WO2021060277A1 - アミノ化剤及びアミノ化物の製造方法 - Google Patents

アミノ化剤及びアミノ化物の製造方法 Download PDF

Info

Publication number
WO2021060277A1
WO2021060277A1 PCT/JP2020/035804 JP2020035804W WO2021060277A1 WO 2021060277 A1 WO2021060277 A1 WO 2021060277A1 JP 2020035804 W JP2020035804 W JP 2020035804W WO 2021060277 A1 WO2021060277 A1 WO 2021060277A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
reaction
unsaturated bond
carbon atom
Prior art date
Application number
PCT/JP2020/035804
Other languages
English (en)
French (fr)
Inventor
岡添 隆
雄一郎 石橋
京子 野崎
光介 相川
卓也 橋本
Original Assignee
Agc株式会社
国立大学法人 東京大学
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社, 国立大学法人 東京大学, 国立大学法人 千葉大学 filed Critical Agc株式会社
Priority to JP2021548931A priority Critical patent/JPWO2021060277A1/ja
Publication of WO2021060277A1 publication Critical patent/WO2021060277A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C307/00Amides of sulfuric acids, i.e. compounds having singly-bound oxygen atoms of sulfate groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/08Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D263/16Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D263/18Oxygen atoms
    • C07D263/20Oxygen atoms attached in position 2
    • C07D263/22Oxygen atoms attached in position 2 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to other ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/36Nitrogen atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to an aminating agent that introduces an amino group protected by a protecting group, and a method for producing an amination using the aminating agent.
  • Amino groups are highly reactive functional groups that play an important role in the activity of various organic compounds.
  • the primary amino group (-NH 2 ) is polar and plays an important role in maintaining the three-dimensional structure and interacting between molecules by forming hydrogen bonds between molecules and with other molecules. Since useful organic compounds can be synthesized by aminating organic compounds, various aminating agents have been developed.
  • NFSI N-fluorobenzenesulfonimide
  • C of the alkene It is used as an aminating agent in various reactions such as an aminofluorination reaction (Non-Patent Document 7) in which one carbon atom of a C bond is aminated and a fluorine atom is introduced into the other carbon atom.
  • the present invention is an aminating agent capable of introducing an amino group protected by a protecting group that can be deprotected under relatively mild conditions into a wide range of substrates, and a method for producing an amino group-containing compound using the aminating agent.
  • the purpose is to provide.
  • the present inventors can deprotect under relatively mild conditions by using a fluorinated amine compound protected with an alkyloxycarbonyl group or an aryloxycarbonyl group and a fluorosulfonyl group as an aminating agent.
  • the present invention was completed by finding that the amino group protected by the above can be introduced into a wide range of substrates.
  • R 1 may have a C 1-30 alkyl group having a substituent (may have 1 to 5 ether-bonding oxygen atoms between carbon atoms), or C 6-14 aryl group which may have a substituent)
  • R 1 is a C 1-6 alkyl group which may have a substituent or a phenyl group which may have a substituent.
  • the substrate compound is an alkene having a hydrogen atom bonded to a carbon atom constituting an unsaturated bond, an alkene having a hydrogen atom bonded to a carbon atom forming an unsaturated bond, or an unsaturated bond of an aromatic ring. It is an aromatic compound having a hydrogen atom bonded to a carbon atom constituting the above, and contains an amino group of [4], which replaces the hydrogen atom bonded to the carbon atom with a group represented by the general formula (A1'). Method for producing a compound.
  • the substrate compound has an alkene having a hydrogen atom bonded to a carbon atom adjacent to a carbon atom constituting an unsaturated bond, and a hydrogen atom bonded to a carbon atom adjacent to a carbon atom constituting an unsaturated bond.
  • An alkene or a benzyl compound having a hydrogen atom bonded to an outer ring carbon atom adjacent to a carbon atom constituting an unsaturated bond of an aromatic ring, and the hydrogen atom bonded to the carbon atom is referred to as the general formula (A1').
  • the group represented by the general formula (A1') is converted into a primary amino group by a reaction utilizing a nucleophilic addition reaction to a carbonyl group.
  • the method for producing an amino group-containing compound according to any one of [4] to [7].
  • At least one unsaturated bond formed between carbon atoms in a substrate compound having at least one unsaturated bond is formed by the following formula (A2').
  • a method for producing an amino group-containing compound, which is changed to a ring structure represented by. In the formula, the two carbon atoms with black circles are the carbon atoms that formed the unsaturated bond.
  • the compound according to the present invention introduces an amino group protected by an alkyloxycarbonyl group or an aryloxycarbonyl group and a fluorosulfonyl group into a wide range of substrates having unsaturated bonds in various reactions similar to NFSI. be able to. Since the amino group protected by the alkyloxycarbonyl group or the like and the fluorosulfonyl group can be deprotected under milder conditions than NFSI, the compound is very useful as an aminating agent.
  • C p1-p2 (p1 and p2 are positive integers satisfying p1 ⁇ p2) means that the group has p1 to p2 carbon atoms.
  • C 1-10 alkyl group is an alkyl group having 1 to 10 carbon atoms, and may be a straight chain or a branched chain.
  • the "C 2-10 alkyl group” is an alkyl group having 2 to 10 carbon atoms, and may be a straight chain or a branched chain.
  • C 1-10 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Examples thereof include a pentyl group, a hexyl group, an isohexyl group, a neohexyl group, a heptyl group, an octyl group, a nonyl group and a decyl group.
  • C 1-30 alkyl group is an alkyl group having 1 to 30 carbon atoms, and may be a straight chain or a branched chain.
  • the "C 2-30 alkyl group” is an alkyl group having 2 to 30 carbon atoms, and may be a straight chain or a branched chain.
  • C 1-30 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Pentyl group, hexyl group, isohexyl group, neohexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecil group.
  • Eicosyl group Eicosyl group, heneicosyl group, docosyl group, tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group, heptacosyl group, octacosyl group, nonacosyl group, triacontyl group and the like.
  • C 1-6 alkyl group is an alkyl group having 1 to 6 carbon atoms, and may be a straight chain or a branched chain.
  • Examples of C 1-6 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert- Examples thereof include a pentyl group, a hexyl group, an isohexyl group, and a neohexyl group.
  • the "C 6-14 aryl group” is an aromatic hydrocarbon group having 6 to 14 carbon atoms, and a C 6-12 aryl group is particularly preferable.
  • Examples of the C 6-14 aryl group include a phenyl group, a naphthyl group, an anthryl group, a 9-fluorenyl group and the like, and a phenyl group is particularly preferable.
  • the "optionally substituted C 6-14 aryl group” is one or more hydrogen atoms bonded to the carbon atom of the C 6-14 aryl group, preferably 1 to 1.
  • the substituents may be the same kind or different from each other. Examples of the substituent include a C 1-6 alkyl group, a C 1-6 alkoxy group, a methylenedioxy group (-O-CH 2- O-), a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom). ), And a nitro group and the like.
  • Examples of “optionally substituted C 6-14 aryl groups” are phenyl group, naphthyl group, anthryl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 4-methoxyphenyl group, 2, Examples thereof include 4-dimethoxyphenyl group, 3,4-dimethoxyphenyl group, 3-chlorophenyl group, 4-nitrophenyl group, 1,3-benzodioxol-5-yl group and the like.
  • the "C 6-14 aryl-C 1-6 alkyl group” is a C 6-14 aryl group in which one hydrogen atom bonded to the carbon atom of the C 1-6 alkyl group is a C 6-14 aryl group. It is a group substituted with.
  • the C 6-14 aryl group in the C 6-14 aryl -C 1-6 alkyl group, a phenyl group, a naphthyl group, an anthryl group can be exemplified a 9-fluorenyl group, a phenyl group, and a 9-fluorenyl group are particularly preferred ..
  • C 1-6 alkyl group in the C 6-14 aryl -C 1-6 alkyl group C 1-4 alkyl groups are preferred.
  • Examples of C 6-14 aryl-C 1-6 alkyl groups include benzyl group, diphenylmethyl group, triphenylmethyl group, 2-phenylethyl group, 9-anthrylmethyl group, 9-fluorenylmethyl group and the like. Can be mentioned.
  • C 1-6 alkoxy group refers to a group in which an oxygen atom is bonded to the bond end of a C 1-6 alkyl group having 1 to 6 carbon atoms.
  • the C 1-6 alkoxy group may be a straight chain or a branched chain.
  • Examples of the C 1-6 alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group and the like.
  • the "ether-bonded oxygen atom” is an oxygen atom that connects carbon atoms, and does not include an oxygen atom in which oxygen atoms are connected in series.
  • An alkyl group having Nc carbon atoms (Nc is an integer of 2 or more) can have a maximum of Nc-1 ether-bonding oxygen atoms.
  • compound (n) means a compound represented by the formula (n).
  • Subsequent chemical reactions can be carried out in a solvent that is inert to the reaction.
  • the solvent include inert solvents such as methanol, 1,4-dioxane, diethyl ether, tetrahydrofuran, dichloromethane, acetonitrile, benzene, toluene, N, N-dimethylformamide and N, N-dimethylacetamide.
  • the compound according to the present invention is a compound represented by the following general formula (A1).
  • R 1 is a C 1-30 alkyl group which may have a substituent or a C 6-14 aryl group which may have a substituent.
  • the alkyl group may have 1 to 5 ether-bonding oxygen atoms between carbon atoms. ..
  • a C 1-6 alkyl group which may have a substituent is preferable, a C 1-6 alkyl group which does not have a substituent, and a C 6-14 aryl-C 1-6 alkyl.
  • C 1-6 alkoxy and more preferably is a C 1-6 alkyl group having a group substituents, not substituted C 1-6 alkyl group and C 6-14 aryl -C 1-6 alkyl Groups are more preferred, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, Isohexyl groups, neohexyl groups, benzyl groups, diphenylmethyl groups, triphenylmethyl groups, 2-phenylethyl groups, 9-anthrylmethyl groups, and 9-fluorenylmethyl groups are even more preferred, and neopentyl groups, benzyl groups, And 2-phenylethyl groups are particularly preferred.
  • the aryl group is preferably a phenyl group which may have a substituent, and a C 1-6 alkyl group
  • a phenyl group which may have 1 to 3 substituents selected from the group consisting of a C 1-6 alkoxy group, a halogen atom, and a nitro group is more preferable, and a phenyl group, a naphthyl group, an anthryl group, and 4 -Methylphenyl group, 2,6-dimethylphenyl group, 4-methoxyphenyl group, 2,4-dimethoxyphenyl group, 3,4-dimethoxyphenyl group, and 3-chlorophenyl group are more preferable, and phenyl group and 4-methyl A phenyl group and a 2,6-dimethylphenyl group are even more preferred.
  • the R 1 may have a C 1-6 alkyl group having no substituent, a C 6-14 aryl-C 1-6 alkyl group, or a substituent.
  • a compound which is a phenyl group is preferable, and the R 1 is a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, an isopentyl group, a neopentyl group, and the like.
  • tert-pentyl group hexyl group, isohexyl group, neohexyl group, benzyl group, diphenylmethyl group, triphenylmethyl group, 2-phenylethyl group, phenyl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 4 -A compound that is a methoxyphenyl group, 2,4-dimethoxyphenyl group, or 3,4-dimethoxyphenyl group is more preferable, and a neopentyl group, a benzyl group, a 2-phenylethyl group, a phenyl group, a 4-methylphenyl group, or Compounds that are 2,6-dimethylphenyl groups are even more preferred.
  • the compound (A1) is prepared, for example, by synthesizing a fluorosulfonylcarbamic acid ester by the following reaction, substituting a hydrogen atom bonded to a nitrogen atom of this amino group with a lithium atom, and further substituting this lithium atom with a fluorine atom. Can be synthesized by.
  • R 1 is the same as R 1 in formula (A1).
  • the same reaction is possible even if the lithium atom is another alkali metal atom such as a sodium atom or a potassium atom. Further, in the above reaction, it is also possible to directly replace the hydrogen atom with the fluorine atom without substituting the hydrogen atom with the lithium atom.
  • the fluorosulfonylcarbamic acid ester can also be synthesized by, for example, esterifying fluorosulfonylisocyanate with alcohol by the following reaction.
  • Compound (A1) can be used as an active ingredient of an aminating agent in various reactions.
  • Compound (A1) can aminate carbon atoms in various organic compounds in the same manner as NFSI.
  • the organic compound serving as a substrate include compounds having an unsaturated bond such as an alkene, an allyl compound, an alkyne, and an aromatic compound.
  • the unsaturated bond may be a bond formed between carbon atoms or a bond between a carbon atom and an atom other than the carbon atom.
  • the compound (A1) can also use an organic compound containing a tricyclo ring as a substrate.
  • compound (A1) is used to form one of the carbon atoms constituting at least one unsaturated bond in the substrate compound, or to the carbon atom at the allyl-position, propargyl-position, or benzyl-position described later in the unsaturated bond.
  • a group represented by the following general formula (A1') can be introduced.
  • R 1 is the same group as R 1 in formula (A1).
  • the group represented by the general formula (A1') may be represented as "-[N]".
  • a group represented by the general formula (A1') can be introduced into at least one carbon atom of two carbon atoms constituting an unsaturated bond in the alkene.
  • a group represented by the general formula (A1') can be introduced into at least one carbon atom of two carbon atoms constituting an unsaturated bond in the alkene.
  • Y represents a group represented by the general formula (A1') or a group other than the group represented by the general formula (A1').
  • R 101 , R 102 , R 103 , and R 104 in the substrate compound are independently hydrogen atoms, aliphatic hydrocarbon groups, or aromatic groups, respectively.
  • the number of carbon atoms constituting the aliphatic hydrocarbon group is not particularly limited, and for example, a C 1-30 aliphatic hydrocarbon group can be used.
  • the aromatic group may be an aromatic hydrocarbon group or a heterocyclic group.
  • the aliphatic hydrocarbon group and the aromatic group may have a substituent.
  • R 101 , R 102 , R 103 , and R 104 are aliphatic hydrocarbon groups, these aliphatic hydrocarbon groups may be linked to each other to form a ring.
  • Examples of Y which is a group other than the group represented by the general formula (A1'), include a hydrogen atom, an azi group (-N 3 ), a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and a trifluoromethyl group.
  • the compound in which Y is a group represented by the general formula (A1') is 1,2-amino using a substrate alkene and compound (A1) in the presence of a catalyst such as a Cu catalyst, light or heat. It is obtained by carrying out a functionalization reaction. Further, in the compound in which Y is a group other than the group represented by the general formula (A1'), the 1,2-aminofunctionalization reaction contains an alkene as a substrate, a compound (A1) and Y in the presence of a catalyst. This is done by reacting with a compound.
  • reaction conditions for the 1,2-aminofunctionalization reaction are the same as those for the 1,2-aminofunctionalization reaction by NFSI described in Example 3 below, Non-Patent Document 2, Non-Patent Document 6, and the like. , These can be carried out under appropriately modified conditions.
  • the substrate compound is an alkene having a hydrogen atom bonded to a carbon atom constituting an unsaturated bond, an alkene having a hydrogen atom bonded to a carbon atom forming an unsaturated bond, or a carbon constituting an unsaturated bond of an aromatic ring.
  • the hydrogen atom bonded to the carbon atom can be replaced with a group represented by the general formula (A1') for amination.
  • Alkyne can also be amination by using the alkyne as a substrate compound and substituting the hydrogen atom at the terminal of the alkyne with a group represented by the general formula (A1') by the following CH amination reaction.
  • R is an aliphatic hydrocarbon group or an aromatic group.
  • the aliphatic hydrocarbon group and the aromatic group the same ones as those of R 101 can be used, respectively.
  • an aromatic compound When an aromatic compound is used as a substrate compound, for example, a hydrogen atom bonded to a carbon atom constituting an unsaturated bond of an aromatic ring in the aromatic compound is subjected to the following CH amination reaction. , One carbon atom can be substituted with a group represented by the general formula (A1') for amination.
  • the aromatic compound (Ar—H) may be an aromatic hydrocarbon or a heterocyclic compound.
  • Ar is an aromatic hydrocarbon group which may have a substituent or a heterocyclic group which may have a substituent.
  • the CH amination reaction is carried out by reacting the substrate alkene, alkyne, or aromatic compound with the compound (A1) in the presence of a catalyst, light or heat.
  • the reaction conditions for the CH amination reaction include the same reaction conditions as the CH amination reaction by NFSI described in Example 5, Non-Patent Document 1, Non-Patent Document 4, Non-Patent Document 5, and the like described later. These can be carried out under appropriately modified conditions.
  • the substrate compound is an alkene having a hydrogen atom bonded to a carbon atom adjacent to a carbon atom constituting an unsaturated bond, an alkin having a hydrogen atom bonded to a carbon atom adjacent to a carbon atom forming an unsaturated bond, or
  • the hydrogen atom bonded to the carbon atom is represented by the general formula (A1'). It can be substituted with a group for amination.
  • the hydrogen atom bonded to the carbon atom adjacent to the carbon atom constituting the unsaturated bond of the alkene is referred to as the hydrogen atom at the allyl position
  • the hydrogen bonded to the carbon atom adjacent to the carbon atom constituting the unsaturated bond of the alkene is referred to.
  • the atom is called the hydrogen atom at the propargyl position
  • the hydrogen atom bonded to the outer ring carbon atom adjacent to the carbon atom constituting the unsaturated bond of the aromatic ring of the benzyl compound is called the hydrogen atom at the benzyl position.
  • the hydrogen atom at the allyl, propargyl, or benzyl position is replaced with the group represented by the general formula (A1') for the unsaturated bond in the substrate compound.
  • R 101 , R 102 , and R 103 are the same as R 101 , R 102 , and R 103 in the reaction formula of the 1,2-amino functionalization reaction. ..
  • R and Ar are the same as R and Ar in the reaction formula of the CH amination reaction, respectively.
  • R 105 and R 106 are independently hydrogen atoms, aliphatic hydrocarbon groups or aromatic groups, respectively.
  • R 107 and R 108 are independently hydrogen atoms, aliphatic hydrocarbon groups or aromatic groups, respectively.
  • the aliphatic hydrocarbon group and the aromatic group the same ones as those of R 101 can be used, respectively. If any two of R 101 , R 102 , R 103 , R 105 , and R 106 are aliphatic hydrocarbon groups, these aliphatic hydrocarbon groups may be linked to each other to form a ring.
  • the C—H amination reaction at the allylic, propargyl, or benzyl position is performed by reacting the substrate alkene, alkyne, or aromatic compound with the compound (A1) in the presence of a catalyst, light, or heat. Will be done.
  • the reaction conditions for the C—H amination reaction can be the same as those for the C—H amination reaction at the allyl, propargyl, or benzyl positions by NFSI, or conditions obtained by appropriately modifying these.
  • R 101, R 102, R 103 , and R 104 are the same as R 101, R 102, R 103 , and R 104 in the 1,2-amino functionalized reaction is there.
  • R 1 is the same group as R 1 in formula (A1).
  • any two of R 101 , R 102 , R 103 , and R 104 are aliphatic hydrocarbon groups, these aliphatic hydrocarbon groups may be linked to each other to form a ring.
  • the aminooxylation reaction is carried out by reacting an alkene as a substrate with a compound (A1) in the presence of a catalyst such as an I catalyst, light or heat.
  • a catalyst such as an I catalyst, light or heat.
  • the reaction conditions for the aminooxylation reaction can be the same as those in Example 8 described later, or conditions obtained by appropriately modifying them.
  • R 101 , R 102 , R 103 , R 105 , and R 106 are R 101 in the C—H amination reaction at the allylic, propargyl, or benzyl positions.
  • R 101 , R 102 , R 103 , R 105 , and R 106 are aliphatic hydrocarbon groups, these aliphatic hydrocarbon groups may be linked to each other to form a ring.
  • the allylic isomerization amination reaction of an alkene is carried out by reacting an alkene as a substrate with a compound (A1) in the presence of a catalyst such as a Se catalyst, light or heat.
  • a catalyst such as a Se catalyst, light or heat.
  • the reaction conditions for the allyl isomerization amination reaction can be carried out under the same reaction conditions described in Example 10 described later and Non-Patent Document 3 and the like, or conditions obtained by appropriately modifying these.
  • R 109 , R 110 , R 111 , R 112 , R 113 , and R 114 in the substrate compound are independently hydrogen atoms and aliphatic hydrocarbons, respectively. It is a hydrogen group or an aromatic group. As the aliphatic hydrocarbon group and the aromatic group, the same ones as those of R 101 can be used, respectively. Further, in the reaction formula of the 1,3-aminofunctionalization reaction described below, Y is the same as Y in the above-mentioned 1,2-aminofunctionalization reaction.
  • R 109 , R 110 , R 111 , R 112 , R 113 , and R 114 are aliphatic hydrocarbon groups, these aliphatic hydrocarbon groups may be linked to each other to form a ring. Good.
  • the compound in which Y is a group represented by the general formula (A1') is a 1,3-aminofunctionalization reaction using an alkene as a substrate and the compound (A1) in the presence of a catalyst, light or heat. It is obtained by performing. Further, in the compound in which Y is a group other than the group represented by the general formula (A1'), the 1,3-aminofunctionalization reaction contains an alkene as a substrate, a compound (A1) and Y in the presence of a catalyst. This is done by reacting with a compound.
  • reaction conditions for the 1,3-aminofunctionalization reaction are the same as those for the 1,2-aminofunctionalization reaction by NFSI described in Example 3 below, Non-Patent Document 2, Non-Patent Document 6, and the like. , These can be carried out under appropriately modified conditions.
  • a carboxylic acid can be used as a substrate compound, and the carboxylic acid group can be amination by substituting the group represented by the general formula (A1') by, for example, the following decarboxylation amination reaction.
  • R is an aliphatic hydrocarbon group or an aromatic group.
  • the aliphatic hydrocarbon group and the aromatic group the same ones as those of R 101 can be used, respectively.
  • the decarboxylation amination reaction is carried out by reacting a carboxylic acid as a substrate with a compound (A1) in the presence of a catalyst, light or heat.
  • the reaction conditions for the decarboxylation amination reaction can be the same as the reaction conditions for the decarboxylation amination reaction of a carboxylic acid by NFSI, or conditions obtained by appropriately modifying these.
  • ⁇ -Amination reaction of carbonyl group Using a carbonyl group-containing compound as a substrate, for example, the hydrogen atom bonded to the carbon atom at the ⁇ -position of the carboxylic acid group is replaced with a group represented by the general formula (A1') by the following ⁇ -aminoization reaction. It can be amination.
  • R is an aliphatic hydrocarbon group or an aromatic group. As the aliphatic hydrocarbon group and the aromatic group, the same ones as those of R 101 can be used, respectively.
  • the carbonyl group-containing compound used as a substrate is not particularly limited as long as it is a compound in which at least one hydrogen atom is bonded to the carbon atom at the ⁇ -position of the carbonyl group.
  • Examples of the carbonyl group-containing compound include aldehydes (Z is a hydrogen atom), ketones (Z is R 101 or Ar), esters (Z is -OR), thioesters (Z is -SR), and amides (Z is -SR).
  • R' are independently aliphatic hydrocarbon groups or aromatic groups. As the aliphatic hydrocarbon group and the aromatic group, the same ones as those of R 101 can be used, respectively.
  • the ⁇ -amination reaction of a carbonyl group is carried out by reacting a carbonyl group-containing compound as a substrate with a compound (A1) in the presence of a catalyst, light or heat.
  • the reaction conditions of the ⁇ -aminoization reaction can be the same as the reaction conditions of the ⁇ -aminoization reaction of the carbonyl group by NFSI, or the conditions obtained by appropriately modifying these.
  • the nucleophilic addition reaction to the group represented by the general formula (A1') and the carbonyl group in the structure of the formula (A2') is allowed to proceed by incubating at a temperature of 100 ° C. or lower in the presence of a reducing agent. Can be done.
  • an additive such as Bronsted acid or Lewis acid can be used together with the reducing agent, if necessary.
  • the reducing agent examples include sodium borohydride, zinc borohydride, sodium cyanoborohydride, lithium triethylborohydride, lithium triethylborohydride (sec-butyl), potassium boron borohydride, and hydrogen.
  • Boron hydride reagents such as lithium boron borohydride, lithium aminoboron hydride, and sodium triacetoxyborohydride, and metal hydride reagents such as lithium aluminum borohydride can be used.
  • a boron borohydride reagent is preferable, sodium borohydride and zinc borohydride are more preferable, and sodium borohydride is further preferable.
  • the amount of the reducing agent is preferably 0.5 to 10 mol with respect to 1 mol of the compound aminated by the compound (A1).
  • the nucleophilic addition reaction to the group represented by the general formula (A1') and the carbonyl group in the structure of the formula (A2') can be allowed to proceed by incubating at a temperature of 100 ° C. or lower under basic conditions. it can.
  • Examples of the base used to make the basic condition include sodium carbonate.
  • the amount of the base is preferably 1 to 100 mol, more preferably 1 to 50 mol, still more preferably 1 to 10 mol, based on 1 mol of the compound aminated by the compound (A1).
  • the group represented by the general formula (A1') and the group represented by the general formula (A1') are converted into a sulfonylamino group by a nucleophilic addition reaction to the group represented by the general formula (A1') and the carbonyl group in the structure of the formula (A2').
  • a nucleophilic addition reaction to the group represented by the general formula (A1') and the carbonyl group in the structure of the formula (A2').
  • the sulfonylamino group can be deprotected to obtain a primary amino group.
  • the acid used to make the acidic condition include hydrochloric acid, trifluoroacetic acid and the like.
  • the amount of the acid is preferably 1 to 1000 mol, more preferably 1 to 500 mol, still more preferably 1 to 100 mol, relative to 1 mol of the compound containing a sulfonylamino group.
  • the compound aminated by the compound (A1) undergoes a one-step deprotection reaction to convert the group represented by the general formula (A1') and the nitrogen atom in the structure of the formula (A2') into a primary amino group.
  • a relatively strong reducing agent such as lithium aluminum is used, or the reaction is carried out under high concentration acidic conditions.
  • nucleophilic addition to carbonyl groups in the structure of the general formula (A1 ') a group represented by and the above formula (A2'), by nucleophilic substitution reaction to fluorine atoms of SO 2 F group, -NH- SO 2 -Nu (Nu residues nucleophiles) can be synthesized derivatives having the structure.
  • the NMR apparatus used for the analysis of Examples and Comparative Examples is JNM-ECS400 (400 MHz) manufactured by JEOL Ltd.
  • tetramethylsilane was used as a reference value of 0 PPM
  • C 6 F 6 was used as a reference value of -162 PPM.
  • HPLC High Performance Liquid Chromatograph
  • LC-20 manufactured by Shimadzu Corporation was used. The unit of yield (%) described in the examples is mol%.
  • chlorosulfonyl isocyanate (7.94 g, 55.0 mmol) was added to acetonitrile (25 mL), and the mixture was cooled to 0 ° C.
  • Neopentyl alcohol (4.41 g, 50.0 mmol) was slowly added thereto, and the mixture was stirred at room temperature for 2 hours, then potassium hydrogen difluoride (4.69 g, 60.0 mmol) was added at room temperature, and the mixture was further stirred for 1 hour. , Quenched with water (75 mL).
  • the aqueous phase was extracted 5 times with a 1: 1 mixed solvent of hexane and ethyl acetate (40 mL), and all the organic phases were combined and washed with saturated brine (20 mL). The washed organic phase was dried over sodium sulfate, and then the solvent was distilled off under reduced pressure.
  • the obtained crude product neopentyl N- (fluorosulfonyl) carbamic acid ester was dissolved in methanol (50 mL), lithium carbonate (4.11 g, 55.0 mmol) was slowly added, and the mixture was stirred at room temperature for 15 minutes.
  • Example 8 Using compound (3) as an aminating agent, styrene was aminated by an amination reaction.
  • Example 10 Using compound (3) as an aminating agent, methyl (E) -5-phenyl-3-pentenoic acid ester was aminated by an allyl isomerization amination reaction.
  • Example 12 Using compound (6) as an aminating agent, 1-chloro4-vinylbenzene was aminofluorinated by a 1,2-amino functionalization reaction.
  • Example 13 Under an argon atmosphere, copper chloride (2.1 mg, 0.020 mmol), 6,6'-dimethyl-2,2'-bipyridyl (3.8 mg, 0.020 mmol), and calcium carbonate (20.0 mg, 0.200 mmol). ) was added to 1,2-dichloroethane (1.0 mL), and the mixture was stirred at room temperature for 10 minutes. To this solution, 2-phenylfuran (28.8 mg, 0.200 mmol) and neopentyl N-fluoro-N- (fluorosulfonyl) carbamic acid ester (64.7 mg, 0.280 mmol) were added, and the mixture was heated to 70 ° C. and heated to 70 ° C.
  • Example 14 Under an argon atmosphere, THF (0.50 mL) was added to MeMgI (3M ether solution, 83 ⁇ L, 0.25 mmol), and the mixture was cooled to 0 ° C. Compound (19) (17.8 mg, 0.0500 mmol) was added, the temperature was raised to room temperature, and the mixture was stirred for 15 hours. A saturated aqueous solution of ammonium chloride (5 mL) was slowly added to the reaction solution for quenching, the mixture was separated, and the aqueous phase was extracted 3 times with ethyl acetate (5 mL).
  • Example 15 Under an argon atmosphere, THF (1.0 mL) was added to benzylamine (26.0 mg, 0.240 mmol), and the mixture was cooled to 0 ° C. Buttyllithium (2.80 M hexane solution, 78.6 ⁇ L, 0.220 mmol) and compound (19) (35.5 mg, 0.100 mmol) were added to this reaction solution, the temperature was raised to 60 ° C., and the mixture was stirred for 1 hour. A 1 M aqueous citric acid solution (5 mL) was slowly added to the reaction solution for quenching, the layers were separated, and then the aqueous phase was extracted 3 times with ethyl acetate (5 mL).
  • Example 17 Under an argon atmosphere, copper chloride (2.1 mg, 0.020 mmol), 6,6'-dimethyl-2,2'-bipyridyl (3.8 mg, 0.020 mmol), and calcium carbonate (20.0 mg, 0.200 mmol). ) was added to 1,2-dichloroethane (1.0 mL), and the mixture was stirred at room temperature for 10 minutes. To this solution was added 3-bromobenzothiophene (28.8 mg, 0.200 mmol) and neopentyl compound (6) (64.7 mg, 0.280 mmol), heated to 70 ° C., and stirred for 5 hours.
  • Example 19 Under an argon atmosphere, tetrakis (acetonitrile) copper (I) tetrafluoroboric acid (1.6 mg, 0.0050 mmol) and phenanthroline monohydrate (1.0 mg, 0.0050 mmol) were added to acetonitrile (0.25 mL). The mixture was stirred at room temperature for 10 minutes. Styrene (5.2 mg, 0.050 mmol) and compound (6) (13.9 mg, 0.0600 mmol) were added to this solution, heated to 70 ° C., and stirred for 2 hours.
  • Example 20 Under an argon atmosphere, copper cyanide (1.8 mg, 0.020 mmol), phenanthroline monohydrate (4.0 mg, 0.020 mmol), and acetonitrile (1.0 mL) were added, and the mixture was stirred at room temperature for 10 minutes. Methylenecyclohexane (19.2 mg, 0.200 mmol), compound (6) (64.7 mg, 0.280 mmol) and trimethylsilyl cyanide (27.8 mg, 0.280 mmol) were added, heated to 70 ° C., and stirred for 2 hours. did.
  • Example 21 Under an argon atmosphere, copper cyanide (1.8 mg, 0.020 mmol), phenanthroline monohydrate (4.0 mg, 0.020 mmol), and acetonitrile (1.0 mL) were added, and the mixture was stirred at room temperature for 10 minutes. Add 1-methyl-1-cyclohexene (19.2 mg, 0.200 mmol), compound (6) (64.7 mg, 0.280 mmol), trimethylsilyl cyanide (27.8 mg, 0.280 mmol) and heat to 70 ° C. And stirred for 2 hours.
  • Example 22 Under an argon atmosphere, copper chloride (2.1 mg, 0.020 mmol), 6,6'-dimethyl-2,2'-bipyridyl (3.8 mg, 0.020 mmol), and calcium carbonate (20.0 mg, 0.200 mmol). ) was added to 1,2-dichloroethane (1.0 mL), and the mixture was stirred at room temperature for 10 minutes. To this solution was added 2-phenylfuran (28.8 mg, 0.200 mmol) and compound (6) (64.7 mg, 0.280 mmol), heated to 70 ° C. and stirred for 5 hours.
  • Example 23 Copper cyanide (0.9 mg, 0.010 mmol), phenanthroline monohydrate (2.0 mg, 0.010 mmol) and acetonitrile (0.5 mL) were added under an argon atmosphere, and the mixture was stirred at room temperature for 10 minutes. 4-Pentenoic acid (10.0 mg, 0.100 mmol), compound (6) (32.4 mg, 0.140 mmol) and trimethylsilyl cyanide (13.9 mg, 0.140 mmol) were added, and the mixture was heated to 70 ° C. and 2 Stirred for hours.
  • Example 25 Under an argon atmosphere, copper chloride (2.1 mg, 0.020 mmol), 6,6'-dimethyl-2,2'-bipyridyl (3.8 mg, 0.020 mmol), and calcium carbonate (20.0 mg, 0.200 mmol). ) was added to 1,2-dichloroethane (1.0 mL), and the mixture was stirred at room temperature for 10 minutes. Benzene (156 mg, 2.00 mmol) and compound (6) (46.2 mg, 0.200 mmol) were added to this solution, and the mixture was heated to 70 ° C. and stirred for 5 hours.
  • the present invention provides an aminating agent capable of deprotecting a substrate having an unsaturated bond under milder conditions than NFSI, and an amination reaction using the aminating agent.
  • an amino group can be easily introduced into a wide range of substrates such as alkenes, allyl compounds and aromatic compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

比較的穏やかな条件で脱保護可能な保護基で保護されたアミノ基を幅広い基質に対して導入できるアミノ化剤として有用な化合物、及び当該化合物を有効成分とするアミノ化剤、当該アミノ化剤を使用する、アミノ基含有化合物の製造方法等の提供。 下記一般式(A1)(式中、Rは、置換基を有していてもよいC1-30アルキル基(炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)、置換基を有していてもよいC6-14アリール基である)で表される、化合物。

Description

アミノ化剤及びアミノ化物の製造方法
 本発明は、保護基で保護されたアミノ基を導入するアミノ化剤、及び当該アミノ化剤を用いたアミノ化物の製造方法に関する。
 アミノ基は、反応性が高く、様々な有機化合物の活性に重要な役割を果たす官能基である。特に1級アミノ基(-NH)は、極性があり、分子間や他の分子と水素結合を形成することで、立体構造の保持や分子間の相互作用等に重要な役割を果たす。有機化合物をアミノ化することで、有用な有機化合物を合成することができるため、様々なアミノ化剤が開発されている。
 保護基で保護されたイミドやスルホンイミドをアミノ化剤として、カップリング反応により基質中の不飽和結合を構成する原子に直接窒素原子を導入することができる。アミノ化剤として用いられるスルホンイミドとしては、例えば、N-フルオロベンゼンスルホンイミド(NFSI)がある。NFSIは、芳香族化合物中の不飽和結合を構成する炭素原子をアミノ化するC-Hアミノ化反応(非特許文献1、非特許文献4、非特許文献5、特許文献1、特許文献2)、アルケンのC=C結合の一方の炭素原子をアミノ化し、他方の炭素原子にシアノ基を導入するアミノシアノ化反応(非特許文献2)、アルケンの一方の炭素原子をアミノ化するとともにC=C結合の位置を異性化させるアリル位異性化アミノ化反応(非特許文献3)、アルケンのC=C結合の2つの炭素原子をアミノ化するジアミノ化反応(非特許文献6)、アルケンのC=C結合の一方の炭素原子をアミノ化し、他方の炭素原子にフッ素原子を導入するアミノフッ素化反応(非特許文献7)等の様々な反応でアミノ化剤として使用されている。
国際公開第2016/125845号 国際公開第2015/031725号
Kawakami et al., Journal of the American Chemical Society, 2015, vol.137, p.2460-2463. Zhang et al., Angewandte Chemie International Edition, 2013, vol.52, p.2529-2533. Trenner et al., Angewandte Chemie International Edition, 2013, vol.52, p.8952-8956. Boursalian et al., Journal of the American Chemical Society, 2013, vol.135, p.13278-13281. Miao et al., Chemical Communications, 2019, vol.55, p.7331-7334. Zhang and Studer, Organic Letters, 2014, vol.16, p.1790-1793. Zhang, et al. Angewandte Chemie International Edition, 2014, vol.53, p.11079-11083.
 本発明は、比較的穏やかな条件で脱保護可能な保護基で保護されたアミノ基を幅広い基質に対して導入できるアミノ化剤、及び当該アミノ化剤を使用する、アミノ基含有化合物の製造方法を提供することを目的とする。
 本発明者らは、アルキルオキシカルボニル基又はアリールオキシカルボニル基と、フルオロスルホニル基と、で保護したフッ化アミン化合物をアミノ化剤として用いることにより、比較的穏やかな条件で脱保護可能な保護基で保護されたアミノ基を幅広い基質に対して導入できることを見出し、本発明を完成させた。
 すなわち、本発明は以下の通りである。
[1] 下記一般式(A1)で表される、化合物。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは、置換基を有していてもよいC1-30アルキル基(炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)、又は、置換基を有していてもよいC6-14アリール基である)
[2] 前記Rが、置換基を有していてもよいC1-6アルキル基、又は、置換基を有していてもよいフェニル基である、[1]の化合物。
[3] 前記[1]又は[2]の化合物を有効成分とする、アミノ化剤。
[4] 前記[3]のアミノ化剤を用いて、少なくとも1個の不飽和結合を有する基質化合物中の炭素原子間に形成される少なくとも1個の不飽和結合を構成する一方の炭素原子に、下記一般式(A1’)で表される基を導入する、アミノ基含有化合物の製造方法。
Figure JPOXMLDOC01-appb-C000005
(式中、黒丸は結合手を意味する。)
[5] 前記基質化合物がアルケンであり、前記アルケン中の不飽和結合を構成する2個の炭素原子の少なくとも一方の炭素原子に前記一般式(A1’)で表される基を導入する、[4]のアミノ基含有化合物の製造方法。
[6] 前記基質化合物が、不飽和結合を構成する炭素原子に結合した水素原子を有するアルケン、不飽和結合を構成する炭素原子に結合した水素原子を有するアルキン、又は、芳香環の不飽和結合を構成する炭素原子に結合した水素原子を有する芳香族化合物であり、前記炭素原子に結合した水素原子を前記一般式(A1’)で表される基に置換する、[4]のアミノ基含有化合物の製造方法。
[7] 前記基質化合物が、不飽和結合を構成する炭素原子に隣接する炭素原子に結合した水素原子を有するアルケン、不飽和結合を構成する炭素原子に隣接する炭素原子に結合した水素原子を有するアルキン、又は、芳香環の不飽和結合を構成する炭素原子に隣接する環外炭素原子に結合した水素原子を有するベンジル化合物であり、前記炭素原子に結合した水素原子を前記一般式(A1’)で表される基に置換する、[4]のアミノ基含有化合物の製造方法。
[8] 前記一般式(A1’)で表される基を導入した後、カルボニル基に対する求核付加反応を利用した反応により、前記一般式(A1’)で表される基を1級アミノ基にする、[4]~[7]のいずれかのアミノ基含有化合物の製造方法。
[9] 前記[3]のアミノ化剤を用いて、少なくとも1個の不飽和結合を有する基質化合物中の炭素原子間に形成される少なくとも1個の不飽和結合を、下記式(A2’) で表される環構造に変える、アミノ基含有化合物の製造方法。
Figure JPOXMLDOC01-appb-C000006
(式中、黒丸が付された2個の炭素原子は、不飽和結合を構成していた炭素原子である。)
[10] 前記基質化合物がアルケンである、[9]のアミノ基含有化合物の製造方法。
[11] 前記式(A2’)で表される環構造に変えた後、カルボニル基に対する求核付加反応を利用した反応により、前記不飽和結合を構成していた2個の炭素原子の一方に1級アミノ基が導入されたアミノ基含有化合物を製造する、[9]又は[10]のアミノ基含有化合物の製造方法。
 本発明に係る化合物は、NFSIと同様の各種反応に、不飽和結合を有する幅広い基質に対して、アルキルオキシカルボニル基又はアリールオキシカルボニル基と、フルオロスルホニル基とで保護されたアミノ基を導入することができる。アルキルオキシカルボニル基等とフルオロスルホニル基とで保護されたアミノ基は、NFSIよりも穏やかな条件で脱保護を行うことができるため、当該化合物は、アミノ化剤として非常に有用である。
 本発明及び本願明細書において、「Cp1-p2」(p1及びp2は、p1<p2を満たす正の整数である)は、炭素数がp1~p2の基であることを意味する。
 本発明及び本願明細書において、「C1-10アルキル基」は、炭素数1~10のアルキル基であり、直鎖であっても分岐鎖であってもよい。「C2-10アルキル基」は、炭素数2~10のアルキル基であり、直鎖であっても分岐鎖であってもよい。C1-10アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、イソヘキシル基、ネオヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。
 本発明及び本願明細書において、「C1-30アルキル基」は、炭素数1~30のアルキル基であり、直鎖であっても分岐鎖であってもよい。「C2-30アルキル基」は、炭素数2~30のアルキル基であり、直鎖であっても分岐鎖であってもよい。C1-30アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、イソヘキシル基、ネオヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、ヘンエイコシル基、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、ヘキサコシル基、ヘプタコシル基、オクタコシル基、ノナコシル基、トリアコンチル基等が挙げられる。
 本発明及び本願明細書において、「C1-6アルキル基」は、炭素数1~6のアルキル基であり、直鎖であっても分岐鎖であってもよい。C1-6アルキル基の例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、イソヘキシル基、ネオヘキシル基等が挙げられる。
 本発明及び本願明細書において、「C6-14アリール基」は、炭素数6~14の芳香族炭化水素基であり、C6-12アリール基が特に好ましい。C6-14アリール基の例としては、フェニル基、ナフチル基、アントリル基、9-フルオレニル基等が挙げられ、フェニル基が特に好ましい。
 本発明及び本願明細書において、「置換されていてもよいC6-14アリール基」は、C6-14アリール基の炭素原子に結合している水素原子の1又は複数個、好ましくは1~3個が、他の官能基に置換されている基である。2個以上の置換基を有する場合、置換基同士は互いに同種であってもよく、異種であってよい。当該置換基としては、C1-6アルキル基、C1-6アルコキシ基、メチレンジオキシ基(-O-CH-O-)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子)、及びニトロ基等が挙げられる。「置換されていてもよいC6-14アリール基」の例としては、フェニル基、ナフチル基、アントリル基、4-メチルフェニル基、2,6-ジメチルフェニル基、4-メトキシフェニル基、2,4-ジメトキシフェニル基、3,4-ジメトキシフェニル基、3-クロロフェニル基、4-ニトロフェニル基、1,3-ベンゾジオキソール-5-イル基等が挙げられる。
 本発明及び本願明細書において、「C6-14アリール-C1-6アルキル基」は、C1-6アルキル基の炭素原子に結合している1個の水素原子がC6-14アリール基に置換された基である。C6-14アリール-C1-6アルキル基におけるC6-14アリール基としては、フェニル基、ナフチル基、アントリル基、9-フルオレニル基等を例示でき、フェニル基及び9-フルオレニル基が特に好ましい。C6-14アリール-C1-6アルキル基におけるC1-6アルキル基としては、C1-4アルキル基が好ましい。C6-14アリール-C1-6アルキル基の例としては、ベンジル基、ジフェニルメチル基、トリフェニルメチル基、2-フェニルエチル基、9-アントリルメチル基、9-フルオレニルメチル基等が挙げられる。
 本発明及び本願明細書において、「C1-6アルコキシ基」とは、炭素数1~6のC1-6アルキル基の結合末端に酸素原子が結合した基をいう。C1-6アルコキシ基は直鎖であっても分岐鎖であってもよい。C1-6アルコキシ基の例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられる。
 本発明及び本願明細書において、「エーテル結合性の酸素原子」とは、炭素原子間を連結する酸素原子であり、酸素原子同士が直列に連結された酸素原子は含まれない。炭素数Nc(Ncは2以上の整数)のアルキル基が有し得るエーテル結合性の酸素原子は、最大Nc-1個である。
 また、以降において、「化合物(n)」は式(n)で表される化合物を意味する。
 以降の化学反応は、反応に不活性な溶媒中で行うことができる。溶媒としては、メタノール、1,4-ジオキサン、ジエチルエーテル、テトラヒドロフラン、ジクロロメタン、アセトニトリル、ベンゼン、トルエン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の不活性溶媒が挙げられる。
[アミノ化剤]
 本発明に係る化合物は、下記一般式(A1)で表される化合物である。一般式(A1)中、Rは、置換基を有していてもよいC1-30アルキル基、又は置換基を有していてもよいC6-14アリール基である。
Figure JPOXMLDOC01-appb-C000007
 前記Rが置換基を有していてもよいC1-30アルキル基である場合、当該アルキル基は、炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい。前記Rとしては、置換基を有していてもよいC1-6アルキル基が好ましく、置換基を有していていないC1-6アルキル基、C6-14アリール-C1-6アルキル基、及びC1-6アルコキシ基を置換基として有するC1-6アルキル基がより好ましく、置換基を有していていないC1-6アルキル基及びC6-14アリール-C1-6アルキル基がさらに好ましく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、イソヘキシル基、ネオヘキシル基、ベンジル基、ジフェニルメチル基、トリフェニルメチル基、2-フェニルエチル基、9-アントリルメチル基、及び9-フルオレニルメチル基がよりさらに好ましく、ネオペンチル基、ベンジル基、及び2-フェニルエチル基が特に好ましい。
 前記Rが置換基を有していてもよいC6-14アリール基である場合、当該アリール基としては、置換基を有していてもよいフェニル基が好ましく、C1-6アルキル基、C1-6アルコキシ基、ハロゲン原子、及びニトロ基からなる群より選択される1~3個の置換基を有していてもよいフェニル基がより好ましく、フェニル基、ナフチル基、アントリル基、4-メチルフェニル基、2,6-ジメチルフェニル基、4-メトキシフェニル基、2,4-ジメトキシフェニル基、3,4-ジメトキシフェニル基、及び3-クロロフェニル基がさらに好ましく、フェニル基、4-メチルフェニル基、及び2,6-ジメチルフェニル基がよりさらに好ましい。
 化合物(A1)としては、前記Rが、置換基を有していていないC1-6アルキル基、C6-14アリール-C1-6アルキル基、又は置換基を有していてもよいフェニル基である化合物が好ましく、前記Rが、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、イソヘキシル基、ネオヘキシル基、ベンジル基、ジフェニルメチル基、トリフェニルメチル基、2-フェニルエチル基、フェニル基、4-メチルフェニル基、2,6-ジメチルフェニル基、4-メトキシフェニル基、2,4-ジメトキシフェニル基、又は3,4-ジメトキシフェニル基である化合物がより好ましく、ネオペンチル基、ベンジル基、2-フェニルエチル基、フェニル基、4-メチルフェニル基、又は2,6-ジメチルフェニル基である化合物がさらに好ましい。
 化合物(A1)は、例えば、下記反応により、フルオロスルホニルカルバミン酸エステルを合成し、このアミノ基の窒素原子と結合する水素原子をリチウム原子に置換し、さらにこのリチウム原子をフッ素原子に置換することにより合成できる。下記式中、Rは一般式(A1)のRと同じである。
Figure JPOXMLDOC01-appb-C000008
 なお、上記反応では、リチウム原子を用いた例を記載しているが、リチウム原子がナトリウム原子、カリウム原子等の他のアルカリ金属原子であっても同様の反応が可能である。また、上記反応において、水素原子をリチウム原子に置換せず、直接水素原子をフッ素原子に置換することも可能である。
 前記フルオロスルホニルカルバミン酸エステルは、例えば、下記反応により、フルオロスルホニルイソシアネートをアルコールでエステル化することによっても合成できる。
Figure JPOXMLDOC01-appb-C000009
[アミノ基含有化合物の製造方法]
 化合物(A1)は、各種反応におけるアミノ化剤の有効成分とすることができる。化合物(A1)は、NFSIと同様に様々な有機化合物中の炭素原子をアミノ化することができる。基質となる有機化合物としては、例えば、アルケン、アリル化合物、アルキン、芳香族化合物等の不飽和結合を有する化合物が挙げられる。当該不飽和結合は、炭素原子間に形成される結合であってもよく、炭素原子と炭素原子以外の原子との間の結合であってもよい。また、化合物(A1)は、トリシクロ環を含む有機化合物も基質とすることができる。
 例えば、化合物(A1)を用いて、基質化合物中の少なくとも1個の不飽和結合を構成する一方の炭素原子、又は当該不飽和結合の後述するアリル位、プロパルギル位、若しくはベンジル位の炭素原子に、下記一般式(A1’)で表される基を導入することができる。一般式(A1’)中、Rは一般式(A1)のRと同じ基である。また、以降の化学式において、一般式(A1’)で表される基を、「-[N]」と表すことがある。
Figure JPOXMLDOC01-appb-C000010
<1,2-アミノ官能基化反応>
 アルケンを基質化合物とする場合、アルケン中の不飽和結合を構成する2個の炭素原子の少なくとも一方の炭素原子に前記一般式(A1’)で表される基を導入することができる。例えば、下記の1,2-アミノ官能基化反応により、アルケン中のC=C結合を構成する2個の炭素原子のうち、一方の炭素原子に一般式(A1’)で表される基を導入してアミノ化し、他方の炭素原子にYを導入することができる。Yは、一般式(A1’)で表される基、又は、一般式(A1’)で表される基以外の基を表す。
Figure JPOXMLDOC01-appb-C000011
 上記の1,2-アミノ官能基化反応の反応式中、基質化合物におけるR101、R102、R103、及びR104は、それぞれ独立して、水素原子、脂肪族炭化水素基又は芳香族基である。当該脂肪族炭化水素基を構成する炭素原子数は、特に限定されるものではなく、例えば、C1-30脂肪族炭化水素基とすることができる。当該芳香族基は、芳香族炭化水素基であってもよく、複素環式基であってもよい。また、当該脂肪族炭化水素基及び芳香族基は、置換基を有していてもよい。当該置換基としては、化合物(A1)によるC=C結合に対する1,2-アミノ官能基化反応を阻害しないものであれば特に限定されるものではない。R101、R102、R103、及びR104の任意の2つが脂肪族炭化水素基である場合、これらの脂肪族炭化水素基は互いに連結して環を構成してもよい。
 一般式(A1’)で表される基以外の基であるYとしては、例えば、水素原子、アジ基(-N)、フッ素原子、塩素原子、臭素原子、ヨウ素原子、トリフルオロメチル基、ジフルオロメチル基、モノフルオロメチル基、シアノ基(-CN)、ヒドロキシ基(-OH)、C1-6アルコキシ基、アシル基、カルバメート基(-O-CO-NH-R)、アミド基(-N(R’)-C(=O)-R)、イミド基(-C(=O)-N(R’)-C(=O)-R)、チオール基(-SR)、脂肪族炭化水素基、芳香族基等が挙げられる。なお、これらの式中、R及びR’はそれぞれ独立して脂肪族炭化水素基又は芳香族基である。脂肪族炭化水素基及び芳香族基は、それぞれ、R101と同様のものを用いることができる。
 Yが一般式(A1’)で表される基である化合物は、Cu触媒等の触媒、光又は熱の存在下で、基質となるアルケンと化合物(A1)とを用いて1,2-アミノ官能基化反応を行うことにより得られる。また、Yが一般式(A1’)で表される基以外である化合物は、1,2-アミノ官能基化反応は、触媒の存在下で、基質となるアルケンと化合物(A1)とY含有化合物とを反応させることにより行われる。1,2-アミノ官能基化反応の反応条件は、後記実施例3や、非特許文献2、非特許文献6等に記載のNFSIによる1,2-アミノ官能基化反応と同様の反応条件や、これらを適宜改変した条件で行うことができる。
<C-Hアミノ化反応>
 基質化合物が、不飽和結合を構成する炭素原子に結合した水素原子を有するアルケン、不飽和結合を構成する炭素原子に結合した水素原子を有するアルキン、又は、芳香環の不飽和結合を構成する炭素原子に結合した水素原子を有する芳香族化合物である場合、上記炭素原子に結合した水素原子を一般式(A1’)で表される基に置換してアミノ化することができる。
 アルケンを基質化合物とする場合、例えば、下記のC-Hアミノ化反応により、アルケン中のC=C結合を構成する2個の炭素原子のうちの一方の炭素原子と結合している水素原子を、一般式(A1’)で表される基に置換してアミノ化することができる。下記C-Hアミノ化反応の反応式中、R101、R102、及びR103は、前記1,2-アミノ官能基化反応におけるR101、R102、及びR103と同じである。R101、R102、及びR103の任意の2つが脂肪族炭化水素基である場合、これらの脂肪族炭化水素基は互いに連結して環を構成してもよい。
Figure JPOXMLDOC01-appb-C000012
 アルキンを基質化合物とし、下記のC-Hアミノ化反応により、アルキンの末端の水素原子を一般式(A1’)で表される基に置換することによっても、アミノ化することができる。下記C-Hアミノ化反応の反応式中、Rは脂肪族炭化水素基又は芳香族基である。脂肪族炭化水素基及び芳香族基は、それぞれ、R101と同様のものを用いることができる。
Figure JPOXMLDOC01-appb-C000013
 また、芳香族化合物を基質化合物とする場合、例えば、下記のC-Hアミノ化反応により、芳香族化合物中の芳香環の不飽和結合を構成している炭素原子と結合している水素原子を、一方の炭素原子に一般式(A1’)で表される基に置換してアミノ化することができる。当該芳香族化合物(Ar-H)は、芳香族炭化水素であってもよく、複素環式化合物であってもよい。式中、Arは、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい複素環式基である。
Figure JPOXMLDOC01-appb-C000014
 一般式(A1’)で表される基を導入する炭素原子は、C=C結合を構成する炭素原子であってもよく、炭素原子と炭素原子以外の原子とによる不飽和結合を構成する炭素原子であってもよい。炭素原子と炭素原子以外の原子とによる不飽和結合としては、C=O結合、C=N結合等が挙げられる。
 C-Hアミノ化反応は、触媒、光又は熱の存在下で、基質となるアルケン、アルキン、又は芳香族化合物と化合物(A1)とを反応させることにより行われる。C-Hアミノ化反応の反応条件は、後記実施例5や、非特許文献1、非特許文献4、非特許文献5等に記載のNFSIによるC-Hアミノ化反応と同様の反応条件や、これらを適宜改変した条件で行うことができる。
<アリル位、プロパルギル位、又はベンジル位のC-Hアミノ化反応>
 基質化合物が、不飽和結合を構成する炭素原子に隣接する炭素原子に結合した水素原子を有するアルケン、不飽和結合を構成する炭素原子に隣接する炭素原子に結合した水素原子を有するアルキン、又は、芳香環の不飽和結合を構成する炭素原子に隣接する環外炭素原子に結合した水素原子を有するベンジル化合物である場合、上記炭素原子に結合した水素原子を一般式(A1’)で表される基に置換してアミノ化することができる。
 以下、アルケンの不飽和結合を構成する炭素原子に隣接する炭素原子に結合した水素原子をアリル位の水素原子といい、アルキンの不飽和結合を構成する炭素原子に隣接する炭素原子に結合した水素原子をプロパルギル位の水素原子といい、ベンジル化合物の芳香環の不飽和結合を構成する炭素原子に隣接する環外炭素原子に結合した水素原子をベンジル位の水素原子という。
 例えば、下記のC-Hアミノ化反応により、基質化合物中の不飽和結合に対してアリル位、プロパルギル位、又はベンジル位の水素原子を、一般式(A1’)で表される基に置換してアミノ化することができる。
 下記C-Hアミノ化反応の反応式中、R101、R102、及びR103は、前記1,2-アミノ官能基化反応の反応式におけるR101、R102、及びR103と同じである。
 下記反応式中、R及びArは、それぞれ、前記C-Hアミノ化反応の反応式中のR及びArと同じである。
 下記反応式中、R105及びR106は、それぞれ独立して、水素原子、脂肪族炭化水素基又は芳香族基である。脂肪族炭化水素基及び芳香族基は、それぞれ、R101と同様のものを用いることができる。
 下記反応式中、R107及びR108は、それぞれ独立して、水素原子、脂肪族炭化水素基又は芳香族基である。脂肪族炭化水素基及び芳香族基は、それぞれ、R101と同様のものを用いることができる。
 R101、R102、R103、R105、及びR106の任意の2つが脂肪族炭化水素基である場合、これらの脂肪族炭化水素基は互いに連結して環を構成してもよい。
Figure JPOXMLDOC01-appb-C000015
 アリル位、プロパルギル位、又はベンジル位のC-Hアミノ化反応は、触媒、光又は熱の存在下で、基質となるアルケン、アルキン、又は芳香族化合物と化合物(A1)とを反応させることにより行われる。当該C-Hアミノ化反応の反応条件は、NFSIによるアリル位、プロパルギル位、又はベンジル位のC-Hアミノ化反応と同様の反応条件や、これらを適宜改変した条件で行うことができる。
<アミノオキシ化反応>
 C=C結合を有する有機化合物を基質とし、例えばアミノオキシ化反応により、基質化合物中の少なくとも1個の2個の炭素原子間の不飽和結合を、下記式(A2’)で表される環構造に変えることができる。下記式(A2’)中、黒丸が付された2個の炭素原子は、不飽和結合を構成していた炭素原子である。
Figure JPOXMLDOC01-appb-C000016
 アルケンを基質化合物とする場合、例えば、下記のアミノオキシ化反応により、アルケン中のC=C結合を構成する2個の結合のうちの一方を開裂し、化合物(A1)で環化させてアミノ化することができる。下記アミノオキシ化反応の反応式中、R101、R102、R103、及びR104は、前記1,2-アミノ官能基化反応におけるR101、R102、R103、及びR104と同じである。また、Rは一般式(A1)のRと同じ基である。
 R101、R102、R103、及びR104の任意の2つが脂肪族炭化水素基である場合、これらの脂肪族炭化水素基は互いに連結して環を構成してもよい。
Figure JPOXMLDOC01-appb-C000017
 アミノオキシ化反応は、I触媒等の触媒、光又は熱の存在下で、基質となるアルケンと化合物(A1)とを反応させることにより行われる。当該アミノオキシ化反応の反応条件は、後記実施例8と同様の反応条件や、これらを適宜改変した条件で行うことができる。
<アルケンのアリル位異性化アミノ化反応>
 アルケンを基質化合物とする場合、例えば、下記のアリル位異性化アミノ化反応により、アルケン中のC=C結合を構成する2個の結合のうちの一方の炭素原子に化合物(A1’)で表される基を導入してアミノ化するとともに、アリル位の異性化をすることができる。下記アリル位異性化アミノ化反応の反応式中、R101、R102、R103、R105、及びR106は、前記アリル位、プロパルギル位、又はベンジル位のC-Hアミノ化反応におけるR101、R102、R103、R105、及びR106と同じである。 R101、R102、R103、R105、及びR106の任意の2つが脂肪族炭化水素基である場合、これらの脂肪族炭化水素基は互いに連結して環を構成してもよい。
Figure JPOXMLDOC01-appb-C000018
 アルケンのアリル位異性化アミノ化反応は、Se触媒等の触媒、光又は熱の存在下で、基質となるアルケンと化合物(A1)とを反応させることにより行われる。当該アリル位異性化アミノ化反応の反応条件は、後記実施例10や、非特許文献3等に記載の同様の反応条件や、これらを適宜改変した条件で行うことができる。
<シクロプロパンの1,3-アミノ官能基化反応>
 シクロプロパンを有する有機化合物を基質とし、例えば下記の1,3-アミノ官能基化反応により、シクロプロパン環を構成する3個の炭素原子のうち、1個の炭素原子に一般式(A1’)で表される基を導入してアミノ化し、別の1個の炭素原子に他の官能基を導入することができる。
 下記の1,3-アミノ官能基化反応の反応式中、基質化合物におけるR109、R110、R111、R112、R113、及びR114は、それぞれ独立して、水素原子、脂肪族炭化水素基又は芳香族基である。脂肪族炭化水素基及び芳香族基は、それぞれ、R101と同様のものを用いることができる。また、下記の1,3-アミノ官能基化反応の反応式中、Yは、上記の1,2-アミノ官能基化反応におけるYと同じである。
 R109、R110、R111、R112、R113、及びR114の任意の2つが脂肪族炭化水素基である場合、これらの脂肪族炭化水素基は互いに連結して環を構成してもよい。
Figure JPOXMLDOC01-appb-C000019
 Yが一般式(A1’)で表される基である化合物は、触媒、光又は熱の存在下で、基質となるアルケンと化合物(A1)とを用いて1,3-アミノ官能基化反応を行うことにより得られる。また、Yが一般式(A1’)で表される基以外である化合物は、1,3-アミノ官能基化反応は、触媒の存在下で、基質となるアルケンと化合物(A1)とY含有化合物とを反応させることにより行われる。1,3-アミノ官能基化反応の反応条件は、後記実施例3や、非特許文献2、非特許文献6等に記載のNFSIによる1,2-アミノ官能基化反応と同様の反応条件や、これらを適宜改変した条件で行うことができる。
<脱炭酸アミノ化反応>
 カルボン酸を基質化合物とし、例えば下記の脱炭酸アミノ化反応により、カルボン酸基を一般式(A1’)で表される基に置換することによってアミノ化することができる。下記脱炭酸アミノ化反応の反応式中、Rは、脂肪族炭化水素基又は芳香族基である。脂肪族炭化水素基及び芳香族基は、それぞれ、R101と同様のものを用いることができる。
Figure JPOXMLDOC01-appb-C000020
 脱炭酸アミノ化反応は、触媒、光又は熱の存在下で、基質となるカルボン酸と化合物(A1)とを反応させることにより行われる。当該脱炭酸アミノ化反応の反応条件は、NFSIによるカルボン酸の脱炭酸アミノ化反応と同様の反応条件や、これらを適宜改変した条件で行うことができる。
<カルボニル基のα-アミノ化反応>
 カルボニル基含有化合物を基質とし、例えば下記のα-アミノ化反応により、カルボン酸基のα位の炭素原子に結合していた水素原子を、一般式(A1’)で表される基に置換することによってアミノ化することができる。下記α-アミノ化反応の反応式中、Rは、脂肪族炭化水素基又は芳香族基である。脂肪族炭化水素基及び芳香族基は、それぞれ、R101と同様のものを用いることができる。
Figure JPOXMLDOC01-appb-C000021
 基質とするカルボニル基含有化合物としては、カルボニル基のα位の炭素原子に少なくも1個の水素原子が結合している化合物であれば特に限定されるものではない。当該カルボニル基含有化合物としては、例えば、アルデヒド(Zが、水素原子)、ケトン(Zが、R101又はAr)、エステル(Zが、-OR)、チオエステル(Zが、-SR)、アミド(Zが、-N-R(R’))、イミド((Zが、-C(=O)-N(R’)-C(=O)-R)が挙げられる。これらの式中、R及びR’はそれぞれ独立して脂肪族炭化水素基又は芳香族基である。脂肪族炭化水素基及び芳香族基は、それぞれ、R101と同様のものを用いることができる。
 カルボニル基のα-アミノ化反応は、触媒、光又は熱の存在下で、基質となるカルボニル基含有化合物と化合物(A1)とを反応させることにより行われる。当該α-アミノ化反応の反応条件は、NFSIによるカルボニル基のα-アミノ化反応と同様の反応条件や、これらを適宜改変した条件で行うことができる。
[アミノ基の脱保護反応]
 前記一般式(A1’)で表される基が導入された化合物は、カルボニル基に対する求核付加反応を利用した脱保護反応により、当該一般式(A1’)で表される基を1級アミノ基にすることができる。同様に、前記式(A2’)の構造を有する化合物は、カルボニル基に対する求核付加反応を利用した脱保護反応により開環させ、前記式(A2’)の構造中の窒素原子を1級アミノ基とする。これにより、化合物(A1)によってアミノ化された不飽和結合を構成していた2個の炭素原子の一方に、1級アミノ基が導入されたアミノ基含有化合物を製造することができる。
 NFSIによってアミノ化された化合物は、マグネシウムのような金属単体や、トリフルオロメタンスルホン酸(TfOH)や硫酸等の強酸を用いる必要があるなど、非常に厳しい反応条件を必要とする。これに対して、化合物(A1)によってアミノ化された化合物の脱保護反応は、まず、一般式(A1’)で表される基及び前記式(A2’)の構造中のカルボニル基に対する求核付加反応を行う。これにより、金属単体や強酸を必要としない、比較的穏やかな条件で脱保護反応を行うことができる。
 一般式(A1’)で表される基及び前記式(A2’)の構造中のカルボニル基に対する求核付加反応は、還元剤の存在下、100℃以下の温度でインキュベートすることにより進行させることができる。当該求核付加反応では、必要に応じて、還元剤と共にブレンステッド酸又はルイス酸等の添加剤を用いることができる。
 還元剤としては、水素化ホウ素ナトリウム、水素化ホウ素亜鉛、シアノ水素化ホウ素ナトリウム、水素化トリエチルホウ素リチウム、水素化トリ(sec-ブチル)ホウ素リチウム、水素化トリ(sec-ブチル)ホウ素カリウム、水素化ホウ素リチウム、水素化アミノホウ素リチウム、トリアセトキシ水素化ホウ素ナトリウム等の水素化ホウ素試薬、及び、水素化アルミニウムリチウム等の金属水素化物試薬を使用できる。還元剤としては、水素化ホウ素試薬が好ましく、水素化ホウ素ナトリウム及び水素化ホウ素亜鉛がより好ましく、水素化ホウ素ナトリウムがさらに好ましい。還元剤の量は、化合物(A1)によってアミノ化された化合物1モルに対して、0.5~10モルが好ましい。
 一般式(A1’)で表される基及び前記式(A2’)の構造中のカルボニル基に対する求核付加反応は、塩基性条件下、100℃以下の温度でインキュベートすることにより進行させることができる。塩基性条件とするために使用される塩基としては、炭酸ナトリウムが挙げられる。塩基の量は、化合物(A1)によってアミノ化された化合物1モルに対して、1~100モルが好ましく、1~50モルがより好ましく、1~10モルがさらに好ましい。
 一般式(A1’)で表される基及び前記式(A2’)の構造中のカルボニル基に対する求核付加反応により、一般式(A1’)で表される基等はスルホニルアミノ基に変換される。このスルホニルアミノ基を含む化合物を、酸性条件下、100℃以下の温度でインキュベートすることにより、スルホニルアミノ基を脱保護し、1級アミノ基を得ることができる。酸性条件とするために使用される酸としては、塩酸、トリフルオロ酢酸等が挙げられる。酸の量は、スルホニルアミノ基を含む化合物1モルに対して、1~1000モルが好ましく、1~500モルがより好ましく、1~100モルがさらに好ましい。
 化合物(A1)によってアミノ化された化合物は、1段階の脱保護反応で、一般式(A1’)で表される基及び前記式(A2’)の構造中の窒素原子を1級アミノ基にしてもよい。例えば、アルミニウムリチウムのような比較的強い還元剤を使用したり、高濃度の酸性条件下で反応させる。
 なお、一般式(A1’)で表される基及び前記式(A2’)の構造中のカルボニル基に対する求核付加反応と、SOF基のフッ素原子に対する求核置換反応により、-NH-SO-Nu(Nuは求核剤の残基)構造を有する誘導体を合成することができる。
 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
 実施例、比較例の分析に使用したNMR装置は、日本電子製JNM-ECS400(400MHz)である。H NMRではテトラメチルシランを0PPMの基準値とし、19F NMRではCを-162PPMの基準値とした。HPLC(高速液体クロマトグラフ)は、島津製作所製LC-20を使用した。実施例中に記載する収率(%)の単位は、モル%である。
[実施例1]
 一般式(A1)中のRがネオペンチル基である化合物を合成した。
Figure JPOXMLDOC01-appb-C000022
 アルゴン雰囲気下、クロロスルホニルイソシアナート(7.94g、55.0mmol)をアセトニトリル(25mL)に加え、0℃に冷却した。これにネオペンチルアルコール(4.41g、50.0mmol)をゆっくり加え、室温で2時間攪拌した後、二フッ化水素カリウム(4.69g、60.0mmol)を室温で加え、さらに1時間攪拌し、水(75mL)でクエンチした。得られた反応液を分液した後、水相をヘキサンと酢酸エチルの1:1混合溶媒(40mL)で5回抽出し、全ての有機相を合わせて飽和食塩水(20mL)で洗浄した。洗浄後の有機相を硫酸ナトリウムで乾燥した後に、溶媒を減圧下で留去した。得られた粗生成物ネオペンチル N-(フルオロスルホニル)カルバミン酸エステルを、メタノール(50mL)に溶かし、炭酸リチウム(4.11g、55.0mmol)をゆっくり加え、室温で15分間攪拌した。この粗生成物から溶媒を減圧下で留去し、酢酸エチル(100mL)を加え、懸濁液を得た。当該懸濁液をセライトで濾過し、酢酸エチル(50mL)で洗浄し、濾液を減圧下で濃縮した。濃縮物にジクロロメタン(100mL)を加えて室温で1時間撹拌した後、固体を濾過して回収することで、化合物(5)を75%収率で得た。
H NMR(重ジメチルスルホキシド):δ3.50(s,2H),0.86(s,9H).
Figure JPOXMLDOC01-appb-C000023
 空気下、上記実施例で得られた化合物(5)(2.19g、10.0mmol)を酢酸エチル(20mL)に溶かし、1規定 塩酸(20mL)で分液した。有機層を飽和食塩水(20mL)で洗浄し、硫酸ナトリウムで乾燥した後に、溶媒を減圧下で留去した。ネオペンチル N-(フルオロスルホニル)カルバミン酸エステルを定量的に得た。
H NMR(重クロロホルム):δ7.93(s,1H),3.99(s,2H),0.99(s,9H).
Figure JPOXMLDOC01-appb-C000024
 化合物(5)(3.2g)のアセトニトリル(120g)溶液を、氷浴にて0℃へ氷冷した。体積比で2%のフッ素/窒素混合ガスをマスフローコントローラーで100mL/分に調節し、173分間かけてフッ素ガス1当量を反応容器内に導入した。次いで、反応液中の沈殿を濾過し、減圧下での溶媒留去を行った後、塩化メチレンを用いたシリカゲルカラムクロマトグラフィーにより目的生成物である化合物(6)を1.96g得た。
H-NMR(CDCl):δ4.15(s,2H),0.99(s,9H)
19F-NMR(CDCl):δ45.4(s,1F),-45.0(s,1F).
[実施例2]
 一般式(A1)中のRがベンジル基である化合物を合成した。
Figure JPOXMLDOC01-appb-C000025
 化合物(1)(0.40g)及びフッ化ナトリウム(0.22g)のアセトニトリル(30g)溶液を、氷浴にて0℃へ氷冷した。体積比で2%のフッ素/窒素混合ガスをマスフローコントローラーで100mL/分に調節し、20分間かけてフッ素ガス1当量を反応容器内に導入した。次いで、反応液中の沈殿を濾過し、減圧下での溶媒留去を行った後、ヘキサン/酢酸エチル混合溶媒系を用いたシリカゲルカラムクロマトグラフィーにより目的生成物である化合物(3)を0.13g得た。
 一方で、リチウム塩(2)(3.39g)のアセトニトリル(120g)溶液を、2%フッ素/窒素混合ガスをマスフローコントローラーで100mL/分に調節し、168分間かけてフッ素ガス1当量を反応容器内に導入した以外は、上記と同様にして、目的生成物である化合物(3)を1.24g得た。
H-NMR(CDCl):δ7.43(s,5H),5.47(s,2H)
19F-NMR(CDCl):δ45.8(s,1F),-44.1(s,1F).
[実施例3]
 化合物(6)をアミノ化剤として用い、スチレンをシアノアミノ化反応によりアミノ化した。
Figure JPOXMLDOC01-appb-C000026
 アルゴン雰囲気下、シアン化銅(0.9mg、0.010mmol)、フェナントロリン一水和物(2.0mg、0.010mmol)、アセトニトリル(0.50mL)を加え、室温で10分間攪拌した。スチレン(10.4mg、0.100mmol)、ネオペンチル N-フルオロ-N-(フルオロスルホニル)カルバミン酸エステル(32.4mg、0.140mmol)、トリメチルシリルシアニド(13.9mg、0.140mmol)を加え、70℃に加熱し、2時間攪拌した。ジクロロメタン(5mL)に溶かし、シリカゲル(2g)で濾過し、ジクロロメタン(10mL)で洗浄し、濾液を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(7)の収率は70%であった。
H NMR(重クロロホルム):δ7.46-7.38(m,5H),4.40-4.32(m,2H),4.15-4.09(m,1H),4.04(d,1H),4.00(d,1H),0.99(s,9H).
[実施例4]
 化合物(7)中のアミノ基を脱保護した。
Figure JPOXMLDOC01-appb-C000027
 アルゴン雰囲気下、化合物(7)(17.1mg、0.050mmol)及び塩化亜鉛(20.4mg、0.150mmol)にメタノール(0.25mL)を加え、0℃に冷却した。この反応液に、水素化ホウ素ナトリウム(5.7mg、0.150mmol)を加え、室温で15時間攪拌した。次いで、当該反応液を飽和塩化アンモニウム水溶液でクエンチし、分液した後、水相を酢酸エチル(10mL)で2回抽出し、全ての有機相を合わせて飽和食塩水(10mL)で洗浄した。洗浄後の有機相を硫酸ナトリウムで乾燥した後に、溶媒を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(8)の収率は42%であった。
H NMR(重クロロホルム):δ7.46-7.37(5H),5.20(t,1H),4.22(dd,1H),3.87(s,3H),3.60-3.48(m,2H).
Figure JPOXMLDOC01-appb-C000028
 空気下、化合物(8)(12.2mg、0.051mmol)にアセトニトリル(0.20mL)と4規定 塩酸(0.10mL)を加え、60℃で19時間加熱した。この反応液に、飽和炭酸水素ナトリウム水溶液でクエンチし、分液した後、水相をジクロロメタン(10mL)で10回抽出した。全ての有機相を合わせて硫酸ナトリウムで乾燥した後に、溶媒を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(9)の収率は66%であった。
H NMR(重クロロホルム):δ7.33-7.44(m,5H),3.89(t,1H),3.12-3.21(m,2H).
[実施例5]
 化合物(6)をアミノ化剤として用い、2-フェニルチオフェンを芳香族C-Hアミノ化反応によりアミノ化した。
Figure JPOXMLDOC01-appb-C000029
 アルゴン雰囲気下、塩化銅(1.0mg、0.010mmol)、bathocuproine(4.3mg、0.012mmol)、及び炭酸カルシウム(10.0mg、0.10mmol)をアセトニトリル(0.50mL)に加え、室温で10分間攪拌した。この溶液に、2-フェニルチオフェン(16.0mg、0.100mmol)、ネオペンチル N-フルオロ-N-(フルオロスルホニル)カルバミン酸エステル(30.1mg、0.130mmol)を加え、40℃に加熱し、23時間攪拌した。得られた反応物を酢酸エチル(5mL)に溶かし、シリカゲル(2g)で濾過し、酢酸エチル(10mL)で洗浄し、濾液を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(10)の収率は70%であった。
H NMR(重クロロホルム):δ7.55-7.57(m,2H),7.38-7.42(m,2H),7.32-7.36(m,1H),7.17(d,1H),7.09(d,1H),3.99(s,2H),0.90(s,9H).
[実施例6]
 化合物(10)中のアミノ基を脱保護した。
Figure JPOXMLDOC01-appb-C000030
 アルゴン雰囲気下、リチウム水素化アルミニウム(5.7mg、0.15mmol)にテトラヒドロフラン(0.20mL)を加え、0℃に冷却した。この溶液に、化合物(10)(18.6mg、0.050mmol)を加え、室温に昇温し、0.5時間攪拌した。次いで、この反応液に飽和ロッシェル塩水溶液(5mL)をゆっくり加えてクエンチし、分液した後、水相を酢酸エチル(15mL)で3回抽出した。全ての有機相を合わせて飽和食塩水(5mL)で洗浄した後、硫酸ナトリウムで乾燥し、その後に溶媒を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(11)の収率は35%であった。
H NMR(重クロロホルム):δ7.46-7.48(m,2H),7.31-7.34(m,2H),7.17-7.21(m,1H),6.94(d,1H),6.17(d,1H),3.72(s,2H).
[実施例7]
 化合物(10)中のアミノ基を脱保護した。
Figure JPOXMLDOC01-appb-C000031
 空気下、化合物(10)(0.50mmol)に、ジオキサン(0.20mL)と2M水酸化リチウム(0.050mL、0.10mmol)を加えた後、60℃に加熱して1時間攪拌した後、4規定 塩酸(0.30mL)を加え、60℃で0.5時間攪拌した。その後、当該反応液に飽和炭酸水素ナトリウム水溶液(10mL)をゆっくり加えてクエンチし、分液した後、水相を酢酸エチル(15mL)で3回抽出した。全ての有機相を合わせて飽和食塩水(5mL)で洗浄した後、硫酸ナトリウムで乾燥し、その後に溶媒を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(11)の収率は52%であった。
H NMR(重クロロホルム):δ7.46-7.48(m,2H),7.31-7.34(m,2H),7.17-7.21(m,1H),6.94(d,1H),6.17(d,1H),3.72(s,2H).
[実施例8]
 化合物(3)をアミノ化剤として用い、スチレンをアミノオキシ化反応によりアミノ化した。
Figure JPOXMLDOC01-appb-C000032
 アルゴン雰囲気下、モレキュラーシーブ4Å(12.5mg)に、4-メチルヨードベンゼン、ジクロロメタン(0.50mL)を加えた。この溶液に、スチレン(5.2mg、0.050mmol)、ベンジル N-フルオロ-N-(フルオロスルホニル)カルバミン酸エステル(15.1mg、0.060mmol)を加え、40℃に加熱し、3日間攪拌した。反応液をNMR及びHPLCで分析したところ、化合物(12)の収率は20%であった。
H NMR(重クロロホルム):δ7.44-7.52(m,3H),7.37-7.43(m,2H),5.40(ddd,1H),4.86(dd,1H),4.44(dd,1H).19F NMR(重クロロホルム):δ55.42(s,1F).
[実施例9]
 化合物(12)中のアミノ基を脱保護した。
Figure JPOXMLDOC01-appb-C000033
 空気下、化合物(12)(24.3mg、0.10mmol)にメタノール(0.20mL)と2規定 塩酸(0.80mL)を加えた。当該溶液を60℃に加熱し、2日間攪拌した後、室温に冷却し、2M 炭酸ナトリウム(0.80mL)とジ-tert-ブチルジカルボナート(65.5mg、0.30mmol)を加えた。当該反応液を室温で3時間攪拌した後、水(3mL)を加えて分液した後、水相を酢酸エチル(15mL)で3回抽出した。全ての有機相を合わせて飽和食塩水(5mL)で洗浄した後、硫酸ナトリウムで乾燥し、溶媒を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(13)(N-Boc-フェニルグリシノール)の収率は定量的であった。
[実施例10]
 化合物(3)をアミノ化剤として用い、メチル (E)-5-フェニル-3-ペンテン酸エステルをアリル異性化アミノ化反応によりアミノ化した。
Figure JPOXMLDOC01-appb-C000034
 アルゴン雰囲気下、モレキュラーシーブ4Å(50mg)とジフェニルジセレニド(1.6mg、0.005mmol)にジクロロメタン(0.50mL)とメチル (E)-5-フェニル-3-ペンテン酸エステル(9.5mg、0.050mmol)とベンジル N-フルオロ-N-(フルオロスルホニル)カルバミン酸エステル(12.6mg、0.050mmol)を加えた。この反応液を室温で20時間攪拌した後、モレキュラーシーブ4Åを濾別し、溶媒を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(14)の収率は63%であった。また化合物(14)の位置異性体の収率は17%であった。
H NMR(重クロロホルム):δ7.04-7.39(m,11H),5.98(dd,1H),5.23-5.32(m,3H),3.75(s,3H),3.31(dd,1H),3.16(dd,1H).
[実施例11]
 化合物(14)中のアミノ基を脱保護した。
Figure JPOXMLDOC01-appb-C000035
 アルゴン雰囲気下、化合物(14)(13.5mg、0.032mmol)にメタノール(0.4mL)と塩化亜鉛(8.2mg、0.060mmol)を加え、0℃に冷却した。この反応液に、水素化ホウ素ナトリウム(2.3mg、0.060mmol)を加え、60℃に昇温し、3時間攪拌した。当該反応液に、飽和塩化アンモニウム水溶液(5mL)をゆっくり加えてクエンチし、分液した後、水相を酢酸エチル(5mL)で3回抽出した。全ての有機相を合わせて飽和食塩水(5mL)で洗浄した後、硫酸ナトリウムで乾燥し、その後に溶媒を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(15)の収率は89%であった。
H NMR(重クロロホルム):δ7.46-7.26(3H),7.22-7.15(2H),6.89(dd,1H),5.99(d,1H),4.81(d,1H),4.29-4.36(m,1H),3.74(s,3H),3.53(s,3H),3.00(dd,1H),2.88(q,1H).
Figure JPOXMLDOC01-appb-C000036
 空気下、化合物(15)(8.7mg、0.029mmol)にアセトニトリル(0.20mL)と4規定 塩酸(0.20mL)を加え、60℃に昇温し、12時間攪拌した。その後、当該反応液に2M 炭酸ナトリウム(0.80mL)とジ-tert-ブチルジカルボナート(21.8mg、0.10mmol)を加え、室温で4時間攪拌した。次いで、当該反応液に1規定塩酸(4mL)を加えて分液した後、水相を酢酸エチル(5mL)で3回抽出した。全ての有機相を合わせて飽和食塩水(5mL)で洗浄した後、硫酸ナトリウムで乾燥し、その後に溶媒を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(16)の収率は55%であった。
H NMR(重クロロホルム):δ7.21-7.38(m,3H),7.15-7.17(m,2H),6.97-7.02(m,1H),5.92-5.76(d,1H),4.39-4.64(m,2H),2.89(d,2H),1.38(s,9H).
[実施例12]
 化合物(6)をアミノ化剤として用い、1-クロロ4-ビニルベンゼンを1,2-アミノ官能基化反応によりアミノフッ素化した。
Figure JPOXMLDOC01-appb-C000037
 臭化銅(I)(1.4mg、0.01mmol、10mol%)、bathocuproine(1.8mg、0.005mmol、5mol%)、ビス(ピナコラート)ジボロン(BPin、2.5mg、0.01mmol、10mol%)、及びフッ化銀(2.9mg、0.02mmol、20mol%)をジクロロエタン(1.0mL)に溶解した混合物に対し、化合物(6)(32.4mg、0.14mmol、1.4eq.)と1-クロロ-4-ビニルベンゼン(13.9mg、0.1mmol)を室温で加えた。次いで、当該反応液を、アルゴン雰囲気下、70℃で2時間撹拌した後、室温でベンゾトリフルオリドを加えた。得られた生成粗体を、ベンゾトリフルオリドを内部標準とする19F NMRで分析したところ、目的の化合物(18)の収率は30%であった。
19F-NMR(CDCl):δ-185.5(m,1F).
[実施例13]
Figure JPOXMLDOC01-appb-C000038
 アルゴン雰囲気下、塩化銅(2.1mg、0.020mmol)、6,6’-dimethyl-2,2’-bipyridyl(3.8mg、0.020mmol)、及び炭酸カルシウム(20.0mg、0.200mmol)を1,2-ジクロロエタン(1.0mL)に加え、室温で10分間攪拌した。この溶液に、2-フェニルフラン(28.8mg、0.200mmol)、ネオペンチル N-フルオロ-N-(フルオロスルホニル)カルバミン酸エステル(64.7mg、0.280mmol)を加え、70℃に加熱し、5時間攪拌した。得られた反応物を酢酸エチル(5mL)に溶かし、シリカゲル(2g)で濾過し、酢酸エチル(10mL)で洗浄し、濾液を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(19)の収率は61%であった。
1H NMR(重クロロホルム):δ 7.68-7.65 (m, 2H), 7.43-7.38 (m, 2H), 7.35-7.30 (m, 1H), 6.72-6.70 (m, 1H), 6.58 (t,1H), 4.01 (s, 2H), 0.90 (s, 9H).
[実施例14]
Figure JPOXMLDOC01-appb-C000039
 アルゴン雰囲気下、MeMgI(3Mエーテル溶液,83μL,0.25mmol)にTHF(0.50mL)を加え、0℃に冷却した。化合物(19)(17.8mg,0.0500mmol)を加え、室温に昇温し、15時間攪拌した。当該反応液に、飽和塩化アンモニウム水溶液(5mL)をゆっくり加えてクエンチし、分液した後、水相を酢酸エチル(5mL)で3回抽出した。全ての有機相を合わせて飽和食塩水(5mL)で洗浄した後、硫酸ナトリウムで乾燥し、その後に溶媒を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(20)の収率は80%であった。
1H NMR(重クロロホルム):δ 7.62-7.60 (m, 2H), 7.41-7.37 (m, 2H), 7.31-7.27 (m, 1H), 6.64-6.62 (m, 1H), 6.58 (s, 1H), 6.37-6.34 (m, 1H), 3.16 (s, 3H).
[実施例15]
Figure JPOXMLDOC01-appb-C000040
 アルゴン雰囲気下、ベンジルアミン(26.0mg,0.240mmol)にTHF(1.0mL)を加え、0℃に冷却した。この反応液にブチルリチウム(2.80Mヘキサン溶液、78.6μL,0.220mmol)と化合物(19)(35.5mg,0.100mmol)を加え、60℃に昇温し、1時間攪拌した。当該反応液に、1Mクエン酸水溶液(5mL)をゆっくり加えてクエンチし、分液した後、水相を酢酸エチル(5mL)で3回抽出した。全ての有機相を合わせて飽和食塩水(5mL)で洗浄した後、硫酸ナトリウムで乾燥し、その後に溶媒を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(21)の収率は80%であった。
1H NMR(重クロロホルム):δ 7.60-7.57 (m, 2H), 7.40-7.28 (m, 8H), 6.62 (d, 1H), 6.43 (s, 1H), 6.30 (dd, 1.1 Hz, 1H), 4.69 (t, 1H), 4.38 (d, 2H).
[実施例16]
Figure JPOXMLDOC01-appb-C000041
 アルゴン雰囲気下、BuMgBr(1.5Mエーテル溶液,660μL,1.00mmol)を、-78℃に冷却した。化合物(19)(35.5mg,0.100mmol)を加え、-78℃で3時間攪拌した。当該反応液に、1M塩酸水溶液(5mL)をゆっくり加えてクエンチし、分液した後、水相を酢酸エチル(5mL)で3回抽出した。全ての有機相を合わせて飽和食塩水(5mL)で洗浄した後、硫酸ナトリウムで乾燥し、その後に溶媒を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(22)の収率は37%であった。
1H NMR(重クロロホルム):δ 7.64-7.60 (m, 2H), 7.40-7.37 (m, 2H), 7.31-7.27 (m, 1H), 6.70 (d, 1H), 6.49 (d, 1H), 3.91 (s, 2H), 3.71-3.67 (m, 2H), 2.01-1.93 (m, 2H), 1.56-1.48 (m, 2H), 1.00 (t, 3H), 0.83 (s, 9H).
[実施例17]
Figure JPOXMLDOC01-appb-C000042
 アルゴン雰囲気下、塩化銅(2.1mg、0.020mmol)、6,6’-dimethyl-2,2’-bipyridyl(3.8mg、0.020mmol)、及び炭酸カルシウム(20.0mg、0.200mmol)を1,2-ジクロロエタン(1.0mL)に加え、室温で10分間攪拌した。この溶液に、3-ブロモベンゾチオフェン(28.8mg、0.200mmol)、ネオペンチル 化合物(6)(64.7mg、0.280mmol)を加え、70℃に加熱し、5時間攪拌した。得られた反応物を酢酸エチル(5mL)に溶かし、シリカゲル(2g)で濾過し、酢酸エチル(10mL)で洗浄し、濾液を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(23)の収率は63%であった。
1H NMR(重クロロホルム):δ 7.90-7.84 (m, 1H), 7.84-7.79 (m, 1H), 7.54-7.50 (m, 2H), 4.03 (s, 2H), 0.88 (s, 9H).
[実施例18]
Figure JPOXMLDOC01-appb-C000043
 アルゴン雰囲気下、塩化亜鉛(34.1mg,0.250mmol)にPhMgBr(0.37Mテトラヒドロフラン溶液,680μL,0.25mmol)を加え、0℃に冷却した。化合物(23)(21.2mg,0.0500mmol)を加え、60℃に昇温し、16時間攪拌した。当該反応液に、1MHCl水溶液(5mL)をゆっくり加えてクエンチし、分液した後、水相を酢酸エチル(5mL)で3回抽出した。全ての有機相を合わせて飽和食塩水(5mL)で洗浄した後、硫酸ナトリウムで乾燥し、その後に溶媒を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(24)の収率は76%であった。
1H NMR(重クロロホルム):δ 7.82-7.92 (2H), 7.66-7.73 (1H), 7.51-7.61 (2H), 7.42-7.51 (2H), 7.30-7.42 (2H), 6.97-7.13 (1H).
[実施例19]
Figure JPOXMLDOC01-appb-C000044
 アルゴン雰囲気下、テトラキス(アセトニトリル)銅(I)テトラフルオロホウ酸(1.6mg、0.0050mmol)、フェナントロリン一水和物(1.0mg、0.0050mmol)をアセトニトリル(0.25mL)に加え、室温で10分間攪拌した。この溶液に、スチレン(5.2mg、0.050mmol)、化合物(6)(13.9mg、0.0600mmol)を加え、70℃に加熱し、2時間攪拌した。得られた反応物をジクロロメタン(5mL)に溶かし、シリカゲル(2g)で濾過し、ジクロロメタン(10mL)で洗浄し、濾液を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(25)の収率は28%であった。
1H NMR(重クロロホルム):δ 7.28-7.46 (5H), 6.54 (dd, 1H), 6.05 (d, 1H), 3.97 (s, 2H), 0.96 (s, 9H).
[実施例20]
Figure JPOXMLDOC01-appb-C000045
 アルゴン雰囲気下、シアン化銅(1.8mg、0.020mmol)、フェナントロリン一水和物(4.0mg、0.020mmol)、アセトニトリル(1.0mL)を加え、室温で10分間攪拌した。メチレンシクロヘキサン(19.2mg、0.200mmol)、化合物(6)(64.7mg、0.280mmol)、トリメチルシリルシアニド(27.8mg、0.280mmol)を加え、70℃に加熱し、2時間攪拌した。ジクロロメタン(5mL)に溶かし、シリカゲル(2g)で濾過し、ジクロロメタン(10mL)で洗浄し、濾液を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(26)の収率は43%であった。化合物(27)の収率は33%であった。
化合物(26)
1H NMR(重クロロホルム):δ 4.06 (s, 2H), 4.05 (d, 2H), 2.01 (d, 2H), 1.82-1.78 (m, 3H), 1.71-1.60 (m, 2H), 1.36 (m, 2H), 1.25-1.13 (m, 1H), 1.01 (s, 9H).
化合物(27)
1H NMR(重クロロホルム):δ 5.71-5.68 (m, 1H), 4.34 (s, 2H), 3.99 (s, 2H), 2.07-2.01 (m, 2H), 1.94 (m, 2H), 1.68-1.62 (m, 2H), 1.60-1.54 (m, 2H), 0.99 (s, 9H).
[実施例21]
Figure JPOXMLDOC01-appb-C000046
 アルゴン雰囲気下、シアン化銅(1.8mg、0.020mmol)、フェナントロリン一水和物(4.0mg、0.020mmol)、アセトニトリル(1.0mL)を加え、室温で10分間攪拌した。1-メチル-1-シクロヘキセン(19.2mg、0.200mmol)、化合物(6)(64.7mg、0.280mmol)、トリメチルシリルシアニド(27.8mg、0.280mmol)を加え、70℃に加熱し、2時間攪拌した。ジクロロメタン(5mL)に溶かし、シリカゲル(2g)で濾過し、ジクロロメタン(10mL)で洗浄し、濾液を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(28)の収率は31%であった。
1H NMR(重クロロホルム):δ 5.67-5.64 (m, 1H), 4.98-4.91 (m, 1H), 4.01 (d, 1H), 3.97 (d, 1H), 2.38-2.21 (m, 2H), 1.86-1.69 (m, 4H), 0.98 (s, 9H).
[実施例22]
Figure JPOXMLDOC01-appb-C000047
 アルゴン雰囲気下、塩化銅(2.1mg、0.020mmol)、6,6’-dimethyl-2,2’-bipyridyl(3.8mg、0.020mmol)、及び炭酸カルシウム(20.0mg、0.200mmol)を1,2-ジクロロエタン(1.0mL)に加え、室温で10分間攪拌した。この溶液に、2-フェニルフラン(28.8mg、0.200mmol)、化合物(6)(64.7mg、0.280mmol)を加え、70℃に加熱し、5時間攪拌した。得られた反応物を酢酸エチル(5mL)に溶かし、シリカゲル(2g)で濾過し、酢酸エチル(10mL)で洗浄し、濾液を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(29)の収率は61%であった。
1H NMR(重クロロホルム):δ 6.97 (s, 2H), 6.96 (s, 1H), 4.95 (d, 2H), 4.00 (s, 2H), 2.31 (s, 6H), 0.96 (s, 9H).
[実施例23]
Figure JPOXMLDOC01-appb-C000048
 アルゴン雰囲気下、シアン化銅(0.9mg、0.010mmol)、フェナントロリン一水和物(2.0mg、0.010mmol)、アセトニトリル(0.5mL)を加え、室温で10分間攪拌した。4-ペンテン酸(10.0mg、0.100mmol)、化合物(6)(32.4mg、0.140mmol)、トリメチルシリルシアニド(13.9mg、0.140mmol)を加え、70℃に加熱し、2時間攪拌した。ジクロロメタン(5mL)に溶かし、シリカゲル(2g)で濾過し、ジクロロメタン(10mL)で洗浄し、濾液を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(30)の収率は46%であった。化合物(31)の収率は14%であった。
化合物(30)
1H NMR(重クロロホルム):δ 4.23-4.17 (m, 1H), 4.07 (d, 1H), 4.04 (d, 1H), 4.01-3.95 (m, 1H), 3.33-3.25 (m, 1H), 2.72-2.57 (m, 2H), 2.06-1.88 (m, 2H), 1.00 (s, 9H).
化合物(31)
1H NMR(重クロロホルム):δ 4.84-4.77 (m, 1H), 4.19-4.12 (m, 1H), 4.03 (s, 2H), 4.01-3.96 (m, 1H), 2.67-2.53 (m, 2H), 2.46-2.36 (m, 1H), 2.01-1.91 (m, 1H), 1.00 (s, 9H).
[実施例24]
Figure JPOXMLDOC01-appb-C000049
 アルゴン雰囲気下、テトラキス(アセトニトリル)銅(I)テトラフルオロホウ酸(1.6mg、0.005mmol)、1,10-phenanthroline-5,6-dione(1.1mg、0.005mmol)、アセトニトリル(0.25mL)を加え、室温で10分間攪拌した。1-オクテン(5.6mg、0.050mmol)、化合物(6)(16.2mg、0.070mmol)、トリメチルシリルシアニド(14.9mg、0.150mmol)を加え、70℃に加熱し、2時間攪拌した。ジクロロメタン(5mL)に溶かし、シリカゲル(2g)で濾過し、ジクロロメタン(10mL)で洗浄し、濾液を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(32)の収率は63%であった。化合物(32’)の収率は8%であった。
化合物(32)
4.18 (m, 1H), 4.07 (d, 1H), 4.03 (d, 1H), 3.91 (m, 1H), 3.14-3.06 (m, 1H), 1.68-1.25 (m, 10H), 1.01 (s, 9H), 0.89 (t, 3H).
[実施例25]
Figure JPOXMLDOC01-appb-C000050
 アルゴン雰囲気下、塩化銅(2.1mg、0.020mmol)、6,6’-dimethyl-2,2’-bipyridyl(3.8mg、0.020mmol)、及び炭酸カルシウム(20.0mg、0.200mmol)を1,2-ジクロロエタン(1.0mL)に加え、室温で10分間攪拌した。この溶液に、ベンゼン(156mg、2.00mmol)、化合物(6)(46.2mg、0.200mmol)を加え、70℃に加熱し、5時間攪拌した。得られた反応物を酢酸エチル(5mL)に溶かし、シリカゲル(2g)で濾過し、酢酸エチル(10mL)で洗浄し、濾液を減圧下で留去した。得られた生成粗体をNMRで分析したところ、化合物(33)の収率は22%であった。
1H NMR(重クロロホルム):δ 7.51-7.47 (m, 3H), 7.38-7.33 (m, 2H), 3.95 (s, 2H), 0.85 (s, 9H).
 本発明は、不飽和結合を有する基質に対して、NFSIよりも穏やかな条件で脱保護を行うことができるアミノ化剤、及び当該アミノ化剤を使用したアミノ化反応を提供する。本発明に係るアミノ化剤により、アルケン、アリル化合物、芳香族化合物等の幅広い基質に対して、アミノ基を容易に導入することができる。
 なお、2019年09月24日に出願された日本特許出願2019-173542号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  下記一般式(A1)で表される、化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、置換基を有していてもよいC1-30アルキル基(炭素原子間に1~5個のエーテル結合性の酸素原子を有していてもよい)、又は、置換基を有していてもよいC6-14アリール基である)
  2.  前記Rが、置換基を有していてもよいC1-6アルキル基、又は、置換基を有していてもよいフェニル基である、請求項1に記載の化合物。
  3.  請求項1又は2に記載の化合物を有効成分とする、アミノ化剤。
  4.  請求項3に記載のアミノ化剤を用いて、少なくとも1個の不飽和結合を有する基質化合物中の炭素原子間に形成される少なくとも1個の不飽和結合を構成する一方の炭素原子に、下記一般式(A1’)で表される基を導入する、アミノ基含有化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、黒丸は結合手を意味する。)
  5.  前記基質化合物がアルケンであり、前記アルケン中の不飽和結合を構成する2個の炭素原子の少なくとも一方の炭素原子に前記一般式(A1’)で表される基を導入する、請求項4に記載のアミノ基含有化合物の製造方法。
  6.  前記基質化合物が、不飽和結合を構成する炭素原子に結合した水素原子を有するアルケン、不飽和結合を構成する炭素原子に結合した水素原子を有するアルキン、又は、芳香環の不飽和結合を構成する炭素原子に結合した水素原子を有する芳香族化合物であり、前記炭素原子に結合した水素原子を前記一般式(A1’)で表される基に置換する、請求項4に記載のアミノ基含有化合物の製造方法。
  7.  前記基質化合物が、不飽和結合を構成する炭素原子に隣接する炭素原子に結合した水素原子を有するアルケン、不飽和結合を構成する炭素原子に隣接する炭素原子に結合した水素原子を有するアルキン、又は、芳香環の不飽和結合を構成する炭素原子に隣接する環外炭素原子に結合した水素原子を有するベンジル化合物であり、前記炭素原子に結合した水素原子を前記一般式(A1’)で表される基に置換する、請求項4に記載のアミノ基含有化合物の製造方法。
  8.  前記一般式(A1’)で表される基を導入した後、カルボニル基に対する求核付加反応を利用した反応により、前記一般式(A1’)で表される基を1級アミノ基にする、請求項4~7のいずれか一項に記載のアミノ基含有化合物の製造方法。
  9.  請求項3に記載のアミノ化剤を用いて、少なくとも1個の不飽和結合を有する基質化合物中の炭素原子間に形成される少なくとも1個の不飽和結合を、下記式(A2’) で表される環構造に変える、アミノ基含有化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、黒丸が付された2個の炭素原子は、不飽和結合を構成していた炭素原子である。)
  10.  前記基質化合物がアルケンである、請求項9に記載のアミノ基含有化合物の製造方法。
  11.  前記式(A2’)で表される環構造に変えた後、カルボニル基に対する求核付加反応を利用した反応により、前記不飽和結合を構成していた2個の炭素原子の一方に1級アミノ基が導入されたアミノ基含有化合物を製造する、請求項9又は10に記載のアミノ基含有化合物の製造方法。
PCT/JP2020/035804 2019-09-24 2020-09-23 アミノ化剤及びアミノ化物の製造方法 WO2021060277A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021548931A JPWO2021060277A1 (ja) 2019-09-24 2020-09-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-173542 2019-09-24
JP2019173542 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021060277A1 true WO2021060277A1 (ja) 2021-04-01

Family

ID=75165821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035804 WO2021060277A1 (ja) 2019-09-24 2020-09-23 アミノ化剤及びアミノ化物の製造方法

Country Status (2)

Country Link
JP (1) JPWO2021060277A1 (ja)
WO (1) WO2021060277A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171697A1 (ja) * 2022-03-08 2023-09-14 Agc株式会社 フッ素含有化合物の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009015059A1 (en) * 2007-07-24 2009-01-29 The Trustees Of Princeton University Organo-cascade catalysis: one-pot production of chemical libraries
WO2016125845A1 (ja) * 2015-02-05 2016-08-11 国立大学法人名古屋大学 クロスカップリング方法、及び該クロスカップリング方法を用いた有機化合物の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009015059A1 (en) * 2007-07-24 2009-01-29 The Trustees Of Princeton University Organo-cascade catalysis: one-pot production of chemical libraries
WO2016125845A1 (ja) * 2015-02-05 2016-08-11 国立大学法人名古屋大学 クロスカップリング方法、及び該クロスカップリング方法を用いた有機化合物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAWAKAMI, T. ET AL.: "Catalytic C-H imidation of aromatic cores of functional molecules : ligand-accelerated Cu catalysis and application to materials- and biology-oriented aromatcs", J. AM. CHEM. SOC, vol. 137, 2015, pages 2460 - 2463, XP055445643, DOI: 10.1021/ja5130012 *
ZHANG, H. ET AL.: "Copper-Catalyzed Intermolecular Aminocyanation and Diamination of Alkenes", ANGEW. CHEM., vol. 52, no. 9, 25 February 2013 (2013-02-25), pages 2529 - 2533, XP055809432 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171697A1 (ja) * 2022-03-08 2023-09-14 Agc株式会社 フッ素含有化合物の製造方法

Also Published As

Publication number Publication date
JPWO2021060277A1 (ja) 2021-04-01

Similar Documents

Publication Publication Date Title
PL186564B1 (pl) Związki pośrednie do wytwarzania mappicyny i związków spokrewnionych z mappicyną i sposoby wytwarzania tych związków
US7576245B2 (en) Fluorous tagging and scavenging reactants and methods of synthesis and use thereof
EP2773611B1 (en) Method for producing optically active -hydroxy- -aminocarboxylic acid ester
WO2021060277A1 (ja) アミノ化剤及びアミノ化物の製造方法
KR101100064B1 (ko) 나프록센의 니트로옥시유도체 제조방법
CA2682616A1 (en) Methods for the preparation of n-isobutyl-n-(2-hydroxy-3-amino-4-phenylbutyl)-p-nitrobenzenesulfonylamide derivatives
CN115197145B (zh) 手性螺环铵盐化合物及其制备方法和应用
EP4186882A1 (en) Method for producing optically active compound
CN109438299B (zh) 一种苯磺酰肼类衍生物与三乙胺无金属催化合成苯磺酰烯胺类化合物的方法
KR20180006986A (ko) 엔잘루타미드를 제조하는 방법
AU5251400A (en) Process for the preparation of tricyclic amino alcohol derivatives
EP2192110B1 (en) Method of producing optically active n-(halopropyl)amino acid derivative
WO2023048237A1 (ja) アミノフッ素化剤及びアミノフッ素化物の製造方法
JP4350391B2 (ja) ベンジルイソニトリルの製法
EP3562808B1 (en) Processes for the preparation of pesticidal compounds
KR100298145B1 (ko) 올레핀 화합물의 비균일계 비대칭 아미노히드록시화 반응용 신코나알칼로이드 촉매
EP1031555B1 (en) Difluoromethoxybenzene derivatives and their use as intermediates
JP2007277232A (ja) ニトロ化方法
WO2008157216A1 (en) Process for the manufacture of benzylsulfonylarenes
JP3865701B2 (ja) アリル化アシルヒドラジン化合物の合成方法とその不斉合成方法
Wojaczyńska et al. Chiral pyrrolidine thioethers and 2-azanorbornane derivatives bearing additional nitrogen functions. Enantiopure ligands for palladium-catalyzed Tsuji-Trost reaction.
KR101446017B1 (ko) 고 입체순도를 갖는 4-알킬-5-아릴 5-원고리 설파미데이트의 제조방법
TW202419441A (zh) 烷基矽烷氧取代苄胺化合物之製造方法
CN117903015A (zh) N-氟-n-烷基磺酰胺的制备方法
CN116410137A (zh) 一种三氟甲基取代的吡唑啉类化合物的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869096

Country of ref document: EP

Kind code of ref document: A1