled out from the feeding point 43a in the downward direction of the vehicle body 1 (direction intersecting the roof 20), and forward of the vehicle body 1 from the feeding point 43b (direction along the roof 20). ), And a single and annular radiating element 44 is provided. That is, in the first modification, an antenna 41 that is a loop antenna is employed instead of the antenna 11 that is a dipole antenna.
  • the antenna 51 includes a first conductor 55 drawn from the feeding point 53a downward in the vehicle body 1 (direction intersecting the roof 20), and a forward direction of the vehicle body from the feeding point 53b.
  • a single conductor composed of a second conductor 56 drawn in the direction along the roof 20 and a third conductor 57 connecting the intermediate portion of the first conductor 55 and the intermediate portion of the second conductor 56, respectively.
  • a radiation element 54 is provided.
  • the antenna 51 functions as an inverted F-type antenna.
  • the radiating element 54 when the radiating element 54 employs a configuration in which power is supplied to each of the first conductor 55 and the second conductor 56, the radiating element 54 is a radiating element in which a branch is added to the annular radiating element.
  • the annular radiating element is composed of the first conductor 55 from the start end to the middle portion, the second conductor 56 from the start end to the middle portion, and the third conductor 57, and one branch is The first conductor 55 is from the middle portion to the end, and the other branch is from the middle portion to the end of the second conductor 56.
  • the antenna 51 functions as an antenna obtained by adding a branch to the loop antenna.
  • the antenna 51 that functions as an inverted F-type antenna or an antenna obtained by adding a branch to a loop antenna is employed instead of the antenna 11 that is a dipole antenna.
  • the antennas 41 and 51 included in the vehicle-mounted antenna device according to these modified examples are pulled out from the feeding points 43a and 53a, which are one feeding point, in the downward direction of the vehicle body (z-axis negative direction in the figure), and the other Radiating elements 44 and 54 led out from the feed points 43b and 53b, which are the feed points, in the forward direction of the vehicle body (in the positive y-axis direction in the figure). Therefore, the vehicle-mounted antenna device according to these modified examples can sufficiently increase the radiation intensity of the electromagnetic wave with respect to the front of the vehicle body.
  • the antenna 71 which is the third modified example changes the shape of the first radiating element 74 to a bell-shaped (or cup-shaped) as compared with the antennas 11, 11A, 31, 61. Can be obtained. Specifically, by replacing each of the four corners of the first radiating element 74 adjacent to the second radiating element 75 with a quadrant ellipse 74b and a quadrant ellipse 74c, A first radiating element 74 is obtained. By changing the shape of the first radiating element 74 from a rectangular shape to a bell shape, the distance between the feeding point vicinity portion 74a of the first radiating element 74 and the feeding point vicinity portion 75a of the second radiating element 75 is continuously increased. Can be changed. As a result, the resonance frequency of the antenna 71 can be adjusted, and the operating band can be adjusted.
  • the first radiating element 74 has a feeding point 73a provided at a protruding portion protruding from a side sandwiched between two rounded corners.
  • the first radiating element 74 configured as described above is pulled out downward of the vehicle body 1 (corresponding to the first direction described in the claims), which is a direction intersecting the roof 20 from the feeding point 73a. .
  • the second radiating element 75 has a feeding point 73b provided in the vicinity of the notch cut out in accordance with the shape of the protruding portion of the first radiating element 74.
  • the second radiating element 75 configured in this way is a direction intersecting the roof 20 from the feeding point 73b and a direction different from the downward direction of the vehicle body 1 (the second direction described in the claims). (Corresponding to the direction).
  • FIG. 7 is similar to the antennas 11, 11A, and 61 provided in the vehicle-mounted antenna devices 10, 10A, and 60 according to the first, second, and fourth embodiments.
  • a configuration in which two directions intersect with the roof 20 is adopted.
  • each of the width of the first radiating element 74 and the width of the second radiating element 75 is configured to be 1 ⁇ 2 or less of the shortest wavelength of the electromagnetic wave transmitted by the antenna 71.
  • a portion drawn downward from the feeding point 73a that is, A portion from the start end (base) of the first radiating element 74 connected to the feeding point 73a to the line II ′ that is a valley-folded line is defined as a feeding point vicinity 74a.
  • a portion drawn upward from the feeding point 73b that is, an HH ′ line that is a line that is valley-folded from the start end (base) of the second radiating element 75.
  • the portion up to is defined as a feeding point vicinity portion 75a.
  • a portion including the end of 75 of the second radiating element configured to be superimposed on the spoiler fixing portion 21d is included in the overlapping portion 75b.
  • the first radiating element 74 is connected to a portion drawn downward from the feeding point 73a, that is, connected to the feeding point 73a.
  • a portion from the start end (base) of the first radiating element 74 to the line II ′ that is a line to be folded is defined as a feeding point vicinity 74a.
  • the portion up to is defined as a feeding point vicinity portion 75a.
  • a portion drawn downward from the feeding point 73a that is, the feeding point 73a.
  • a portion from the start end (root) of the connected first radiating element 74 to the line II ′ that is a line to be folded is defined as a feeding point vicinity portion 74a.
  • a portion drawn upward from the feeding point 73b that is, an HH ′ line that is a line that is valley-folded from the start end (base) of the second radiating element 75.
  • the portion up to is defined as a feeding point vicinity portion 75a.
  • the overlapping portion 75b is provided in a portion including the end of the second radiating element 75, is along the spoiler fixing portion 21d constituting the rear end of the roof 20, and is separated from the spoiler fixing portion 21d. It is comprised so that it may overlap in a state.
  • the bell-shaped antenna 71 may be configured as shown in FIG. That is, in the first radiating element 74, a portion that is drawn upward from the feeding point 73a, that is, the first radiating element 74 that is connected to the feeding point 73a, is root-folded (or peaked).
  • the portion up to the line II ′, which is the line to be folded, is taken as the vicinity of the feeding point.
  • the width of the vicinity of the feeding point is configured to be 1 ⁇ 2 or less of the shortest wavelength of the electromagnetic wave radiated from the antenna, and the width of the region from the line II ′ to the terminal is the width of the vicinity of the feeding point. It is configured to be wider.
  • the second radiating element 75 is a line that is valley-folded from the portion drawn downward from the feeding point 73b, that is, from the start (root) of the second radiating element 75.
  • the part up to the line H ′ is defined as the vicinity of the feeding point.
  • the width in the vicinity of the feeding point is configured to be 1 ⁇ 2 or less of the shortest wavelength of the electromagnetic wave radiated from the antenna, and the width of the region from the line HH ′ to the terminal is the width in the vicinity of the feeding point. It is configured to be wider.
  • an antenna 81 which is a fourth modification of the antenna 11, includes a first conductor 85 drawn from the feed point 83a downward in the vehicle body 1 (direction intersecting the roof 20), and a feed point.
  • a second conductor 86 drawn from 83b upward in the vehicle body 1 (direction intersecting the roof 20), and a first conductor 85 and a third conductor 87 respectively connecting the second conductor 86,
  • One radiating element 84 is provided.
  • the first conductor 85 includes a feeding point vicinity 85a drawn from the feeding point 83a and a conductor 85b extending along the left-right direction of the vehicle body 1 when the vehicle-mounted antenna device 60 is disposed at the rear end of the roof 20. And a conductor 85c extending along the direction intersecting the conductor 85b, that is, the front-rear direction of the vehicle body 1.
  • the second conductor 86 includes a feeding point vicinity 86a drawn from the feeding point 83b.
  • the overlapping portion 84b which is a region from the middle to the end of the second conductor 86, overlaps along the spoiler fixing portion 21d and is separated from the spoiler fixing portion 21d.
  • the antenna 81 including the radiating element 84 configured in this manner functions as an inverted F-type antenna by grounding the feeding point 83a, that is, by causing the first conductor 85 to function as a ground plane.
  • the resonance frequency of the antenna 81 is changed by adjusting the distance between each of the feeding point vicinity 85a and the conductor 85b and the feeding point vicinity 86a in the area A1. Can do. As a result, the operating band of the in-vehicle antenna device 60 can be adjusted. Similarly, by adjusting the shape of the conductor 85c, the distance between the conductor 85c and the second conductor 86 in the region A2 can be adjusted, and as a result, the operating band of the vehicle-mounted antenna device 60 can be adjusted. .
  • the in-vehicle antenna device 10 according to the present embodiment employs the antenna 71 shown in FIG.
  • the in-vehicle antenna device 10 of this embodiment is mounted on the rear end of the roof 20 of the hatchback type vehicle body 1, more specifically, on the upper part of the hatch gate.
  • an electromagnetic wave radiated from the antenna 11 an electromagnetic wave having a frequency called 800 MHz band for LTE (specifically, 830 MHz) was used.
  • FIG. 10 is a graph showing the direction dependency of the radiation gain in the xy plane obtained by the vehicle-mounted antenna device 10 according to this example.
  • the broken line indicates the radiation gain of horizontal polarization
  • the dotted line indicates the radiation gain of vertical polarization
  • the solid line indicates the sum of the horizontal polarization and vertical polarization, that is, the radiation gain of all polarizations.
  • the unit is [dBi].
  • the radiation gain in the forward direction of the vehicle body 1 is weaker than the radiation gain in the backward direction of the vehicle body 1, but exceeds the radiation gain sufficient for use as an in-vehicle antenna device. .
  • the in-vehicle antenna device 10A according to the present embodiment employs the bell-shaped antenna 71 shown in FIG. 7 as the antenna 11A.
  • the total length of the antenna 71 employed here is the total length of the antenna 11 according to the first embodiment (the first radiating element 14).
  • the second radiation element 15 and the length of the second radiation element 15 are the second radiation element 15 and the length of the second radiation element 15.
  • the in-vehicle antenna device 10A of this embodiment is mounted on the rear end of the roof 20 of the hatchback type vehicle body 1, more specifically, on the upper part of the hatch gate.
  • an electromagnetic wave radiated from the antenna 11A an electromagnetic wave having a frequency called an 800 MHz band for LTE (specifically, 830 MHz) was used.
  • FIG. 11 is a graph showing the direction dependence of the radiation gain in the xy plane obtained by the in-vehicle antenna device 10A according to this example.
  • the broken line indicates the radiation gain of horizontal polarization
  • the dotted line indicates the radiation gain of vertical polarization
  • the solid line indicates the sum of the horizontal polarization and the vertical polarization, that is, the radiation gain of all polarizations.
  • the unit is [dBi].
  • the radiation gain with respect to the front direction of the vehicle body 1 is weaker than the radiation gain with respect to the rear direction of the vehicle body 1, but exceeds the radiation gain sufficient for use as a vehicle-mounted antenna device. .
  • the in-vehicle antenna device 10A exceeds the in-vehicle antenna device 10 with respect to each of the radiation gain with respect to the front direction and the radiation gain with respect to the rear direction of the vehicle body 1.
  • the radiating elements 14A, 15A (74, 75) of the in-vehicle antenna device 10A are extended along the longitudinal axis of the spoiler 16A, and the length of the radiating elements 14A, 15A (74, 75) is the in-vehicle antenna. This may be due to the fact that it is longer than the length of the radiating elements 14, 15 of the device 10.
  • FIG. 12 is a graph showing the direction dependency of the radiation gain in the xy plane obtained by the vehicle-mounted antenna device 30 according to this example.
  • the broken line indicates the radiation gain of horizontal polarization
  • the dotted line indicates the radiation gain of vertical polarization
  • the solid line indicates the sum of horizontal polarization and vertical polarization, that is, the radiation gain of all polarizations.
  • the unit is [dBi].
  • the radiation gain of the vehicle-mounted antenna device 30 according to the third example is improved in all directions of the vehicle body 1 as compared with the first example shown in FIG.
  • the front direction of the vehicle body 1 is significantly improved. This improvement can be attributed to the overlapping portion 35 b including the end of the second radiating element 35 being superimposed on the roof 20.
  • the on-vehicle antenna device according to one embodiment of the present invention has been described as being disposed at the rear end of the roof 20.
  • a hatch gate 21 is provided at the rear end of the roof 20.
  • the rear glass 21b included in the hatch gate 21 has a plane made of an insulator. Therefore, a film antenna for receiving a DTV broadcast signal or an FM broadcast signal may be attached to the upper end side of the rear glass 21b.
  • the in-vehicle antenna device 10 in order to investigate the influence of the coupling between the antennas, the in-vehicle antenna device 10 according to the first embodiment and a TDV film antenna (hereinafter referred to as “TDV”) attached to the upper end side of the rear glass 21b. DTV antenna) was used to measure the coupling between the in-vehicle antenna device 10 and the DTV antenna.
  • TDV TDV film antenna
  • the configuration of the measurement system for measuring the binding is as follows.
  • the in-vehicle antenna device 10 according to the first embodiment is connected to the first port of the network analyzer, and the DTV antenna is connected to the second port of the same network analyzer.
  • the first port is an output port for outputting a high frequency signal from the network analyzer.
  • the second port is an input port for inputting a high frequency signal to the network analyzer.
  • the on-vehicle antenna device 10 transmits the high-frequency signal supplied from the first port.
  • the DTV antenna receives the high-frequency signal radiated from the vehicle-mounted antenna device 10 and supplies it to the second port.
  • the network analyzer Based on the high-frequency signal output from the first port and the high-frequency signal input from the second port, the network analyzer uses the strength of coupling generated between the vehicle-mounted antenna device 10 and the DTV antenna as the transmission characteristic S21. calculate.
  • the antenna 71 (see FIG. 7) is adopted as the antenna of the first vehicle-mounted antenna device 10
  • the antenna 81 (see FIG. 9) is adopted as the antenna of the second vehicle-mounted antenna device 10.
  • the overlapping portions 74b and 84b of the radiating elements of the antennas 71 and 81 are along the spoiler fixing portion 21d, which is a metal member, and are separated from the spoiler fixing portion 21d. It is superimposed in the state.
  • the width of the radiating elements 74 and 75 measured along the rear end side of the roof 20 is set to 1/2 or less of the shortest wavelength of the electromagnetic wave transmitted by the antenna 71, specifically about 1 / 2.8.
  • the antenna 71 is a dipole antenna including radiating elements 74 and 75.
  • the antenna 81 is an inverted F-type antenna including a first conductor 85, a second conductor 86, and a third conductor 87.
  • the first conductor 85 includes a feeding point vicinity portion 85a, a conductor 85b, and a conductor 85c.
  • the feeding point vicinity portion 85a is drawn downward from the feeding point 83a.
  • the conductor 85b extends along the left-right direction of the vehicle body 1.
  • the conductor 85c extends along the front-rear direction of the vehicle body 1.
  • a film antenna in which a rectangular loop antenna is formed on a dielectric film is used as the DTV antenna.
  • the DTV antenna was attached to the upper end side of the rear glass 21b so that the long side direction of the loop antenna coincided with the left-right direction of the vehicle body 1. This is to prevent the DTV antenna from obstructing the rear view of the driver of the vehicle body 1.
  • FIG. 13 shows S21 which is a transmission characteristic measured using each of the in-vehicle antenna device 10 provided with the antenna 71 and the in-vehicle antenna device 10 provided with the antenna 81.
  • S21 of the vehicle-mounted antenna device 10 including the antenna 71 is lower than S21 of the vehicle-mounted antenna device 10 including the antenna 81. That is, it was found that the in-vehicle antenna device 10 provided with the antenna 71 can suppress the coupling between the DTV antenna and the in-vehicle antenna device 10 provided with the antenna 81.
  • the width of the radiating elements 74 and 75 included in the antenna 71 is set to 1/2 or less of the shortest wavelength of the electromagnetic wave transmitted by the antenna 71, specifically about 1 / 2.8. For this reason, most of the current that is fed from the feeding point 73a and flows through the first radiating element 74, and the current that is fed from the feeding point 73b and flows through the second radiating element 75 changes the flowing direction of the radiating elements 74 and 75. In the longitudinal direction of the vehicle body 1, that is, the longitudinal direction of the vehicle body 1.
  • the first conductor 85 included in the antenna 81 is provided with a conductor 85b extending in the left-right direction of the vehicle body 1. Therefore, the conductor 85b is fed from the feeding point 83a and passes through the feeding point neighboring portion 85a. The flowing direction of the current that has reached is limited to the left-right direction of the vehicle body 1.
  • the DTV antenna is attached so that the long side direction of the loop antenna coincides with the left-right direction of the vehicle body 1. Therefore, when the high-frequency signal that vibrates along the front-rear direction of the vehicle body 1 is compared with the high-frequency signal that vibrates along the left-right direction of the vehicle body 1, the latter is received more efficiently.
  • the antenna 71 can limit the direction of the main current flowing through the radiating elements 74 and 75 to the front-rear direction of the vehicle body 1.
  • the in-vehicle antenna device 10 provided with the antenna 71 can suppress the influence on the DTV antenna or the influence received from the DTV antenna as compared with the in-vehicle antenna device 10 provided with the antenna 81. .
  • FIG. 14 is a cross-sectional view taken along the line A-A ′ in FIG. 1B, in which a part of the vehicle body 1 on which the vehicle-mounted antenna device 90 is mounted is enlarged.
  • the antenna is a development view in which the antenna 91A or 91B provided in the vehicle-mounted antenna device 90 is developed on a plane.
  • the dielectric film 12 is not shown.
  • FIG. 16 shows the shape of two edges in the second radiating element 95A or 95B constituting the antenna 91A or 91B connecting the feeding point and a corner portion away from the feeding point in the longitudinal direction of the radiating element 95A or 95B. It is explanatory drawing which shows by a broken line and a dashed-dotted line.
  • the spoiler 16 ′ as the housing of the vehicle-mounted antenna device 90 is different from the spoiler 16 shown in FIG. 2 or FIG. 4 in terms of shape and size, but this difference is not essential, so the difference will be described in detail. Description is omitted. Therefore, the vehicle-mounted antenna device 90 may be configured by attaching the antenna 91A or 91B to the spoiler 16 shown in FIG. 2 or FIG.
  • the in-vehicle antenna device 90 is configured to mount the antenna 91A or 91B in a state where the antenna 91A or 91B is bent inside the spoiler 16 ′.
  • the in-vehicle antenna device 90 is shown in the in-vehicle antenna device 10 shown in FIG. 2 and FIG. 4 in that the dielectric film 12 that is a component of the antenna 91A or 91B is not in close contact with the inner wall of the spoiler 16 ′. This is different from the in-vehicle antenna device 30.
  • a space is provided between the dielectric film 12 and the inner wall of the spoiler 16 ′. By providing this space, it becomes easy to install the antenna 91A or 91B in the spoiler 16 '.
  • the bent state of the antenna 91A or 91B will be described in more detail.
  • an upper wall portion and a lower wall portion that face each other in the vertical direction (z-axis direction) of the vehicle body 1 and a standing wall portion that connects the upper wall portion and the lower wall portion are formed.
  • the upper wall portion and the lower wall portion are parallel to the longitudinal direction (y-axis direction) of the vehicle body 1.
  • the standing wall portion is parallel to the vertical direction (z-axis direction) of the vehicle body 1, each of the upper wall portion and the lower wall portion forms 90 degrees with the standing wall portion.
  • a space is provided between the rear wall of the spoiler 16 ′ that is parallel to the vertical wall and the vertical wall. Furthermore, a space is provided between the bottom wall of the spoiler 16 'facing the lower wall portion and the lower wall portion.
  • An example of a fixing means for fixing the antenna 91A or 91B to the spoiler 16 ′ may be the same as that of the above-described embodiment, but a support body located inside the U-shape of the antenna 91A or 91B bent in a U-shape is arranged. And the antenna 91A or 91B may be fixed around the support. The support is fixed to the spoiler 16 '.
  • a plurality of holes are formed in the first radiating element 94A or 94B, the second radiating element 95A or 95B constituting the antenna 91A or 91B, and the dielectric film 12 not shown in FIG. 96 and 97 may be provided as appropriate, and a plurality of protrusions (hooks) may be provided on the spoiler 16 ′ and the support in accordance with the positions of the plurality of holes 96 and 97.
  • the antenna 91A or 91B can be fixed by fitting or engaging the plurality of convex portions into the plurality of holes 96 and 97.
  • the most important difference between the antenna 91A or 91B, the antenna 11 (FIG. 2), the antenna 31 (FIG. 4), the antenna 71 (FIG. 7), and the like is the shape of the second radiating element.
  • the first radiating elements 94A and 94B have a bell-shaped shape like the first radiating element 74 (FIG. 7) so as to obtain the effect described above that the operation band can be adjusted. It is not limited to the bell shape.
  • the second radiating elements 95A and 95B have the same width as the maximum width parallel to the left-right direction (x-axis direction) of the vehicle body 1 and are long rectangles in the front-rear direction (y-axis direction) of the vehicle body 1
  • two long sides extending in the front-rear direction of the vehicle body 1 are recessed toward the center of the rectangle.
  • a notch or a concave shape is formed on the long side portion of, for example, a copper foil having the above rectangular shape.
  • the contour corresponding to the long side portion of the second radiating elements 95A and 95B in which the long side portion has a notch or a concave shape is referred to as a long edge.
  • the distance when the current flows along the long edge is a band targeted by the present invention (for example, a band of a telephone). 698 to 960 MHz) can be secured long according to the low frequency band (698 to 854 MHz).
  • the current flowing through the second radiating elements 95A and 95B flows through the upper surface, the lower surface, and the edge of the periphery, but the current density at the edge is the current at the upper surface and the lower surface. Greater than density. Therefore, by extending the distance when the current flows along the long edge, it is possible to effectively widen the band of the antenna particularly on the low frequency side.
  • the configuration of the antennas 91A and 91B and the distance will be described in more detail.
  • the antenna 91A includes a bell-shaped first radiating element 94A and a second radiating element 95A having two long edges formed with the concave shape.
  • the configuration of the first radiating element 94A is basically the same as the configuration of the first radiating element 74 shown in FIG.
  • the concave shape formed near the center of the left long edge is the shape of a home base plate.
  • the acute angle part (top part) of the shape of the home base plate faces the right direction of the vehicle body 1.
  • a concave shape having a shape of a home base plate with an acute angle portion facing leftward of the vehicle body 1 is formed at a position avoiding the concave shape of the left long edge. More specifically, the right long side is positioned between the connecting portion 93A provided at the boundary between the first radiating element 94A and the second radiating element 95A and the concave shape of the left long edge.
  • a concave shape of the edge is formed.
  • the formation position of each concave shape is not limited to this, and each concave shape can be formed at an arbitrary position of each long edge as long as the purpose of extending the distance when the current flows along the long edge can be achieved. it can.
  • connection portion 93 ⁇ / b> A is an arbitrary area (region near the connection portion) in which the protruding portion of the first radiating element 94 ⁇ / b> A and the cutout portion of the second radiating element 95 ⁇ / b> A fit. It is provided in the position. An example of the position is in the vicinity of the upper right corner of the protrusion of the first radiating element 94A, as shown in FIG.
  • the first feeding point 93Aa that is one feeding point of the connection portion 93A is connected to the first radiating element 94A, and the second feeding point 93Ab that is the other feeding point of the connection portion 93A is the second feeding point 93Ab.
  • the radiating element 95A is connected.
  • the antenna 91A is folded along the lines L1-L1 'and M1-M1' shown in FIG. As a result, as shown in FIG. 14, a bent antenna 91A is formed in which the dielectric film 12 is disposed outside and the radiating element 94A is disposed inside. Further, the first radiating element 94A is drawn from the first feeding point 93Aa in the downward direction of the vehicle body 1 (corresponding to the first direction described in the claims), which is the direction intersecting the roof 20.
  • the first region 94Ab (the vicinity of the feeding point) of the first radiating element 94A between the L1-L1 ′ line and the M1-M1 ′ line is the downward direction of the vehicle body 1 (within the claims) (Corresponding to the first direction described).
  • the second region 94Aa continuous to the first region 94Ab is bent at an angle of 90 degrees with respect to the first region 94Ab and is directed in the front direction of the vehicle body 1.
  • the second radiating element 95A is a direction along the roof 20 from the second feeding point 93Ab and is different from the downward direction of the vehicle body 1 (the second direction described in the claims). Is equivalent to Note that most of the second radiating element 95A extends forward from the second feeding point 93Ab and slightly extends backward from the second feeding point 93Ab.
  • the first radiating element 94B of the antenna 91B has the same configuration as the first radiating element 94A.
  • the second radiating element 95B has two long edges formed with the concave shape, but the two concave shapes are different from the two concave shapes of the second radiating element 95A. .
  • the concave shape formed on the left long edge is a home base with the top portion facing the right direction of the vehicle body 1. It has a shape obtained by deforming the shape of the plate. That is, the top of the home base plate is sandwiched between the two sides forming an isosceles triangle on the home base plate, one side being longer than the other side and having a large opening angle with respect to the other side. Therefore, these one side and the other side correspond to two sides sandwiching an obtuse angle of an inequilateral triangle.
  • the one side has a direction inclined with respect to the front-rear direction of the vehicle body 1, a front-rear direction of the vehicle body 1, and a left-right direction of the vehicle body 1 in order to earn a distance when current flows along the long edge.
  • the bending is repeated, and the connection part 93B is reached through a plurality of bending points.
  • a concave shape having an unequal triangular shape with the apex facing the left direction of the vehicle body 1 is formed at a position avoiding the concave shape of the left long edge. More specifically, the right side so as to be positioned between the connecting portion 93B provided at the boundary between the first radiating element 94B and the second radiating element 95B and the concave shape of the left long edge.
  • a long-edge concave shape is formed.
  • the formation position of each concave shape is not limited to this, and each concave shape can be formed at an arbitrary position of each long edge as long as the purpose of extending the distance when the current flows along the long edge can be achieved. it can.
  • the concave shape of the left long edge may be an inequilateral triangle similar to the concave shape of the right long edge and larger than the unequal triangle of the right long edge.
  • connection portion 93B is provided at an arbitrary position in an area where the projecting portion of the first radiating element 94B and the cutout portion of the second radiating element 95B fit (the vicinity of the connection portion). It is done.
  • the first feeding point 93Ba that is one feeding point of the connecting portion 93B is connected to the first radiating element 94B, and the second feeding point 93Bb that is the other feeding point of the connecting portion 93B is the second feeding point 93Bb.
  • the antenna 91B is valley-folded along the lines L2-L2 'and M2-M2' shown in FIG. As a result, similarly to the antenna 91A, an antenna 91B bent into a U shape is formed.
  • the first region 94Bb and the second region 94Ba of the first radiating element 94B correspond to the first region 94Ab and the second region 94Aa of the first radiating element 94A.
  • How the first radiating element 94B is pulled out from the first feeding point 93Ba and how the second radiating element 95B is pulled out from the second feeding point 93Bb are the same as the first radiating element 94A and the second radiating element 94B. The same as in the case of the radiating element 95A.
  • FIG. 16 is an explanatory diagram showing the shape of the long edge provided in each of the second radiating elements 95A and 95B.
  • a current is supplied to the connection portion 93A, so that the connection portion 93A becomes a starting point of a path along the current flow.
  • the left corner and the right corner of the front side edge of the second radiating element 95A become the end point 98Aa and the end point 98Ab of the route.
  • connection portion 93B is the starting point of the path along the current flow, and the left and right corners of the front side edge of the second radiating element 95B are the end points of the path. 98Ba and end point 98Bb.
  • One of the two long edges of the second radiating element 95A is a long edge N1 having a length from the connection portion 93A to the end point 98Aa, as indicated by a broken line in FIG.
  • the other of the two long edges of the second radiating element 95A is a long edge N2 having a length from the connecting portion 93A to the end point 98Ab, as shown by a one-dot chain line in FIG.
  • the second radiating element 95B includes a long edge N3 having a length from the connection portion 93B to the end point 98Ba, and a long edge N4 having a length from the connection portion 93B to the end point 98Bb.
  • Each length of the long edges N1 to N4 satisfies the condition that the length of the electromagnetic wave radiated by the antenna is equal to about 1 ⁇ 2 of the wavelength of a low frequency (for example, 700 to 730 MHz) to be expanded.
  • the shape and size of the concave shape formed on the long edges N1 to N4 are selected. Accordingly, the shape, size and number of concave shapes formed on each of the long edges N1 to N4 can be arbitrarily set as long as the above conditions are satisfied.
  • the radiation gain of the antennas 91A and 91B was calculated with respect to the front side of the vehicle body 1.
  • the antennas 91A and 91B can extend the entire band to the low frequency side by providing the second radiating elements 95A and 95B with the long edges N1 to N4.
  • the antenna 91B has a better radiation gain in the high frequency band than the antenna 91A. Details will be described later with reference to FIGS.
  • the second radiating elements 95A and 95B are along the spoiler fixing portion 21d, which is a metal member constituting the roof 20, and are separated from the spoiler fixing portion 21d.
  • the superimposing portions 95Aa and 95Ba overlap each other.
  • the overlapping portions 95Aa and 95Ba include the tips of the second radiating elements 95A and 95B, respectively.
  • the overlapping portions 95Aa and 95Ba each have a length Ly.
  • the length Ly is 64.5% or less of the total length of the second radiating elements 95A and 95B, and more preferably 26.0% or more and 55.2% of the total length of the second radiating elements 95A and 95B. It is as follows.
  • the length Ly is configured to be not more than 64.5% of the total length, so that the direction crossing the roof 20 when viewed from the spoiler 16 ′ (in this embodiment, the front direction of the vehicle body 1). Can be made larger than when the second radiating elements 95A and 95B do not overlap the spoiler fixing portion 21d. Further, by configuring the length Ly to be 26.0% or more and 55.2% or less of the total length, the gain in the front direction of the vehicle body 1 can be further increased.
  • the distance Dz between the second radiating elements 95A and 95B and the spoiler fixing portion 21d in the overlapping portions 95Aa and 95Ba is less than 18 mm, and more preferably less than 11 mm.
  • the overlapping portions 95Aa and 95Ba are overlapped with the spoiler fixing portion 21d, and the distance Dz between the overlapping portions 95Aa and 95Ba is less than 18 mm, so that the front direction of the vehicle body 1 is increased.
  • the gain can be made larger than when the second radiating elements 95A and 95B do not overlap with the spoiler fixing portion 21d.
  • the gain with respect to the front direction of the vehicle body 1 can be further increased by configuring the distance Dz to be less than 11 mm.
  • the spoiler 16 ′ is configured so that the overlapping portions 95Aa and 95Ba overlap along the spoiler fixing portion 21d and are separated from the spoiler fixing portion 21d. ' May be fixed to the roof 20. In this case, spoiler 16 'should just be comprised so that superimposition part Aa, 95Ba may superimpose along the metal member which comprises the rear end of the roof 20, and is spaced apart with respect to this metal member.
  • the total lengths of the first radiating elements 94A and 94B and the total lengths of the second radiating elements 95A and 95B are not particularly limited. It can be determined as appropriate.
  • the length Ly may be determined so as to be within the above-described range based on the total length of the second radiation elements 95A and 95B determined according to the frequency of the electromagnetic wave desired to be radiated from the antennas 91A and 91B.
  • the fifth to seventh embodiments of the present invention will be described below.
  • the vehicle-mounted antenna 10 that is the fifth embodiment employs an antenna 71 shown in FIG.
  • An in-vehicle antenna 90 according to the sixth embodiment employs an antenna 91A shown in FIG.
  • the antenna 90 according to the seventh embodiment employs an antenna 91B shown in FIG. 17A to 17C are development views in which the antenna 71, the antenna 91A, and the antenna 91B are developed on a plane, respectively.
  • FIG. 18A is a graph showing the frequency dependence of the radiation gain of the vehicle-mounted antenna device 70 provided with the antenna 71 and the vehicle-mounted antenna device 90 provided with the antenna 91A.
  • FIG. 18B is a graph showing the frequency dependence of the VSWR of the in-vehicle antenna device 70 provided with the antenna 71 and the in-vehicle antenna device 90 provided with the antenna 91A.
  • FIG. 19 is a graph showing the frequency dependence of the radiation gain of the in-vehicle antenna device 90 provided with the antenna 91A and the in-vehicle antenna device 90 provided with the antenna 91B.
  • FIG. 19B is a graph showing the VSWR frequency dependence of the radiation gain of the in-vehicle antenna device 90 including the antenna 91A and the in-vehicle antenna device 90 including the antenna 91B.
  • the radiation gain and VSWR of the vehicle-mounted antenna devices 70 and 90 were measured in a state where each of the vehicle-mounted antenna devices 70 and 90 was mounted on the rear end of the roof 20 of the vehicle body 1.
  • the in-vehicle antenna devices 70 and 90 shown in FIG. 18A and FIG. 19A each have a radiation gain in a plane along the roof 20 of the vehicle body 1 and the antennas 71, 91A, and 91B. It is a value obtained by calculating with respect to all the azimuths as the center and summing up the omnidirectional components.
  • the radiation gain of the in-vehicle antenna device 90 provided with the antenna 91A is the same as that of the in-vehicle antenna device 70 provided with the antenna 71 in a frequency band of less than 0.8 GHz. You can see that it is higher.
  • the VSWR of the in-vehicle antenna device 90 provided with the antenna 91A is lower than the VSWR of the in-vehicle antenna device 70 provided with the antenna 71 in a frequency band less than 0.8 GHz. I understand that.
  • the radiation gain of the vehicle-mounted antenna device 90 provided with the antenna 91B exceeds the radiation gain of the vehicle-mounted antenna device 90 provided with the antenna 91A in a frequency band near 2 GHz. I understand that.
  • the VSWR of the vehicle-mounted antenna device 90 provided with the antenna 91B is that of the vehicle-mounted antenna device 90 provided with the antenna 91A in a frequency band of 1.7 GHz or more and 2.3 GHz or less. It can be seen that it is lower than VSWR.
  • the in-vehicle antenna device 90 provided with the antenna 91B has better characteristics in the high frequency band than the in-vehicle antenna device 90 provided with the antenna 91A.
  • FIG. 20 is a development view in which an antenna 71A, which is a modification of the antenna 71, is developed on a plane.
  • FIG. 21A is a plan view obtained when the antenna 71A bent in a U-shape is viewed from a direction perpendicular to the second radiating element 75A.
  • FIG. 21B is a right side view of the antenna 71 shown in FIG.
  • FIG. 21C is a cross-sectional view taken along the line XX ′ shown in FIG.
  • FIG. 22A is a development view in which an antenna 71B, which is another modification of the antenna 71, is developed on a plane.
  • FIG. 22B is a plan view obtained when the antenna 71B bent in a U-shape is viewed from a direction perpendicular to the second radiating element 75B.
  • antenna 71A In the antenna 71A, the first radiating element 74 included in the antenna 71 is replaced with the first radiating element 74A, and the second radiating element 75 included in the antenna 71 is replaced with the second radiating element 75A. Obtained by.
  • the first radiating element 74A is connected to one conductor of a coaxial line (not shown) at one feeding point 73Aa, and includes a region including the one feeding point 73Aa and an NN ′ line.
  • 74Aa first portion described in claims
  • the second portion 74Ab that is a region up to the end of the first portion.
  • the feeding point vicinity portion 74Aa is a portion drawn out from the one feeding point 73Aa in the first direction.
  • the second radiating element 75A is connected to the other conductor of the coaxial line (not shown) at the other feeding point 73Ab, and includes a root part 75Aa including the other feeding point 73Ab, a branch part 75Ab, a neck part 75Ac, Part 75Ad.
  • the antenna 71A is valley-folded along the NN ′ line and the OO ′ line shown in FIG. 20, and the first plane P1 along the first direction, the second plane P2 along the second direction, And is bent in a U-shape so as to cross the first plane P1 and along the third plane P3 facing the second plane P2.
  • an antenna 71A folded into a U-shape is formed in which the dielectric film 72 is arranged on the outside and the first and second radiating elements 74A and 75A are arranged on the inside. .
  • the connecting portion 73A constituted by the feeding points 73Aa and 73Ab is disposed on the third plane P3 and in the vicinity of the intersecting portion that intersects the first plane P1.
  • first radiating element 74A In the first radiating element 74A, the feeding point vicinity 74Aa is disposed on the first plane P1, and the second portion 74Ab is disposed on the third plane P3. Further, the second radiating element 75A is disposed on the second plane P2.
  • each of the second plane P2 and the third plane P3 is orthogonal to the first plane P1. That is, the second plane P2 and the third plane P3 are parallel to each other.
  • Each of the first plane P1, the second plane P2, and the third plane P3 corresponds to the first surface, the second surface, and the third surface recited in the claims.
  • a flat surface is employed as each of the first surface, the second surface, and the third surface, but a curved surface may be employed as each of the first surface, the second surface, and the third surface. . Further, the second surface and the third surface may not be parallel to each other.
  • the second portion 74Ab of the first radiating element 74A is configured by a first straight line portion extending in one direction from the end portion of the feeding point vicinity portion 74Aa.
  • the one direction is a direction along the third plane P3 and away from the second plane P2.
  • the first plane P1 and the third plane P3 are parallel to each other, so that the direction coincides with the second direction.
  • the second radiating element 75A is connected to the other feeding point 73Ab, and includes the root portion 75Aa, the branch portion 75Ab, the neck portion 75Ac, and the main portion 75Ad.
  • the root portion 75Aa extends in the second direction from the other feeding point 73Ab in the second plane P2, and a third direction intersecting the second direction (a direction parallel to the XX ′ line shown in the drawing).
  • the second portion extended from the first portion 74Aa of the first radiating element 74A is configured such that the width of the root portion 75Aa with respect to the third direction is narrower than the first portion 74Aa of the first radiating element 74A. It can arrange
  • the branch portion 75Ab is a strip-like conductor extending in the third direction from the root portion 75Aa in the second plane P2.
  • the length of the second portion 74Ab extended from the first radiating element 74A and the length of the branch portion 75Ab extended from the root portion 75Aa are determined so as not to overlap each other.
  • the neck portion 75Ac is a strip-shaped conductor that extends in the second direction from the end portion of the root portion 75Aa in the second plane P2, and has a narrower width with respect to the third direction than the root portion 75Aa.
  • the main portion 75Ad is a conductor that is provided at the end of the neck portion 75Ac and has an elliptical shape.
  • the second portion 74Ab when viewed in a plan view from a direction orthogonal to the third plane P3, the second portion 74Ab is a feeding point 73Aa of the first radiating element 74A disposed on the second plane P2. It is comprised so that it may not overlap. Further, the second portion 74Ab does not overlap with the second radiating element 75A.
  • the antenna 11 can be mounted in a narrow space by bending it into a U shape.
  • the inventors of the present application change the radiation characteristics between the antenna deployed in a plane and the antenna folded in a U shape, and the U-shaped antenna is more than the radiation characteristics of the antenna deployed in a plane. It was found that the radiation characteristics of the antenna folded into a mold deteriorate.
  • the antenna 71A employs a configuration in which the second portion 74Ab of the first radiating element 74A does not overlap the feeding point 73Aa of the first radiating element 74A, thereby causing the above-described deterioration (because the antenna is bent into a U shape). Deterioration). This is because the electrostatic capacitance generated between the bent first radiating elements 74A, that is, the electrostatic capacitance generated between the second portion 74Ab and one feeding point 73Aa can be suppressed.
  • the antenna 71A can further suppress the above-described deterioration by adopting a configuration that does not overlap with the second radiating element 75A. This is because the electrostatic capacitance generated between the second portion 74Ab provided on each of the second plane P2 and the third plane P3 facing each other and the second radiating element 75A can be suppressed.
  • the change in the input characteristics of the antenna caused by bending the antenna into a U shape is canceled by appropriately superimposing a part of the antenna 71 on the end of the roof 20 of the vehicle body 1. For this reason, when the antenna 71 is used, the input characteristics of the antenna become sensitive to the installation position of the antenna 71 with respect to the vehicle body 1 (roof 20), which is disadvantageous when installing in various vehicles. . Since the antenna 71A can suppress the above-described deterioration (deterioration caused by bending the antenna into a U-shape), the antenna bent into the U-shape is disposed at the end of the roof 20 of the vehicle body 1. The change in the input characteristics due to the is small, and it can be used more versatilely.
  • impedance matching between the coaxial line connected to the connecting portion 73A and the antenna 71A depends on a capacitance generated between the first radiating element 74A and the second radiating element 75A.
  • the antenna 71A configured as described above improves the impedance matching compared to the case where the capacitance generated between the first radiating element and the second radiating element is generated only in the feeding region, The radiation characteristics of the antenna can be further improved.
  • the VSWR characteristic band on the low frequency side of the frequency band in which the antenna 71A operates can be expanded by making the shape of the main part 75Ad elliptical compared to a radiating element whose main part has a rectangular shape. it can.
  • the distance between the second plane P2 and the third plane P3 is referred to as a height h of the antenna 11 (see FIG. 21B).
  • the inventors of the present application are configured so that the distance d is 1/20 or more, more preferably 1/16 or more, of the wavelength of the electromagnetic wave having the resonance frequency of the second portion 74Ab in vacuum. It was found that deterioration can be sufficiently suppressed.
  • the second radiating element 75A includes the neck portion 75Ac, even if the coaxial line is disposed in the vicinity of the second radiating element 75A, the interference given to the antenna device 71A by the coaxial line is suppressed. can do. Therefore, it is possible to suppress deterioration of radiation characteristics caused by bending the antenna 71 into a U shape. Further, the operating band (mainly on the low frequency side) of the antenna 71A can be adjusted by appropriately adjusting the size of the neck 75Ac.
  • antenna 71B In the antenna 71B, the first radiating element 74 included in the antenna 71 is replaced with the first radiating element 74B, and the second radiating element 75 included in the antenna 71 is replaced with the second radiating element 75B. Obtained by.
  • the first radiating element 74B is connected to one feeding point 73Ba, and is in the vicinity of the feeding point, which is an area from the PP ′ line to the QQ ′ line.
  • 74Ba first portion described in claims
  • a second portion 74Bb that is a region from the QQ ′ line to the end of the first radiating element 74A (the end opposite to the connection portion 73B), and It is comprised by 3rd part 74Bd.
  • the second radiating element 75B is connected to the other feeding point 73Bb, and includes a root portion 75Ba, a narrow neck portion 75Bc, and a main portion 75Bd.
  • the antenna 71B is valley-folded along the PP ′ line and the QQ ′ line shown in FIG. 22 (a), the first plane P1 along the first direction, and the first plane along the second direction. It is bent in a U shape so as to cross the second plane P2 and the first plane P1 and along the third plane P3 facing the second plane P2. As a result, as shown in FIG. 22B, the antenna 71B is bent into a U-shape in which the dielectric film 72 is disposed on the outside and the first and second radiating elements 74B and 75B are disposed on the inside. Is formed.
  • the second portion 74Bb of the first radiating element 74B includes a first straight line portion extending in one direction from an end portion of the feeding point vicinity portion 74Aa and an end portion of the first straight portion (feeding point vicinity portion 74Aa. And a second straight line portion extending in a direction intersecting with the first straight line portion from the opposite end).
  • the one direction is a direction along the third plane P3 and away from the second plane P2.
  • the first plane P1 and the third plane P3 are parallel to each other, so that the direction coincides with the second direction.
  • the third portion 74Bd of the first radiating element 74B is configured by a first straight line portion extending in one direction from the end portion of the feeding point vicinity portion 74Aa.
  • the second radiating element 75B is connected to the other feeding point 73Bb, and is composed of a root part 75Ba, a neck part 75Bc, and a main part 75Bd.
  • Each of the root part 75Ba and the neck part 75Bc is configured similarly to the root part 75Aa and the neck part 75Ac of the antenna 71A, respectively.
  • the main portion 75Bd is provided at the end of the neck portion 75Bc, and alternately arranges the regions 75Bd1 extending in the second direction and the regions 75bd2 extending in the direction along the third direction. Is configured in a meander shape.
  • the region 75bd2 is first connected to the end of the neck portion 75Bc, and then two sets of the region 75Bd1 and the region 75Bd2 are arranged.
  • the second portion 74Bb of the first radiating element 74B is viewed in a plan view from a direction orthogonal to the third plane P3, the second portion 74Bb and the third portion 74Bd are It is configured not to overlap with the feeding point 73Ba of one radiating element 74B. Further, the second portion 74Bb does not overlap the second radiating element 75B except for the tip region 74Bc that is the end portion on the opposite side to the first portion 74Ba.
  • the antenna 71B configured in this way has the second portion 74Bb and the third portion 74Bd as the first portion when the second portion 74Bb of the first radiating element 74B is viewed in a plan view from a direction perpendicular to the third plane P3. Since it is configured not to overlap with the feeding point 73Ba of the radiating element 74B, the same effect as the antenna 71A can be obtained. Further, since the main portion 75Bd has a meander shape, the second radiating element 75B is configured to have a long edge length, while the element length of the second radiating element 75B (from the line PP ′ to the second radiating element 75B). The length up to the end of the) can be suppressed. Therefore, the antenna 71B can be made more compact.
  • the tip region 74Bc of the first radiating element 74B is overlapped with the second radiating element 75B, so that impedance matching can be improved.
  • FIG. 23 (b) is a graph showing the frequency dependence of the VSWR of the in-vehicle antenna device 70 (eighth embodiment) provided with the antenna 71A described above.
  • Each of the solid line, the broken line, and the dotted line is similar to the case of (a), in which the antenna 71A is unfolded, the antenna 71A is folded in a U-shape, and the antenna 71A in a folded state is formed on a metal plate. VSWR measured in the superimposed state is shown.
  • the metal plate imitates the roof when the vehicle-mounted antenna device is mounted on the vehicle body. Therefore, it is considered that the VSWR obtained when each of the vehicle-mounted antenna devices 70 according to the fifth and eighth embodiments is actually operated is closest to the VSWR indicated by the dotted line.
  • the antenna 71 is in a state of being expanded, bent in a U shape, or superimposed on a metal plate, and by changing the state, It can be seen that the frequency dependence is greatly different.
  • the antenna 91B is in the unfolded state, the U-shaped bent state, or the superimposed state on the metal plate, even when the state is changed. It can be seen that the frequency dependence of the measured VSWR is stable and its shape is almost unchanged.
  • the antenna 71A can suppress the deterioration of the radiation characteristics caused by bending the antenna into a U shape as compared with the antenna 71.
  • the antenna 71A can suppress deterioration in radiation characteristics that may occur when an antenna folded in a U-shape is superimposed on a metal plate.
  • the antenna 71A can facilitate the adjustment process of adjusting (optimizing) the antenna pattern while feeding back the measured radiation characteristic. This is because there is little difference between the radiation characteristics obtained in the deployed state and the radiation characteristics obtained during operation, and the antenna pattern can be adjusted using the radiation characteristics in the deployed state.
  • FIG. 24A is a perspective view showing an appearance of the vehicle body 101 on which the vehicle-mounted antenna device 110 according to this embodiment is mounted.
  • FIG. 24B is an enlarged plan view of a part of the vehicle body 101 on which the vehicle-mounted antenna device 110 according to this embodiment is mounted. Specifically, it is an enlarged plan view of the in-vehicle antenna device 110 mounted on the vehicle body 101.
  • a vehicle body 101 shown in FIG. 24A is configured in the same manner as the vehicle body 1 shown in FIG. That is, the roof 120 of the vehicle body 101 is configured similarly to the roof 20 of the vehicle body 1. In the following, detailed description of members corresponding to those already described is omitted.
  • the vehicle-mounted antenna device 110 according to the present embodiment is mounted on the rear end of the roof 120 and uses a spoiler as a casing.
  • the hatch gate 121 of the vehicle body 101 is configured in the same manner as the hatch gate 21 of the vehicle body 1 shown in FIG. Therefore, detailed description of the hatch gate 121 is omitted.
  • the hatch gate panel 121a, the rear glass 121b, and the frame body 121c of the hatch gate 121 are members corresponding to the hatch gate panel 21a, the rear glass 21b, and the frame body 21c of the hatch gate 21, respectively.
  • the spoiler fixing part 121 d of the hatch gate 121 is a member corresponding to the spoiler fixing part 21 d of the hatch gate 21.
  • the in-vehicle antenna device 110 is attached to the spoiler fixing portion 121d by fixing means (not shown) (for example, bolts, clips, fasteners, etc.). By fixing to the spoiler fixing portion 121d, the upper surface of the vehicle-mounted antenna device 110 and the upper surface of the entire roof 120 are substantially flush with each other.
  • the in-vehicle antenna device 110 has a spoiler in which an antenna 111 and a stop lamp 119 are built.
  • the antenna 111 is disposed at a position where it does not interfere with the stop lamp 119 inside the spoiler. Specifically, the antenna 111 is disposed offset to the left side of the stop lamp 119, avoiding the stop lamp 119 disposed at the center in the left-right direction of the spoiler.
  • FIG. 25 shows a configuration of the vehicle-mounted antenna device 110 according to the present embodiment.
  • FIG. 25A is an enlarged cross-sectional view of a part of the vehicle body 101 on which the vehicle-mounted antenna device 110 is mounted, and is a cross-sectional view taken along the line AA ′ shown in FIG.
  • FIG. 25B is a developed view in which the antenna 111 provided in the vehicle-mounted antenna device 110 is developed on a plane.
  • the in-vehicle antenna device 110 is configured to be placed in a state where the antenna 111 is bent inside a spoiler which is a casing.
  • fixing means for fixing the antenna 111 inside the vehicle-mounted antenna device 110 include an adhesive sheet, a double-sided tape, a resin fastener, and the like.
  • the fixing means is not limited, but is preferably made of a material that is not a conductor so as not to prevent transmission and reception of electromagnetic waves. A specific method of bending the antenna 111 will be described later with reference to FIG.
  • the antenna 111 includes a first radiating element 115, a second radiating element 114, a connection portion 113 in which a coaxial line (not shown) is connected to the radiating elements 114 and 115, It has.
  • the second radiating element 114 of the antenna 111 is in the direction along the roof 120 from the first power supply point 113b that is one power supply point.
  • the first radiating element 115 is drawn in the forward direction (corresponding to the second direction described in the claims), and the first radiating element 115 intersects the roof 120 from the second feeding point 113a which is the other feeding point.
  • the vehicle body 101 is drawn downward (corresponding to the first direction described in the claims).
  • the second radiating element 114 is an overlapping portion 114a that overlaps the spoiler fixing portion 121d, which is a metal member constituting the rear end portion of the roof 120, and overlaps the spoiler fixing portion 121d in a separated state.
  • An overlapping portion 114 a including the tip of the second radiating element 114 is provided.
  • the length Lx of the overlapping portion 114a is 64.5% or less of the total length of the second radiating element 114, and more preferably 26.0% or more and 55.2% or less of the total length of the second radiating element 114. is there.
  • the length Lx of the overlapping portion in the second radiating element 114 is configured to be 64.5% or less of the total length of the second radiating element 114, whereby the in-vehicle antenna device 110 is configured.
  • the gain in the direction crossing the roof 120 (in this embodiment, the front direction of the vehicle body 101) can be made larger than when the second radiating element 114 does not overlap with the spoiler fixing portion 121d. Further, by configuring the length Lx to be not less than 26.0% and not more than 55.2% of the entire length of the second radiating element 114, the gain in the front direction of the vehicle body 101 can be further increased.
  • the distance Dz between the second radiating element 114 and the spoiler fixing portion 121d in the overlapping portion 114a is less than 18 mm, and more preferably less than 11 mm.
  • the overlapping portion 114a in the second radiating element 114 is overlapped in a state of being separated from the spoiler fixing portion 121d, and the second radiating element 114 and the spoiler fixing portion in the overlapping portion 114a are overlapped.
  • the distance Dz with respect to 121d is less than 18 mm, the gain in the front direction of the vehicle body 101 can be made larger than when the second radiating element 114 does not overlap with the spoiler fixing portion 121d.
  • the distance Dz to be less than 11 mm, the gain of the vehicle body 101 with respect to the front direction can be further increased.
  • the in-vehicle antenna device 110 is configured such that the overlapping portion 114a of the second radiating element 114 is superimposed on the spoiler fixing portion 121d.
  • the in-vehicle antenna device 110 may be fixed to the roof 120.
  • the vehicle-mounted antenna device 110 only needs to be configured such that the overlapping portion 114 a of the second radiating element 114 is superimposed on the metal member that constitutes the roof 120.
  • the total length of the second radiating element 114 and the total length of the first radiating element 115 are not particularly limited, and can be appropriately determined according to the frequency of the electromagnetic wave desired to be radiated from the antenna 111.
  • the length Lx may be determined so as to be within the above-described range based on the total length of the second radiating element 114 determined according to the frequency of the electromagnetic wave desired to be radiated from the antenna 111.
  • the antenna 111 is a film antenna and can be configured as follows, for example. As shown in FIG. 25B, the antenna 111 is obtained by forming an antenna pattern on a dielectric film 112 that is an antenna substrate.
  • An example of the material constituting the dielectric film 112 includes, but is not limited to, for example, polyimide resin.
  • a radiating element including the second radiating element 114 and the first radiating element 115 is formed on the surface of the dielectric film 112.
  • the second radiating element 114 and the first radiating element 115 are thin plate members made of a conductor.
  • copper foil is used as the second radiating element 114 and the first radiating element 115, but is not limited thereto.
  • connection portion 113 provided on the surface of the radiating elements 114 and 115 is a portion where a coaxial line (not shown) is connected to the radiating elements 114 and 115, and includes two feeding points (a pair of feeding points) 113a and 113b.
  • the connection unit 113 is configured similarly to the connection unit 13.
  • a dipole antenna is adopted as the antenna 111, but a loop antenna, a monopole antenna, and an inverted F-type antenna may be used as the antenna 111.
  • Each radiating element may be a planar radiating element like the radiating elements 114 and 115 of the present embodiment, or may be a linear radiating element.
  • the second radiating element 114 is configured by a rectangular conductor, and when the in-vehicle antenna device 110 is mounted on the vehicle body 101, the long side of the rectangle is parallel to the longitudinal direction of the vehicle body 101. It is arranged to be.
  • the first radiating element 115 is a conductor including a bell-shaped head portion 115a and a rectangular neck portion 115d interposed between the head portion 115a and the second feeding point 113a.
  • the head 115a includes two rectangular feed terminals 113a on the side of the second feeding point 113a that are arranged so that their long sides are parallel to the vertical direction of the vehicle body 101 when the vehicle-mounted antenna device 110 is mounted on the vehicle body 101. Obtained by rounding the corners.
  • each of the region 115b and the region 115c including the two corners of the head 115a on the second feeding point 113a side is configured by a quadrant ellipse.
  • the first radiating element 115 includes the head portion 115a, the distance between the second radiating element 114 and the first radiating element 115 can be continuously changed. As a result, the resonance frequency of the antenna 111 can be adjusted, and the operating band can be adjusted.
  • the antenna 111 is valley-folded along the B-B ′ line and the C-C ′ line shown in FIG. As a result, an antenna 111 bent into a U-shape (or a U-shape) in which the dielectric film 112 is disposed on the outside and the radiating elements 114 and 115 are disposed on the inside is formed.
  • the in-vehicle antenna device 110 employs a configuration in which an antenna 111 bent in a U shape is fixed along an inner wall of a spoiler as a housing.
  • the vehicle-mounted antenna apparatus 110 with smaller size (low profile) is realizable.
  • the shapes of the second radiating element 114 and the second radiating element are not limited to these.
  • a conductor formed of a bell-shaped head, a rectangular neck interposed between the head and the first feeding point 113b may be employed.
  • a rectangular conductor can be adopted as the first radiating element 115.
  • the shape of the region 115b and the region 115c is such that the distance between the second radiating element 114 and the first radiating element 115 increases as the long side of the second radiating element is approached from the second feeding point 113a. It does not need to be a quadrant ellipse.
  • the ninth example of the vehicle-mounted antenna device 110 according to the sixth embodiment of the present invention will be described below.
  • the in-vehicle antenna device 110 according to this example is the same as the in-vehicle antenna device 110 according to the sixth embodiment of the present invention, in which the total length of the second radiating element 114 is 120 mm and the total length of the first radiating element 115 is the same. 44 mm, the length Lx of the overlapping portion 114 a is 60 mm, and the distance Dz is 10 mm. That is, in the present embodiment, the length Lx is 50.0% of the entire length of the second radiating element 114.
  • the vehicle-mounted antenna device 110 includes the rear end of the roof 120 of the hatchback type vehicle body 101, more specifically, a hatch. It is mounted on the top of the gate.
  • an electromagnetic wave radiated from the antenna 111 an electromagnetic wave having a frequency called an 800 MHz band for LTE (specifically, 832 MHz) was used.
  • a vehicle-mounted antenna device 110 in which the length Lx of the overlapping portion of the second radiating element is 0 mm is used.
  • the total length of the first radiating element, the total length of the second radiating element, and the interval Dz are the same as those of the vehicle-mounted antenna device 110 according to the present example.
  • the vehicle-mounted antenna device 110 according to this example can increase the radiation gain with respect to the front of the vehicle body 101 as compared with the vehicle-mounted antenna device according to the comparative example. That is, when the in-vehicle antenna device 110 having the length Lx of 60 mm is mounted on the end of the roof 120 of the vehicle body 101, the radiation gain in the direction crossing the roof 120 is compared with the length Lx being 0 mm. It turned out that it is higher than the vehicle-mounted antenna device according to the example.
  • Each of the vehicle-mounted antenna devices 110 according to the seventh to eleventh modifications is obtained by changing the length Lx to 30 mm, 40 mm, 50 mm, 70 mm, and 90 mm with the interval Dz being 10 mm.
  • the radiation gain with respect to the front of the vehicle body 101 and the radiation gain with respect to the rear in the xy plane were respectively obtained by numerical calculation. .
  • FIG. 26 is a radiation gain obtained by the vehicle-mounted antenna device 110 according to the ninth embodiment, the seventh to eleventh modifications, and the comparative example of the present invention, in the xy plane.
  • 4 is a graph showing the correlation between the length Lx and each of the radiation gain with respect to the front of the vehicle body 101 and the radiation gain with respect to the rear.
  • the radiation gain obtained by the vehicle-mounted antenna device according to the comparative example was ⁇ 6.35 dB with respect to the front of the vehicle body 101 and ⁇ 1.21 dB with respect to the rear of the vehicle body 101.
  • the radiation gain with respect to the front of the vehicle body 101 and the radiation gain with respect to the rear may both start to decrease and then decrease as the length Lx increases from 0 mm. I understood.
  • the radiation gains obtained by the vehicle-mounted antenna device 110 according to the seventh modification and the vehicle-mounted antenna device according to the comparative example are the same as those of the ninth embodiment and the eighth to eleventh modifications. It was found that the fitting is better performed by a function system different from the radiation gain obtained by the vehicle-mounted antenna device 110. Therefore, FIG. 26B shows only the result of fitting the radiation gain obtained by the vehicle-mounted antenna device 110 according to the ninth embodiment and the eighth to eleventh modifications.
  • the vertical axis in FIG. 26B plots the radiation gain of the in-vehicle antenna device 110 as a ratio of the radiated power radiated from the in-vehicle antenna device 110 to the input power input to the in-vehicle antenna device 110. ing.
  • a radiation gain of 6.35 dB with respect to the front of the vehicle body 101 obtained by the vehicle-mounted antenna device according to the comparative example is a ratio of the power radiated from the vehicle-mounted antenna device 110 to the input power input to the vehicle-mounted antenna device 110. This is 0.2316.
  • the length Lx corresponding to 0.2316 was found to be 77.35 mm. Therefore, the length Lx in the vehicle-mounted antenna device 110 according to the present invention is determined to be 64.5% or less of the entire length of the second radiating element 114.
  • the radiation gain obtained by the vehicle-mounted antenna device 110 configured to include the length Lx within this range, and the radiation gain with respect to the rear of the vehicle body 101 is obtained by the vehicle-mounted antenna device according to the comparative example. It was found that the obtained radiation gain exceeded the radiation gain for the rear of the vehicle body 101 (see FIG. 26A). Therefore, the vehicle-mounted antenna device 110 of the present invention can increase the radiation gain with respect to the front of the vehicle body 101 without deteriorating the radiation gain with respect to the rear of the vehicle body 101, as compared with the vehicle-mounted antenna device of the comparative example. .
  • ⁇ 5.0 dB which is a more preferable radiation gain for the in-vehicle antenna device 110, is 0.3162 when expressed as a ratio of the radiated power radiated from the in-vehicle antenna device 110 to the input power input to the in-vehicle antenna device 110. It is. According to (b) of FIG. 26, it was found that the length Lx corresponding to 0.3162 was 31.18 mm or more and 66.28 mm or less. Therefore, the length Lx in the vehicle-mounted antenna device 110 according to one embodiment of the present invention is preferably 26.0% or more and 55.2% or less of the entire length of the second radiating element 114.
  • Each of the vehicle-mounted antenna devices 110 according to the twelfth to fifteenth modified examples has a length Lx of 60 mm and a distance Dz modified to 2.5 mm, 5.0 mm, 20 mm, and 40 mm. is there.
  • the radiation gain with respect to the front of the vehicle body 101 and the radiation gain with respect to the rear in the xy plane were respectively obtained by numerical calculation. .
  • FIG. 27A is a radiation gain obtained by the vehicle-mounted antenna device 110 according to the ninth embodiment and the twelfth to fifteenth modified examples of the present invention, and shows the vehicle body 101 in the xy plane. It is a graph which shows the correlation with each of the radiation gain with respect to the front, the radiation gain with respect to back, and the space
  • the distance Dz is preferably as small as possible within a range in which the vehicle-mounted antenna device 110 can be fixed to the spoiler fixing portion 121d.
  • the radiation gain obtained by the vehicle-mounted antenna device 110 according to the twelfth to thirteenth modified examples is the vehicle-mounted antenna device 110 according to the ninth example and the fourteenth to fifteenth modified examples. It is found that the fitting is better with a different function system than the radiation gain obtained by. Therefore, FIG. 27B shows only the result of fitting the radiation gain obtained by the vehicle-mounted antenna device 110 according to the ninth embodiment and the fourteenth to fifteenth modifications.
  • the vertical axis of FIG. 27B plots the radiation gain of the in-vehicle antenna device 110 as the ratio of the radiated power radiated from the in-vehicle antenna device 110 to the input power input to the in-vehicle antenna device 110. ing.
  • the radiation gain obtained by the vehicle-mounted antenna device according to the comparative example and the radiation gain with respect to the front of the vehicle body 101, that is, ⁇ 6.35 dB was used.
  • This radiation gain -6.35 dB is 0.2316 when expressed as a ratio of the radiation power radiated from the vehicle-mounted antenna device 110 to the input power input to the vehicle-mounted antenna device 110.
  • the distance Dz corresponding to 0.2316 was found to be 18 mm (2 significant digits, 17.94 mm in terms of 4 significant digits). Therefore, the distance Dz in the vehicle-mounted antenna device 110 according to the present invention is set to be less than 18 mm.
  • ⁇ 5.0 dB which is a more preferable radiation gain for the in-vehicle antenna device 110, is 0.3162 when expressed as a ratio of the radiated power radiated from the in-vehicle antenna device 110 to the input power input to the in-vehicle antenna device 110. It is. According to (b) of FIG. 27, it was found that the distance Dz corresponding to 0.3162 was 11 mm (2 significant digits, 10.94 mm in terms of 4 significant digits). Therefore, the interval Dz in the vehicle-mounted antenna device 110 according to one embodiment of the present invention is preferably less than 11 mm.
  • FIG. 28A is a perspective view showing an appearance of a vehicle body 201 on which the vehicle-mounted antenna device 210 is mounted, which is an example of the vehicle-mounted antenna device according to the present embodiment.
  • the vehicle-mounted antenna device 210 is a vehicle-mounted antenna device having a spoiler 211 as a housing, and is mounted on the rear end of the roof 202.
  • the upper side of the vehicle body 201 is constituted by a pillar 203 and window glasses 204a to 204c assembled to the front door and the rear door.
  • the pillar 203 includes an A pillar 203a, a B pillar 203b, a C pillar 203c, and a D pillar 203d.
  • the window glass 204a is a window that is attached to the front door so that it can be opened and closed.
  • the window glass 204b is a window that is attached to the rear door so as to be freely opened and closed.
  • the window glass 204c is a window provided between the C pillar 203c and the D pillar 203d, and is a fitting type window glass.
  • the A pillar 203a supports the roof 202 and the windshield.
  • the B pillar 203b is disposed inside the front door and the rear door, supports the roof 202, and increases the strength of the opening provided with the installation of the front door and the rear door.
  • the C pillar 203c and the D pillar 203d support the roof 202 and hold the window glass 204c.
  • the hatch gate 205 of the vehicle body 201 is configured in the same manner as the hatch gate 21 of the vehicle body 1 shown in FIG. Therefore, detailed description of the hatch gate 205 is omitted.
  • Each of the hatch gate panel 251, the rear glass 252, and the frame body 253 of the hatch gate 205 is a member corresponding to each of the hatch gate panel 21 a, the rear glass 21 b, and the frame body 21 c of the hatch gate 21.
  • the spoiler fixing part 254 of the hatch gate 251 is a member corresponding to the spoiler fixing part 21 d of the hatch gate 21.
  • the spoiler 211 is attached to the spoiler fixing portion 254 by fixing means (not shown) such as a bolt.
  • fixing means such as a bolt.
  • the antenna 214 is disposed at a position where it does not interfere with the stop lamp 211a inside the spoiler 211. Specifically, the antenna 214 is disposed on the left side of the stop lamp 211a, avoiding the stop lamp 211a disposed in the center of the spoiler 211 in the left-right direction. In other words, the radiating element 212 is disposed between one of the vertical columns 253a and the stop lamp 211a of the pair of vertical columns constituting the frame body 253.
  • the vertical column 253 a is a metal structure that is electrically connected to the spoiler fixing part 254, and is a structure that extends in a direction intersecting the roof 202.
  • FIG. 28B is an enlarged cross-sectional view of a part of the vehicle body 201 on which the vehicle-mounted antenna device 210 is mounted, and is a cross-sectional view in the yz plane passing through the radiating element 212 shown in FIG. .
  • FIG. 29 is a developed view in which the radiation element 212 provided in the vehicle-mounted antenna device 210 is developed in a plane.
  • the in-vehicle antenna device 210 is configured to place the radiating element 212 in a state of being folded inside the spoiler 211.
  • an antenna 214 having a radiating element 212 formed on a dielectric film 213 is formed into a U-shape (the radiating element 212 is disposed on the inner peripheral side, and the dielectric film 213 is disposed on the outer peripheral side. Alternatively, it is bent into a U-shape and fixed inside the spoiler 211.
  • fixing means for fixing the antenna 214 inside the spoiler 211 include an adhesive sheet, a double-sided tape, a resin fastener, and the like.
  • the fixing means is not limited, but is preferably made of a material that is not a conductor so as not to prevent transmission and reception of electromagnetic waves. A specific method of bending the radiating element 212 will be described later with reference to FIG.
  • the vehicle-mounted antenna apparatus 210 is mounted in the rear end of the roof 202.
  • the end portion of the roof 202 on which the vehicle-mounted antenna device 210 is mounted is not limited to the rear end, and depends on the shape of the vehicle body and the shape of the casing of the vehicle-mounted antenna device 210 (the spoiler 211 in this embodiment). It can be changed as appropriate.
  • the antenna 214 includes a radiating element 212, a dielectric film 213, and a connecting portion 212 b that connects a coaxial line (not shown) and the radiating element 212.
  • the radiating element 212 is formed on the dielectric film 213.
  • An example of the material constituting the dielectric film 213 includes, but is not limited to, for example, a polyimide resin.
  • the radiating element 212 formed on the surface of the dielectric film 213 includes a first radiating element 212c and a second radiating element 212d.
  • the first radiating element 212c and the second radiating element 212d are thin plate members made of a conductor.
  • copper foil is used as the first radiating element 212c and the second radiating element 212d, but is not limited thereto.
  • the connecting portion 212b is a portion where a coaxial line (not shown) is connected to the first and second radiating elements 212c and 212d, and includes two feeding points (a first feeding point 212b1 and a second feeding point that are a pair of feeding points). It consists of a feeding point 212b2).
  • the connection part 212b is configured similarly to the connection part 13.
  • a dipole antenna is used as the radiating element 212, but a loop antenna, a monopole antenna, and an inverted F-type antenna may be used as the radiating element 212.
  • Each radiating element may be a planar antenna pattern as in the first and second radiating elements 212c and 212d of the present embodiment, or may be a linear antenna pattern.
  • a bell-shaped copper foil is employed as the first radiating element 212c, and a rectangular copper foil is employed as the second radiating element 212d.
  • the bell-shaped first radiating element 212c is based on a rectangular copper foil.
  • the bell-shaped first radiating element 212c replaces each of two corners of the rectangular copper foil adjacent to the second radiating element 212d with a quadrant ellipse 212c2 and a quadrant ellipse 212c3. Can be obtained.
  • the distance between the feeding point vicinity 212c1 of the first radiating element 212c and the second radiating element 212d can be continuously changed. .
  • the resonance frequency of the radiating element 212 can be adjusted, and the operating band can be adjusted.
  • the radiating element 212 is valley-folded along the BB ′ line and the CC ′ line shown in FIG. 29, and is folded into a U shape as shown in FIG. Fixed to. Further, when the vehicle-mounted antenna device 210 is mounted on the rear end of the vehicle body 201, the radiating element 212 is in a direction (corresponding to the first direction described in claims) from the first feeding point 212b1 to the roof 202. A metal member that has a portion to be pulled out and at least a part of the radiating element 212 forms the rear end of the roof 202 or an antenna fixing portion 254 for fixing the vehicle-mounted antenna device 210 to the rear end of the roof 202 It is determined to overlap with each other along and apart from each other.
  • the first radiating element 212c is the first feeding point 212b1.
  • the second radiating element 212d is a second feeding point.
  • 212b2 is pulled out in the forward direction (corresponding to the second direction described in the claims) which is the direction along the roof 202, and (3) the overlapping portion 212d1 which is a part of the radiating element 212 is a spoiler fixing portion.
  • a configuration superposed on H.254 is employed.
  • the overlapping portion 212d1 overlaps the spoiler fixing portion 254, which is a metal member constituting the rear end portion of the roof 202, and overlaps in a state of being separated from the spoiler fixing portion 254, from the middle of the second radiating element 212d. This is the part up to the end.
  • the feeding point vicinity 212c1 Since the feeding point vicinity 212c1 is drawn downward from the first feeding point 212b1, the direction of the current flowing through the feeding point vicinity 212c1 is mainly the vertical direction. Therefore, the feeding point vicinity 212c1 radiates vertically polarized waves.
  • the vertical polarization crosses the roof 202, the vertical polarization is less susceptible to the attenuation effect by the roof 202 than the horizontal polarization.
  • the in-vehicle antenna device 210 is mounted on the rear end of the roof 202, the radiation gain with respect to the front direction of the vehicle body 201 is lost due to the attenuation effect of the roof 202. This can be suppressed.
  • the vertical column 253 a extends in the direction intersecting the roof 202, that is, the vertical direction of the vehicle body 201. Therefore, the direction of the induced current flowing through the vertical column 253a is mainly the vertical direction. Therefore, the vertical column 253a radiates vertically polarized waves. That is, when mounted on the rear end of the roof 202, the vehicle-mounted antenna device 210 can radiate vertically polarized waves that are not easily affected by the roof 202 from not only the radiating element 212 but also the vertical column 253a. it can.
  • the position of the radiation element 212 in the vehicle-mounted antenna device 210 is determined from the vertical column 253a when the vehicle-mounted antenna device 210 is mounted on the vehicle body 201. Is set so as to be not less than 1/3 times and not more than 2/3 times the wavelength ⁇ o of the center frequency of the operating band of the radiation element 212.
  • the gain of vertical polarization with respect to the forward direction is greater than the same gain obtained when the vertical column 253a is omitted.
  • the shortest distance from the vertical column 253a to the radiating element 212 is set to 1/3 times or more and 2/3 times or less of the wavelength ⁇ o of the center frequency of the operation band, so This is probably because the vertically polarized waves radiated and the vertically polarized waves radiated from the vertical columns 253a interfere with each other so as to strengthen each other.
  • the vehicle-mounted antenna device 210 according to the present embodiment, a vehicle-mounted antenna device with an increased vertical polarization gain with respect to the front direction of the vehicle body 201 can be realized using the vertical column 253a. Therefore, the vehicle-mounted antenna device 210 can be suitably used as a vehicle-mounted antenna device that uses a frequency band with a short wavelength represented by an electromagnetic wave for LTE.
  • the shortest distance from the vertical column 253a to the radiating element 212 is 1/2 times the wavelength ⁇ o of the center frequency of the operation band. According to this configuration, the vertical polarization gain with respect to the front direction of the vehicle body 201 can be further increased by using the vertical column 253a.
  • the spoiler 211 is described as being fixed to the spoiler fixing portion 254, but the spoiler 211 may be directly fixed to the roof 202.
  • the D pillar 203d extending in the vertical direction of the vehicle body 201 functions as a metal structure.
  • the position of the radiating element 212 in the in-vehicle antenna device 210 is the wavelength ⁇ o at which the shortest distance from the D pillar 203d to the radiating element 212 is the center frequency of the operating band when the in-vehicle antenna device 210 is mounted on the vehicle body 201. It is only necessary to be set to be 1/3 times or more and 2/3 times or less.
  • the metal structure is preferably a member constituting the vehicle body 201 such as the vertical column 253a and the D pillar 203d. However, the metal structure is installed on the spoiler fixing portion 254 or the roof 202 and intersects the roof 202. Any of a conductor plate, a conductor rod, and a conductor pipe extending in the direction may be used.
  • the installation method according to an embodiment of the present invention is a method of installing the vehicle-mounted antenna device 210 at the end of the roof 202 of the vehicle body 201 so as to satisfy the following three conditions.
  • the radiating element 212 is drawn out in a direction intersecting the roof 202 from one feeding point (corresponding to a first direction described in claims).
  • At least a part of the radiating element 212 is superposed on the roof 202 or the antenna fixing portion 254 for fixing the vehicle-mounted antenna device 210 to the rear end of the roof 202.
  • Condition 3 a metal structure (vertical column 253a in the present embodiment) that is electrically connected to the roof 202 or the antenna fixing portion 254, and the shortest distance from the structure extending in the direction intersecting the roof 202 to the radiating element 212 Dx is not less than 1/3 times and not more than 2/3 times the wavelength ⁇ o of the center frequency of the operating band of the radiating element 212.
  • the same effect as the vehicle-mounted antenna device 210 can be obtained.
  • FIG. 30A is a top view showing a configuration of a model of the vehicle body 201 equipped with the vehicle-mounted antenna device 210 used for calculating the radiation gain of the vehicle-mounted antenna device 210 in a series of examples.
  • FIG. 30B is a side view showing the configuration of the model.
  • FIG. 31A is an enlarged top view of a part of the model shown in FIG.
  • FIG. 31B is an enlarged side view of a part of the model shown in FIG.
  • FIG. 32 is a graph showing the radiation gain of the vehicle-mounted antenna device 210 according to each of a series of examples, and the radiation gain with respect to the front direction of the vehicle body 201.
  • the spoiler 211 that is the housing of the vehicle-mounted antenna device 210 is omitted and not shown in order to facilitate understanding of the relationship between the radiating element 212 and the vertical column 253a.
  • the radiating element 212 is arranged at the rear end of the roof 202 and shifted to the left from the center in the left-right direction of the vehicle body 201.
  • the frequency of the high-frequency signal input to the radiating element 212 is 832 MHz. Therefore, the wavelength ⁇ o of the center frequency of the operating band of the radiating element 212 is 360 mm when expressed in three significant digits.
  • FIG. 32 is a graph showing the shortest distance Dx dependency of the forward radiation gain of the vehicle-mounted antenna device 210 mounted on the vehicle body 201 shown in FIG.
  • the “forward radiation gain” refers to an average radiation gain obtained by averaging the radiation gain of vertically polarized waves in the xy plane within a range of ⁇ 30 ° with respect to the positive y-axis direction.
  • FIG. 32 also shows, as a comparative example, the front radiation gain of the vehicle-mounted antenna device 210 mounted on the vehicle body 1101 shown in FIG.
  • the front radiation gain of the vehicle-mounted antenna device 210 mounted on the vehicle body 1101 shown in FIG. 33 decreases approximately monotonously as Dx increases from 0 mm.
  • the shortest distance Dx from the vertical column 253a to the radiating element 212 is approximately 1/3 to 2/3 times the wavelength ⁇ o of the center frequency of the operating band of the radiating element 212 (more accurately 36.1% to 69.4%), the forward radiation gain obtained when the vertical column 253a is omitted is greater than the forward radiation gain obtained.
  • the shortest distance Dx from the vertical column 253a to the radiating element 212 is set to be 1/3 times or more and 2/3 times or less the wavelength ⁇ o of the center frequency of the operating band of the radiating element 212. This is probably because the vertically polarized wave radiated and the vertically polarized wave radiated forward from the vertical column 253 interfere with each other so as to strengthen each other.
  • the shortest distance Dx from the vertical column 253a to the radiating element 212 is approximately 1 ⁇ 2 times the wavelength ⁇ o of the center frequency of the operating band of the radiating element 212 (more precisely, 48.6). %), The forward radiation gain becomes maximum.
  • FIG. 34 is a graph showing the shortest distance Dx dependency of the forward radiation gain of the vehicle-mounted antenna device 210 of the present modification and the shortest distance Dx dependency of the forward radiation gain of the vehicle-mounted antenna device 210 according to a series of examples. It is.
  • the front radiation gain of the vehicle-mounted antenna device 210 of this modification is larger than the front radiation gain of the vehicle-mounted antenna device 210 of a series of embodiments in the entire region of 100 mm ⁇ Dx ⁇ 300 mm.
  • the interval Dz is not limited to 10 mm and can be set as appropriate.
  • the reason why the forward radiation gain of the vehicle-mounted antenna device 210 is increased by changing the distance Dz from 10 mm to 5 mm is that the radiation element 212 approaches the spoiler fixing portion 254 and the current flowing through the spoiler fixing portion 254 and the vertical column 253a. This is probably because the current was increased and the vertically polarized component radiated from the vertical column 253a was increased.
  • FIG. 35 is a graph showing the shortest distance Dx dependency of the forward radiation gain of the vehicle-mounted antenna device 210 according to the sixteenth modified example and the vehicle-mounted antenna device 210 according to the seventeenth modified example.
  • each of the front radiation gain of the vehicle-mounted antenna device 210 of the sixteenth modification and the front radiation gain of the vehicle-mounted antenna device of the seventeenth modification is a series of It can be seen that the same tendency is shown although it is slightly lower than the forward radiation gain of the vehicle-mounted antenna device of the example. Therefore, in the vehicle-mounted antenna device 210 of the present embodiment, it can be seen that the length Ly is not limited to 60 mm and can be set as appropriate.
  • the length Ly along the front-rear direction of the vehicle body 101 of the overlapping portion 212d1 is 60 mm. It is preferable that In other words, the length Ly is preferably 1/3 times the wavelength ⁇ o of the center frequency of the operating band. According to this configuration, it has been found that the longitudinal radiation gain of the vertically polarized wave with respect to the front direction of the vehicle body 101 can be further increased using the vertical column 253a.
  • the in-vehicle antenna device is pulled out from one of the pair of feeding points in the first direction in the in-vehicle antenna device disposed at the end of the roof of the vehicle body.
  • the first direction is a direction that intersects a horizontal plane when the vehicle-mounted antenna device is mounted on the vehicle body.
  • the 1st direction where a radiation element is pulled out from one feeding point is a direction (for example, direction orthogonal to a roof) when a vehicle-mounted antenna apparatus is mounted in a vehicle body.
  • a direction for example, direction orthogonal to a roof
  • the proportion of the vertically polarized component contained in the radiated electromagnetic wave can be increased as compared with the prior art (the on-vehicle antenna device described in Patent Document 1).
  • the vehicle-mounted antenna apparatus with a larger radiation gain than the past in the direction which crosses a roof is realizable.
  • this vehicle-mounted antenna device is arranged at the rear end of the roof, it is possible to realize a vehicle-mounted antenna device that has a larger radiation gain to the front of the vehicle body than before.
  • the second direction is preferably a direction along the horizontal plane when the vehicle-mounted antenna device is mounted on the vehicle body.
  • the radiating element further includes a superimposing portion that overlaps with the metal member forming the end of the roof and is separated from the metal member. It is preferable.
  • the roof made of a conductor can be used as the ground of the radiating element. Thereby, the radiation gain in the direction crossing the vehicle body can be increased.
  • the width of the portion of the radiating element that is drawn from the one feeding point in the first direction is 1 ⁇ 2 or less of the shortest wavelength of the electromagnetic wave radiated from the antenna. It is preferable that there is.
  • the direction of the current flowing through the radiating element in the vicinity of one feeding point can be restricted to the first direction. Therefore, it is possible to realize an in-vehicle antenna device that has a radiation gain in a direction crossing the roof that is larger than that in the past.
  • the antenna is preferably a dipole antenna.
  • the first radiating element is disposed on a first portion disposed on a first surface intersecting the horizontal plane and a second surface intersecting the first surface.
  • the second radiating element is disposed on a third surface along the horizontal plane and facing the second surface.
  • the radiating element can be bent into a U shape, the volume of the space required for the arrangement of the radiating element can be reduced. Therefore, a smaller in-vehicle antenna device can be realized as compared with the case where the radiating element is not bent.
  • the second radiating element has a shape in which a notch or a concave shape is formed on a long side portion of a rectangle.
  • the length of the contour portion (referred to as a long edge) corresponding to the long side portion of the second radiating element is It can be secured for a long time.
  • the length of the long edge matched to the low frequency side band of the operating band of the in-vehicle antenna device can be ensured.
  • the operating band of the antenna can be effectively widened particularly on the low frequency side.
  • the one feeding point is disposed on the third surface and in the vicinity of the intersection with the first surface, When the radiating element is viewed in plan from a direction orthogonal to the third surface, it is preferable that the one feeding point and the second portion do not overlap.
  • the second portion of the first radiating element is configured not to overlap the feeding point (one feeding point) of the first radiating element, in the first radiating element, the capacitance formed between the second portion and the feeding point can be suppressed. As a result, it is possible to suppress deterioration in radiation characteristics caused by bending the antenna from a flat state.
  • the in-vehicle antenna device does not overlap the second radiating element and the second portion when the radiating element is viewed in a plan view from a direction orthogonal to the third surface. It is preferable.
  • the in-vehicle antenna device is a pair of feeding points when the in-vehicle antenna device is mounted on the vehicle body.
  • the first radiating element drawn out from one feeding point in a first direction that intersects the horizontal plane, and the second radiating element drawn out from the other feeding point in a second direction that runs along the horizontal plane.
  • an radiating element is an overlapping portion that overlaps with the metal member constituting the end of the roof and is separated from the metal member, and the tip of the second radiating element And the length of the overlapping portion is 64.5% or less of the total length of the second radiating element.
  • the gain with respect to the direction crossing the roof as viewed from the in-vehicle antenna device (for example, when the in-vehicle antenna device is disposed at the rear end of the vehicle body of the roof, Can be made larger than when the first radiating element does not overlap with the metal member.
  • a distance between the first radiating element and the metal member in the overlapping portion is less than 18 mm.
  • the gain in the direction crossing the roof as viewed from the in-vehicle antenna device can be made larger than when the first radiating element does not overlap the metal member.
  • the in-vehicle antenna device includes a pair of feeding points when the in-vehicle antenna device is mounted on the vehicle body.
  • An antenna having a radiating element is included. The position of the radiating element in the vehicle-mounted antenna device is determined when the vehicle-mounted antenna device is mounted on the vehicle body.
  • At least a part of the radiating element overlaps with a metal member constituting the end of the roof and is separated from the metal member, and (2) the roof A metal structure electrically connected to the end portion, wherein the shortest distance from the structure extending in the direction intersecting the horizontal plane to the radiating element is at least 1/3 times the wavelength of the center frequency of the operating band of the radiating element It is determined to be 2/3 times or less.
  • the shortest distance from the structure to the radiating element is 1/3 times or more and 2/3 times or less the wavelength of the center frequency of the operating band of the radiating element.
  • the vertical polarization gain with respect to the direction crossing the roof as viewed from the radiating element is larger than the gain obtained when the structure is omitted. This is because the shortest distance from the structure to the radiating element is 1/3 times or more and 2/3 times or less the wavelength of the center frequency of the operating band of the radiating element, so that the roof is viewed from the radiating element. This is probably because the vertically polarized wave radiated from the radiating element and the vertically polarized wave radiated from the structure interfere with each other so as to strengthen each other.
  • the gain of vertical polarization with respect to the direction crossing the roof as viewed from the radiating element is increased by using a metal structure (for example, a pillar) that configures the vehicle body.
  • a vehicle-mounted antenna device can be realized.
  • the structure may be a pillar.
  • the vehicle-mounted antenna device has a spoiler as a casing or is used as a spoiler of the vehicle body.
  • the radiation gain in the direction crossing the roof as viewed from the radiating element is less than before without damaging the aesthetics and aerodynamic characteristics of the vehicle body and without affecting the appearance of the vehicle body at all.
  • a large in-vehicle antenna device can be realized.
  • the present invention can be used for an in-vehicle antenna device disposed at an end of a roof of a vehicle body.

Landscapes

  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

車載用アンテナ装置(1)は、ルーフ(20)の端部に配置される車載用アンテナ装置(10)において、一方の給電点(13a)から第1の方向に引き出され、他方の給電点(13b)から第2の方向に引き出された放射素子(14,15)を有するアンテナ(11)を備えている。上記第1の方向は、車載用アンテナ装置(10)を車体(1)に搭載したときに水平面に交わる方向である。

Description

車載用アンテナ装置
 本発明は、車体のルーフの端部に配置される車載用アンテナ装置に関する。
 車載用アンテナ装置として、引用文献1に示すように、車体のルーフの後端に配置されたスポイラーの内部にアンテナを内蔵したアンテナ装置が知られている。引用文献1の車載用アンテナ装置では、車体に取り付けられたスポイラーの内部に、デジタルテレビ用アンテナの放射素子とラジオ用アンテナの放射素子とが水平になるように内蔵されている。
日本国公開特許公報「特開2008-283609号公報」(2008年11月20日公開)
 しかしながら、特許文献1に記載の車載用アンテナ装置のアンテナ構造では、車体前方への放射利得が小さいという問題があった。
 本発明は、以上の問題に鑑みてなされたものであり、その目的は、車体のルーフの端部に搭載した場合に、ルーフを横断する方向への放射利得が従来よりも大きい車載用アンテナ装置を実現することである。
 上記の課題を解決するために、本発明の一態様に係る車載用アンテナ装置は、車体のルーフの端部に配置される車載用アンテナ装置において、一対の給電点のうち一方の給電点から第1の方向に引き出された第1の放射素子と、他方の給電点から上記第1の方向とは異なる第2の方向に引き出された第2の放射素子とを含む放射素子を有するアンテナ、又は、一対の給電点のうち一方の給電点から第1の方向に引き出され、且つ、他方の給電点から上記第1の方向とは異なる第2の方向に引き出された単一の放射素子を有するアンテナ、を備えている。上記第1の方向は、当該車載用アンテナ装置を上記車体に搭載したときに水平面に交わる方向である、ことを特徴とする。
 なお、上記放射素子は、一方の給電点を含む区間が第1の方向に引き出され、他方の給電点を含む区間が第2の方向に引き出されていればよく、これらの区間以外での上記放射素子の延伸方向は特に限定されない。例えば、上記アンテナがダイポールアンテナである場合、一方の給電点を含む第1の放射素子の始端部が第1の方向に引き出され、他方の給電点を含む第2の放射素子の始端部が第2の方向に引き出されていればよく、第1の放射素子の終端部及び第2の放射素子の終端部の延伸方向は任意である。例えば、(1)第1の放射素子の終端部及び第2の放射素子の終端部を共に車体前方に延伸させる構成(後述する第1の実施形態及び第3の実施形態参照)、(2)第1の放射素子の終端部を車体右方に延伸させ、第2の放射素子の終端部を車体左方に延伸させる構成(後述する第2の実施形態参照)、(3)第1の放射素子の終端部を車体前方に延伸させ、第2の放射素子の終端部を車体後方に延伸させる構成(後述する第4の実施形態参照)などが考えられる。
 上記の課題を解決するために、本発明の一態様に係る車載用アンテナ装置は、車体のルーフの端部に配置される車載用アンテナ装置において、当該車載用アンテナ装置を上記車体に搭載したときに、一対の給電点のうち一方の給電点から水平面に交わる方向である第1の方向に引き出された第1の放射素子と、他方の給電点から上記水平面に沿う方向である第2の方向に引き出された第2の放射素子とを有するアンテナを備えている。上記第2の放射素子は、上記ルーフの上記端部を構成する金属部材に沿い、且つ、上記金属部材に離間した状態で重畳する重畳部であって、該第2の放射素子の先端を含む重畳部を有し、上記重畳部の長さは、上記第2の放射素子の全長の64.5%以下である、ことを特徴とする。
 上記の課題を解決するために、本発明の一態様に係る車載用アンテナ装置は、車体のルーフの端部に搭載される車載用アンテナ装置において、当該車載用アンテナ装置を上記車体に搭載したときに、一対の給電点のうち一方の給電点から水平面に交わる方向である第1の方向に引き出された第1の放射素子と、他方の給電点から上記第1の方向と異なる方向である第2の方向に引き出された第2の放射素子とを含む放射素子を有するアンテナを備えている。当該車載用アンテナ装置における上記放射素子の位置は、当該車載用アンテナ装置を上記車体に搭載したときに、(1)上記放射素子の少なくとも一部が上記ルーフの上記端部を構成する金属部材に沿い、且つ、上記金属部材に対して離間した状態で重畳するように、かつ、(2)上記ルーフの上記端部と導通する金属製の構造体であって、上記水平面に交わる方向に伸びる構造体から上記放射素子までの最短距離が上記放射素子の動作帯域の中心周波数の波長の1/3倍以上2/3倍以下となるように定められている、ことを特徴とする。
 本発明によれば、ルーフを横断する方向への放射利得が従来よりも大きい車載用アンテナ装置を実現することができる。
(a)は、本発明の第1の実施形態に係る車載用アンテナ装置を搭載する車体の外観を示す斜視図であり、(b)は、上記車載用アンテナ装置を搭載する上記車体の一部拡大平面図である。 (a)は、上記車載用アンテナ装置を搭載する上記車体の一部を拡大した矢視断面図であって、図1の(b)に示すA-A’線に沿う矢視断面図である。(b)は、上記車載用アンテナ装置が備えているアンテナの展開図である。 (a)は、第2の実施形態に係る車載用アンテナ装置を搭載する車体の一部拡大平面図である。(b)は、上記車載用アンテナ装置を搭載する上記車体の一部を拡大した矢視断面図であって、(a)に示すL-L’線に沿う矢視断面図である。 (a)は、本発明の第3の実施形態に係る車載用アンテナ装置を搭載する車体の矢視断面図である。(b)は、上記車載用アンテナ装置が備えているアンテナの展開図である。 (a)は、第4の実施形態に係る車載用アンテナ装置を搭載する車体の一部を拡大した矢視断面図である。(b)は、上記車載用アンテナ装置が備えているアンテナの展開図である。 (a)は、本発明の第1の変形例に係るアンテナの展開図であり、(b)は、当該アンテナの矢視側面図である。(c)は、本発明の第2の変形例に係るアンテナの展開図であり、(d)は、当該アンテナの矢視側面図である。 第3の変形例に係るアンテナの展開図である。 第3の変形例に係る別のアンテナの展開図である。 第4の変形例に係るアンテナの展開図である。 第1の実施例に係る車載用アンテナ装置によって得られたxy平面における放射利得の方向依存性を示すグラフである。 第2の実施例に係る車載用アンテナ装置によって得られたxy平面における放射利得の方向依存性を示すグラフである。 第3の実施例に係る車載用アンテナ装置によって得られたxy平面における放射利得の方向依存性を示すグラフである。 第4の実施例に係る車載用アンテナ装置によって得られたS21を示すグラフである。 第5の実施形態に係る車載用アンテナ装置を搭載する車体の一部を拡大した、図1の(b)のA-A’線に沿う矢視断面図である。 図14に示す車載用アンテナ装置が備えている2種類のアンテナをそれぞれ平面に展開した展開図である。 図15に示す2種類のアンテナを構成するそれぞれの第2の放射素子において、その給電点と、給電点から各放射素子の長手方向に離れた角部とを結ぶ2つのエッジの形状を破線及び一点鎖線で示す説明図である。 (a)~(c)は、第5~第7の実施例に係るアンテナ装置が備えているアンテナをそれぞれ平面に展開した展開図である。 (a)は、第5~第6の実施例に係るアンテナ装置の放射利得の周波数依存性を示すグラフである。(b)は、第5~第6の実施例に係るアンテナ装置のVSWRの周波数依存性を示すグラフである。 (a)は、第6~第7の実施例に係るアンテナ装置の放射利得の周波数依存性を示すグラフである。(b)は、第6~第7の実施例に係るアンテナ装置のVSWRの周波数依存性を示すグラフである。 図7に示すアンテナの変形例を平面に展開した展開図である。 (a)は、図20に示すアンテナの平面図である。(b)は、当該アンテナの右側面図である。(c)は、当該アンテナの断面矢視図である。 (a)は、図7に示すアンテナの別の変形例を平面に展開した展開図である。(b)は、当該アンテナの平面図である。 (a)は、第5の実施例に係るアンテナ装置のVSWRの周波数依存性を示すグラフである。(b)は、第8の実施例に係るアンテナ装置のVSWRの周波数依存性を示すグラフである。 (a)は、本発明の第6の実施形態に係る車載用アンテナ装置を搭載する車体の外観を示す斜視図であり、(b)は、上記車載用アンテナ装置を搭載する上記車体の一部拡大平面図である。 (a)は、上記車載用アンテナ装置を搭載する上記車体の一部を拡大した矢視断面図であって、図24の(b)に示すA-A’線に沿う矢視断面図である。(b)は、上記車載用アンテナ装置が備えているアンテナの展開図である。 (a)は、本発明の、第9の実施例、第7~第11の変形例、及び比較例に係る車載用アンテナ装置によって得られた放射利得と長さLxとの相関関係を示すグラフであり、(b)は、(a)に示した放射利得をフィッティングした結果を示すグラフである。 (a)は、本発明の、第9の実施例及び第12~第15の変形例に係る車載用アンテナ装置によって得られた放射利得と間隔Dzとの相関関係を示すグラフであり、(b)は、(a)に示した放射利得をフィッティングした結果を示すグラフである。 (a)は、本発明の第1の実施形態に係る車載用アンテナ装置を搭載する車体の外観を示す斜視図であり、(b)は、上記車載用アンテナ装置を搭載する上記車体の一部を拡大した断面図である。 上記車載用アンテナ装置が備えている放射素子の展開図である。 (a)は、本発明の各実施例において、車載用アンテナ装置の放射利得を計算するために用いた、車載用アンテナ装置を搭載した車体のモデルの構成を示す上面図である。(b)は、上記モデルの構成を示す側面図である。 (a)は、図30の(a)に示した上記モデルの一部を拡大した上面図である。(b)は、図30の(b)に示した上記モデルの一部を拡大した側面図である。 図30に示す車体に搭載した車載用アンテナ装置、及び、図33に示す車体に搭載した車載用アンテナ装置の前方放射利得の最短距離Dx依存性を示すグラフである。 (a)は、本発明の比較例において、車載用アンテナ装置の放射利得を計算するために用いた車載用アンテナ装置を搭載した車体のモデルの構成を示す上面図である。(b)は、上記モデルの構成を示す側面図である。 図30に示す車体に搭載した、本発明の実施例の車載用アンテナ装置、及び、第1の変形例の車載用アンテナ装置の前方放射利得の最短距離Dx依存性を示すグラフである。 図30に示す車体に搭載した、本発明の実施例の車載用アンテナ装置、第2の変形例の車載用アンテナ装置、及び第3の変形例の車載用アンテナ装置の前方放射利得の最短距離Dx依存性を示すグラフである。
 以下、図面を参照して、本発明のアンテナ装置の実施形態について説明する。
 なお、以降の説明では、車体1の前進方向(図1、図24及び図28の各図面におけるy軸正方向)を「前方向」と称し、その後進方向(図1、図24及び図28の各図面におけるy軸負方向)を「後方向」と称する。また、車体1の右手方向(図1、図24及び図28の各図面におけるx軸正方向)を「右方向」と称し、車体1の左手方向(図1におけるx軸負方向)を「左方向」と称する。また、車体1のシャシーからルーフへと向かう方向(図1、図24及び図におけるz軸正方向)を「上方向」と称し、車体1のルーフからシャシーへと向かう方向(図1におけるz軸負方向)を「下方向」と称する。また、左方向及び右方向を、向きを区別せずに指すとときには、「左右方向」といい、上方向及び下方向を、向きを区別せずに指すときには、「上下方向」という。
 また本明細書の各実施形態において、ルーフの後端に配置されるスポイラーを筐体とする車載用アンテナ装置について説明するが、本発明はこれに限定されない。すなわち、本発明は、ルーフの前端、右端、又は左端に配置される車載用アンテナ装置にも適用することができる。
 〔第1の実施形態〕
 図1及び図2を参照して、本発明の第1の実施形態に係る車載用アンテナ装置10について説明する。
 〔車載用アンテナ装置10の搭載例〕
 初めに図1を参照して、本発明の第1の実施形態に係る車載用アンテナ装置10の車体1への搭載例について説明する。図1の(a)は、本実施形態に係る車載用アンテナ装置10を搭載した車体1の外観を示す斜視図である。図1の(b)は、本実施形態に係る車載用アンテナ装置10を搭載した車体1の一部を拡大した平面図である。具体的には、車体1が搭載する車載用アンテナ装置10を拡大した平面図である。
 図1の(a)に示す車体1は、ハッチバック型の車体である。車体1において、ルーフ20を含む外板(ボディパネル)は、鋼板及びアルミ板などの金属部材によって構成され、ルーフ20がなす面は略水平である。すなわち、ルーフ20は水平面に沿って形成され車体1の上下方向と交わっている。本明細書の各実施形態において、ルーフに沿う方向は水平面に沿う方向と同義であり、ルーフに交わる方向は水平面に交わる方向と同義である。本実施形態に係る車載用アンテナ装置10は、スポイラー16を筐体とする車載用アンテナ装置であり、ルーフ20の後端に搭載される。
 図1の(b)に示すように、車体1のハッチゲート21は、その下部を構成するハッチゲートパネル21aと、その上部を構成する枠体21cと、リヤガラス21bと、により構成されている。枠体21cは、一対の縦柱と一対の横柱とによって構成されており、その枠内にリヤガラス21bが設けられている。枠体21cの一対の横柱のうちルーフ20に近接する側(上側)の横柱は、図示しないヒンジによってルーフ20の後端に取り付けられている。リヤガラス21bは、運転手からの後方視界を確保すると共に、ウィンドシールドとしても機能する。ハッチゲートパネル21a及び枠体21cは、金属部材によって構成されている。
 枠体21cの一対の横柱のうち上側の横柱の一部には、スポイラー固定部21d(特許請求の範囲に記載のアンテナ装置固定部)が設けられている。枠体21cの上側の横柱の一部を後方に迫り出させ、このせり出させた部分をスポイラー固定部21dとして用いる(図2の(a)参照)。スポイラー固定部21dは、枠体21cと同様に金属部材により構成されている。スポイラー固定部21dのスポイラー16が取り付けられる面は、ルーフ20がなす面と同様に、およそ天頂方向を向いており、水平面に沿っている。したがって、スポイラー固定部21dは、ルーフ20の後端部を形成している。本実施形態においてスポイラー固定部21dは、枠体21cと一体に形成された金属部材であるが、枠体21cとは別体に成形され枠体21cにボルト等によって固定された金属部材であってもよい。
 スポイラー固定部21dには、図示しない固定手段(例えばボルト等)によってスポイラー16が取り付けられている。スポイラー固定部21dに固定されることによって、スポイラー16の上面とルーフ20全体の上面とが略面一に並ぶ。スポイラー16は、車体1の美観を向上させる、車体1の空力特性を改善するなどの機能を有するほかに、本発明では、車載用アンテナ装置10の筐体として機能する。スポイラー16には、アンテナ11とストップランプ19とが内蔵されている。スポイラー16は、誘電体(例えば樹脂等)からなり、電磁波を透過する。
 アンテナ11は、スポイラー16の内部のストップランプ19に干渉しない位置に配置されている。具体的には、スポイラー16の左右方向の中心に配置されたストップランプ19を避けて、アンテナ11は、ストップランプ19の左側にずらして配置されている。
 〔車載用アンテナ装置10〕
 車載用アンテナ装置10の構成について、図2を参照して具体的に説明する。図2は、本実施形態に係る車載用アンテナ装置10の構成を示す。図2の(a)は、車載用アンテナ装置10を搭載する車体1の一部を拡大した矢視断面図であり、図1の(b)に示したA-A’線に沿う矢視断面図である。図2の(b)は、車載用アンテナ装置10が備えているアンテナ11を平面に展開した展開図である。
 図2の(a)に示すように、車載用アンテナ装置10は、スポイラー16の内部に、アンテナ11が折り曲げられた状態で載置されるように構成されている。スポイラー16にアンテナ11を固定する固定手段の例としては、粘着シート、両面テープや樹脂製のファスナー等が挙げられる。固定手段は、限定されるものではないが、電磁波の送信及び受信を妨げないために導体ではないものからなることが好ましい。アンテナ11の具体的な折り曲げ方などについては、図2の(b)を参照しながら後述する。
 〔アンテナ11〕
 アンテナ11は、誘電体基板と、当該誘電体基板の表面に形成された放射素子と、図示しない同軸線と放射素子とを接続する接続する接続部とを備えている。本実施形態では、上記誘電体基板として、誘電体フィルム12を採用している。誘電体フィルム12を構成する材料としては、例えばポリイミド樹脂が挙げられるが、これに限定されない。このように構成されたアンテナ11は、フィルムアンテナとも見做せるし、FPC(Flexible printed circuits)基板とも見做せる。
 図2の(b)の例では、誘電体フィルム12の表面に、第1の放射素子14及び第2の放射素子15からなる放射素子が形成されている。第1の放射素子14及び第2の放射素子15は、導体からなる薄板状の部材である。例えば、第1の放射素子14及び第2の放射素子15としては、銅箔が用いられるが、これに限定されない。
 接続部13は、図示しない同軸線が放射素子14,15に接続される部位であり、2つの給電点(一対の給電点)13a,13bからなる。給電点13a,13bの各々は、それぞれ、放射素子14,15の各々の表面に形成されている。接続部13には、同軸線の一方の端部が接続可能である。同軸線の他方の端部をチューナーなどの車載機器に接続することによって、車載用アンテナ装置10は、無線を送受信可能になる。
 同軸線を構成する一対の導体のうち一方の導体(例えば内側導体)は、接続部13の一方の給電点である第1の給電点13aにおいて第1の放射素子14に接続されている。同軸線の他方の導体(例えば外側導体)は、接続部13の他方の給電点である第2の給電点13bにおいて第2の放射素子15に接続されている。本実施形態においては、アンテナ11としてダイポールアンテナを採用しているが、ループアンテナ、モノポールアンテナ、及び逆F型アンテナをアンテナ11として使用してもよい。また、それぞれの放射素子は、本実施形態の放射素子14,15のように面状の放射素子であってもよいし、線状の放射素子であってもよい。
 アンテナ11は、図2の(b)に示すB-B’線及びC-C’線に沿って谷折りされる。その結果、外側に誘電体フィルム12が配置され、内側に放射素子14,15が配置されたU字型(あるいはコの字型)に折り曲げられたアンテナ11が形成される。図2の(a)に示すように、車載用アンテナ装置10は、U字型に折り曲げられたアンテナ11をスポイラー16の内壁に沿って固定する構成を採用している。
 図2の(a)に示すように、車載用アンテナ装置10を車体1の後端に搭載したときに、アンテナ11の第1の放射素子14は、給電点13aからルーフ20に交わる方向である車体1の下方向(請求の範囲に記載の第1の方向に相当する)に引き出されており、第2の放射素子15は、給電点13bからルーフ20に交わる方向であって、車体1の下方向とは異なる方向である上方向(請求の範囲に記載の第2の方向に相当する)に引き出されている。車載用アンテナ装置10においては、第1の方向及び第2の方向がルーフ20に交わる構成を採用している。
 第1の放射素子14において、給電点13aから下方向に引き出されている部分、すなわち、給電点13aに接続されている第1の放射素子14の始端(根元)から、谷折りされる線であるC-C’線までの部分を給電点近傍部14aとする。
 給電点近傍部14aが給電点13aから下方向に引き出されているため、給電点近傍部14aを流れる電流の方向は、主に上下方向である。また、第1の放射素子14を流れる電流の電流密度は、第1の放射素子14の始端(給電点13aとの接続部)において最も高く、終端に近づくにしたがって低くなる。このことから、給電点近傍部14aでは、相対的に高い電流密度の電流が車体1の上下方向に流れる。その結果として、第1の放射素子14は、放射する電磁波に含まれる垂直偏波成分の割合を従来(特許文献1に記載の車載用アンテナ装置)よりも多くすることができる。
 更に、垂直偏波は、水平偏波と比較した場合に、ルーフ20による減衰効果を受け難いという特性を有する。このため、第1の放射素子14を備えている車載用アンテナ装置10は、ルーフ20が金属製であっても、ルーフ20を横断する方向(ここでは前方向)に対する垂直偏波の放射利得を十分に大きくすることができる。その結果として、ルーフが金属製であっても、ルーフを横断する方向に対する電磁波の放射利得を十分に大きくすることができる。
 また、給電点近傍部14aの幅W14aは、アンテナ11が放射する電磁波の最短波長の1/2以下であることが好ましい。本実施形態においては、第1の放射素子14が長方形であるため給電点近傍部14aも長方形であり、幅W14aは、給電点13aからC-C’線に至るまで一定である。給電点近傍部14aが長方形でない場合は、幅W14aの最大値がアンテナ11が放射する電磁波の最短波長の1/2以下であることが好ましい。
 上記第1の放射素子14の構成によれば、給電点13aから供給された電流が、給電点近傍部14a内において、車体1の左右方向に沿って流れることを抑制し、車体1の上下方向に沿って流れることを促進する。したがって、幅W14aがアンテナ11が放射する電磁波の最短波長の1/2を上回る場合と比較して、垂直偏波の放射利得をより高めることができる。結果として、車体1の前方向に対する電磁波の放射利得を更に大きくすることができる。
 第2の放射素子15において、給電点13bから上方向に引き出されている部分、すなわち、給電点13bに接続されている第2の放射素子15の始端(根元)から、谷折りされる線であるB-B’線までの部分を給電点近傍部15aとする。
 車載用アンテナ装置10においては、第2の放射素子15の給電点近傍部15aは、車体1の上方向に引き出されている。このように構成された給電点近傍部15aは、車載用アンテナ装置10が放射する電磁波に含まれる垂直偏波成分の割合を更に高めることができる。
 給電点近傍部14aが給電点13aから下方向に引き出され、且つ、給電点近傍部15aが給電点13bから上方向に引き出されている構成において、垂直偏波の放射利得を高めるために幅W14a及び幅W15aの各々は、アンテナ11が放射する電磁波の最短波長の1/2以下であることが好ましい。しかし、幅W14a及び幅W15aのうち何れか一方がアンテナが放射する電磁波の最短波長の1/2以下であれば、幅W14a及び幅W15aの各々がアンテナ11が放射する電磁波の最短波長の1/2を上回る場合と比較して、垂直偏波の放射利得をより高めることができる。
 また、ルーフ20の後端部に配置される車載用アンテナ装置10のアンテナ11において、給電点近傍部14a、15a以外の放射素子の幅W14、W15(ルーフ20の後端辺に沿って測った放射素子の幅)も、上記アンテナが放射する電磁波の最短波長の1/2以下であることがより好ましい。ここで、第1の放射素子14の幅W14及び第2の放射素子15の幅W15の各々が異なる場合、両方の幅W14及びW15が、上記アンテナが放射する電磁波の最短波長の1/2以下であることが好ましい。
 上記アンテナ11の構成によれば、給電点13aから第1の放射素子14に供給された電流、及び、給電点13bから第2の放射素子15に供給された電流の各々が車体1の左右方向に沿って流れることが抑制され、車体1の上下方向又は上下方向に沿って流れることが促進される。すなわち、第1及び第2の放射素子14,15を流れる主たる電流の方向を車体1の上下方向及び前後方向に限定することができる。その結果として、例えば、車体1の左右方向に延びる放射素子をリアガラスに貼り付けた他のアンテナが、スポイラー16を筐体とする車載用アンテナ装置10の近傍に設けられている場合であっても、アンテナ11の放射素子14,15が、他のアンテナ(車体1の左右方向に延びる放射素子)に与える、又は、他のアンテナから受ける影響を抑制することができる。
 以上のように、車載用アンテナ装置10では、放射素子が一方の給電点から第1の方向に引き出され、この第1の方向がルーフに交わる方向であることから、主たる偏波成分として垂直偏波を放射することができる。垂直偏波の偏波面は、金属体であるルーフに対して交わる方向である。このことから、水平偏波と比較した場合に、垂直偏波は、車体を横断する過程において上述したルーフによる減衰効果の影響を受けづらく、放射利得をロスすることなくルーフを横断することができる。
 したがって、ルーフ20の後端部に配置された車載用アンテナ装置10は、ルーフ20が金属体であっても、ルーフ20を横断する方向(前方向)への放射利得が従来よりも大きい車載用アンテナ装置を実現することができる。そのため、車載用アンテナ装置10は、LTE用の電磁波に代表される波長が短い周波数帯を利用する車載用アンテナ装置としても好適に利用することができる。すなわち、スポイラーの内部の放射素子を水平になるように配置した従来の車載用アンテナ装置では、アンテナから放射される電磁波が水平偏波を主たる偏波成分とするため、ルーフによる減衰効果の影響を受けやすく、3GやLTEなどのように地上に設置された基地局との通信を要するアンテナシステムに適用するのが困難であったが、本発明の車載用アンテナ装置では、主たる偏波成分として垂直偏波を放射することができるため、3GやLTEなどのように地上に設置された基地局との通信を要するアンテナシステムとしても好適に利用することができる。
 なお、図2の(a)に示すように、第2の放射素子15のB-B’線から終端までの部分は、ルーフ20に沿う方向に配置されている。この構成によれば、車載用アンテナ装置10は、垂直偏波だけでなく水平偏波も放射することができる。
 〔第2の実施形態〕
 次に、図3を参照して、本発明の第2の実施形態に係る車載用アンテナ装置について説明する。図3の(a)は、本実施形態に係る車載用アンテナ装置10Aを搭載する車体1の一部拡大平面図である。図3の(b)は、車載用アンテナ装置10Aを搭載する車体1の一部を拡大した矢視断面図であって、(a)に示すL-L’線に沿う矢視断面図である。
 本実施形態に係る車載用アンテナ装置10Aは、第1の実施形態に係る車載用アンテナ装置10が備えているアンテナ11とスポイラー16を、それぞれ以下に説明するスポイアンテナ11Aとスポイラー16Aに変更することによって得られる。
 アンテナ11Aは、第1の実施形態に係る車載用アンテナ装置10を車体1の上方向から上面視して(図1の(b)参照)、アンテナ11を反時計回りに90度回転したうえで、第1の放射素子14の終端が延伸される方向を車体1の左方から右方へ反転させることによって得られる。換言すれば、一方の給電点を含む給電点近傍部14Aaが第1の方向である車体1の下方向に引き出され、他方の給電点を含む給電点近傍部14Abが第2の方向である車体1の上方向に引き出されている。更に、第1の放射素子14Aの終端は、車体1の右方に延伸されており、第2の放射素子15Aの終端は、車体1の左方に延伸されている(図3の(b)参照)。放射素子の折り曲げ方に着目すると、放射素子14,15がU字型(あるいはコの字型)に折り曲げられているのに対し、放射素子14A,15Aは、ステップ形状(あるいはZ字型)に折り曲げられている。
 図3の(b)に示すように、スポイラー16Aには、アンテナ11Aを載置するためのアンテナ載置台16Aaが設けられている。アンテナ載置台16Aaは、ルーフ20に交わる平面と、ルーフ20に沿う平面であってスポイラー16Aの内部に位置する平面とからなる。より具体的には、ルーフ20に交わる面は、図3の(b)に図示した座表軸におけるyz平面であり、ルーフ20に沿う平面は、同図に図示した座標軸におけるxy平面である。図3の(b)に示すように、アンテナ載置台16Aaは、アンテナ11Aを載置するためのステップであって、スポイラー16Aの内部に張り出したステップを形成する。
 アンテナ11をスポイラー16内に固定する固定手段と同様の固定手段を用いて、アンテナ11Aをスポイラー16A内に固定することができる。図3の(a)に示すように、スポイラー16Aを平面視したときの形状は、車体1の前後方向に対して短く、車体1の左右方向に対して長い。また、スポイラー16Aの前部領域と後部領域とにおいて内部スペースを比較すると、後部領域のスペースは、前部領域のスペースを大きく上回る。これは、スポイラー16Aの前部領域にはスポイラー固定部21dが設けられており、且つ、スポイラーの上面とルーフ20全体の上面とを略面一にするためである。
 アンテナ11Aの放射素子14A,15Aは、スポイラー16Aの長手方向に沿って延伸されているため、アンテナ11の放射素子14,15と比較して、放射素子の始端から終端までの長さを長く設計することができる。その結果、アンテナ11Aは、アンテナ11と比較して放射利得を向上させることができる。また、スペースが広いスポイラー16Aの後部領域に載置すればよいため、アンテナ11Aは、アンテナ11と比較してスポイラー16Aへの載置が容易である。
 このように構成された車載用アンテナ装置10Aにおいても、給電点近傍部14Aaは、車体1の下方向に引き出され、給電点近傍部15Aaは、車体1の上方向に引き出されている。したがって、車載用アンテナ装置10Aは、主たる偏波成分として垂直偏波を放射することができる。したがって、車載用アンテナ装置10Aは、ルーフ20が金属体であっても、ルーフ20を横断する方向(前方向)への放射利得が従来よりも大きい車載用アンテナ装置を実現することができる。
 〔第3の実施形態〕
 次に、図4を参照して、本発明の第3の実施形態に係る車載用アンテナ装置30について説明する。車載用アンテナ装置30は、第1の実施形態に係る車載用アンテナ装置10が備えているアンテナ11を、以下に説明するアンテナ31に変更することによって得られる。
 図4の(a)は、本実施形態に係る車載用アンテナ装置30を搭載する車体1の矢視断面図である。図4の(b)は、車載用アンテナ装置30が備えているアンテナ31の展開図である。
 アンテナ31は、アンテナ11と比較して、U字型に折り曲げる位置が異なっている。言い換えれば、折り曲げる位置を除くと、アンテナ31は、アンテナ11と同様に構成されている。具体的には、アンテナ31において、一方の折り曲げる位置に対応するD-D’線として、給電点33bと第2の放射素子35の始端となる端辺とを含む直線を採用している。また、E-E’線として、図2の(b)に示すC-C’線と比較して、第1の放射素子34の終端により近い直線を採用している。
 D-D’線及びE-E’線に沿ってU字型に折り曲げられたアンテナ31は、図4(a)に示すようにスポイラー16の内部に載置されている。具体的には、車載用アンテナ装置30を車体1の後端に搭載したときに、給電点33aから第1の放射素子34の給電点近傍部34aが第1の方向である車体1の下方向(ルーフ20に交わる方向)に引き出され、給電点33bから第2の放射素子35が第2の方向である車体の前方向(ルーフ20に沿う方向)に引き出される構成を採用している。
 また、アンテナ31では、ルーフ20の後端部を構成する金属部材(スポイラー固定部21d)に沿い、且つ、この金属部材に対して離間した状態で重畳する重畳部35bを更に備えている。本実施形態において、重畳部35bは、第2の放射素子35の終端を含む部分に設けられている。しかし、重畳部35bを設ける位置は終端を含む部分に限定されず、第2の放射素子35のルーフ20に沿う方向に伸びる部分の少なくとも一部に設けられていればよい。重畳部35bが導電体からなるスポイラー固定部21dに重畳していることによって、スポイラー固定部21dがアンテナ31のグランドとして利用され、車体前方に対する放射利得を更に大きくすることができる。
 なお、本実施形態では、第2の放射素子35の一部に重畳部35bが設けられている構成を採用している。しかし、第1の放射素子34の一部に設けられた重畳部がスポイラー固定部21dと重畳する構成を採用することもできる。放射素子34,35の何れの放射素子に重畳部を設けるかは、接続部33の位置、放射素子34,35の各々の形状、スポイラー16の形状、及びアンテナ31とスポイラー固定部21dとの相対位置関係に応じて適宜決定すればよい。
 〔第4の実施形態〕
 次に、図5を参照して、本発明の第4の実施形態に係る車載用アンテナ装置60について説明する。車載用アンテナ装置60は、第3の実施形態に係る車載用アンテナ装置30(図4参照)の筐体として機能するスポイラー16を、スポイラー66に変更したうえで、車載用アンテナ装置30が備えているアンテナ31を、アンテナ61に変更することによって得られる。
 図5の(a)は、車載用アンテナ装置60を搭載する車体1の一部を拡大した矢視断面図である。図5の(b)は、車載用アンテナ装置60が備えているアンテナ61の展開図である。
 スポイラー16と比較して、スポイラー66には、その内壁後端部にアンテナ61を載置するためのアンテナ載置台66aが設けられている。図5の(a)に示すように、アンテナ載置台66aは、ルーフ20に交わる平面と、ルーフ20に沿う平面とからなる。より具体的には、アンテナ載置台66aは、車体1の上下方向に伸びる平面(図5の(a)に図示した座表軸におけるzx平面)と、車体1の前後方向に伸びる平面(同図に図示した座標軸におけるxy平面)とからなる。アンテナ載置台66aは、スポイラー66の内部に張り出したステップを形成する。
 車載用アンテナ装置60は、アンテナ61をスポイラー66の内部形状に沿って折り曲げられた状態で載置するように構成されている。アンテナ61をスポイラー66に固定する固定手段としては、アンテナ11,31をスポイラー16に固定する固定手段と同様の固定手段を用いることができる。
 アンテナ61は、スポイラー66に載置されるために、図5の(b)に示すF-F’線に沿って谷折りにされ、図5の(b)に示すG-G’線に沿って山折りにされる。その結果、Z字型に折り曲げられたアンテナ61が形成される。図5の(a)に示すように、車載用アンテナ装置60は、Z字型に折り曲げられたアンテナ61をスポイラー66の内壁及びアンテナ載置台66aに沿って固定する構成を採用している。
 図5の(a)に示すように、車載用アンテナ装置60を車体1の後端に搭載したときに、アンテナ61の第1の放射素子64は、給電点63aからルーフ20に交わる方向である車体1の下方向(請求の範囲に記載の第1の方向に相当する)に引き出されており、第2の放射素子65は、給電点63bからルーフ20に交わる方向であって、車体1の下方向とは異なる方向である上方向(請求の範囲に記載の第2の方向に相当する)に引き出されている。車載用アンテナ装置60においては、第1の方向及び第2の方向がルーフ20に交わる構成を採用している。
 第1の放射素子64において、給電点63aから下方向に引き出されている部分、すなわち、給電点63aに接続されている第1の放射素子64の始端(根元)から、山折りされる線であるG-G’線までの部分を給電点近傍部64aとする。
 給電点近傍部64aが給電点63aから下方向に引き出されているため、給電点近傍部64aを流れる電流の方向は、主に上下方向である。また、第1の放射素子64を流れる電流の電流密度は、第1の放射素子64の始端(給電点63aとの接続部)において最も高く、終端に近づくにしたがって低くなる。このことから、給電点近傍部64aでは、相対的に高い電流密度の電流が車体1の上下方向に流れる。その結果として、第1の放射素子64は、放射する電磁波に含まれる垂直偏波成分の割合を従来(特許文献1に記載の車載用アンテナ装置)よりも多くすることができる。
 更に、垂直偏波は、水平偏波と比較した場合に、ルーフ20による減衰効果を受け難いという特性を有する。このため、第1の放射素子14を備えている車載用アンテナ装置10は、ルーフ20が金属製であっても、ルーフ20を横断する方向(ここでは前方向)に対する垂直偏波の放射利得を十分に大きくすることができる。その結果として、ルーフが金属製であっても、ルーフを横断する方向に対する電磁波の放射利得を十分に大きくすることができる。
 第2の放射素子65において、給電点63bから上方向に引き出されている部分、すなわち、給電点63bに接続されている第2の放射素子65の始端(根元)から、谷折りされる線であるF-F’線までの部分を給電点近傍部65aとする。この構成によれば、第2の放射素子65は、第1の放射素子64と同様に放射する電磁波に含まれる垂直偏波成分の割合を従来(特許文献1に記載の車載用アンテナ装置)よりも多くすることができる。したがって、アンテナ61は、放射する電磁波に含まれる垂直偏波成分の割合を従来(特許文献1に記載の車載用アンテナ装置)よりも、更に多くすることができる。
 また、アンテナ61では、ルーフ20に沿い、且つ、スポイラー固定部21dに重畳する重畳部65bを更に備えている。本実施形態において、重畳部65bは、アンテナ31が備えている重畳部35bと同様に、第2の放射素子35の終端を含む部分に設けられている。重畳部65bが導電体からなるスポイラー固定部21dに重畳していることによって、スポイラー固定部21dがアンテナ61のグランドとして利用され、車体前方に対する放射利得を更に大きくすることができる。
 なお、本実施形態では、第2の放射素子65の一部に重畳部65bが設けられている構成を採用している。しかし、第3の実施形態に記載したように、第1の放射素子64の一部に設けられた重畳部がスポイラー固定部21dと重畳する構成を採用することもできる。
 〔アンテナの変形例〕
 以下、図6~図9を参照して、第1から第4の実施形態に係る車載用アンテナ装置10,10A,30,60が備えているアンテナ11,11A,31,61の変形例について説明する。
 図6の(a)は、第1の変形例であるアンテナ41の展開図であり、図6の(b)は、アンテナ41の矢視側面図である。図6の(c)は、第2の変形例であるアンテナ51の展開図であり、図6の(d)は、アンテナ51の矢視側面図である。図6の(b)においては、アンテナ41の構成を分かりやすくするために筐体であるスポイラー16を省略している。同様に、図6の(d)においてもスポイラー16を省略している。図7は、第3の変形例であるアンテナ71の展開図である。図8は、図7に示す第3の変形例であるアンテナ71の別の例を示す展開図である。図9は、第4の変形例であるアンテナ81の展開図である。
 (第1の変形例及び第2の変形例)
 図6の(a)に示すように、アンテナ41は、給電点43aから車体1の下方向(ルーフ20に交わる方向)に引き出され、給電点43bから車体1の前方向(ルーフ20に沿う方向)に引き出された単一かつ環状の放射素子44を備えている。すなわち、第1の変形例では、ダイポールアンテナであるアンテナ11の代わりにループアンテナであるアンテナ41を採用している。
 図6の(c)に示すように、アンテナ51は、給電点53aから車体1の下方向(ルーフ20に交わる方向)に引き出された第1の導体55と、給電点53bから車体の前方向(ルーフ20に沿う方向)に引き出された第2の導体56と、第1の導体55の中間部及び第2の導体56の中間部をそれぞれ接続する第3の導体57とからなる単一の放射素子54を備えている。
 放射素子54において、第1の導体55を地板として機能させる場合、第3の導体57は、第2の導体56の中間部を接地する。この構成によれば、アンテナ51は、逆F型アンテナとして機能する。
 また、放射素子54において、第1の導体55及び第2の導体56のそれぞれに給電する構成を採用した場合、放射素子54は、環状の放射素子に対して、分枝を付加した放射素子として機能する。この場合、環状の放射素子は、第1の導体55の始端から中間部までと、第2の導体56の始端から中間部までと、第3の導体57とからなり、一方の分枝は、第1の導体55の中間部から終端までからなり、他方の分枝は、第2の導体56の中間部から終端までからなる。この構成によれば、アンテナ51は、ループアンテナに分枝を付加したアンテナとして機能する。
 以上のように、第2の変形例では、ダイポールアンテナであるアンテナ11の代わりに、逆F型アンテナ又はループアンテナに分枝を付加したアンテナとして機能するアンテナ51を採用する。
 これらの変形例に係る車載用アンテナ装置が備えているアンテナ41,51は、一方の給電点である給電点43a,53aから車体の下方向(図中のz軸負方向)に引き出され、他方の給電点である給電点43b,53bから車体の前方向(図中のy軸正方向)に引き出された放射素子44,54を備えている。したがって、これらの変形例に係る車載用アンテナ装置は、車体前方に対する電磁波の放射強度を十分に大きくすることができる。
 (第3の変形例)
 図7に示すように、第3の変形例であるアンテナ71は、アンテナ11,11A,31,61と比較して、第1の放射素子74の形状を釣鐘型(あるいは杯型)に変更することによって得られる。具体的には、第1の放射素子74が有する4つの角のうち第2の放射素子75に近接する2つの角の各々を、四分楕円74b及び四分楕円74cに置き換えることによって釣鐘型の第1の放射素子74が得られる。第1の放射素子74の形状を長方形から釣鐘型に変更することによって、第1の放射素子74の給電点近傍部74aと第2の放射素子75の給電点近傍部75aとの間隔を連続的に変化させることができる。その結果、アンテナ71の共振周波数を調整することができ、動作帯域を調整することができる。
 また、第1の放射素子74は、丸められた2つの角に挟まれた辺から突出した突出部に設けられた給電点73aを有している。このように構成された第1の放射素子74は、給電点73aからルーフ20に交わる方向である車体1の下方向(請求の範囲に記載の第1の方向に相当する)に引き出されている。
 一方、第2の放射素子75は、第1の放射素子74の突出部の形状に合わせて切り取られた切り欠き部の近傍に設けられた給電点73bを有している。このように構成された第2の放射素子75は、給電点73bからルーフ20に交わる方向であって、車体1の下方向とは異なる方向である上方向(請求の範囲に記載の第2の方向に相当する)に引き出されている。
 そして、図7に示すアンテナ71は、第1、第2及び第4の実施形態に係る車載用アンテナ装置10、10A、60が備えるアンテナ11、11A、61と同様に、第1の方向及び第2の方向がルーフ20に交わる構成を採用している。
 また、第1の放射素子74の幅及び第2の放射素子75の幅の各々は、アンテナ71が送信する電磁波の最短波長の1/2以下となるように構成されている。
 具体的には、例えば、第1の実施形態に係る車載用アンテナ装置10が備えるアンテナ11と同様に、第1の放射素子74において、給電点73aから下方向に引き出されている部分、すなわち、給電点73aに接続されている第1の放射素子74の始端(根元)から、谷折りされる線であるI-I’線までの部分を給電点近傍部74aとする。また、第2の放射素子75において、給電点73bから上方向に引き出されている部分、すなわち、第2の放射素子75の始端(根元)から、谷折りされる線であるH-H’線までの部分を給電点近傍部75aとする。そして、第4の実施形態に係る車載用アンテナ装置60が備えるアンテナ61のように、スポイラー固定部21dに重畳するように構成された第2の放射素子の75の終端を含む部分を重畳部75bとする。
 また例えば、2の実施形態に係る車載用アンテナ装置30が備えるアンテナ31と同様に、第1の放射素子74において、給電点73aから下方向に引き出されている部分、すなわち、給電点73aに接続されている第1の放射素子74の始端(根元)から、山折りされる線であるI-I’線までの部分を給電点近傍部74aとする。また、第2の放射素子75において、給電点73bから上方向に引き出されている部分、すなわち、第2の放射素子75の始端(根元)から、谷折りされる線であるH-H’線までの部分を給電点近傍部75aとする。
 また例えば、第4の実施形態に係る車載用アンテナ装置60が備えるアンテナ61と同様に、第1の放射素子74において、給電点73aから下方向に引き出されている部分、すなわち、給電点73aに接続されている第1の放射素子74の始端(根元)から、山折りされる線であるI-I’線までの部分を給電点近傍部74aとする。また、第2の放射素子75において、給電点73bから上方向に引き出されている部分、すなわち、第2の放射素子75の始端(根元)から、谷折りされる線であるH-H’線までの部分を給電点近傍部75aとする。更に、重畳部75bは、第2の放射素子75の終端を含む部分に設けられており、ルーフ20の後端を構成するスポイラー固定部21dに沿い、且つ、スポイラー固定部21dに対して離間した状態で重畳するように構成されている。
 また、釣鐘型であるアンテナ71は、図8に示すように構成されていてもよい。すなわち第1の放射素子74において、給電点73aから上方向に引き出されている部分、すなわち、給電点73aに接続されている第1の放射素子74の始端(根元)から、谷折り(若しくは山折り)される線であるI-I’線までの部分を給電点近傍部とする。そして給電点近傍部の幅が、アンテナが放射する電磁波の最短波長の1/2以下となるように構成されており、I-I’線から終端までの領域の幅が給電点近傍部の幅より広くなるように構成されている。
 また、第2の放射素子75についても同様に、給電点73bから下方向に引き出されている部分、すなわち、第2の放射素子75の始端(根元)から、谷折りされる線であるH-H’線までの部分を給電点近傍部とする。そして給電点近傍部の幅が、アンテナが放射する電磁波の最短波長の1/2以下となるように構成されており、H-H’線から終端までの領域の幅が給電点近傍部の幅より広くなるように構成されている。
 (第4の変形例)
 図9に示すように、アンテナ11の第4の変形例であるアンテナ81は、給電点83aから車体1の下方向(ルーフ20に交わる方向)に引き出された第1の導体85と、給電点83bから車体1の上方向(ルーフ20に交わる方向)に引き出された第2の導体86と、第1の導体85及び第2の導体86をそれぞれ接続する第3の導体87とからなる、単一の放射素子84を備えている。
 第1の導体85は、給電点83aから引き出された給電点近傍部85aと、ルーフ20の後端に車載用アンテナ装置60が配置されたときに車体1の左右方向に沿って延伸する導体85bと、導体85bと交わる方向、すなわち、車体1の前後方向に沿って延伸する導体85cとからなる。
 第2の導体86は、給電点83bから引き出された給電点近傍部86aを備えている。また、第2の導体86の中間から終端にかけての領域である重畳部84bは、スポイラー固定部21dに沿い、且つ、スポイラー固定部21dに対して離間した状態で重畳する。
 このように構成された放射素子84を含むアンテナ81は、給電点83aを接地することによって、すなわち、第1の導体85を地板として機能させることによって逆F型アンテナとして機能する。
 本変形例に係る車載用アンテナ装置60では、領域A1における、給電点近傍部85a及び導体85bの各々と給電点近傍部86aとの間隔を調整することにより、アンテナ81の共振周波数を変化させることができる。その結果、車載用アンテナ装置60の動作帯域を調整することができる。同様に、導体85cの形状を調整することによって、領域A2における導体85cと第2の導体86との間隔を調整することができ、結果として車載用アンテナ装置60の動作帯域を調整することができる。
 〔第1の実施例〕
 以下、第1の実施形態に係る車載用アンテナ装置10の実施例を説明する。本実施例に係る車載用アンテナ装置10は、図8に示したアンテナ71を採用している。
 本実施例の車載用アンテナ装置10は、ハッチバック型の車体1のルーフ20の後端、より具体的には、ハッチゲートの上部に搭載されている。アンテナ11から放射される電磁波としては、LTE用の800MHz帯と呼ばれる周波数(具体的には830MHz)の電磁波を用いた。
 図10は、本実施例に係る車載用アンテナ装置10によって得られたxy平面における放射利得の方向依存性を示すグラフである。図10において、破線は水平偏波の放射利得を示し、点線は垂直偏波の放射利得を示し、実線は、水平偏波と垂直偏波との和、すなわち全偏波の放射利得を示す。単位は、〔dBi〕である。
 図10を参照すると、車体1の前方向に対する放射利得は、車体1の後方向に対する放射利得と比較して弱いものの、車載用アンテナ装置として用いるのに十分な放射利得を上回っていることが分かる。
 〔第2の実施例〕
 以下、第2の実施形態に係る車載用アンテナ装置10Aの実施例を説明する。実施条件は、第1の実施例と同様である。なお、本実施例に係る車載用アンテナ装置10Aは、アンテナ11Aとして図7に示した釣鐘型のアンテナ71を採用している。ここで採用するアンテナ71の全長(第1の放射素子74の長さと第2の放射素子75の長さの和)は、第1の実施例に係るアンテナ11の全長(第1の放射素子14の長さと第2の放射素子15の長さとの和)の1.43倍である。
 本実施例の車載用アンテナ装置10Aは、ハッチバック型の車体1のルーフ20の後端、より具体的には、ハッチゲートの上部に搭載されている。アンテナ11Aから放射される電磁波としては、LTE用の800MHz帯と呼ばれる周波数(具体的には830MHz)の電磁波を用いた。
 図11は、本実施例に係る車載用アンテナ装置10Aによって得られたxy平面における放射利得の方向依存性を示すグラフである。図11において、破線は水平偏波の放射利得を示し、点線は垂直偏波の放射利得を示し、実線は、水平偏波と垂直偏波との和、すなわち全偏波の放射利得を示す。単位は、〔dBi〕である。
 図11を参照すると、車体1の前方向に対する放射利得は、車体1の後方向に対する放射利得と比較して弱いものの、車載用アンテナ装置として用いるのに十分な放射利得を上回っていることが分かる。
 また、車載用アンテナ装置10Aによって得られたxy平面における放射利得の方向依存性と、第1の実施例の車載用アンテナ装置10によって得られたxy平面における放射利得の方向依存性(図10参照)とを比較すると、車体1の、前方向に対する放射利得及び後方向に対する放射利得の各々に関して、車載用アンテナ装置10Aが車載用アンテナ装置10を上回っていることが分かる。これは、車載用アンテナ装置10Aの放射素子14A,15A(74,75)がスポイラー16Aの長手軸に沿って延伸されており、放射素子14A,15A(74,75)の長さが車載用アンテナ装置10の放射素子14,15の長さより長いことに起因すると考えられる。
 〔第3の実施例〕
 以下、第3の実施形態に係る車載用アンテナ装置30の実施例を説明する。実施条件は、第1の実施例と同様である。なお、本実施例に係る車載用アンテナ装置30は、アンテナ31として図7に示した釣鐘型のアンテナ71と同様の放射素子形状を採用している。
 図12は、本実施例に係る車載用アンテナ装置30によって得られたxy平面における放射利得の方向依存性を示すグラフである。図12において、破線は水平偏波の放射利得を示し、点線は垂直偏波の放射利得を示し、実線は、水平偏波と垂直偏波との和、すなわち全偏波の放射利得を示す。単位は、〔dBi〕である。
 第3の実施例に係る車載用アンテナ装置30の放射利得は、図10に示した第1の実施例と比較して、車体1の全方向に対して向上していることが分かる。特に、車体1の前方向に対して顕著に向上していることが分かる。この向上は、第2の放射素子35の終端を含む重畳部35bがルーフ20に重畳していることに起因すると考えられる。
 〔第4の実施例〕
 これまで、第1~第4の実施形態において、本発明の一実施形態に係る車載用アンテナ装置をルーフ20の後端に配置するものとして説明してきた。図1に示すように、車体1において、ルーフ20の後端にはハッチゲート21が設けられている。ハッチゲート21に含まれているリヤガラス21bは、絶縁体からなる平面を有する。したがって、リヤガラス21bの上端辺には、DTV用の放送信号やFM用の放送信号を受信するためのフィルムアンテナが貼り付けられることがある。
 この場合、本発明の一実施形態に係る車載用アンテナ装置とリヤガラス21bに貼られたフィルムアンテナとが近接しているため、両アンテナ間に電磁気的な結合が生じ影響を及ぼし合う可能性がある。
 本実施例では、このアンテナ間の結合が与える影響を調べるために、第1の実施形態に係る車載用アンテナ装置10と、リヤガラス21bの上端辺に貼り付けられたTDV用のフィルムアンテナ(以下、DTVアンテナ)とを用いて、車載用アンテナ装置10とDTVアンテナとの間に生じる結合について測定した。
 (測定系)
 上記結合を測定するための測定系の構成は、次の通りである。ネットワークアナライザーの第1のポートに第1の実施形態である車載用アンテナ装置10を接続し、同じネットワークアナライザーの第2のポートにDTVアンテナを接続した。上記第1のポートは、ネットワークアナライザーから高周波信号を出力する出力ポートである。上記第2のポートは、ネットワークアナライザーに高周波信号を入力する入力ポートである。
 車載用アンテナ装置10は、上記第1のポートから供給された高周波信号を送信する。DTVアンテナは、車載用アンテナ装置10が放射した高周波信号を受信し、上記第2のポートに供給する。ネットワークアナライザーは、第1のポートから出力した高周波信号と第2のポートから入力された高周波信号とに基づき、車載用アンテナ装置10とDTVアンテナとの間に生じる結合の強さを透過特性S21として算出する。
 車載用アンテナ装置10とDTVアンテナとの結合が強ければ強いほど、DTVアンテナは、車載用アンテナ装置10から送信された高周波信号を効率よく受信する。その結果として、上記結合が強ければ強いほど、S21は高くなる。すなわち、車載用アンテナ装置10とDTVアンテナとが及ぼし合う影響を抑制するためには、S21を抑制することが好ましい。
 (車載用アンテナ装置10の構成)
 本実施例では、車載用アンテナ装置10が備えるアンテナ11を変形することによって得られた2種類の車載用アンテナ装置10を採用した。具体的には、1つ目の車載用アンテナ装置10のアンテナとしてアンテナ71(図7参照)を採用し、2つ目の車載用アンテナ装置10は、アンテナとしてアンテナ81(図9参照)を採用した。ここで、2種類の車載用アンテナ装置10では、アンテナ71,81の放射素子の重畳部74b、84bが、金属部材であるスポイラー固定部21dに沿い、且つ、スポイラー固定部21dに対して離間した状態で重畳している。またルーフ20の後端辺に沿って測った放射素子74,75の幅は、アンテナ71が送信する電磁波の最短波長の1/2以下、具体的には約1/2.8とした。アンテナ71は、放射素子74,75を備えたダイポールアンテナである。アンテナ81は、第1の導体85、第2の導体86、及び第3の導体87を備えた逆F型アンテナである。第1の導体85は、給電点近傍部85a、導体85b、及び導体85cからなる。給電点近傍部85aは、給電点83aから下方向に引き出されている。導体85bは、車体1の左右方向に沿って伸びている。導体85cは、車体1の前後方向に沿って伸びている。
 (DTVアンテナの構成)
 本実施例では、DTVアンテナとして、長方形のループアンテナが誘電体フィルム上に形成されたフィルムアンテナを採用した。DTVアンテナは、ループアンテナの長辺方向が車体1の左右方向と一致する向きにリヤガラス21bの上端辺に貼り付けた。これは、DTVアンテナが車体1の運転者の後方視界を妨げないようにするためである。
 (S21)
 アンテナ71を備えた車載用アンテナ装置10、及び、アンテナ81を備えた車載用アンテナ装置10の各々を用いて測定した透過特性であるS21を図13に示す。図13に示すように、アンテナ71を備えた車載用アンテナ装置10のS21は、アンテナ81を備えた車載用アンテナ装置10のS21を下回った。すなわち、アンテナ71を備えた車載用アンテナ装置10は、アンテナ81を備えた車載用アンテナ装置10よりも、DTVアンテナとの間に生じる結合を抑制できることが分かった。
 この結果は、次のように解釈できる。本実施例において、アンテナ71が備える放射素子74,75の幅をアンテナ71が送信する電磁波の最短波長の1/2以下、具体的には約1/2.8とした。そのため、給電点73aから給電されて第1の放射素子74を流れる電流、及び、給電点73bから給電されて第2の放射素子75を流れる電流の多くは、その流れる方向を放射素子74,75の長手方向、すなわち、車体1の前後方向に限定される。
 それに対して、アンテナ81が備える第1の導体85には、車体1の左右方向に延伸された導体85bが設けられているため、給電点83aから給電され給電点近傍部85aを介して導体85bに到達した電流は、その流れる方向を車体1の左右方向に限定される。
 このように構成されたアンテナ71及びアンテナ81に対して、DTVアンテナは、ループアンテナの長辺方向が車体1の左右方向と一致する向きに貼り付けられている。そのため、車体1の前後方向に沿って振動する高周波信号と、車体1の左右方向に沿って振動する高周波信号とを比較すると、後者をより効率よく受信する。アンテナ71は、放射素子74,75に流れる主たる電流の方向を車体1の前後方向に限定することができる。その結果として、アンテナ71を備えた車載用アンテナ装置10は、アンテナ81を備えた車載用アンテナ装置10と比較して、DTVアンテナに与える影響、又は、DTVアンテナから受ける影響を抑制することができる。
 〔第5の実施形態〕
 次に、図14~図16を参照して、本発明の第5の実施形態に係る車載用アンテナ装置90について説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図14は、車載用アンテナ装置90を搭載する車体1の一部を拡大した、図1の(b)のA-A’線に沿う矢視断面図である。アンテナは、車載用アンテナ装置90が備えているアンテナ91Aまたは91Bを平面に展開した展開図である。なお、図15では、誘電体フィルム12の図示を省略している。図16は、アンテナ91Aまたは91Bを構成する第2の放射素子95Aまたは95Bにおいて、その給電点と、給電点から放射素子95Aまたは95Bの長手方向に離れた角部とを結ぶ2つのエッジの形状を破線及び一点鎖線で示す説明図である。
 車載用アンテナ装置90の筐体としてのスポイラー16’は、図2または図4に示すスポイラー16と形状及びサイズの点で違いがあるが、この違いは本質的ではないので、その違いを詳細に説明することは省略する。したがって、図2または図4に示すスポイラー16に、アンテナ91Aまたは91Bを取り付けて車載用アンテナ装置90を構成してもよい。
 〔車載用アンテナ装置90〕
 車載用アンテナ装置90の構成について、図14を参照して具体的に説明する。図14に示すように、車載用アンテナ装置90は、アンテナ91Aまたは91Bをスポイラー16’の内部に折り曲げられた状態で載置するように構成されている。ただし、車載用アンテナ装置90は、アンテナ91Aまたは91Bの構成要素である誘電体フィルム12をスポイラー16’の内壁に密着させていない点で、図2に示す車載用アンテナ装置10及び図4に示す車載用アンテナ装置30とは異なっている。言い換えると、車載用アンテナ装置90の場合、誘電体フィルム12とスポイラー16’の内壁との間にスペースが設けられている。このスペースを設けたことによって、スポイラー16’にアンテナ91Aまたは91Bを内装することが容易になる。
 アンテナ91Aまたは91Bの折り曲げ状態についてより詳細に説明する。アンテナ91Aまたは91Bは、U字状に折り曲げられた結果、車体1の上下方向(z軸方向)に対向した上壁部及び下壁部と、上壁部及び下壁部をつなぐ立壁部とを備えている。上壁部及び下壁部は、図14に示すとおり、車体1の前後方向(y軸方向)に平行をなしている。また、立壁部は車体1の上下方向(z軸方向)に平行をなしているので、上壁部及び下壁部のそれぞれは、立壁部と90度をなしている。
 上記スペースの設け方をより具体的に説明すると、立壁部と平行をなすスポイラー16’の後壁と立壁部との間にスペースが設けられている。さらに、下壁部に対面するスポイラー16’の底壁と下壁部との間にスペースが設けられている。
 スポイラー16’にアンテナ91Aまたは91Bを固定する固定手段の例としては、上述した実施形態と同じでよいが、U字状に折り曲げられたアンテナ91Aまたは91BのU字内部に位置する支持体を配設し、その支持体にアンテナ91Aまたは91Bを巻き付けるように固定してもよい。なお、上記支持体は、スポイラー16’に固定される。
 あるいは、図15に示すように、アンテナ91Aまたは91Bを構成する第1の放射素子94Aまたは94B、第2の放射素子95Aまたは95B、及び図15では図示していない誘電体フィルム12に複数の穴96、97を適宜設けるとともに、スポイラー16’及び上記支持体に、複数の穴96、97の位置に合わせて複数の凸部(フック)を設けてもよい。この形態では、複数の凸部を複数の穴96、97に嵌め込む、あるいは係合させることによって、アンテナ91Aまたは91Bを固定することができる。
 〔アンテナ91A/91B〕
 アンテナ91Aまたは91Bと、アンテナ11(図2)、アンテナ31(図4)、及びアンテナ71(図7)等との最も重要な相違点は、第2の放射素子の形状である。第1の放射素子94A,94Bは、動作帯域を調整できるという既に説明した効果が得られるように、第1の放射素子74(図7)と同様に釣鐘型の形状を有しているが、釣鐘型に限定されるものではない。
 第2の放射素子95A,95Bに共通する特徴点は次のとおりである。すなわち、第2の放射素子95A,95Bにおける車体1の左右方向(x軸方向)に平行な最大幅と同じ幅を有し、車体1の前後方向(y軸方向)に長い長方形を考えたときに、車体1の前後方向に延びる2つの長辺を長方形の中央側へ窪ませている。言い換えると、上記長方形の形状を有する例えば銅箔の長辺部に対し、切り欠きまたは凹形状を形成している。以下、この長辺部に切り欠きまたは凹形状を形成した第2の放射素子95A,95Bの長辺部に対応した輪郭部を長エッジと呼ぶ。
 第2の放射素子95A,95Bの形状をこのように設定することによって、上記長エッジに沿って電流が流れるときの距離を、本発明が対象にしている帯域(例えば電話の帯域の一例である698~960MHz)のうち低周波の帯域(698~854MHz)に合わせて長く確保することができる。
 アンテナ91Aが放射する電磁波に対応して、第2の放射素子95A,95Bに流れる電流は、その上面と、下面と、周縁のエッジとを流れるが、エッジにおける電流密度が、上面及び下面における電流密度より大きい。したがって、上記長エッジに沿って電流が流れるときの距離を延ばすことによって、アンテナの帯域を特に低周波側に効果的に広げることができる。以下、アンテナ91A及び91Bの構成と上記距離とについてさらに詳しく説明する。
 (アンテナ91A)
 図15に示すように、アンテナ91Aは、釣鐘型の第1の放射素子94Aと、上記凹形状が形成された2つの長エッジを有する第2の放射素子95Aとを備えている。第1の放射素子94Aの構成は、図7に示す第1の放射素子74の構成と基本的に同じである。第2の放射素子95Aにおいて、車体1の左右方向に向かい合う2つの長エッジのうち、左の長エッジの中央付近に形成された凹形状は、ホームベース板の形状をしている。なお、ホームベース板の形状の鋭角部(頂部)が車体1の右方向を向いている。
 一方、右の長エッジには、鋭角部が車体1の左方向を向いたホームベース板の形状をした凹形状が、左の長エッジの凹形状を避けた位置に形成されている。より具体的には、第1の放射素子94Aと第2の放射素子95Aとの境界に設けられた接続部93Aと、左の長エッジの凹形状との間に位置するように、右の長エッジの凹形状が形成されている。しかし、各凹形状の形成位置はこれに限定されず、長エッジに沿って電流が流れるときの距離を延ばす目的を達成できる限り、各長エッジの任意の位置に各凹形状を形成することができる。
 接続部93Aは、図7に示す接続部73と同様に、第1の放射素子94Aの突出部と第2の放射素子95Aの切り欠き部とが嵌まり合う区域(接続部近傍域)の任意の位置に設けられる。その位置の一例は、図15に示すように、第1の放射素子94Aの突出部の右上隅部の付近である。接続部93Aの一方の給電点である第1の給電点93Aaは、第1の放射素子94Aに接続されており、接続部93Aの他方の給電点である第2の給電点93Abは、第2の放射素子95Aに接続されている。
 アンテナ91Aは、図15に示すL1-L1’線及びM1-M1’線に沿って谷折りされる。その結果、図14に示すように、外側に誘電体フィルム12が配置され、内側に放射素子94Aが配置されたU字型に折り曲げられたアンテナ91Aが形成される。さらに、第1の放射素子94Aは、第1の給電点93Aaからルーフ20に交わる方向である車体1の下方向(請求の範囲に記載の第1の方向に相当する)に引き出されている。より具体的には、L1-L1’線とM1-M1’線との間における第1の放射素子94Aの第1領域94Ab(給電点近傍部)が、車体1の下方向(請求の範囲に記載の第1の方向に相当する)に引き出されている。また、第1領域94Abに連続する第2領域94Aaは、第1領域94Abに対して90度の角度で折り曲げられ、車体1の前方向に向かっている。
 一方、第2の放射素子95Aは、第2の給電点93Abからルーフ20に沿う方向であって、車体1の下方向とは異なる方向である前後方向(請求の範囲に記載の第2の方向に相当する)に引き出されている。なお、第2の放射素子95Aは、そのほとんどが第2の給電点93Abから前方向に延び出すとともに、わずかに第2の給電点93Abから後方向にも延び出している。
 (アンテナ91B)
 図15に示すように、アンテナ91Bの第1の放射素子94Bは、上記第1の放射素子94Aと同じ構成を備えている。第2の放射素子95Bは、上記凹形状が形成された2つの長エッジを有しているが、2つの凹形状の形が第2の放射素子95Aの2つの凹形状の形と異なっている。
 具体的には、第2の放射素子95Bにおいて車体1の左右方向に向かい合う2つの長エッジのうち、左の長エッジに形成された凹形状は、頂部が車体1の右方向を向いたホームベース板の形状を変形させた形状を有している。すなわち、ホームベース板の頂部を挟み、ホームベース板では二等辺三角形を形作る2辺のうち、一方の辺は他方の辺より長く、かつ他方の辺に対して大きな開き角を持っている。したがって、これらの一方の辺と他方の辺とは、不等辺三角形の鈍角を挟む2辺に相当している。さらに、上記一方の辺は、長エッジに沿って電流が流れるときの距離を稼ぐために、車体1の前後方向に対して傾斜した方向と、車体1の前後方向と、車体1の左右方向とに曲折を繰り返し、複数箇所の曲折点を経て、接続部93Bに達している。
 一方、右の長エッジには、頂部が車体1の左方向を向いた不等辺三角形の形状をした凹形状が、左の長エッジの凹形状を避けた位置に形成されている。より具体的には、第1の放射素子94Bと第2の放射素子95Bとの境界に設けられた上記接続部93Bと、左の長エッジの凹形状との間に位置するように、右の長エッジの凹形状が形成されている。しかし、各凹形状の形成位置はこれに限定されず、長エッジに沿って電流が流れるときの距離を延ばす目的を達成できる限り、各長エッジの任意の位置に各凹形状を形成することができる。また、左の長エッジの凹形状を、右の長エッジの凹形状と同様の不等辺三角形であって、右の長エッジの不等辺三角形より大きな不等辺三角形としてもよい。
 接続部93Bは、接続部93Aと同様に、第1の放射素子94Bの突出部と第2の放射素子95Bの切り欠き部とが嵌まり合う区域(接続部近傍域)の任意の位置に設けられる。接続部93Bの一方の給電点である第1の給電点93Baは、第1の放射素子94Bに接続されており、接続部93Bの他方の給電点である第2の給電点93Bbは、第2の放射素子95Bに接続されている。
 アンテナ91Bは、図15に示すL2-L2’線及びM2-M2’線に沿って谷折りされる。その結果、アンテナ91Aと同様に、U字型に折り曲げられたアンテナ91Bが形成される。第1の放射素子94Bの第1領域94Bbと第2領域94Baとは、第1の放射素子94Aの第1領域94Abと第2領域94Aaとに相当している。第1の放射素子94Bの第1の給電点93Baからの引き出され方、及び第2の放射素子95Bの第2の給電点93Bbからの引き出され方は、第1の放射素子94A及び第2の放射素子95Aの場合と同じである。
 (長エッジの長さ)
 次に、第2の放射素子95A、95Bがそれぞれ備えている上記長エッジの長さについて説明する。図16は、第2の放射素子95A,95Bがそれぞれ備えている長エッジの形状を示す説明図である。図16に示すように、第2の放射素子95Aでは、接続部93Aに電流が供給されるので、接続部93Aがその電流の流れに沿った経路の始点になる。また、第2の放射素子95Aの前方向側の端辺の左角及び右角が、当該経路の終点98Aa及び終点98Abになる。第2の放射素子95Bでも同様に、接続部93Bが電流の流れに沿った経路の始点になり、第2の放射素子95Bの前方向側の端辺の左角及び右角が、当該経路の終点98Ba及び終点98Bbになる。
 第2の放射素子95Aの2つの長エッジの一方は、図16に破線で示すように、接続部93Aから終点98Aaに至る長さを持つ長エッジN1である。第2の放射素子95Aの2つの長エッジの他方は、図16に一点鎖線で示すように、接続部93Aから終点98Abに至る長さを持つ長エッジN2である。第2の放射素子95Bも同様に、接続部93Bから終点98Baに至る長さを持つ長エッジN3と、接続部93Bから終点98Bbに至る長さを持つ長エッジN4とを備えている。
 上記長エッジN1~N4の各長さは、アンテナが放射する電磁波の帯域のうち、帯域を広げたい低周波(例えば700~730MHz)の波長の約1/2に等しいという条件を満たすように、長エッジN1~N4に形成した凹形状の形及びサイズが選択されている。したがって、長エッジN1~N4のそれぞれに形成する凹形状の形、サイズ及び数は、上記条件が満たされる限り任意に設定することができる。
 (各アンテナの特性)
 アンテナ91A,91Bを図14に示す車載用アンテナ装置90として車体1に搭載した状態で、アンテナ91A,91Bの放射利得を車体1の前方向側に関して計算した。その結果、アンテナ91A,91Bは、第2の放射素子95A,95Bに上記の長エッジN1~N4を持たせたことによって、帯域全体を低周波側に広げることができた。ただし、アンテナ91Bは、アンテナ91Aと比べて、高周波帯域の放射利得がより良好になった。詳しくは、図18~図19を参照して後述する。
 (重畳部)
 なお、図14及び図15に示すように、第2の放射素子95A,95Bは、ルーフ20を構成する金属部材であるスポイラー固定部21dに沿い、且つ、スポイラー固定部21dに対して離間した状態で重畳する重畳部95Aa,95Baをそれぞれ有している。重畳部95Aa,95Baは、第2の放射素子95A,95Bの先端をそれぞれ含んでいる。
 重畳部95Aa,95Baは、それぞれ長さLyを有している。長さLyは、第2の放射素子95A,95Bの各全長の64.5%以下であり、より好ましくは、第2の放射素子95A,95Bの各全長の26.0%以上55.2%以下である。
 スポイラー16’において、長さLyを上記全長の64.5%以下となるように構成することによって、スポイラー16’から見てルーフ20を横断する方向(本実施形態では、車体1の前方向)に対する利得を、第2の放射素子95A,95Bがスポイラー固定部21dと重畳しない場合よりも大きくすることができる。また、長さLyを上記全長の26.0%以上55.2%以下となるように構成することによって、車体1の前方向に対する利得を、更に大きくすることができる。
 重畳部95Aa,95Baにおける第2の放射素子95A,95Bとスポイラー固定部21dとの間隔Dzは、18mm未満であり、より好ましくは、11mm未満である。スポイラー16’において、重畳部95Aa,95Baがスポイラー固定部21dに重畳しており、且つ、重畳部95Aa,95Baにおける上記間隔Dzが18mm未満となるように構成することによって、車体1の前方向に対する利得を、第2の放射素子95A,95Bがスポイラー固定部21dと重畳しない場合よりも大きくすることができる。また、間隔Dzが11mm未満となるように構成することによって、車体1の前方向に対する利得を、更に大きくすることができる。
 なお、本実施形態において、スポイラー16’は、重畳部95Aa,95Baがスポイラー固定部21dに沿い、且つ、スポイラー固定部21dに対して離間した状態で重畳するように構成されているが、スポイラー16’は、ルーフ20に固定されていてもよい。この場合、スポイラー16’は、重畳部Aa,95Baがルーフ20の後端を構成する金属部材に沿い、且つ、この金属部材に対して離間した状態で重畳するように構成されていればよい。
 第1の放射素子94A,94Bの全長及び第2の放射素子95A,95Bの全長は、特に限定されるものではなく、アンテナ91A,91Bから放射させたい電磁波の周波数に応じて、それぞれの全長を適宜定めることができる。長さLyは、アンテナ91A,91Bから放射させたい電磁波の周波数に応じて定められた第2の放射素子95A,95Bの全長に基づいて、上述した範囲内に収まるように決定すればよい。
 〔第5~第7の実施例〕
 以下、本発明の第5~第7の実施例を説明する。第5の実施例である車載用アンテナ10は、図17の(a)に示すアンテナ71を採用している。第6の実施例である車載用アンテナ90は、図17の(b)に示すアンテナ91Aを採用している。第7の実施例であるアンテナ90は、図17の(c)に示すアンテナ91Bを採用している。図17の(a)~(c)の各々は、それぞれアンテナ71、アンテナ91A、アンテナ91Bを平面に展開した展開図である。
 図18の(a)は、アンテナ71を備えている車載用アンテナ装置70及びアンテナ91Aを備えている車載用アンテナ装置90の放射利得の周波数依存性を示すグラフである。図18の(b)は、アンテナ71を備えている車載用アンテナ装置70及びアンテナ91Aを備えている車載用アンテナ装置90のVSWRの周波数依存性を示すグラフである。
 図19の(a)は、アンテナ91Aを備えている車載用アンテナ装置90及びアンテナ91Bを備えている車載用アンテナ装置90の放射利得の周波数依存性を示すグラフである。図19の(b)は、アンテナ91Aを備えている車載用アンテナ装置90及びアンテナ91Bを備えている車載用アンテナ装置90の放射利得のVSWRの周波数依存性を示すグラフである。
 車載用アンテナ装置70,90の放射利得及びVSWRは、車載用アンテナ装置70,90の各々を車体1のルーフ20の後端に搭載した状態で測定した。図18の(a)及び図19の(a)に示す車載用アンテナ装置70,90の各々の放射利得は、車体1のルーフ20に沿う平面内における放射利得を、アンテナ71,91A,91Bを中心とする全方位に関して計算し、全方位分を総和することによって得られた値である。
 図18の(a)を参照すると、アンテナ91Aを備えている車載用アンテナ装置90の放射利得は、0.8GHz未満の周波数帯域において、アンテナ71を備えている車載用アンテナ装置70の放射利得を上回っていることが分かる。
 図18の(b)を参照すると、アンテナ91Aを備えている車載用アンテナ装置90のVSWRは、0.8GHz未満の周波数帯域において、アンテナ71を備えている車載用アンテナ装置70のVSWRを下回っていることが分かる。
 これは、アンテナ91Aの第2の放射素子95Aに凹形状を形成したことによって得られた効果である。すなわち、アンテナ71のエッジ長に対してアンテナ95Aのエッジ長を長く構成することによって、車載用アンテナ装置90の帯域を車載用アンテナ装置70の帯域と比較して低周波側に広げることができた。
 図19の(a)を参照すると、アンテナ91Bを備えている車載用アンテナ装置90の放射利得は、2GHz近傍の周波数帯域において、アンテナ91Aを備えている車載用アンテナ装置90の放射利得を上回っていることが分かる。
 図19の(b)を参照すると、アンテナ91Bを備えている車載用アンテナ装置90のVSWRは、1.7GHz以上2.3GHz以下の周波数帯域において、アンテナ91Aを備えている車載用アンテナ装置90のVSWRを下回っていることが分かる。
 以上のように、アンテナ91Bを備えている車載用アンテナ装置90は、アンテナ91Aを備えている車載用アンテナ装置90と比べて、高周波帯域の特性がより良好であることが分かった。
 〔アンテナの更なる変形例〕
 以下、図20~図22を参照して、図7に示すアンテナ71の変形例について説明する。図20は、アンテナ71の変形例であるアンテナ71Aを平面に展開した展開図である。図21の(a)は、U字型に折り曲げられたアンテナ71Aを、第2の放射素子75Aに直行する方向から見た場合に得られる平面図である。図21の(b)は、図21の(a)に示したアンテナ71の右側面図である。図21の(c)は、図21の(a)に示したX-X’線に沿った断面における断面矢視図である。図22の(a)は、アンテナ71の別の変形例であるアンテナ71Bを平面に展開した展開図である。図22の(b)は、U字型に折り曲げられたアンテナ71Bを、第2の放射素子75Bに直行する方向から見た場合に得られる平面図である。
 (アンテナ71A)
 アンテナ71Aは、アンテナ71が備えている第1の放射素子74を第1の放射素子74Aに置換し、アンテナ71が備えている第2の放射素子75を第2の放射素子75Aに置換することによって得られる。
 図20に示すように、第1の放射素子74Aは、一方の給電点73Aaにおいて図示しない同軸線の一方の導体に接続されており、一方の給電点73Aaを含む領域と、N-N’線からO-O’線までの領域である給電点近傍部74Aa(請求の範囲に記載の第1部分)と、O-O’線から第1の放射素子74Aの末端(接続部73Aと逆側の端部)までの領域である第2部分74Abとにより構成されている。給電点近傍部74Aaは、一方の給電点73Aaから第1の方向に引き出された部分である。
 第2の放射素子75Aは、他方の給電点73Abにおいて図示しない同軸線の他方の導体に接続されており、他方の給電点73Abを含む根本部75Aaと、枝部75Abと、首部75Acと、主部75Adとによって構成されている。
 アンテナ71Aは、図20に示すN-N’線及びO-O’線に沿って谷折りされ、第1の方向に沿った第1平面P1、第2の方向に沿った第2平面P2、及び第1平面P1に交わり、且つ、第2平面P2に対向する第3平面P3に沿うように、U字型に折り曲げられている。その結果、図21に示すように、外側に誘電体フィルム72が配置され、内側に第1,第2の放射素子74A,75Aが配置されたU字型に折り曲げられたアンテナ71Aが形成される。
 U字型に折り曲げられた状態において、給電点73Aa,73Abによって構成される接続部73Aは、第3平面P3上であって、第1平面P1と交差する交差部近傍に配置されている。
 (第1の放射素子74A)
 第1の放射素子74Aにおいて、給電点近傍部74Aaは、第1平面P1に配置されており、第2部分74Abは、第3平面P3に配置されている。また、第2の放射素子75Aは、第2平面P2に配置されている。本変形例においては、第1平面P1に対して、第2平面P2及び第3平面P3の各々は、直交している。すなわち、第2平面P2と第3平面P3とは、互いに平行である。第1平面P1、第2平面P2、及び第3平面P3の各々は、それぞれ、請求の範囲に記載の第1面、第2面、及び第3面に対応する。本変形例では、第1面、第2面、及び第3面の各々として平面を採用しているが、第1面、第2面、及び第3面の各々として曲面を採用することもできる。また、第2面及び第3面は互いに平行でなくてもよい。
 第1の放射素子74Aの第2部分74Abは、給電点近傍部74Aaの端部から1つの方向に延ばされた第1直線部によって構成されている。上記1つの方向は、第3平面P3に沿い、且つ、第2平面P2から遠ざかる方向である。本変形例においては第1平面P1と第3平面P3とが平行であるため、当該方向は、第2の方向と一致する。
 (第2の放射素子75A)
 上述のように、第2の放射素子75Aは、他方の給電点73Abに接続されており、根本部75Aaと、枝部75Abと、首部75Acと、主部75Adとによって構成されている。
 根本部75Aaは、第2平面P2において、他方の給電点73Abから第2の方向に延ばされ、上記第2の方向に交わる第3の方向(図示したX-X’線と平行な方向)に対する幅が第1の放射素子74Aの給電点近傍部74Aaより狭くなるように構成された導体である。根本部75Aaの第3の方向に対する幅が、第1の放射素子74Aの第1部分74Aaより狭く構成されていることによって、第1の放射素子74Aの第1部分74Aaから延ばされた第2部分74Ab(第1直線部)と、第2の放射素子の根本部75Aaとが重畳しないように配置することができる。
 枝部75Abは、第2平面P2において、根本部75Aaから第3の方向に延ばされた帯状導体である。第1の放射素子74Aから延ばされた第2部分74Abの長さ、及び、根本部75Aaから延ばされた枝部75Abの長さは、互いに重畳しないように定められている。
 首部75Acは、第2平面P2において、根本部75Aaの端部から第2の方向に延ばされ、第3の方向に対する幅が根本部75Aaよりも狭い帯状導体である。
 主部75Adは、首部75Acの端部に設けられ、形状が楕円形である導体である。
 図21の(a)に示すように、第3平面P3に直交する方向から平面視した場合に、第2部分74Abは、第2平面P2に配置された第1の放射素子74Aの給電点73Aaに重畳しないように構成されている。また、第2部分74Abは、第2の放射素子75Aと重畳しない。
 (アンテナ71Aの効果)
 例えばアンテナ11は、U字型に折り曲げることによって狭小なスペースに実装可能である。その一方で、本願の発明者らは、平面に展開した状態のアンテナとU字型に折り曲げられたアンテナとでは放射特性が変化し、平面に展開した状態のアンテナの放射特性よりも、U字型に折り曲げられたアンテナの放射特性が劣化することを見出した。
 アンテナ71Aは、第1の放射素子74Aの第2部分74Abが第1の放射素子74Aの給電点73Aaに重畳しない構成を採用することによって、上述した劣化(アンテナをU字型に折り曲げることに起因する劣化)を抑制することができる。これは、折り曲げられた第1の放射素子74A間に生じる静電容量、すなわち第2部分74Abと一方の給電点73Aaとの間に生じる静電容量を抑制可能であるためである。
 また、アンテナ71Aは、第2の放射素子75Aと重畳しない構成を採用することによって、上述した劣化を更に抑制することができる。これは、互いに対向する第2平面P2及び第3平面P3の各々に設けられた第2部分74Abと第2の放射素子75Aとの間に生じる静電容量を抑制可能であるためである。
 なお、アンテナ71では、アンテナをU字型に曲げることで生じるアンテナの入力特性の変化を、アンテナ71の一部を車体1のルーフ20の端部に適切に重畳させることで打ち消している。そのため、アンテナ71を使用した場合、車体1(ルーフ20)に対するアンテナ71の設置位置にアンテナの入力特性が敏感になり、そのため、種々の車両への設置の際に不利になるという側面があった。アンテナ71Aでは、上述した劣化(アンテナをU字型に折り曲げることに起因する劣化)を抑制することができるので、U字型に折り曲げられたアンテナを車体1のルーフ20の端部に配置したことに起因する入力特性の変化が小さく、より汎用的に使用できるという長所を有する。
 接続部73Aに接続される同軸線とアンテナ71Aとのインピーダンス整合は、第1の放射素子74Aと第2の放射素子75Aとの間に生じる静電容量に依存することが知られている。上述のように構成されたアンテナ71Aは、第1の放射素子と第2の放射素子との間に生じる静電容量を給電領域でのみ生じさせる場合と比較して、上記インピーダンス整合を改善し、アンテナの放射特性を更に向上させることができる。
 また、主部の形状が長方形である放射素子と比較して、主部75Adの形状が楕円形であることによって、アンテナ71Aが動作する周波数帯域の低周波側におけるVSWR特性帯域を拡大することができる。
 (第2平面P2と第3平面P3との間隔)
 アンテナ11を実装するスペースをコンパクト化するという観点では、第2平面P2と第3平面P3との間隔、換言すれば、O-O’線とN-N’線との間隔は、狭い方が好ましい。以下において、この間隔のことをアンテナ11の高さhと称する(図21の(b)参照)。
 しかしながら、高さhを低くしていくにしたがって、第2の放射素子75Aの根本部75Aaと、第1の放射素子74Aの第2部分74Abとの間隔d(図21の(c)の断面矢視図参照)も狭くなる。
 第2部分74Abと第2の放射素子75Aとが重畳しない構成を採用していても、この間隔dを過度に狭くした場合、第2部分74Abと第2の放射素子75Aの根本部75Aaとの間に生じる静電容量が増大する場合があり、アンテナの放射特性が低下する。
 本願の発明者らは、間隔dが第2部分74Abの共振周波数を有する電磁波の真空中における波長の1/20以上、より好ましくは1/16以上になるように構成することによって、放射特性の劣化を十分に抑制可能であることを見出した。
 また、第2の放射素子75Aが首部75Acを備えていることによって、第2の放射素子75Aの近傍に同軸線が配置される場合であっても、同軸線がアンテナ装置71Aに与える干渉を抑制することができる。したがって、アンテナ71をU字型に折り曲げることに起因する放射特性の劣化を抑制することができる。また、首部75Acの大きさを適宜調整することによって、アンテナ71Aの動作帯域(主に低周波側)を調整することができる。
 (アンテナ71B)
 アンテナ71Bは、アンテナ71が備えている第1の放射素子74を第1の放射素子74Bに置換し、アンテナ71が備えている第2の放射素子75を第2の放射素子75Bに置換することによって得られる。
 図22の(a)に示すように、第1の放射素子74Bは、一方の給電点73Baに接続されており、P-P’線からQ-Q’線までの領域である給電点近傍部74Ba(請求の範囲に記載の第1部分)と、Q-Q’線から第1の放射素子74Aの末端(接続部73Bと逆側の端部)までの領域である、第2部分74Bb及び第3部分74Bdとにより構成されている。
 第2の放射素子75Bは、他方の給電点73Bbに接続されており、根本部75Baと、細首部75Bcと、主部75Bdとによって構成されている。
 アンテナ71Bは、図22の(a)に示すP-P’線及びQ-Q’線に沿って谷折りされ、第1の方向に沿った第1平面P1、第2の方向に沿った第2平面P2、及び第1平面P1に交わり、且つ、第2平面P2に対向する第3平面P3に沿うように、U字型に折り曲げられている。その結果、図22の(b)に示すように、外側に誘電体フィルム72が配置され、内側に第1,第2の放射素子74B,75Bが配置されたU字型に折り曲げられたアンテナ71Bが形成される。
 第1の放射素子74Bの第2部分74Bbは、給電点近傍部74Aaの端部から1つの方向に延ばされた第1直線部と、当該第1直線部の端部(給電点近傍部74Aaと逆側の端部)から当該第1直線部と交わる方向に延ばされた第2直線部とによって構成されている。上記1つの方向は、第3平面P3に沿い、且つ、第2平面P2から遠ざかる方向である。本変形例においては第1平面P1と第3平面P3とが平行であるため、当該方向は、第2の方向と一致する。
 第1の放射素子74Bの第3部分74Bdは、給電点近傍部74Aaの端部から1つの方向に延ばされた第1直線部によって構成されている。
 第2の放射素子75Bは、他方の給電点73Bbに接続されており、根本部75Baと、首部75Bcと、主部75Bdとによって構成されている。
 根本部75Ba及び首部75Bcの各々は、それぞれ、アンテナ71Aの根本部75Aa及び首部75Acと同様に構成されている。
 主部75Bdは、首部75Bcの端部に設けられ、上記第2の方向に延ばされた領域75Bd1と、上記第3の方向に沿う方向に延ばされた領域75bd2とを交互に配置することによってメアンダ状に構成されている。
 なお、本変形例においては、首部75Bcの端部に領域75bd2がまず接続され、その後、2組の領域75Bd1と領域75Bd2とが配置される構成を採用している。しかし、首部75Bcの端部に領域75Bd1と領域75Bd2との何れを配置するか、或いは、何組の領域75Bd1と領域75Bd2とを配置するかは、適宜定めることができる。
 図22の(b)に示すように、第1の放射素子74Bの第2部分74Bbを第3平面P3に直行する方向から平面視した場合に、第2部分74Bb及び第3部分74Bdは、第1の放射素子74Bの給電点73Baに重畳しないように構成されている。また、第2部分74Bbは、第1部分74Baと反対側の端部である先端領域74Bcを除き、第2の放射素子75Bと重畳しない。
 このように構成されたアンテナ71Bは、第1の放射素子74Bの第2部分74Bbを第3平面P3に直行する方向から平面視した場合に、第2部分74Bb及び第3部分74Bdが、第1の放射素子74Bの給電点73Baに重畳しないように構成されているため、アンテナ71Aと同様の効果を奏する。また、主部75Bdがメアンダ形状を有することによって、第2の放射素子75Bのエッジ長を長く構成しつつ、第2の放射素子75Bの素子長(P-P’線から第2の放射素子75Bの端部までの長さ)を抑制することができる。したがって、アンテナ71Bをよりコンパクト化することができる。
 なおアンテナ71Bでは、第1の放射素子74Bの先端領域74Bcを第2の放射素子75Bと重畳させており、インピーダンス整合を改善させることができる。
 〔第8の実施例〕
 図23の(a)は、第5の実施例であるアンテナ71を備えている車載用アンテナ装置70のVSWRの周波数依存性を示すグラフである。実線は、アンテナ71をU字型に折り曲げる前の状態、すなわち、平面に展開した状態で測定したVSWRを示す。破線は、アンテナ71をU字型に折り曲げた状態で測定したVSWRを示す。点線は、U字型に折り曲げた状態のアンテナ71を金属板に重畳させた状態で測定したVSWRを示す。
 図23の(b)は、上述したアンテナ71Aを備えている車載用アンテナ装置70(第8の実施例)のVSWRの周波数依存性を示すグラフである。実線、破線、及び点線の各々は、それぞれ、(a)の場合と同様に、アンテナ71Aを展開した状態、アンテナ71AをU字型に折り曲げた状態、及び折り曲げた状態のアンテナ71Aを金属板に重畳させた状態で測定したVSWRを示す。
 金属板は、車載用アンテナ装置を車体に搭載した場合におけるルーフを模したものである。したがって、第5及び第8の実施例である車載用アンテナ装置70の各々が実際に運用される状態で得られるVSWRは、点線で示すVSWRに最も近いと考えられる。
 図23の(a)を参照すると、アンテナ71は、展開した状態、U字型に折り曲げた状態、更には金属板に重畳させた状態と、その状態を変化させることによって、測定されるVSWRの周波数依存性が大きく形を異ならせることが分かる。
 一方、図23の(b)を参照すると、アンテナ91Bは、展開した状態、U字型に折り曲げた状態、更には金属板に重畳させた状態と、その状態を変化させた場合であっても、測定されるVSWRの周波数依存性が安定しており、その形がほとんど変わらないことが分かる。
 以上のように、アンテナ71と比較して、アンテナ71Aは、アンテナをU字型に折り曲げることに伴う放射特性の劣化を抑制できることが分かった。また、アンテナ71と比較して、アンテナ71Aは、U字型に折り曲げた状態のアンテナを金属板に重畳させた場合に生じ得る放射特性の劣化も抑制できることが分かった。
 したがって、アンテナ71Aは、測定した放射特性をフィードバックしながらアンテナパターンを調整する(最適化する)調整工程を容易にすることができる。展開した状態で得られた放射特性と、運用時に得られる放射特性との間に生じる差が少ないため、展開した状態の放射特性を用いてアンテナパターンを調整することができるためである。
 〔第6の実施形態〕
 以下、図24から図27を参照して、本発明の第6の実施形態について説明する。
 〔車載用アンテナ装置110の概要〕
 初めに、に図24を参照して、本実施形態に係る車載用アンテナ装置の概要について説明する。図24の(a)は、本実施形態に係る車載用アンテナ装置110を搭載する車体101の外観を示す斜視図である。図24の(b)は、本実施形態に係る車載用アンテナ装置110を搭載する車体101の一部を拡大した平面図である。具体的には、車体101が搭載する車載用アンテナ装置110を拡大した平面図である。
 図24の(a)に示す車体101は、図1の(a)に示す車体1と同様に構成されている。すなわち、車体101のルーフ120は、車体1のルーフ20と同様に構成されている。以下において、すでに説明した部材に対応する部材については、その詳しい説明を省略する。本実施形態に係る車載用アンテナ装置110は、ルーフ120の後端に搭載されており、スポイラーを筐体としている。
 図24の(b)に示すように、車体101のハッチゲート121は、図1の(b)に示す車体1のハッチゲート21と同様に構成されている。したがって、ハッチゲート121の詳しい説明は省略する。ハッチゲート121のハッチゲートパネル121a、リヤガラス121b、及び枠体121cの各々は、それぞれ、ハッチゲート21のハッチゲートパネル21a、リヤガラス21b、及び枠体21cの各々に対応する部材である。また、ハッチゲート121のスポイラー固定部121dは、ハッチゲート21のスポイラー固定部21dに対応する部材である。
 車載用アンテナ装置110は、図示しない固定手段(例えばボルトやクリップ、ファスナー等)によってスポイラー固定部121dに取り付けられている。スポイラー固定部121dに固定されることによって、車載用アンテナ装置110の上面とルーフ120全体の上面とが略面一に並ぶ。車載用アンテナ装置110はアンテナ111とストップランプ119とを内蔵するスポイラーは、誘電体(例えば樹脂等)からなり、電磁波を透過する。
 アンテナ111は、スポイラーの内部のストップランプ119に干渉しない位置に配置されている。具体的には、スポイラーの左右方向の中心に配置されたストップランプ119を避けて、アンテナ111は、ストップランプ119の左側にオフセットして配置されている。
 〔車載用アンテナ装置110〕
 車載用アンテナ装置110の構成について、図25を参照して具体的に説明する。図25は、本実施形態に係る車載用アンテナ装置110の構成を示す。図25の(a)は、車載用アンテナ装置110を搭載する車体101の一部を拡大した矢視断面図であり、図24の(b)に示したA-A’線に沿う矢視断面図である。図25の(b)は、車載用アンテナ装置110が備えているアンテナ111を平面に展開した展開図である。
 図25の(a)に示すように、車載用アンテナ装置110は、筐体であるスポイラーの内部に、アンテナ111を折り曲げられた状態で載置するように構成されている。車載用アンテナ装置110の内部にアンテナ111を固定する固定手段の例としては、粘着シート、両面テープや樹脂製のファスナー等が挙げられる。固定手段は、限定されるものではないが、電磁波の送信及び受信を妨げないために導体ではないものからなることが好ましい。アンテナ111の具体的な折り曲げ方などについては、図25の(b)を参照しながら後述する。
 〔アンテナ111〕
 図25の(a)に示すように、アンテナ111は、第1の放射素子115と、第2の放射素子114と、図示しない同軸線が放射素子114,115に接続される接続部113と、を備えている。車載用アンテナ装置110を車体101の後端に搭載したときに、アンテナ111の第2の放射素子114は、一方の給電点である第1の給電点113bからルーフ120に沿う方向である車体101の前方向(請求の範囲に記載の第2の方向に相当する)に引き出されており、第1の放射素子115は、他方の給電点である第2の給電点113aからルーフ120に交わる方向である車体101の下方向(請求の範囲に記載の第1の方向に相当する)に引き出されている。
 第2の放射素子114は、ルーフ120の後端部を構成する金属部材であるスポイラー固定部121dに沿い、且つ、スポイラー固定部121dに対して離間した状態で重畳する重畳部114aであって、第2の放射素子114の先端を含む重畳部114aを有する。
 重畳部114aの長さLxは、第2の放射素子114の全長の64.5%以下であり、より好ましくは、第2の放射素子114の全長の26.0%以上55.2%以下である。
 車載用アンテナ装置110において、第2の放射素子114における重畳部の長さLxを、第2の放射素子114の全長の64.5%以下となるように構成することによって、車載用アンテナ装置110から見てルーフ120を横断する方向(本実施形態では、車体101の前方向)に対する利得を、第2の放射素子114がスポイラー固定部121dと重畳しない場合よりも大きくすることができる。また、長さLxを第2の放射素子114の全長の26.0%以上55.2%以下となるように構成することによって、車体101の前方向に対する利得を、更に大きくすることができる。
 重畳部114aにおける第2の放射素子114とスポイラー固定部121dとの間隔Dzは、18mm未満であり、より好ましくは、11mm未満である。
 車載用アンテナ装置110において、第2の放射素子114における重畳部114aがスポイラー固定部121dに対して離間した状態で重畳しており、且つ、重畳部114aにおける第2の放射素子114とスポイラー固定部121dとの間隔Dzが18mm未満となるように構成することによって、車体101の前方向に対する利得を、第2の放射素子114がスポイラー固定部121dと重畳しない場合よりも大きくすることができる。また、間隔Dzが11mm未満となるように構成することによって、車体101の前方向に対する利得を、更に大きくすることができる。
 なお、本実施形態において、車載用アンテナ装置110は、第2の放射素子114の重畳部114aがスポイラー固定部121dに重畳するように構成されている。しかし、車載用アンテナ装置110は、ルーフ120に固定されていてもよい。この場合、車載用アンテナ装置110は、第2の放射素子114の重畳部114aがルーフ120を構成する金属部材に重畳するように構成されていればよい。
 第2の放射素子114の全長及び第1の放射素子115の全長は、特に限定されるものではなく、アンテナ111から放射させたい電磁波の周波数に応じて、それぞれの全長を適宜定めることができる。長さLxは、アンテナ111から放射させたい電磁波の周波数に応じて定められた第2の放射素子114の全長に基づいて、上述した範囲内に収まるように決定すればよい。
 なお、長さLxの好ましい範囲の根拠については、本発明の第9の実施例及び第7~第11の変形例(図26)を参照して後述する。また、間隔Dzの好ましい範囲については、本発明の第9の実施例及び第12~第15の変形例(図27)を参照して後述する。
 〔アンテナ111の構成〕
 アンテナ111は、フィルムアンテナであり、例えば次のように構成できる。図25の(b)に示すように、アンテナ111は、アンテナ基板である誘電体フィルム112にアンテナパターンが形成されたものである。誘電体フィルム112を構成する材料の一例としては、例えば、ポリイミド樹脂が挙げられるが、これに限定されない。
 図25の(b)の例では、誘電体フィルム112の表面に、第2の放射素子114及び第1の放射素子115からなる放射素子が形成されている。第2の放射素子114及び第1の放射素子115は、導体からなる薄板状の部材である。例えば、第2の放射素子114及び第1の放射素子115としては、銅箔が用いられるが、これに限定されない。
 放射素子114,115の表面に設けられた接続部113は、図示しない同軸線が放射素子114,115に接続される部位であり、2つの給電点(一対の給電点)113a,113bからなる。接続部113は、接続部13と同様に構成されている。
 本実施形態においては、アンテナ111としてダイポールアンテナを採用しているが、ループアンテナ、モノポールアンテナ、及び逆F型アンテナをアンテナ111として使用してもよい。また、それぞれの放射素子は、本実施形態の放射素子114,115のように面状の放射素子であってもよいし、線状の放射素子であってもよい。
 本実施形態において、第2の放射素子114は、長方形の導体によって構成されており、車載用アンテナ装置110が車体101に搭載されたときに、長方形の長辺が車体101の前後方向と平行になるように配置されている。
 本実施形態において、第1の放射素子115は、釣鐘型の頭部115aと、この頭部115aと第2の給電点113aとの間に介在する長方形の首部115dとからなる導体である。頭部115aは、車載用アンテナ装置110が車体101に搭載されたときに、長辺が車体101の上下方向と平行になるように配置された長方形の、第2の給電点113a側の2つの角を丸めることにより得られる。言い換えれば、頭部115aの第2の給電点113a側の2つの角を含む領域115b及び領域115cの各々は、それぞれ、四分楕円によって構成されている。
 第1の放射素子115が頭部115aを備えていることによって、第2の放射素子114と第1の放射素子115との間隔を連続的に変化させることができる。その結果、アンテナ111の共振周波数を調整することができ、動作帯域を調整することができる。
 アンテナ111は、図25の(b)に示すB-B’線及びC-C’線に沿って谷折りされる。その結果、外側に誘電体フィルム112が配置され、内側に放射素子114,115が配置されたU字型(あるいはコの字型)に折り曲げられたアンテナ111が形成される。図25の(a)に示すように、車載用アンテナ装置110は、U字型に折り曲げられたアンテナ111を、筐体であるスポイラーの内壁に沿って固定する構成を採用している。
 このように第1の放射素子115が折り曲げられていることによって、第1の放射素子115の配置に要する空間の体積を小さくすることができる。したがって、第1の放射素子115が折り曲げられていない場合と比べて、より小型(低背)な車載用アンテナ装置110を実現することができる。
 なお、第2の放射素子114及び第2の放射素子の形状は、これらに限定されるものではない。例えば、第2の放射素子114として、釣鐘型の頭部とこの頭部と、第1の給電点113bとの間に介在する長方形の首部とからなる導体を採用することもできる。また、第1の放射素子115として、長方形の導体を採用することもできる。また、領域115b及び領域115cの形状は、第2の給電点113aから第2の放射素子の長辺に近づくにしたがって、第2の放射素子114と第1の放射素子115との間隔が広くなるように構成されていればよく、四分楕円でなくてもよい。
 〔第9の実施例〕
 以下、本発明の第6の実施形態に係る車載用アンテナ装置110の第9の実施例を説明する。本実施例に係る車載用アンテナ装置110は、本発明の第6の実施形態に係る車載用アンテナ装置110において、第2の放射素子114の全長を120mmとし、第1の放射素子115の全長を44mmとし、重畳部114aの長さLxを60mmとし、間隔Dzを10mmとしたものである。すなわち、本実施例において、長さLxは、第2の放射素子114の全長の50.0%である。
 本発明の第6の実施形態に係る車載用アンテナ装置110と同様に、本実施例に係る車載用アンテナ装置110は、ハッチバック型の車体101のルーフ120の後端、より具体的には、ハッチゲートの上部に搭載されている。アンテナ111から放射させる電磁波としては、LTE用の800MHz帯と呼ばれる周波数(具体的には832MHz)の電磁波を用いた。
 また、本発明の第6の実施形態に係る車載用アンテナ装置110の比較例として、第2の放射素子の重畳部の長さLxを0mmとした車載用アンテナ装置を用いる。比較例に係る車載用アンテナ装置において、第1の放射素子の全長、第2の放射素子の全長、及び間隔Dzの各々は、本実施例に係る車載用アンテナ装置110と同一とした。
 車体101の前方(図24の(a)に図示したy軸方向)に対する放射利得を、本実施例に係る車載用アンテナ装置110及び比較例に係る車載用アンテナ装置の各々に対して、数値計算により求めた。その結果、比較例に係る車載用アンテナ装置の車体101の前方に対する放射利得が-6.35dBだったのに対して、本実施例に係る車載用アンテナ装置110の車体101の前方に対する放射利得は、-4.57dBであった。
 以上の結果より、本実施例に係る車載用アンテナ装置110は、比較例に係る車載用アンテナ装置と比較して、車体101の前方に対する放射利得を高められることが分かった。すなわち、長さLxが60mmである車載用アンテナ装置110は、車体101のルーフ120の端部に搭載した場合に、ルーフ120を横断する方向への放射利得が、長さLxが0mmである比較例に係る車載用アンテナ装置よりも高められることが分かった。
 〔変形例の第1のグループ〕
 本発明の第6の実施形態に係る車載用アンテナ装置110の変形例の第1のグループについて、図26を参照して説明する。この第1のグループは、本発明の第7~第11の変形例に係る車載用アンテナ装置110によって構成されている。
 第7~第11の変形例に係る車載用アンテナ装置110の各々は、それぞれ、間隔Dzを10mmとしたうえで、長さLxを30mm,40mm,50mm,70mm,90mmと変形したものである。このように構成された第7~第11の変形例に係る車載用アンテナ装置110を用いて、xy平面における、車体101の前方に対する放射利得及び後方に対する放射利得を、それぞれ、数値計算により得た。
 図26の(a)は、本発明の、第9の実施例、第7~第11の変形例、及び比較例に係る車載用アンテナ装置110によって得られた放射利得であって、xy平面における、車体101の前方に対する放射利得及び後方に対する放射利得の各々と、長さLxとの相関関係を示すグラフである。
 比較例に係る車載用アンテナ装置によって得られた放射利得は、車体101の前方に対して-6.35dBであり、車体101の後方に対して-1.21dBであった。
 図26の(a)によれば、車体101の前方に対する放射利得及び後方に対する放射利得は、何れも、長さLxが0mmから長くなるにしたがって、増大傾向を示した後に減少傾向に転ずることが分かった。
 図26の(b)は、図26の(a)に示した放射利得を多項式、より具体的には、f(x)=ax+bx+cで表される二次関数によってフィッティングした結果を示したグラフである。フィッティングを行った結果、第7の変形例に係る車載用アンテナ装置110及び比較例に係る車載用アンテナ装置によって得られた放射利得は、第9の実施例及び第8~第11の変形例に係る車載用アンテナ装置110によって得られた放射利得と異なる関数系によってよりよくフィッティングされることが分かった。そこで、図26の(b)には、第9の実施例及び第8~第11の変形例に係る車載用アンテナ装置110によって得られた放射利得をフィッティングした結果のみを示している。
 なお、図26の(b)の縦軸は、車載用アンテナ装置110に入力した入力電力に対する車載用アンテナ装置110から放射された放射電力の比として、車載用アンテナ装置110の放射利得をプロットしている。
 図26の(b)に示したフィッティングの結果、得られた二次関数f(x)の係数a,b,cの各々は、それぞれ、a=-1.66×10-4,b=1.61×10-2,c=-2.58×10-2であった。
 比較例に係る車載用アンテナ装置によって得られた車体101の前方に対する放射利得-6.35dBは、車載用アンテナ装置110に入力した入力電力に対する車載用アンテナ装置110から放射された放射電力の比として表すと0.2316である。図26の(b)によれば、0.2316に対応する長さLxは、77.35mmであることが分かった。したがって、本発明に係る車載用アンテナ装置110における長さLxは、第2の放射素子114の全長の64.5%以下となるように定める。
 また、長さLxがこの範囲に含まれるように構成された車載用アンテナ装置110によって得られた放射利得であって、車体101の後方に対する放射利得は、比較例に係る車載用アンテナ装置によって得られた放射利得であって、車体101の後方に対する放射利得を上回ることが分かった(図26の(a)参照)。したがって、本発明の車載用アンテナ装置110は、比較例の車載用アンテナ装置と比較して、車体101の後方に対する放射利得を悪化させることなく、車体101の前方に対する放射利得を大きくすることができる。
 また、車載用アンテナ装置110としてより好ましい放射利得である-5.0dBは、車載用アンテナ装置110に入力した入力電力に対する車載用アンテナ装置110から放射された放射電力の比として表すと0.3162である。図26の(b)によれば、0.3162に対応する長さLxは、31.18mm以上66.28mm以下であることが分かった。したがって、本発明の一態様に係る車載用アンテナ装置110における長さLxは、第2の放射素子114の全長の26.0%以上55.2%以下であることが好ましい。
 〔変形例の第2のグループ〕
 本発明の第6の実施形態に係る車載用アンテナ装置110の変形例の第2のグループについて、図27を参照して説明する。この第2のグループは、本発明の第12~第15の変形例に係る車載用アンテナ装置110によって構成されている。
 第12~第15の変形例に係る車載用アンテナ装置110の各々は、それぞれ、長さLxを60mmとしたうえで、間隔Dzを2.5mm,5.0mm,20mm,40mmと変形したものである。このように構成された第12~第15の変形例に係る車載用アンテナ装置110を用いて、xy平面における、車体101の前方に対する放射利得及び後方に対する放射利得を、それぞれ、数値計算により得た。
 図27の(a)は、本発明の、第9の実施例及び第12~第15の変形例に係る車載用アンテナ装置110によって得られた放射利得であって、xy平面における、車体101の前方に対する放射利得及び後方に対する放射利得の各々と、間隔Dzとの相関関係を示すグラフである。
 図27の(a)によれば、車体101の前方に対する放射利得及び後方に対する放射利得の各々は、間隔Dzが大きくなればなるほど減少することが分かった。言い換えれば、車載用アンテナ装置110において、間隔Dzをできるだけ小さくする、理想的には、間隔Dzを0mmにすることが好ましいことが分かった。しかし、現実的には、第2の放射素子114とスポイラー固定部121dとの間には、少なくとも車載用アンテナ装置110の底面が介在し、場合によっては、車載用アンテナ装置110をスポイラー固定部121dに固定するための固定手段も介在する。以上のことから、間隔Dzは、車載用アンテナ装置110をスポイラー固定部121dに固定可能な範囲内において可能な限り小さいことが好ましい。
 図27の(b)は、図27の(a)に示した放射利得をg(x)=dlog(x)+eで表される対数関数によってフィッティングした結果を示したグラフである。フィッティングを行った結果、第12~第13の変形例に係る車載用アンテナ装置110によって得られた放射利得は、第9の実施例及び第14~第15の変形例に係る車載用アンテナ装置110によって得られた放射利得と異なる関数系によってよりよくフィッティングされることが分かった。そこで、図27の(b)には、第9の実施例及び第14~第15の変形例に係る車載用アンテナ装置110によって得られた放射利得をフィッティングした結果のみを示している。
 なお、図27の(b)の縦軸は、車載用アンテナ装置110に入力した入力電力に対する車載用アンテナ装置110から放射された放射電力の比として、車載用アンテナ装置110の放射利得をプロットしている。
 図27の(b)に示したフィッティングの結果、得られた対数関数g(x)の係数d,eの各々は、それぞれ、d=-1.71×10-1,e=7.26×10-1であった。
 間隔Dzの範囲を定める場合の判断基準にも、比較例に係る車載用アンテナ装置によって得られた放射利得であって、車体101の前方に対する放射利得、すなわち、-6.35dBを用いた。
 この放射利得-6.35dBは、車載用アンテナ装置110に入力した入力電力に対する車載用アンテナ装置110から放射された放射電力の比として表すと0.2316である。図27の(b)によれば、0.2316に対応する間隔Dzは、18mm(有効数字2桁。有効数字4桁で言えば17.94mm)であることが分かった。したがって、本発明に係る車載用アンテナ装置110における間隔Dzを18mm未満と定める。
 また、車載用アンテナ装置110としてより好ましい放射利得である-5.0dBは、車載用アンテナ装置110に入力した入力電力に対する車載用アンテナ装置110から放射された放射電力の比として表すと0.3162である。図27の(b)によれば、0.3162に対応する間隔Dzは、11mm(有効数字2桁。有効数字4桁で言えば10.94mm)であることが分かった。したがって、本発明の一態様に係る車載用アンテナ装置110における間隔Dzは、11mm未満であることが好ましい。
 〔第7の実施形態〕
 以下、図面を参照して、本発明の第7の実施形態について説明する。なお、本実施形態においては、ルーフの後端に配置されるスポイラーを筐体とする車載用アンテナ装置について説明するが、本発明はこれに限定されない。すなわち、本発明は、ルーフの前端、右端、又は左端に配置される車載用アンテナ装置にも適用することができる。
 〔車載用アンテナ装置210の概要〕
 初めに図28の(a)を参照して、本発明の第7の実施形態に係る車載用アンテナ装置の概要について説明する。図28の(a)は、本実施形態に係る車載用アンテナ装置の一例である、車載用アンテナ装置210を搭載する車体201の外観を示す斜視図である。
 図28の(a)に示す車体201は、図1の(a)に示す車体1と同様に構成されている。すなわち、車体101のルーフ120は、車体1のルーフ20と同様に構成されている。以下において、すでに説明した部材に対応する部材については、その詳しい説明を省略する。本実施形態に係る車載用アンテナ装置210は、スポイラー211を筐体とする車載用アンテナ装置であり、ルーフ202の後端に搭載される。
 車体201の側面上側は、ピラー203と、前ドア及び後ろドアに組み付けられた窓ガラス204a~204cとにより構成されている。本実施形態に係る車体201において、ピラー203は、Aピラー203a、Bピラー203b、Cピラー203c、及びDピラー203dにより構成されている。
 窓ガラス204aは、前ドアに対して、開閉自在なように取り付けられている窓である。同様に窓ガラス204bは、後ろドアに対して、開閉自在なように取り付けられている窓である。窓ガラス204cは、Cピラー203cとDピラー203dとの間に設けられた窓であって、嵌め殺し式の窓ガラスである。
 Aピラー203aは、ルーフ202を支持するとともにフロントガラスを支持する。Bピラー203bは、前ドア及び後ろドアの内側に配置されており、ルーフ202を支持するとともに前ドア及び後ろドアの設置に伴い設けられた開口部の強度を高める。Cピラー203c及びDピラー203dは、ルーフ202を支持するとともに窓ガラス204cを保持する。
 車体201のハッチゲート205は、図1の(b)に示す車体1のハッチゲート21と同様に構成されている。したがって、ハッチゲート205の詳しい説明は省略する。ハッチゲート205のハッチゲートパネル251、リヤガラス252、及び枠体253の各々は、それぞれ、ハッチゲート21のハッチゲートパネル21a、リヤガラス21b、及び枠体21cの各々に対応する部材である。また、ハッチゲート251のスポイラー固定部254は、ハッチゲート21のスポイラー固定部21dに対応する部材である。
 スポイラー固定部254には、図示しない固定手段(例えばボルト等)によってスポイラー211が取り付けられている。スポイラー固定部254に固定されることによって、スポイラー211の上面とルーフ202全体の上面とが略面一に並ぶ。
 アンテナ214は、スポイラー211の内部のストップランプ211aに干渉しない位置に配置されている。具体的には、アンテナ214は、スポイラー211の左右方向の中心に配置されたストップランプ211aを避けて、ストップランプ211aの左側に配置されている。換言すれば、放射素子212は、枠体253を構成する一対の縦柱のうち一方の縦柱253aとストップランプ211aとの間に配置されている。縦柱253aは、スポイラー固定部254と導通する金属製の構造体であって、ルーフ202に交わる方向に伸びる構造体である。
 〔車載用アンテナ装置210〕
 次に、車載用アンテナ装置210の構成について、図28の(b)と図29を参照して具体的に説明する。図28の(b)は、車載用アンテナ装置210を搭載する車体201の一部を拡大した断面図であり、図28の(a)に示した放射素子212を通るyz平面における断面図である。図29は、車載用アンテナ装置210が備えている放射素子212を平面に展開した展開図である。
 図28の(b)に示すように、車載用アンテナ装置210は、放射素子212をスポイラー211の内部に折り曲げられた状態で載置するように構成されている。具体的には、誘電体フィルム213上に放射素子212が形成されたアンテナ214を、放射素子212が内周側に配置され、誘電体フィルム213が外周側に配置されるようにU字型(あるいはコの字型)に折り曲げ、スポイラー211の内部に固定している。スポイラー211の内部にアンテナ214を固定する固定手段の例としては、粘着シート、両面テープや樹脂製のファスナー等が挙げられる。固定手段は、限定されるものではないが、電磁波の送信及び受信を妨げないために導体ではないものからなることが好ましい。放射素子212の具体的な折り曲げ方などについては、図29を参照しながら後述する。
 なお、本実施形態においては、ルーフ202の後端に車載用アンテナ装置210が搭載される例を用いて説明する。しかし、車載用アンテナ装置210を搭載するルーフ202の端部は、後端に限定されず、車体の形状及び車載用アンテナ装置210の筐体(本実施形態においてはスポイラー211)の形状に応じて適宜変更することができる。
 〔アンテナ214〕
 アンテナ214は、図29に示すように、放射素子212と、誘電体フィルム213と、図示しない同軸線と放射素子212とを接続する接続部212bとを備えている。放射素子212は、誘電体フィルム213上に形成されている。誘電体フィルム213を構成する材料の一例としては、例えば、ポリイミド樹脂が挙げられるが、これに限定されない。
 図29の例では、誘電体フィルム213の表面に形成された放射素子212は、第1の放射素子212c及び第2の放射素子212dを有している。第1の放射素子212c及び第2の放射素子212dは、導体からなる薄板状の部材である。例えば、第1の放射素子212c及び第2の放射素子212dとしては、銅箔が用いられるが、これに限定されない。
 接続部212bは、図示しない同軸線が第1,第2の放射素子212c,212dに接続される部位であり、2つの給電点(一対の給電点である第1の給電点212b1,第2の給電点212b2)からなる。接続部212bは、接続部13と同様に構成されている。
 本実施形態においては、放射素子212としてダイポールアンテナを採用しているが、ループアンテナ、モノポールアンテナ、及び逆F型アンテナを放射素子212として使用してもよい。また、それぞれの放射素子は、本実施形態の第1,第2の放射素子212c,212dのように面状のアンテナパターンであってもよいし、線状のアンテナパターンであってもよい。
 本実施形態では、ダイポールアンテナの一例として、第1の放射素子212cとして釣鐘型の銅箔を採用し、第2の放射素子212dとして矩形の銅箔を採用している。釣鐘型の第1の放射素子212cは、矩形の銅箔をベースとしている。釣鐘型の第1の放射素子212cは、その矩形の銅箔が有する4つの角のうち第2の放射素子212dに近接する2つの角の各々を、四分楕円212c2及び四分楕円212c3に置き換えることによって得られる。第1の放射素子212cの形状を長方形から釣鐘型に変更することによって、第1の放射素子212cの給電点近傍部212c1と第2の放射素子212dとの間隔を連続的に変化させることができる。その結果、放射素子212の共振周波数を調整することができ、動作帯域を調整することができる。
 放射素子212は、図29に示すB-B’線及びC-C’線に沿って谷折りされ、図28(b)に示すように、U字型に折り曲げられた状態でスポイラー211の内部に固定される。また車載用アンテナ装置210を車体201の後端に搭載したとき、放射素子212は、第1の給電点212b1からルーフ202に交わる方向(請求の範囲に記載の第1の方向に相当する)に引き出される部分を有し、かつ放射素子212の少なくとも一部がルーフ202の後端を構成する金属部材、又は、車載用アンテナ装置210をルーフ202の後端に固定するためのアンテナ固定部254に沿い、且つ、離間した状態で重畳するように定められている。
 本実施形態では、図28の(b)に示すように、車載用アンテナ装置210を車体201の後端に搭載したときに、(1)第1の放射素子212cは、第1の給電点212b1からルーフ202に交わる方向である車体201の下方向(請求の範囲に記載の第1の方向に相当する)に引き出されており、(2)第2の放射素子212dは、第2の給電点212b2からルーフ202に沿う方向である前方向(請求の範囲に記載の第2の方向に相当する)に引き出されており、(3)放射素子212の一部である重畳部212d1がスポイラー固定部254に重畳している構成を採用している。重畳部212d1は、ルーフ202の後端部を構成する金属部材であるスポイラー固定部254に沿い、且つ、スポイラー固定部254に対して離間した状態で重畳し、第2の放射素子212dの中間から終端までの部分である。
 第1の放射素子212cにおいて、第1の給電点212b1から下方向に引き出されている部分、すなわち、第1の給電点212b1に接続されている第1の放射素子212cの始端(根元)から、谷折りされる線であるC-C’線までの部分を給電点近傍部212c1とする。
 給電点近傍部212c1が第1の給電点212b1から下方向に引き出されているため、給電点近傍部212c1を流れる電流の方向は、主に上下方向である。したがって、給電点近傍部212c1は、垂直偏波を放射する。垂直偏波は、ルーフ202を横断するときに、水平偏波と比べてルーフ202による減衰効果を受け難い。給電点近傍部212c1が垂直偏波を放射することによって、車載用アンテナ装置210をルーフ202の後端に搭載した場合に、車体201の前方向に対する放射利得が、ルーフ202による減衰効果により損なわれることを抑制することができる。
 重畳部212d1に高周波電流が流れると、スポイラー固定部254及び縦柱253aに誘導電流が流れる。縦柱253aは、ルーフ202に交わる方向、すなわち車体201の上下方向に延伸されている。したがって、縦柱253aを流れる誘導電流の方向は、主に上下方向である。したがって、縦柱253aは、垂直偏波を放射する。すなわち、車載用アンテナ装置210は、ルーフ202の後端に搭載された場合に、放射素子212からのみならず縦柱253aからも、ルーフ202による減衰効果を受け難い垂直偏波を放射することができる。
 詳しくは、図30~図32を参照して説明するが、車載用アンテナ装置210における放射素子212の位置は、車載用アンテナ装置210を車体201に搭載したときに、縦柱253aから放射素子212までの最短距離が放射素子212の動作帯域の中心周波数の波長λoの1/3倍以上2/3倍以下となるように定められている。
 発明者らが得た知見によれば、縦柱253aから放射素子212までの最短距離が動作帯域の中心周波数の波長λoの1/3倍以上2/3倍以下のとき得られる、車体201の前方向(放射素子212から見てルーフ202を横断する方向)に対する垂直偏波の利得は、縦柱253aを省略したときに得られる同利得よりも大きくなる。これは、縦柱253aから放射素子212までの最短距離を動作帯域の中心周波数の波長λoの1/3倍以上2/3倍以下とすることによって、車体201の前方向に関し、放射素子212から放射される垂直偏波と縦柱253aから放射される垂直偏波とが互いに強め合うように干渉するためであると考えられる。
 すなわち、本実施形態に係る車載用アンテナ装置210によれば、縦柱253aを利用して、車体201の前方向に対する垂直偏波の利得を高めた車載用アンテナ装置を実現することができる。そのため、車載用アンテナ装置210は、LTE用の電磁波に代表される波長が短い周波数帯を利用する車載用アンテナ装置としても好適に利用することができる。
 また、縦柱253aから放射素子212までの最短距離は、動作帯域の中心周波数の波長λoの1/2倍であることが好ましい。この構成によれば、縦柱253aを利用して、車体201の前方向に対する垂直偏波の利得を更に高めることができる。
 なお、本実施形態では、スポイラー211がスポイラー固定部254に固定されるものとして説明しているが、スポイラー211は、ルーフ202に直接固定されていてもよい。スポイラー211がルーフ202に固定されている場合、車体201の上下方向に伸びるDピラー203dが金属製の構造体として機能する。その場合、車載用アンテナ装置210における放射素子212の位置は、車載用アンテナ装置210を車体201に搭載したときに、Dピラー203dから放射素子212までの最短距離が動作帯域の中心周波数の波長λoの1/3倍以上2/3倍以下となるように定められていればよい。
 また、金属製の構造体は、縦柱253a及びDピラー203dのように車体201を構成する部材であることが好ましいが、スポイラー固定部254又はルーフ202に対して設置され、ルーフ202に交わる方向に伸びる導体板、導体棒、及び導体パイプの何れかであってもよい。
 〔放射素子の設置方法〕
 本発明の一実施形態に係る設置方法は、以下の3つの条件を満たすように、車載用アンテナ装置210を車体201のルーフ202の端部に設置する方法である。
 条件1:放射素子212は、一方の給電点からルーフ202に交わる方向(請求の範囲に記載の第1の方向に相当する)に引き出されている。
 条件2:放射素子212の少なくとも一部がルーフ202、又は、車載用アンテナ装置210をルーフ202の後端に固定するためのアンテナ固定部254に重畳している。
 条件3:ルーフ202又はアンテナ固定部254と導通する金属製の構造体(本実施形態においては、縦柱253a)であって、ルーフ202に交わる方向に伸びる構造体から放射素子212までの最短距離Dxが放射素子212の動作帯域の中心周波数の波長λoの1/3倍以上2/3倍以下となる。
 この設置方法によれば、車載用アンテナ装置210と同様の効果を奏する。
 〔一連の実施例〕
 本発明の一連の実施例に係る車載用アンテナ装置210について、図30~図32を参照して説明する。図30の(a)は、一連の実施例において、車載用アンテナ装置210の放射利得を計算するために用いた、車載用アンテナ装置210を搭載した車体201のモデルの構成を示す上面図である。図30の(b)は、上記モデルの構成を示す側面図である。図31の(a)は、図30の(a)に示した上記モデルの一部を拡大した上面図である。図31の(b)は、図30の(b)に示した上記モデルの一部を拡大した側面図である。図32は、一連の実施例の各々に係る車載用アンテナ装置210の放射利得であって、車体201の前方向に対する放射利得を示すグラフである。
 図30及び図31において、放射素子212と縦柱253aとの関係をわかりやすくするために、車載用アンテナ装置210の筐体であるスポイラー211は、省略され図示されていない。
 図30の(a)及び(b)に示されているように、放射素子212は、ルーフ202の後端であって、車体201の左右方向の中心から左側にずらして配置されている。
 一連の実施例において、縦柱253aから放射素子212までの最短距離Dx、重畳部212d1の車体201の前後方向に沿う長さLy、及び放射素子212の下面とスポイラー固定部254の上面との間隔Dzは、図31の(a)及び(b)に示すように定められている。
 一連の実施例においては、Ly=60mm及びDz=10mmを採用したうえで、0mm≦Dx≦400mmの範囲内で最短距離Dxを変化させることによって得られた車載用アンテナ装置210に関して、図30及び図31に示したモデルを用いてxy平面における垂直偏波の放射利得を計算した。放射素子212に入力する高周波信号の周波数は、832MHzである。したがって、放射素子212の動作帯域の中心周波数の波長λoは、有効数字3桁で表せば360mmである。
 図32は、図30に示す車体201に搭載した車載用アンテナ装置210の前方放射利得の最短距離Dx依存性を示すグラフである。ここで、「前方放射利得」とは、xy平面における垂直偏波の放射利得をy軸正方向に対して±30°の範囲内で平均化した平均放射利得のことを指す。
 また、図32には、比較例として、図33に示す車体1101に搭載した車載用アンテナ装置210の前方放射利得を併記している。図33に示す車体1101は、図30に示す車体101からピラー303a~303d及び縦柱253aを取り去ったものである。なお、図33に示す車体1101に搭載した車載用アンテナ装置210についても、Ly=60mm及びDz=10mmを採用している。
 図30に示す車体101に搭載した車載用アンテナ装置210の前方放射利得は、Dx=175mmにおいて極大値を示した。一方、図33に示す車体1101に搭載した車載用アンテナ装置210の前方放射利得は、Dxが0mmから大きくなるにしたがっておおよそ単調に減少した。
 図32に示すグラフによれば、縦柱253aから放射素子212までの最短距離Dxを放射素子212の動作帯域の中心周波数の波長λoの概ね1/3倍以上2/3倍以下(より正確には36.1%以上69.4%)としたときに得られる前方放射利得は、縦柱253aを省略したときに得られる前方放射利得よりも大きくなることが分かる。これは、縦柱253aから放射素子212までの最短距離Dxを放射素子212の動作帯域の中心周波数の波長λoの1/3倍以上2/3倍以下とすることによって、放射素子212から前方に放射される垂直偏波と縦柱253から前方に放射される垂直偏波とが互いに強め合うように干渉するためであると考えられる。
 また、図32に示すグラフによれば、縦柱253aから放射素子212までの最短距離Dxを放射素子212の動作帯域の中心周波数の波長λoの概ね1/2倍(より正確には48.6%)としたときに、前方放射利得が最大になることが分かる。
 〔第15の変形例〕
 一連の実施例に係る車載用アンテナ装置210の第15の変形例に関して、図34を参照して説明する。図34は、本変形例の車載用アンテナ装置210の前方放射利得の最短距離Dx依存性と、一連の実施例に係る車載用アンテナ装置210の前方放射利得の最短距離Dx依存性とを示すグラフである。
 本変形例の車載用アンテナ装置210は、一連の実施例の車載用アンテナ装置210において、間隔Dzを10mmから5mmに変更することによって得られた。すなわち、本変形例においては、Ly=60mm及びDz=5mmを採用したうえで、100mm≦Dx≦300mmの範囲内で最短距離Dxを変化させることによって得られた車載用アンテナ装置210に関して、図30及び図31に示したモデルを用いて前方放射利得を計算した。
 図34に示すグラフによれば、本変形例の車載用アンテナ装置210の前方放射利得は、100mm≦Dx≦300mmの全域において、一連の実施例の車載用アンテナ装置210の前方放射利得よりも大きくなることが分かる。したがって、本実施形態の車載用アンテナ装置210において、間隔Dzは、10mmに限定されるものではなく適宜設定できることが分かる。
 間隔Dzを10mmから5mmに変更することによって車載用アンテナ装置210の前方放射利得が高められた理由は、放射素子212がスポイラー固定部254に近づくためにスポイラー固定部254及び縦柱253aに流れる誘導電流が大きくなり、縦柱253aから放射される垂直偏波成分が大きくなったためと考えられる。
 〔第16~第17の変形例〕
 一連の実施例に係る車載用アンテナ装置210の第16の変形例及び第17の変形例に関して、図35を参照して説明する。図35は、第16の変形例の車載用アンテナ装置210、及び、第17の変形例の車載用アンテナ装置210の前方放射利得の最短距離Dx依存性を示すグラフである。
 第16の変形例の車載用アンテナ装置210は、一連の実施例の車載用アンテナ装置210において、長さLyを60mmから70mmに変更することによって得られた。すなわち、第16の変形例においては、Ly=70mm及びDz=10mmを採用したうえで、0mm≦Dx≦400mmの範囲内で最短距離Dxを変化させることによって得られた車載用アンテナ装置210に関して、図30及び図31に示したモデルを用いて前方放射利得を計算した。
 また、第17の変形例の車載用アンテナ装置210は、一連の実施例の車載用アンテナ装置210において、長さLyを60mmから50mmに変更することによって得られた。すなわち、第17の変形例においては、Ly=50mm及びDz=10mmを採用したうえで、0mm≦Dx≦400mmの範囲内で最短距離Dxを変化させることによって得られた車載用アンテナ装置210に関して、図30及び図31に示したモデルを用いて前方放射利得を計算した。
 図35に示した前方放射利得によれば、第16の変形例の車載用アンテナ装置210の前方放射利得、及び、第17の変形例の車載用アンテナ装置の前方放射利得の各々は、一連の実施例の車載用アンテナ装置の前方放射利得と比較して、若干下がるものの同様の傾向を示すことが分かる。したがって、本実施形態の車載用アンテナ装置210において、長さLyは、60mmに限定されるものではなく適宜設定できることが分かる。
 なお、一連の実施例、第16の変形例、及び第17の変形例の車載用アンテナ装置210の前方放射利得に鑑みると、重畳部212d1の車体101の前後方向に沿う長さLyは、60mmであることが好ましい。換言すると、長さLyは、動作帯域の中心周波数の波長λoの1/3倍であることが好ましい。この構成によれば、縦柱253aを利用して、車体101の前方向に対する垂直偏波の前方放射利得を更に高めることができることが分かった。
 〔まとめ〕
 上述したように、一実施形態に係る車載用アンテナ装置は、車体のルーフの端部に配置される車載用アンテナ装置において、一対の給電点のうち一方の給電点から第1の方向に引き出された第1の放射素子と、他方の給電点から上記第1の方向とは異なる第2の方向に引き出された第2の放射素子とを含む放射素子を有するアンテナ、又は、一対の給電点のうち一方の給電点から第1の方向に引き出され、且つ、他方の給電点から上記第1の方向とは異なる第2の方向に引き出された単一の放射素子を有するアンテナ、を備えている。上記第1の方向は、当該車載用アンテナ装置を上記車体に搭載したときに水平面に交わる方向である。
 上記の構成によれば、放射素子が一方の給電点から引き出される第1の方向が、車載用アンテナ装置を車体に搭載したときに、水平面に交わる方向(例えば、ルーフに直交する方向)であることから、放射する電磁波に含まれる垂直偏波成分の割合を従来(特許文献1に記載の車載用アンテナ装置)よりも多くすることができる。
 垂直偏波は、水平偏波と比べてルーフによる減衰効果を受け難い。したがって、上記の構成によれば、ルーフを横断する方向への放射利得が従来よりも大きい車載用アンテナ装置を実現することができる。例えば、この車載用アンテナ装置をルーフの後端に配置した場合に、車体前方への放射利得が従来よりも大きい車載用アンテナ装置を実現することができる。
 一実施形態に係る車載用アンテナ装置において、上記第2の方向は、当該車載用アンテナ装置を上記車体に搭載したときに上記水平面に沿う方向である、ことが好ましい。
 上記の構成によれば、垂直偏波成分及び水平偏波成分の両方を含む電磁波を放射することができる。
 一実施形態に係る車載用アンテナ装置において、上記放射素子は、上記ルーフの上記端部を構成する金属部材に沿い、且つ、当該金属部材に対して離間した状態で重畳する重畳部を更に備えている、ことが好ましい。
 上記の構成によれば、導電体からなるルーフを、放射素子のグランドとして利用することができる。これにより、車体を横断する方向への放射利得を大きくすることができる。
 一実施形態に係る車載用アンテナ装置において、上記放射素子のうち上記一方の給電点から上記第1の方向に引き出される部分の幅は、上記アンテナが放射する電磁波の最短波長の1/2以下である、ことが好ましい。
 上記の構成によれば、一方の給電点の近傍において放射素子に流れる電流の方向を第1の方向に規制することができる。したがって、ルーフを横断する方向への放射利得が従来よりも更に大きい車載用アンテナ装置を実現することができる。
 一実施形態に係る車載用アンテナ装置において、上記アンテナは、ダイポールアンテナである、ことが好ましい。
 上記の構成によれば、ダイポールアンテナを内蔵した車載用アンテナ装置において、ルーフを横断する方向への放射利得が従来よりも大きい車載用アンテナ装置を実現することができる。
 一実施形態に係る車載用アンテナ装置において、上記第1の放射素子は、上記水平面に交わる第1面上に配置される第1部分と、上記第1面と交わる第2面上に配置される第2部分とを有し、上記第2の放射素子は、上記水平面に沿い、且つ上記第2面と対向する第3面上に配置される、ことが好ましい。
 上記の構成によれば、放射素子をU字型に折り曲げることができるため、放射素子の配置に要する空間の体積を小さくすることができる。したがって、放射素子が折り曲げられていない場合と比べて、より小型な車載用アンテナ装置を実現することができる。
 一実施形態に係る車載用アンテナ装置において、上記第2の放射素子は、長方形の長辺部に対し、切り欠きまたは凹形状を形成した形状である、ことが好ましい。
 長方形である第2の放射素子の長辺部に対し切り欠きまたは凹形状を形成することによって、第2の放射素子の長辺部に対応した輪郭部(長エッジと呼ぶ)の長さを、長く確保することができる。これにより、例えば車載用アンテナ装置の動作帯域の低周波側の帯域に合わせた長エッジの長さを確保することができる。アンテナの動作帯域を特に低周波側に効果的に広げることができる。
 一実施形態に係る車載用アンテナ装置において、上記一方の給電点は、上記第3面上であって、上記第1面との交差部近傍に配置され、
 上記第3面に直交する方向から上記放射素子を平面視したとき、上記一方の給電点と上記第2部分とが重畳しない、ことが好ましい。
 上記の構成によれば、第1の放射素子の第2部分が第1の放射素子の給電点(一方の給電点)に重畳しないように構成されているため、当該第1の放射素子において、第2部分と給電点との間に形成される静電容量を抑制することができる。その結果として、アンテナを平面に展開した状態から折り曲げることに伴い生じる放射特性の劣化を抑制することができる。
 上述したように、一実施形態に係る車載用アンテナ装置は、上記第3面に直交する方向から上記放射素子を平面視したとき、上記第2の放射素子と上記第2部分とが重畳しない、ことが好ましい。
 上述したように、一実施形態に係る車載用アンテナ装置は、車体のルーフの端部に配置される車載用アンテナ装置において、当該車載用アンテナ装置を上記車体に搭載したときに、一対の給電点のうち一方の給電点から水平面に交わる方向である第1の方向に引き出された第1の放射素子と、他方の給電点から上記水平面に沿う方向である第2の方向に引き出された第2の放射素子とを有するアンテナを備えている。上記第2の放射素子は、上記ルーフの上記端部を構成する金属部材に沿い、且つ、上記金属部材に対して離間した状態で重畳する重畳部であって、該第2の放射素子の先端を含む重畳部を有し、上記重畳部の長さは、上記第2の放射素子の全長の64.5%以下である。
 上記の構成によれば、上記車載用アンテナ装置から見て上記ルーフを横断する方向に対する利得(例えば、上記車載用アンテナ装置が上記ルーフの車体後方の端部に配置される場合には、車体前方に対する利得)を、上記第1の放射素子が上記金属部材と重畳しない場合よりも大きくすることができる。
 一実施形態に係る車載用アンテナ装置において、上記重畳部における上記第1の放射素子と上記金属部材との間隔は、18mm未満である、ことが好ましい。
 上記の構成によれば、上記車載用アンテナ装置から見て上記ルーフを横断する方向に対する利得を、上記第1の放射素子が上記金属部材と重畳しない場合よりも大きくすることができる。
 上述したように、一実施形態に係る車載用アンテナ装置は、車体のルーフの端部に搭載される車載用アンテナ装置において、当該車載用アンテナ装置を上記車体に搭載したときに、一対の給電点のうち一方の給電点から水平面に交わる第1の方向に引き出される第1の放射素子と、他方の給電点から上記第1の方向と異なる第2の方向に引き出される第2の放射素子とを含む放射素子を有するアンテナを備えている。当該車載用アンテナ装置における上記放射素子の位置は、当該車載用アンテナ装置を上記車体に搭載したときに、
 (1)上記放射素子の少なくとも一部が上記ルーフの上記端部を構成する金属部材に沿い、且つ、上記金属部材に対して離間した状態で重畳するように、かつ、(2)上記ルーフの上記端部と導通する金属製の構造体であって、上記水平面に交わる方向に伸びる構造体から上記放射素子までの最短距離が上記放射素子の動作帯域の中心周波数の波長の1/3倍以上2/3倍以下となるように定められている。
 上記放射素子のうち上記ルーフに交わる第1の方向に引き出された部分に高周波電流が流れると、当該部分から垂直偏波が放射される。また、上記放射素子のうち上記ルーフに重畳している部分に高周波電流が流れると、上記ルーフ及び上記構造体に誘導電流が流れ、その結果、上記構造体から垂直偏波が放射される。
 発明者らが得た知見によれば、上記構造体から上記放射素子までの最短距離を上記放射素子の動作帯域の中心周波数の波長の1/3倍以上2/3倍以下としたときに得られる、上記放射素子から見て上記ルーフを横断する方向に対する垂直偏波の利得は、上記構造体を省略したときに得られる同利得よりも大きくなる。これは、上記構造体から上記放射素子までの最短距離を上記放射素子の動作帯域の中心周波数の波長の1/3倍以上2/3倍以下とすることによって、上記放射素子から見て上記ルーフを横断する方向に関し、上記放射素子から放射される垂直偏波と上記構造体から放射される垂直偏波とが互いに強め合うように干渉するためであると考えられる。
 すなわち、上記の構成によれば、上記車体を構成する金属製の構造体(例えば、ピラー)を利用して、上記放射素子から見て上記ルーフを横断する方向に対する垂直偏波の利得を高めた車載用アンテナ装置を実現することができる。
 一実施形態に係る車載用アンテナ装置において、上記構造体は、ピラーであってもよい。
 上記構成によれば、上記車両の元来の構成部品である上記ピラーを用いて、上記放射素子から見て上記ルーフを横断する方向に対する利得を高めることができる。すなわち、上記車両に新たな構成部品を追加することなく、上記放射素子から見て上記ルーフを横断する方向に対する垂直偏波の利得を高めることができる。
 一実施形態に係る車載用アンテナ装置は、スポイラーを筐体とするものである、又は、上記車体のスポイラーとして用いられるものである、ことが好ましい。
 上記の構成によれば、車体の美観及び空力特性を損なうことなく、且つ、車体の外観に全く影響を与えることなく、上記放射素子から見て上記ルーフを横断する方向への放射利得が従来よりも大きい車載用アンテナ装置を実現することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、車体のルーフの端部に配置される車載用アンテナ装置に利用することができる。
  1,101,201 車体
 10,10A,30,60,90,110,210 車載用アンテナ装置
 11,11A,31,41,51,61,71,71A,71B,81,91A,91B,111,214 アンテナ
 12,12A,32,42,52,62,72,82,112,213 誘電体フィルム
 13,13A,33,43,53,63,73,83,93A,93B,113,212 接続部
 13a,33a,43a,53a,63a、73a、73Aa,73Ba,83a、93Aa,93Ba,113a,212b1 第1の給電点(一方の給電点)
 13b,33b,43b,53b,63b,73b,73Ab,73Bb,83b,93Ab,93Bb,113b,212b2 第2の給電点(他方の給電点)
 14,14A,34,64,74,74A,74B,94A,94B,115,212c 第1の放射素子
 14a,14Aa,34a,64a,74a,74Aa,74Ba,85a,114a,212c1 給電点近傍部(第1の方向に引き出されている部分)
 15,15A,35,65,75,75A,75B,95A,95B,114,212d 第2の放射素子
 15a,15Aa,55a,75a、86a、115a 給電点近傍部(第2の方向に引き出されている部分)
 16,16A,16’,66,211 スポイラー
 20,120,202 ルーフ
 21,121,205 ハッチゲート
 21a,121a,251 ハッチゲートパネル
 21b,121b,252 リヤガラス
 21c,121c,253 枠体
 21d,121d,254 スポイラー固定部(アンテナ装置固定部)
 35b,44b,54b,65b,75b,84b,95Aa,95Ba,212d1 重畳部
 44,54,84 放射素子
 55,85 第1の導体(放射素子)
 56,86 第2の導体(放射素子)
 57,87 第3の導体(放射素子)
 115d 首部
 203 ピラー
 203a~203d Aピラー~Dピラー
 204a~204c 窓ガラス
 212 放射素子
 P1 第1平面(第1面)
 P2 第2平面(第2面)
 P3 第3平面(第3面)

Claims (14)

  1.  車体のルーフの端部に配置される車載用アンテナ装置において、
     一対の給電点のうち一方の給電点から第1の方向に引き出された第1の放射素子と、他方の給電点から上記第1の方向とは異なる第2の方向に引き出された第2の放射素子とを含む放射素子を有するアンテナ、又は、一対の給電点のうち一方の給電点から第1の方向に引き出され、且つ、他方の給電点から上記第1の方向とは異なる第2の方向に引き出された単一の放射素子を有するアンテナ、を備え、
     上記第1の方向は、当該車載用アンテナ装置を上記車体に搭載したときに水平面に交わる方向である、
    ことを特徴とする車載用アンテナ装置。
  2.  上記第2の方向は、当該車載用アンテナ装置を上記車体に搭載したときに上記水平面に沿う方向である、
    ことを特徴とする請求項1に記載の車載用アンテナ装置。
  3.  上記放射素子は、上記ルーフの上記端部を構成する金属部材に沿い、且つ、当該金属部材に対して離間した状態で重畳する重畳部を更に備えている、
    ことを特徴とする請求項1又は2の何れか1項に記載の車載用アンテナ装置。
  4.  上記放射素子のうち上記一方の給電点から上記第1の方向に引き出される部分の幅は、上記アンテナが放射する電磁波の最短波長の1/2以下である、
    ことを特徴とする請求項1~3の何れか1項に記載の車載用アンテナ装置。
  5.  上記アンテナは、第1の放射素子及び第2の放射素子を備えたダイポールアンテナである、
    ことを特徴とする請求項1~4の何れか1項に記載の車載用アンテナ装置。
  6.  上記第1の放射素子は、上記水平面に交わる第1面上に配置される第1部分と、上記第1面と交わる第2面上に配置される第2部分とを有し、
     上記第2の放射素子は、上記水平面に沿い、且つ上記第2面と対向する第3面上に配置される、
    ことを特徴とする請求項5に記載の車載用アンテナ装置。
  7.  上記第2の放射素子は、長方形の長辺部に対し、切り欠きまたは凹形状を形成した形状である、
    ことを特徴とする請求項6に記載の車載用アンテナ装置。
  8.  上記一方の給電点は、上記第3面上であって、上記第1面との交差部近傍に配置され、
     上記第3面に直交する方向から上記放射素子を平面視したとき、上記一方の給電点と上記第2部分とが重畳しない、
    ことを特徴とする請求項6又は7に記載の車載用アンテナ装置。
  9.  上記第3面に直交する方向から上記放射素子を平面視したとき、上記第2の放射素子と上記第2部分とが重畳しない、
    ことを特徴とする請求項8に記載の車載用アンテナ装置。
  10.  車体のルーフの端部に配置される車載用アンテナ装置において、
     当該車載用アンテナ装置を上記車体に搭載したときに、一対の給電点のうち一方の給電点から水平面に交わる方向である第1の方向に引き出された第1の放射素子と、他方の給電点から上記水平面に沿う方向である第2の方向に引き出された第2の放射素子とを有するアンテナを備え、
     上記第2の放射素子は、上記ルーフの上記端部を構成する金属部材に沿い、且つ、上記金属部材に対して離間した状態で重畳する重畳部であって、該第2の放射素子の先端を含む重畳部を有し、
     上記重畳部の長さは、上記第2の放射素子の全長の64.5%以下である、
    ことを特徴とする車載用アンテナ装置。
  11.  上記重畳部における上記第2の放射素子と上記金属部材との間隔は、18mm未満である、
    ことを特徴とする請求項10に記載の車載用アンテナ装置。
  12.  車体のルーフの端部に搭載される車載用アンテナ装置において、
     当該車載用アンテナ装置を上記車体に搭載したときに、一対の給電点のうち一方の給電点から水平面に交わる方向である第1の方向に引き出された第1の放射素子と、他方の給電点から上記第1の方向と異なる方向である第2の方向に引き出された第2の放射素子とを含む放射素子を有するアンテナを備え、
     当該車載用アンテナ装置における上記放射素子の位置は、当該車載用アンテナ装置を上記車体に搭載したときに、
     (1)上記放射素子の少なくとも一部が上記ルーフの上記端部を構成する金属部材に沿い、且つ、上記金属部材に対して離間した状態で重畳するように、かつ、
     (2)上記ルーフの上記端部と導通する金属製の構造体であって、上記水平面に交わる方向に伸びる構造体から上記放射素子までの最短距離が上記放射素子の動作帯域の中心周波数の波長の1/3倍以上2/3倍以下となるように定められている、
    ことを特徴とする車載用アンテナ装置。
  13.  上記構造体は、ピラーである、
    ことを特徴とする請求項12に記載の車載用アンテナ装置。
  14.  当該車載用アンテナ装置は、スポイラーを筐体とするものである、又は、上記車体のスポイラーとして用いられるものである、
    ことを特徴とする請求項1~13の何れか1項に記載の車載用アンテナ装置。
PCT/JP2016/053432 2015-02-05 2016-02-04 車載用アンテナ装置 WO2016125876A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16746707.5A EP3176871B1 (en) 2015-02-05 2016-02-04 Vehicle-mounted antenna device
CN201680002500.6A CN106797071B (zh) 2015-02-05 2016-02-04 车载用天线装置
US15/509,138 US10186763B2 (en) 2015-02-05 2016-02-04 Vehicle-mounted antenna device

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2015-021644 2015-02-05
JP2015021644 2015-02-05
JP2015034475 2015-02-24
JP2015-034475 2015-02-24
JP2015-083421 2015-04-15
JP2015083421A JP6383322B2 (ja) 2015-04-15 2015-04-15 車載用アンテナ装置
JP2015129117A JP6444272B2 (ja) 2015-06-26 2015-06-26 車載用アンテナ装置及び設置方法
JP2015-129117 2015-06-26
JP2015157539 2015-08-07
JP2015-157539 2015-08-07
JP2016020333A JP6639933B2 (ja) 2015-02-05 2016-02-04 車載用アンテナ装置
JP2016-020333 2016-02-04

Publications (1)

Publication Number Publication Date
WO2016125876A1 true WO2016125876A1 (ja) 2016-08-11

Family

ID=56564215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053432 WO2016125876A1 (ja) 2015-02-05 2016-02-04 車載用アンテナ装置

Country Status (1)

Country Link
WO (1) WO2016125876A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056628A (ja) * 2016-09-26 2018-04-05 株式会社フジクラ アンテナ装置及び車載用アンテナ装置
JP2018064262A (ja) * 2016-09-26 2018-04-19 株式会社フジクラ フィルムアンテナ、アンテナ装置、及び車載用アンテナ装置
EP3358675A1 (en) 2017-02-02 2018-08-08 Fujikura Ltd. Antenna
WO2018198988A1 (ja) * 2017-04-24 2018-11-01 Agc株式会社 車両用アンテナ及び車両用窓ガラス
US11804649B2 (en) 2018-10-31 2023-10-31 AGC Inc. Antenna system for vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279607U (ja) * 1988-12-05 1990-06-19
JPH02116106U (ja) * 1989-03-02 1990-09-18
JPH0642339U (ja) * 1992-11-12 1994-06-03 田村プラスチック製品株式会社 自動車用バイザー
JPH1168438A (ja) * 1997-08-20 1999-03-09 Yokowo Co Ltd テレビ用ダイポールアンテナおよびテレビジョン受像機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279607U (ja) * 1988-12-05 1990-06-19
JPH02116106U (ja) * 1989-03-02 1990-09-18
JPH0642339U (ja) * 1992-11-12 1994-06-03 田村プラスチック製品株式会社 自動車用バイザー
JPH1168438A (ja) * 1997-08-20 1999-03-09 Yokowo Co Ltd テレビ用ダイポールアンテナおよびテレビジョン受像機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056628A (ja) * 2016-09-26 2018-04-05 株式会社フジクラ アンテナ装置及び車載用アンテナ装置
JP2018064262A (ja) * 2016-09-26 2018-04-19 株式会社フジクラ フィルムアンテナ、アンテナ装置、及び車載用アンテナ装置
EP3358675A1 (en) 2017-02-02 2018-08-08 Fujikura Ltd. Antenna
WO2018198988A1 (ja) * 2017-04-24 2018-11-01 Agc株式会社 車両用アンテナ及び車両用窓ガラス
US11024940B2 (en) 2017-04-24 2021-06-01 AGC Inc. Vehicle antenna and window glass for vehicle
US11804649B2 (en) 2018-10-31 2023-10-31 AGC Inc. Antenna system for vehicle

Similar Documents

Publication Publication Date Title
CN106797071B (zh) 车载用天线装置
WO2016125876A1 (ja) 車載用アンテナ装置
EP3327862B1 (en) Glass antenna and vehicle window glass including glass antenna
JP2004096618A (ja) アンテナ及びダイバーシチ受信装置
US8111202B2 (en) High frequency wave glass antenna for an automobile and window glass sheet for an automobile with the same
EP3101734B1 (en) Glass antenna
JP2017005354A (ja) 車両用ガラスアンテナ及び車両用アンテナを備えた後部窓ガラス
JP5970132B2 (ja) 窓フレーム
JP2010154504A (ja) 車両用ガラスアンテナ及び車両用窓ガラス
EP3327861B1 (en) Glass antenna and vehicle window glass provided with glass antenna
JP6639933B2 (ja) 車載用アンテナ装置
JP4114430B2 (ja) アンテナ
WO2014104365A1 (ja) ガラスアンテナ付き車両用フロントガラス
JP2010114782A (ja) 車両用ガラスアンテナ及び車両用窓ガラス
JP7205259B2 (ja) 車両用ガラスアンテナ、車両用窓ガラス及び車両用アンテナシステム
JP5742509B2 (ja) 車両用ガラスアンテナ
EP3358675A1 (en) Antenna
JP5428790B2 (ja) 車両用ガラスアンテナ
JP2010124444A (ja) 車両用ガラスアンテナ及び車両用窓ガラス
JP2011087054A (ja) 車両用ガラスアンテナ
JP2010154498A (ja) ガラスアンテナ
JP6444272B2 (ja) 車載用アンテナ装置及び設置方法
JP2007096680A (ja) アンテナ装置および車両用アンテナ装置
JP7447716B2 (ja) 車両用窓ガラス
JP2018129768A (ja) アンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746707

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016746707

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016746707

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15509138

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE