WO2016125452A1 - 車両用熱管理システム - Google Patents
車両用熱管理システム Download PDFInfo
- Publication number
- WO2016125452A1 WO2016125452A1 PCT/JP2016/000370 JP2016000370W WO2016125452A1 WO 2016125452 A1 WO2016125452 A1 WO 2016125452A1 JP 2016000370 W JP2016000370 W JP 2016000370W WO 2016125452 A1 WO2016125452 A1 WO 2016125452A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- engine
- heat medium
- temperature
- heat
- heater
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00878—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
- B60H1/00899—Controlling the flow of liquid in a heat pump system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3228—Cooling devices using compression characterised by refrigerant circuit configurations
- B60H1/32284—Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/24—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
- B60L58/27—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/161—Controlling of coolant flow the coolant being liquid by thermostatic control by bypassing pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P9/00—Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00
- F01P9/06—Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00 by use of refrigerating apparatus, e.g. of compressor or absorber type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/52—Drive Train control parameters related to converters
- B60L2240/525—Temperature of converter or components thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- This disclosure relates to a thermal management system used for a vehicle.
- Patent Document 1 discloses a thermal management for a vehicle that cools the vehicle interior using the cold heat of the low-pressure side refrigerant of the refrigeration cycle and heats the vehicle interior using the warm heat of the engine coolant (hot water). The system is described.
- an engine radiator is arranged in an engine cooling circuit through which engine cooling water circulates.
- the engine radiator is a heat dissipation heat exchanger that exchanges heat between engine cooling water and outside air to dissipate heat from the engine cooling water to the outside air.
- This prior art has a low-temperature side cooling water circuit in which cooling water cooled by the low-pressure side refrigerant of the refrigeration cycle circulates.
- a cooler core is disposed in the low temperature side cooling water circuit.
- the cooler core is an air cooling heat exchanger that cools the air that is blown into the vehicle interior by exchanging heat between the cooling water cooled by the low-pressure refrigerant in the refrigeration cycle and the air that is blown into the vehicle interior.
- the heat-absorbing heat exchanger is a heat exchanger that exchanges heat between the cooling water of the low-temperature side cooling water circuit and the outside air to absorb heat from the outside air to the cooling water.
- the air heating device is a device that heats air that is blown into the vehicle interior using the heat of the high-pressure side refrigerant of the refrigeration cycle.
- an engine radiator and an endothermic heat exchanger are provided as heat exchangers for exchanging heat with the outside air.
- the heat absorption heat exchanger since the temperature of the engine cooling water is low, when the vehicle interior is heated by absorbing heat from the outside air, the heat absorption heat exchanger is used, but the engine radiator is used. May not be used and may be wasted.
- a vehicle thermal management system heats air blown into a vehicle interior using a compressor that sucks and discharges refrigerant in a refrigeration cycle and heat of a high-pressure side refrigerant in the refrigeration cycle.
- An air heating device, and a chiller that cools the heat medium by exchanging heat between the low-pressure refrigerant of the refrigeration cycle and the heat medium.
- the vehicle thermal management system also includes a cooler core that cools air by exchanging heat between the heat medium cooled by the chiller and the air, and a cooler cooling circuit that circulates the heat medium through the chiller and the cooler core.
- a vehicle thermal management system includes a cooler pump that sucks and discharges a heat medium of a cooler cooling circuit, an engine cooling circuit that circulates the heat medium in an engine, and an engine pump that sucks and discharges the heat medium of the engine cooling circuit, And an engine radiator for exchanging heat between the heat medium of the engine cooling circuit and the outside air.
- the vehicle thermal management system also includes an independent mode in which the heat medium circulates independently through the cooler cooling circuit and the engine cooling circuit, and the cooler cooling circuit and the engine cooling so that the heat medium flows between the chiller and the engine radiator.
- a switching device is provided that switches between a communication mode in which the circuit communicates.
- the vehicle thermal management system includes a control unit that controls the operation of the switching device so as to switch to the communication mode when the temperature of the heat medium in the engine cooling circuit is lower than the first heat medium temperature.
- the heat medium cooled by the chiller flows to the engine radiator of the engine cooling circuit by switching to the communication mode.
- the room can be heated. Therefore, it is possible to improve the heating performance in the passenger compartment by effectively using the engine radiator.
- the vehicle thermal management system 10 shown in FIG. 1 is used to adjust various devices and vehicle interiors provided in the vehicle to appropriate temperatures.
- the vehicle thermal management system 10 is applied to a hybrid vehicle that obtains driving force for vehicle travel from an engine (internal combustion engine) and a travel electric motor.
- the hybrid vehicle according to the present embodiment is configured as a plug-in hybrid vehicle that can charge power supplied from an external power source (commercial power source) when the vehicle is stopped to a battery (vehicle battery) mounted on the vehicle.
- a battery vehicle battery
- the battery for example, a lithium ion battery can be used.
- the driving force output from the engine is used not only for driving the vehicle but also for operating the generator.
- the electric power generated by the generator and the electric power supplied from the external power source can be stored in the battery, and the electric power stored in the battery is not limited to the electric motor for traveling, but also the thermal management system 10 for the vehicle. Is supplied to various in-vehicle devices including the electric component device.
- the vehicle thermal management system 10 includes a cooler cooling circuit 11, an engine cooling circuit 12, a capacitor circuit 13, and a radiator circuit 14.
- the cooler cooling circuit 11 and the engine cooling circuit 12 are cooling water circuits in which cooling water (heat medium) circulates.
- the condenser circuit 13 and the radiator circuit 14 are cooling water circuits in which cooling water (heater side heat medium) circulates independently of the cooler cooling circuit 11 and the engine cooling circuit 12.
- Cooling water is a fluid as a heat medium.
- a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used as the cooling water.
- a cooler pump 20 In the cooler cooling circuit 11, a cooler pump 20, a chiller 21, and a cooler core 22 are arranged so that cooling water circulates in this order.
- the cooler pump 20 is an electric pump that sucks and discharges cooling water.
- the chiller 21 is a low pressure side heat exchanger (heat exchanger for heat medium cooling) that cools the cooling water by exchanging heat between the low pressure side refrigerant of the refrigeration cycle 25 and the cooling water.
- the cooling water can be cooled to a temperature lower than the temperature of the outside air.
- the cooler core 22 is an air cooling heat exchanger (heat medium air heat exchanger) that cools the blown air into the vehicle interior by exchanging heat between the cooling water and the air blown into the vehicle interior.
- the cooling water absorbs heat from the air by sensible heat change. That is, in the cooler core 22, even if the cooling water absorbs heat from the air, the cooling water remains in a liquid phase and does not change phase.
- an engine pump 30, an engine 31, and an engine radiator 32 are arranged so that cooling water circulates in this order.
- the engine pump 30 is an electric pump that sucks and discharges cooling water.
- the engine pump 30 may be a belt-driven pump that is driven by transmitting the driving force of the engine 31 through a belt.
- the engine radiator 32 is a cooling water outside air heat exchanger (heat medium outside air heat exchanger) that exchanges heat between the cooling water and outside air (hereinafter referred to as outside air).
- the outdoor blower 33 is an outside air blower that blows outside air to the engine radiator 32.
- the engine cooling circuit 12 has a circulation passage 34, a radiator bypass passage 35, and a heat exchanger passage 36.
- the circulation flow path 34 is a cooling water flow path in which the engine pump 30, the engine 31, and the engine radiator 32 are arranged so that the cooling water circulates in this order.
- the radiator bypass passage 35 is a cooling water passage connected to the circulation passage 34 so that the cooling water flows bypassing the engine radiator 32, and is arranged in parallel with the engine radiator 32 in the cooling water flow.
- a thermostat 37 is disposed at a connection portion between the circulation flow path 34 and the radiator bypass flow path 35.
- the thermostat 37 is a cooling water temperature responsive valve configured by a mechanical mechanism that opens and closes the cooling water flow path by displacing the valve body by a thermo wax (temperature sensing member) whose volume changes with temperature.
- the thermostat 37 opens the radiator bypass flow path 35 and closes the flow path on the engine radiator 32 side.
- the thermostat 37 closes the radiator bypass flow path 35 and opens the flow path on the engine radiator 32 side.
- the heat exchanger channel 36 is a cooling water channel in which a water / water heat exchanger (heat inflow device) 38 is arranged, and is arranged in parallel with the engine radiator 32 and the radiator bypass channel 35 in the cooling water flow.
- a water / water heat exchanger heat inflow device
- the water / water heat exchanger 38 is a heat exchanger (heat medium heat medium heat exchanger) that exchanges heat between the cooling water of the engine cooling circuit 12 and the cooling water of the condenser circuit 13.
- a first reserve tank 39 is connected to the engine radiator 32.
- the first reserve tank 39 is a cooling water storage device that stores excess cooling water.
- the communication flow path 40, the engine radiator flow path 41, and the engine heat absorption flow path 42 are cooling water flow paths that connect the cooler cooling circuit 11 and the engine cooling circuit 12.
- the communication flow path 40 includes a cooling water outlet side of the chiller 21 and the cooling water inlet side of the cooler core 22 in the cooler cooling circuit 11, and a cooling water outlet side of the engine 31 and the engine radiator 32 in the engine cooling circuit 12. Connected to the water inlet side.
- the engine radiator flow path 41 includes a portion of the cooler cooling circuit 11 on the cooling water outlet side of the cooler core 22 and the cooling water suction side of the cooler pump 20, and a portion of the engine cooling circuit 12 on the cooling water outlet side of the engine radiator 32 and the engine pump. 30 is connected to a portion on the cooling water suction side.
- the engine heat absorption flow path 42 connects a portion of the cooler cooling circuit 11 on the cooling water outlet side of the cooler core 22 and the cooling water suction side of the cooler pump 20 to the radiator bypass flow path 35 of the engine cooling circuit 12.
- the cooler side valve 43 is disposed at a connection portion between the cooling water flow path, the engine radiator flow path 41 and the engine heat absorption flow path 42 of the cooler cooling circuit 11.
- the cooler side valve 43 is a four-way valve having four ports (first to fourth ports).
- the first port of the cooler side valve 43 is connected to the flow path on the cooling water outlet side of the cooler core 22.
- the second port of the cooler side valve 43 is connected to the flow path on the cooling water suction side of the cooler pump 20.
- the second port of the cooler side valve 43 is connected to the flow path on the cooling water inlet side of the chiller 21.
- the third port of the cooler side valve 43 is connected to the engine radiator flow path 41.
- the fourth port of the cooler side valve 43 is connected to the engine heat absorption flow path 42.
- the cooler side valve 43 has a valve body that switches the connection state between the first to fourth ports.
- the cooler side valve 43 is a cooling water flow switching unit (switching device) that switches the flow of the cooling water by the switching operation of the valve body.
- the capacitor circuit 13 includes a heater pump 50, a heater core (air heating device) 51, and a capacitor (air heating device) 52.
- the heater pump 50 is an electric pump that sucks and discharges cooling water.
- the heater core 51 is an air heating heat exchanger (heat medium air heat exchanger) that heats the air blown into the vehicle interior by exchanging heat between the cooling water and the air blown into the vehicle interior.
- the cooling water dissipates heat to the air by sensible heat change. That is, in the heater core 51, even if the cooling water radiates heat to the air, the cooling water remains in a liquid phase and does not change in phase.
- the condenser 52 is a high-pressure side heat exchanger (heat exchanger for heat medium heating) that heats the cooling water by exchanging heat between the high-pressure side refrigerant of the refrigeration cycle 25 and the cooling water.
- the heater core 51 and the condenser 52 are air heaters that heat the air blown into the vehicle interior using the heat of the high-pressure side refrigerant of the refrigeration cycle 25.
- the refrigeration cycle 25 is a vapor compression refrigerator that includes a compressor 26, a condenser 52, a receiver 27, an expansion valve 28, and a chiller 21.
- a chlorofluorocarbon refrigerant is used as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
- the compressor 26 is an electric compressor driven by electric power supplied from a battery, or a variable capacity compressor driven by an engine belt by the driving force of the engine.
- the compressor 26 sucks and compresses the refrigerant of the refrigeration cycle 25. Discharge.
- the condenser 52 is a condenser that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 26 and the cooling water.
- the receiver 27 is a gas-liquid separator that separates the gas-liquid two-phase refrigerant that has flowed out of the capacitor 52 into a gas-phase refrigerant and a liquid-phase refrigerant, and causes the separated liquid-phase refrigerant to flow out to the expansion valve 23 side.
- the expansion valve 28 is a decompression unit (decompression device) that decompresses and expands the liquid-phase refrigerant that has flowed out of the receiver 27.
- the expansion valve 28 is a temperature type expansion valve having a temperature sensing part that detects the degree of superheat of the chiller 21 outlet side refrigerant based on the temperature and pressure of the chiller 21 outlet side refrigerant. That is, the expansion valve 28 is a temperature type expansion valve that adjusts the throttle passage area by a mechanical mechanism so that the degree of superheat of the refrigerant on the outlet side of the chiller 21 falls within a predetermined range.
- the expansion valve 28 may be an electric expansion valve that adjusts the throttle passage area by an electric mechanism.
- the chiller 21 is an evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 28 and the cooling water.
- the gas-phase refrigerant evaporated by the chiller 21 is sucked into the compressor 26 and compressed.
- the compressor 26 and the expansion valve 28 are a refrigerant flow rate adjusting unit (refrigerant flow rate adjusting device) that adjusts the flow rate of the refrigerant flowing through the refrigeration cycle 25.
- refrigerant flow rate adjusting unit refrigerant flow rate adjusting device
- the capacitor circuit 13 has a circulation channel 53 and a water / water heat exchanger channel 54.
- the circulation channel 53 is a cooling water channel in which the heater pump 50, the heater core 51, and the condenser 52 are arranged so that the cooling water circulates in this order.
- the water / water heat exchanger channel 54 is a cooling water channel in which the water / water heat exchanger 38 is arranged, and is arranged in parallel with the capacitor 52 in the cooling water flow.
- the water-water heat exchanger flow path 54 is a part of the circulation flow path 53 on the cooling water outlet side of the heater core 51 and the cooling water inlet side of the condenser 52, the cooling water outlet side of the condenser 52 and the cooling water of the heater pump 50. Connected to the inhalation site.
- a radiator pump 60 In the radiator circuit 14, a radiator pump 60, a heater-side radiator 61, and a cooling water circulation device 62 are arranged so that the cooling water circulates in this order.
- the radiator pump 60 is an electric pump that sucks and discharges cooling water.
- the heater-side radiator 61 is a cooling water outside air heat exchanger (heat medium outside air heat exchanger) that exchanges heat between cooling water and outside air. Outside air is blown to the heater-side radiator 61 by the outdoor blower 33.
- the heater-side radiator 61 and the engine radiator 32 are arranged at the forefront of the vehicle.
- the heater-side radiator 61 is disposed upstream of the engine radiator 32 in the outside air flow direction. Traveling wind can be applied to the heater-side radiator 61 and the engine radiator 32 when the vehicle is traveling.
- the cooling water distribution device 62 is a device that is cooled by circulating the cooling water therein.
- Examples of the cooling water distribution device 62 include a traveling motor, an inverter, an oil cooler, a turbocharger, an intercooler, and the like.
- An inverter is a power conversion device that converts DC power supplied from a battery into AC power and outputs the AC power to a traveling motor.
- the oil cooler is an engine oil heat exchanger (lubricant heat exchanger) that exchanges heat between engine oil (lubricating oil used in the engine 31) and cooling water to cool the engine oil.
- engine oil lubricating oil used in the engine 31
- the turbocharger is a supercharger that supercharges the intake air of the engine 31 by rotating the turbine using the residual energy of the exhaust gas of the engine 31.
- the intercooler is an intake air cooler that cools the supercharged intake air by exchanging heat between the supercharged intake air that has been compressed by the turbocharger and becomes high temperature and the cooling water.
- the second reserve tank 63 is connected to the radiator circuit 14.
- the second reserve tank 63 is a cooling water storage device that stores excess cooling water.
- the radiator inlet-side flow path 65 and the radiator outlet-side flow path 66 are cooling water flow paths that allow the condenser circuit 13 and the radiator circuit 14 to communicate with each other.
- the radiator inlet-side flow path 65 is a part of the circulation flow path 53 of the condenser circuit 13 on the cooling water outlet side of the heater core 51 and the cooling water inlet side of the condenser 52, and the cooling water of the cooling water circulation device 62 in the radiator circuit 14.
- the outlet side and the portion on the cooling water suction side of the radiator pump 60 are connected.
- the radiator outlet-side flow channel 66 includes a cooling water outlet side of the condenser 52 and a cooling water suction side portion of the heater pump 50 in the circulation flow channel 53 of the condenser circuit 13, and a cooling water of the heater-side radiator 61 in the radiator circuit 14.
- the outlet side and the part on the cooling water inlet side of the cooling water circulation device 62 are connected.
- the heater side valve 67 is disposed at a connection portion of the circulation passage 53, the water / water heat exchanger passage 54, and the radiator inlet side passage 65 of the condenser circuit 13.
- the heater side valve 67 is a four-way valve having four ports (first to fourth ports).
- the first port of the heater side valve 67 is connected to a flow path on the cooling water outlet side of the condenser 52.
- a second port of the heater side valve 67 is connected to a flow path on the cooling water suction side of the radiator pump 60.
- the second port of the heater side valve 67 is connected to the flow path on the cooling water inlet side of the heater core 51.
- the third port of the heater side valve 67 is connected to the water / water heat exchanger flow path 54.
- the fourth port of the heater side valve 67 is connected to the radiator inlet side flow path 65.
- the heater side valve 67 has a valve body for switching the connection state between the first to fourth ports.
- the heater side valve 67 is a cooling water flow switching unit (heater side switching device) that switches the flow of the cooling water by the switching operation of the valve body.
- the cooler core 22 and the heater core 51 are accommodated in the casing 71 of the indoor air conditioning unit 70 of the vehicle air conditioner.
- the indoor air conditioning unit 70 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior.
- the casing 71 forms an outer shell of the indoor air conditioning unit 70.
- the casing 71 forms an air passage through which air blown by the indoor blower flows, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
- a resin for example, polypropylene
- the cooler core 22 and the heater core 51 are arranged in an air passage in the casing 71 so that air flows in this order.
- the inside / outside air switching box is arranged on the most upstream side of the blast air flow in the casing 71.
- the inside / outside air switching box is an inside / outside air switching unit (inside / outside air switching device) that switches between vehicle interior air (hereinafter referred to as inside air) and outside air.
- the inside / outside air switching box switches the suction port mode to the inside air circulation mode, the outside air introduction mode, and the inside / outside air mixing mode.
- inside air circulation mode inside air is introduced and outside air is not introduced.
- outside air introduction mode outside air is introduced and inside air is not introduced.
- inside / outside air mixing mode both inside air and outside air are introduced at a predetermined rate.
- a heater core passage 71 a through which the air after passing through the cooler core 22 flows through the heater core 51
- a bypass passage 71 b through which the air after passing through the cooler core 22 flows through the heater core 51. They are formed in parallel.
- a mixing space 71c is formed on the downstream side of the air flow of the heater core passage 71a and the bypass passage 71b to mix the hot air flowing out of the heater core passage 71a and the cold air flowing out of the bypass passage 71b.
- an air mix door 72 is disposed on the downstream side of the air flow of the cooler core 22 and on the inlet side of the heater core passage 71a and the bypass passage 71b.
- the air mix door 72 is an air volume ratio adjusting unit (air volume ratio adjusting device) that continuously changes the air volume ratio between the heater core passage 71a and the bypass passage 71b.
- the temperature of the blown air mixed in the mixing space 71c varies depending on the air volume ratio between the air passing through the heater core passage 71a and the air passing through the bypass passage 71b. Therefore, the air mix door 72 is a temperature adjusting unit (temperature adjusting device) that adjusts the air temperature in the mixing space 71c (the temperature of the blown air blown into the vehicle interior).
- the air mix door 72 is configured by a so-called cantilever door configured to include a rotating shaft driven by an electric actuator and a plate-like door main body connected to the common rotating shaft.
- An air outlet 71d is formed at the most downstream portion of the air flow of the casing 71.
- the air outlet 71d blows out the air whose temperature has been adjusted in the mixing space 71c to the vehicle interior space that is the air-conditioning target space.
- the face air outlet is an upper body side air outlet that blows air-conditioned air toward the upper body of an occupant in the passenger compartment.
- the foot air outlet is a foot air outlet (lower body air outlet) that blows air-conditioned air toward the feet (lower body) of the occupant.
- the defroster air outlet is a window glass side air outlet that blows out conditioned air toward the inner side surface of the vehicle front window glass.
- the air outlet mode door is arranged on the upstream side of the air flow of the face air outlet, the foot air outlet, and the defroster air outlet.
- the air outlet mode door is an air outlet mode switching unit (air outlet mode switching device) that switches the air outlet mode by adjusting the opening areas of the face air outlet, the foot air outlet, and the defroster air outlet.
- the outlet mode door is rotated by an electric actuator.
- the face air outlet In the face mode, the face air outlet is fully opened and air is blown out from the face air outlet toward the upper body of the passengers in the passenger compartment. In the bi-level mode, both the face air outlet and the foot air outlet are opened and air is blown out toward the upper body and feet of the passengers in the passenger compartment.
- the foot outlet In the foot mode, the foot outlet is fully opened and the defroster outlet is opened by a small opening so that air is mainly blown out from the foot outlet.
- the foot outlet and the defroster outlet In the foot defroster mode, the foot outlet and the defroster outlet are opened to the same extent, and air is blown out from both the foot outlet and the defroster outlet.
- the defroster outlet is fully opened and air is blown out from the defroster outlet to the inner surface of the front window glass of the vehicle.
- the control device 80 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof.
- the control device 80 is a control unit that performs various calculations and processes based on an air conditioning control program stored in the ROM, and controls operations of various control target devices connected to the output side.
- the control target devices controlled by the control device 80 are the cooler pump 20, the engine pump 30, the heater pump 50, the radiator pump 60, the cooler side valve 43, the heater side valve 67, the compressor 26, the outdoor blower 33, and the indoor air conditioning unit.
- the electric actuator etc. which drive 70 various doors (air mix door 72 grade
- control device 80 the configuration (hardware and software) that controls the operation of various control target devices connected to the output side constitutes a control unit that controls the operation of each control target device.
- the operations of the cooler pump 20, the engine pump 30, the heater pump 50, and the radiator pump 60 are controlled by the pump control unit 80 a of the control device 80.
- the pump control unit 80a is also a flow rate control unit that controls the flow rate of the cooling water flowing through each cooling water circulation device.
- the operation of the cooler side valve 43 and the heater side valve 67 is controlled by the switching valve control unit 80b in the control device 80.
- the switching valve control unit 80b is also a circulation switching control unit that switches the cooling water circulation state.
- the switching valve control unit 80b is also a flow rate control unit that adjusts the flow rate of the cooling water flowing through each cooling water circulation device.
- the flow rate control of the cooling water may be a method of controlling the flow rate by controlling the pressure loss by continuously varying the water passage opening area inside the valve.
- the flow rate control of the cooling water may be a method in which the flow rate is controlled on a time average basis by repeatedly switching between water flow and blocking at a predetermined ratio within a predetermined time.
- the operation of the compressor 26 is controlled by the compressor control unit 80 c of the control device 80.
- the compressor control unit 80 c is also a refrigerant flow rate control unit that controls the flow rate of the refrigerant discharged from the compressor 26.
- the operation of the outdoor blower 33 is controlled by the outdoor blower control unit 80d in the control device 80.
- the outdoor fan control unit 80d is also an outside air flow rate control unit that controls the flow rate of outside air flowing through the radiator circuit 13.
- the operation of various doors (such as the air mix door 72) of the indoor air conditioning unit 70 is controlled by the air conditioning switching control unit 80e in the control device 80.
- the air conditioning switching control unit 80e is also a blown air temperature control unit that controls the temperature of air blown from the indoor air conditioning unit 70 into the vehicle interior.
- Each control unit 80a, 80b, 80c, 80d, 80e may be provided separately from the control device 80.
- the detection signal of the sensor group is input to the input side of the control device 80.
- the sensor group includes an inside air temperature sensor 81, an outside air temperature sensor 82, a solar radiation sensor 83, a cooler water temperature sensor 84, an engine water temperature sensor 85, a condenser water temperature sensor 86, a radiator water temperature sensor 87, a cooler core temperature sensor 88, a heater core temperature sensor 89, and a device temperature.
- the inside air temperature sensor 81 is an inside air temperature detection unit that detects the temperature of the inside air (the temperature in the vehicle interior).
- the outside air temperature sensor 82 is an outside air temperature detection unit that detects the temperature of outside air (the temperature outside the passenger compartment).
- the solar radiation sensor 83 is a solar radiation amount detection unit that detects the amount of solar radiation in the passenger compartment.
- the cooler water temperature sensor 84 is a cooling water temperature detection unit (heat medium temperature detection unit) that detects the temperature of the cooling water flowing through the cooler cooling circuit 11 (for example, the temperature of the cooling water flowing out of the chiller 21).
- the engine water temperature sensor 85 is a cooling water temperature detection unit (heat medium temperature detection unit) that detects the temperature of the cooling water flowing through the engine cooling circuit 12 (for example, the temperature of the cooling water sucked into the engine pump 30).
- the condenser water temperature sensor 86 is a cooling water temperature detection unit (heat medium temperature detection unit) that detects the temperature of the cooling water flowing through the capacitor circuit 13 (for example, the temperature of the cooling water flowing out of the capacitor 52).
- the radiator water temperature sensor 87 is a cooling water temperature detection unit (heat medium temperature detection unit) that detects the temperature of the cooling water flowing through the radiator circuit 14 (for example, the temperature of the cooling water flowing out from the heater-side radiator 61).
- the cooler core temperature sensor 88 is a detection unit (cooler core temperature detection unit) that detects the surface temperature of the cooler core 22.
- the cooler core temperature sensor 88 is, for example, a fin thermistor 88a (see FIG. 1) that detects the temperature of the heat exchange fins of the cooler core 22, or a water temperature sensor 88b (see FIG. 2) that detects the temperature of the cooling water flowing through the cooler core 22. is there.
- the heater core temperature sensor 89 is a detection unit (heater core temperature detection unit) that detects the surface temperature of the heater core 51.
- the heater core temperature sensor 89 is, for example, a fin thermistor that detects the temperature of the heat exchange fins of the heater core 51, a water temperature sensor that detects the temperature of the cooling water flowing through the heater core 51, or the like.
- the device temperature sensor 90 is a device temperature detection unit that detects the temperature of the cooling water circulation device 62 (for example, the temperature of the cooling water flowing out of the cooling water circulation device 62).
- the refrigerant temperature sensor 91 is a refrigerant temperature detection unit that detects the temperature of the refrigerant in the refrigeration cycle 25 (for example, the temperature of the refrigerant discharged from the compressor 26 or the temperature of the refrigerant sucked into the compressor 26).
- the refrigerant pressure sensor 93 is a refrigerant pressure detection unit that detects the pressure of the refrigerant in the refrigeration cycle 25 (for example, the pressure of the refrigerant discharged from the compressor 26 or the pressure of the refrigerant sucked into the compressor 26).
- Operation signals from various air conditioning operation switches provided on the operation panel 95 are input to the input side of the control device 80.
- the operation panel 95 is disposed near the instrument panel in the front part of the vehicle interior.
- Various air conditioning operation switches provided on the operation panel 95 are an auto switch 95a, an air conditioner switch 95b, a defroster switch 95c, a vehicle interior temperature setting switch 95d, and the like.
- the auto switch 95a is an operation unit for setting an air-conditioning automatic control operation.
- the air conditioner switch 95b is an operation unit that manually operates and stops the compressor 26.
- the defroster switch 95c is an operation unit for manually setting / releasing the defroster mode.
- the vehicle interior temperature setting switch 95d is an operation unit that sets the vehicle interior target temperature Tset.
- Each switch may be a push switch in which electrical contacts are made conductive by being mechanically pressed, or may be a touch screen system that reacts by touching a predetermined area on the electrostatic panel.
- the control device 80 calculates the target blowing temperature TAO of the vehicle interior blowing air and the target temperature TCO of the blowing air from the cooler core 22.
- the target blowing temperature TAO is a value that is determined in order to quickly bring the inside air temperature Tr closer to the occupant's desired target temperature Tset, and is calculated by the following formula F1.
- TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts + C F1
- Tr is the inside air temperature detected by the inside air temperature sensor 81
- Tam is the outside air temperature detected by the outside air temperature sensor 82
- Ts is the amount of solar radiation detected by the solar sensor 83.
- Kset, Kr, Kam, Ks are control gains, and C is a correction constant.
- the cooler core target blowing temperature TCO is calculated based on the target blowing temperature TAO and the like. Specifically, the cooler core target blowing temperature TCO is calculated so as to decrease as the target blowing temperature TAO decreases. Further, the cooler core target blowing temperature TCO is calculated so as to be equal to or higher than a reference frosting prevention temperature (for example, 1 ° C.) determined so as to suppress the frosting of the cooler core 22.
- a reference frosting prevention temperature for example, 1 ° C.
- the engine control device 99 is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, and performs various calculations and processing based on an engine control program stored in the ROM to operate the engine 31. It is an engine control part which controls.
- the engine control device 99 is connected to various engine components constituting the engine 31 on the output side.
- the various engine components include a starter for starting the engine 31, a drive circuit for a fuel injection valve (injector) that supplies fuel to the engine 31, and the like.
- various sensor groups for engine control are connected to the input side of the engine control device 99.
- the various sensor groups for engine control include an accelerator opening sensor that detects the accelerator opening, an engine speed sensor that detects the engine speed, a vehicle speed sensor that detects the vehicle speed, and the like.
- the control device 80 and the engine control device 99 are configured to be electrically connected to communicate with each other. Thereby, based on the detection signal or operation signal input into one control apparatus, the other control apparatus can also control the operation
- the engine control device 99 When the engine control device 99 receives a request signal (operation request signal) requesting the operation of the engine 31 from the control device 80, the engine control device 99 determines whether or not the engine 31 needs to be operated, and operates the engine 31 according to the determination result. To control.
- a request signal operation request signal
- the configuration (hardware and software) that outputs a request signal to the engine control device 99 in the control device 80 is a request output unit 80f.
- the request output unit 80f may be configured separately from the control device 80.
- the control device 80 can be switched to various operation modes by controlling the operation of various devices to be controlled connected to the output side.
- the various operation modes include, for example, a cooling mode, a dehumidifying heating mode, an outdoor heat absorption heat pump heating mode, an outdoor heat absorption heat pump heating mode (engine exhaust heat assist), an outdoor air utilization dehumidification mode, an engine heat absorption heat pump heating mode, and a heat pump reheat dehumidification mode. It is.
- the cooling mode is an air conditioning mode in which the vehicle interior is cooled using the refrigeration cycle 25.
- the dehumidifying heating mode is an air conditioning mode in which heating is performed using exhaust heat of the engine 31 while dehumidifying the passenger compartment using the refrigeration cycle 25.
- the cooler side valve 43 communicates the flow path on the cooling water outlet side of the cooler core 22 with the flow path on the cooling water inlet side of the chiller 21, and the engine radiator flow path. 41 and the engine heat absorption flow path 42 are closed.
- the heater side valve 67 communicates the water / water heat exchanger flow path 54 with the flow path on the cooling water inlet side of the heater core 51, and the flow path on the cooling water outlet side of the condenser 52 and the radiator inlet side flow path 65. To communicate with.
- the cooling mode and the dehumidifying heating mode are selected when the temperature of the cooling water in the engine cooling circuit 12 is high enough to be directly used for heating (for example, 60 ° C. or more). Accordingly, in the cooling mode and the dehumidifying heating mode, the thermostat 37 closes the radiator bypass flow path 35 and opens the flow path on the engine radiator 32 side.
- the cooling water circulates independently of each other.
- the cooling water is cooled by the chiller 21 and then flows through the cooler core 22. Therefore, air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is cooled by the cooler core 22. .
- the cooling water heated by the engine 31 flows through the water / water heat exchanger 38, so the cooling water flowing through the water / water heat exchanger flow path 54 is heated in the water / water heat exchanger 38. .
- the cooling water heated by the condenser 52 and the cooling water heated by the cooling water circulation device 62 flow through the heater-side radiator 61, the exhaust heat of the condenser 52 and the exhaust heat of the cooling water circulation device 62 in the heater-side radiator 61. Is dissipated to the outside air.
- the outlet temperature of the cooler core 22 may be brought close to the target temperature by adjusting the number of rotations of the cooler pump 20 and adjusting the flow rate of the cooling water flowing through the cooler core 22.
- the temperature of the conditioned air blown from the indoor air conditioning unit 70 into the vehicle interior is brought close to the target temperature.
- the temperature of the conditioned air blown out from the indoor air conditioning unit 70 into the vehicle interior can be estimated based on the blowing temperature of the cooler core 22, the blowing temperature of the heater core 51, and the opening degree of the air mix door 72.
- the temperature of the conditioned air blown from the indoor air conditioning unit 70 into the vehicle interior may be brought close to the target temperature.
- the temperature of the conditioned air blown from the indoor air-conditioning unit 70 into the vehicle interior is adjusted. It may be close to the target temperature.
- outside air endothermic heat pump heating mode is an air conditioning mode in which heat is absorbed from outside air and the vehicle interior is heated using the heat.
- the cooler side valve 43 communicates the flow path on the cooling water outlet side of the cooler core 22 and the engine radiator flow path 41 to the flow path on the cooling water inlet side of the chiller 21. Then, the engine heat absorption passage 42 is closed. Further, the heater side valve 67 communicates the flow path on the cooling water outlet side of the condenser 52 and the flow path on the cooling water inlet side of the heater core 51, and connects the water / water heat exchanger flow path 54 and the radiator inlet side flow path 65. close.
- the outside air endothermic heat pump heating mode is selected when the temperature of the cooling water in the engine cooling circuit 12 is a low temperature that cannot be directly used for heating (for example, less than 60 ° C.). Therefore, in the outside air endothermic heat pump heating mode, the thermostat 37 opens the radiator bypass channel 35 and closes the channel on the engine radiator 32 side.
- the cooling water cooled by the chiller 21 flows through the engine radiator 32, the cooling water absorbs heat from the outside air in the engine radiator 32. Further, since the cooling water cooled by the chiller 21 flows through the cooler core 22, the air flowing through the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is cooled and dehumidified by the cooler core 22.
- the flow rate of the cooler core 22 is adjusted to suppress the frost of the cooler core 22.
- the heat absorption amount is controlled by adjusting the flow rate of the engine radiator 32 so that the cooling water temperature of the cooler core 22 does not become too high.
- the cooler side valve 43 blocks the flow of the cooling water to the cooler core 22.
- the cooling water circulates independently of each other.
- the cooling water heated by the capacitor 52 flows through the heater core 51, so that air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is heated by the heater core 51.
- the cooling water heated by the cooling water circulation device 62 flows through the heater-side radiator 61, the exhaust heat of the cooling water circulation device 62 is radiated to the outside air in the heater-side radiator 61.
- the heater-side radiator 61 can radiate the exhaust heat of the cooling water circulation device 62 to the outside air. Therefore, since the cooling water circulation device 62 can be cooled to the same level as the outside air temperature while heating by the heat pump operation of the refrigeration cycle 25, the cooling water circulation device 62 can be cooled to an appropriate temperature.
- the heater-side radiator 61 is disposed upstream of the engine radiator 32 in the outside air flow direction. Therefore, the exhaust heat of the coolant circulation device 62 radiated to the outside air in the heater-side radiator 61 is absorbed by the coolant in the engine radiator 32.
- the endothermic temperature can be increased and the endothermic amount can be ensured even if the refrigerant pressure in the chiller 21 is increased, so that the COP is improved.
- the cooling water temperature of the engine radiator 32 also rises, it becomes difficult to form frost and the reduction in COP can be suppressed, so that the heating efficiency can be improved.
- the flow rate of the cooling water flowing through the cooler core 22 and the flow rate of the cooling water flowing through the engine radiator 32 are adjusted to target the blow-out temperature of the cooler core 22. Move closer to temperature.
- the temperature of the conditioned air blown from the indoor air conditioning unit 70 into the vehicle interior is brought close to the target temperature.
- the temperature of the conditioned air blown from the indoor air conditioning unit 70 into the vehicle interior may be brought close to the target temperature.
- the temperature of the conditioned air blown from the indoor air-conditioning unit 70 into the vehicle interior is adjusted. It may be close to the target temperature.
- the temperature of the conditioned air blown from the indoor air conditioning unit 70 into the vehicle interior may be brought closer to the target temperature by adjusting the rotational speed of the compressor 26 and adjusting the flow rate of the refrigerant circulating in the refrigeration cycle 25.
- outside air endothermic heat pump heating mode (engine exhaust heat assist)
- engine exhaust heat assist is an air conditioning mode in which the vehicle interior is heated using heat absorption from outside air and exhaust heat from the engine 31.
- the cooler side valve 43 is connected to the coolant outlet side passage of the cooler core 22 and the engine radiator passage 41 on the coolant inlet side of the chiller 21. And the engine endothermic flow path 42 is closed. Further, the heater side valve 67 communicates the flow path on the cooling water outlet side of the condenser 52 and the water / water heat exchanger flow path 54 with the flow path on the cooling water inlet side of the heater core 51 and closes the radiator inlet side flow path 65. .
- the outside air endothermic heat pump heating mode (engine exhaust heat assist) is selected when the temperature of the cooling water in the engine cooling circuit 12 is low (eg, less than 60 ° C.) that cannot be directly used for heating. Therefore, in the outside air endothermic heat pump heating mode (engine exhaust heat assist), the thermostat 37 opens the radiator bypass passage 35 and closes the passage on the engine radiator 32 side.
- the cooling water cooled by the chiller 21 flows through the engine radiator 32, the cooling water absorbs heat from the outside air in the engine radiator 32. Further, since the cooling water cooled by the chiller 21 flows through the cooler core 22, the air flowing through the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is cooled and dehumidified by the cooler core 22.
- the flow rate of the cooler core 22 is adjusted to suppress the frost of the cooler core 22.
- the heat absorption is controlled by adjusting the flow rate of the engine radiator 32 so that the water temperature of the cooler core 22 does not become too high.
- the cooler side valve 43 blocks the flow of the cooling water to the cooler core 22.
- the cooling water heated by the engine 31 flows through the water / water heat exchanger 38.
- the temperature of the cooling water flowing into the water / water heat exchanger 38 in the engine cooling circuit 12 is the temperature of the cooling water flowing into the water / water heat exchanger 38 in the condenser circuit 13. It is higher than the temperature. Therefore, the cooling water flowing through the water / water heat exchanger flow path 54 is heated in the water / water heat exchanger 38.
- the heat exchange amount in the water / water heat exchanger 38 is adjusted by adjusting the cooling water flow rate by the engine pump 30, adjusting the cooling water flow rate by the heater pump 50, and adjusting the cooling water flow rate by the heater side valve 67.
- the cooling water heated in the water / water heat exchanger flow path 54 flows through the heater core 51, so that air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is in the heater core 51. Heated.
- the cooling water heated by the capacitor 52 flows through the heater core 51, so that air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is heated by the heater core 51.
- the amount of heat taken by the cooling water from the engine 31 is controlled so that the cooling water temperature of the engine cooling circuit 12 can be maintained within a predetermined temperature range. Thereby, while the fuel consumption deterioration by the fall of the cooling water temperature of the engine cooling circuit 12 can be suppressed and it can heat without raising the operation rate of the engine 31, the fuel consumption at the time of heating use can be improved.
- the cooling water heated by the cooling water circulation device 62 flows through the heater-side radiator 61, the exhaust heat of the cooling water circulation device 62 is radiated to the outside air in the heater-side radiator 61.
- the heater-side radiator 61 can radiate the exhaust heat of the cooling water circulation device 62 to the outside air. Therefore, since the cooling water circulation device 62 can be cooled to the same level as the outside air temperature while heating by the heat pump operation of the refrigeration cycle 25, the cooling water circulation device 62 can be cooled to an appropriate temperature.
- the heater-side radiator 61 is disposed upstream of the engine radiator 32 in the outside air flow direction. Therefore, the exhaust heat of the coolant circulation device 62 radiated to the outside air in the heater-side radiator 61 is absorbed by the coolant in the engine radiator 32.
- the endothermic temperature can be increased and the endothermic amount can be ensured even if the refrigerant pressure in the chiller 21 is increased, so that the COP is improved.
- the cooling water temperature of the engine radiator 32 also rises, it becomes difficult to form frost and the reduction in COP can be suppressed, so that the heating efficiency can be improved.
- the flow rate of the cooling water flowing through the cooler core 22 and the flow rate of the cooling water flowing through the engine radiator 32 are adjusted to target the blow-out temperature of the cooler core 22. Move closer to temperature.
- the temperature of the conditioned air blown from the indoor air conditioning unit 70 into the vehicle interior is brought close to the target temperature.
- the temperature of the conditioned air blown from the indoor air conditioning unit 70 into the vehicle interior may be brought close to the target temperature.
- the temperature of the conditioned air blown from the indoor air-conditioning unit 70 into the vehicle interior is adjusted. It may be close to the target temperature.
- the temperature of the conditioned air blown from the indoor air conditioning unit 70 into the vehicle interior may be brought closer to the target temperature by adjusting the rotational speed of the compressor 26 and adjusting the flow rate of the refrigerant circulating in the refrigeration cycle 25.
- the outside air utilization dehumidification mode is an air conditioning mode in which the vehicle interior is dehumidified without using the refrigeration cycle 25 by using low temperature outside air.
- the compressor 26 of the refrigeration cycle 25 is stopped in the switching state of the outside air endothermic heat pump heating mode (engine exhaust heat assist) shown in FIG.
- the cooler side valve 43 fully opens the communication opening degree between the cooling water passage of the cooler cooling circuit 11 and the engine radiator passage 41.
- the outside air dehumidifying mode is selected when the temperature of the cooling water in the engine cooling circuit 12 is lower than the target outlet temperature of the cooler core 22. Accordingly, in the outside air dehumidifying mode, the thermostat 37 opens the radiator bypass flow path 35 and closes the flow path on the engine radiator 32 side.
- the cooling water cooled by the low-temperature outside air in the engine radiator 32 flows through the cooler core 22, so that the air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is cooled and dehumidified by the cooler core 22. .
- the flow rate of the cooler core 22 is adjusted to suppress the frost of the cooler core 22.
- the cooler pump 20 stops the circulation of the cooling water to the cooler core 22.
- the cooling water heated by the engine 31 flows through the water / water heat exchanger 38.
- the temperature of the cooling water flowing into the water / water heat exchanger 38 in the engine cooling circuit 12 is higher than the temperature of the cooling water flowing into the water / water heat exchanger 38 in the condenser circuit 13. Selected. Therefore, the cooling water flowing through the water / water heat exchanger flow path 54 is heated in the water / water heat exchanger 38.
- the heat exchange amount in the water / water heat exchanger 38 is adjusted by adjusting the cooling water flow rate by the engine pump 30, adjusting the cooling water flow rate by the heater pump 50, and adjusting the cooling water flow rate by the heater side valve 67.
- the cooling water heated in the water / water heat exchanger flow path 54 flows through the heater core 51, so that air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is in the heater core 51. Heated.
- the amount of heat taken by the cooling water from the engine 31 is controlled so that the cooling water temperature of the engine cooling circuit 12 can be maintained within a predetermined temperature range. Thereby, while the fuel consumption deterioration by the fall of the cooling water temperature of the engine cooling circuit 12 can be suppressed and it can heat without raising the operation rate of the engine 31, the fuel consumption at the time of heating use can be improved.
- the cooling water heated by the cooling water circulation device 62 flows through the heater-side radiator 61, the exhaust heat of the cooling water circulation device 62 is radiated to the outside air in the heater-side radiator 61.
- the temperature of the cooler core 22 is brought close to the target temperature by adjusting the rotational speed of the cooler pump 20 and adjusting the flow rate of the cooling water flowing through the cooler core 22 and the engine radiator 32.
- the temperature of the conditioned air blown from the indoor air conditioning unit 70 into the vehicle interior is brought close to the target temperature.
- the temperature of the conditioned air blown from the indoor air conditioning unit 70 into the vehicle interior may be brought close to the target temperature.
- the temperature of the conditioned air blown from the indoor air-conditioning unit 70 into the vehicle interior is adjusted. It may be close to the target temperature.
- the engine endothermic heat pump heating mode is an air conditioning mode in which exhaust heat of the engine 31 is absorbed and the vehicle interior is heated using the heat.
- the cooler side valve 43 communicates the engine endothermic flow path 42 with the flow path on the cooling water inlet side of the chiller 21, and the flow on the cooling water outlet side of the cooler core 22.
- the road and engine radiator flow path 41 is closed.
- the heater side valve 67 communicates the flow path on the cooling water outlet side of the condenser 52 and the flow path on the cooling water inlet side of the heater core 51, and connects the water / water heat exchanger flow path 54 and the radiator inlet side flow path 65. close.
- the engine endothermic heat pump heating mode is selected when the temperature of the cooling water in the engine cooling circuit 12 is a low temperature that cannot be directly used for heating (for example, less than 60 ° C.). Therefore, in the engine endothermic heat pump heating mode, the thermostat 37 opens the radiator bypass passage 35 and closes the passage on the engine radiator 32 side.
- the cooling water heated by the engine 31 flows through the chiller 21, the cooling water absorbs the exhaust heat of the engine 31 in the chiller 21.
- the cooling water heated by the capacitor 52 flows through the heater core 51, so that air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is heated by the heater core 51.
- heating can be performed without increasing the engine operating rate, the fuel consumption during heating can be improved.
- the cooling water temperature of the engine cooling circuit 12 becomes lower and the heat absorption amount decreases and the required heating performance cannot be exhibited, the cooling water temperature of the engine cooling circuit 12 is changed by switching to the outside air heat absorption mode. Reduces fuel consumption by suppressing the decrease.
- the cooling water heated by the cooling water circulation device 62 flows through the heater-side radiator 61, the exhaust heat of the cooling water circulation device 62 is radiated to the outside air in the heater-side radiator 61.
- the heater-side radiator 61 is disposed upstream of the engine radiator 32 in the outside air flow direction. Therefore, the ambient temperature around the engine 31 rises due to the exhaust heat of the coolant circulation device 62 radiated to the outside air in the heater-side radiator 61, the amount of heat released from the surface of the engine 31 is reduced, and the heat retaining performance is improved.
- the temperature of the conditioned air blown from the indoor air conditioning unit 70 into the vehicle interior is brought close to the target temperature.
- the temperature of the conditioned air blown from the indoor air-conditioning unit 70 into the vehicle interior is adjusted. It may be close to the target temperature.
- the temperature of the conditioned air blown from the indoor air conditioning unit 70 into the vehicle interior may be brought closer to the target temperature by adjusting the rotational speed of the compressor 26 and adjusting the flow rate of the refrigerant circulating in the refrigeration cycle 25.
- Heat pump reheat dehumidifying and heating mode is an air conditioning mode that performs dehumidification and heating using the refrigeration cycle 25.
- the cooler side valve 43 communicates the flow path on the cooling water outlet side of the cooler core 22 and the flow path on the cooling water inlet side of the chiller 21, and the engine radiator flow path 41. And the engine heat absorption flow path 42 is closed.
- the heater side valve 67 communicates the flow path on the cooling water outlet side of the condenser 52 and the water / water heat exchanger flow path 54 with the flow path on the cooling water inlet side of the heater core 51 and closes the radiator inlet side flow path 65. .
- the cooling water temperature of the cooler cooling circuit 11 is also below the freezing point, so that the cooler pump 20 adjusts the flow rate of the cooler core 22 to suppress the frost of the cooler core 22.
- the cooling water heated by the capacitor 52 flows through the heater core 51, so that air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is heated by the heater core 51.
- the cooling water heated by the engine 31 flows through the water / water heat exchanger 38, and in the capacitor circuit 13, the cooling water heated by the water / water heat exchanger flow path 54 flows through the heater core 51. Therefore, the air flowing through the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is heated by the heater core 51.
- the cooling water heated by the capacitor 52 flows through the heater core 51, so that air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is heated by the heater core 51.
- the cooling water heated by the engine 31 flows through the water / water heat exchanger 38, so that the cooling water heated by the water / water heat exchanger 38 also flows through the heater core 51.
- the engine equipment heating mode is an operation mode in which the engine 31 is warmed up by the cooling water heated by the condenser 52.
- the capacitor circuit 13 is switched to the heat pump reheat dehumidifying and heating mode shown in FIG.
- the cooling water heated by the capacitor 52 flows through the water-water heat exchanger channel 54.
- the temperature of the cooling water flowing into the water / water heat exchanger 38 in the engine cooling circuit 12 is lower than the temperature of the cooling water flowing into the water / water heat exchanger 38 in the condenser circuit 13. Selected. Therefore, in the engine cooling circuit 12, the cooling water flowing through the water / water heat exchanger 38 is heated, and the cooling water heated by the water / water heat exchanger channel 54 flows through the engine 31, so that the engine 31 is heated (warm-up). )it can.
- FIG. 8 shows the valve position of the cooler side valve 43 in each mode described above.
- the cooler core flow path is a flow path from the cooling water outlet of the cooler core 22 to the cooler side valve 43
- the chiller flow path is a flow path from the cooler side valve 43 to the cooling water inlet of the chiller 21. That is.
- FIG. 9 shows the valve position of the heater side valve 67 in each mode described above.
- the capacitor channel is a channel from the cooling water outlet of the capacitor 52 to the heater side valve 67
- the heater core channel is a channel from the heater side valve 67 to the cooling water inlet of the heater core 51. That is.
- a cooler side valve 43 switching device that switches between the independent mode and the communication mode
- a control device 80 switching valve control unit 80b that controls the operation of the cooler side valve 43 are provided.
- cooling water circulates through the cooler cooling circuit 11 and the engine cooling circuit 12 independently of each other.
- the cooler cooling circuit 11 and the engine cooling circuit 12 communicate so that cooling water flows between the chiller 21 and the engine radiator 32.
- the control device 80 controls the operation of the cooler side valve 43 so as to switch to the communication mode when the temperature of the cooling water in the engine cooling circuit 12 is lower than a predetermined temperature (first heat medium temperature). .
- the cooling water cooled by the chiller 21 is caused to flow to the engine radiator 32 of the engine cooling circuit 12 by switching to the communication mode.
- the engine radiator 32 can absorb heat from the outside air to heat the vehicle interior (for example, the outside air endothermic heat pump heating mode). Therefore, the engine radiator 32 can be effectively used to improve the heating performance in the passenger compartment.
- control device 80 switching valve control unit 80b
- the control device 80 may be configured such that when the amount of air blown to the heater core 51 is small, when air blown to the heater core 51 is stopped, or when the heater core 51 is on the high pressure side of the refrigeration cycle 25.
- the operation of the cooler side valve 43 is controlled so that the cooling mode of the engine cooling circuit 12 is in the independent mode even when the temperature of the cooling water is lower than a predetermined temperature (first heat medium temperature). To do.
- the cooler side valve 43 can implement a cooler core communication mode in which the cooler cooling circuit 11 and the engine cooling circuit 12 communicate so that the heat medium flows between the chiller 21 and the cooler core 22 in the communication mode.
- the engine radiator 32 can absorb heat from the outside air, and the cooler core 22 can absorb heat from the air blown into the vehicle interior, so that heat pump heating is performed with sufficient heating capacity while dehumidifying the cooler core 22. It can be performed (for example, outside heat absorption type heat pump heating mode).
- the engine radiator 32 absorbs heat from outside air.
- An endothermic source can be supplemented.
- the control device 80 when dehumidifying and heating the passenger compartment in the communication mode, the temperature of the air blown from the cooler core 22 and the temperature of the cooler core blow target temperature (first blow target temperature) TCO.
- the difference is less than the predetermined value and the temperature of the air blown from the heater core 51 is lower than the heating target temperature TAO by a predetermined temperature or more, or when the heating performance does not satisfy the predetermined performance, the cooler side valve 43 is set so as to enter the cooler core communication mode. Control the operation of
- the cooler core communication mode can be set, so that the heat absorption from the outside air by the engine radiator 32 is sufficient to supplement the heat absorption source. Heating capacity can be secured.
- the heating capacity that is insufficient can be compensated without reducing the efficiency of the compressor 26 and increasing the amount of heat or using an auxiliary heat source such as an electric heater, so that sufficient heating capacity can be achieved without increasing energy consumption. Can be secured.
- the control device 80 (the switching valve control unit 80b) has a temperature related to the temperature of the blown air from the cooler core 22 approaches the first blow target temperature TCO, and the blown air from the heater core 51
- the operation of the cooler side valve 43 is controlled so that the temperature related to the temperature approaches the second target blowing temperature TAO, and the cooling water flow rate of the engine radiator 32 is adjusted, or the operation of the compressor 26 and the like is controlled to refrigerate.
- the refrigerant flow rate of the cycle 25 is adjusted.
- the cooler side valve 43 allows the cooler cooling circuit 11 and the engine cooling circuit 12 to communicate with each other so that cooling water flows between the cooler core 22 and the engine radiator 32.
- the air can be cooled and dehumidified by the cooler core 22 using the outside air cool air, it is possible to save power for cooling and dehumidification (for example, the outside air endothermic heat pump heating mode, the outside air endothermic heat pump heating mode ( Engine exhaust heat assist)).
- the outside air endothermic heat pump heating mode for example, the outside air endothermic heat pump heating mode, the outside air endothermic heat pump heating mode ( Engine exhaust heat assist)
- control device 80 (the switching valve control unit 80b) is configured so that the cooler switches to the independent mode when the temperature of the cooling water in the engine cooling circuit 12 exceeds a predetermined temperature (second heat medium temperature) in the communication mode.
- the operation of the side valve 43 is controlled.
- the air can be heated by the heater core 51 using the exhaust heat of the engine 31, so that energy saving of heating can be achieved (for example, dehumidifying heating mode).
- the communication channel 40 and the reserve tank 39 are provided.
- the communication flow path 40 allows the cooler cooling circuit 11 and the engine cooling circuit 12 to communicate in both the independent mode and the communication mode.
- the reserve tank 39 is disposed in the engine cooling circuit 12 or the cooler cooling circuit 11 and stores cooling water.
- both the engine cooling circuit 12 and the cooler cooling circuit 11 are provided by the reserve tank 39 arranged in the engine cooling circuit 12.
- the pressure can be adjusted. Therefore, since it is not necessary to arrange a separate reserve tank in the cooler cooling circuit 11, the configuration can be simplified.
- the cooling water temperature of the engine cooling circuit 12 is usually in the range of 80 to 110 ° C., and the cooling water expands and the circuit pressure rises.
- the cooling water temperature of the cooler cooling circuit 11 is normally around 0 ° C., and the cooling water contracts.
- the cooler cooling circuit 11 and the engine cooling circuit 12 communicate with each other through the communication flow path 40, the volume of the cooling water in the engine cooling circuit 12 increases, and the pressure increase in the engine cooling circuit 12 decreases.
- the pressure resistance design of the engine radiator 32 and engine devices can be simplified, and the device life can be improved.
- the communication flow path 40 includes the cooling water discharge side of the cooler pump 20 and the cooling water inlet side of the cooler core 22 in the cooler cooling circuit 11 and the cooling water discharge of the engine pump 30 in the engine cooling circuit 12. And a portion of the engine radiator 32 on the cooling water inlet side.
- the cooler cooling circuit 11 and the engine cooling circuit 12 communicate with each other at portions where the cooling water pressure is high, the pressure difference between the cooler cooling circuit 11 and the engine cooling circuit 12 can be kept low. Therefore, the reserve tank 39 disposed in the cooling circuit 12 can satisfactorily adjust the pressures of both the engine cooling circuit 12 and the cooler cooling circuit 11.
- an engine radiator flow path 41 that connects the cooler cooling circuit 11 and the engine cooling circuit 12 is provided.
- the cooler side valve 43 switches between the independent mode and the communication mode by switching between a state in which the coolant of the engine cooling circuit 12 flows through the engine radiator flow path 41 and a state in which the coolant does not flow.
- control device 80 (the switching valve control unit 80b and the compressor control unit 80c) is configured such that the temperature of the cooling water in the engine cooling circuit 12 is lower than a predetermined temperature (third heat medium temperature) and the temperature of the outside air is When the temperature is lower than the predetermined temperature (first outside air temperature), the operation of the cooler side valve 43 is controlled so that the cooling water flows between the cooler core 22 and the engine radiator 32 and the compressor 26 is stopped.
- the air when the temperature of the outside air is low, the air can be cooled and dehumidified by the cooler core 22 using the cold heat of the outside air (for example, the outside air dehumidifying mode). Therefore, power consumption of the compressor 26 can be reduced.
- the air can be cooled and dehumidified by the cooler core 22 even when the air-conditioning suction port mode is the inside air circulation mode, so that it is possible to suppress the entry of dirty outside air and pollen into the passenger compartment, and thus passenger comfort. Can be improved.
- a radiator bypass passage 35 in which cooling water of the engine cooling circuit 12 flows by bypassing the engine radiator 32 and an engine heat absorption passage 42 that connects the radiator bypass passage 35 and the cooler side valve 43 are provided.
- the cooler side valve 43 switches between a state in which the cooling water of the engine cooling circuit 12 flows through the radiator bypass flow path 35 and a state in which it does not flow.
- the cooling water can flow between the chiller 21 and the engine 31 by switching to the state in which the cooling water of the engine cooling circuit 12 flows through the radiator bypass passage 35.
- the air can be heated by the heater core 51 using the exhaust heat of the engine 31 (for example, the engine endothermic heat pump heating mode).
- control device 80 (switching valve control unit 80b) is in a state in which the cooling water of the engine cooling circuit 12 flows through the radiator bypass passage 35 when the temperature of the outside air is lower than a predetermined temperature (second outside air temperature).
- the operation of the cooler side valve 43 is controlled so as to switch to
- the air can be heated by the heater core 51 using the exhaust heat of the engine 31, so that energy saving of heating can be achieved (for example, Engine endothermic heat pump heating mode).
- the temperature of the air heated by the heater core 51 can be made higher than the temperature of the cooling water in the engine cooling circuit 12. At this time, since the amount of heat transfer from the engine 31 to the cooling water can be increased by lowering the temperature of the cooling water in the engine cooling circuit 12, the heating performance in the passenger compartment can be improved.
- the control device 80 causes the refrigerant discharge amount of the compressor 26 to be a predetermined amount or more in the communication mode, or the rotation speed of the compressor 26 to be a predetermined value or more, and to blow into the vehicle interior
- a request to increase the amount of exhaust heat of the engine 31 a request to increase the operating rate of the engine 31, a request to increase the temperature of the cooling water in the engine cooling circuit 12, or the A request to lower the efficiency is output to the engine control device 99.
- control device 80 when the temperature of the cooling water flowing through the engine radiator 32 or the chiller 21 is lower than a predetermined cooling water temperature (fourth heat medium temperature) in the communication mode, When the temperature of the cooling water is lower than a predetermined temperature (fifth heat medium temperature), a request to increase the amount of exhaust heat of the engine 31, a request to increase the operating rate of the engine 31, and the temperature of the cooling water of the engine cooling circuit 12 A request to increase or a request to lower the efficiency of the engine 31 is output to the engine control device 99.
- the temperature of the cooling water in the engine cooling circuit 12 is increased.
- the heat source necessary for the defrosting of the vehicle can be secured, and consequently the heating performance in the passenger compartment can be maintained.
- Whether or not the engine radiator 32 is frosted depends on the temperature of the cooling water in the engine radiator 32, the temperature of the cooling water in the chiller 21, the temperature of the refrigerant in the chiller 21, or the temperature of air blown into the passenger compartment. This can be determined based on the amount of deviation from the correlation with the work amount of the compressor 26.
- the heater side valve 67 for selectively flowing either the heater side cooling water heated by the condenser 52 or the heater side cooling water heated by the water / water heat exchanger 38 into the heater core 51 is provided.
- the control device 80 controls the operation of the heater side valve 67 so that the heater side cooling water heated by the condenser 52 flows into the heater core 51 in the communication mode.
- the control device 80 (the switching valve control unit 80b) is heated by the water / water heat exchanger 38 when the temperature of the cooling water in the engine cooling circuit 12 becomes equal to or higher than a predetermined temperature (fifth heat medium temperature) in the communication mode.
- the operation of the heater side valve 67 is controlled so that the heater side cooling water flows into the heater core 51.
- heat exchange is performed via the heater-side cooling water without directly exchanging heat between the high-pressure refrigerant and the air, so that it is possible to suppress the occurrence of a problem that the refrigerant leaks into the passenger compartment. Therefore, the freedom degree of selection of a refrigerant can be raised.
- the passenger compartment is heated by the heat pump operation of the refrigeration cycle 25, so that passenger comfort can be ensured (for example, the outside air endothermic heat pump heating mode, the engine endothermic heat pump heating mode).
- a water / water heat exchanger 38 for exchanging heat between the cooling water of the engine cooling circuit 12 and the heater-side cooling water is provided.
- the cooling water flowing through the cooler cooling circuit 11 and the engine cooling circuit 12 and the heater side cooling water flowing through the condenser circuit 13 are not mixed in the heat inflow device 38, the physical properties of the cooling water and the heater side cooling water are mutually connected. Of different fluids. Therefore, the freedom degree of selection of cooling water and heater side cooling water can be raised.
- the heater side cooling water flows between the condenser 52 and the heater side radiator 61, and the heater side cooling water flows between the condenser circuit 13 and the radiator circuit 14 independently of each other.
- the state in which the capacitor circuit 13 and the radiator circuit 14 communicate with each other is switched.
- the heater-side cooling water heated by the high-pressure side refrigerant in the capacitor 52 can be cooled by the outside air in the heater-side radiator 61.
- the room can be cooled.
- the cooling water of the engine cooling circuit 12 and the cooling water of the condenser circuit 13 exchange heat through the water / water heat exchanger 38.
- the engine cooling circuit 12 and the capacitor circuit 13 can be directly connected.
- the heater core flow path 100 is connected to the circulation flow path 34 of the engine cooling circuit 12.
- the heater core channel 100 is a cooling water channel in which the heater core 51 is disposed.
- One end of the heater core channel 100 is connected to a portion of the circulation channel 34 on the coolant outlet side of the engine 31.
- One end of the heater core channel 100 is connected to a portion of the circulation channel 34 on the cooling water suction side of the engine pump 30.
- the heater pump 50, the capacitor 52, and the heater-side radiator 61 are arranged in the circulation flow path 53 of the capacitor circuit 13 so that the cooling water circulates in this order.
- the circulation channel 53 of the capacitor circuit 13 is connected to the heater core channel 100 of the engine cooling circuit 12 via the heater side valve 101.
- the heater side valve 101 is a four-way valve having four ports (first to fourth ports).
- the first port of the heater side valve 101 is connected to the flow path on the coolant outlet side of the heater core 51.
- a second port of the heater side valve 101 is connected to a flow path on the cooling water suction side of the engine pump 30.
- the second port of the heater side valve 101 is connected to the flow path on the cooling water inlet side of the engine 31.
- the third port of the heater side valve 101 is connected to the flow path on the cooling water outlet side of the heater side radiator 61.
- the fourth port of the heater side valve 101 is connected to the flow path on the cooling water suction side of the heater pump 50. In other words, the fourth port of the heater side valve 101 is connected to the flow path on the cooling water inlet side of the heater core 51.
- the heater side valve 101 has a valve body for switching the connection state between the first to fourth ports.
- the heater side valve 101 is a cooling water flow switching unit that switches the flow of the cooling water by the switching operation of the valve body.
- the heater side communication flow path 102 is a part of the circulation flow path 53 of the condenser circuit 13 on the cooling water outlet side of the condenser 52 and the cooling water inlet side of the heater side radiator 61, and of the heater core flow path 100 of the engine cooling circuit 12. This is a cooling water flow path that communicates with a portion of the heater core 51 on the cooling water inlet side.
- the radiator cooperation flow path 103 includes a part of the circulation flow path 34 of the engine cooling circuit 12 on the cooling water outlet side of the engine 31 and a cooling water inlet side of the engine radiator 32, and a condenser 52 of the circulation flow path 53 of the capacitor circuit 13. It is a cooling water flow path which connects the cooling water outlet side and the part of the heater side radiator 61 on the cooling water inlet side.
- radiator cooperation valve 104 is disposed in the radiator cooperation channel 103.
- the radiator linkage valve 104 is a channel opening / closing device that opens and closes the radiator linkage channel 103. When the radiator cooperation valve 104 opens the radiator cooperation flow path 103, the air of the heater-side radiator 61 can be easily removed.
- the radiator cooperation valve 104 opens the radiator cooperation flow path 103, the cooling water flowing out from the engine 31 is discharged.
- the engine radiator 32 and the heater-side radiator 61 are circulated in parallel. Therefore, the cooling water flowing out from the engine 31 is cooled not only by the engine radiator 32 but also by the heater-side radiator 61, so that the cooling performance of the engine 31 can be improved and the output of the engine 31 can be improved.
- the cooler cooling circuit 11 and the engine cooling circuit 12 are provided with three cooling water circulation devices 62A, 62B, and 62C.
- one cooling water circulation device 62 ⁇ / b> A is arranged in the cooling water flow path branched from the circulation flow path of the cooler cooling circuit 11.
- the other two cooling water circulation devices 62B and 62C are arranged in the cooling water flow path branched from the heater core flow path 100 of the engine cooling circuit 12.
- Valves 105 and 106 are arranged at branch portions of these cooling water flow paths. By adjusting the opening degree of the valves 105 and 106, the coolant flow rate of the coolant circulation devices 62A, 62B and 62C can be controlled.
- the cooling water circulation devices 62A, 62B, and 62C are arranged in parallel to either the cooler cooling circuit 11 or the engine cooling circuit 12.
- the cooling water circulation devices 62A, 62B, and 62C may be arranged in series in either the cooler cooling circuit 11 or the engine cooling circuit 12.
- the engine radiator flow control valve 107 is disposed on the cooling water inlet side of the engine radiator 32 in the circulation flow path 34 of the engine cooling circuit 12.
- the engine radiator flow control valve 107 is an engine radiator flow rate adjusting unit that adjusts the flow rate of cooling water in the engine radiator 32.
- the cooler side valve 43 has a flow path on the cooling water outlet side of the cooler core 22 and a flow path on the cooling water inlet side of the chiller 21. And the engine radiator flow path 41 and the engine heat absorption flow path 42 are closed.
- the heater side valve 101 communicates the flow path on the cooling water outlet side of the heater side radiator 61 and the flow path on the cooling water inlet side of the condenser 52, and the flow path on the cooling water outlet side of the heater core 51 and the engine 31. And a flow path on the cooling water inlet side.
- the cooling water circulates independently of each other.
- the cooling water is cooled by the chiller 21 and then flows through the cooler core 22. Therefore, air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is cooled by the cooler core 22. .
- the cooling water heated by the engine 31 flows through the heater core 51, so the air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is heated by the heater core 51. .
- the cooling water heated by the condenser 52 flows through the heater-side radiator 61, the exhaust heat of the condenser 52 and the exhaust heat of the cooling water circulation device 62 are radiated to the outside air in the heater-side radiator 61.
- the outside air endothermic heat pump heating mode is selected when the temperature of the cooling water in the engine cooling circuit 12 is a low temperature that cannot be directly used for heating (for example, less than 60 ° C.). Therefore, in the outside air endothermic heat pump heating mode, the thermostat 37 opens the radiator bypass channel 35 and closes the channel on the engine radiator 32 side.
- the cooling water cooled by the chiller 21 flows through the engine radiator 32, the cooling water absorbs heat from the outside air in the engine radiator 32.
- the cooler side valve 43 blocks the flow of the cooling water to the cooler core 22.
- the cooler side valve 43 causes the cooling water to flow to the cooler core 22.
- the cooling water cooled by the chiller 21 flows through the cooler core 22, so that air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is cooled and dehumidified by the cooler core 22.
- the flow rate of the cooler core 22 is adjusted to suppress the frost of the cooler core 22.
- the heat absorption is controlled by adjusting the flow rate of the engine radiator 32 so that the water temperature of the cooler core 22 does not become too high.
- the cooling water heated by the condenser 52 flows through the heater core 51, the air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is heated by the heater core 51.
- outside air endothermic heat pump heating mode (engine exhaust heat assist)
- the cooler side valve 43 communicates the engine radiator flow path 41 and the flow path on the cooling water inlet side of the chiller 21, The flow path on the cooling water outlet side and the engine heat absorption flow path 42 are closed.
- the heater side valve 101 communicates the flow path on the cooling water outlet side of the heater core 51 with the cooling water inlet side of the condenser 52 and the flow path on the cooling water inlet side of the engine 31, and the cooling water outlet side of the heater side radiator 61. Close the flow path.
- the outside air endothermic heat pump heating mode (engine exhaust heat assist) is selected when the temperature of the cooling water in the engine cooling circuit 12 is low (eg, less than 60 ° C.) that cannot be directly used for heating. Therefore, in the outside air endothermic heat pump heating mode (engine exhaust heat assist), the thermostat 37 opens the radiator bypass passage 35 and closes the passage on the engine radiator 32 side.
- the cooling water cooled by the chiller 21 flows through the engine radiator 32, the cooling water absorbs heat from the outside air in the engine radiator 32.
- the cooler side valve 43 blocks the flow of the cooling water to the cooler core 22.
- the cooler side valve 43 causes the cooling water to flow to the cooler core 22.
- the cooling water cooled by the chiller 21 flows through the cooler core 22, so that air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is cooled and dehumidified by the cooler core 22.
- the flow rate of the cooler core 22 is adjusted to suppress the frost of the cooler core 22.
- the heat absorption is controlled by adjusting the flow rate of the engine radiator 32 so that the water temperature of the cooler core 22 does not become too high.
- the air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is the heater core 51. Heated.
- heating can be performed without increasing the engine operating rate, the fuel consumption during heating can be improved.
- the cooler side valve 43 communicates the engine endothermic passage 42 with the passage on the cooling water inlet side of the chiller 21, The flow path on the cooling water outlet side of the cooler core 22 and the engine radiator flow path 41 are closed. Further, the heater side valve 67 communicates the flow path on the cooling water outlet side of the heater core 51 and the flow path on the cooling water inlet side of the condenser 52, and the flow path on the cooling water inlet side of the engine 31 and the heater side radiator 61. Close the cooling water outlet channel.
- the engine endothermic heat pump heating mode is selected when the temperature of the cooling water in the engine cooling circuit 12 is a low temperature that cannot be directly used for heating (for example, less than 60 ° C.). Therefore, in the engine endothermic heat pump heating mode, the thermostat 37 opens the radiator bypass passage 35 and closes the passage on the engine radiator 32 side.
- the cooling water heated by the engine 31 flows through the chiller 21, the cooling water absorbs the exhaust heat of the engine 31 in the chiller 21.
- the cooling water heated by the condenser 52 flows through the heater core 51, the air flowing in the casing 71 of the indoor air conditioning unit 70 (air blown into the vehicle interior) is heated by the heater core 51.
- the condenser 52 that condenses the high-pressure side refrigerant of the refrigeration cycle 25 includes the capacitor 52 that exchanges heat between the high-pressure side refrigerant and the cooling water, but in this embodiment, as shown in FIG.
- a condenser of the refrigeration cycle 25 an indoor condenser (air heating device) 110 and an outdoor condenser 111 are provided.
- the indoor condenser 110 and the outdoor condenser 111 are arranged in series in the refrigeration cycle 25 so that the refrigerant flows in this order.
- the indoor condenser 110 condenses the high-pressure refrigerant by heat-exchanging the high-pressure refrigerant discharged from the compressor 26 and the air blown into the vehicle compartment, and heats the air blown into the vehicle compartment. It is a vessel.
- the indoor condenser 110 is disposed downstream of the heater core 51 in the air flow direction in the air passage in the casing 71.
- the outdoor condenser 111 is an outdoor heat exchanger that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 26 and the outside air.
- the outdoor capacitor 111 is arranged in the engine room of the vehicle. Outside air is blown to the outdoor condenser 111 by the outdoor blower 33.
- the outdoor condenser 111 is disposed upstream of the engine radiator 32 in the outdoor air flow direction.
- the refrigeration cycle 25 includes a refrigerant bypass passage 112 and a three-way valve 113.
- the refrigerant bypass passage 112 is a refrigerant passage through which the refrigerant that has flowed out of the indoor condenser 110 bypasses the outdoor condenser 111 and flows to the expansion valve 28.
- the three-way valve 113 is a refrigerant flow rate ratio adjusting unit that adjusts the flow rate ratio between the refrigerant flowing through the outdoor condenser 111 and the refrigerant flowing through the refrigerant bypass passage 112.
- the refrigeration cycle 25 includes an accumulator 114.
- the accumulator 114 is a gas-liquid separator that separates the gas-liquid two-phase refrigerant that has flowed out of the chiller 21 into a gas-phase refrigerant and a liquid-phase refrigerant, and causes the separated gas-phase refrigerant to flow out to the compressor 26 side.
- the accumulator 114 is a refrigerant flow rate adjusting unit that adjusts the flow rate of the refrigerant flowing through the refrigeration cycle 25.
- the indoor condenser 110 is provided that heats the air blown into the vehicle interior by exchanging heat between the high-pressure refrigerant of the refrigeration cycle 25 and the air blown into the vehicle interior.
- the present embodiment includes an outdoor condenser 111 that exchanges heat between the high-pressure refrigerant and the outside air, and a three-way valve 113 that adjusts a flow rate ratio between the high-pressure refrigerant flowing through the indoor condenser 110 and the high-pressure refrigerant flowing through the outdoor condenser 111. .
- the high-pressure side refrigerant when the high-pressure side refrigerant flows through the outdoor condenser 111, the high-pressure side refrigerant can be cooled by the outdoor air by the outdoor condenser 111, so that the vehicle interior can be cooled.
- the cooler side valve 120 also has the function of the thermostat 37 in the above embodiment.
- the first port and the second port are connected to the cooling water flow path of the cooler cooling circuit 11.
- the third port and the fourth port of the cooler side valve 120 are connected to the circulation flow path 34 of the engine cooling circuit 12.
- the fifth port of the cooler side valve 120 is connected to the radiator bypass passage 35.
- the first port is connected to the cooling water outlet side of the cooler core 22.
- the second port is connected to the cooling water suction side of the cooler pump 20.
- the second port is connected to the cooling water inlet side of the chiller 21.
- the third port is connected to the coolant outlet side of the engine radiator 32.
- the fourth port is connected to the cooling water suction side of the engine pump 30. In other words, the fourth port is connected to the coolant inlet side of the engine 31.
- the fifth port is connected to the coolant outlet side of the radiator bypass passage 35.
- the cooler side valve 120 has a valve body for switching the connection state between the five ports.
- the cooler-side valve 120 is a cooling water flow switching unit (switching device) that switches the flow of cooling water by switching the valve body.
- the refrigeration cycle 25 includes a refrigerant temperature pressure sensor 121, an electric expansion valve 122, a refrigerant circulation device 123, and a pressure adjustment valve 124.
- the refrigerant temperature / pressure sensor 121 is a detection unit (detection device) that detects the temperature and pressure of the high-pressure refrigerant discharged from the compressor 26.
- the electric expansion valve 122 is a decompression unit (decompression device) that decompresses and expands the liquid-phase refrigerant flowing out of the indoor capacitor 110 and the outdoor capacitor 111.
- the electric expansion valve 122 is configured by a variable throttle mechanism having a valve element that can change the throttle opening degree and an electric actuator that changes the throttle opening degree of the valve element.
- the operation of the electric actuator is controlled by a control signal output from the control device 80.
- the control signal output to the electric expansion valve 122 is determined so that the pressure of the high-pressure side refrigerant discharged from the compressor 26 approaches the target high pressure.
- the target high pressure is determined with reference to a control map stored in advance in the control device 80, based on the temperature of the high-pressure refrigerant discharged from the compressor 26 and the outside air temperature Tam.
- the refrigerant distribution device 123 is an apparatus that is cooled by circulating the refrigerant therein. Inside the refrigerant circulation device 123, low-pressure refrigerant decompressed by the electric expansion valve 122 circulates.
- Examples of the refrigerant distribution device 123 include a rear cooler, a battery heat exchanger, and a cooler box.
- the rear cooler is an air cooling heat exchanger that cools the air blown out toward the rear of the passenger compartment.
- the battery heat exchanger is a battery cooling device that cools a battery mounted on a vehicle.
- a cooler box is a refrigerator which cools the articles stored inside.
- the electric expansion valve 122, the refrigerant distribution device 123, and the pressure adjustment valve 124 are arranged in parallel with the expansion valve 28 and the chiller 21 in the refrigerant flow.
- the cooler side valve 120 includes a cooling water outlet side of the cooler core 22, a cooling water inlet side of the chiller 21, a cooling water outlet side of the engine radiator 32, a cooling water inlet side of the engine 31, and a radiator bypass. The flow of the cooling water is switched between the cooling water outlet side of the flow path 35.
- the thermostat 37 in the above embodiment can be integrated with the cooler side valve 120, the configuration can be simplified.
- regenerator 130 is disposed in the cooler cooling circuit 11.
- the regenerator 130 is a cold storage unit (cold storage device) that stores the cold heat of the cooling water.
- the regenerator 130 has a cooling water tank that stores cooling water.
- the regenerator 130 may have a latent heat type regenerator material.
- the latent heat type regenerator material is paraffin or hydrate whose freezing point is adjusted to a range of 0 to 10 ° C.
- the regenerator 130 may have a substance with a large specific heat.
- the circulation / blocking of the cooling water to the regenerator 130 is switched by the cooler side valve 43. Therefore, in the example of FIG. 17, the cooler side valve 43 is configured by a five-way valve having five ports.
- the circulation / blocking of the cooling water to the regenerator 130 may be switched by a valve separate from the cooler side valve 43.
- the cooling water is circulated to the regenerator 130 during normal cooling to perform cold storage, and the cooling water circulation to the regenerator 130 is interrupted during rapid cooling (cooling down) to prevent cold storage.
- cooling water is used as the heat medium flowing through the cooler cooling circuit 11, the engine cooling circuit 12, the capacitor circuit 13, and the radiator circuit 14, but various media such as oil may be used as the heat medium.
- Nanofluid may be used as the heat medium.
- a nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed.
- antifreeze liquid ethylene glycol
- the effect of improving the thermal conductivity in a specific temperature range the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature
- liquidity of can be acquired.
- Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
- the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
- the amount of heat stored in the heat medium itself can be increased.
- the aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained.
- the aspect ratio is a shape index that represents the ratio of the vertical and horizontal dimensions of the nanoparticles.
- Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT (carbon nanotube), graphene, graphite core-shell nanoparticle (a structure such as a carbon nanotube surrounding the above atom is included as a constituent atom of the nanoparticle. Particles), Au nanoparticle-containing CNTs, and the like can be used.
- a chlorofluorocarbon refrigerant is used as the refrigerant.
- the type of the refrigerant is not limited to this, and natural refrigerant such as carbon dioxide, hydrocarbon refrigerant, or the like may be used. Good.
- the cooler side valves 43 and 120 and the engine radiator flow control valve 107 may be engine radiator flow control devices.
- the refrigeration cycle 25 of each of the above embodiments constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but the supercritical refrigeration cycle in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. May be configured.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Transportation (AREA)
- Power Engineering (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
車両用熱管理システムは、冷凍サイクル(25)の低圧側冷媒と熱媒体とを熱交換させるチラー(21)と、チラーで冷却された熱媒体と空気とを熱交換さるクーラコア(22)と、チラーおよびクーラコアに熱媒体を循環させるクーラ冷却回路(11)とを有する。車両用熱管理システムは、エンジン(31)に熱媒体を循環させるエンジン冷却回路(12)と、エンジン冷却回路の熱媒体と外気とを熱交換させるエンジンラジエータ(32)とを有する。車両用熱管理システムは、クーラ冷却回路およびエンジン冷却回路に熱媒体が互いに独立して循環する独立モードと、チラーとエンジンラジエータとの間で熱媒体が流れるようにクーラ冷却回路とエンジン冷却回路とが連通する連通モードとを切り替える切替装置(43、120)と、エンジン冷却回路の熱媒体の温度が第1熱媒体温度未満の場合、連通モードに切り替わるように切替装置を制御する制御部(80)とを備える。
Description
本出願は、当該開示内容が参照によって本出願に組み込まれた、2015年2月6日に出願された日本特許出願2015-022087を基にしている。
本開示は、車両に用いられる熱管理システムに関する。
従来、特許文献1には、冷凍サイクルの低圧側冷媒が持つ冷熱を利用して車室内を冷房するとともに、エンジン冷却水(温水)が持つ温熱を利用して車室内を暖房する車両用熱管理システムが記載されている。
この従来技術では、エンジン冷却水が循環するエンジン冷却回路に、エンジン用ラジエータが配置されている。エンジン用ラジエータは、エンジン冷却水と外気とを熱交換させてエンジン冷却水から外気に放熱させる放熱用熱交換器である。
この従来技術では、冷凍サイクルの低圧側冷媒で冷却された冷却水が循環する低温側冷却水回路を有している。低温側冷却水回路にはクーラコアが配置されている。クーラコアは、冷凍サイクルの低圧側冷媒で冷却された冷却水と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を冷却する空気冷却用熱交換器である。
しかし、上記構成では、エンジンの停止時やエンジンの暖機時等、エンジン冷却水の温度が低い場合、エンジン冷却水を利用した暖房を行うことができない。
そこで、この従来技術では、冷凍サイクルのヒートポンプ運転によって、外気から熱を汲み上げて車室内の暖房に利用することも可能になっている。具体的には、吸熱用熱交換器および空気加熱装置を備えている。
吸熱用熱交換器は、低温側冷却水回路の冷却水と外気とを熱交換させて外気から冷却水に吸熱させる熱交換器である。空気加熱装置は、冷凍サイクルの高圧側冷媒が持つ温熱を利用して車室内へ送風される空気を加熱する装置である。
上記従来技術では、外気と熱交換する熱交換器として、エンジン用ラジエータおよび吸熱用熱交換器を備えている。しかしながら、発明者らの検討によると、上記従来技術では、エンジン冷却水の温度が低いために外気から吸熱することによって車室内を暖房する場合、吸熱用熱交換器は使用されるがエンジン用ラジエータは使用されず無駄となるおそれがある。
また、外気と熱交換する熱交換器として、エンジン用ラジエータのみならず吸熱用熱交換器も車両に搭載する必要があるので、車両搭載スペースの制約によっては、吸熱用熱交換器の体格を小さく抑える必要が生じる。その場合、吸熱用熱交換器の熱交換性能が抑えられてしまうので、車室内の暖房性能も抑えられてしまう。
本開示は上記点に鑑みて、エンジン用ラジエータを有効に活用して、車室内の暖房性能を向上させることを目的とする。
本開示の一態様による車両用熱管理システムは、冷凍サイクルの冷媒を吸入して吐出する圧縮機と、冷凍サイクルの高圧側冷媒の熱を利用して、車室内へ送風される空気を加熱する空気加熱装置と、冷凍サイクルの低圧側冷媒と熱媒体とを熱交換させて熱媒体を冷却するチラーと、を備える。また、車両用熱管理システムは、チラーで冷却された熱媒体と空気とを熱交換させて空気を冷却するクーラコアと、チラーおよびクーラコアに熱媒体を循環させるクーラ冷却回路と、を有する。車両用熱管理システムは、クーラ冷却回路の熱媒体を吸入して吐出するクーラポンプと、エンジンに熱媒体を循環させるエンジン冷却回路と、エンジン冷却回路の熱媒体を吸入して吐出するエンジンポンプと、エンジン冷却回路の熱媒体と外気とを熱交換させるエンジンラジエータと、を有する。また、車両用熱管理システムは、クーラ冷却回路およびエンジン冷却回路に熱媒体が互いに独立して循環する独立モードと、チラーとエンジンラジエータとの間で熱媒体が流れるようにクーラ冷却回路とエンジン冷却回路とが連通する連通モードとを切り替える切替装置を備える。また、車両用熱管理システムは、エンジン冷却回路の熱媒体の温度が第1熱媒体温度未満の場合、連通モードに切り替わるように切替装置の作動を制御する制御部とを備える。
これによると、エンジン冷却回路の熱媒体の温度が低い場合、連通モードに切り替えることによって、チラーで冷却された熱媒体をエンジン冷却回路のエンジンラジエータへ流すので、エンジンラジエータで外気から吸熱して車室内を暖房できる。そのため、エンジンラジエータを有効に活用して、車室内の暖房性能を向上できる。
以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
図1に示す車両用熱管理システム10は、車両が備える各種機器や車室内を適切な温度に調整するために用いられる。本実施形態では、車両用熱管理システム10を、エンジン(内燃機関)および走行用電動モータから車両走行用の駆動力を得る、ハイブリッド自動車に適用している。
図1に示す車両用熱管理システム10は、車両が備える各種機器や車室内を適切な温度に調整するために用いられる。本実施形態では、車両用熱管理システム10を、エンジン(内燃機関)および走行用電動モータから車両走行用の駆動力を得る、ハイブリッド自動車に適用している。
本実施形態のハイブリッド自動車は、車両停車時に外部電源(商用電源)から供給された電力を、車両に搭載された電池(車載バッテリ)に充電可能なプラグインハイブリッド自動車として構成されている。電池としては、例えばリチウムイオン電池を用いることができる。
エンジンから出力される駆動力は、車両走行用として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄わえることができ、電池に蓄えられた電力は、走行用電動モータのみならず、車両用熱管理システム10を構成する電動式構成機器をはじめとする各種車載機器に供給される。
車両用熱管理システム10は、クーラ冷却回路11、エンジン冷却回路12、コンデンサ回路13およびラジエータ回路14を備えている。クーラ冷却回路11およびエンジン冷却回路12は、冷却水(熱媒体)が循環する冷却水回路である。コンデンサ回路13およびラジエータ回路14は、クーラ冷却回路11およびエンジン冷却回路12とは独立に冷却水(ヒータ側熱媒体)が循環する冷却水回路である。
冷却水は、熱媒体としての流体である。本実施形態では、冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。
クーラ冷却回路11には、クーラポンプ20、チラー21およびクーラコア22が、この順番で冷却水が循環するように配置されている。クーラポンプ20は、冷却水を吸入して吐出する電動ポンプである。
チラー21は、冷凍サイクル25の低圧側冷媒と冷却水とを熱交換させることによって冷却水を冷却する低圧側熱交換器(熱媒体冷却用熱交換器)である。チラー21では冷却水を外気の温度よりも低温まで冷却することができる。
クーラコア22は、冷却水と車室内へ送風される空気とを熱交換させて車室内への送風空気を冷却する空気冷却用熱交換器(熱媒体空気熱交換器)である。クーラコア22では、冷却水が顕熱変化にて空気から吸熱する。すなわち、クーラコア22では、冷却水が空気から吸熱しても冷却水が液相のままで相変化しない。
エンジン冷却回路12には、エンジンポンプ30、エンジン31およびエンジンラジエータ32が、この順番で冷却水が循環するように配置されている。エンジンポンプ30は、冷却水を吸入して吐出する電動ポンプである。エンジンポンプ30は、エンジン31の駆動力をベルトを介して動力伝達することによって駆動されるベルト駆動式ポンプであってもよい。
エンジンラジエータ32は、冷却水と車室外空気(以下、外気と言う)とを熱交換させる冷却水外気熱交換器(熱媒体外気熱交換器)である。室外送風機33は、エンジンラジエータ32へ外気を送風する外気送風装置である。
エンジン冷却回路12は、循環流路34、ラジエータバイパス流路35および熱交換器用流路36を有している。循環流路34は、エンジンポンプ30、エンジン31およびエンジンラジエータ32が、この順番で冷却水が循環するように配置された冷却水流路である。
ラジエータバイパス流路35は、冷却水がエンジンラジエータ32をバイパスして流れるように循環流路34に接続された冷却水流路であり、冷却水流れにおいてエンジンラジエータ32と並列に配置されている。
循環流路34とラジエータバイパス流路35との接続部には、サーモスタット37が配置されている。サーモスタット37は、温度によって体積変化するサーモワックス(感温部材)によって弁体を変位させて冷却水流路を開閉する機械的機構で構成される冷却水温度応動弁である。
具体的には、サーモスタット37は、冷却水の温度が所定温度(例えば70℃)を下回っている場合、ラジエータバイパス流路35を開けてエンジンラジエータ32側の流路を閉じる。
サーモスタット37は、冷却水の温度が所定温度(例えば70℃)を上回っている場合、ラジエータバイパス流路35を閉じてエンジンラジエータ32側の流路を開ける。
熱交換器用流路36は、水水熱交換器(熱流入装置)38が配置された冷却水流路であり、冷却水流れにおいてエンジンラジエータ32およびラジエータバイパス流路35と並列に配置されている。
水水熱交換器38は、エンジン冷却回路12の冷却水とコンデンサ回路13の冷却水とを熱交換させる熱交換器(熱媒体熱媒体熱交換器)である。
エンジンラジエータ32には、第1リザーブタンク39が接続されている。第1リザーブタンク39は、余剰冷却水を貯留する冷却水貯留装置である。
連通流路40、エンジンラジエータ流路41およびエンジン吸熱流路42は、クーラ冷却回路11とエンジン冷却回路12とを連通する冷却水流路である。
連通流路40は、クーラ冷却回路11のうちチラー21の冷却水出口側かつクーラコア22の冷却水入口側の部位と、エンジン冷却回路12のうちエンジン31の冷却水出口側かつエンジンラジエータ32の冷却水入口側の部位とを繋いでいる。
エンジンラジエータ流路41は、クーラ冷却回路11のうちクーラコア22の冷却水出口側かつクーラポンプ20の冷却水吸入側の部位と、エンジン冷却回路12のうちエンジンラジエータ32の冷却水出口側かつエンジンポンプ30の冷却水吸入側の部位とを繋いでいる。
エンジン吸熱流路42は、クーラ冷却回路11のうちクーラコア22の冷却水出口側かつクーラポンプ20の冷却水吸入側の部位と、エンジン冷却回路12のラジエータバイパス流路35とを繋いでいる。
クーラ側バルブ43は、クーラ冷却回路11の冷却水流路とエンジンラジエータ流路41とエンジン吸熱流路42との接続部に配置されている。クーラ側バルブ43は、4つのポート(第1~第4ポート)を有する四方弁である。
クーラ側バルブ43の第1ポートは、クーラコア22の冷却水出口側の流路に接続されている。クーラ側バルブ43の第2ポートは、クーラポンプ20の冷却水吸入側の流路に接続されている。換言すれば、クーラ側バルブ43の第2ポートは、チラー21の冷却水入口側の流路に接続されている。
クーラ側バルブ43の第3ポートは、エンジンラジエータ流路41に接続されている。クーラ側バルブ43の第4ポートは、エンジン吸熱流路42に接続されている。
クーラ側バルブ43は、第1~第4ポート同士の接続状態を切り替える弁体を有している。クーラ側バルブ43は、弁体の切り替え作動によって冷却水の流れを切り替える冷却水流れ切替部(切替装置)である。
コンデンサ回路13は、ヒータポンプ50、ヒータコア(空気加熱装置)51およびコンデンサ(空気加熱装置)52を有している。ヒータポンプ50は、冷却水を吸入して吐出する電動ポンプである。
ヒータコア51は、冷却水と車室内へ送風される空気とを熱交換させて車室内への送風空気を加熱する空気加熱用熱交換器(熱媒体空気熱交換器)である。ヒータコア51では、冷却水が顕熱変化にて空気に放熱する。すなわち、ヒータコア51では、冷却水が空気に放熱しても冷却水が液相のままで相変化しない。
コンデンサ52は、冷凍サイクル25の高圧側冷媒と冷却水とを熱交換させることによって冷却水を加熱する高圧側熱交換器(熱媒体加熱用熱交換器)である。
ヒータコア51およびコンデンサ52は、冷凍サイクル25の高圧側冷媒の熱を利用して、車室内へ送風される空気を加熱する空気加熱装置である。
冷凍サイクル25は、圧縮機26、コンデンサ52、レシーバ27、膨張弁28およびチラー21を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル25では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。
圧縮機26は、電池から供給される電力によって駆動される電動圧縮機、またはエンジンの駆動力によってエンジンベルトで駆動される可変容量圧縮機であり、冷凍サイクル25の冷媒を吸入して圧縮して吐出する。
コンデンサ52は、圧縮機26から吐出された高圧側冷媒と冷却水とを熱交換させることによって高圧側冷媒を凝縮させる凝縮器である。レシーバ27は、コンデンサ52から流出した気液2相冷媒を気相冷媒と液相冷媒とに分離して、分離された液相冷媒を膨張弁23側に流出させる気液分離器である。
膨張弁28は、レシーバ27から流出した液相冷媒を減圧膨張させる減圧部(減圧装置)である。膨張弁28は、チラー21出口側冷媒の温度および圧力に基づいてチラー21出口側冷媒の過熱度を検出する感温部を有する温度式膨張弁である。すなわち、膨張弁28は、チラー21出口側冷媒の過熱度が予め定めた所定範囲となるように機械的機構によって絞り通路面積を調節する温度式膨張弁である。膨張弁28は、電気的機構によって絞り通路面積を調節する電気式膨張弁であってもよい。
チラー21は、膨張弁28で減圧膨張された低圧冷媒と冷却水とを熱交換させることによって低圧冷媒を蒸発させる蒸発器である。チラー21で蒸発した気相冷媒は圧縮機26に吸入されて圧縮される。
圧縮機26および膨張弁28は、冷凍サイクル25を流れる冷媒の流量を調整する冷媒流量調整部(冷媒流量調整装置)である。
コンデンサ回路13は、循環流路53および水水熱交換器流路54を有している。循環流路53は、ヒータポンプ50、ヒータコア51およびコンデンサ52が、この順番で冷却水が循環するように配置された冷却水流路である。
水水熱交換器流路54は、水水熱交換器38が配置された冷却水流路であり、冷却水流れにおいてコンデンサ52と並列に配置されている。水水熱交換器流路54は、循環流路53のうち、ヒータコア51の冷却水出口側かつコンデンサ52の冷却水入口側の部位と、コンデンサ52の冷却水出口側かつヒータポンプ50の冷却水吸入側の部位とに接続されている。
ラジエータ回路14には、ラジエータポンプ60、ヒータ側ラジエータ61および冷却水流通機器62が、この順番で冷却水が循環するように配置されている。ラジエータポンプ60は、冷却水を吸入して吐出する電動ポンプである。
ヒータ側ラジエータ61は、冷却水と外気とを熱交換させる冷却水外気熱交換器(熱媒体外気熱交換器)である。ヒータ側ラジエータ61には、室外送風機33によって外気が送風される。
ヒータ側ラジエータ61と、エンジンラジエータ32は、車両の最前部に配置されている。ヒータ側ラジエータ61は、エンジンラジエータ32よりも外気流れ方向上流側に配置されている。車両の走行時にはヒータ側ラジエータ61およびエンジンラジエータ32に走行風を当てることができるようになっている。
冷却水流通機器62は、その内部に冷却水が流通することによって冷却される機器である。冷却水流通機器62としては、例えば走行用モータ、インバータ、オイルクーラ、ターボチャージャおよびインタークーラ等が挙げられる。
インバータは、バッテリから供給された直流電力を交流電力に変換して走行用モータに出力する電力変換装置である。
オイルクーラは、エンジンオイル(エンジン31に使用される潤滑油)と冷却水とを熱交換してエンジンオイルを冷却するエンジンオイル用熱交換器(潤滑油用熱交換器)である。
ターボチャージャは、エンジン31の排気ガスの残留エネルギを利用してタービンを回転させ、エンジン31の吸入空気を過給する過給機である。インタークーラは、ターボチャージャで圧縮されて高温になった過給吸気と冷却水とを熱交換して過給吸気を冷却する吸気冷却器である。
ラジエータ回路14には、第2リザーブタンク63が接続されている。第2リザーブタンク63は、余剰冷却水を貯留する冷却水貯留装置である。
ラジエータ入口側流路65およびラジエータ出口側流路66は、コンデンサ回路13とラジエータ回路14とを連通する冷却水流路である。
ラジエータ入口側流路65は、コンデンサ回路13の循環流路53のうちヒータコア51の冷却水出口側かつコンデンサ52の冷却水入口側の部位と、ラジエータ回路14のうち冷却水流通機器62の冷却水出口側かつラジエータポンプ60の冷却水吸入側の部位とを繋いでいる。
ラジエータ出口側流路66は、コンデンサ回路13の循環流路53のうちコンデンサ52の冷却水出口側かつヒータポンプ50の冷却水吸入側の部位と、ラジエータ回路14のうちヒータ側ラジエータ61の冷却水出口側かつ冷却水流通機器62の冷却水入口側の部位とを繋いでいる。
ヒータ側バルブ67は、コンデンサ回路13の循環流路53と水水熱交換器流路54とラジエータ入口側流路65との接続部に配置されている。ヒータ側バルブ67は、4つのポート(第1~第4ポート)を有する四方弁である。
ヒータ側バルブ67の第1ポートは、コンデンサ52の冷却水出口側の流路に接続されている。ヒータ側バルブ67の第2ポートは、ラジエータポンプ60の冷却水吸入側の流路に接続されている。換言すれば、ヒータ側バルブ67の第2ポートは、ヒータコア51の冷却水入口側の流路に接続されている。
ヒータ側バルブ67の第3ポートは、水水熱交換器流路54に接続されている。ヒータ側バルブ67の第4ポートは、ラジエータ入口側流路65に接続されている。
ヒータ側バルブ67は、第1~第4ポート同士の接続状態を切り替える弁体を有している。ヒータ側バルブ67は、弁体の切り替え作動によって冷却水の流れを切り替える冷却水流れ切替部(ヒータ側切替装置)である。
クーラコア22およびヒータコア51は、車両用空調装置の室内空調ユニット70のケーシング71に収容されている。室内空調ユニット70は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。ケーシング71は、室内空調ユニット70の外殻を形成している。
ケーシング71は、室内送風機によって送風された空気が流れる空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。
クーラコア22およびヒータコア51は、この順番で空気が流れるようにケーシング71内の空気通路に配置されている。
ケーシング71内の送風空気流れ最上流側には、内外気切替箱が配置されている。内外気切替箱は、車室内空気(以下、内気と言う)と外気とを切替導入する内外気切替部(内外気切替装置)である。
内外気切替箱は、吸込口モードを内気循環モードと外気導入モードと内外気混入モードとに切り替える。内気循環モードでは、内気を導入して外気を導入しない。外気導入モードでは、外気を導入して内気を導入しない。内外気混入モードでは、内気および外気の両方を所定の割合で導入する。
ケーシング71内において、クーラコア22の空気流れ下流側には、クーラコア22通過後の空気がヒータコア51を流れるヒータコア通路71aと、クーラコア22通過後の空気がヒータコア51をバイパスして流れるバイパス通路71bとが並列に形成されている。
ケーシング71内において、ヒータコア通路71aおよびバイパス通路71bの空気流れ下流側には、ヒータコア通路71aから流出した温風とバイパス通路71bから流出した冷風とを混合させる混合空間71cが形成されている。
ケーシング71内において、クーラコア22の空気流れ下流側であって、ヒータコア通路71aおよびバイパス通路71bの入口側には、エアミックスドア72が配置されている。
エアミックスドア72は、ヒータコア通路71aとバイパス通路71bとの風量割合を連続的に変化させる風量割合調整部(風量割合調整装置)である。ヒータコア通路71aを通過する空気とバイパス通路71bを通過する空気との風量割合によって、混合空間71cにて混合された送風空気の温度が変化する。したがって、エアミックスドア72は、混合空間71c内の空気温度(車室内へ送風される送風空気の温度)を調整する温度調整部(温度調整装置)である。
エアミックスドア72は、電動アクチュエータによって駆動される回転軸と、その共通の回転軸に連結された板状のドア本体部を有して構成される、いわゆる片持ちドアで構成されている。
ケーシング71の空気流れ最下流部には吹出口71dが形成されている。吹出口71dは、混合空間71cの温度調整された空気を、空調対象空間である車室内空間へ吹き出す。
吹出口71dとしては、フェイス吹出口、フット吹出口およびデフロスタ吹出口が設けられている。フェイス吹出口は、車室内の乗員の上半身に向けて空調風を吹き出す上半身側吹出口である。フット吹出口は、乗員の足元(下半身)に向けて空調風を吹き出す足元側吹出口(下半身側吹出口)である。デフロスタ吹出口は、車両前面窓ガラス内側面に向けて空調風を吹き出す窓ガラス側吹出口である。
フェイス吹出口、フット吹出口およびデフロスタ吹出口の空気流れ上流側には、吹出口モードドアが配置されている。吹出口モードドアは、フェイス吹出口、フット吹出口およびデフロスタ吹出口の開口面積を調整することによって吹出口モードを切り替える吹出口モード切替部(吹出口モード切替装置)である。吹出口モードドアは、電動アクチュエータによって回転操作される。
吹出口モードとしては、フェイスモード、バイレベルモード、フットモード、フットデフロスタモードおよびデフロスタモードがある。
フェイスモードでは、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す。バイレベルモードでは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す。
フットモードでは、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す。フットデフロスタモードでは、フット吹出口およびデフロスタ吹出口を同程度開口して、フット吹出口およびデフロスタ吹出口の双方から空気を吹き出す。
デフロスタモードでは、デフロスタ吹出口を全開してデフロスタ吹出口から車両前面窓ガラス内面に空気を吹き出す。
次に、車両用熱管理システム10の電気制御部を図2に基づいて説明する。制御装置80は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。制御装置80は、ROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器の作動を制御する制御部である。
制御装置80によって制御される制御対象機器は、クーラポンプ20、エンジンポンプ30、ヒータポンプ50、ラジエータポンプ60、クーラ側バルブ43、ヒータ側バルブ67、圧縮機26、室外送風機33、および室内空調ユニット70の各種ドア(エアミックスドア72等)を駆動する電動アクチュエータ等である。
制御装置80のうち、その出力側に接続された各種制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)は、それぞれの制御対象機器の作動を制御する制御部を構成している。
クーラポンプ20、エンジンポンプ30、ヒータポンプ50およびラジエータポンプ60の作動は、制御装置80のうちポンプ制御部80aによって制御される。ポンプ制御部80aは、各冷却水流通機器を流れる冷却水の流量を制御する流量制御部でもある。
クーラ側バルブ43およびヒータ側バルブ67の作動は、制御装置80のうち切替弁制御部80bによって制御される。切替弁制御部80bは、冷却水の循環状態を切り替える循環切替制御部でもある。切替弁制御部80bは、各冷却水流通機器を流れる冷却水の流量を調節する流量制御部でもある。
冷却水の流量制御は、バルブ内部の通水開口面積を連続的に可変させることによって圧力損失を制御して流量を制御する方式であってもよい。冷却水の流量制御は、通水と遮断を所定の時間内に所定の比率で繰り返し切り替えることによって時間平均的に流量を制御する方式であってもよい。
圧縮機26の作動は、制御装置80のうち圧縮機制御部80cによって制御される。圧縮機制御部80cは、圧縮機26から吐出される冷媒の流量を制御する冷媒流量制御部でもある。
室外送風機33の作動を制御は、制御装置80のうち室外送風機制御部80dによって制御される。室外送風機制御部80dは、ラジエータ回路13を流れる外気の流量を制御する外気流量制御部でもある。
室内空調ユニット70の各種ドア(エアミックスドア72等)の作動は、制御装置80のうち空調切替制御部80eによって制御される。空調切替制御部80eは、室内空調ユニット70から車室内に吹き出される空気の温度を制御する吹出空気温度制御部でもある。
各制御部80a、80b、80c、80d、80eは、制御装置80とは別体として設けられていてもよい。
制御装置80の入力側にはセンサ群の検出信号が入力される。センサ群は、内気温度センサ81、外気温度センサ82、日射センサ83、クーラ水温センサ84、エンジン水温センサ85、コンデンサ水温センサ86、ラジエータ水温センサ87、クーラコア温度センサ88、ヒータコア温度センサ89、機器温度センサ90、冷媒温度センサ91および冷媒圧力センサ93等である。
内気温度センサ81は、内気の温度(車室内温度)を検出する内気温度検出部である。外気温度センサ82は、外気の温度(車室外温度)を検出する外気温度検出部である。日射センサ83は、車室内の日射量を検出する日射量検出部である。
クーラ水温センサ84は、クーラ冷却回路11を流れる冷却水の温度(例えばチラー21から流出した冷却水の温度)を検出する冷却水温度検出部(熱媒体温度検出部)である。
エンジン水温センサ85は、エンジン冷却回路12を流れる冷却水の温度(例えばエンジンポンプ30に吸入される冷却水の温度)を検出する冷却水温度検出部(熱媒体温度検出部)である。
コンデンサ水温センサ86は、コンデンサ回路13を流れる冷却水の温度(例えばコンデンサ52から流出した冷却水の温度)を検出する冷却水温度検出部(熱媒体温度検出部)である。
ラジエータ水温センサ87は、ラジエータ回路14を流れる冷却水の温度(例えばヒータ側ラジエータ61から流出した冷却水の温度)を検出する冷却水温度検出部(熱媒体温度検出部)である。
クーラコア温度センサ88は、クーラコア22の表面温度を検出する検出部(クーラコア温度検出部)である。クーラコア温度センサ88は、例えば、クーラコア22の熱交換フィンの温度を検出するフィンサーミスタ88a(図1参照)や、クーラコア22を流れる冷却水の温度を検出する水温センサ88b(図2参照)等である。
ヒータコア温度センサ89は、ヒータコア51の表面温度を検出する検出部(ヒータコア温度検出部)である。ヒータコア温度センサ89は、例えば、ヒータコア51の熱交換フィンの温度を検出するフィンサーミスタや、ヒータコア51を流れる冷却水の温度を検出する水温センサ等である。
機器温度センサ90は、冷却水流通機器62の温度(例えば冷却水流通機器62から流出した冷却水の温度)を検出する機器温度検出部である。
冷媒温度センサ91は、冷凍サイクル25の冷媒の温度(例えば圧縮機26から吐出された冷媒の温度、または圧縮機26に吸入される冷媒の温度)を検出する冷媒温度検出部である。
冷媒圧力センサ93は、冷凍サイクル25の冷媒の圧力(例えば圧縮機26から吐出された冷媒の圧力、または圧縮機26に吸入される冷媒の圧力)を検出する冷媒圧力検出部である。
制御装置80の入力側には、操作パネル95に設けられた各種空調操作スイッチからの操作信号が入力される。例えば、操作パネル95は、車室内前部の計器盤付近に配置されている。
操作パネル95に設けられた各種空調操作スイッチは、オートスイッチ95a、エアコンスイッチ95b、デフロスタスイッチ95cおよび車室内温度設定スイッチ95d等である。
オートスイッチ95aは、空調の自動制御運転を設定する操作部である。エアコンスイッチ95bは、圧縮機26を手動で作動・停止させる操作部である。デフロスタスイッチ95cは、デフロスタモードを手動で設定・解除する操作部である。車室内温度設定スイッチ95dは、車室内目標温度Tsetを設定する操作部である。
各スイッチは機械的に押し込むことによって電気接点を導通させる方式のプッシュスイッチでもよいし、静電パネル上の所定の領域に触れることによって反応するタッチスクリーン方式でもよい。
制御装置80は、車室内吹出空気の目標吹出温度TAO、およびクーラコア22からの吹出空気の目標温度TCOを算出する。
目標吹出温度TAOは、内気温Trを速やかに乗員の所望の目標温度Tsetに近づけるために決定される値であって、下記数式F1により算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C …F1
この数式において、Tsetは車室内温度設定スイッチ95dによって設定された車室内の目標温度である。Trは内気温度センサ81によって検出された内気温度であり、Tamは外気温度センサ82によって検出された外気温度であり、Tsは日射センサ83によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
この数式において、Tsetは車室内温度設定スイッチ95dによって設定された車室内の目標温度である。Trは内気温度センサ81によって検出された内気温度であり、Tamは外気温度センサ82によって検出された外気温度であり、Tsは日射センサ83によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
クーラコア目標吹出温度TCOは、目標吹出温度TAO等に基づいて算出される。具体的には、目標吹出温度TAOの低下に伴って、クーラコア目標吹出温度TCOが低下するように算出される。さらに、クーラコア22の着霜を抑制可能に決定された基準着霜防止温度(例えば、1℃)以上となるようにクーラコア目標吹出温度TCOが算出される。
エンジン制御装置99は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶されたエンジン制御プログラムに基づいて各種演算、処理を行い、エンジン31の作動を制御するエンジン制御部である。
エンジン制御装置99の出力側には、エンジン31を構成する各種エンジン構成機器が接続されている。各種エンジン構成機器としては、具体的には、エンジン31を始動させるスタータ、エンジン31に燃料を供給する燃料噴射弁(インジェクタ)の駆動回路等がある。
また、エンジン制御装置99の入力側には、エンジン制御用の各種センサ群が接続されている。エンジン制御用の各種センサ群としては、具体的には、アクセル開度を検出するアクセル開度センサ、エンジン回転数を検出するエンジン回転数センサ、車速を検出する車速センサ等がある。
制御装置80およびエンジン制御装置99は、電気的に接続されて通信可能に構成されている。これにより、一方の制御装置に入力された検出信号あるいは操作信号に基づいて、他方の制御装置が出力側に接続された各種機器の作動を制御することもできる。例えば、制御装置80がエンジン制御装置99へ要求信号を出力することによって、エンジン31の作動を要求することが可能となっている。
エンジン制御装置99では、制御装置80からのエンジン31の作動を要求する要求信号(作動要求信号)を受信すると、エンジン31の作動の要否を判定し、その判定結果に応じてエンジン31の作動を制御する。
制御装置80のうちエンジン制御装置99へ要求信号を出力する構成(ハードウェアおよびソフトウェア)は、要求出力部80fである。要求出力部80fは、制御装置80に対して別体で構成されていてもよい。
次に、上記構成における作動を説明する。制御装置80がその出力側に接続された各種制御対象機器の作動を制御することによって、種々の作動モードに切り替えられる。
種々の作動モードは、例えば冷房モード、除湿暖房モード、外気吸熱式ヒートポンプ暖房モード、外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト)、外気利用除湿モード、エンジン吸熱式ヒートポンプ暖房モードおよびヒートポンプリヒート除湿モードである。
(1)冷房モードおよび除湿暖房モード
冷房モードは、冷凍サイクル25を利用して車室内を冷房する空調モードである。除湿暖房モードは、冷凍サイクル25を利用して車室内を除湿しながら、エンジン31の排熱を利用して暖房する空調モードである。
冷房モードは、冷凍サイクル25を利用して車室内を冷房する空調モードである。除湿暖房モードは、冷凍サイクル25を利用して車室内を除湿しながら、エンジン31の排熱を利用して暖房する空調モードである。
冷房モードおよび除湿暖房モードでは、図3に示すように、クーラ側バルブ43がクーラコア22の冷却水出口側の流路とチラー21の冷却水入口側の流路とを連通させ、エンジンラジエータ流路41およびエンジン吸熱流路42を閉じる。また、ヒータ側バルブ67は、水水熱交換器流路54とヒータコア51の冷却水入口側の流路とを連通させるとともに、コンデンサ52の冷却水出口側の流路とラジエータ入口側流路65とを連通させる。
冷房モードおよび除湿暖房モードは、エンジン冷却回路12の冷却水の温度が、暖房で直接的に使える高温になっている場合(例えば60℃以上)に選択される。したがって、冷房モード、除湿暖房モードでは、サーモスタット37は、ラジエータバイパス流路35を閉じてエンジンラジエータ32側の流路を開ける。
これにより、クーラ冷却回路11およびエンジン冷却回路12では、互いに独立して冷却水が循環する。
クーラ冷却回路11では、冷却水がチラー21で冷却された後、クーラコア22を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がクーラコア22で冷却される。
また、エンジン冷却回路12では、エンジン31で加熱された冷却水が水水熱交換器38を流れるので、水水熱交換器38において水水熱交換器流路54を流れる冷却水が加熱される。
水水熱交換器流路54で加熱された冷却水はヒータコア51を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がヒータコア51で加熱される。
また、コンデンサ52で加熱された冷却水および冷却水流通機器62で加熱された冷却水がヒータ側ラジエータ61を流れるので、ヒータ側ラジエータ61においてコンデンサ52の排熱および冷却水流通機器62の排熱が外気に放熱される。
圧縮機26の回転数を調整して、冷凍サイクル25を循環する冷媒の流量を調整することによって、クーラコア22の吹出温度を目標温度に近づける。
クーラポンプ20の回転数を調整して、クーラコア22を流れる冷却水の流量を調整することによって、クーラコア22の吹出温度を目標温度に近づけてもよい。
室内空調ユニット70のケーシング71内においてエアミックスドア72の開度を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づける。
室内空調ユニット70から車室内へ吹き出される空調風の温度は、クーラコア22の吹出温度、ヒータコア51の吹出温度およびエアミックスドア72の開度に基づいて推定可能である。
エンジンポンプ30の回転数を調整して、エンジン冷却回路12を流れる冷却水の流量を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づけてもよい。
ヒータポンプ50の回転数を調整して、水水熱交換器流路54およびヒータコア51を流れる冷却水の流量を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づけてもよい。
(2)外気吸熱式ヒートポンプ暖房モード
外気吸熱式ヒートポンプ暖房モードは、外気から吸熱し、その熱を利用して車室内を暖房する空調モードである。
外気吸熱式ヒートポンプ暖房モードは、外気から吸熱し、その熱を利用して車室内を暖房する空調モードである。
外気吸熱式ヒートポンプ暖房モードでは、図4に示すように、クーラ側バルブ43がクーラコア22の冷却水出口側の流路およびエンジンラジエータ流路41をチラー21の冷却水入口側の流路に連通させ、エンジン吸熱流路42を閉じる。また、ヒータ側バルブ67は、コンデンサ52の冷却水出口側の流路とヒータコア51の冷却水入口側の流路とを連通させ、水水熱交換器流路54およびラジエータ入口側流路65を閉じる。
外気吸熱式ヒートポンプ暖房モードは、エンジン冷却回路12の冷却水の温度が、暖房で直接的に使えない低温になっている場合(例えば60℃未満)に選択される。したがって、外気吸熱式ヒートポンプ暖房モードでは、サーモスタット37は、ラジエータバイパス流路35を開けてエンジンラジエータ32側の流路を閉じる。
これにより、チラー21で冷却された冷却水がエンジンラジエータ32を流れるので、エンジンラジエータ32において冷却水が外気から吸熱する。また、チラー21で冷却された冷却水がクーラコア22を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がクーラコア22で冷却除湿される。
この際、外気温が氷点下(0℃以下)の場合は冷却水の温度も氷点下になるため、クーラコア22のフロストを抑制するためにクーラコア22の流量を調整する。それ以外の場合は、クーラコア22の冷却水温度が高くなりすぎないように、エンジンラジエータ32の流量を調整して吸熱量を制御する。
除湿が不要である場合、クーラ側バルブ43は、クーラコア22への冷却水の流通を遮断する。
コンデンサ回路13およびラジエータ回路14では、互いに独立して冷却水が循環する。コンデンサ回路13では、コンデンサ52で加熱された冷却水がヒータコア51を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がヒータコア51で加熱される。
ラジエータ回路14では、冷却水流通機器62で加熱された冷却水がヒータ側ラジエータ61を流れるので、ヒータ側ラジエータ61において冷却水流通機器62の排熱が外気に放熱される。
すなわち、エンジンラジエータ32で外気から吸熱しながらヒータ側ラジエータ61で冷却水流通機器62の排熱を外気に放熱できる。そのため、冷凍サイクル25のヒートポンプ運転によって暖房しながら冷却水流通機器62を外気温度と同程度に冷却できるので、冷却水流通機器62を適切な温度に冷却できる。
ヒータ側ラジエータ61は、エンジンラジエータ32よりも外気流れ方向上流側に配置されている。そのため、ヒータ側ラジエータ61において外気に放熱された冷却水流通機器62の排熱が、エンジンラジエータ32において冷却水に吸熱される。
この際、エンジンラジエータ32周りの空気温度が上昇するため、吸熱温度が上昇してチラー21での冷媒圧力を高くしても吸熱量を確保できるため、COPが向上する。また、エンジンラジエータ32の冷却水温度も上昇するため、着霜しにくくなり、COPの低下を抑制できるので、暖房効率を向上できる。
クーラポンプ20の回転数およびクーラ側バルブ43の開度を調整して、クーラコア22を流れる冷却水の流量およびエンジンラジエータ32を流れる冷却水の流量を調整することによって、クーラコア22の吹出温度を目標温度に近づける。
室内空調ユニット70のケーシング71内においてエアミックスドア72の開度を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づける。
エンジンポンプ30の回転数を調整して、エンジン冷却回路12を流れる冷却水の流量を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づけてもよい。
ヒータポンプ50の回転数を調整して、水水熱交換器流路54およびヒータコア51を流れる冷却水の流量を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づけてもよい。
圧縮機26の回転数を調整して、冷凍サイクル25を循環する冷媒の流量を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づけてもよい。
(3)外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト)
外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト)は、外気からの吸熱とエンジン31の排熱とを利用して車室内を暖房する空調モードである。
外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト)は、外気からの吸熱とエンジン31の排熱とを利用して車室内を暖房する空調モードである。
外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト)では、図5に示すように、クーラ側バルブ43がクーラコア22の冷却水出口側の流路およびエンジンラジエータ流路41をチラー21の冷却水入口側の流路と連通させ、エンジン吸熱流路42を閉じる。また、ヒータ側バルブ67は、コンデンサ52の冷却水出口側の流路および水水熱交換器流路54をヒータコア51の冷却水入口側の流路と連通させ、ラジエータ入口側流路65を閉じる。
外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト)は、エンジン冷却回路12の冷却水の温度が、暖房で直接的に使えない低温になっている場合(例えば60℃未満)に選択される。したがって、外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト)では、サーモスタット37は、ラジエータバイパス流路35を開けてエンジンラジエータ32側の流路を閉じる。
これにより、チラー21で冷却された冷却水がエンジンラジエータ32を流れるので、エンジンラジエータ32において冷却水が外気から吸熱する。また、チラー21で冷却された冷却水がクーラコア22を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がクーラコア22で冷却除湿される。
この際、外気温が水の氷点(0℃)以下である場合はクーラコア22のフロスト抑制のためにクーラコア22の流量を調整する。それ以外の場合は、クーラコア22水温が高くなりすぎないように、エンジンラジエータ32の流量を調整して吸熱量を制御する。
除湿が不要である場合、クーラ側バルブ43は、クーラコア22への冷却水の流通を遮断する。
また、エンジン冷却回路12では、エンジン31で加熱された冷却水が水水熱交換器38を流れる。外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト)では、エンジン冷却回路12において水水熱交換器38に流入する冷却水の温度は、コンデンサ回路13において水水熱交換器38に流入する冷却水の温度よりも高くなっている。そのため、水水熱交換器38において水水熱交換器流路54を流れる冷却水が加熱される。
水水熱交換器38での熱交換量の調整は、エンジンポンプ30による冷却水流量調整、ヒータポンプ50による冷却水流量調整、ヒータ側バルブ67による冷却水流量調整で実施する。
コンデンサ回路13では、水水熱交換器流路54で加熱された冷却水がヒータコア51を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がヒータコア51で加熱される。
さらに、コンデンサ回路13では、コンデンサ52で加熱された冷却水がヒータコア51を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がヒータコア51で加熱される。
エンジン31から冷却水が奪う熱量が、エンジン冷却回路12の冷却水温度を所定温度範囲内に維持できる分だけになるように冷却水の流量等を制御する。これにより、エンジン冷却回路12の冷却水温度の低下による燃費悪化を抑止できるとともに、エンジン31の稼働率を上げずに暖房できるので、暖房使用時の燃費を向上できる。
ラジエータ回路14では、冷却水流通機器62で加熱された冷却水がヒータ側ラジエータ61を流れるので、ヒータ側ラジエータ61において冷却水流通機器62の排熱が外気に放熱される。
すなわち、エンジンラジエータ32で外気から吸熱しながらヒータ側ラジエータ61で冷却水流通機器62の排熱を外気に放熱できる。そのため、冷凍サイクル25のヒートポンプ運転によって暖房しながら冷却水流通機器62を外気温度と同程度に冷却できるので、冷却水流通機器62を適切な温度に冷却できる。
ヒータ側ラジエータ61は、エンジンラジエータ32よりも外気流れ方向上流側に配置されている。そのため、ヒータ側ラジエータ61において外気に放熱された冷却水流通機器62の排熱が、エンジンラジエータ32において冷却水に吸熱される。
この際、エンジンラジエータ32周りの空気温度が上昇するため、吸熱温度が上昇してチラー21での冷媒圧力を高くしても吸熱量を確保できるため、COPが向上する。また、エンジンラジエータ32の冷却水温度も上昇するため、着霜しにくくなり、COPの低下を抑制できるので、暖房効率を向上できる。
クーラポンプ20の回転数およびクーラ側バルブ43の開度を調整して、クーラコア22を流れる冷却水の流量およびエンジンラジエータ32を流れる冷却水の流量を調整することによって、クーラコア22の吹出温度を目標温度に近づける。
室内空調ユニット70のケーシング71内においてエアミックスドア72の開度を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づける。
エンジンポンプ30の回転数を調整して、エンジン冷却回路12を流れる冷却水の流量を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づけてもよい。
ヒータポンプ50の回転数を調整して、水水熱交換器流路54およびヒータコア51を流れる冷却水の流量を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づけてもよい。
圧縮機26の回転数を調整して、冷凍サイクル25を循環する冷媒の流量を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づけてもよい。
(4)外気利用除湿モード
外気利用除湿モードは、低温の外気を利用することにより、冷凍サイクル25を使わずに車室内を除湿する空調モードである。
外気利用除湿モードは、低温の外気を利用することにより、冷凍サイクル25を使わずに車室内を除湿する空調モードである。
外気利用除湿モードでは、図5に示す外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト)の切替状態において冷凍サイクル25の圧縮機26を停止させる。なお、外気利用除湿モードでは、クーラ側バルブ43がクーラ冷却回路11の冷却水流路とエンジンラジエータ流路41との連通開度を全開にする。
外気利用除湿モードは、エンジン冷却回路12の冷却水の温度が、クーラコア22の目標吹出温度よりも低くなっている場合に選択される。したがって、外気利用除湿モードでは、サーモスタット37は、ラジエータバイパス流路35を開けてエンジンラジエータ32側の流路を閉じる。
これにより、エンジンラジエータ32で低温外気によって冷却された冷却水がクーラコア22を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がクーラコア22で冷却除湿される。
この際、外気温が水の氷点(0℃)以下である場合はクーラコア22のフロスト抑制のためにクーラコア22の流量を調整する。
除湿が不要である場合、クーラポンプ20は、クーラコア22への冷却水の流通を停止する。
また、エンジン冷却回路12では、エンジン31で加熱された冷却水が水水熱交換器38を流れる。外気利用除湿モードは、エンジン冷却回路12において水水熱交換器38に流入する冷却水の温度が、コンデンサ回路13において水水熱交換器38に流入する冷却水の温度よりも高くなっている場合に選択される。そのため、水水熱交換器38において水水熱交換器流路54を流れる冷却水が加熱される。
水水熱交換器38での熱交換量の調整は、エンジンポンプ30による冷却水流量調整、ヒータポンプ50による冷却水流量調整、ヒータ側バルブ67による冷却水流量調整で実施する。
コンデンサ回路13では、水水熱交換器流路54で加熱された冷却水がヒータコア51を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がヒータコア51で加熱される。
エンジン31から冷却水が奪う熱量が、エンジン冷却回路12の冷却水温度を所定温度範囲内に維持できる分だけになるように冷却水の流量等を制御する。これにより、エンジン冷却回路12の冷却水温度の低下による燃費悪化を抑止できるとともに、エンジン31の稼働率を上げずに暖房できるので、暖房使用時の燃費を向上できる。
ラジエータ回路14では、冷却水流通機器62で加熱された冷却水がヒータ側ラジエータ61を流れるので、ヒータ側ラジエータ61において冷却水流通機器62の排熱が外気に放熱される。
クーラポンプ20の回転数を調整して、クーラコア22およびエンジンラジエータ32を流れる冷却水の流量を調整することによって、クーラコア22の吹出温度を目標温度に近づける。
室内空調ユニット70のケーシング71内においてエアミックスドア72の開度を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づける。
エンジンポンプ30の回転数を調整して、エンジン冷却回路12を流れる冷却水の流量を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づけてもよい。
ヒータポンプ50の回転数を調整して、水水熱交換器流路54およびヒータコア51を流れる冷却水の流量を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づけてもよい。
(5)エンジン吸熱式ヒートポンプ暖房モード
エンジン吸熱式ヒートポンプ暖房モードは、エンジン31の排熱を吸熱し、その熱を利用して車室内を暖房する空調モードである。
エンジン吸熱式ヒートポンプ暖房モードは、エンジン31の排熱を吸熱し、その熱を利用して車室内を暖房する空調モードである。
エンジン吸熱式ヒートポンプ暖房モードでは、図6に示すように、クーラ側バルブ43がエンジン吸熱流路42とチラー21の冷却水入口側の流路とを連通させ、クーラコア22の冷却水出口側の流路およびエンジンラジエータ流路41を閉じる。また、ヒータ側バルブ67は、コンデンサ52の冷却水出口側の流路とヒータコア51の冷却水入口側の流路とを連通させ、水水熱交換器流路54およびラジエータ入口側流路65を閉じる。
エンジン吸熱式ヒートポンプ暖房モードは、エンジン冷却回路12の冷却水の温度が、暖房で直接的に使えない低温になっている場合(例えば60℃未満)に選択される。したがって、エンジン吸熱式ヒートポンプ暖房モードでは、サーモスタット37は、ラジエータバイパス流路35を開けてエンジンラジエータ32側の流路を閉じる。
これにより、エンジン31で加熱された冷却水がチラー21を流れるので、チラー21において冷却水がエンジン31の排熱を吸熱する。
コンデンサ回路13では、コンデンサ52で加熱された冷却水がヒータコア51を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がヒータコア51で加熱される。
エンジン31から冷却水が奪う熱量が、エンジン冷却回路12の冷却水温度を所定温度範囲内に維持できる分だけになるように冷却水の流量等を制御することによって、水温低下による燃費悪化を抑止できるとともに、エンジン稼働率を上げずに暖房できるので暖房使用時の燃費を向上できる。
エンジン冷却回路12の冷却水温度が低くなっていき、吸熱量が減少して必要な暖房性能が発揮できなくなった場合には、外気吸熱モードへ切り替えることによって、エンジン冷却回路12の冷却水温度の低下を抑制して燃費悪化を抑制する。
ラジエータ回路14では、冷却水流通機器62で加熱された冷却水がヒータ側ラジエータ61を流れるので、ヒータ側ラジエータ61において冷却水流通機器62の排熱が外気に放熱される。
ヒータ側ラジエータ61は、エンジンラジエータ32よりも外気流れ方向上流側に配置されている。そのため、ヒータ側ラジエータ61において外気に放熱された冷却水流通機器62の排熱によってエンジン31周囲の雰囲気温度が上昇し、エンジン31表面からの放熱量が減り、保温性能が向上する。
室内空調ユニット70のケーシング71内においてエアミックスドア72の開度を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づける。
ヒータポンプ50の回転数を調整して、水水熱交換器流路54およびヒータコア51を流れる冷却水の流量を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づけてもよい。
圧縮機26の回転数を調整して、冷凍サイクル25を循環する冷媒の流量を調整することによって、室内空調ユニット70から車室内へ吹き出される空調風の温度を目標温度に近づけてもよい。
エンジン吸熱式ヒートポンプ暖房モードでは、クーラコア22による空気の冷却除湿ができない。そこで、除湿要求がある場合には、上述の外気吸熱式ヒートポンプ暖房モードに切り替えることによって、クーラコア22による空気の冷却除湿を行う。
(6)ヒートポンプリヒート除湿暖房モード
ヒートポンプリヒート除湿暖房モードは、冷凍サイクル25を利用して除湿および暖房を行う空調モードである。
ヒートポンプリヒート除湿暖房モードは、冷凍サイクル25を利用して除湿および暖房を行う空調モードである。
ヒートポンプリヒート除湿暖房モードでは、図7に示すように、クーラ側バルブ43がクーラコア22の冷却水出口側の流路とチラー21の冷却水入口側の流路とを連通させ、エンジンラジエータ流路41およびエンジン吸熱流路42を閉じる。また、ヒータ側バルブ67は、コンデンサ52の冷却水出口側の流路および水水熱交換器流路54をヒータコア51の冷却水入口側の流路に連通させ、ラジエータ入口側流路65を閉じる。
これにより、チラー21で冷却された冷却水がクーラコア22を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がクーラコア22で冷却除湿される。
この際、外気温が氷点下(0℃以下)の場合はクーラ冷却回路11の冷却水温度も氷点下になるためクーラコア22のフロスト抑制のためにクーラポンプ20によってクーラコア22の流量を調整する。
コンデンサ回路13では、コンデンサ52で加熱された冷却水がヒータコア51を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がヒータコア51で加熱される。
さらに、エンジン冷却回路12では、エンジン31で加熱された冷却水が水水熱交換器38を流れ、コンデンサ回路13では、水水熱交換器流路54で加熱された冷却水がヒータコア51を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がヒータコア51で加熱される。
さらに、コンデンサ回路13では、コンデンサ52で加熱された冷却水がヒータコア51を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がヒータコア51で加熱される。
また、エンジン冷却回路12では、エンジン31で加熱された冷却水が水水熱交換器38を流れるので、水水熱交換器38で加熱された冷却水もヒータコア51を流れる。
(7)エンジン機器加熱モード
エンジン機器加熱モードは、コンデンサ52で加熱された冷却水によってエンジン31を暖機する作動モードである。
エンジン機器加熱モードは、コンデンサ52で加熱された冷却水によってエンジン31を暖機する作動モードである。
エンジン機器加熱モードでは、コンデンサ回路13を、図7に示すヒートポンプリヒート除湿暖房モードの切替状態にする。
これにより、コンデンサ回路13では、コンデンサ52で加熱された冷却水が水水熱交換器流路54を流れる。
エンジン機器加熱モードは、エンジン冷却回路12において水水熱交換器38に流入する冷却水の温度が、コンデンサ回路13において水水熱交換器38に流入する冷却水の温度よりも低くなっている場合に選択される。そのため、エンジン冷却回路12では、水水熱交換器38を流れる冷却水が加熱され、水水熱交換器流路54によって加熱された冷却水がエンジン31を流れるので、エンジン31を加熱(暖機)できる。
図8は、上述の各モードにおけるクーラ側バルブ43のバルブポジションを示している。図8中、クーラコア流路は、クーラコア22の冷却水出口からクーラ側バルブ43に至る流路のことであり、チラー流路は、クーラ側バルブ43からチラー21の冷却水入口に至る流路のことである。
図9は、上述の各モードにおけるヒータ側バルブ67のバルブポジションを示している。図9中、コンデンサ流路は、コンデンサ52の冷却水出口からヒータ側バルブ67に至る流路のことであり、ヒータコア流路は、ヒータ側バルブ67からヒータコア51の冷却水入口に至る流路のことである。
本実施形態では、独立モードと連通モードとを切り替えるクーラ側バルブ43(切替装置)と、クーラ側バルブ43の作動を制御する制御装置80(切替弁制御部80b)とを備える。
独立モードでは、クーラ冷却回路11およびエンジン冷却回路12に冷却水が互いに独立して循環する。連通モードでは、チラー21とエンジンラジエータ32との間で冷却水が流れるようにクーラ冷却回路11とエンジン冷却回路12とが連通する。制御装置80(切替弁制御部80b)は、エンジン冷却回路12の冷却水の温度が所定温度(第1熱媒体温度)未満の場合、連通モードに切り替わるようにクーラ側バルブ43の作動を制御する。
これによると、エンジン冷却回路12の冷却水の温度が低い場合、連通モードに切り替えることによって、チラー21で冷却された冷却水をエンジン冷却回路12のエンジンラジエータ32へ流す。これによって、エンジンラジエータ32で外気から吸熱して車室内を暖房できる(例えば外気吸熱ヒートポンプ暖房モード)。そのため、エンジンラジエータ32を有効に活用して、車室内の暖房性能を向上できる。
例えば、制御装置80(切替弁制御部80b)は、ヒータコア51への空気の送風量が少ない場合、ヒータコア51への空気の送風が停止されている場合、またはヒータコア51が冷凍サイクル25の高圧側冷媒の熱を利用しない場合においては、エンジン冷却回路12の冷却水の温度が所定温度(第1熱媒体温度)未満の場合であっても独立モードになるようにクーラ側バルブ43の作動を制御する。
これによると、車室内を冷房する可能性がある場合に独立モードにすることができるので、車室内を冷房しているときにクーラ冷却回路11に外気から熱が流入することを抑制できる。
クーラ側バルブ43は、連通モードにおいて、チラー21とクーラコア22との間でも熱媒体が流れるようにクーラ冷却回路11とエンジン冷却回路12とが連通するクーラコア連通モードを実施可能である。
これによると、クーラコア連通モードではエンジンラジエータ32で外気から吸熱するとともにクーラコア22で車室内へ送風される空気から吸熱することができるので、クーラコア22で除湿を行いつつ十分な暖房能力でヒートポンプ暖房を行うことができる(例えば外気吸熱式ヒートポンプ暖房モード)。
すなわち、クーラコア22で回収できる熱量(送風空気の温度低下分の顕熱量+除湿時の凝縮潜熱分)がヒートポンプ暖房の吸熱源として不十分であっても、エンジンラジエータ32で外気から吸熱することによって吸熱源を補うことができる。
そのため、除湿を行う際に十分な暖房ができずに乗員に不快感を与えたり窓ガラスの曇りが発生することで視認性が悪化したりすることを抑制できる。
例えば、制御装置80(切替弁制御部80b)は、連通モード時に車室内を除湿暖房する場合において、クーラコア22からの吹出空気の温度とクーラコア吹出目標温度(第1吹出目標温度)TCOとの温度差が所定値未満かつヒータコア51からの吹出空気の温度が加熱目標温度TAOよりも所定温度以上低い場合、または暖房性能が所定性能を満たしていない場合、クーラコア連通モードになるようにクーラ側バルブ43の作動を制御する。
これによると、クーラコア22で回収できる熱量がヒートポンプ暖房の吸熱源として不十分である場合、クーラコア連通モードにすることができるので、エンジンラジエータ32で外気から吸熱することによって吸熱源を補って十分な暖房能力を確保できる。
すなわち、圧縮機26の効率を下げて熱量を増やしたり、電気ヒータ等の補助熱源を使ったりすることなく、不足する暖房能力を補うことができるので、消費エネルギーを増加させることなく十分な暖房能力を確保できる。
例えば、制御装置80(切替弁制御部80b)は、クーラコア連通モード時において、クーラコア22からの吹出空気の温度に関連する温度が第1吹出目標温度TCOに近づき、かつヒータコア51からの吹出空気の温度に関連する温度が第2目標吹出温度TAOに近づくように、クーラ側バルブ43の作動を制御してエンジンラジエータ32の冷却水流量を調整する、または圧縮機26等の作動を制御して冷凍サイクル25の冷媒流量を調整する。
これにより、クーラコア22からの吹出空気の温度およびヒータコア51からの吹出空気の温度の両方を適切に制御できるので、除湿暖房を適切に行うことができる。
クーラ側バルブ43は、クーラコア22とエンジンラジエータ32との間で冷却水が流れるようにクーラ冷却回路11とエンジン冷却回路12とを連通させることが可能になっている。
これによると、外気冷気を利用してクーラコア22で空気を冷却・除湿できるので、冷房・除湿の省動力化を図ることができる(例えば、外気吸熱式ヒートポンプ暖房モード、外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト))。
本実施形態では、制御装置80(切替弁制御部80b)は、連通モード時にエンジン冷却回路12の冷却水の温度が所定温度(第2熱媒体温度)を上回ると、独立モードに切り替わるようにクーラ側バルブ43の作動を制御する。
これによると、エンジン冷却回路12の冷却水の温度が高くなった場合、チラー21に高温の冷却水が流れて低圧側冷媒が高温になってしまうことを抑制でき、ひいては冷凍サイクル25の作動に支障が生じることを抑制できる。
また、エンジン冷却回路12の冷却水の温度が高くなった場合、エンジン31の排熱を利用してヒータコア51で空気を加熱できるので、暖房の省エネルギー化を図ることができる(例えば除湿暖房モード)。
本実施形態では、連通流路40とリザーブタンク39とを備える。連通流路40は、独立モードおよび連通モードのいずれにおいてもクーラ冷却回路11とエンジン冷却回路12とを連通させる。リザーブタンク39は、エンジン冷却回路12またはクーラ冷却回路11に配置され、冷却水を貯留する。
これによると、クーラ冷却回路11とエンジン冷却回路12とが連通流路40によって連通しているので、エンジン冷却回路12に配置されたリザーブタンク39によって、エンジン冷却回路12およびクーラ冷却回路11の両方の圧力調整を行うことができる。そのため、クーラ冷却回路11に別個のリザーブタンクを配置する必要が無いので構成を簡素化できる。
エンジン冷却回路12の冷却水温度は通常80~110℃の範囲にあることが多く、冷却水が膨張して回路圧力が上昇する。一方、クーラ冷却回路11の冷却水温度は通常0℃付近であり、冷却水が収縮する。
そのため、クーラ冷却回路11とエンジン冷却回路12とが連通流路40によって連通していることによってエンジン冷却回路12の冷却水の体積増加量が減り、ひいてはエンジン冷却回路12の圧力上昇幅が減る。その結果、エンジンラジエータ32やエンジン機器類の耐圧設計を簡素化できたり、機器寿命を向上できたりする。
本実施形態では、連通流路40は、クーラ冷却回路11のうちクーラポンプ20の冷却水吐出側かつクーラコア22の冷却水入口側の部位と、エンジン冷却回路12のうちエンジンポンプ30の冷却水吐出側かつエンジンラジエータ32の冷却水入口側の部位とを連通させている。
これによると、クーラ冷却回路11とエンジン冷却回路12とが、冷却水圧力の高い部位同士で連通しているので、クーラ冷却回路11とエンジン冷却回路12との圧力差を低く抑えることができる。そのため、冷却回路12に配置されたリザーブタンク39によって、エンジン冷却回路12およびクーラ冷却回路11の両方の圧力調整を良好に行うことができる。
本実施形態では、クーラ冷却回路11とエンジン冷却回路12とを連通させるエンジンラジエータ流路41を備えている。クーラ側バルブ43は、エンジン冷却回路12の冷却水がエンジンラジエータ流路41を流れる状態と流れない状態とを切り替えることよって、独立モードと連通モードとを切り替える。
これにより、簡素な構成によって、独立モードと連通モードとを切り替えることができる。
本実施形態では、制御装置80(切替弁制御部80b、圧縮機制御部80c)は、エンジン冷却回路12の冷却水の温度が所定温度(第3熱媒体温度)未満であり且つ外気の温度が所定温度(第1外気温度)未満である場合、クーラコア22とエンジンラジエータ32との間で冷却水が流れるようにクーラ側バルブ43の作動を制御するとともに圧縮機26を停止させる。
これによると、外気の温度が低い場合、外気の冷熱を利用してクーラコア22で空気を冷却除湿できる(例えば外気利用除湿モード)。そのため、圧縮機26の消費動力を低減できる。
この作動状態においては、空調の吸込口モードが内気循環モードであってもクーラコア22で空気を冷却除湿できるので、車室内に汚れた外気や花粉が侵入することを抑制でき、ひいては乗員の快適性を向上できる。
本実施形態では、エンジン冷却回路12の冷却水がエンジンラジエータ32をバイパスして流れるラジエータバイパス流路35と、ラジエータバイパス流路35とクーラ側バルブ43とを繋ぐエンジン吸熱流路42とを備える。そして、クーラ側バルブ43は、エンジン冷却回路12の冷却水がラジエータバイパス流路35を流れる状態と流れない状態とを切り替える。
これによると、エンジン冷却回路12の冷却水がラジエータバイパス流路35を流れる状態に切り替えることによって、チラー21とエンジン31との間で冷却水が流れるようにすることができる。
そのため、エンジン31の排熱をチラー21で吸熱するヒートポンプ運転を行うことができるので、エンジン31の排熱を利用してヒータコア51で空気を加熱できる(例えばエンジン吸熱式ヒートポンプ暖房モード)。
本実施形態では、制御装置80(切替弁制御部80b)は、外気の温度が所定温度(第2外気温度)未満である場合、エンジン冷却回路12の冷却水がラジエータバイパス流路35を流れる状態に切り替わるようにクーラ側バルブ43の作動を制御する。
これによると、エンジン冷却回路12の冷却水の温度が低い場合であっても、エンジン31の排熱を利用してヒータコア51で空気を加熱できるので、暖房の省エネルギー化を図ることができる(例えばエンジン吸熱式ヒートポンプ暖房モード)。
この作動状態では、ヒータコア51で加熱された空気の温度を、エンジン冷却回路12の冷却水の温度よりも高くすることができる。このとき、エンジン冷却回路12の冷却水の温度を低くすることによって、エンジン31から冷却水への伝熱量を増加させることができるので、車室内の暖房性能を向上できる。
本実施形態では、制御装置80(要求出力部80f)は、連通モード時に圧縮機26の冷媒吐出量が所定量以上もしくは圧縮機26の回転数が所定値以上であり、且つ車室内への吹出空気の温度が所定空気温度未満である場合、エンジン31の排熱量を増加させる要求、エンジン31の稼働率を増加させる要求、エンジン冷却回路12の冷却水の温度を上昇させる要求、またはエンジン31の効率を下げる要求をエンジン制御装置99に出力する。また、制御装置80(要求出力部80f)は、連通モード時にエンジンラジエータ32もしくはチラー21を流れる冷却水の温度が所定冷却水温度(第4熱媒体温度)未満である場合において、エンジン冷却回路12の冷却水の温度が所定温度(第5熱媒体温度)未満である場合、エンジン31の排熱量を増加させる要求、エンジン31の稼働率を増加させる要求、エンジン冷却回路12の冷却水の温度を上昇させる要求、またはエンジン31の効率を下げる要求をエンジン制御装置99に出力する。
これによると、エンジンラジエータ32に着霜が生じており且つエンジン冷却回路12の冷却水の温度が低い場合、エンジン冷却回路12の冷却水の温度を上昇させるので、車室内の暖房またはエンジンラジエータ32の除霜に必要な熱源を確保でき、ひいては車室内の暖房性能を維持できる。
なお、エンジンラジエータ32に着霜が生じているか否かは、エンジンラジエータ32における冷却水の温度、チラー21における冷却水の温度、チラー21における冷媒の温度、または車室室内への吹出空気温度と圧縮機26の仕事量との相関関係からの乖離量などに基づいて判断することができる。
本実施形態では、コンデンサ52で加熱されたヒータ側冷却水および水水熱交換器38で加熱されたヒータ側冷却水のいずれかを選択的にヒータコア51に流入させるヒータ側バルブ67を備える。
制御装置80(切替弁制御部80b)は、連通モードである場合、コンデンサ52で加熱されたヒータ側冷却水がヒータコア51に流入するようにヒータ側バルブ67の作動を制御する。
制御装置80(切替弁制御部80b)は、連通モード時にエンジン冷却回路12の冷却水の温度が所定温度(第5熱媒体温度)以上になった場合、水水熱交換器38で加熱されたヒータ側冷却水がヒータコア51に流入するようにヒータ側バルブ67の作動を制御する。
これによると、高圧側冷媒と空気とを直接熱交換させることなくヒータ側冷却水を介して熱交換させるので、車室内に冷媒が洩れる不具合が発生することを抑制できる。そのため、冷媒の選択の自由度を高めることができる。
エンジン冷却回路12の冷却水の温度が低い場合、冷凍サイクル25のヒートポンプ運転によって車室内を暖房するので、乗員の快適性を確保できる(例えば外気吸熱式ヒートポンプ暖房モード、エンジン吸熱式ヒートポンプ暖房モード)。
エンジン冷却回路12の冷却水の温度が高い場合、エンジン31の排熱を利用してヒータコア51で空気を加熱できるので、暖房の省エネルギー化を図ることができる(例えば除湿暖房モード)。
本実施形態では、エンジン冷却回路12の冷却水とヒータ側冷却水とを熱交換させる水水熱交換器38を備える。
これによると、クーラ冷却回路11およびエンジン冷却回路12を流れる冷却水と、コンデンサ回路13を流れるヒータ側冷却水とが熱流入装置38で混流しないので、冷却水とヒータ側冷却水とを互いに物性の異なる流体にすることができる。そのため、冷却水およびヒータ側冷却水の選択の自由度を高めることができる。
また、冷却水とヒータ側冷却水とが混流しないので、一方の回路内の異物が他方の回路に悪影響を与えることを防止できる。
本実施形態では、ヒータ側バルブ67は、コンデンサ回路13およびラジエータ回路14にヒータ側冷却水が互いに独立して循環する状態と、コンデンサ52とヒータ側ラジエータ61との間でヒータ側冷却水が流れるようにコンデンサ回路13とラジエータ回路14とが連通する状態とを切り替える。
これによると、コンデンサ回路13とラジエータ回路14とが連通している場合、コンデンサ52で高圧側冷媒によって加熱されたヒータ側冷却水を、ヒータ側ラジエータ61で外気によって冷却することができるので、車室内を冷房できる。
(第2実施形態)
上記実施形態では、エンジン冷却回路12の冷却水とコンデンサ回路13の冷却水とが水水熱交換器38を介して熱交換するようになっているが、本実施形態では、図10に示すように、エンジン冷却回路12とコンデンサ回路13とが直接的に接続可能になっている。
上記実施形態では、エンジン冷却回路12の冷却水とコンデンサ回路13の冷却水とが水水熱交換器38を介して熱交換するようになっているが、本実施形態では、図10に示すように、エンジン冷却回路12とコンデンサ回路13とが直接的に接続可能になっている。
本実施形態では、エンジン冷却回路12の循環流路34にヒータコア流路100が接続されている。ヒータコア流路100は、ヒータコア51が配置された冷却水流路である。
ヒータコア流路100の一端は、循環流路34のうちエンジン31の冷却水出口側の部位に接続されている。ヒータコア流路100の一端は、循環流路34のうちエンジンポンプ30の冷却水吸入側の部位に接続されている。
本実施形態では、コンデンサ回路13の循環流路53には、ヒータポンプ50、コンデンサ52およびヒータ側ラジエータ61が、この順番で冷却水が循環するように配置されている。
コンデンサ回路13の循環流路53は、ヒータ側バルブ101を介してエンジン冷却回路12のヒータコア流路100に接続されている。ヒータ側バルブ101は、4つのポート(第1~第4ポート)を有する四方弁である。
ヒータ側バルブ101の第1ポートは、ヒータコア51の冷却水出口側の流路に接続されている。ヒータ側バルブ101の第2ポートは、エンジンポンプ30の冷却水吸入側の流路に接続されている。換言すれば、ヒータ側バルブ101の第2ポートは、エンジン31の冷却水入口側の流路に接続されている。
ヒータ側バルブ101の第3ポートは、ヒータ側ラジエータ61の冷却水出口側の流路に接続されている。ヒータ側バルブ101の第4ポートは、ヒータポンプ50の冷却水吸入側の流路に接続されている。換言すれば、ヒータ側バルブ101の第4ポートは、ヒータコア51の冷却水入口側の流路に接続されている。
ヒータ側バルブ101は、第1~第4ポート同士の接続状態を切り替える弁体を有している。ヒータ側バルブ101は、弁体の切り替え作動によって冷却水の流れを切り替える冷却水流れ切替部である。
ヒータ側連通流路102は、コンデンサ回路13の循環流路53のうちコンデンサ52の冷却水出口側かつヒータ側ラジエータ61の冷却水入口側の部位と、エンジン冷却回路12のヒータコア流路100のうちヒータコア51の冷却水入口側の部位とを連通する冷却水流路である。
ラジエータ連携流路103は、エンジン冷却回路12の循環流路34のうちエンジン31の冷却水出口側かつエンジンラジエータ32の冷却水入口側の部位と、コンデンサ回路13の循環流路53のうちコンデンサ52の冷却水出口側かつヒータ側ラジエータ61の冷却水入口側の部位とを連通する冷却水流路である。
ラジエータ連携流路103には、ラジエータ連携バルブ104が配置されている。ラジエータ連携バルブ104は、ラジエータ連携流路103を開閉する流路開閉装置である。ラジエータ連携バルブ104がラジエータ連携流路103を開けると、ヒータ側ラジエータ61のエアを容易に抜くことができる。
ヒータ側バルブ101がヒータ側ラジエータ61の冷却水出口側とエンジンポンプ30の冷却水吸入側とを連通させるとともにラジエータ連携バルブ104がラジエータ連携流路103を開けると、エンジン31から流出した冷却水がエンジンラジエータ32およびヒータ側ラジエータ61を並列に流れて循環する。そのため、エンジン31から流出した冷却水がエンジンラジエータ32のみならずヒータ側ラジエータ61においても冷却されるので、エンジン31の冷却性能を向上でき、ひいてはエンジン31の出力を向上できる。
クーラ冷却回路11およびエンジン冷却回路12には、3つの冷却水流通機器62A、62B、62Cが配置されている。
図10の例では、1つの冷却水流通機器62Aは、クーラ冷却回路11の循環流路から分岐した冷却水流路に配置されている。他の2つの冷却水流通機器62B、62Cは、エンジン冷却回路12のヒータコア流路100から分岐した冷却水流路に配置されている。これらの冷却水流路の分岐部にはバルブ105、106が配置されている。バルブ105、106の開度を調整することによって、冷却水流通機器62A、62B、62Cの冷却水流量を制御できる。
すなわち、図10の例では、冷却水流通機器62A、62B、62Cは、クーラ冷却回路11およびエンジン冷却回路12のいずれかに並列的に配置されている。冷却水流通機器62A、62B、62Cは、クーラ冷却回路11およびエンジン冷却回路12のいずれかに直列的に配置されていてもよい。
エンジン冷却回路12の循環流路34のうちエンジンラジエータ32の冷却水入口側には、エンジンラジエータ流調弁107が配置されている。エンジンラジエータ流調弁107は、エンジンラジエータ32における冷却水の流量を調整するエンジンラジエータ流量調整部である。
(1)冷房モードおよび除湿暖房モード
冷房モードおよび除湿暖房モードでは、図11に示すように、クーラ側バルブ43がクーラコア22の冷却水出口側の流路とチラー21の冷却水入口側の流路とを連通させ、エンジンラジエータ流路41およびエンジン吸熱流路42を閉じる。また、ヒータ側バルブ101は、ヒータ側ラジエータ61の冷却水出口側の流路とコンデンサ52の冷却水入口側の流路とを連通させるとともに、ヒータコア51の冷却水出口側の流路とエンジン31の冷却水入口側の流路とを連通させる。
冷房モードおよび除湿暖房モードでは、図11に示すように、クーラ側バルブ43がクーラコア22の冷却水出口側の流路とチラー21の冷却水入口側の流路とを連通させ、エンジンラジエータ流路41およびエンジン吸熱流路42を閉じる。また、ヒータ側バルブ101は、ヒータ側ラジエータ61の冷却水出口側の流路とコンデンサ52の冷却水入口側の流路とを連通させるとともに、ヒータコア51の冷却水出口側の流路とエンジン31の冷却水入口側の流路とを連通させる。
これにより、クーラ冷却回路11、エンジン冷却回路12およびコンデンサ回路13では、互いに独立して冷却水が循環する。
クーラ冷却回路11では、冷却水がチラー21で冷却された後、クーラコア22を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がクーラコア22で冷却される。
また、エンジン冷却回路12では、エンジン31で加熱された冷却水がヒータコア51を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がヒータコア51で加熱される。
また、コンデンサ52で加熱された冷却水がヒータ側ラジエータ61を流れるので、ヒータ側ラジエータ61においてコンデンサ52の排熱および冷却水流通機器62の排熱が外気に放熱される。
(2)外気吸熱式ヒートポンプ暖房モード
外気吸熱式ヒートポンプ暖房モードでは、図12に示すように、クーラ側バルブ43がエンジンラジエータ流路41とチラー21の冷却水入口側の流路とを連通させ、クーラコア22の冷却水出口側の流路およびエンジン吸熱流路42を閉じる。また、ヒータ側バルブ101は、ヒータコア51の冷却水出口側の流路とコンデンサ52の冷却水入口側の流路とを連通させ、ヒータ側ラジエータ61の冷却水出口側の流路およびエンジン31の冷却水入口側の流路を閉じる。
外気吸熱式ヒートポンプ暖房モードでは、図12に示すように、クーラ側バルブ43がエンジンラジエータ流路41とチラー21の冷却水入口側の流路とを連通させ、クーラコア22の冷却水出口側の流路およびエンジン吸熱流路42を閉じる。また、ヒータ側バルブ101は、ヒータコア51の冷却水出口側の流路とコンデンサ52の冷却水入口側の流路とを連通させ、ヒータ側ラジエータ61の冷却水出口側の流路およびエンジン31の冷却水入口側の流路を閉じる。
外気吸熱式ヒートポンプ暖房モードは、エンジン冷却回路12の冷却水の温度が、暖房で直接的に使えない低温になっている場合(例えば60℃未満)に選択される。したがって、外気吸熱式ヒートポンプ暖房モードでは、サーモスタット37は、ラジエータバイパス流路35を開けてエンジンラジエータ32側の流路を閉じる。
これにより、チラー21で冷却された冷却水がエンジンラジエータ32を流れるので、エンジンラジエータ32において冷却水が外気から吸熱する。
除湿が不要である場合、クーラ側バルブ43は、クーラコア22への冷却水の流通を遮断する。
除湿が必要である場合、クーラ側バルブ43は、クーラコア22へ冷却水を流通させる。これにより、チラー21で冷却された冷却水がクーラコア22を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がクーラコア22で冷却除湿される。
この際、外気温が水の氷点(0℃)以下である場合はクーラコア22のフロスト抑制のためにクーラコア22の流量を調整する。それ以外の場合は、クーラコア22水温が高くなりすぎないように、エンジンラジエータ32の流量を調整して吸熱量を制御する。
また、コンデンサ52で加熱された冷却水がヒータコア51を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がヒータコア51で加熱される。
(3)外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト)
外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト)では、図13に示すように、クーラ側バルブ43がエンジンラジエータ流路41とチラー21の冷却水入口側の流路とを連通させ、クーラコア22の冷却水出口側の流路およびエンジン吸熱流路42を閉じる。また、ヒータ側バルブ101は、ヒータコア51の冷却水出口側の流路をコンデンサ52の冷却水入口側およびエンジン31の冷却水入口側の流路と連通させ、ヒータ側ラジエータ61の冷却水出口側の流路を閉じる。
外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト)では、図13に示すように、クーラ側バルブ43がエンジンラジエータ流路41とチラー21の冷却水入口側の流路とを連通させ、クーラコア22の冷却水出口側の流路およびエンジン吸熱流路42を閉じる。また、ヒータ側バルブ101は、ヒータコア51の冷却水出口側の流路をコンデンサ52の冷却水入口側およびエンジン31の冷却水入口側の流路と連通させ、ヒータ側ラジエータ61の冷却水出口側の流路を閉じる。
外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト)は、エンジン冷却回路12の冷却水の温度が、暖房で直接的に使えない低温になっている場合(例えば60℃未満)に選択される。したがって、外気吸熱式ヒートポンプ暖房モード(エンジン排熱アシスト)では、サーモスタット37は、ラジエータバイパス流路35を開けてエンジンラジエータ32側の流路を閉じる。
これにより、チラー21で冷却された冷却水がエンジンラジエータ32を流れるので、エンジンラジエータ32において冷却水が外気から吸熱する。
除湿が不要である場合、クーラ側バルブ43は、クーラコア22への冷却水の流通を遮断する。
除湿が必要である場合、クーラ側バルブ43は、クーラコア22へ冷却水を流通させる。これにより、チラー21で冷却された冷却水がクーラコア22を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がクーラコア22で冷却除湿される。
この際、外気温が水の氷点(0℃)以下である場合はクーラコア22のフロスト抑制のためにクーラコア22の流量を調整する。それ以外の場合は、クーラコア22水温が高くなりすぎないように、エンジンラジエータ32の流量を調整して吸熱量を制御する。
また、エンジン31で加熱された冷却水およびコンデンサ52で加熱された冷却水がヒータコア51を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がヒータコア51で加熱される。
エンジン31から冷却水が奪う熱量が、エンジン冷却回路12の冷却水温度を所定温度範囲内に維持できる分だけになるように冷却水の流量等を制御することによって、水温低下による燃費悪化を抑止できるとともに、エンジン稼働率を上げずに暖房できるので暖房使用時の燃費を向上できる。
(4)エンジン吸熱式ヒートポンプ暖房モード
エンジン吸熱式ヒートポンプ暖房モードでは、図14に示すように、クーラ側バルブ43がエンジン吸熱流路42とチラー21の冷却水入口側の流路とを連通させ、クーラコア22の冷却水出口側の流路およびエンジンラジエータ流路41を閉じる。また、ヒータ側バルブ67は、ヒータコア51の冷却水出口側の流路とコンデンサ52の冷却水入口側の流路とを連通させ、エンジン31の冷却水入口側の流路およびヒータ側ラジエータ61の冷却水出口側の流路を閉じる。
エンジン吸熱式ヒートポンプ暖房モードでは、図14に示すように、クーラ側バルブ43がエンジン吸熱流路42とチラー21の冷却水入口側の流路とを連通させ、クーラコア22の冷却水出口側の流路およびエンジンラジエータ流路41を閉じる。また、ヒータ側バルブ67は、ヒータコア51の冷却水出口側の流路とコンデンサ52の冷却水入口側の流路とを連通させ、エンジン31の冷却水入口側の流路およびヒータ側ラジエータ61の冷却水出口側の流路を閉じる。
エンジン吸熱式ヒートポンプ暖房モードは、エンジン冷却回路12の冷却水の温度が、暖房で直接的に使えない低温になっている場合(例えば60℃未満)に選択される。したがって、エンジン吸熱式ヒートポンプ暖房モードでは、サーモスタット37は、ラジエータバイパス流路35を開けてエンジンラジエータ32側の流路を閉じる。
これにより、エンジン31で加熱された冷却水がチラー21を流れるので、チラー21において冷却水がエンジン31の排熱を吸熱する。
また、コンデンサ52で加熱された冷却水がヒータコア51を流れるので、室内空調ユニット70のケーシング71内を流れる空気(車室内へ送風される空気)がヒータコア51で加熱される。
(第3実施形態)
上記実施形態では、冷凍サイクル25の高圧側冷媒を凝縮させる凝縮器として、高圧側冷媒と冷却水とを熱交換させるコンデンサ52を備えているが、本実施形態では、図15に示すように、冷凍サイクル25の凝縮器として、室内コンデンサ(空気加熱装置)110および室外コンデンサ111を備えている。
上記実施形態では、冷凍サイクル25の高圧側冷媒を凝縮させる凝縮器として、高圧側冷媒と冷却水とを熱交換させるコンデンサ52を備えているが、本実施形態では、図15に示すように、冷凍サイクル25の凝縮器として、室内コンデンサ(空気加熱装置)110および室外コンデンサ111を備えている。
室内コンデンサ110および室外コンデンサ111は、冷凍サイクル25において、この順番に冷媒が流れるように直列に配置されている。
室内コンデンサ110は、圧縮機26から吐出された高圧側冷媒と車室内へ送風される空気とを熱交換させることによって高圧側冷媒を凝縮させるとともに車室内へ送風される空気を加熱する室内熱交換器である。室内コンデンサ110は、ケーシング71内の空気通路において、ヒータコア51よりも空気流れ方向下流側に配置されている。
室外コンデンサ111は、圧縮機26から吐出された高圧側冷媒と外気とを熱交換させることによって高圧側冷媒を凝縮させる室外熱交換器である。室外コンデンサ111は、車両のエンジンルームに配置されている。室外コンデンサ111には、室外送風機33によって外気が送風される。室外コンデンサ111は、エンジンラジエータ32よりも外気流れ方向上流側に配置されている。
冷凍サイクル25は、冷媒バイパス流路112および三方弁113を備えている。冷媒バイパス流路112は、室内コンデンサ110から流出した冷媒が室外コンデンサ111をバイパスして膨張弁28へと流れる冷媒流路である。三方弁113は、室外コンデンサ111を流れる冷媒と冷媒バイパス流路112を流れる冷媒との流量割合を調整する冷媒流量割合調整部である。
冷凍サイクル25はアキュムレータ114を備えている。アキュムレータ114は、チラー21から流出した気液2相冷媒を気相冷媒と液相冷媒とに分離して、分離された気相冷媒を圧縮機26側に流出させる気液分離器である。アキュムレータ114は、冷凍サイクル25を流れる冷媒の流量を調整する冷媒流量調整部である。
本実施形態では、冷凍サイクル25の高圧側冷媒と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を加熱する室内コンデンサ110を備える。
これにより、簡素な構成によって、冷凍サイクル25の高圧側冷媒の熱を利用して車室内へ送風される空気を加熱できる。
本実施形態では、高圧側冷媒と外気とを熱交換させる室外コンデンサ111と、室内コンデンサ110を流れる高圧側冷媒と室外コンデンサ111を流れる高圧側冷媒との流量割合を調整する三方弁113とを備える。
これによると、高圧側冷媒が室外コンデンサ111を流れている場合、高圧側冷媒を室外コンデンサ111で外気によって冷却することができるので、車室内を冷房できる。
(第4実施形態)
上記実施形態では、四方弁で構成されたクーラ側バルブ43を備えているが、本実施形態では、図16に示すように、五方弁で構成されたクーラ側バルブ120を備えている。
上記実施形態では、四方弁で構成されたクーラ側バルブ43を備えているが、本実施形態では、図16に示すように、五方弁で構成されたクーラ側バルブ120を備えている。
クーラ側バルブ120は、上記実施形態におけるサーモスタット37の機能を兼ね備えている。
クーラ側バルブ120の5つのポートのうち第1ポートおよび第2ポートは、クーラ冷却回路11の冷却水流路に接続されている。
クーラ側バルブ120の第3ポートおよび第4ポートは、エンジン冷却回路12の循環流路34に接続されている。クーラ側バルブ120の第5のポートは、ラジエータバイパス流路35に接続されている。
具体的には、第1ポートは、クーラコア22の冷却水出口側に接続されている。第2ポートは、クーラポンプ20の冷却水吸入側に接続されている。換言すれば、第2ポートは、チラー21の冷却水入口側に接続されている。
第3ポートは、エンジンラジエータ32の冷却水出口側に接続されている。第4ポートは、エンジンポンプ30の冷却水吸入側に接続されている。換言すれば、第4ポートは、エンジン31の冷却水入口側に接続されている。第5のポートは、ラジエータバイパス流路35の冷却水出口側に接続されている。
クーラ側バルブ120は、その5つのポート同士の接続状態を切り替える弁体を有している。クーラ側バルブ120は、弁体の切り替え作動によって冷却水の流れを切り替える冷却水流れ切替部(切替装置)である。
図16の例では、冷凍サイクル25は、冷媒温度圧力センサ121、電気式膨張弁122、冷媒流通機器123および圧力調整弁124を備えている。
冷媒温度圧力センサ121は、圧縮機26から吐出された高圧側冷媒の温度および圧力を検出する検出部(検出装置)である。
電気式膨張弁122は、室内コンデンサ110および室外コンデンサ111から流出した液相冷媒を減圧膨張させる減圧部(減圧装置)である。
電気式膨張弁122は、絞り開度を変更可能に構成された弁体、およびこの弁体の絞り開度を変化させる電動アクチュエータを有する可変絞り機構で構成されている。この電動アクチュエータは、制御装置80から出力される制御信号によって、その作動が制御される。
電気式膨張弁122へ出力される制御信号については、圧縮機26から吐出された高圧側冷媒の圧力が目標高圧に近づくように決定される。目標高圧は、圧縮機26から吐出された高圧側冷媒の温度および外気温Tamに基づいて、制御装置80に予め記憶された制御マップを参照して決定される。
冷媒流通機器123は、内部に冷媒が流通することによって冷却される機器である。冷媒流通機器123の内部には、電気式膨張弁122で減圧された低圧冷媒が流通する。
冷媒流通機器123としては、例えばリヤクーラ、電池熱交換器およびクーラボックス等が挙げられる。
リヤクーラは、車室内後方部へ向けて吹き出される空気を冷却する空気冷却用熱交換器である。電池熱交換器は、車両に搭載された電池を冷却する電池冷却装置である。クーラボックスは、内部に収納された物品を冷却する冷却庫である。
電気式膨張弁122、冷媒流通機器123および圧力調整弁124は、冷媒の流れにおいて、膨張弁28およびチラー21と並列に配置されている。
本実施形態では、クーラ側バルブ120は、クーラコア22の冷却水出口側と、チラー21の冷却水入口側と、エンジンラジエータ32の冷却水出口側と、エンジン31の冷却水入口側と、ラジエータバイパス流路35の冷却水出口側との間で冷却水の流れを切り替える。
これによると、上記実施形態におけるサーモスタット37をクーラ側バルブ120に一体化できるので、構成を簡素化できる。
(第5実施形態)
本実施形態では、図17に示すように、クーラ冷却回路11に蓄冷器130が配置されている。
本実施形態では、図17に示すように、クーラ冷却回路11に蓄冷器130が配置されている。
蓄冷器130は、冷却水が持つ冷熱を蓄える蓄冷部(蓄冷装置)である。例えば、蓄冷器130は、冷却水を貯蔵する冷却水タンクを有している。蓄冷器130は、潜熱型蓄冷材を有していてもよい。具体的には、潜熱型蓄冷材は、凝固点が0~10℃の範囲に調整されたパラフィンや水和物などである。蓄冷器130は、比熱の大きい物質を有していてもよい。
図17の例では、蓄冷器130への冷却水の流通・遮断は、クーラ側バルブ43によって切り替えられる。したがって、図17の例では、クーラ側バルブ43は、5つのポートを有する五方弁で構成されている。
クーラ側バルブ43とは別体のバルブによって、蓄冷器130への冷却水の流通・遮断が切り替えられるようになっていてもよい。
例えば、通常冷房時に蓄冷器130へ冷却水を流通させて蓄冷を行い、急速冷房時(クールダウン時)に蓄冷器130への冷却水の流通を遮断して蓄冷を行わないようにする。
(他の実施形態)
上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
上記各実施形態では、クーラ冷却回路11、エンジン冷却回路12、コンデンサ回路13およびラジエータ回路14を流れる熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。
熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。ナノ粒子を熱媒体に混入させることで、エチレングリコールを用いた冷却水(いわゆる不凍液)のように凝固点を低下させる作用効果に加えて、次のような作用効果を得ることができる。
すなわち、特定の温度帯での熱伝導率を向上させる作用効果、熱媒体の熱容量を増加させる作用効果、金属配管の防食効果やゴム配管の劣化を防止する作用効果、および極低温での熱媒体の流動性を高める作用効果を得ることができる。
このような作用効果は、ナノ粒子の粒子構成、粒子形状、配合比率、付加物質によって様々に変化する。
これによると、熱伝導率を向上させることができるので、エチレングリコールを用いた冷却水と比較して少ない量の熱媒体であっても同等の冷却効率を得ることが可能になる。
また、熱媒体の熱容量を増加させることができるので、熱媒体自体の蓄冷熱量(顕熱による蓄冷熱)を増加させることができる。
蓄冷熱量を増加させることにより、圧縮機26を作動させない状態であっても、ある程度の時間は蓄冷熱を利用した機器の冷却、加熱の温調が実施できるため、車両用熱管理システム10の省動力化が可能になる。
ナノ粒子のアスペクト比は50以上であるのが好ましい。十分な熱伝導率を得ることができるからである。なお、アスペクト比は、ナノ粒子の縦×横の比率を表す形状指標である。
ナノ粒子としては、Au、Ag、CuおよびCのいずれかを含むものを用いることができる。具体的には、ナノ粒子の構成原子として、Auナノ粒子、Agナノワイヤー、CNT(カーボンナノチューブ)、グラフェン、グラファイトコアシェル型ナノ粒子(上記原子を囲むようにカーボンナノチューブ等の構造体があるような粒子体)、およびAuナノ粒子含有CNTなどを用いることができる。
上記各実施形態の冷凍サイクル25では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。
クーラ側バルブ43、120、およびエンジンラジエータ流調弁107は、エンジンラジエータ流量調節装置であってもよい。
また、上記各実施形態の冷凍サイクル25は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Claims (20)
- 冷凍サイクル(25)の冷媒を吸入して吐出する圧縮機(26)と、
前記冷凍サイクル(25)の高圧側冷媒の熱を利用して、車室内へ送風される空気を加熱する空気加熱装置(51、52、110)と、
前記冷凍サイクル(25)の低圧側冷媒と熱媒体とを熱交換させて前記熱媒体を冷却するチラー(21)と、
前記チラー(21)で冷却された前記熱媒体と前記空気とを熱交換させて前記空気を冷却するクーラコア(22)と、
前記チラー(21)および前記クーラコア(22)に前記熱媒体を循環させるクーラ冷却回路(11)と、
前記クーラ冷却回路(11)の前記熱媒体を吸入して吐出するクーラポンプ(20)と、
エンジン(31)に前記熱媒体を循環させるエンジン冷却回路(12)と、
前記エンジン冷却回路(12)の前記熱媒体を吸入して吐出するエンジンポンプ(30)と、
前記エンジン冷却回路(12)の前記熱媒体と外気とを熱交換させるエンジンラジエータ(32)と、
前記クーラ冷却回路(11)および前記エンジン冷却回路(12)に前記熱媒体が互いに独立して循環する独立モードと、前記チラー(21)と前記エンジンラジエータ(32)との間で前記熱媒体が流れるように前記クーラ冷却回路(11)と前記エンジン冷却回路(12)とが連通する連通モードとを切り替える切替装置(43、120)と、
前記エンジン冷却回路(12)の前記熱媒体の温度が第1熱媒体温度未満の場合、前記連通モードに切り替わるように前記切替装置(43、120)の作動を制御する制御部(80)とを備える車両用熱管理システム。 - 前記制御部(80)は、前記空気加熱装置(51、52、110)への前記空気の送風量が少ない場合、前記空気加熱装置(51、52、110)への前記空気の送風が停止されている場合、または前記空気加熱装置(51、52、110)が前記高圧側冷媒の熱を利用しない場合においては、前記エンジン冷却回路(12)の前記熱媒体の温度が前記第1熱媒体温度未満の場合であっても前記独立モードになるように前記切替装置(43、120)の作動を制御する請求項1に記載の車両用熱管理システム。
- 前記切替装置(43、120)は、前記連通モードにおいて、前記チラー(21)と前記クーラコア(22)との間でも前記熱媒体が流れるように前記クーラ冷却回路(11)と前記エンジン冷却回路(12)とが連通するクーラコア連通モードを実施可能である請求項1または2に記載の車両用熱管理システム。
- 前記制御部(80)は、前記連通モード時に前記車室内を除湿暖房する場合において、前記クーラコア(22)からの吹出空気の温度とクーラコア吹出目標温度(TCO)との温度差が所定値未満かつ前記空気加熱装置(51、52、110)からの吹出空気の温度が加熱目標温度(TAO)よりも所定温度以上低い場合、または暖房性能が所定性能を満たしていない場合、前記クーラコア連通モードになるように前記切替装置(43、120)の作動を制御する請求項3に記載の車両用熱管理システム。
- 前記エンジンラジエータ(32)における前記熱媒体の流量を調整するエンジンラジエータ流量調整装置(43、107、120)と、
前記冷凍サイクル(25)を流れる冷媒の流量を調整する冷媒流量調整装置(26、28、114)とを備え、
前記制御部(80)は、前記クーラコア連通モード時において、前記クーラコア(22)からの吹出空気の温度に関連する温度が前記第1吹出目標温度(TCO)に近づき、かつ前記空気加熱装置(51、52、110)からの吹出空気の温度に関連する温度が第2目標吹出温度(TAO)に近づくように、前記エンジンラジエータ流量調整装置(43、107、120)または前記冷媒流量調整装置(26、28、114)の作動を制御する請求項4に記載の車両用熱管理システム。 - 前記切替装置(43、120)は、前記クーラコア(22)と前記エンジンラジエータ(32)との間で前記熱媒体が流れるように前記クーラ冷却回路(11)と前記エンジン冷却回路(12)とを連通させることが可能になっている請求項1または2に記載の車両用熱管理システム。
- 前記制御部(80)は、前記連通モード時に前記エンジン冷却回路(12)の前記熱媒体の温度が第2熱媒体温度を上回ると、前記独立モードに切り替わるように前記切替装置(43、120)の作動を制御する請求項1ないし6のいずれか1つに記載の車両用熱管理システム。
- 前記独立モードおよび前記連通モードのいずれにおいても前記クーラ冷却回路(11)と前記エンジン冷却回路(12)とを連通させる連通流路(40)と、
前記エンジン冷却回路(12)または前記クーラ冷却回路(11)に配置され、前記熱媒体を貯留するリザーブタンク(39)とを備える請求項1ないし7のいずれか1つに記載の車両用熱管理システム。 - 前記連通流路(40)は、前記クーラ冷却回路(11)のうち前記クーラポンプ(20)の熱媒体吐出側かつ前記クーラコア(22)の熱媒体入口側の部位と、前記エンジン冷却回路(12)のうち前記エンジンポンプ(30)の熱媒体吐出側かつ前記エンジンラジエータ(32)の熱媒体入口側の部位とを連通させている請求項8に記載の車両用熱管理システム。
- 前記クーラ冷却回路(11)と前記エンジン冷却回路(12)とを連通させるエンジンラジエータ流路(41)を備え、
前記切替装置(43)は、前記エンジン冷却回路(12)の前記熱媒体が前記エンジンラジエータ流路(41)を流れる状態と流れない状態とを切り替えることよって、前記独立モードと前記連通モードとを切り替える請求項8または9に記載の車両用熱管理システム。 - 前記制御部(80)は、前記エンジン冷却回路(12)の前記熱媒体の温度が第3熱媒体温度未満であり且つ前記外気の温度が第1外気温度未満である場合、前記クーラコア(22)と前記エンジンラジエータ(32)との間で前記熱媒体が流れるように前記切替装置(43、120)の作動を制御するとともに前記圧縮機(26)を停止させる請求項3ないし6のいずれか1つに記載の車両用熱管理システム。
- 前記エンジン冷却回路(12)の前記熱媒体が前記エンジンラジエータ(32)をバイパスして流れるラジエータバイパス流路(35)と、
前記ラジエータバイパス流路(35)と前記切替装置(43、120)とを繋ぐエンジン吸熱流路(42)とを備え、
前記切替装置(43)は、前記エンジン冷却回路(12)の前記熱媒体が前記ラジエータバイパス流路(35)を流れる状態と流れない状態とを切り替える請求項1ないし11のいずれか1つに記載の車両用熱管理システム。 - 前記制御部(80)は、前記外気の温度が第2外気温度未満である場合、前記エンジン冷却回路(12)の前記熱媒体が前記ラジエータバイパス流路(35)を流れる状態に切り替わるように前記切替装置(43、120)の作動を制御する請求項12に記載の車両用熱管理システム。
- 前記連通モード時に前記圧縮機(26)の冷媒吐出量が所定量以上もしくは前記圧縮機(26)の回転数が所定値以上であり、且つ前記車室内へ吹き出される前記空気の温度が所定空気温度未満である場合、または前記連通モード時に前記エンジンラジエータ(32)もしくは前記チラー(21)を流れる前記熱媒体の温度が第4熱媒体温度未満である場合において、前記エンジン冷却回路(12)の前記熱媒体の温度が第5熱媒体温度未満である場合、
前記エンジン(31)の作動を制御するエンジン制御部(99)に、前記エンジン(31)の排熱量を増加させる要求、前記エンジン(31)の稼働率を増加させる要求、前記エンジン冷却回路(12)の前記熱媒体の温度を上昇させる要求、または前記エンジン(31)の効率を下げる要求を出力する要求出力部(80)を備える請求項1ないし13のいずれか1つに記載の車両用熱管理システム。 - 前記空気加熱装置(51、52)は、
前記高圧側冷媒からヒータ側熱媒体へ放熱させて前記ヒータ側熱媒体を加熱するコンデンサ(52)と、
前記ヒータ側熱媒体と前記空気とを熱交換させて前記空気を加熱するヒータコア(51)とを有しており、
さらに、前記コンデンサ(52)および前記ヒータコア(51)に前記ヒータ側熱媒体を循環させるコンデンサ回路(13)と、
前記コンデンサ回路(13)の前記ヒータ側熱媒体を吸入して吐出するヒータポンプ(50)と、
前記エンジン冷却回路(12)の前記熱媒体の熱を前記ヒータ側熱媒体に流入させて前記ヒータ側熱媒体を加熱する熱流入装置(38)と、
前記コンデンサ(52)で加熱された前記ヒータ側熱媒体および前記熱流入装置(38)で加熱された前記ヒータ側熱媒体のいずれかを選択的に前記ヒータコア(51)に流入させるヒータ側切替装置(67)とを備え、
前記制御部(80)は、
前記連通モードである場合、前記コンデンサ(52)で加熱された前記ヒータ側熱媒体が前記ヒータコア(51)に流入するように前記ヒータ側切替装置(67)の作動を制御し、
前記連通モード時に前記エンジン冷却回路(12)の前記熱媒体の温度が第5熱媒体温度以上になった場合、前記熱流入装置(38)で加熱された前記ヒータ側熱媒体が前記ヒータコア(51)に流入するように前記ヒータ側切替装置(67)の作動を制御する請求項1ないし14のいずれか1つに記載の車両用熱管理システム。 - 前記熱流入装置(38)は、前記エンジン冷却回路(12)の前記熱媒体と前記ヒータ側熱媒体とを熱交換させる熱媒体熱媒体熱交換器(38)である請求項15に記載の車両用熱管理システム。
- 前記ヒータ側熱媒体と前記外気とを熱交換させるヒータ側ラジエータ(61)と、
前記ヒータ側ラジエータ(61)に前記ヒータ側熱媒体を循環させるラジエータ回路(14)と、
前記ラジエータ回路(14)の前記ヒータ側熱媒体を吸入して吐出するラジエータポンプ(60)とを備え、
前記ヒータ側切替装置(67)は、前記コンデンサ回路(13)および前記ラジエータ回路(14)に前記ヒータ側熱媒体が互いに独立して循環する状態と、前記コンデンサ(52)と前記ヒータ側ラジエータ(61)との間で前記ヒータ側熱媒体が流れるように前記コンデンサ回路(13)と前記ラジエータ回路(14)とが連通する状態とを切り替える請求項16に記載の車両用熱管理システム。 - 前記空気加熱装置は、前記高圧側冷媒と前記空気とを熱交換させて前記空気を加熱する室内コンデンサ(110)を有している請求項1ないし14のいずれか1つに記載の車両用熱管理システム。
- 前記高圧側冷媒と前記外気とを熱交換させる室外コンデンサ(111)と、
前記室内コンデンサ(110)を流れる前記高圧側冷媒と前記室外コンデンサ(111)を流れる前記高圧側冷媒との流量割合を調整する冷媒流量割合調整装置(113)とを備える請求項18に記載の車両用熱管理システム。 - 前記エンジン冷却回路(12)の前記熱媒体が前記エンジンラジエータ(32)をバイパスして流れるラジエータバイパス流路(35)を備え、
前記切替装置(120)は、前記クーラコア(22)の熱媒体出口側と、前記チラー(21)の熱媒体入口側と、前記エンジンラジエータ(32)の熱媒体出口側と、前記エンジン(31)の熱媒体入口側と、前記ラジエータバイパス流路(35)の熱媒体出口側との間で前記熱媒体の流れを切り替える請求項1ないし19のいずれか1つに記載の車両用熱管理システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/541,305 US10906376B2 (en) | 2015-02-06 | 2016-01-26 | Thermal management system for vehicle |
CN201680008695.5A CN107206865B (zh) | 2015-02-06 | 2016-01-26 | 车辆用热管理系统 |
DE112016000643.8T DE112016000643T5 (de) | 2015-02-06 | 2016-01-26 | Wärmemanagementsystem für Fahrzeuge |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-022087 | 2015-02-06 | ||
JP2015022087A JP6398764B2 (ja) | 2015-02-06 | 2015-02-06 | 車両用熱管理システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016125452A1 true WO2016125452A1 (ja) | 2016-08-11 |
Family
ID=56563807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/000370 WO2016125452A1 (ja) | 2015-02-06 | 2016-01-26 | 車両用熱管理システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US10906376B2 (ja) |
JP (1) | JP6398764B2 (ja) |
CN (1) | CN107206865B (ja) |
DE (1) | DE112016000643T5 (ja) |
WO (1) | WO2016125452A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210309075A1 (en) * | 2020-04-01 | 2021-10-07 | Toyota Jidosha Kabushiki Kaisha | Heat management device |
CN114312205A (zh) * | 2021-02-05 | 2022-04-12 | 华为数字能源技术有限公司 | 热管理系统、热管理系统的控制方法与电动汽车 |
CN115519973A (zh) * | 2022-10-10 | 2022-12-27 | 北京理工大学 | 一种车用co2热管理系统及其工作方法 |
CN116605000A (zh) * | 2023-05-24 | 2023-08-18 | 安徽江淮汽车集团股份有限公司 | 一种纯电动汽车热管理系统 |
Families Citing this family (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017065653A (ja) * | 2015-10-02 | 2017-04-06 | トヨタ自動車株式会社 | 車両用熱利用装置 |
SE541469C2 (en) * | 2015-11-20 | 2019-10-08 | Sens Geoenergy Storage Ab | Methods and systems for heat pumping |
CN114407614A (zh) * | 2016-09-02 | 2022-04-29 | 苹果公司 | 热管理系统和方法 |
KR101846915B1 (ko) * | 2016-11-01 | 2018-05-28 | 현대자동차 주식회사 | 차량용 히트 펌프 시스템 |
JP6741904B2 (ja) * | 2016-12-09 | 2020-08-19 | 株式会社デンソー | 駆動装置および自動車 |
DE102017201202A1 (de) * | 2017-01-25 | 2018-07-26 | Mahle International Gmbh | Abwärmenutzungseinrichtung für ein Elektrofahrzeug |
JP6610622B2 (ja) * | 2017-07-10 | 2019-11-27 | トヨタ自動車株式会社 | 熱交換システムの制御装置 |
KR102429010B1 (ko) * | 2017-08-09 | 2022-08-03 | 현대자동차 주식회사 | 차량용 히트 펌프 시스템 |
US11001164B1 (en) * | 2017-10-24 | 2021-05-11 | Isaac M Aburto | Electric vehicle with rechargeable battery and dual-purpose electric motors |
JP6870570B2 (ja) * | 2017-10-26 | 2021-05-12 | 株式会社デンソー | 車両用熱管理システム |
KR102445224B1 (ko) * | 2017-10-27 | 2022-09-20 | 한온시스템 주식회사 | 차량용 히트 펌프 시스템 |
JP6919552B2 (ja) * | 2017-12-22 | 2021-08-18 | 株式会社デンソー | 冷却回路及びオイルクーラ |
JP6596774B2 (ja) * | 2017-12-28 | 2019-10-30 | 本田技研工業株式会社 | 電動機搭載車両 |
JP7024413B2 (ja) * | 2018-01-09 | 2022-02-24 | 株式会社デンソー | 熱管理システム |
JP6925288B2 (ja) * | 2018-01-30 | 2021-08-25 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP7114920B2 (ja) * | 2018-02-07 | 2022-08-09 | トヨタ自動車株式会社 | 熱エネルギー制御システム、熱量分配器、車両の熱エネルギー制御方法 |
DE102018104409A1 (de) * | 2018-02-27 | 2019-08-29 | Volkswagen Aktiengesellschaft | Kühlsystem und Brennkraftmaschine |
US11085356B2 (en) * | 2018-03-01 | 2021-08-10 | Nio Usa, Inc. | Thermal management coolant valves and pumps modular combination |
JP6692845B2 (ja) * | 2018-03-07 | 2020-05-13 | 本田技研工業株式会社 | 車両用熱循環システム |
CN110385959A (zh) * | 2018-04-17 | 2019-10-29 | 翰昂汽车零部件有限公司 | 车辆用热管理系统 |
US11059351B2 (en) * | 2018-04-25 | 2021-07-13 | Ford Global Technologies, Llc | System and method for heating passenger cabin with combination of power electronics and electric machine waste heat |
JP7028079B2 (ja) * | 2018-06-22 | 2022-03-02 | 株式会社デンソー | 冷凍サイクル装置 |
JP7048437B2 (ja) * | 2018-07-02 | 2022-04-05 | 本田技研工業株式会社 | 車両の熱管理システム |
JP7024631B2 (ja) * | 2018-07-04 | 2022-02-24 | トヨタ自動車株式会社 | 車両の暖房装置 |
JP7119698B2 (ja) * | 2018-07-24 | 2022-08-17 | 株式会社デンソー | 車両用空調装置 |
KR102496811B1 (ko) * | 2018-08-01 | 2023-02-06 | 현대자동차 주식회사 | 차량용 냉각 시스템의 제어방법 |
JP2020026197A (ja) * | 2018-08-10 | 2020-02-20 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
US11065936B2 (en) * | 2018-08-10 | 2021-07-20 | GM Global Technology Operations LLC | Vehicle thermal system architecture |
US10843550B2 (en) | 2018-08-21 | 2020-11-24 | Nio Usa, Inc. | Thermal management system with two pumps and three loops |
DE102018121390A1 (de) * | 2018-09-03 | 2020-03-05 | Hanon Systems | Thermomanagementanordnung für Fahrzeuge sowie Verfahren zum Betreiben einer Thermomanagementanordnung |
KR20200040946A (ko) * | 2018-10-10 | 2020-04-21 | 현대자동차주식회사 | 차량용 엔진 냉각 시스템 |
CN109469543B (zh) * | 2018-11-01 | 2020-04-14 | 安徽双桦热交换系统有限公司 | 一种散热器工作状态监控系统 |
KR102600059B1 (ko) * | 2018-12-03 | 2023-11-07 | 현대자동차 주식회사 | 차량용 열 관리 시스템 |
US11390135B2 (en) * | 2018-12-06 | 2022-07-19 | Hyundai Motor Company | Thermal management system for vehicle |
JP7094908B2 (ja) * | 2019-02-25 | 2022-07-04 | 本田技研工業株式会社 | ハイブリッド車両のバッテリ昇温装置 |
JP7173064B2 (ja) * | 2019-02-28 | 2022-11-16 | 株式会社デンソー | 熱管理システム |
JP7099392B2 (ja) * | 2019-04-03 | 2022-07-12 | トヨタ自動車株式会社 | 車載温調装置 |
JP6973446B2 (ja) * | 2019-05-10 | 2021-11-24 | トヨタ自動車株式会社 | 車載温調装置 |
JP2020185891A (ja) * | 2019-05-15 | 2020-11-19 | アイシン精機株式会社 | 電動車両用温度調整システム |
JP6737380B1 (ja) * | 2019-06-11 | 2020-08-05 | 株式会社デンソー | バルブ装置 |
DE102019128735A1 (de) * | 2019-06-24 | 2020-12-24 | Hyundai Motor Company | Wärmepumpensystem für ein Fahrzeug |
JP7434744B2 (ja) * | 2019-07-24 | 2024-02-21 | 株式会社デンソー | 熱管理装置 |
KR102703180B1 (ko) * | 2019-07-29 | 2024-09-04 | 현대자동차 주식회사 | 차량용 히트펌프 시스템 제어방법 |
JP7316872B2 (ja) * | 2019-08-06 | 2023-07-28 | サンデン株式会社 | 車両搭載発熱機器の温度調整装置及びそれを備えた車両用空気調和装置 |
CN112406494B (zh) * | 2019-08-23 | 2022-08-09 | 华为技术有限公司 | 用于汽车的热管理系统以及基于该系统的热管理方法 |
CN112428766B (zh) * | 2019-08-26 | 2022-07-22 | 联合汽车电子有限公司 | 混合动力车热量管理系统及管理方法 |
JP7287204B2 (ja) * | 2019-09-10 | 2023-06-06 | 株式会社デンソー | 車両の熱交換システム |
JP7115452B2 (ja) * | 2019-09-30 | 2022-08-09 | トヨタ自動車株式会社 | 冷却システム |
JP7243694B2 (ja) * | 2019-10-15 | 2023-03-22 | 株式会社デンソー | 冷凍サイクル装置 |
US11267318B2 (en) * | 2019-11-26 | 2022-03-08 | Ford Global Technologies, Llc | Vapor injection heat pump system and controls |
KR20210104354A (ko) * | 2020-02-17 | 2021-08-25 | 현대자동차주식회사 | 차량용 히트펌프 시스템 |
JP7404936B2 (ja) * | 2020-03-03 | 2023-12-26 | 株式会社デンソー | 熱管理システム |
JP7415683B2 (ja) * | 2020-03-10 | 2024-01-17 | トヨタ自動車株式会社 | 車載温調システム |
JP7367573B2 (ja) * | 2020-03-16 | 2023-10-24 | トヨタ自動車株式会社 | 熱要求調停装置、方法、プログラム、及び車両 |
JP2021146812A (ja) * | 2020-03-17 | 2021-09-27 | トヨタ自動車株式会社 | 熱管理装置 |
JP7328171B2 (ja) * | 2020-03-19 | 2023-08-16 | トヨタ自動車株式会社 | 熱管理装置 |
JP7256142B2 (ja) * | 2020-03-31 | 2023-04-11 | トヨタ自動車株式会社 | 熱要求調停装置、方法、プログラム、及び車両 |
JP2021169286A (ja) * | 2020-04-17 | 2021-10-28 | トヨタ自動車株式会社 | 自動車用の熱管理システム |
DE102021113104A1 (de) * | 2020-05-28 | 2021-12-02 | Hanon Systems | Thermomanagementanordnung für Fahrzeuge sowie Verfahren zum Betreiben einer Thermomanagementanordnung |
KR20210152794A (ko) | 2020-06-09 | 2021-12-16 | 현대자동차주식회사 | 차량용 히트펌프 시스템 |
KR20220040794A (ko) * | 2020-09-24 | 2022-03-31 | 현대자동차주식회사 | 차량용 히트펌프 시스템 |
KR20220040791A (ko) * | 2020-09-24 | 2022-03-31 | 현대자동차주식회사 | 차량용 히트펌프 시스템 |
US12083856B2 (en) * | 2020-10-29 | 2024-09-10 | Rivian Ip Holdings, Llc | Integrated thermal management system for a vehicle |
GB202106393D0 (en) * | 2021-05-05 | 2021-06-16 | Equipmake Ltd | A heating and cooling system for a vehicle |
JP2022190760A (ja) * | 2021-06-15 | 2022-12-27 | トヨタ自動車株式会社 | 熱管理システム |
US11541719B1 (en) | 2021-07-14 | 2023-01-03 | GM Global Technology Operations LLC | Active thermal management systems and control logic for heat exchanger storage of refrigerant |
KR20230020285A (ko) * | 2021-08-03 | 2023-02-10 | 현대자동차주식회사 | 차량용 열관리시스템 |
CN114475147B (zh) * | 2021-12-21 | 2024-01-12 | 浙江零跑科技股份有限公司 | 一种混合动力汽车热管理系统及其控制方法 |
CN114368323B (zh) * | 2022-01-04 | 2023-10-13 | 岚图汽车科技有限公司 | 汽车热管理系统及汽车 |
CN114654961B (zh) * | 2022-02-23 | 2024-04-26 | 浙江银轮机械股份有限公司 | 一种汽车热管理系统及新能源汽车 |
CN114475161B (zh) * | 2022-03-30 | 2024-03-22 | 美的集团(上海)有限公司 | 汽车的热管理系统及汽车 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014000948A (ja) * | 2012-05-24 | 2014-01-09 | Denso Corp | 車両用熱管理システム |
JP2014118105A (ja) * | 2012-12-19 | 2014-06-30 | Panasonic Corp | 車両用ヒートポンプ装置、車両用空調システムおよび着霜防止方法 |
JP2014181594A (ja) * | 2013-03-19 | 2014-09-29 | Denso Corp | 車両用熱管理システム |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57167820A (en) * | 1981-04-06 | 1982-10-15 | Mitsubishi Electric Corp | Air conditioner for automobile |
JP3952545B2 (ja) * | 1997-07-24 | 2007-08-01 | 株式会社デンソー | 車両用空調装置 |
JP3244467B2 (ja) | 1998-04-02 | 2002-01-07 | 松下電器産業株式会社 | 車両用空調装置 |
FR2806038B1 (fr) * | 2000-03-10 | 2002-09-06 | Valeo Climatisation | Dispositif de chauffage et/ou climatisation de l'habitacle d'un vehicule a moteur |
FR2808740B1 (fr) | 2000-05-15 | 2004-06-11 | Peugeot Citroen Automobiles Sa | Procede et dispositif de regulation thermique d'un habitacle de vehicule automobile |
US6640889B1 (en) * | 2002-03-04 | 2003-11-04 | Visteon Global Technologies, Inc. | Dual loop heat and air conditioning system |
DE10253357B4 (de) * | 2002-11-13 | 2006-05-18 | Visteon Global Technologies, Inc., Dearborn | Kombinierte Kälteanlage/Wärmepumpe zum Einsatz in Kraftfahrzeugen zum Kühlen, Heizen und Entfeuchten des Fahrzeuginnenraumes |
US6796134B1 (en) * | 2003-08-05 | 2004-09-28 | Daimlerchrysler Corporation | Charge air intercooler having a fluid loop integrated with the vehicle air conditioning system |
US6862892B1 (en) * | 2003-08-19 | 2005-03-08 | Visteon Global Technologies, Inc. | Heat pump and air conditioning system for a vehicle |
JP2006177632A (ja) * | 2004-12-24 | 2006-07-06 | Denso Corp | 冷凍サイクル |
DE502007004125D1 (de) * | 2007-02-23 | 2010-07-29 | Behr America Inc | Klimaanlage für ein Fahrzeug |
US8116953B2 (en) * | 2008-01-10 | 2012-02-14 | GM Global Technology Operations LLC | Active thermal management system and method for transmissions |
US7669558B2 (en) * | 2007-07-16 | 2010-03-02 | Gm Global Technology Operations, Inc. | Integrated vehicle cooling system |
SE533005C2 (sv) * | 2008-10-21 | 2010-06-08 | Scania Cv Abp | Metod och system för kylning och uppvärmning |
FR2948898B1 (fr) * | 2009-08-07 | 2012-04-06 | Renault Sa | Systeme de regulation thermique globale pour vehicule automobile a propulsion electrique. |
DE102009028332A1 (de) | 2009-08-07 | 2011-02-10 | Robert Bosch Gmbh | Temperierungseinrichtung für ein Kraftfahrzeug |
JP5494312B2 (ja) * | 2009-09-03 | 2014-05-14 | 株式会社デンソー | 車両用空調装置 |
JP5861495B2 (ja) * | 2011-04-18 | 2016-02-16 | 株式会社デンソー | 車両用温度調整装置、および車載用熱システム |
JP5589967B2 (ja) * | 2011-06-13 | 2014-09-17 | 株式会社デンソー | 車両用温度調節装置 |
JP5867305B2 (ja) * | 2012-06-20 | 2016-02-24 | 株式会社デンソー | 車両用熱管理システム |
WO2014087645A1 (ja) * | 2012-12-06 | 2014-06-12 | パナソニック株式会社 | 車両用ヒートポンプ装置および車両用空調装置 |
JP6304578B2 (ja) * | 2013-03-06 | 2018-04-04 | パナソニックIpマネジメント株式会社 | 車両用空調装置 |
CN105517823A (zh) * | 2013-07-17 | 2016-04-20 | 松下知识产权经营株式会社 | 车辆用空调装置及其结构单元 |
CN105408143A (zh) * | 2013-07-25 | 2016-03-16 | 松下知识产权经营株式会社 | 车辆用空调装置及其构成单元 |
JPWO2015098049A1 (ja) * | 2013-12-25 | 2017-03-23 | パナソニックIpマネジメント株式会社 | 車両用空調装置 |
DE102014113526A1 (de) * | 2014-09-19 | 2016-03-24 | Halla Visteon Climate Control Corporation | Klimatisierungssystem für ein Kraftfahrzeug |
JP6399060B2 (ja) * | 2015-10-29 | 2018-10-03 | 株式会社デンソー | ヒートポンプシステム |
JP6481668B2 (ja) * | 2015-12-10 | 2019-03-13 | 株式会社デンソー | 冷凍サイクル装置 |
JP6534924B2 (ja) * | 2015-12-24 | 2019-06-26 | トヨタ自動車株式会社 | 車両用制御装置 |
-
2015
- 2015-02-06 JP JP2015022087A patent/JP6398764B2/ja not_active Expired - Fee Related
-
2016
- 2016-01-26 WO PCT/JP2016/000370 patent/WO2016125452A1/ja active Application Filing
- 2016-01-26 DE DE112016000643.8T patent/DE112016000643T5/de not_active Withdrawn
- 2016-01-26 US US15/541,305 patent/US10906376B2/en active Active
- 2016-01-26 CN CN201680008695.5A patent/CN107206865B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014000948A (ja) * | 2012-05-24 | 2014-01-09 | Denso Corp | 車両用熱管理システム |
JP2014118105A (ja) * | 2012-12-19 | 2014-06-30 | Panasonic Corp | 車両用ヒートポンプ装置、車両用空調システムおよび着霜防止方法 |
JP2014181594A (ja) * | 2013-03-19 | 2014-09-29 | Denso Corp | 車両用熱管理システム |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210309075A1 (en) * | 2020-04-01 | 2021-10-07 | Toyota Jidosha Kabushiki Kaisha | Heat management device |
US11745561B2 (en) * | 2020-04-01 | 2023-09-05 | Toyota Jidosha Kabushiki Kaisha | Heat management device |
CN114312205A (zh) * | 2021-02-05 | 2022-04-12 | 华为数字能源技术有限公司 | 热管理系统、热管理系统的控制方法与电动汽车 |
CN114312205B (zh) * | 2021-02-05 | 2023-12-08 | 华为数字能源技术有限公司 | 热管理系统、热管理系统的控制方法与电动汽车 |
CN115519973A (zh) * | 2022-10-10 | 2022-12-27 | 北京理工大学 | 一种车用co2热管理系统及其工作方法 |
CN116605000A (zh) * | 2023-05-24 | 2023-08-18 | 安徽江淮汽车集团股份有限公司 | 一种纯电动汽车热管理系统 |
Also Published As
Publication number | Publication date |
---|---|
US20180264913A1 (en) | 2018-09-20 |
DE112016000643T5 (de) | 2017-10-12 |
JP6398764B2 (ja) | 2018-10-03 |
JP2016144963A (ja) | 2016-08-12 |
CN107206865A (zh) | 2017-09-26 |
US10906376B2 (en) | 2021-02-02 |
CN107206865B (zh) | 2019-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6398764B2 (ja) | 車両用熱管理システム | |
US11498391B2 (en) | Air conditioner | |
CN111132860B (zh) | 制冷循环装置 | |
CN108779942B (zh) | 制冷循环装置 | |
CN108369042B (zh) | 制冷循环装置 | |
CN108369047B (zh) | 制冷循环装置 | |
JP6838527B2 (ja) | 車両用空調装置 | |
CN105263732B (zh) | 车辆用空调装置 | |
JP6064753B2 (ja) | 車両用熱管理システム | |
US10759257B2 (en) | Refrigeration cycle device | |
JP6663676B2 (ja) | 車両用熱管理装置 | |
WO2015115049A1 (ja) | 空調装置 | |
WO2015097988A1 (ja) | 車両用空調装置 | |
WO2015015754A1 (ja) | 車両用冷凍サイクル装置 | |
CN110914082B (zh) | 空调装置 | |
CN109642755B (zh) | 制冷循环装置 | |
WO2015097987A1 (ja) | 車両用空調装置 | |
CN108778798B (zh) | 空调装置 | |
WO2015004904A1 (ja) | 車両用空調装置 | |
WO2017038594A1 (ja) | 車両用熱管理装置 | |
WO2017010239A1 (ja) | 冷凍サイクル装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16746285 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15541305 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016000643 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16746285 Country of ref document: EP Kind code of ref document: A1 |