WO2016125845A1 - クロスカップリング方法、及び該クロスカップリング方法を用いた有機化合物の製造方法 - Google Patents

クロスカップリング方法、及び該クロスカップリング方法を用いた有機化合物の製造方法 Download PDF

Info

Publication number
WO2016125845A1
WO2016125845A1 PCT/JP2016/053310 JP2016053310W WO2016125845A1 WO 2016125845 A1 WO2016125845 A1 WO 2016125845A1 JP 2016053310 W JP2016053310 W JP 2016053310W WO 2016125845 A1 WO2016125845 A1 WO 2016125845A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optionally substituted
same
different
general formula
Prior art date
Application number
PCT/JP2016/053310
Other languages
English (en)
French (fr)
Inventor
健一郎 伊丹
慧 村上
貴大 川上
ジャマラディン ジー. ムサエフ
ブランドン イ―. ハイネス
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2016573412A priority Critical patent/JPWO2016125845A1/ja
Publication of WO2016125845A1 publication Critical patent/WO2016125845A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/36Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
    • C07C303/40Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids by reactions not involving the formation of sulfonamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a cross-coupling method (specifically, a cross-coupling reaction between an aromatic compound and a sulfonimide compound) and a method for producing an organic compound using the cross-coupling method.
  • An arylamine compound in which an amino group is introduced into an aromatic compound is useful as an electronic device material such as a photoreceptor, a transistor, a light emitting diode, and an organic EL, a solar cell material, a fluorescent material, a pharmaceutical material,
  • an electronic device material such as a photoreceptor, a transistor, a light emitting diode, and an organic EL
  • a solar cell material such as a photoreceptor, a transistor, a light emitting diode, and an organic EL
  • a solar cell material such as an organic EL
  • a solar cell material such as an organic EL
  • a solar cell material such as an organic EL
  • a solar cell material such as an organic EL
  • a solar cell material such as an organic EL
  • a solar cell material such as an organic EL
  • a solar cell material such as an organic EL
  • a solar cell material such as an organic EL
  • a solar cell material such as an organic EL
  • This arylamine compound can be easily synthesized by performing reductive deprotection in the presence of magnesium metal in ethanol with respect to the sulfonidated aromatic compound (for example, Non-patent Document 1). Therefore, a method capable of easily synthesizing a sulfonimidated aromatic compound is required.
  • a method for synthesizing such a sulfonimide aromatic compound for example, an aromatic compound and N-fluorobenzenesulfonimide (NFSI) are mixed with a palladium catalyst and bis (2,2′-bipyridyl) silver (II).
  • NFSI N-fluorobenzenesulfonimide
  • II bis (2,2′-bipyridyl) silver
  • a method of introducing an imide group into an aromatic compound by reacting in the presence of perchlorate (Ag (bipy) 2 ClO 4 ) is known (for example, Non-patent Document 1).
  • a 5-membered heteroaromatic ring compound such as a thiophene compound, a furan compound, and a pyrrole compound and N-fluorobenzenesulfonimide (NFSI) are used in the presence of a copper catalyst.
  • NFSI N-fluorobenzenesulfonimide
  • a method of introducing an imide group into an aromatic compound by reacting without using a ligand is also known (for example, Non-Patent Document 2).
  • Non-Patent Document 1 an expensive silver catalyst is required, and the essential silver catalyst is explosive perchlorate, so that organic materials such as polycyclic aromatic hydrocarbons are used. It is very difficult to modify the core compound.
  • the scope of application of the substrate is limited to five-membered heteroaromatic ring compounds (particularly thiophene compounds, furan compounds and pyrrole compounds), and further, bulky substituents such as phenyl groups.
  • the reaction hardly progresses when a substrate having s is used. For this reason, it is not possible to synthesize a wide variety of sulfonidated aromatic compounds. In this method, the reaction may not proceed depending on the type of solvent.
  • an object of the present invention is to provide a method capable of cross-coupling an aromatic compound and a sulfonimide compound safely and simply using various substrates.
  • the present inventors have used an aromatic compound and a specific sulfonimide compound by using a specific ligand in the presence of a copper compound. It has been found that imidization can be performed safely and easily on various substrates. Among these ligands, when a particularly excellent ligand is used, the reaction proceeds even in the presence of a compound containing a group 10 metal element and / or a group 11 metal element other than the copper compound. be able to. Based on such knowledge, the present inventors have further studied and completed the present invention. That is, the present invention includes the following configurations.
  • R represents an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • Ar 1 and Ar 2 are the same or different and each represents an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • Z 1 and Z 2 are the same or different and represent a heteroaromatic ring.
  • R 1 , R 2 , R 3 and R 4 are the same or different and each represents an electron-withdrawing group, an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl group.
  • Show. n1 and n2 are the same or different and each represents 0 or 1.
  • m1 and m2 are the same or different and each represents an integer of 0 to 3. When both n1 and n2 are 1, R 1 and R 2 may be bonded to each other to form an optionally substituted divalent hydrocarbon group.
  • the manufacturing method provided with the cross-coupling process made to react in presence of the ligand represented by these.
  • Item 2 The manufacturing method of claim
  • the ligand is represented by the general formula (4A):
  • Item 3 The production method according to Item 1 or 2, wherein the ligand is represented by the formula:
  • the ligand is represented by the general formula (4A1):
  • R 3a and R 4a are the same or different and each represents an optionally substituted alkyl group having 1 to 3 carbon atoms.
  • R 3b and R 4b are the same or different and each represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group or an optionally substituted aryl group.
  • R 3c and R 4c are the same or different and each represents a hydrogen atom or an optionally substituted alkyl group having 1 to 3 carbon atoms.
  • R 1b and R 2b are bonded to each other to form an optionally substituted divalent hydrocarbon group.
  • R 3d and R 4d are the same or different and each represents a hydrogen atom or an electron withdrawing group.
  • R 3e and R 4e are the same or different and each represents a hydrogen atom, an electron-withdrawing group, an optionally substituted alkyl group or an optionally substituted aryl group.
  • R 3f and R 4f are the same or different and each represents an electron-withdrawing group, an optionally substituted alkyl group, or an optionally substituted aryl group.
  • Item 5 The production method according to any one of Items 1 to 4, wherein the ligand is represented by the formula:
  • Item 5 The production method according to any one of Items 1 to 4, wherein a base is further used in the cross-coupling step.
  • R represents an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • Ar 1 and Ar 2 are the same or different and each represents an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • R 3a and R 4a are the same or different and each represents an optionally substituted alkyl group having 1 to 3 carbon atoms.
  • R 3b and R 4b are the same or different and each represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group or an optionally substituted aryl group.
  • R 3c and R 4c are the same or different and each represents a hydrogen atom or an optionally substituted alkyl group having 1 to 3 carbon atoms.
  • R 1b and R 2b are bonded to each other to form an optionally substituted divalent hydrocarbon group.
  • R 3d and R 4d are the same or different and each represents a hydrogen atom or an electron withdrawing group.
  • R 3e and R 4e are the same or different and each represents a hydrogen atom, an electron-withdrawing group, an optionally substituted alkyl group or an optionally substituted aryl group.
  • R 3f and R 4f are the same or different and each represents an electron-withdrawing group, an optionally substituted alkyl group, or an optionally substituted aryl group.
  • Ar 1 and Ar 2 are the same as defined above.
  • One of Y 2 and Y 3 represents a nitrogen atom and one represents an oxygen atom.
  • R 13 and R 14 are the same or different and each represents an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl group.
  • a bond represented by a solid line and a broken line indicates a single bond or a double bond.
  • the sulfonimide-modified aromatic compound can be synthesized at a low cost.
  • the reaction proceeds even in the presence of a compound containing a group 10 metal element and / or a group 11 metal element other than the copper compound. be able to.
  • the cross-coupling reaction can also proceed safely and easily.
  • the type of the substrate is not limited, and imidization can be performed on a wide variety of aromatic compounds. Therefore, the method is highly versatile.
  • Example 8 Drawing of thermal vibration ellipsoid drawing software (ORTEP) and showing the structure of N- (2-acetyl-4-methylthiophen-5-yl) -N- (phenylsulfonyl) benzenesulfonamide (2B) Is 50% of atoms).
  • Example 8 it is a result of the comparison of the reaction rate by FTIR at the time of using each copper compound.
  • Example 11 it is the result of the comparison of the reaction rate at the time of using 2-phenylthiophene and 2-phenylthiophene labeled with deuterium.
  • a copper compound and a specific sulfonimide compound are effectively coupled in the presence of a copper compound and a specific ligand.
  • a specific sulfonidated aromatic compound can be synthesized.
  • it is also possible to obtain various sulfonidated aromatic organic compounds by using a variety of substrates as raw materials and advancing the coupling reaction between the aromatic compound and the specific sulfonimide compound.
  • a specific sulfonidated aromatic compound can be obtained by reacting an aromatic compound with a specific sulfonimide compound in the presence of a copper compound and a specific ligand.
  • a specific sulfonidated aromatic compound can be obtained by reacting an aromatic compound with a specific sulfonimide compound in a reaction solvent in the presence of a copper compound and a specific ligand.
  • the reaction proceeds even in the presence of a compound containing a group 10 metal element and / or a group 11 metal element other than the copper compound. be able to.
  • a compound containing a Group 10 metal element and / or a Group 11 metal element and a specific sulfonimide compound are reacted in the presence of a specific ligand to react with a specific sulfonimide compound.
  • Aromatic compounds can be obtained.
  • aromatic compound (2) As an aromatic compound subjected to the reaction, the general formula (2): R ⁇ H (2) [Wherein, R represents an optionally substituted aryl group or an optionally substituted heteroaryl group. ] An aromatic compound represented by the formula (hereinafter also referred to as “aromatic compound (2)”) can be employed.
  • examples of the aryl group represented by R include a phenyl group, a pentarenyl group, an indenyl group, a naphthyl group, an anthracenyl group, a tetracenyl group, a pentacenyl group, a phenanthrenyl group, a benzoanthracenyl group, and a pyrenyl group.
  • Perylenyl group triphenylenyl group, azulenyl group, heptalenyl group, biphenyl group, indacenyl group, acenaphthyl group, fluorenyl group, phenalenyl group, fluoranthenyl group, coronenyl group and the like.
  • Examples of the substituent that the aryl group represented by R may have include, for example, a hydroxyl group, a halogen atom (fluorine atom, chlorine atom, bromine atom or iodine atom), alkyl group (methyl group, ethyl group, n -Chain or branched C1-6 alkyl groups such as propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, especially chain or branched chain C1 -4 alkyl group), haloalkyl group (C1-6 haloalkyl group such as trifluoromethyl group, especially C1-4 haloalkyl group), alkoxy group (C1-6 alkoxy group such as methoxy group, ethoxy group, etc., especially C1-4 alkoxy) Group), alkylcarbonyl groups ((C1-6 alkyl) carbon
  • the above-mentioned aryl group which may be substituted by the above-mentioned substituent the below-mentioned heteroaryl group which may be substituted by the above-mentioned substituent, etc. as a substituent.
  • substituents from the viewpoint of reactivity, the above-mentioned aryl groups which may be substituted with the above-described substituents are preferable.
  • the number of substituents is preferably 1 to 6, more preferably 1 to 3.
  • the aryl group represented by R is a phenyl group, from the viewpoint of reactivity, it is preferable not to have the above substituent.
  • the aryl group represented by R is not particularly limited, and from the viewpoint of reactivity, when a phenyl group is employed, a phenyl group having no substituent is preferable. On the other hand, when an aryl group other than a phenyl group (hereinafter also referred to as “another aryl group”) is employed, any of the other aryl groups substituted with the above substituents and the other unsubstituted aryl groups However, from the viewpoint of reactivity, other aryl groups substituted with the above substituents are more preferable.
  • examples of the heteroaryl group represented by R include a pyrrolyl group, a pyrrolidyl group, an oxazolyl group, a thiazolyl group, an isothiazolyl group, a furanyl group, and a thiophenyl group; 6-membered monocyclic heteroaromatic groups such as piperidyl group, pyrazyl group, pyrimidyl group, pyridazyl group, piperazyl group, triazinyl group, morpholyl group; indolyl group, quinolyl group, isoquinolyl group, benzoimidazolyl group, quinazolyl group, phthalazyl group, purinyl A bicyclic heteroaromatic group such as a group, pteridyl group, benzofuranyl group, benzothiophenyl group, thienothiophenyl group, xanthinyl group, coumarin
  • heteroaryl group represented by R may have include, for example, a hydroxyl group, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an alkyl group (a methyl group, an ethyl group, Chain or branched C1-6 alkyl groups such as n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, etc., particularly chained or branched chain C1-4 alkyl group), haloalkyl group (C1-4 haloalkyl group such as trifluoromethyl group), alkoxy group (C1-6 alkoxy group such as methoxy group, ethoxy group, especially C1-4 alkoxy group), alkylcarbonyl Groups ((C1-6 alkyl) carbonyl groups such
  • the number of substituents is preferably 1 to 6, more preferably 1 to 3.
  • the heteroaryl group represented by R is not particularly limited, and a heteroaryl group substituted with the above substituent is preferable from the viewpoint of reactivity.
  • aromatic compound as a substrate satisfying such conditions, for example,
  • Ar 1 and Ar 2 are the same or different and each represents an optionally substituted aryl group or an optionally substituted heteroaryl group.
  • X represents a halogen atom.
  • Can be employed hereinafter sometimes referred to as “sulfonimide compound (3)”).
  • the above-mentioned aryl groups represented by Ar 1 and Ar 2 can be employed.
  • Ar 1 and Ar 2 may be the same or different, but the reactivity of the cross-coupling step (yield, selectivity, etc.), the imide group detachment after the reaction, the availability, etc. From the viewpoint, they are preferably the same.
  • examples of the halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, a fluorine atom is preferred from the viewpoints of reactivity (yield, selectivity, etc.) and availability in the cross-coupling step.
  • sulfonimide compound (3) various sulfonimide compounds can be used, but the reactivity (yield, selectivity, etc.) of the cross-coupling step and the imide group after the reaction are easily released. From the viewpoint of availability, etc.
  • the amount of the sulfonimide compound (3) used is not particularly limited, and from the viewpoint of yield, for example, it is usually preferably about 0.1 to 10 mol, and preferably 0.2 to 5 mol with respect to 1 mol of the aromatic compound (2).
  • the degree is more preferably about 0.5 to 3 mol.
  • the copper compound (copper catalyst) is not particularly limited, the reactivity of the cross-coupling step (yield, selectivity, reaction rate, etc.) in terms of copper halide is preferably, CuF 2, CuCl, CuBr, CuBr 2 , CuI and the like are more preferable, and CuCl, CuBr, CuI and the like are more preferable. These copper compounds can be used alone or in combination of two or more.
  • a copper compound (copper catalyst) is most preferable, but a ligand represented by the following general formula (4A1) or a ligand represented by the general formula (4A2) is used as the ligand.
  • the reaction proceeds in the same manner when a compound containing a group 10 metal element and / or a group 11 metal element (metal compound other than the copper compound) is used instead of the copper compound (copper catalyst). be able to.
  • the compound containing a Group 10 metal element and / or a Group 11 metal element is not particularly limited, and from the viewpoint of the reactivity (yield, selectivity, etc.) of the cross-coupling process, a palladium compound, a nickel compound, and a silver compound Gold compounds and the like are preferable.
  • the palladium compound (palladium catalyst) is not particularly limited, and examples thereof include known palladium compounds as synthesis catalysts for metal palladium and organic compounds (including polymer compounds).
  • the palladium compound may be either a compound containing zero-valent palladium or a compound containing II-valent palladium. When a compound containing zero-valent palladium is used, the zero-valent palladium is oxidized in the system to become II-valent palladium.
  • palladium compounds that can be used include Pd (PPh 3 ) 4 , tris (dibenzylideneacetone) dipalladium (0) (pd 2 (dba) 3 ), bis (dibenzylideneacetone) palladium (0), Bis (tri-t-butylphosphino) palladium (0), palladium acetate (Pd (OAc) 2 (Ac represents an acetyl group, the same shall apply hereinafter)), palladium halide (PdCl 2 , PdBr 2 , PdI 2 ), PdCl 2 (PPh 3 ) 2 , Pd (OTf) 2 (Tf represents a trifluoromethylsulfonyl group) and the like.
  • palladium acetate is preferred from the viewpoint of the reactivity (yield, selectivity, etc.) of the cross coupling step.
  • These palladium compounds can be used alone or in combination of two or more.
  • the nickel compound is not particularly limited, and various compounds can be used, and a zero-valent Ni salt or a divalent Ni salt is preferable. These can be used alone or in combination of two or more. These complexes mean both those charged as reagents and those produced in the reaction.
  • the zero-valent Ni salt is not particularly limited, and Ni (cod) 2 (cod represents 1,5-cyclooctadiene; the same shall apply hereinafter), Ni (CO) 2 (PPh 3 ) 2 , Nickel carbonyl and the like.
  • the divalent Ni salt includes nickel acetate (II), nickel trifluoroacetate (II), nickel nitrate (II), nickel halide (II) (nickel fluoride (II), nickel chloride (II). ), Nickel bromide (II), etc.), nickel (II) acetylacetonate, nickel (II) perchlorate, nickel (II) citrate, nickel (II) oxalate, nickel (II) cyclohexanebutyrate, benzoic acid Nickel (II), nickel stearate (II), sulfamine nickel (II), nickel carbonate (II), nickel thiocyanate (II), nickel trifluoromethanesulfonate (II), bis (4-diethylaminodithiobenzyl) nickel ( II), nickel cyanide (II), nickel borate (II), nickel hypophosphite (II), ammonium nickel sulfate (II), nickel hydro
  • a divalent Ni salt is preferable, nickel halide is more preferable, and nickel bromide is particularly preferable.
  • the silver compound (silver catalyst) is not particularly limited, and from the viewpoint of the reactivity (yield, selectivity, etc.) of the cross-coupling process, silver halide (silver fluoride, silver chloride, silver bromide, iodide) Silver), silver nitrate, silver sulfate, silver oxide, silver sulfide and the like are preferred, silver halide is more preferred, and silver iodide is more preferred. These silver compounds can be used alone or in combination of two or more. Conventionally, aromatic imidization does not proceed unless explosive silver perchlorate is used as the silver compound (J. Am. Chem. Soc. 2013, 135, 13278.). Then, the reaction can proceed without using silver perchlorate.
  • the gold compound (gold catalyst) is not particularly limited, and gold halide (gold fluoride, gold chloride, gold bromide, iodide) from the viewpoint of the reactivity (yield, selectivity, etc.) of the cross-coupling process.
  • gold gold
  • chloroauric acid chloroauric acid
  • tetrachlorogold (III) acid salt sodium tetrachlorogold (III), potassium tetrachlorogold (III), ammonium tetrachlorogold (III), etc.
  • gold cyanide water Gold oxide or the like is preferable
  • gold halide is more preferable
  • gold chloride is more preferable.
  • a compound containing a Group 10 metal element and / or a Group 11 metal element other than these copper compounds can be used alone or in combination of a plurality of metal compounds. Moreover, the said copper compound and the compound containing the group 10 metal element and / or group 11 metal element other than a copper compound can also be used together.
  • a palladium compound, a nickel compound, a copper compound, a silver compound, a gold compound, and the like are preferable from the viewpoint of reactivity (yield, selectivity, etc.) in the cross-coupling step, and a palladium compound, a copper compound, Silver compounds, gold compounds, and the like are more preferable, copper compounds, gold compounds, and the like are more preferable, and copper compounds are more preferable because of high reactivity (yield, selectivity, and the like) in the cross-coupling process and lower cost.
  • the amount of the metal compound used can be appropriately selected depending on the type of the substrate.
  • the amount is usually about 0.01 to 1 mol, preferably 0.02 to 1 mol per 1 mol of the aromatic compound (2) as the substrate.
  • About 0.5 mol is more preferable, and about 0.03 to 0.3 mol is more preferable.
  • a ligand capable of coordinating to the metal atom (palladium atom, nickel atom, copper atom, silver atom, gold atom, etc.) of the metal compound used is used.
  • the cross-coupling reaction of the present invention hardly proceeds, but the cross-coupling reaction can be advanced by using a specific ligand.
  • the cross-coupling reaction can be carried out in a very high yield by selecting the type of ligand. Specifically, by selecting the type of ligand, the cross-coupling reaction can proceed even when a compound containing a Group 10 metal element and / or a Group 11 metal element other than a copper compound is used. .
  • Such a ligand has the general formula (4):
  • Z 1 and Z 2 are the same or different and represent a heteroaromatic ring.
  • R 1 , R 2 , R 3 and R 4 are the same or different and each represents an electron-withdrawing group, an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl group.
  • Show. n1 and n2 are the same or different and each represents 0 or 1.
  • m1 and m2 are the same or different and each represents an integer of 0 to 3. When both n1 and n2 are 1, R 1 and R 2 may be bonded to each other to form an optionally substituted divalent hydrocarbon group.
  • ligand (4) hereinafter also referred to as “ligand (4)”).
  • Z 1 and Z 2 are heteroaromatic rings, and are not particularly limited, and are 5-membered monocyclic heteroaromatic rings such as pyrazole rings; pyridine rings, pyrazine rings, pyrimidine rings, pyridazine rings, piperazine rings 6-membered monocyclic heteroaromatic rings such as triazine ring; bicyclic heteroaromatic rings such as indole ring, quinoline ring, isoquinoline ring, benzimidazole ring, quinazoline group, phthalazine ring, purine ring, pteridine group, etc.
  • a monocyclic heteroaromatic ring is preferable, a six-membered monocyclic heteroaromatic ring is more preferable, and a pyridine ring is further preferable.
  • Z 1 and Z 2 may be the same or different, and are preferably the same from the viewpoints of reactivity (yield, selectivity, etc.) in the cross-coupling step and ease of synthesis.
  • examples of the electron withdrawing group represented by R 1 to R 4 include a nitro group, a cyano group, a halogen atom, a haloalkyl group, an optionally substituted carbonyl group, and an optionally substituted group. Examples thereof include a benzenesulfonyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • haloalkyl group examples include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a trichloromethyl group, a 2-chloroethyl group, a 1,1-difluoroethyl group, a 2,2-difluoroethyl group, and a 2,2,2-trimethyl group.
  • fluoroethyl group and a 1,1,2,2-tetrafluoroethyl group examples include a fluoroethyl group and a 1,1,2,2-tetrafluoroethyl group.
  • Examples of the optionally substituted carbonyl group include a carbonyl group, an alkylcarbonyl group having the above-described alkyl group, and an alkoxy group (a C1-6 alkoxy group such as a methoxy group and an ethoxy group, particularly a C1-4 alkoxy group).
  • a carbonyl group etc. are mentioned.
  • Examples of the optionally substituted benzenesulfonyl group include a benzenesulfonyl group and an alkylbenzenesulfonyl group having the above-described alkyl group.
  • examples of the alkyl group represented by R 1 to R 4 include a chain or branched C1-10 alkyl group, preferably a C1-8 alkyl group. Specific examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group and the like.
  • Examples of the substituent that the alkyl group represented by R 1 may have include, for example, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom or an iodine atom), an alkoxy group (a methoxy group, an ethoxy group, etc.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom or an iodine atom
  • an alkoxy group a methoxy group, an ethoxy group, etc.
  • C1 -6 alkoxy groups especially C1-4 alkoxy groups
  • alkylcarbonyl groups ((C1-6 alkyl) carbonyl groups such as methylcarbonyl group, ethylcarbonyl group, especially (C1-4 alkyl) carbonyl groups)
  • silyl groups t -Trialkylsilyl groups such as -butyldimethylsilyl group
  • -COOR 25 R 25 is an alkyl group such as methyl group or ethyl group
  • substituents are preferably non-coordinating substituents from the viewpoint of the reaction proceeding without using explosive silver perchlorate, and for example, halogen atoms are preferred.
  • the number of substituents is preferably 1 to 6, more preferably 1 to 3.
  • R 1 to R 4 As the aryl group represented by R 1 to R 4 , those described above can be employed. The same applies to the type and number of substituents. Among these, from the viewpoint of reactivity (yield, selectivity, etc.) in the cross-coupling step, an unsubstituted aryl group is preferable, and a phenyl group is more preferable. R 1 to R 4 may be the same or different. From the viewpoint of the reactivity (yield, selectivity, etc.) of the cross-coupling step, R 1 to R 2 are preferably the same, and R 3 ⁇ R 4 is preferably the same.
  • R 1 to R 4 the above-mentioned heteroaryl groups represented by R 1 to R 4 can be employed.
  • R 1 to R 4 may be the same or different.
  • R 1 to R 2 are preferably the same, and R 3 ⁇ R 4 is preferably the same.
  • the divalent hydrocarbon group is a 1-alkenylene group (particularly 1 of C2-10). -Alkenylene group) is preferred, specifically,
  • Examples of the substituent in the divalent hydrocarbon group include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom or an iodine atom), an alkoxy group (a C1-6 alkoxy group such as a methoxy group, an ethoxy group, etc., particularly a C1— 4 alkoxy group), alkylcarbonyl group (methylcarbonyl group, (C1-6 alkyl) carbonyl group such as ethylcarbonyl group, especially (C1-4 alkyl) carbonyl group), silyl group (t-butyldimethylsilyl group, etc.) An alkylsilyl group, etc.) and -COOR 25 (R 25 is an alkyl group such as a methyl group or an ethyl group).
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom or an iodine atom
  • an alkoxy group
  • the number of substituents is preferably 1 to 6, more preferably 1 to 3.
  • R 1 to R 2 are alkyl groups or divalent hydrocarbons bonded to each other from the viewpoint of reactivity (yield, selectivity, etc.) in the cross-coupling step.
  • R 3 to R 4 in the general formula (4) may be substituted with an electron withdrawing group from the viewpoint of the reactivity (yield, selectivity, reaction rate, etc.) of the cross coupling step.
  • An alkyl group or an optionally substituted aryl group is preferred, a halogen atom or an optionally substituted C1-10 alkyl group is more preferred, and a fluorine atom or an optionally substituted C1-8 alkyl group is more preferred. .
  • n1 to n2 are 0 or 1.
  • n1 and n2 may be the same or different, and are preferably the same from the viewpoints of reactivity (yield, selectivity, etc.) in the cross-coupling step and ease of synthesis.
  • R 1 and R 2 may be bonded to each other and substituted 2 It is preferable to form a valent hydrocarbon group (particularly a 1-alkenyl group).
  • m1 to m2 are integers of 0 to 3, preferably integers of 0 to 2, and more preferably 0 or 1.
  • m1 and m2 may be the same or different, and are preferably the same from the viewpoints of reactivity (yield, selectivity, etc.) in the cross-coupling step and ease of synthesis.
  • the total of n1, n2, m1 and m2 is an integer of 1 to 8 from the viewpoint of reactivity (yield, selectivity, etc.) of the cross coupling step and ease of synthesis. It is preferable. That is, it is preferable to have at least one of R 1 , R 2 , R 3 and R 4 in total.
  • ligand (4A) is preferably represented by the general formula (4A1):
  • R 3a and R 4a are the same or different and each represents an optionally substituted alkyl group having 1 to 3 carbon atoms.
  • R 3b and R 4b are the same or different and each represents a hydrogen atom, a halogen atom, an optionally substituted alkyl group or an optionally substituted aryl group.
  • R 3c and R 4c are the same or different and each represents a hydrogen atom or an optionally substituted alkyl group having 1 to 3 carbon atoms.
  • R 1b and R 2b are bonded to each other to form an optionally substituted divalent hydrocarbon group.
  • R 3d and R 4d are the same or different and each represents a hydrogen atom or an electron withdrawing group.
  • R 3e and R 4e are the same or different and each represents a hydrogen atom, an electron-withdrawing group, an optionally substituted alkyl group or an optionally substituted aryl group.
  • R 3f and R 4f are the same or different and each represents an electron-withdrawing group, an optionally substituted alkyl group, or an optionally substituted aryl group.
  • ligand (4A2) is more preferable.
  • alkyl group aryl group, divalent hydrocarbon group and substituents thereof in the general formulas (4A1) and (4A2), those described above can be employed.
  • ligands (4) that satisfy these conditions include:
  • n-Bu represents an n-butyl group. The same applies hereinafter.
  • Etc These ligands (4) can be used alone or in combination of two or more.
  • the aromatic compound (2) as a substrate is an aromatic hydrocarbon compound (when R in the general formula (2) is an aryl group which may be substituted), the ligand (4) is from the viewpoint of the reactivity (yield, selectivity, etc.) of the cross-coupling step.
  • Etc. are more preferable.
  • the aromatic compound (2) as a substrate is a heterocyclic compound (when R in the general formula (2) is an optionally substituted heteroaryl group), the ligand (4) From the viewpoint of the reactivity (yield, selectivity, etc.) of the cross coupling step,
  • Etc. are more preferable.
  • the amount of the ligand (4) used is preferably 0.1 to 10 mol with respect to 1 mol of the metal compound (especially copper compound) from the viewpoint of reactivity (yield, selectivity, etc.) in the cross-coupling step. 0.5 to 5 mol is more preferable, and 1 to 3 mol is more preferable.
  • a base can be used together with the metal compound (especially a copper compound).
  • a sulfonidated aromatic compound represented by the general formula (1) can be synthesized, but as a by-product, hydrogen halide (hydrogen fluoride, hydrogen chloride, bromide) Hydrogen and the like; for example, in formula (3), when X is a fluorine atom, hydrogen fluoride is also generated.
  • hydrogen halide hydrogen fluoride, hydrogen chloride, bromide
  • bases examples include alkali metal halides such as potassium fluoride and cesium fluoride; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal alkoxides such as sodium methoxide; sodium hydrogen carbonate Alkali metal hydrogen carbonates such as potassium bicarbonate; metal carbonates such as sodium carbonate, potassium carbonate and cesium carbonate; alkali metal phosphates such as potassium phosphate; alkalis such as sodium acetate, potassium acetate and calcium acetate (soil Class) metal acetates and the like. Of these, metal carbonates are preferable and potassium carbonate is more preferable from the viewpoints of yield and efficiency of neutralization of hydrogen halide. These bases can be used alone or in combination of two or more.
  • the amount used is 1 mol of the aromatic compound (2) as a substrate from the viewpoint of the reactivity of the cross-coupling process (yield, selectivity, etc.) and the neutralization efficiency of hydrogen halide. On the other hand, it is usually preferably 1 to 20 mol, more preferably 1 to 10 mol.
  • the solvent examples include aliphatic hydrocarbons such as pentane, hexane, heptane, and cyclohexane; aliphatic halogenated hydrocarbons (dichloromethane, dichloroethane, chloroform, carbon tetrachloride, etc.), and aliphatic substituted hydrocarbons such as nitromethane.
  • aliphatic hydrocarbons such as pentane, hexane, heptane, and cyclohexane
  • aliphatic halogenated hydrocarbons dichloromethane, dichloroethane, chloroform, carbon tetrachloride, etc.
  • aliphatic substituted hydrocarbons such as nitromethane.
  • Chain ethers such as diethyl ether, diisopropyl ether, dibutyl ether, dimethoxyethane, cyclopentyl methyl ether and t-butyl methyl ether; cyclic ethers such as tetrahydrofuran and dioxane; esters such as ethyl acetate and ethyl propionate; acetonitrile And nitriles such as propionitrile; dimethyl sulfoxide and the like. These can be used alone or in combination of two or more.
  • a solvent that does not quench radical species is preferable from the viewpoint of the reactivity (yield, selectivity, etc.) of the cross-coupling step.
  • Specific examples include aliphatic hydrocarbons, aliphatic substituted hydrocarbons, cyclic ethers, nitriles, etc., preferably aliphatic hydrocarbons, aliphatic substituted hydrocarbons, nitriles, etc.
  • hydrocarbons More preferred are hydrocarbons, aliphatic halogenated hydrocarbons, nitriles, etc., more preferred are dichloromethane, dichloroethane, chloroform, carbon tetrachloride, chloromethane, n-hexane, acetonitrile, etc., dichloroethane, n-hexane, acetonitrile, etc. Is particularly preferred, and dichloroethane is most preferred.
  • additives other than the above components can be appropriately used within the range not impairing the effects of the present invention.
  • the coupling step of the present invention is preferably carried out under anhydrous conditions and under an inert gas atmosphere (nitrogen gas, argon gas, etc.), and the reaction temperature is usually preferably about 0 to 200 ° C., preferably about 20 to 150 ° C. Is more preferable, and about 50 to 100 ° C. is more preferable.
  • the reaction time can be a time during which cross coupling proceeds, and is usually preferably about 10 minutes to 72 hours, and more preferably about 1 to 48 hours.
  • the present invention is a cross-coupling reaction that connects two molecules while cutting the carbon-hydrogen bond directly bonded to the aromatic ring of the aromatic compound (2) and the nitrogen-halogen bond of the sulfonimide compound (3). .
  • the aromatic compound (2) as a substrate has other functional groups (halogen atom, alkoxy group, carbonyl group, alkylcarbonyl group, alkoxycarbonyl group, etc.) Is selectively cleaved and the cross-coupling reaction proceeds regioselectively. For this reason, since the cross-coupling reaction can proceed efficiently without protecting other functional groups, the number of steps can be further reduced, which is convenient.
  • the target compound After completion of the reaction, the target compound can be obtained through normal isolation and purification steps. According to the present invention, various useful sulfonidated aromatic compounds can be obtained.
  • Ar 1 and Ar 2 are the same or different and may be an aryl group which may be substituted or a heteroaryl group which may be substituted;
  • R 5 to R 9 are the following (1) to (3) Satisfy any of the requirements.
  • R 5 , R 8 and R 9 are the same or different and each represents a hydrogen atom or an alkyl group.
  • R 6 and R 7 combine with each other to form a 5- to 6-membered unsaturated ring.
  • the unsaturated ring may further be condensed with a monocyclic or condensed aromatic ring.
  • R 8 and R 9 are the same or different and each represents a hydrogen atom or an alkyl group.
  • R 5 and R 6 are bonded to each other to form an aromatic ring which may have a substituent.
  • R 6 and R 7 are bonded to each other to form an aromatic ring.
  • R 5 and R 6 are the same or different and each represents a hydrogen atom or an alkyl group.
  • R 7 represents a hydrogen atom or a halogen atom.
  • R 8 and R 9 are bonded to each other to form an aromatic ring. ] (Hereinafter, also referred to as “compound (5A)”).
  • R 6 and R 7 are bonded to each other to form a 5- to 6-membered unsaturated ring, and the unsaturated ring may be further condensed with a monocyclic or condensed aromatic ring.
  • the monocyclic aromatic ring include a benzene ring.
  • the condensed aromatic ring include a naphthalene ring, a phenanthrene ring, and an anthracene ring.
  • the alkyl group represented by R 8 and R 9 and the halogen atom represented by R 7 may be those described above.
  • R 5 and R 6 are bonded to each other to form an aromatic ring (a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring, etc.).
  • An alkoxy group, an alkylcarbonyl group, a silyl group, and a substituent such as a group represented by —COOR 25 may be substituted.
  • R 6 and R 7 are bonded to each other to form an aromatic ring (benzene ring, naphthalene ring, phenanthrene ring, anthracene ring, etc.).
  • the alkyl group represented by R 5 and R 6 and the halogen atom represented by R 7 may be those described above.
  • R 8 and R 9 are bonded to each other to form an aromatic ring (benzene ring, naphthalene ring, phenanthrene ring, anthracene ring, etc.).
  • Y 1 represents a sulfur atom or an oxygen atom.
  • R 10 represents a hydrogen atom or an alkylcarbonyl group.
  • R 11 and R 12 are the same or different and each represents a hydrogen atom, an alkyl group, or an aryl group.
  • R 10 and R 11 may be bonded to each other to form an aromatic ring.
  • compound (5C) (Hereinafter also referred to as “compound (5C)”).
  • the alkylcarbonyl group represented by R 10 may be those described above.
  • R 10 and R 11 may be bonded to each other to form an aromatic ring (benzene ring, naphthalene ring, phenanthrene ring, anthracene ring, thiophene ring, etc.).
  • Such compounds include, for example, the general formula (5C1):
  • Y 1 represents a sulfur atom or an oxygen atom.
  • R 10 represents a hydrogen atom or an alkylcarbonyl group.
  • R 11 and R 12 are the same or different, R 11 represents a hydrogen atom, an alkyl group or an aryl group, and R 12 represents an alkyl group or an aryl group.
  • R 10 and R 11 may be bonded to each other to form an aromatic ring.
  • Y 1 represents a sulfur atom or an oxygen atom.
  • R 10 and R 11 are bonded to each other to form a naphthalene ring, a phenanthrene ring, an anthracene ring or a thiophene ring.
  • the compound etc. which are represented by these are mentioned.
  • Ar 1 and Ar 2 are the same as defined above.
  • One of Y 2 and Y 3 represents a nitrogen atom and one represents an oxygen atom.
  • R 13 and R 14 are the same or different and each represents an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted heteroaryl group.
  • a bond represented by a solid line and a broken line indicates a single bond or a double bond.
  • compound (5D) is a novel compound not described in any literature.
  • R 15 represents a halogen atom.
  • R 16 to R 17 are the same or different and each represents an alkoxy group. ] (Hereinafter also referred to as “compound (5E)”).
  • R 18 and R 20 are the same or different and each represents an optionally substituted aryl group.
  • R 19 represents a halogen atom.
  • R 21 to R 24 are the same or different and each represents an optionally substituted aryl group.
  • compound (5G) is referred to as “compound (5G).
  • N-fluorobenzenesulfonimide (NFSI) and 6,6′-dimethylbipyridine (6,6′-Me 2 bpy) were purchased from Tokyo Chemical Industry Co., Ltd. (TCI).
  • Anhydrous 1,2-dichloroethane (DCE) was purchased from Aldrich.
  • Silica gel (Wakogel 300 mesh) was used for column chromatography. All reactions were performed using a dry solvent under a nitrogen (N 2 ) gas atmosphere in a flame-dried glass container using standard vacuum line techniques. For rate experiments using in situ infrared spectroscopy (IR), reaction spectra were recorded using IC 15 obtained from Mettra-Toredo AutoChem. Data processing was performed with Excel (registered trademark) of Microsoft (registered trademark) for Mac ver. 14.2.5.
  • the crude product was filtered through a pad of silica gel, dried over Na 2 SO 4 and concentrated in vacuo.
  • EtOAc n-hexane / ethyl acetate
  • MeOH methanol
  • the target product N- (fluoranthen-3-yl) -N- (phenylsulfonyl) benzenesulfonamide (1a) was obtained (77 mg, 0.155 mmol, 77%).
  • Example 1-2 Use various catalysts in place of CuBr, use various ligands in place of 6,6'-dimethylbipyridine (6,6'-Me 2 bpy), N-fluorobenzenesulfonimide (NFSI ) Is added in an amount of 1.05 equivalent, and the reaction time is 9 hours instead of 12 hours, and N- (fluoranthen-3-yl) -N- ( Phenylsulfonyl) benzenesulfonamide (1a) was obtained. The results are shown in Table 1.
  • Example 1-3 The same treatment as in Example 1-1 was performed except that the substrate was variously changed. The results are shown in Table 2.
  • Example 2-2 Use 3-phenylthiophene instead of 2-bromothiophene as substrate, use various catalysts instead of CuBr, instead of 6,6'-dimethylbipyridine (6,6'-Me 2 bpy) N- (3-phenylthiophen-2-yl) -N- (phenylsulfonyl) benzenesulfonamide (2d) was prepared in the same manner as in Example 2-1, except that various ligands were used. Got. The results are shown in Table 3.
  • Example 2-3 The same treatment as in Example 2-1 was performed except that the substrate was variously changed. The results are shown in Table 4.
  • Example 2-4 Various substrates were changed, the amount of substrate (porphyrin) was 0.050 mmol, the amount of CuBr was 20 mol%, the amount of 6,6'-Me 2 bpy was 24 mol%, the amount of DCE was 2.0 mL, The same treatment as in Example 2-1 was performed, except that the reaction time was 12 hours. The results are shown in Table 5. For purification, a mixture of n-hexane / CH 2 Cl 2 (2/1 to 1/1) was used in place of n-hexane / ethyl acetate (EtOAc) as an eluent for silica gel column chromatography.
  • EtOAc n-hexane / ethyl acetate
  • Example 3 Gram scale synthesis
  • Example 3-2 The treatment was performed in the same manner as in Example 3-1 except that 2-bromothiophene was used as a substrate.
  • a solid was obtained by filtering through a pad of silica gel and the mixture was distilled, and then the solid was recrystallized from methanol (MeOH) to obtain a crude product (1.35 g, 2.95 mmol). ).
  • 2-bromothiophene and 2-acetylthiophene can both be sulfonimidated when used alone as a substrate, but a mixture of 2-bromothiophene and 2-acetylthiophene can be used as a substrate. It can be understood that the reactivity is higher when 2-phenylthiophene is used as a substrate.
  • Example 2 except that instead of using 2-bromothiophene (0.20 mmol) as a substrate, a mixture of 2-acetylthiophene (0.20 mmol) and 2-acetyl-4-methylthiophene (0.20 mmol) is used. The same processing as in -1 was performed.
  • Example 7 The same treatment as in Example 2-1 was performed except that the compound C (2-phenylthiophene) in Example 2-3 was used as a substrate, the solvent was variously changed, and the reaction time was 12 hours. The results are shown in Table 7.
  • Example 2-3 The same treatment as in Example 2-1 except that the compound C (2-phenylthiophene) in Example 2-3 above was used as the substrate and the copper compound was variously changed (CuBr, CuCl, CuI, CuBr 2 , CuF 2 ). Went.
  • the copper compound was variously changed (CuBr, CuCl, CuI, CuBr 2 , CuF 2 ). Went.
  • imidization compound was obtained in 87-88% yield (1 H NMR yield).
  • bromide (CuBr or CuBr 2 ) was used, a by-product (bromine-containing compound) was produced, but when fluoride (CuF 2 ) was used, no by-product (fluorine-containing compound) was produced. It was.
  • Example 2-1 The same treatment as in Example 2-1 was performed, except that the compound C (2-phenylthiophene) in Example 2-3 was used as a substrate and the ligand was variously changed. The results are shown in Table 8.
  • Example 11 The reaction rate was compared in the same manner as in Example 2-1, except that 2-phenylthiophene or 2-phenylthiophene labeled with deuterium was used as a substrate. The results are shown in Table 10 and FIG. As a result, it can be understood that KH (reaction rate of 2-phenylthiophene) / kD (2-phenylthiophene labeled with deuterium) is 1.23.
  • Example 12 For entry 26 of Example 2-3 (when compound Z was used as the substrate), the ligand L5 of Example 9 was used instead of 6,6′-dimethylbipyridine as the ligand. Improved to%.
  • Example 9 For entry 11 of Example 2-3 (when compound K was used as the substrate), the ligand L5 of Example 9 was used instead of 6,6′-dimethylbipyridine as the ligand.
  • the amount is halved to 10 mol%, the amount of ligand is halved to 12 mol%, the amount of NFSI is halved to 1.05 equivalent, and the yield can be maintained at 48% even if the reaction time is reduced to 12 hours. It was.
  • the ligand L5 is a particularly preferred ligand.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Furan Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pyrane Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

 芳香族化合物と、特定のスルホンイミド化合物とを、銅化合物と、特定の配位子の存在下で反応させることで、種々多様な基質を用いて、安全且つ簡便に、芳香族化合物とスルホンイミド化合物とをクロスカップリングさせることができる。

Description

クロスカップリング方法、及び該クロスカップリング方法を用いた有機化合物の製造方法
 本発明は、クロスカップリング方法(具体的には芳香族化合物とスルホンイミド化合物とのクロスカップリング反応)、及び該クロスカップリング方法を用いた有機化合物の製造方法に関する。
 芳香族化合物にアミノ基を導入したアリールアミン化合物は、感光体、トランジスタ、発光ダイオード、有機EL等の電子デバイス材料、太陽電池用材料、蛍光材料、医薬材料等として有用であることから、簡便な合成方法が求められている。例えば、以下の化合物(1)はポルフィリン増感太陽電池用材料として使用されており、以下の化合物(2)は薬剤耐性細菌用の抗生物質として使用されており、以下の化合物(3)はペロブスカイト増感太陽電池用ホール輸送材料として使用されており、以下の化合物(4)は生細胞の超解像度イメージングのための蛍光色素分子として使用されている。
Figure JPOXMLDOC01-appb-C000012
 このアリールアミン化合物は、スルホンイミド化芳香族化合物に対して、エタノール中でマグネシウム金属の存在下に還元的脱保護を行うことにより容易に合成することができる(例えば、非特許文献1等)ことから、スルホンイミド化芳香族化合物を簡便に合成できる方法が求められている。
 従来から、種々の化合物を合成するに際して、原料化合物である2種類の基質を、適当な触媒の存在下に反応させる方法(クロスカップリング反応)が知られており、スルホンイミド化芳香族化合物についても、クロスカップリング反応を用いて合成することができれば、簡便にスルホンイミド化芳香族化合物を得ることができ、結果的にアリールアミン化合物を容易に合成することができると考えられる。
 このようなスルホンイミド化芳香族化合物の合成方法としては、例えば、芳香族化合物と、N-フルオロベンゼンスルホンイミド(NFSI)とを、パラジウム触媒及びビス(2,2’-ビピリジル)銀(II)過塩素酸塩(Ag(bipy)2ClO4)の存在下に反応させることにより、芳香族化合物にイミド基を導入する方法が知られている(例えば、非特許文献1等)。また、スルホンイミド化芳香族化合物の合成方法としては、チオフェン化合物、フラン化合物、ピロール化合物等の五員環ヘテロ芳香環化合物と、N-フルオロベンゼンスルホンイミド(NFSI)とを、銅触媒の存在下、配位子を使用せずに、反応させることにより、芳香族化合物にイミド基を導入する方法も知られている(例えば、非特許文献2等)。
J. Am. Chem. Soc. 2013, 135, 13278-13281 Org. Lett. 2014, 16, 5648-5651
 しかしながら、非特許文献1の方法では、高価な銀触媒が必要であるとともに、必須とされている銀触媒は爆発性の過塩素酸塩であることから、多環芳香族炭化水素等の有機材料のコアになる化合物の修飾を行うことが非常に困難である。
 また、非特許文献2の方法では、基質の適用範囲が五員環ヘテロ芳香環化合物(特に、チオフェン化合物、フラン化合物及びピロール化合物)に限定されており、さらに、フェニル基等の嵩高い置換基を有する基質を使用した場合には反応はほとんど進行しない。このため、種々多様なスルホンイミド化芳香族化合物を合成することができない。また、この方法では、溶媒の種類によっては、反応が進行しないこともある。
 このため、本発明は、種々多様な基質を用いて、安全且つ簡便に、芳香族化合物とスルホンイミド化合物とをクロスカップリングさせることができる方法を提供することを目的とする。
 本発明者らは上記の課題を解決するために鋭意研究を行った結果、芳香族化合物と、特定のスルホンイミド化合物とを、銅化合物の存在下、特定の配位子を使用することにより、種々多様な基質に対して、安全且つ簡便に、イミド化することができることを見出した。この配位子のなかでも、特に優れた配位子を使用した場合は、銅化合物以外の10族金属元素及び/又は11族金属元素を含有する化合物の存在下であっても反応を進行することができる。本発明者らは、このような知見に基づき、さらに研究を重ね、本発明を完成した。すなわち、本発明は以下の構成を包含する。
 項1.一般式(1):
Figure JPOXMLDOC01-appb-C000013
[式中、Rは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。Ar1及びAr2は同一又は異なって、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。]
で表されるスルホンイミド化芳香族化合物の製造方法であって、
一般式(2):
R-H   (2)
[式中、Rは前記に同じである。]
で示される芳香族化合物と、
一般式(3):
Figure JPOXMLDOC01-appb-C000014
[式中、Ar1及びAr2は前記に同じである。Xはハロゲン原子を示す。]
で表されるスルホンイミド化合物とを、
銅化合物と、一般式(4):
Figure JPOXMLDOC01-appb-C000015
[式中、Z1及びZ2は同一又は異なって、複素芳香環を示す。R1、R2、R3及びR4は同一又は異なって、電子吸引基、置換されていてもよいアルキル基、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。n1及びn2は、同一又は異なって、それぞれ0又は1を示す。m1及びm2は同一又は異なって、それぞれ0~3の整数を示す。n1及びn2がいずれも1の場合、R1とR2は互いに結合して、置換されていてもよい2価の炭化水素基を形成していてもよい。]
で表される配位子の存在下で反応させるクロスカップリング工程
を備える、製造方法。
 項2.前記銅化合物がハロゲン化銅である、項1に記載の製造方法。
 項3.前記配位子が、一般式(4A):
Figure JPOXMLDOC01-appb-C000016
[式中、R1~R4、n1~n2及びm1~m2は前記に同じである。]
で示される配位子である、項1又は2に記載の製造方法。
 項4.前記配位子が、一般式(4A1):
Figure JPOXMLDOC01-appb-C000017
[式中、R3a及びR4aは同一又は異なって、置換されていてもよい炭素数1~3のアルキル基を示す。R3b及びR4bは同一又は異なって、水素原子、ハロゲン原子、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。R3c及びR4cは同一又は異なって、水素原子又は置換されていてもよい炭素数1~3のアルキル基を示す。]
で示される配位子、又は
一般式(4A2):
Figure JPOXMLDOC01-appb-C000018
[式中、R1b及びR2bは互いに結合して、置換されていてもよい2価の炭化水素基を形成している。R3d及びR4dは同一又は異なって、水素原子又は電子吸引基を示す。R3e及びR4eは同一又は異なって、水素原子、電子吸引基、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。R3f及びR4fは同一又は異なって、電子吸引基、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。]
で表される配位子である、項1~4のいずれかに記載の製造方法。
 項5.前記クロスカップリング工程において、さらに、塩基を使用する、項1~4のいずれかに記載の製造方法。
 項6.一般式(1):
Figure JPOXMLDOC01-appb-C000019
[式中、Rは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。Ar1及びAr2は同一又は異なって、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。]
で表されるスルホンイミド化芳香族化合物の製造方法であって、
一般式(2):
R-H   (2)
[式中、Rは前記に同じである。]
で示される芳香族化合物と、
一般式(3):
Figure JPOXMLDOC01-appb-C000020
[式中、Ar1及びAr2は前記に同じである。Xはハロゲン原子を示す。]
で表されるスルホンイミド化合物とを、
10族金属元素及び/又は11族金属元素を含有する化合物と、
一般式(4A1):
Figure JPOXMLDOC01-appb-C000021
[式中、R3a及びR4aは同一又は異なって、置換されていてもよい炭素数1~3のアルキル基を示す。R3b及びR4bは同一又は異なって、水素原子、ハロゲン原子、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。R3c及びR4cは同一又は異なって、水素原子又は置換されていてもよい炭素数1~3のアルキル基を示す。]
で示される配位子、又は
一般式(4A2):
Figure JPOXMLDOC01-appb-C000022
[式中、R1b及びR2bは互いに結合して、置換されていてもよい2価の炭化水素基を形成している。R3d及びR4dは同一又は異なって、水素原子又は電子吸引基を示す。R3e及びR4eは同一又は異なって、水素原子、電子吸引基、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。R3f及びR4fは同一又は異なって、電子吸引基、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。]
で表される配位子の存在下で反応させるクロスカップリング工程
を備える、製造方法。
 項7.一般式(5D):
Figure JPOXMLDOC01-appb-C000023
[式中、Ar1及びAr2は前記に同じである。Y2及びY3はいずれかが窒素原子でいずれかが酸素原子を示す。R13及びR14は同一又は異なって、置換されていてもよいアルキル基、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。実線と破線で表わされる結合は単結合又は二重結合を示す。]
で表される化合物。
 本発明によれば、芳香族化合物とスルホンイミド化合物とを、銅化合物と特定の配位子の存在下で反応させることにより、スルホンイミド化芳香族化合物を安価に合成することができる。
 また、金属化合物の種類を選択することにより、クロスカップリング反応の速度をより向上させることも可能である。
 上記配位子のなかでも、特に優れた配位子を使用した場合は、銅化合物以外の10族金属元素及び/又は11族金属元素を含有する化合物の存在下であっても反応を進行することができる。
 また、爆発性の過塩素酸塩を使用せずに反応を進行させることができるため、安全且つ簡便にクロスカップリング反応を進行させることも可能である。
 さらに、本発明の方法では、基質の種類が限定されることはなく、種々多様な芳香族化合物に対して、イミド化を行うことが可能であることから、汎用性が高い。
 また、基質、配位子、溶媒、反応温度等を適切に選択することにより、非常に高収率にクロスカップリング反応を行うことも可能である。この場合、選択性も高いので、より省エネ法へとつながる可能性も高い。
熱振動楕円体作画ソフト(ORTEP)による、N-(フルオランテン-3-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(1a)の構造を示す図面である(楕円は50%の原子存在)。 熱振動楕円体作画ソフト(ORTEP)による、N-(1-コラヌレニル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(1f)の構造を示す図面である(楕円は50%の原子存在)。 熱振動楕円体作画ソフト(ORTEP)による、及びN-(2-アセチル-4-メチルチオフェン-5-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2B)の構造を示す図面である(楕円は50%の原子存在)。 実施例8において、各銅化合物を用いた場合のFTIRによる反応速度の比較の結果である。 実施例11において、2-フェニルチオフェン、及び重水素で標識した2-フェニルチオフェンを用いた場合の反応速度の比較の結果である。
 1.スルホンイミド化芳香族化合物の製造方法及びカップリング方法
 本発明においては、銅化合物と、特定の配位子の存在下に、芳香族化合物と特定のスルホンイミド化合物とを効果的にカップリング反応させて、特定のスルホンイミド化芳香族化合物を合成することができる。この場合、多様な基質を原料に用いて芳香族化合物と特定のスルホンイミド化合物とのカップリング反応を進行させて様々なスルホンイミド化芳香族有機化合物を得ることも可能である。
 本カップリング反応においては、通常、銅化合物と特定の配位子の存在下、芳香族化合物と特定のスルホンイミド化合物とを反応させて特定のスルホンイミド化芳香族化合物を得ることができる。具体的には、反応溶媒中、銅化合物と特定の配位子の存在下、芳香族化合物と特定のスルホンイミド化合物とを反応させて特定のスルホンイミド化芳香族化合物を得ることができる。
 上記配位子のなかでも、特に優れた配位子を使用した場合は、銅化合物以外の10族金属元素及び/又は11族金属元素を含有する化合物の存在下であっても反応を進行することができる。つまり、反応溶媒中、10族金属元素及び/又は11族金属元素を含有する化合物と特定の配位子の存在下、芳香族化合物と特定のスルホンイミド化合物とを反応させて特定のスルホンイミド化芳香族化合物を得ることができる。
 反応に供される芳香族化合物としては、一般式(2):
R-H   (2)
[式中、Rは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。]
で表される芳香族化合物(以下、「芳香族化合物(2)」と言うこともある)を採用できる。
 一般式(2)において、Rで示されるアリール基としては、例えば、フェニル基、ペンタレニル基、インデニル基、ナフチル基、アントラセニル基、テトラセニル基、ペンタセニル基、フェナントレニル基、ベンゾアントラセニル基、ピレニル基、ペリレニル基、トリフェニレニル基、アズレニル基、ヘプタレニル基、ビフェニル基、インダセニル基、アセナフチル基、フルオレニル基、フェナレニル基、フルオランテニル基、コロネニル基等が挙げられる。
 また、Rで示されるアリール基が有していてもよい置換基としては、例えば、水酸基、ハロゲン原子(フッ素原子、塩素原子、臭素原子又はヨウ素原子)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基等の鎖状又は分岐鎖C1-6アルキル基、特に鎖状又は分岐鎖C1-4アルキル基)、ハロアルキル基(トリフルオロメチル基等のC1-6ハロアルキル基、特にC1-4ハロアルキル基)、アルコキシ基(メトキシ基、エトキシ基等のC1-6アルコキシ基、特にC1-4アルコキシ基)、アルキルカルボニル基(メチルカルボニル基、エチルカルボニル基等の(C1-6アルキル)カルボニル基、特に(C1-4アルキル)カルボニル基)、シリル基(t-ブチルジメチルシリル基等のトリアルキルシリル基等)、-COOR25(R25はメチル基、エチル基等のアルキル基)で表される基等が挙げられる。また、上記した置換基で置換されていてもよい上述のアリール基、上記した置換基で置換されていてもよい後述のヘテロアリール基等を置換基として有していてもよい。これら置換基としては、反応性の観点から、上記した置換基で置換されていてもよい上述のアリール基が好ましい。この置換基を有する場合、置換基の数は、1~6個が好ましく、1~3個がより好ましい。ただし、Rで示されるアリール基がフェニル基である場合には、反応性の観点から、上記置換基を有さないことが好ましい。
 上記のRで示されるアリール基としては、特に制限されず、反応性の観点から、フェニル基を採用する場合は、上記置換基を有さないフェニル基が好ましい。一方、フェニル基以外のアリール基(以下、「他のアリール基」と言うこともある)を採用する場合は、上記置換基で置換された他のアリール基及び非置換の他のアリール基のいずれも好適に使用できるが、反応性の観点から、上記置換基で置換された他のアリール基がより好ましい。
 一般式(2)において、Rで示されるヘテロアリール基としては、例えば、ピロリル基、ピロリジル基、オキサゾリル基、チアゾリル基、イソチアゾリル基、フラニル基、チオフェニル基等の五員単環複素芳香族基;ピペリジル基、ピラジル基、ピリミジル基、ピリダジル基、ピペラジル基、トリアジニル基、モルホリル基等の六員単環複素芳香族基;インドリル基、キノリル基、イソキノリル基、ベンゾイミダゾリル基、キナゾリル基、フタラジル基、プリニル基、プテリジル基、ベンゾフラニル基、ベンゾチオフェニル基、チエノチオフェニル基、キサンチニル基、クマリニル基、クロメニル基等の二環複素芳香族基;ポルフィリニル基等が挙げられる。
 また、Rで示されるヘテロアリール基が有していてもよい置換基としては、例えば、水酸基、ハロゲン原子(フッ素原子、塩素原子、臭素原子又はヨウ素原子)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基等の鎖状又は分岐鎖C1-6アルキル基、特に鎖状又は分岐鎖C1-4アルキル基)、ハロアルキル基(トリフルオロメチル基等のC1-4ハロアルキル基等)、アルコキシ基(メトキシ基、エトキシ基等のC1-6アルコキシ基、特にC1-4アルコキシ基)、アルキルカルボニル基(メチルカルボニル基、エチルカルボニル基等の(C1-6アルキル)カルボニル基、特に(C1-4アルキル)カルボニル基)、シリル基(t-ブチルジメチルシリル基等のトリアルキルシリル基等)、-COOR25(R25はメチル基、エチル基等のアルキル基)で示される基等が挙げられる。また、上記した置換基で置換されていてもよい上記のアリール基、上記した置換基で置換されていてもよい上記のヘテロアリール基等を置換基として有していてもよい。この置換基を有する場合、置換基の数は、1~6個が好ましく、1~3個がより好ましい。
 上記のRで示されるヘテロアリール基としては、特に制限されず、反応性の観点から、上記置換基で置換されたヘテロアリール基が好ましい。
 このような条件を満たす基質としての芳香族化合物としては、例えば、
Figure JPOXMLDOC01-appb-C000024
[式中、t-Buはt-ブチル基;以下同様である。]
等が挙げられる。
 反応に供されるスルホンイミド化合物としては、一般式(3):
Figure JPOXMLDOC01-appb-C000025
[式中、Ar1及びAr2は同一又は異なって、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。Xはハロゲン原子を示す。]
で表されるスルホンイミド化合物(以下、「スルホンイミド化合物(3)」と言うこともある)を採用できる。
 一般式(3)において、Ar1及びAr2で示されるアリール基としては、上記したものを採用できる。置換基の種類及び数についても同様である。なかでも、クロスカップリング工程の反応性(収率、選択率等)、反応後のイミド基の脱離しやすさ、入手容易性等の観点から、非置換のアリール基が好ましく、フェニル基がより好ましい。また、Ar1とAr2とは同一でも異なっていてもよいが、クロスカップリング工程の反応性(収率、選択率等)と反応後のイミド基の脱離しやすさ、入手容易性等の観点から、同一であることが好ましい。
 一般式(3)において、Xで示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。なかでも、クロスカップリング工程の反応性(収率、選択率等)、入手容易性等の観点から、フッ素原子が好ましい。
 このようなスルホンイミド化合物(3)としては、種々のスルホンイミド化合物を使用することができるが、クロスカップリング工程の反応性(収率、選択率等)と反応後のイミド基の脱離しやすさ、入手容易性等の観点から、
Figure JPOXMLDOC01-appb-C000026
[式中、Phはフェニル基を示す。以下同様である。]
等が好ましい。
 スルホンイミド化合物(3)の使用量は、特に制限されず、収率の観点から、例えば、芳香族化合物(2)1モルに対して、通常、0.1~10モル程度が好ましく、0.2~5モル程度がより好ましく、0.5~3モル程度がさらに好ましい。
 銅化合物(銅触媒)としては、特に制限されないが、クロスカップリング工程の反応性(収率、選択率、反応速度等)の観点から、ハロゲン化銅が好ましく、CuF2、CuCl、CuBr、CuBr2、CuI等がより好ましく、CuCl、CuBr、CuI等がさらに好ましい。これらの銅化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。
 なお、金属化合物としては、銅化合物(銅触媒)が最も好ましいが、配位子として後述の一般式(4A1)で表される配位子又は一般式(4A2)で表される配位子を使用する場合には、銅化合物(銅触媒)の代わりに10族金属元素及び/又は11族金属元素を含有する化合物(銅化合物以外の金属化合物)を使用した場合にも同様に反応を進行することができる。
 10族金属元素及び/又は11族金属元素を含有する化合物としては、特に制限されず、クロスカップリング工程の反応性(収率、選択率等)の観点から、パラジウム化合物、ニッケル化合物、銀化合物、金化合物等が好ましい。
 パラジウム化合物(パラジウム触媒)としては、特に制限されず、金属パラジウムをはじめ、有機化合物(高分子化合物を含む)等の合成用触媒として公知のパラジウム化合物等が挙げられる。パラジウム化合物としては、0価パラジウムを含む化合物及びII価パラジウムを含む化合物のいずれでもよい。なお、0価パラジウムを含む化合物を用いた場合には、当該0価パラジウムは、系中で酸化されてII価パラジウムになる。使用できるパラジウム化合物としては、具体的には、Pd(PPh3)4、トリス(ジベンジリデンアセトン)二パラジウム(0)(pd2(dba)3)、ビス(ジベンジリデンアセトン)パラジウム(0)、ビス(トリt-ブチルホスフィノ)パラジウム(0)、酢酸パラジウム(Pd(OAc)2(Acはアセチル基を示す。以下同様である。))、ハロゲン化パラジウム(PdCl2、PdBr2、PdI2)、PdCl2(PPh3)2、Pd(OTf)2(Tfはトリフルオロメチルスルホニル基を示す。)等が挙げられる。本発明においては、クロスカップリング工程の反応性(収率、選択率等)の観点から、酢酸パラジウムが好ましい。これらのパラジウム化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。
 ニッケル化合物としては、特に限定されず、様々なものを使用でき、0価のNiの塩又は2価のNiの塩が好ましい。これらは、1種単独であるいは2種以上を組合せて用いることができる。これらの錯体は、試薬として投入するもの及び反応中で生成するものの両方を意味する。
 上記0価のNiの塩としては、特に制限されず、Ni(cod)2(codは1,5-シクロオクタジエンを示す。以下同様である。)、Ni(CO)2(PPh3)2、ニッケルカルボニル等が挙げられる。
 また、上記2価のNiの塩としては、酢酸ニッケル(II)、トリフルオロ酢酸ニッケル(II)、硝酸ニッケル(II)、ハロゲン化ニッケル(II)(フッ化ニッケル(II)、塩化ニッケル(II)、臭化ニッケル(II)等)、ニッケル(II)アセチルアセトナート、過塩素酸ニッケル(II)、クエン酸ニッケル(II)、シュウ酸ニッケル(II)、シクロヘキサン酪酸ニッケル(II)、安息香酸ニッケル(II)、ステアリン酸ニッケル(II)、スルファミンニッケル(II)、炭酸ニッケル(II)、チオシアン酸ニッケル(II)、トリフルオロメタンスルホン酸ニッケル(II)、ビス(4-ジエチルアミノジチオベンジル)ニッケル(II)、シアン化ニッケル(II)、ホウ酸ニッケル(II)、次亜リン酸ニッケル(II)、硫酸アンモニウムニッケル(II)、水酸化ニッケル(II)、シクロペンタジエニルニッケル(II)、及びこれらの水和物、並びにこれらの混合物等が挙げられる。
 これらのなかでも、クロスカップリング工程の反応性(収率、選択率等)の観点から、2価のNiの塩が好ましく、ハロゲン化ニッケルがより好ましく、臭化ニッケルが特に好ましい。
 銀化合物(銀触媒)としては、特に制限されず、クロスカップリング工程の反応性(収率、選択率等)の観点から、ハロゲン化銀(フッ化銀、塩化銀、臭化銀、ヨウ化銀)、硝酸銀、硫酸銀、酸化銀、硫化銀等が好ましく、ハロゲン化銀がより好ましく、ヨウ化銀がさらに好ましい。これらの銀化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。なお、従来は、銀化合物として爆発性の過塩素酸銀を使用しないと芳香族イミド化が進行しない(J. Am. Chem. Soc. 2013, 135, 13278.)とされていたが、本発明では過塩素酸銀を使用せずとも反応を進行することができる。
 金化合物(金触媒)としては、特に制限されず、クロスカップリング工程の反応性(収率、選択率等)の観点から、ハロゲン化金(フッ化金、塩化金、臭化金、ヨウ化金)、塩化金酸、テトラクロロ金(III)酸塩(テトラクロロ金(III)酸ナトリウム、テトラクロロ金(III)酸カリウム、テトラクロロ金(III)酸アンモニウム等)、シアン化金、水酸化金等が好ましく、ハロゲン化金がより好ましく、塩化金がさらに好ましい。これらの金化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。
 これら銅化合物以外の10族金属元素及び/又は11族金属元素を含有する化合物は、単独の金属化合物のみを使用することもでき、複数の金属化合物を組合せて使用することもできる。また、前記銅化合物と、銅化合物以外の10族金属元素及び/又は11族金属元素を含有する化合物とを併用することもできる。これら金属化合物のなかでも、クロスカップリング工程の反応性(収率、選択率等)の観点から、パラジウム化合物、ニッケル化合物、銅化合物、銀化合物、金化合物等が好ましく、パラジウム化合物、銅化合物、銀化合物、金化合物等がより好ましく、銅化合物、金化合物等がさらに好ましく、クロスカップリング工程の反応性(収率、選択率等)が高くより安価であることから、銅化合物がさらに好ましい。
 上記金属化合物の使用量は、基質の種類により適宜選択することが可能であり、例えば、基質である芳香族化合物(2)1モルに対して、通常、0.01~1モル程度が好ましく、0.02~0.5モル程度がより好ましく、0.03~0.3モル程度がさらに好ましい。なお、複数の金属化合物を使用する場合には、合計使用量が上記範囲内となるように調整することが好ましい。
 本発明においては、上記金属化合物(特に銅化合物)とともに、使用する金属化合物が有する金属原子(パラジウム原子、ニッケル原子、銅原子、銀原子、金原子等)に配位し得る配位子を使用する。配位子を使用しない場合には、本発明のクロスカップリング反応はほとんど進行しないが、特定の配位子を使用することにより、クロスカップリング反応を進行させることができる。特に、配位子の種類を選択することにより、クロスカップリング反応を非常に高収率に行うことも可能である。具体的には、配位子の種類を選択することで、銅化合物以外の10族金属元素及び/又は11族金属元素を含有する化合物を使用した場合もクロスカップリング反応を進行させることができる。
 このような配位子は、一般式(4):
Figure JPOXMLDOC01-appb-C000027
[式中、Z1及びZ2は同一又は異なって、複素芳香環を示す。R1、R2、R3及びR4は同一又は異なって、電子吸引基、置換されていてもよいアルキル基、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。n1及びn2は、同一又は異なって、それぞれ0又は1を示す。m1及びm2は同一又は異なって、それぞれ0~3の整数を示す。n1及びn2がいずれも1の場合、R1とR2は互いに結合して、置換されていてもよい2価の炭化水素基を形成していてもよい。]
で表される配位子(以下、「配位子(4)」と言うこともある)である。
 一般式(4)において、Z1及びZ2は複素芳香環であり、特に制限はなく、ピラゾール環等の五員単環複素芳香環;ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、ピペラジン環、トリアジン環等の六員単環複素芳香環;インドール環、キノリン環、イソキノリン環、ベンゾイミダゾール環、キナゾリン基、フタラジン環、プリン環、プテリジン基等の二環複素芳香環等が挙げられ、クロスカップリング工程の反応性(収率、選択率等)の観点から、単環複素芳香環が好ましく、六員単環複素芳香環がより好ましく、ピリジン環がさらに好ましい。また、Z1とZ2とは同一でも異なっていてもよく、クロスカップリング工程の反応性(収率、選択率等)と合成しやすさの観点から、同一であることが好ましい。
 一般式(4)において、R1~R4で示される電子吸引基としては、例えば、ニトロ基、シアノ基、ハロゲン原子、ハロアルキル基、置換されていてもよいカルボニル基、置換されていてもよいベンゼンスルホニル基等が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 ハロアルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、トリクロロメチル基、2-クロロエチル基、1,1-ジフルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、1,1,2,2-テトラフルオロエチル基等が挙げられる。
 置換されていてもよいカルボニル基としては、カルボニル基、上記したアルキル基を有するアルキルカルボニル基、アルコキシ基(メトキシ基、エトキシ基等のC1-6アルコキシ基、特にC1-4アルコキシ基)を有するアルコキシカルボニル基等が挙げられる。
 置換されていてもよいベンゼンスルホニル基としては、ベンゼンスルホニル基、上記したアルキル基を有するアルキルベンゼンスルホニル基等が挙げられる。
 一般式(4)において、R1~R4で示されるアルキル基としては、例えば、鎖状又は分岐状のC1-10アルキル基、好ましくはC1-8アルキル基が挙げられる。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 また、R1で示されるアルキル基が有していてもよい置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子又はヨウ素原子)、アルコキシ基(メトキシ基、エトキシ基等のC1-6アルコキシ基、特にC1-4アルコキシ基)、アルキルカルボニル基(メチルカルボニル基、エチルカルボニル基等の(C1-6アルキル)カルボニル基、特に(C1-4アルキル)カルボニル基)、シリル基(t-ブチルジメチルシリル基等のトリアルキルシリル基等)、-COOR25(R25はメチル基、エチル基等のアルキル基)で示される基等が挙げられる。また、上記した置換基で置換されていてもよい上記のアリール基、上記した置換基で置換されていてもよい上記のヘテロアリール基等を置換基として有していてもよい。これら置換基としては、爆発性の過塩素酸銀を使用せずとも反応が進行する観点から非配位性の置換基が好ましく、例えばハロゲン原子等が好ましい。置換基を有する場合の置換基の数は、1~6個が好ましく、1~3個がより好ましい。
 一般式(4)において、R1~R4で示されるアリール基としては、上記したものを採用できる。置換基の種類及び数についても同様である。なかでも、クロスカップリング工程の反応性(収率、選択率等)の観点から、非置換のアリール基が好ましく、フェニル基がより好ましい。また、R1~R4は同一でも異なっていてもよく、クロスカップリング工程の反応性(収率、選択率等)の観点から、R1~R2は同一であることが好ましく、R3~R4は同一であることが好ましい。
 一般式(4)において、R1~R4で示されるヘテロアリール基としては、上記したものを採用できる。置換基の種類及び数についても同様である。また、R1~R4は同一でも異なっていてもよく、クロスカップリング工程の反応性(収率、選択率等)の観点から、R1~R2は同一であることが好ましく、R3~R4は同一であることが好ましい。
 一般式(4)において、R1とR2とが結合して2価の炭化水素基を形成している場合、この2価の炭化水素基は、1-アルケニレン基(特にC2-10の1-アルケニレン基)が好ましく、具体的には、
Figure JPOXMLDOC01-appb-C000028
等が挙げられる。
 この2価の炭化水素基における置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子又はヨウ素原子)、アルコキシ基(メトキシ基、エトキシ基等のC1-6アルコキシ基、特にC1-4アルコキシ基)、アルキルカルボニル基(メチルカルボニル基、エチルカルボニル基等の(C1-6アルキル)カルボニル基、特に(C1-4アルキル)カルボニル基)、シリル基(t-ブチルジメチルシリル基等のトリアルキルシリル基等)、-COOR25(R25はメチル基、エチル基等のアルキル基)で示される基等が挙げられる。また、上記した置換基で置換されていてもよい上記のアリール基、上記した置換基で置換されていてもよい上記のヘテロアリール基等を置換基として有していてもよい。置換基を有する場合の置換基の数は、1~6個が好ましく、1~3個がより好ましい。
 上記の一般式(4)におけるR1~R2としては、クロスカップリング工程の反応性(収率、選択率等)の観点から、アルキル基であるか、互いに結合して2価の炭化水素基を形成していることが好ましく、C1-10アルキル基であるか、互いに結合して1-アルケニル基を形成していることがより好ましく、C1-8アルキル基であるか、互いに結合してC2-10の1-アルケニル基を形成していることがさらに好ましい。また、上記の一般式(4)におけるR3~R4としては、クロスカップリング工程の反応性(収率、選択率、反応速度等)の観点から、電子吸引基、置換されていてもよいアルキル基、又は置換されていてもよいアリール基が好ましく、ハロゲン原子又は置換されていてもよいC1-10アルキル基がより好ましく、フッ素原子又は置換されていてもよいC1-8アルキル基がさらに好ましい。
 一般式(4)において、n1~n2は0又は1である。n1とn2とは同一でも異なっていてもよく、クロスカップリング工程の反応性(収率、選択率等)、合成しやすさの観点から、同一であることが好ましい。なお、クロスカップリング工程の反応性(収率、選択率等)の観点から、n1及びn2が1である場合には、R1とR2とは互いに結合して置換されていてもよい2価の炭化水素基(特に1-アルケニル基)を形成していることが好ましい。
 一般式(4)において、m1~m2は0~3の整数、好ましくは0~2の整数、より好ましくは0又は1である。m1とm2とは同一でも異なっていてもよく、クロスカップリング工程の反応性(収率、選択率等)、合成しやすさの観点から、同一であることが好ましい。
 なお、一般式(4)において、クロスカップリング工程の反応性(収率、選択率等)、合成しやすさの観点から、n1、n2、m1及びm2の合計は1~8の整数であることが好ましい。つまり、R1、R2、R3及びR4を合計で少なくとも1つ有することが好ましい。
 上記のような観点から、本発明で使用する配位子(4)としては、一般式(4A):
Figure JPOXMLDOC01-appb-C000029
[式中、R1~R4、n1~n2及びm1~m2は前記に同じである。]
で表される配位子(以下、「配位子(4A)」と言うこともある)が好ましく、一般式(4A1):
Figure JPOXMLDOC01-appb-C000030
[式中、R3a及びR4aは同一又は異なって、置換されていてもよい炭素数1~3のアルキル基を示す。R3b及びR4bは同一又は異なって、水素原子、ハロゲン原子、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。R3c及びR4cは同一又は異なって、水素原子又は置換されていてもよい炭素数1~3のアルキル基を示す。]
で表される配位子(以下、「配位子(4A1)」と言うこともある)、又は
一般式(4A2):
Figure JPOXMLDOC01-appb-C000031
[式中、R1b及びR2bは互いに結合して、置換されていてもよい2価の炭化水素基を形成している。R3d及びR4dは同一又は異なって、水素原子又は電子吸引基を示す。R3e及びR4eは同一又は異なって、水素原子、電子吸引基、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。R3f及びR4fは同一又は異なって、電子吸引基、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。]
で表される配位子(以下、「配位子(4A2)」と言うこともある)がより好ましい。
 一般式(4A1)及び(4A2)におけるアルキル基、アリール基、2価の炭化水素基、それらの置換基としては、上記したものが採用できる。
 このような条件を満たす配位子(4)としては、例えば、
Figure JPOXMLDOC01-appb-C000032
[式中、n-Buはn-ブチル基を示す。以下同様である。]
等が挙げられる。これらの配位子(4)は、単独で用いることもでき、2種以上を組合せて用いることもできる。
 これらのなかでも、基質となる芳香族化合物(2)が芳香族炭化水素化合物である場合(一般式(2)におけるRが置換されていてもよいアリール基である場合)には、配位子(4)は、クロスカップリング工程の反応性(収率、選択率等)の観点から、
Figure JPOXMLDOC01-appb-C000033
等が好ましく、
Figure JPOXMLDOC01-appb-C000034
等がより好ましい。
 また、基質となる芳香族化合物(2)が複素環式化合物である場合(一般式(2)におけるRが置換されていてもよいヘテロアリール基である場合)には、配位子(4)は、クロスカップリング工程の反応性(収率、選択率等)の観点から、
Figure JPOXMLDOC01-appb-C000035
等が好ましく、
Figure JPOXMLDOC01-appb-C000036
等がより好ましい。
 配位子(4)の使用量は、クロスカップリング工程の反応性(収率、選択率等)の観点から、上記金属化合物(特に銅化合物)1モルに対して、0.1~10モルが好ましく、0.5~5モルがより好ましく、1~3モルがさらに好ましい。
 本発明においては、上記金属化合物(特に銅化合物)とともに、塩基を使用することもできる。本発明のカップリング反応においては、一般式(1)で表されるスルホンイミド化芳香族化合物を合成することができるが、副生成物として、ハロゲン化水素(フッ化水素、塩化水素、臭化水素等;例えば、一般式(3)において、Xがフッ素原子の場合はフッ化水素)も生成する。このため、本発明において、塩基を併用することにより、本発明のカップリング反応を進行させつつ、副生成物として生成するハロゲン化水素を中和することができる。この際、本発明のカップリング反応の収率を維持することが可能である。
 このような塩基としては、例えば、フッ化カリウム、フッ化セシウム等のアルカリ金属ハロゲン化物;水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;ナトリウムメトキシド等のアルカリ金属アルコキシド;炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩;炭酸ナトリウム、炭酸カリウム、炭酸セシウム等の金属炭酸塩;リン酸カリウム等のアルカリ金属リン酸塩;酢酸ナトリウム、酢酸カリウム、酢酸カルシウム等のアルカリ(土類)金属酢酸塩等が挙げられる。これらのうち、収率やハロゲン化水素の中和の効率等の観点から、金属炭酸塩が好ましく、炭酸カリウムがより好ましい。これらの塩基は、単独で用いることもでき、2種以上を組合せて用いることもできる。
 塩基を使用する場合、その使用量は、クロスカップリング工程の反応性(収率、選択率等)及びハロゲン化水素の中和効率の観点から、基質である芳香族化合物(2)1モルに対して、通常、1~20モルが好ましく、1~10モルがより好ましい。
 溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素類;脂肪族ハロゲン化炭化水素類(ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素等)、ニトロメタン等の脂肪族置換炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジメトキシエタン、シクロペンチルメチルエーテル、t-ブチルメチルエーテル等の鎖状エーテル類;テトラヒドロフラン、ジオキサン等の環状エーテル類;酢酸エチル、プロピオン酸エチル等のエステル類;アセトニトリル、プロピオニトリル等のニトリル類;ジメチルスルホキシド等が挙げられる。これらは、単独で用いることもでき、2種以上を組合せて用いることもできる。これらのうち、本発明では、クロスカップリング工程の反応性(収率、選択率等)の観点から、ラジカル種をクエンチしない溶媒が好ましい。具体的には、脂肪族炭化水素類、脂肪族置換炭化水素類、環状エーテル類、ニトリル類等が挙げられ、脂肪族炭化水素類、脂肪族置換炭化水素類、ニトリル類等が好ましく、脂肪族炭化水素類、脂肪族ハロゲン化炭化水素類、ニトリル類等がより好ましく、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、クロロメタン、n-ヘキサン、アセトニトリル等がさらに好ましく、ジクロロエタン、n-ヘキサン、アセトニトリル等が特に好ましく、ジクロロエタンが最も好ましい。
 本発明のカップリング工程においては、上記成分以外にも、本発明の効果を損なわない範囲で、適宜添加剤を使用することもできる。
 本発明のカップリング工程は、無水条件下且つ不活性ガス雰囲気(窒素ガス、アルゴンガス等)下で行うことが好ましく、反応温度は、通常、0~200℃程度が好ましく、20~150℃程度がより好ましく、50~100℃程度がさらに好ましい。反応時間は、クロスカップリングが進行する時間とすることができ、通常、10分~72時間程度が好ましく、1~48時間程度がより好ましい。
 本発明は、芳香族化合物(2)の芳香環に直接結合する炭素-水素結合と、スルホンイミド化合物(3)の窒素-ハロゲン結合とを切断しながら2つの分子をつなぐクロスカップリング反応である。本発明においては、基質である芳香族化合物(2)中に、他の官能基(ハロゲン原子、アルコキシ基、カルボニル基、アルキルカルボニル基、アルコキシカルボニル基等)を有していたとしても、上記結合を選択的に切断し、位置選択的にクロスカップリング反応が進行する。このため、他の官能基の保護をせずともクロスカップリング反応を効率的に進行させることができるため、より工程数を低減することができるため簡便である。
 反応終了後は、通常の単離及び精製工程を経て、目的化合物を得ることができる。本発明によれば、種々の有用なスルホンイミド化芳香族化合物を得ることができる。
 2.スルホンイミド化芳香族化合物
 上記のようにして得られるスルホンイミド化芳香族化合物は、一般式(5A):
Figure JPOXMLDOC01-appb-C000037
[式中、Ar1及びAr2は同一又は異なって、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基;R5~R9は以下の(1)~(3)のいずれかの要件を満たす。
(1)R5、R8及びR9は同じか又は異なり、それぞれ水素原子又はアルキル基を示す。R6とR7は互いに結合して5~6員の不飽和環を形成する。該不飽和環には、さらに単環又は縮合環の芳香環が縮合していてもよい。
(2)R8及びR9は同一又は異なって、水素原子又はアルキル基を示す。R5とR6は互いに結合して、置換基を有していてもよい芳香環を形成する。R6とR7は互いに結合して、芳香環を形成する。
(3)R5及びR6は同一又は異なって、水素原子又はアルキル基を示す。R7は水素原子又はハロゲン原子を示す。R8とR9は互いに結合して芳香環を形成する。]
で表される化合物(以下、「化合物(5A)と言うこともある」)とすることもできる。
 一般式(5A)において、(1)の要件を満たす場合のR5、R8及びR9で示されるアルキル基としては、上記したものを採用できる。この場合、R6とR7は互いに結合して5~6員の不飽和環を形成するが、該不飽和環には、さらに単環又は縮合環の芳香環が縮合していてもよい。単環の芳香環としては、具体的には、ベンゼン環等が挙げられる。また、縮合環の芳香環としては、具体的には、ナフタレン環、フェナントレン環、アントラセン環等が挙げられる。
 一般式(5A)において、(2)の要件を満たす場合のR8及びR9で示されるアルキル基、R7で示されるハロゲン原子としては、上記したものを採用できる。この場合、R5とR6は互いに結合して芳香環(ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環等)を形成するが、この芳香環には、上記したハロゲン原子、アルキル基、ハロアルキル基、アルコキシ基、アルキルカルボニル基、シリル基、-COOR25で示される基等の置換基で置換されていてもよい。また、R6とR7は互いに結合して芳香環(ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環等)を形成する。
 一般式(5A)において、(3)の要件を満たす場合のR5及びR6で示されるアルキル基、R7で示されるハロゲン原子としては、上記したものを採用できる。この場合、R8とR9は互いに結合して芳香環(ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環等)を形成する。
 また、上記のようにして得られるスルホンイミド化芳香族化合物は、一般式(5B):
Figure JPOXMLDOC01-appb-C000038
[式中、Ar1及びAr2は前記に同じである。]
で表される化合物(以下、「化合物(5B)」と言うこともある)とすることもできる。
 また、上記のようにして得られるスルホンイミド化芳香族化合物は、一般式(5C): 
Figure JPOXMLDOC01-appb-C000039
[式中、Ar1及びAr2は前記に同じである。Y1は硫黄原子又は酸素原子を示す。R10は水素原子、又はアルキルカルボニル基を示す。R11及びR12は同一又は異なって、水素原子、アルキル基、又はアリール基を示す。R10とR11とは互いに結合して芳香環を形成してもよい。]
で表される化合物(以下、「化合物(5C)」と言うこともある)とすることもできる。
 一般式(5C)において、R10で示されるアルキルカルボニル基、R11及びR12で示されるアルキル基及びアリール基としては、上記したものを採用できる。また、R10とR11は互いに結合して芳香環(ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環、チオフェン環等)を形成してもよい。
 このような化合物としては、例えば、一般式(5C1):
Figure JPOXMLDOC01-appb-C000040
[式中、Ar1及びAr2は前記に同じである。Y1は硫黄原子又は酸素原子を示す。R10は水素原子又はアルキルカルボニル基を示す。R11及びR12は同一又は異なって、R11は水素原子、アルキル基又はアリール基を示し、R12はアルキル基又はアリール基を示す。R10とR11とは互いに結合して芳香環を形成してもよい。]
で表される化合物、一般式(5C2):
Figure JPOXMLDOC01-appb-C000041
[式中、Ar1及びAr2は前記に同じである。Y1は硫黄原子又は酸素原子を示す。R10とR11とは互いに結合してナフタレン環、フェナントレン環、アントラセン環又はチオフェン環を形成している。]
で表される化合物等が挙げられる。
 また、上記のようにして得られるスルホンイミド化芳香族化合物のうち、一般式(5D): 
Figure JPOXMLDOC01-appb-C000042
[式中、Ar1及びAr2は前記に同じである。Y2及びY3はいずれかが窒素原子でいずれかが酸素原子を示す。R13及びR14は同一又は異なって、置換されていてもよいアルキル基、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。実線と破線で表わされる結合は単結合又は二重結合を示す。]
で表される化合物(以下、「化合物(5D)」と言うこともある)は文献未記載の新規化合物である。
 一般式(5D)において、R13及びR14で示されるアルキル基、アリール基及びヘテロアリール基としては、上記したものを採用できる。アリール基の置換基も同様のものを採用できる。
 また、上記のようにして得られるスルホンイミド化芳香族化合物は、一般式(5E): 
Figure JPOXMLDOC01-appb-C000043
[式中、Ar1及びAr2は前記に同じである。R15はハロゲン原子を示す。R16~R17は同一又は異なって、アルコキシ基を示す。]
で表される化合物(以下、「化合物(5E)」と言うこともある)とすることもできる。
 一般式(5E)において、R15で示されるハロゲン原子、R16~R17で示されるアルコキシ基としては、上記したものを採用できる。
 また、上記のようにして得られるスルホンイミド化芳香族化合物は、一般式(5F): 
Figure JPOXMLDOC01-appb-C000044
[式中、Ar1及びAr2は前記に同じである。R18及びR20は同一又は異なって、置換されていてもよいアリール基を示す。R19はハロゲン原子を示す。]
で表される化合物(以下、「化合物(5F)」と言うこともある)とすることもできる。
 一般式(5F)において、R18及びR20で示されるアリール基、R19で示されるハロゲン原子としては、上記したものを採用できる。アリール基の置換基も同様のものを採用できる。
 また、上記のようにして得られるスルホンイミド化芳香族化合物のうち、一般式(5G): 
Figure JPOXMLDOC01-appb-C000045
[式中、Ar1及びAr2は前記に同じである。R21~R24は同一又は異なって、置換されていてもよいアリール基を示す。]
で表される化合物(以下、「化合物(5G)」と言うこともある)とすることもできる。
 一般式(5G)において、R21~R24で示されるアリール基としては、上記したものを採用できる。
 上記のような条件を満たす化合物(5A)~(5G)としては、具体的には、
Figure JPOXMLDOC01-appb-C000046
等が挙げられる。
 以下、本発明について、実施例を挙げて具体的に説明するが、本発明は、これらの実施例に何ら制約されるものではない。
 1H NMR(600 MHz)スペクトル及び13C NMR(151 MHz)スペクトルは、JEOL ECA-600分光計で、CDCl3中で記録した。1H NMRの化学シフト(δ)はテトラメチルシラン(δ0.00 ppm)の相対的な百万分率(ppm)で表し、13C NMRの化学シフトはCDCl3(δ77.2 ppm)の相対的な百万分率(ppm)で表した。マススペクトルは、Thermo Fisher Scientific Exactiveにより得た。分析用薄層クロマトグラフィー(TLC)は、E. Merckシリカゲル60 F254の0.25 mmの層を配置した市販のガラスプレートを用いて行った。特に制約しない限り、材料は市販品を精製することなく使用した。CuBrはナカライテスク(株)から購入した。N-フルオロベンゼンスルホンイミド(NFSI)及び6,6'-ジメチルビピリジン(6,6'-Me2bpy)は東京化成工業(株)(TCI)から購入した。無水1,2-ジクロロエタン(DCE)はアルドリッチから購入した。カラムクロマトグラフィーには、シリカゲル(Wakogel 300 mesh)を使用した。全ての反応は、標準的な真空ライン技法を用いて、フレームドライしたガラス容器中で、窒素(N2)ガス雰囲気下に乾燥溶媒を用いて行った。In situの赤外分光法(IR)を用いた速度実験には、反応スペクトルは、Mettra-Toredo AutoChemから得たIC 15を用いて記録した。データ処理は、Mac ver. 14.2.5用のMicrosoft(登録商標)のExcel(登録商標)で行った。
 [実施例1]
 実施例1-1
Figure JPOXMLDOC01-appb-C000047
 シュレンク管に、窒素ガス雰囲気下で、フルオランテン(40 mg, 0.20 mmol)、N-フルオロベンゼンスルホンイミド(NFSI; 82 mg, 0.26 mmol, 1.3当量)、CuBr(2.8 mg, 0.020 mmol, 10 mol%)、及び6,6'-ジメチルビピリジン(6,6'-Me2bpy; 4.4 mg, 0.024 mmol, 12 mol%)を投入した。このシュレンク管に1,2-ジクロロエタン(DCE; 3.0 mL)を添加し、混合物を70℃で12時間加熱した。その後、混合物を25℃まで冷却した。粗生成物をシリカゲルのパッドでろ過し、Na2SO4で乾燥し、真空下に濃縮した。その後、粗生成物を、シリカゲル(n-ヘキサン/酢酸エチル(EtOAc)=5/1~2/1)を用いたクロマトグラフィーにより精製し、CH2Cl2/メタノール(MeOH)からの再結晶により、目的物であるN-(フルオランテン-3-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(1a)を得た(77 mg, 0.155 mmol, 77%)。また、CuBrと同時に炭酸カリウムを2当量(0.4 mmol)添加すること以外は上記と同様の処理を行っても、同様に、同程度の収率で反応を進行させることができた。
N-(フルオランテン-3-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(1a)
1H NMR (CDCl3) δ 7.24-7.28 (m, 2H), 7.36-7.41 (m, 3H), 7.53 (t, J = 7.8 Hz, 4H), 7.68 (t, J = 7.8 Hz, 2H), 7.82-7.88 (m, 4H), 7.95-7.97 (m, 4H) ppm; 13C NMR (CDCl3) δ 119.60, 120.83, 121.92, 122.26, 123.87, 128.11, 128.71, 129.15 (Three peaks merged), 130.09, 130.47, 132.83, 133.70, 134.26, 137.21, 138.53, 139.30, 139.89, 140.23 ppm; HR-MS (ESI-MS, positive): m/z = 520.0627. calcd for C28H19NO4S2Na : 520.0648 [M + Na]+
 実施例1-2
 CuBrの代りに種々の触媒を使用すること、6,6'-ジメチルビピリジン(6,6'-Me2bpy)の代りに種々の配位子を使用すること、N-フルオロベンゼンスルホンイミド(NFSI)の添加量を1.05当量とすること、反応時間を12時間ではなく9時間行うこと以外は、実施例1-1と同様の処理を行い、N-(フルオランテン-3-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(1a)を得た。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000048
 実施例1-3
 基質を種々変更する他は実施例1-1と同様の処理を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000049
N-(フェニルスルホニル)-N-(ピレン-1-イル)ベンゼンスルホンアミド(1b)
1H NMR (CDCl3) δ 7.54 (t, J= 7.8 Hz, 4H), 7.60 (d, J = 7.8 Hz, 1H), 7.69-7.71 (m, 3H), 7.87 (d, J = 9.0 Hz, 1H), 7.97 (d, J = 7.8 Hz, 4H), 8.05 (t, J = 7.8 Hz, 1H), 8.04-8.12 (m, 2H), 8.18 (d, J = 9.0 Hz, 2H), 8.25 (d, J = 7.8 Hz, 1H) ppm; 13C NMR (CDCl3) δ 122.96, 124.26, 124.81, 125.68, 126.27, 126.38, 126.67, 127.12, 127.66, 128.87, 129.21, 129.23, 129.43, 129.73, 130.71, 131.02, 131.88, 132.95, 134.27, 139.48 ppm; HR-MS (ESI-MS, positive): m/z = 520.0628. calcd for C28H19NO4S2Na: 520.0648 [M + Na]+
N-(フェニルスルホニル)-N-(2,7-ジ(t-ブチル)ピレン-1-イル)ベンゼンスルホンアミド(1c)
1H NMR (CDCl3) δ 1.48 (s, 9H), 1.56 (s, 9H), 7.42-7.47 (m, 5H), 7.52 (d, J = 9.6 Hz, 1H), 7.65-7.68 (m, 2H), 7.96 (t, J= 9.6 Hz, 1H), 8.01 (t, J = 7.8 Hz, 4H), 8.05-8.06 (m, 2H), 8.18 (s, 1H), 8.41 (s, 1H) ppm; 13C NMR (CDCl3) δ 32.06, 33.75, 35.39, 38.41, 122.22, 122.73, 123.18, 124.08, 125.68, 126.44, 126.94, 127.01, 128.49, 128.85, 129.47, 130.01, 130.82, 130.95, 132.02, 132.85, 134.36, 139.38, 149.25, 149.56 ppm; HR-MS (ESI-MS, positive): m/z = 632.1877. calcd for C36H35NO4S2Na: 632.1900 [M + Na]+
N-(10-ブロモ-9-アントラセニル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(1d)
1H NMR (CDCl3) δ 7.19-7.22 (m, 2H), 7.48-7.54 (m, 6H), 7.59 (d, J = 9.0 Hz, 2H), 7.69 (t, J = 7.2 Hz, 2H), 7.93-7.95 (m, 4H), 8.57 (d, J = 9.0 Hz, 2H) ppm; 13C NMR (CDCl3) δ 125.36, 127.01, 127.41, 127.52, 127.57, 128.30, 129.14, 129.92, 131.22, 132.70, 134.54, 139.13 ppm; HR-MS (ESI-MS, positive): m/z = 573.9737. calcd for C26H18BrNO4S2Na: 573.9753 [M + Na]+
N-(フェニルスルホニル)-N-(7-ベンゾ[a]アントラセニル)ベンゼンスルホンアミド(1e)
1H NMR (CDCl3) δ 7.24-7.26 (m, 1H), 7.35 (d, J = 9.6 Hz, 1H), 7.38 (d, J = 9.6 Hz, 1H), 7.47-7.50 (m, 5H), 7.59-7.63 (m, 2H), 7.66-7.71 (m, 3H), 7.76-7.73 (m, 1H), 7.96-7.98 (m, 4H), 8.11 (d, J = 7.8 Hz, 1H), 8.82 (d, J = 7.8 Hz, 1H), 9.32 (s, 1H) ppm; 13C NMR (CDCl3) δ 123.07, 123.19, 124.90, 125.40, 126.10, 126.95, 127.57, 127.60, 127.74, 128.72, 128.83, 129.10, 129.53, 129.89, 130.24, 131.38, 131.93, 132.18, 132.33, 134.41, 139.37 (One signal was not observed because of overlapping.) ppm; HR-MS (ESI-MS, positive): m/z = 546.0785. calcd for C30H21NO4S2Na: 546.0804 [M + Na]+
N-(1-コラヌレニル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(1f)
1H NMR (CDCl3) δ 7.24-7.26 (m, 1H), 7.42 (s, 1H), 7.54-7.57 (m, 4H), 7.62 (d, J = 8.4 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.70-7.73 (m, 2H), 7.77 (d, J = 8.4 Hz, 1H), 7.81-7.87 (m, 4H), 8.00 (d, (d, J = 7.2 Hz, 4H) ppm; 13C NMR (CDCl3) δ 125.02, 126.89, 127.39, 127.50, 127.81, 127.87, 128.17, 129.21, 129.27, 130.04, 130.21, 131.11, 131.15, 131.30, 131.90, 132.03, 134.36, 135.39, 135.49, 136.12, 136.19, 136.46, 139.34 (One signal was not observed because of overlapping.) ppm; HR-MS (ESI-MS, positive): m/z = 568.0630. calcd for C32H19NO4S2Na : 568.0648 [M + Na]+
 [実施例2]
 実施例2-1
Figure JPOXMLDOC01-appb-C000050
 シュレンク管に、窒素ガス雰囲気下で、2-ブロモチオフェン(22μL, 0.20 mmol)、N-フルオロベンゼンスルホンイミド(NFSI; 66 mg, 0.21 mmol, 1.05当量)、CuBr(2.8 mg, 0.020 mmol, 10 mol%)、及び6,6'-ジメチルビピリジン(6,6'-Me2bpy; 4.4 mg, 0.024 mmol, 12 mol%)を投入した。このシュレンク管に1,2-ジクロロエタン(DCE; 1.0 mL)を添加し、混合物を70℃で9時間加熱した。その後、混合物を25℃まで冷却した。得られた溶液をシリカゲルのパッドでろ過し、Na2SO4で乾燥し、真空下に濃縮した。その後、粗生成物を、シリカゲル(n-ヘキサン/酢酸エチル(EtOAc)=5/1)を用いたクロマトグラフィーにより精製し、目的物であるN-(2-ブロモチオフェン-5-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2a)を得た(78.4 mg, 0.17 mmol, 85%)。なお、N-(2-ブロモチオフェン-5-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2A)は公知の化合物(Org. Lett. 2014,16, 5648)であり、スペクトルデータは既報に従う。
 実施例2-2
 基質として、2-ブロモチオフェンの代りに3-フェニルチオフェンを使用すること、CuBrの代りに種々の触媒を使用すること、6,6'-ジメチルビピリジン(6,6'-Me2bpy)の代りに種々の配位子を使用すること以外は、実施例2-1と同様の処理を行い、N-(3-フェニルチオフェン-2-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2d)を得た。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000051
 実施例2-3
 基質を種々変更する他は実施例2-1と同様の処理を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
 化合物(2B)~(2C)は公知の化合物(Org. Lett. 2014,16, 5648)であり、スペクトルデータは既報に従う。また、化合物(2J)は公知の化合物(J. Am. Chem. Soc. 2013,135, 13278)であり、スペクトルデータは既報に従う。
N-(2-アセチル-4-メチルチオフェン-5-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2D)
1H NMR (CDCl3) δ 1.71 (s, 3H), 2.52 (s, 3H), 7.39 (s, 1H), 7.51 (t, J = 7.8 Hz, 4H), 7.71 (tt, J = 7.8 Hz, J = 1.2 Hz, 2H), 7.97 (d, J = 7.8 Hz, 4H) ppm; 13C NMR (CDCl3) δ 13.50, 26.57, 129.00, 129.42, 133.08, 134.71, 135.74, 138.88, 143.30, 144.14, 190.62 ppm; HR-MS (ESI-MS, positive): m/z = 458.0148. calcd for C19H17NO5S3Na: 458.0161 [M + Na]+
N-(3-フェニルチオフェン-2-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2E)
1H NMR (CDCl3) δ 7.07 (d, J = 5.4 Hz, 1H), 7.18-7.23 (m, 3H), 7.36-7.39 (m, 5H), 7.44 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.2 Hz, 2H), 7.83 (d, J = 7.2 Hz, 4H) ppm; 13C NMR (CDCl3) δ 127.37, 128.08, 128.38, 128.51, 128.66, 128.77, 128.86, 129.39, 134.06, 134.27, 138.82, 144.55 ppm; HR-MS (ESI-MS, positive): m/z = 478.0198. calcd for C22H17NO4S3Na : 478.0212 [M + Na]+
N-(チエノ[3,2-b]チオフェン-2-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2F)
1H NMR (CDCl3) δ 6.99 (s, 1H), 7.23 (d, J = 5.4 Hz, 1H), 7.51 (d, J = 5.4 Hz, 1H), 7.58 (t, J = 7.2 Hz, 4H), 7.71 (t, J = 7.2 Hz, 2H), 8.03 (d, J = 7.2 Hz, 4H) ppm; 13C NMR (CDCl3) δ 119.93, 124.78, 129.01, 129.19, 129.32, 134.27, 134.53, 135.79, 138.87, 140.18 ppm; HR-MS (ESI-MS, positive): m/z = 457.9609. calcd for C18H13NO4S4Na: 457.9620 [M + Na]+
N-(3-メチルベンゾフラン-2-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2G)
1H NMR (CDCl3) δ 1.78 (s, 3H), 7.28 (t, J = 7.8 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.44 (d, J = 7.8 Hz, 1H), 7.51 (d, J = 7.8 Hz, 1H), 7.58 (t, J = 7.2 Hz, 4H), 7.71 (t, J = 7.2 Hz, 2H), 8.03 (dd, J = 7.2, 1.2 Hz, 4H) ppm; 13C NMR (CDCl3) δ 7.91, 111.93, 119.17, 120.62, 123.08, 126.55, 128.84, 128.92, 129.35, 134.53, 138.02, 139.42, 153.12 ppm; HR-MS (ESI-MS, positive): m/z = 450.0425. calcd for C21H17NO5S2Na: 450.0440 [M + Na]+
N-(2,5-ジフェニルオキサゾール-4-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2H)
1H NMR (CDCl3) δ 7.21-7.27 (m, 3H), 7.42 (t, J = 7.8 Hz, 4H), 7.47-7.50 (m, 3H), 7.57 (t, J = 7.2 Hz, 2H), 7.65 (d, J = 7.8, 2H), 8.00 (d, J = 7.8 Hz, 4H), 8.05 (m, 2H) ppm; 125.88, 126.14, 126.70, 126.93, 128.42, 128.80, 128.93, 129.00, 129.18, 129.60, 131.14, 134.25, 139.65, 149.57, 158.81 ppm; HR-MS (ESI-MS, positive): m/z = 539.0690. calcd for C27H20N2O5S2Na: 530.0706 [M + Na]+
N-(2,4-ジフェニルオキサゾール-5-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2I)
1H NMR (CDCl3) δ 7.16-7.19 (m, 2H), 7.21-7.24 (m, 1H), 7.44-7.53 (m, 7H), 7.61 (t, J = 7.2 Hz, 2H), 7.70 (d, J = 7.8 Hz, 2H), 7.97-8.00 (m, 6H) ppm; 13C NMR (CDCl3) δ 126.89, 126.98, 128.57, 129.04, 129.10, 129.14, 129.37, 131.46, 133.21, 134.67, 139.29, 140.92, 160.74 (Two signals were not observed because of overlapping.) ppm; HR-MS (ESI-MS, positive): m/z = 539.0693. calcd for C27H20N2O5S2Na: 539.0706 [M + Na]+
N-(2-クロロ-4,6-ジメトキシピリミジン-5-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2K)
1H NMR (CDCl3) δ 3.69 (s, 6H), 7.55 (t, J = 7.8 Hz, 4H), 7.67 (t, J = 7.8 Hz, 2H), 8.00 (d, J = 7.8 Hz, 4H) ppm; 13C NMR (CDCl3) δ 55.49, 100.54, 128.82, 129.10, 134.11, 140.02, 159.51, 169.04 ppm; HR-MS (ESI-MS, positive): m/z = 492.0044. calcd for C18H16ClN3O6S2Na: 492.0061 [M + Na]+
N-(1,3,7-トリメチルキサンチン-6-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2L;カフェイン)
1H NMR (CDCl3) δ 3.42 (s, 3H), 3.48 (s, 3H), 3.72 (s, 3H), 7.53 (t, J = 7.8 Hz, 4H), 7.71 (t, J = 7.8 Hz, 2H), 7.90 (d, J = 7.8 Hz, 4H) ppm; 13C NMR (CDCl3) δ 28.27, 30.02, 108.99, 129.25, 129.34, 135.02, 138.11, 138.17, 146.48, 151.52, 155.41 ppm; HR-MS (ESI-MS, positive): m/z = 512.0654. calcd for C20H19N5O6S2Na: 512.0699 [M + Na]+
N-(5,7-ジメトキシ-8-クマリニル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2M、シトロプテン)
1H NMR (CDCl3) δ 3.87 (s, 3H), 3.88 (s, 3H), 6.29 (d, J = 1.2 Hz, 1H), 6.40 (d, J = 1.2 Hz, 1H), 7.52-7.55 (m, 4H), 7.65-7.68 (m, 2H), 7.98 (s, 1H), 7.99-8.01 (m, 4H) ppm; 13C NMR (CDCl3) δ 56.23, 56.28, 93.08, 95.46, 103.98, 115.77, 129.06, 129.28, 134.33, 139.08, 143.25, 157.29, 158.04, 158.87, 165.80 ppm; HR-MS (ESI-MS, positive): m/z = 524.0430. calcd for C23H29NO8S2Na : 524.0444 [M + Na]+
N-(4-オキソ-2-フェニル-4H-クロメン-3-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2N、フラボン)
1H NMR (CDCl3) δ 7.33-7.37 (m, 6H), 7.44 (t, J = 7.8 Hz, 2H), 7.52-7.55 (m, 3H), 7.72-7.75 (m, 1H), 7.82 (t, J = 7.8 Hz, 2H), 7.89-7.91 (m, 2H), 8.13-8.15 (m, 1H) ppm; 13C NMR (CDCl3) δ 118.28, 119.46, 123.70, 126.04, 126.60, 128.46, 128.55, 129.23, 129.80, 131.07, 131.60, 133.98, 134.64, 139.37, 155.76, 168.47, 174.76 ppm; HR-MS (ESI-MS, positive): m/z = 540.0533. calcd for C27H19NO6S2Na : 540.0546 [M + Na]+
N-(チオフェン-2-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2O)
1H NMR (CDCl3) δ 6.73 (d, J = 4.2 Hz, 1H), 6.94 (t, J = 4.2 Hz, 1H), 7.37 (d, J = 4.2 Hz, 1H), 7.56 (t, J = 7.2 Hz, 4H), 7.69 (t, J = 7.2 Hz, 2H), 7.99 (d, J = 7.2 Hz, 4H); 13C NMR (CDCl3) δ 125.89, 128.94, 129.06, 129.24, 131.50, 134.12, 134.41, 138.90。
N-(2-カルボキシオキサゾール-5-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2P)
1H NMR (CDCl3) δ 6.77 (d, J = 3.6 Hz, 1H), 7.58 (t, J = 7.8 Hz, 4H), 7.68 (d, J = 4.2 Hz, 1H), 7.71 (t, J = 7.8 Hz, 2H), 7.98 (d, J = 7.8 Hz, 4H); 13C NMR (DMSO) δ 128.21, 129.85, 131.53, 133.08, 135.33, 137.21, 137.34, 137.67, 161.97。
N-(ベンゾチオフェン-2-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2Q)
1H NMR (CDCl3) δ 7.02 (s, 1H), 7.37-7.41 (m, 2H), 7.58 (t, J = 7.8 Hz, 4H), 7.70-7.76 (m, 4H), 8.04 (d, J = 7.8 Hz, 4H); 13C NMR (CDCl3) δ 122.62, 124.98, 126.30, 128.95, 129.05, 129.33, 129.48, 134.41, 134.54, 136.97, 138.97, 140.52。
N-(4-フェニル-2-(ピリジン-3-イル)オキサゾール-5-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2R)
1H NMR (CDCl3) δ 7.19 (t, J = 7.5 Hz, 1H), 7.25 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 4.8 Hz, 1H), 7.46 (t, J = 7.8 Hz, 4H), 7.63 (t, J = 7.2 Hz, 2H), 7.71 (d, J = 6.6 Hz, 2H), 7.97 (d, J = 9.0 Hz, 4H), 8.30 (d, J = 8.4 Hz, 1H), 8.74 (dd, J = 1.8 Hz, 4.8 Hz, 1H), 9.16 (s, 1H) ; 13C NMR (CDCl3) δ 123.29, 123.84, 127.02, 128.67, 129.00, 129.11, 129.22, 129.37, 134.02, 134.08, 134.82, 139.19, 141.07, 148.07, 152.07, 158.51。
N-(4-フェニル-2-(4-メチルフェニル)オキサゾール-5-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2S)
1H NMR (CDCl3) δ 2.43 (s, 3H), 7.17 (t, J = 7.2 Hz, 2H), 7.22 (t, J = 7.2 Hz, 1H), 7.80 (d, J = 8.4 Hz, 2H), 7.44 (t, J = 7.2 Hz, 4H), 7.60 (t, J = 7.2 Hz, 2H), 7.70 (d, J = 7.8 Hz, 2H), 7.87 (d, J = 7.8 Hz, 2H), 7.96 (d, J = 8.4 Hz, 4H); 13C NMR (CDCl3) δ 21.82, 124.31, 126.86, 127.00, 128.56, 129.05, 129.11, 129.49, 129.76, 131.45, 132.90, 134.62, 139.34, 140.84, 141.93, 160.99。
N-(4-フェニル-2-(4-tert-ブチルフェニル)オキサゾール-5-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2T)
1H NMR (CDCl3) δ 1.37 (s, 9H), 7.17 (t, J = 7.2 Hz, 2H), 7.22 (t, J = 4.2 Hz, 1H), 7.45 (t, J = 7.8 Hz, 4H), 7.50 (d, J = 8.4 Hz, 2H), 7.61 (t, J = 7.2 Hz, 2H), 7.70 (d, J = 6.6 Hz, 2H), 7.91 (d, J = 8.4 Hz, 2H), 7.96 (d, J = 7.8 Hz, 4H) ; 13C NMR (CDCl3) δ 31.36, 35.24, 124.27, 126.01, 126.73, 127.02, 128.56, 129.02, 129.11, 129.52, 132.93, 134.61, 139.35, 140.87, 155.03, 160.42 (One signal was not observed because of overlapping.)。
N-(4-フェニル-2-(4-クロロフェニル)オキサゾール-5-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2U)
1H NMR (CDCl3) δ 7.18 (t, J = 7.8 Hz, 2H), 7.23 (t, J = 7.8 Hz, 1H), 7.46 (m, 6H), 7.62 (t, J = 7.2 Hz, 2H), 7.69 (d, J = 6.0 Hz, 2H), 7.92 (d, J = 6.6 Hz, 2H), 7.96 (d, J = 7.8 Hz, 4H); 13C NMR (CDCl3) δ 125.48, 126.98, 128.15, 128.62, 129.12, 129.16, 129.22, 129.43, 133.47, 134.73, 137.72, 139.27, 141.02, 159.81 (One signal was not observed because of overlapping)。
N-(5-フェニルオキサゾール-2-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2V)
1H NMR (CDCl3) δ 7.14 (t, J = 7.2 Hz, 2H), 7.20 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.8 Hz, 4H), 7.58-7.61 (m, 4H), 7.94 (m, 4H); 13C NMR (CDCl3) δ 126.83, 128.61, 128.72, 128.91, 129.00, 129.19, 134.41, 134.74, 139.05, 139.15, 150.75。
N-(4,5-メチルチアゾール-2-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2W)
1H NMR (CDCl3) δ 2.32 (s, 3H), 2.37 (s, 3H), 7.56 (t, J = 7.8 Hz, 4H), 7.69 (t, J = 7.8 Hz, 2H), 8.06 (d, J = 7.2 Hz, 4H) ; 13C NMR (CDCl3) δ 11.98, 14.92, 129.19, 132.51, 134.45, 139.21, 147.95, 148.54 (One signal was not observed because of overlapping.)。
N-(ナフタレン-1-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2X)
IR (neat) 1371, 1352, 1163, 1081, 929, 886, 857, 768, 718, 682 cm-11H NMR (CDCl3) δ 7.11 (d, J = 7.8 Hz, 1H), 7.28 (t, J = 7.8 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.51-7.55 (m, 5H), 7.68 (t, J = 7.2 Hz, 2H), 7.85 (d, J = 7.8 Hz, 1H), 7.94-7.96 (m, 5H); 13C NMR (CDCl3) δ 124.12, 125.16, 126.71, 127.17, 128.29, 129.12, 129.26, 130.74, 131.18, 131.34, 132.98, 134.26, 134.84, 139.32; HR-MS (ESI-MS, positive): m/z = 446.0475. calcd for C22H17NO4S2Na: 446.0491 [M + Na]+
N-(フラン-2-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2Y)
1H NMR (CDCl3) δ 6.23 (d, J = 3.4 Hz, 1H), 6.45 (t, J = 3.4 Hz, 1H), 7.41 (d, J = 3.4 Hz, 1H), 7.57 (t, J = 7.2 Hz, 4H), 7.69 (t, J = 7.2 Hz, 2H), 7.99 (d, J = 7.2 Hz, 4H); 13C NMR (CDCl3) δ 112.06, 112.48, 128.83, 129.27, 134.44, 139.21, 139.42, 143.49。
N-(5-ブチルフラン-2-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2Z)
1H NMR (CDCl3) δ 0.93 (t, J = 7.2 Hz, 3H), 1.34 (sext., J = 7.2 Hz, 2H), 1.55 (sext., J = 7.2 Hz, 2H), 2.57 (t, J = 7.2 Hz, 3H), 6.04 (d, J = 3.6 Hz, 1H), 6.13 (d, J = 3.6 Hz, 1H), 7.56 (t, J = 7.8 Hz, 4H), 7.68 (t, J = 7.8 Hz, 2H), 7.99 (d, J = 7.8 Hz, 4H); 13C NMR (CDCl3) δ 13.99, 22.27, 28.11, 29.92, 107.34, 113.32, 128.81, 129.17, 134.29, 137.06, 139.41, 157.93。
N-(4-クロロチオフェン-2-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2AA)
1H NMR (CDCl3) δ 6.66 (d, J = 1.8 Hz, 1H), 7.16 (d, J = 1.8 Hz, 1H), 7.58 (t, J = 7.2 Hz, 4H), 7.71 (t, J = 7.2 Hz, 2H), 7.99 (d, J = 7.2 Hz, 4H); 13C NMR (CDCl3) δ 123.63, 124.22, 128.96, 129.39, 131.48, 134.42, 134.68, 138.62。
N-(3-クロロチオフェン-2-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2AB)
1H NMR (CDCl3) δ 6.89 (d, J = 4.2 Hz, 1H), 7.16 (d, J = 4.2 Hz, 1H), 7.55 (t, J = 7.2 Hz, 4H), 7.69 (t, J = 7.2 Hz, 2H), 8.02 (d, J = 7.2 Hz, 4H); 13C NMR (CDCl3) δ 127.06, 127.93, 128.78, 129.05, 129.25, 130.18, 134.58, 139.12。
 実施例2-4
 基質を種々変更し、基質(ポルフィリン)の量を0.050 mmolとし、CuBrの量を20 mol%とし、6,6’-Me2bpyの量を24 mol%とし、DCEの量を2.0 mLとし、反応時間を12時間とする他は実施例2-1と同様の処理を行った。結果を表5に示す。なお、精製としては、シリカゲルカラムクロマトグラフィーの溶離液として、n-ヘキサン/酢酸エチル(EtOAc)の代りにn-ヘキサン/CH2Cl2(2/1~1/1)の混合物を用いた。
Figure JPOXMLDOC01-appb-T000056
N-(15-ブロモ-10,20-ビス[3,5-ジ(t-ブチル)フェニル])-5-ポルフィリニル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(3AC)
1H NMR (CDCl3) δ -2.67 (s, 2H), 1.55 (s, 36H), 7.52 (t, J = 7.8 Hz, 4H), 7.45 (t, J = 7.8 Hz, 2H), 7.82 (s, 2H), 7.96-8.01 (m, 8H), 8.56-8.59 (broad d, J = 9.0 Hz, 4H), 8.86 (broad s, 2H), 9.66 (d, J = 4.2 Hz, 2H) ppm; 13C NMR (CDCl3) δ 31.93, 35.29, 106.48, 108.39, 121.58, 123.40, 129.03, 129.12, 130.01, 130.08, 130.37, 130.43, 134.47, 138.42, 140.56, 149.18 (One sp2 signal was not observed because of overlapping.) ppm; HR-MS (ESI-MS, positive): m/z = 1082.3306. calcd for C36H35NO4S2Na : 1082.3319 [M + Na]+
化合物(3AD)
1H NMR (CDCl3) δ 1.42 (s, 18H), 1.43 (s, 18H), 1.46 (s, 18H), 1.46 (s, 18H), 7.15 (t, J = 7.2 Hz, 4H), 7.24-7.26 (m, 2H), 7.41 (t, J = 7.2 Hz, 4H), 7.64-7.66 (m, 3H), 7.69 (s, 2H), 7.75 (s, 1H), 7.82 (d, J = 9.0 Hz, 4H), 7.89 (s, 2H), 7.94 (s, 1H), 8.53-8.54 (m, 2H), 8.64 (d, J = 4.2 Hz, 1H), 8.71 (d, J = 4.2 Hz, 1H), 8.74 (d, J = 5.4 Hz, 1H), 8.75 (d, J = 5.4 Hz, 1H) ppm; 13C NMR (CDCl3) δ 31.83, 31.85, 31.91, 35.08, 35.17, 35.20, 119.20, 119.92, 121.25, 121.34, 121.38, 121.46, 128.25, 128.29, 128.64, 128.84, 129.42, 129.95, 132.43, 132.72, 132.99, 133.11, 133.17, 133.60, 134.92, 135.27, 136.66, 137.69, 138.28, 138.37, 139.44, 139.63, 141.90, 143.13, 143.27, 143.46, 145.15, 148.06, 149.02, 149.22, 149.28 (Two sp3 and five sp2 signals were not observed because of overlapping.) ppm; HR-MS (APCI-MS, positive): m/z =364.1934. calcd for C26H24N2: 364.1939 [M]+
 [実施例3:グラムスケール合成]
 実施例3-1
Figure JPOXMLDOC01-appb-C000057
 シュレンク管に、窒素ガス雰囲気下で、フルオランテン(810 mg, 4. 0 mmol)、N-フルオロベンゼンスルホンイミド(NFSI; 1.6 g, 5.2 mmol, 1.3当量)、CuBr(28 mg, 0.20 mmol, 5.0 mol%)、及び6,6'-ジメチルビピリジン(6,6'-Me2bpy; 44 mg, 0.24 mmol, 6.0 mol%)を投入した。このシュレンク管に1,2-ジクロロエタン(DCE; 20 mL)を添加し、混合物を70℃で12時間加熱した。その後、25℃で、反応をNaHCO3水溶液でクエンチした。有機化合物を酢酸エチル(EtOAc)で3回抽出し、有機層を食塩水で洗浄した。有機混合物をNa2SO4で乾燥し、真空下に濃縮した。その後、粗生成物を、シリカゲル(n-ヘキサン/酢酸エチル(EtOAc)=5/1~2/1)を用いたクロマトグラフィーにより精製し、CH2Cl2/メタノール(MeOH)からの再結晶により、目的物であるN-(フルオランテン-3-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(1a)を得た(1.6 g, 3.2 mmol, 80%)。
 実施例3-2
 基質として2-ブロモチオフェンを用いること以外は実施例3-1と同様に処理を行った。なお、精製処理は、シリカゲルのパッドでろ過し、混合物を蒸留することで固体を得た後、この固体をメタノール(MeOH)からの再結晶により、粗生成物を得た(1.35 g, 2.95 mmol)。その後、ろ液を、シリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル(EtOAc)=5/1)により精製し、目的物であるN-(2-ブロモチオフェン-5-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2a)を得た(0.21 g, 0.47 mmol, 86%)。
 [実施例4:反応性の比較]
 実施例4-1
Figure JPOXMLDOC01-appb-C000058
 基質として、2-ブロモチオフェン(0.20 mmol)を使用する代わりに、2-アセチルチオフェン(0.20 mmol)及び2-フェニルチオフェン(0.20 mmol)の混合物を使用すること以外は、実施例2-1と同様の処理を行った。その結果、2-フェニルチオフェンがスルホンイミド基で置換された化合物(2c)が88%の収率で得られた(基質である2-フェニルチオフェンは0%)のに対し、2-アセチルチオフェンがスルホンイミド基で置換された化合物(2b)の収率は0%(基質である2-アセチルチオフェンは0%)であり、反応が進行しなかった。このように、2-ブロモチオフェン及び2-アセチルチオフェンは、いずれも単独で基質として用いた場合にはスルホンイミド化することが可能であるが、2-ブロモチオフェン及び2-アセチルチオフェンの混合物を基質として用いた場合は2-フェニルチオフェンを基質として使用したほうが反応性が高いことが理解できる。
 実施例4-2
Figure JPOXMLDOC01-appb-C000059
 基質として、2-ブロモチオフェン(0.20 mmol)を使用する代わりに、2-アセチルチオフェン(0.20 mmol)及び2-アセチル-4-メチルチオフェン(0.20 mmol)の混合物を使用すること以外は、実施例2-1と同様の処理を行った。その結果、2-アセチルチオフェンがスルホンイミド基で置換された化合物(2b)が21%(基質である2-アセチルチオフェンは72%)、2-アセチル-4-メチルチオフェンがスルホンイミド基で置換された化合物(2d)が72%(基質である2-アセチル-4-メチルチオフェンは18%)の収率で得られた。このように、2-アセチルチオフェン及び2-アセチル-4-メチルチオフェンは、いずれも単独で基質として用いた場合にはスルホンイミド化することが可能であるが、2-ブロモチオフェン及び2-アセチルチオフェンの混合物を基質として用いた場合は2-アセチルチオフェンを基質として使用したほうが反応性が高いことが理解できる。
 試験例:N-(フルオランテン-3-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(1a)、N-(1-コラヌレニル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(1f)、及びN-(2-アセチル-4-メチルチオフェン-5-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2B)のX線構造解析
 リガク社製CCD単結晶自動X線構造解析装置「Saturn」(商品名)を用いて、N-(フルオランテン-3-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(1a)、N-(1-コラヌレニル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(1f)、及びN-(2-アセチル-4-メチルチオフェン-5-イル)-N-(フェニルスルホニル)ベンゼンスルホンアミド(2B)のX線構造解析を行った。それぞれの熱振動楕円体作画ソフト(ORTEP)による構造を図1~3に示す。
 [実施例5]
Figure JPOXMLDOC01-appb-C000060
 シュレンク管に、窒素ガス雰囲気下で、フルオランテン(40 mg, 0.20 mmol)、N-フルオロベンゼンスルホンイミド(NFSI; 82 mg, 0.26 mmol, 1.3当量)、酢酸パラジウム(Pd(OAc)2; 4.5 mg, 0.020 mmol, 10 mol%)、及び6,6'-ジメチルビピリジン(6,6'-Me2bpy; 4.4 mg, 0.024 mmol, 12 mol%)を投入した。このシュレンク管に1,2-ジクロロエタン(DCE; 1.0 mL)を添加し、混合物を70℃で12時間加熱した。その後、混合物を25℃まで冷却した。粗生成物をシリカゲルのパッドでろ過し、Na2SO4で乾燥し、真空下に濃縮した。内部標準としてベンジルフェニルエーテル(PhOCH2Ph)を用いた1H NMRにより、目的物を22%の収率で得たことを確認した。なお、この反応において、配位子を使用しなかった場合は、収率が0%であり、反応が進行しなかった。
 [実施例6]
Figure JPOXMLDOC01-appb-C000061
 シュレンク管に、窒素ガス雰囲気下で、フルオランテン(40 mg, 0.20 mmol)、N-フルオロベンゼンスルホンイミド(NFSI; 82 mg, 0.26 mmol, 1.3当量)、遷移金属化合物(0.020 mmol, 10 mol%)、及び6,6'-ジメチルビピリジン(6,6'-Me2bpy; 4.4 mg, 0.024 mmol, 12 mol%)を投入した。このシュレンク管に1,2-ジクロロエタン(DCE; 1.0 mL)を添加し、混合物を70℃で12時間加熱した。その後、混合物を25℃まで冷却した。粗生成溶液をシリカゲルのパッドでろ過し、Na2SO4で乾燥し、真空下に濃縮した。内部標準としてベンジルフェニルエーテル(PhOCH2Ph)を用いた1H NMRにより、目的物を得たことを確認した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000062
 なお、上記実施例6のentry 3(Pd(OAc)2を使用した例)において、配位子(6,6'-ジメチルビピリジン)を使用しなかったこと以外は同様の処理を行ったところ、上記反応は全く進行しなかった。
 [実施例7]
Figure JPOXMLDOC01-appb-C000063
 基質として上記実施例2-3における化合物C(2-フェニルチオフェン)を用い、溶媒を種々変更し、反応時間を12時間とする他は実施例2-1と同様の処理を行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000064
 [実施例8]
Figure JPOXMLDOC01-appb-C000065
 基質として上記実施例2-3における化合物C(2-フェニルチオフェン)を用い、銅化合物を種々変更した(CuBr、CuCl、CuI、CuBr2、CuF2)他は実施例2-1と同様の処理を行った。これらの銅化合物を使用した場合、いずれも、CuBrの場合と同様に、87~88 %の収率(1H NMR収率)でイミド化化合物が得られた。なお、臭化物(CuBr又はCuBr2)を用いた場合は副生成物(臭素含有化合物)が生成したが、フッ化物(CuF2)を用いた場合は副生成物(フッ素含有化合物)は生成しなかった。
 さらに、これらの反応における反応速度をFTIRで測定した。結果を図4に示す。その結果、反応の初期段階(0~60分程度)においては、CuClが最も反応速度が大きく、次いで、CuBr2、CuBr、CuI、CuF2の順に反応速度が大きいが、約100分以上経過後には、CuBr、CuCl、CuI及びCuF2の反応速度が同程度に大きく、CuBr2の反応速度が遅い結果となった。
 [実施例9]
Figure JPOXMLDOC01-appb-C000066
 基質として上記実施例2-3における化合物C(2-フェニルチオフェン)を用い、配位子を種々変更した他は実施例2-1と同様の処理を行った。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000067
 [実施例10]
Figure JPOXMLDOC01-appb-C000068
 基質として上記実施例2-3における化合物C(2-フェニルチオフェン)を用い、コンピュータによる研究で6,6'-ジメチルビピリジンより効果的であると判断された6,6'-ジ(t-ブチル)ビピリジンを用い、銅化合物を種々変更し、反応時間を22時間とする他は実施例2-1と同様の処理を行った。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000069
 [実施例11]
 基質として2-フェニルチオフェン、又は重水素で標識した2-フェニルチオフェンを用いた他は実施例2-1と同様の処理を行い、反応速度を比較した。結果を表10及び図5に示す。その結果、KH(2-フェニルチオフェンの反応速度)/kD(重水素で標識した2-フェニルチオフェン)が1.23であることが理解できる。
Figure JPOXMLDOC01-appb-T000070
 [実施例12]
 実施例2-3のentry 26(化合物Zを基質に用いた場合)について、配位子として6,6'-ジメチルビピリジンではなく実施例9の配位子L5を使用したところ、収率が48 %に向上した。
 実施例2-3のentry 11(化合物Kを基質に用いた場合)について、配位子として6,6'-ジメチルビピリジンではなく実施例9の配位子L5を使用したところ、銅化合物の使用量を10 mol%に半減し、配位子の量を12 mol%に半減し、NFSIの量を1.05当量に半減し、反応時間を12時間に低減しても収率は48 %と維持できていた。
 このため、配位子L5は特に好ましい配位子であることが理解できる。

Claims (7)

  1. 一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。Ar1及びAr2は同一又は異なって、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。]
    で表されるスルホンイミド化芳香族化合物の製造方法であって、
    一般式(2):
    R-H   (2)
    [式中、Rは前記に同じである。]
    で示される芳香族化合物と、
    一般式(3):
    Figure JPOXMLDOC01-appb-C000002
    [式中、Ar1及びAr2は前記に同じである。Xはハロゲン原子を示す。]
    で表されるスルホンイミド化合物とを、
    銅化合物と、一般式(4):
    Figure JPOXMLDOC01-appb-C000003
    [式中、Z1及びZ2は同一又は異なって、複素芳香環を示す。R1、R2、R3及びR4は同一又は異なって、電子吸引基、置換されていてもよいアルキル基、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。n1及びn2は、同一又は異なって、それぞれ0又は1を示す。m1及びm2は同一又は異なって、それぞれ0~3の整数を示す。n1及びn2がいずれも1の場合、R1とR2は互いに結合して、置換されていてもよい2価の炭化水素基を形成していてもよい。]
    で表される配位子の存在下で反応させるクロスカップリング工程
    を備える、製造方法。
  2. 前記銅化合物がハロゲン化銅である、請求項1に記載の製造方法。
  3. 前記配位子が、一般式(4A):
    Figure JPOXMLDOC01-appb-C000004
    [式中、R1~R4、n1~n2及びm1~m2は前記に同じである。]
    で示される配位子である、請求項1又は2に記載の製造方法。
  4. 前記配位子が、一般式(4A1):
    Figure JPOXMLDOC01-appb-C000005
    [式中、R3a及びR4aは同一又は異なって、置換されていてもよい炭素数1~3のアルキル基を示す。R3b及びR4bは同一又は異なって、水素原子、ハロゲン原子、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。R3c及びR4cは同一又は異なって、水素原子又は置換されていてもよい炭素数1~3のアルキル基を示す。]
    で示される配位子、又は
    一般式(4A2):
    Figure JPOXMLDOC01-appb-C000006
    [式中、R1b及びR2bは互いに結合して、置換されていてもよい2価の炭化水素基を形成している。R3d及びR4dは同一又は異なって、水素原子又は電子吸引基を示す。R3e及びR4eは同一又は異なって、水素原子、電子吸引基、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。R3f及びR4fは同一又は異なって、電子吸引基、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。]
    で表される配位子である、請求項1~4のいずれかに記載の製造方法。
  5. 前記クロスカップリング工程において、さらに、塩基を使用する、請求項1~4のいずれかに記載の製造方法。
  6. 一般式(1):
    Figure JPOXMLDOC01-appb-C000007
    [式中、Rは置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。Ar1及びAr2は同一又は異なって、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。]
    で表されるスルホンイミド化芳香族化合物の製造方法であって、
    一般式(2):
    R-H   (2)
    [式中、Rは前記に同じである。]
    で示される芳香族化合物と、
    一般式(3):
    Figure JPOXMLDOC01-appb-C000008
    [式中、Ar1及びAr2は前記に同じである。Xはハロゲン原子を示す。]
    で表されるスルホンイミド化合物とを、
    10族金属元素及び/又は11族金属元素を含有する化合物と、
    一般式(4A1):
    Figure JPOXMLDOC01-appb-C000009
    [式中、R3a及びR4aは同一又は異なって、置換されていてもよい炭素数1~3のアルキル基を示す。R3b及びR4bは同一又は異なって、水素原子、ハロゲン原子、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。R3c及びR4cは同一又は異なって、水素原子又は置換されていてもよい炭素数1~3のアルキル基を示す。]
    で示される配位子、又は
    一般式(4A2):
    Figure JPOXMLDOC01-appb-C000010
    [式中、R1b及びR2bは互いに結合して、置換されていてもよい2価の炭化水素基を形成している。R3d及びR4dは同一又は異なって、水素原子又は電子吸引基を示す。R3e及びR4eは同一又は異なって、水素原子、電子吸引基、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。R3f及びR4fは同一又は異なって、電子吸引基、置換されていてもよいアルキル基又は置換されていてもよいアリール基を示す。]
    で表される配位子の存在下で反応させるクロスカップリング工程
    を備える、製造方法。
  7. 一般式(5D):
    Figure JPOXMLDOC01-appb-C000011
    [式中、Ar1及びAr2は前記に同じである。Y2及びY3はいずれかが窒素原子でいずれかが酸素原子を示す。R13及びR14は同一又は異なって、置換されていてもよいアルキル基、置換されていてもよいアリール基、又は置換されていてもよいヘテロアリール基を示す。実線と破線で表わされる結合は単結合又は二重結合を示す。]
    で表される化合物。
     
PCT/JP2016/053310 2015-02-05 2016-02-04 クロスカップリング方法、及び該クロスカップリング方法を用いた有機化合物の製造方法 WO2016125845A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016573412A JPWO2016125845A1 (ja) 2015-02-05 2016-02-04 クロスカップリング方法、及び該クロスカップリング方法を用いた有機化合物の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015021444 2015-02-05
JP2015-021444 2015-02-05
US201562272038P 2015-12-28 2015-12-28
US62/272038 2015-12-28

Publications (1)

Publication Number Publication Date
WO2016125845A1 true WO2016125845A1 (ja) 2016-08-11

Family

ID=56564184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053310 WO2016125845A1 (ja) 2015-02-05 2016-02-04 クロスカップリング方法、及び該クロスカップリング方法を用いた有機化合物の製造方法

Country Status (2)

Country Link
JP (1) JPWO2016125845A1 (ja)
WO (1) WO2016125845A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108997338A (zh) * 2018-08-10 2018-12-14 郑州大学 N-(2-芳基咪唑并[1,2-a]吡啶-3-基)双苯磺酰亚胺类化合物及其合成方法
WO2021060277A1 (ja) * 2019-09-24 2021-04-01 Agc株式会社 アミノ化剤及びアミノ化物の製造方法
CN113943301A (zh) * 2020-07-17 2022-01-18 厦门稀土材料研究所 一种用于钙钛矿太阳能电池的金属卟啉类空穴传输材料

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BOURSALIAN, G.B . ET AL.: "Pd-Catalyzed Aryl C-H Imidation with Arene as the Limiting Reagent", J. AM. CHEM. SOC., vol. 135, no. 36, 2013, pages 13278 - 13281 *
KAWAKAMI,T. ET AL.: "Catalytic C-H Imidation of Aromatic Cores of Functional Molecules: Ligand- Accelerated Cu Catalysis and Application to Materials- and Biology-Oriented Aromatics", J. AM. CHEM. SOC., vol. 137, no. 7, 2015, pages 2460 - 2463 *
KAWANO,T. ET AL.: "A New Entry of Amination Reagents for Heteroaromatic C-H Bonds: Copper- Catalyzed Direct Amination of Azoles with Chloroamines at Room Temperature", J. AM. CHEM. SOC., vol. 132, no. 20, 2010, pages 6900 - 6901 *
WANG,S. ET AL.: "Copper-Catalyzed Direct Amidation of Heterocycles with N- Fluorobenzenesulfonimide", ORG. LETT., vol. 16, no. 21, 2014, pages 5648 - 5651 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108997338A (zh) * 2018-08-10 2018-12-14 郑州大学 N-(2-芳基咪唑并[1,2-a]吡啶-3-基)双苯磺酰亚胺类化合物及其合成方法
WO2021060277A1 (ja) * 2019-09-24 2021-04-01 Agc株式会社 アミノ化剤及びアミノ化物の製造方法
CN113943301A (zh) * 2020-07-17 2022-01-18 厦门稀土材料研究所 一种用于钙钛矿太阳能电池的金属卟啉类空穴传输材料
CN113943301B (zh) * 2020-07-17 2022-12-16 厦门稀土材料研究所 一种用于钙钛矿太阳能电池的金属卟啉类空穴传输材料

Also Published As

Publication number Publication date
JPWO2016125845A1 (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
CN110818600B (zh) 一种制备β-羰基砜的方法
Jakab et al. Mild and selective organocatalytic iodination of activated aromatic compounds
WO2016125845A1 (ja) クロスカップリング方法、及び該クロスカップリング方法を用いた有機化合物の製造方法
CN105801575A (zh) 一种咪唑并[1,2-a]吡啶的合成方法
WO2022012630A1 (zh) C-核苷化合物的合成方法
CN110294730B (zh) 一种二氟甲基硫化黄酮类化合物及其制备方法
Gogoi et al. An Efficient Protocol for the Carbon–Sulfur Cross-Coupling of Sulfenyl Chlorides with Arylboronic Acids using a Palladium Catalyst
JP6530807B2 (ja) インデノイソキノリン派生物の調製方法
CN107011275A (zh) 一种1,4,5‑三取代‑1,2,3‑三氮唑类化合物的合成方法
WO2017209297A1 (ja) トリアリーレン化合物及びその製造方法
JP2017171603A (ja) 縮合多環式化合物の製造方法
CN105837579A (zh) 一种多取代苯并[4,5]咪唑并[1,2-b]吡唑衍生物的制备方法
WO2017209294A1 (ja) スルホンイミド化芳香族化合物の製造方法
Mandal et al. Copper-catalyzed imino C–N bond formation with aryl boronic acids under aerobic conditions
CN105693778A (zh) N-甲氧基甲酰胺导向合成二茂铁并吡啶酮衍生物的方法
JP2017132738A (ja) ビピリジル化合物の製造方法
CN106366069B (zh) 一种n-杂芳基咔唑类化合物的制备方法
CN110862339A (zh) 一种吲哚类小分子化合物及其制备方法
CN108530445A (zh) 一种3-氰基咪唑并[1,5-a]喹啉化合物的合成方法
CN108178758A (zh) 2-苯基咪唑并[1,2-a]吡啶并喹喔啉-2(1H)-酮衍生物的合成方法
CN108558751B (zh) 3-硝基喹啉衍生物的合成工艺
CN111303029B (zh) 一种4-氰基-2-三氟甲基取代的喹啉类化合物及合成方法
CN103351333B (zh) 一种芳基吡啶衍生化合物及其制备方法
CN108558750B (zh) 无溶剂法合成3-硝基喹啉衍生物的工艺
CN110981919B (zh) 一锅法合成八元脒环钯化合物的方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746676

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016573412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746676

Country of ref document: EP

Kind code of ref document: A1