WO2016125403A1 - 車両用の窓ガラス - Google Patents

車両用の窓ガラス Download PDF

Info

Publication number
WO2016125403A1
WO2016125403A1 PCT/JP2015/085170 JP2015085170W WO2016125403A1 WO 2016125403 A1 WO2016125403 A1 WO 2016125403A1 JP 2015085170 W JP2015085170 W JP 2015085170W WO 2016125403 A1 WO2016125403 A1 WO 2016125403A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
power feeding
window glass
glass
wire
Prior art date
Application number
PCT/JP2015/085170
Other languages
English (en)
French (fr)
Inventor
広道 山下
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Publication of WO2016125403A1 publication Critical patent/WO2016125403A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/20Accessories, e.g. wind deflectors, blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields

Definitions

  • the present invention relates to a window glass for a vehicle.
  • a conductive wire portion On the surface of a window glass for a vehicle attached to an automobile or the like, there is a conductive wire portion provided with a heat wire portion for removing condensation or melting ice and a power feed portion for supplying power to the heat wire portion. May be provided.
  • the conductive line portion is formed by printing and baking a conductive paste such as silver on the surface of the window glass.
  • the heating wire provided on each of the lower end side and the side end side of the glass plate, and the lower end of the glass plate,
  • a windshield including a conductor pattern having a power supply electrode for supplying power to a heating wire.
  • a heating wire is arranged in a region where a wiper is operated to push out water droplets, ice, snow, frost and the like. And the heat etc. of the heat generating filament can melt the ice adhering to this area
  • the hot wire part is separated from the edge of the glass plate, that is, the region where the large temperature difference occurs is not too close to the edge of the glass plate, Reduction of the thermal stress which acts on the edge part of a glass plate is performed.
  • the inventor of the present invention has found that the following problems may occur by separating the hot wire portion from the end portion of the glass plate. That is, if the hot wire portion is separated too far from the end portion of the glass plate, the length of the power feeding portion extending from the end portion of the glass plate is increased in order to feed power to the hot wire portion.
  • the power feeding portion since the current flowing through the hot wire portion also flows through the power feeding portion, the power feeding portion also generates heat.
  • the length of the power feeding unit is increased, the region heated by the power feeding unit is widened.
  • the inventor of the present invention has found that the thermal stress acting on the vicinity of the end portion of the glass plate provided with the power feeding portion increases due to this influence.
  • the present invention has been made in view of such circumstances, and the purpose thereof is to increase the thermal stress in the vicinity of the end portion of the glass plate even if the heat ray portion is separated from the end portion of the glass plate. It is to provide technology to suppress.
  • the present invention adopts the following configuration in order to solve the above-described problems.
  • the window glass according to one aspect of the present invention is a window glass for a vehicle that is formed of a glass plate and a conductive material and includes a conductive line portion disposed on any surface of the glass plate.
  • the conductive line portion is disposed away from the end portion of the glass plate, and has a heat line portion having a predetermined pattern so as to heat a predetermined region of the glass plate, and from the vicinity of the end portion of the glass plate.
  • a power supply unit that extends and is connected to the heat line unit and supplies power to the heat line unit.
  • the power feeding unit is partially thinned.
  • the power feeding unit is partially thinned. That is, the power supply part has a partially narrowed line width.
  • the resistance value at that portion increases, so that generally the amount of heat generated at the portion where the line width is narrowed becomes large.
  • region which heats a glass plate becomes narrow, in other words, the area
  • the configuration even if the length of the power feeding unit is increased by separating the heat ray part from the end of the glass plate, the amount of heat generated in the entire power feeding unit can be suppressed. An increase in thermal stress in the vicinity of the end can be suppressed.
  • the predetermined pattern of the heat ray portion can be appropriately determined according to the embodiment.
  • money, platinum etc. may be sufficient as an electroconductive material, for example, and if the said use of an electroconductive wire
  • the vicinity of the end of the glass plate may be in a state of being in contact with the end of the glass plate, or in a state of being separated from the end of the glass plate to such an extent that wiring from the power source of the vehicle can be connected. There may be.
  • the region near the end of the glass plate includes a region where the thermal stress generated at the end of the glass plate can increase due to heat generated by the power feeding unit.
  • the power feeding portion includes a base portion disposed near an end portion of the glass plate, a thin wire portion having a line width narrower than the base portion and extending from the base portion, You may have.
  • the electric power feeding part becomes thin at the front end side, and can suppress the quantity of the heat
  • a plurality of the thin wire portions may be provided, the plurality of thin wire portions may be separated from each other, and the heat ray portion may be any of the plurality of thin wire portions.
  • You may be comprised so that it may be electrically fed by connecting to. According to the said structure, the connection with the heat ray part of various aspects becomes easy, and the freedom degree of design of an electroconductive wire
  • the heat ray portion may be divided and connected to each of the plurality of thin wire portions.
  • the hot wire part is a region having a high calorific value.
  • this heat ray part is divided
  • the connecting portion between the heat wire portion and each thin wire portion can be separated. That is, since the region where the heat generation amount is high can be separated, according to the configuration, the amount of heat generated in the vicinity of the power feeding unit can be suppressed, thereby increasing the thermal stress in the vicinity of the end of the glass plate. Can be suppressed.
  • a distance separating the plurality of thin wire portions from each other may be longer than a line width of each of the plurality of thin wire portions.
  • line parts is comprised longer than the line width of each thin wire
  • the base portion of the power feeding unit may be disposed in contact with the end of the glass plate.
  • the base part of the power feeding unit is a part having a large line width, and is connected to a wiring from the power source of the vehicle. According to the said structure, since this base is arrange
  • the conductive material may include silver.
  • Silver has high conductivity, is relatively easily available, and is inexpensive. Therefore, according to the said structure, a good quality conductive filament part can be formed at low cost.
  • the window glass may be used as a windshield of an automobile.
  • Glass plates used for automotive windshields are generally not tempered. When the glass plate is not strengthened, the glass plate is relatively easily cracked by the thermal stress generated at the end of the glass plate.
  • the raise of the thermal stress in the edge part vicinity of a glass plate can be suppressed. Therefore, even if the glass plate is not tempered, the possibility of cracking can be reduced.
  • the term “strengthening” refers to, for example, heating the glass plate to about 700 ° C. and then rapidly cooling the glass plate to provide a compression layer on the surface of the glass plate, thereby increasing the strength of the glass plate to about 3 to 5 times. Is to increase.
  • an increase in thermal stress in the vicinity of the end portion of the glass plate can be suppressed even if the hot wire portion is separated from the end portion of the glass plate.
  • FIG. 1 is a plan view schematically illustrating a window glass according to the embodiment.
  • FIG. 2 is a partial enlarged view schematically illustrating the power feeding unit according to the embodiment.
  • FIG. 3 schematically illustrates a window glass manufacturing process according to the embodiment.
  • FIG. 4 is a partially enlarged view schematically illustrating a power feeding unit according to another embodiment.
  • FIG. 5 is a partial enlarged view schematically illustrating a power feeding unit according to another embodiment.
  • FIG. 6 is a plan view schematically illustrating a heat ray portion according to another embodiment.
  • FIG. 7 shows a temperature distribution in the vicinity of the power feeding part when the hot wire part of the window glass according to the reference example is heated.
  • FIG. 1 is a plan view schematically illustrating a window glass according to the embodiment.
  • FIG. 2 is a partial enlarged view schematically illustrating the power feeding unit according to the embodiment.
  • FIG. 3 schematically illustrates a window glass manufacturing process according to the embodiment.
  • FIG. 4 is a
  • FIG. 8 shows a thermal stress distribution in the vicinity of the power feeding part when the hot wire part of the window glass according to the reference example is heated.
  • FIG. 9 shows a temperature distribution in the vicinity of the power feeding part when the hot wire part of the window glass according to the comparative example is heated.
  • FIG. 10 shows a thermal stress distribution in the vicinity of the power feeding portion when the hot wire portion of the window glass according to the comparative example is heated.
  • FIG. 11 shows a temperature distribution in the vicinity of the power feeding part when the hot wire part of the window glass according to the example is heated.
  • FIG. 12 shows a thermal stress distribution in the vicinity of the power feeding portion when the hot wire portion of the window glass according to the example is heated.
  • this embodiment will be described with reference to the drawings.
  • this embodiment described below is only an illustration of the present invention in all respects. It goes without saying that various improvements and modifications can be made without departing from the scope of the present invention. That is, in implementing the present invention, a specific configuration according to the embodiment may be adopted as appropriate.
  • FIG. 1 is a plan view schematically illustrating a window glass 1 according to this embodiment.
  • the up and down direction in FIG. 1 is referred to as “up and down”, and the left and right direction in FIG. 1 is referred to as “left and right”.
  • FIG. 1 illustrates a window glass 1 viewed from the inside of the vehicle. That is, the back side of the sheet of FIG. 1 is the outside of the vehicle, and the front side of the sheet of FIG. 1 is the inside of the vehicle.
  • the window glass 1 is a window glass for a vehicle that is attached to an automobile, and is specifically a windshield of an automobile.
  • the window glass 1 includes a glass plate 10 having a substantially rectangular shape, and is attached to an automobile with a slight inclination from the vertical.
  • the glass plate 10 includes an upper end 11 extending in the left-right direction, a lower end 12 facing the upper end 11 and slightly curved, a right end 13 connecting the right ends of the upper end 11 and the lower end 12, and an upper end.
  • left end 14 connecting the left ends of portion 11 and lower end 12.
  • a shielding layer 3 that shields the field of view from the outside of the vehicle is provided along the periphery of the glass plate 10.
  • the conductive line portion 2 having a predetermined pattern is formed from the lower end portion 12 to the left end portion 14.
  • the glass plate 10 which concerns on this embodiment is utilized as a window glass of a motor vehicle, and is comprised by the shape according to the window frame of the motor vehicle attached.
  • the glass plate 10 has a substantially rectangular shape in plan view, and in side view, the inner surface is concave and the outer surface is convex from the periphery to the center. It is formed in a curved shape.
  • Such a glass plate 10 can have various configurations depending on the embodiment.
  • the glass plate 10 a known glass plate for automobiles can be used.
  • the glass plate 10 may be heat ray absorbing glass, general clear glass or green glass, or UV green glass.
  • the solar radiation absorptivity and visible light transmittance can be adjusted to satisfy safety standards.
  • an example of a composition of clear glass and an example of a heat ray absorption glass composition are shown.
  • the composition of the heat-absorbing glass for example, based on the composition of the clear glass, the proportion of the total iron oxide in terms of Fe 2 O 3 (T-Fe 2 O 3) and 0.4 to 1.3 wt%, CeO
  • the ratio of 2 is 0 to 2% by mass
  • the ratio of TiO 2 is 0 to 0.5% by mass
  • the glass skeleton components (mainly SiO 2 and Al 2 O 3 ) are T—Fe 2 O 3 , CeO.
  • the composition can be reduced by an increase of 2 and TiO 2 .
  • the kind of glass plate 10 is not restricted to clear glass, heat ray absorption glass, etc., According to embodiment, it can select suitably.
  • the glass plate 10 may be an acrylic or polycarbonate resin window.
  • the thickness of the glass plate 10 according to the present embodiment may not be particularly limited. However, from the viewpoint of weight reduction, the thickness of the glass plate 10 may be set in the range of 2.2 to 5.1 mm, or may be set in the range of 2.4 to 3.8 mm. It may be set in the range of 7 to 3.2 mm. Furthermore, the thickness of the glass plate 10 may be set to be 3.1 mm or less.
  • the shielding layer 3 As illustrated in FIG. 1, in the present embodiment, the shielding layer 3 is formed on the peripheral edge portion of the inner surface of the glass plate 10. The shielding layer 3 is provided so that the attachment portion of the glass plate 10 and the like cannot be seen from outside the vehicle. Therefore, the region where the shielding layer 3 is provided can be appropriately selected and set according to the embodiment.
  • the material of the shielding layer 3 may be appropriately selected according to the embodiment, and a dark ceramic such as black, brown, gray, or dark blue may be used.
  • a black ceramic is laminated on the inner surface of the glass plate 10 by screen printing or the like, and the laminated ceramic together with the glass plate 10 is heated.
  • the shielding layer 3 having a single layer structure can be formed on the peripheral edge of the window glass 1.
  • various materials can be used for the ceramic used for the shielding layer 3.
  • a ceramic having the following composition can be used for the shielding layer 3.
  • the thickness of the shielding layer 3 can be set as appropriate.
  • the thickness of the shielding layer 3 can be set in the range of 10 ⁇ m to 20 ⁇ m.
  • the shielding layer 3 can prevent deterioration of the adhesive for attaching the glass plate 10 to the vehicle body by cutting ultraviolet rays.
  • FIG. 2 is a partially enlarged view illustrating the power feeding portions 23 to 25 of the conductive wire portion 2.
  • the conductive linear portion 2 according to the present embodiment is disposed on the inner surface of the glass plate 10 via the shielding layer 3.
  • line part 2 is electrically fed to two hot wire parts (21, 22) which have a predetermined pattern, and each hot wire part (21, 22) so that the predetermined area
  • the hot wire portion 21 is disposed away from the lower end portion 12 and is provided along the lower end portion 12 from the slightly right side of the center of the glass plate 10 to the vicinity of the right end portion 13. Further, the heat ray portion 22 is arranged away from the lower end portion 12 and extends along the lower end portion 12 from the slightly right side of the center of the glass plate 10 to the vicinity of the left end portion 14, and then from the vicinity of the lower end portion 12 to the upper end portion. 11 extends to the vicinity of 11 along the left end 14.
  • the region where each heat ray portion (21, 22) is provided corresponds to a standby position and a reverse position of a wiper (not shown). Such a pattern of each heat ray part (21, 22) can be appropriately changed according to the embodiment.
  • the power supply portions 23 to 25 extend upward from the lower end portion 12 of the glass plate 10 and are connected to the heat wire portions (21, 22).
  • the power feeding units 23 and 25 are positive electrodes, and the power feeding unit 24 is a negative electrode. Therefore, the power supply unit 23 is connected to the heat wire unit 21, and the power supply unit 25 is connected to the heat wire unit 22. Moreover, the electric power feeding part 24 is connected with both hot-wire parts (21, 22).
  • a harness 4 having three terminal portions is attached to each of the power supply units 23 to 25 by soldering or the like, and wiring (not shown) from the power source of the automobile is connected to each of the power supply units 23 to 25 via this harness. The Therefore, the driver of the automobile can supply electricity to the conductive wire portion 2 by operating an operation panel (not shown).
  • each heat ray part (21, 22) When electricity is supplied to the conductive wire portion 2, a current is generated in each heat wire portion (21, 22) via each power supply portion 23-25. If it does so, each heat ray part (21, 22) will be heated by the energy of the electricity which flows, and the glass plate 10 will be warmed in the area
  • each heat ray part (21, 22) is provided apart from the lower end part 12 of the glass plate 10 where the power feeding parts 23 to 25 are arranged. For this reason, when the heat ray portions (21, 22) are too far away from the lower end portion 12, the lengths of the power feeding portions 23 to 25 become long. Then, as described above, the thermal stress in the vicinity of the end portions of the respective power feeding portions 23 to 25, that is, in the vicinity of the region where the power feeding portions 23 to 25 are provided in the lower end portion 12 of the glass plate 10, is increased. This may cause cracks.
  • the heat generation amount of each of the power supply units 23 to 25 is suppressed by subdividing each of the power supply units 23 to 25. This suppresses an increase in thermal stress in the vicinity of this region and reduces the possibility of cracking.
  • each configuration will be described in detail.
  • the power feeding parts 23 to 25 are arranged near the lower end part 12 of the glass plate 10 and extend inward in the surface direction to be connected to the heat ray parts (21, 22).
  • Each of the power feeding units 23 to 25 is partially thinned.
  • the power supply unit 23 includes a rectangular base 230 having a wide and rectangular shape that is disposed near the lower end 12 of the glass plate 10, and extends upward from the base 230 and has a narrower line width than the base 230. And a thin wire portion 231.
  • the power supply unit 24 includes a base portion 240 similar to the base portion 230 and four thin wire portions 241 to 244 each extending upward from the end portion of the base portion 240 and having a line width narrower than that of the base portion 240.
  • Each of the thin line portions 241 to 244 is formed in a rectangular shape and is spaced apart from each other in the left-right direction.
  • the thin line portion 244 is configured to have a wider line width than the other thin line portions 241 to 243, bends to the right near the base portion 240, and then extends upward.
  • the fine wire portion 243 is connected to the bent portion of the fine wire portion 244.
  • the thin line portion may branch in the middle of extension.
  • the power supply unit 25 includes a base portion 250 similar to the base portion 230 and the base portion 240, and three thin wire portions 251 to 253 that extend upward from the end portions of the base portion 250 and have a line width narrower than that of the base portion 250. ing.
  • Each of the thin line portions 251 to 253 is formed in a rectangular shape and is spaced apart from each other in the left-right direction.
  • the thin line portion 251 is configured to have a larger line width than the other thin line portions (252, 253).
  • each terminal part of the harness 4 is attached to each base part (230, 240, 250) of each power supply part 23-25. Therefore, each base (230, 240, 250) is configured to have a certain line width so as to withstand a large current from the power source of the automobile.
  • each base part (230, 240, 250) of each of the power feeding parts 23 to 25 is set in a range of 10 mm to 20 mm.
  • the width of each base part (230, 240, 250) may not be limited to such a range, and can be appropriately selected according to the embodiment.
  • each base part (230, 240, 250) is arrange
  • each base (230, 240, 250) may be slightly separated from the end of the glass plate 10 as long as the harness 4 can be bonded. That is, the vicinity of the end portion of the glass plate 10 may be in a state of being in contact with the end portion of the glass plate 10, and the glass plate 10 may be connected to a wiring (harness 4) from a vehicle power source. The state separated from the edge part may be sufficient.
  • the region in the vicinity of the end portion of the glass plate 10 includes a region where the thermal stress generated at the end portion of the glass plate 10 can be increased by the heat generation of each of the power feeding units 23 to 25.
  • the thin line portions (231, 241 to 244, 251 to 253) are not required as the respective base portions (230, 240, 250), and therefore the line width can be reduced.
  • the resistance value increases as the line width is reduced, the amount of heat generation generally increases.
  • the region that cannot be heated by each of the power supply units 23 to 25 is widened, the region that radiates the generated heat is widened.
  • by making the line width of each thin line portion (231, 241 to 244, 251 to 253) of each power feeding portion 23 to 25 narrow it is possible to make use of the fact that such a heat dissipation region is widened. The amount of heat generated by the power feeding units 23 to 25 is reduced.
  • the fine wire units (231, 241 to 244, 251 to 253) The width is preferably set in the range of 1 mm to 10 mm. Furthermore, it is more preferable that the width of each thin line portion (231, 241 to 244, 251 to 253) is set to 5 mm or less. However, the width of each thin line portion (231, 241 to 244, 251 to 253) is not limited to such a range, and can be appropriately selected according to the embodiment.
  • the distances at which the thin wire portions (231, 241 to 244, 251 to 253) are separated from each other, that is, the distance between the adjacent thin wire portions may be longer than the line width of each thin wire portion.
  • the width of the region between adjacent thin line portions is configured to be longer than the line width of each thin line portion (231, 241 to 244, 251 to 253). Therefore, it is possible to sufficiently secure the size of the region between adjacent thin wire portions, and the heat generated in each thin wire portion (231, 241 to 244, 251 to 253) can be sufficiently dissipated by this region. . Accordingly, it is possible to suppress an increase in the temperature of the entire power feeding units 23 to 25, thereby sufficiently suppressing an increase in thermal stress in the vicinity of the region where the power feeding units 23 to 25 are provided at the lower end portion 12 of the glass plate 10. Can do.
  • each heat ray part (21, 22) is demonstrated.
  • the heat ray part 21 is comprised by two elongate filaments (211 and 212).
  • Each of the filaments (211 and 212) extends along the lower end portion 12 from the vicinity of the upper end of the thin wire portion 231 of the power supply portion 23 toward the right end portion 13 and then turns back once near the right end portion 13 toward the power supply portion 23. Come back.
  • Each of the filaments (211 and 212) is further folded back in the vicinity of the upper portion of the power supply unit 23 and extends along the lower end portion 12 toward the right end portion 13 again.
  • Each of the filaments (211, 212) is folded back again near the right end portion 13, returned toward the power feeding unit 24, and connected to the upper end of the thin wire portion 244 of the power feeding unit 24.
  • the hot wire portion 22 is composed of five elongated strips 221 to 225.
  • the three filaments 221 to 223 extend from the vicinity of the upper ends of the thin wire portions 251 to 253 of the power supply portion 25 toward the left end portion 14 along the lower end portion 12 and are folded back in the vicinity of the left end portion 14. Then, the power supply unit 24 returns to the vicinity of the upper ends of the thin wire portions 241 to 243 of the power supply unit 24.
  • the two filaments (224, 225) located on the outside are connected to the lower side of the narrow wire portion 251 of the power feeding unit 25 from the position where the wire strip 221 is connected, and toward the left end 14. It extends along the lower end 12.
  • Each of the filaments (224, 225) is bent near the left end 14 and extends toward the upper end 11 along the left end 14. Then, each of the filaments (224, 225) is folded back near the upper end portion 11, returned again to the vicinity of the lower end portion 12, and further bent near the lower end portion 12 to return toward the power feeding portion 24. It is connected near the upper end of 244.
  • the line width of each filament (211, 212, 221 to 225) of each hot wire portion (21, 22) is 0.5 mm to It is preferable to set in the range of 10 mm. Further, it is more preferable that the line width of each filament (211, 212, 221 to 225) of each hot wire part (21, 22) is set to 3 mm or less. However, the line width of each filament (211, 212, 221 to 225) of each hot wire part (21, 22) does not have to be limited to these ranges, and can be appropriately selected according to the embodiment.
  • the conductive wire portion 2 is constituted by the heat wire portions (21, 22) and the power feeding portions 23 to 25.
  • a conductive filament part 2 is formed by laminating
  • the material of the conductive filament part 2 should just have electroconductivity, and can be suitably selected for embodiment.
  • the material of the conductive filament part 2 silver, gold, platinum, etc. can be mentioned.
  • the conductive line portion 2 can be formed by printing and baking a conductive silver paste containing silver powder, glass frit and the like on the shielding layer 3. Silver is highly conductive, relatively easily available, and inexpensive. Therefore, in order to form the conductive line portion 2 with good quality at low cost, the conductive material preferably contains silver.
  • FIG. 3 schematically illustrates a shaping process of the glass plate 10 according to the present embodiment.
  • the manufacturing process of the window glass 1 demonstrated below is only an example, and each manufacturing process may be changed as much as possible. Further, in the manufacturing process described below, steps can be omitted, replaced, and added as appropriate according to the embodiment.
  • a heating furnace 901 and a molding device 902 are arranged in this order from upstream to downstream.
  • the roller conveyor 903 is arrange
  • the glass plate 10 used as a process target is conveyed by this roller conveyor 903.
  • the glass plate 10 is formed in a flat plate shape before being carried into the heating furnace 901. And a black ceramic is laminated
  • the heating furnace 901 can have various configurations, but can be an electric heating furnace, for example.
  • the heating furnace 901 includes a rectangular tube-shaped furnace main body whose upstream and downstream ends are open, and a roller conveyor 903 is disposed in the interior from upstream to downstream.
  • Heaters (not shown) are disposed on the upper surface, the lower surface, and the pair of side surfaces of the inner wall surface of the furnace body, respectively, and the temperature at which the glass plate 10 passing through the heating furnace 901 can be formed, for example, the softening point of glass. Heat to near.
  • the heating furnace 901 heats the glass plate 10 at about 650 ° C. As a result, the glass plate 10 can be molded, and the silver paste is baked to form the conductive line portion 2.
  • the forming apparatus 902 is configured to press a glass plate with an upper die 921 and a lower die 922 to form a predetermined shape.
  • the upper die 921 has a downwardly convex curved shape that covers the entire upper surface of the glass plate 10 and is configured to be movable up and down.
  • the lower mold 922 is formed in a frame shape corresponding to the peripheral edge of the glass plate 10, and the upper surface thereof has a curved shape so as to correspond to the upper mold 921. With this configuration, the glass plate 10 is press-formed between the upper die 921 and the lower die 922, and formed into a final curved shape.
  • a roller conveyor 903 is disposed in the frame of the lower mold 922, and the roller conveyor 903 can move up and down so as to pass through the frame of the lower mold 922. And although illustration is abbreviate
  • each of the power feeding units 23 to 25 is thinned. Specifically, each of the power feeding units 23 to 25 has a thin line width on the tip side by the thin line portions (231, 241 to 244, 251 to 253). As the line width becomes narrower, the resistance value at that portion increases, so that generally the amount of heat generated at each thin line portion (231, 241 to 244, 251 to 253) increases. On the other hand, a gap is provided between the thin wire portions (231, 241 to 244, 251 to 253), that is, the region heated by each of the power feeding portions 23 to 25 becomes narrow, and the region for radiating the generated heat is wide. Become.
  • a plurality of thin line portions (231, 241 to 244, 251 to 253) are provided. Therefore, it becomes possible to variously connect the filaments (211, 212, 221 to 225) and the thin wire sections (231, 241 to 244, 251 to 253) of each heat ray part (21, 22), and conductive wires
  • the degree of freedom in designing the strip 2 can be increased.
  • the filaments (211, 212, 221 to 225) of the respective hot wire sections (21, 22) are divided into a plurality of thin wire sections (231, 241 to 244, 251 to 253) and connected.
  • each heat wire portion (21, 22) is a region having a high calorific value, and in particular, each wire (211, 212, 221 to 225) and each thin wire portion (231, 241 to 225). 244, 251 to 253), the amount of heat generation becomes large.
  • each of the filaments (211, 212, 221 to 225) and each of the thin wire portions (231, 251) are separated.
  • 241 to 244 and 251 to 253) can be separated from each other.
  • a region with a high calorific value can be separated, and according to the present embodiment, the amount of heat generated around each of the power feeding units 23 to 25 can be suppressed.
  • An increase in thermal stress in the vicinity of (lower end portion 12) can be suppressed.
  • the window glass 1 is a windshield for motor vehicles.
  • the window glass to which the present invention can be applied is not limited to the windshield of an automobile, and can be appropriately selected according to the embodiment.
  • glass plates used for automobile windshields are not generally reinforced. When the glass plate is not strengthened, the glass plate is relatively easily cracked by the thermal stress generated at the end of the glass plate.
  • stressening refers to, for example, heating the glass plate to about 700 ° C. and then rapidly cooling the glass plate to provide a compression layer on the surface of the glass plate, thereby increasing the strength of the glass plate to about 3 to 5 times. Is to increase.
  • the glass plate 10 has a shape curved forward, but may be a flat shape.
  • the glass plate 10 is formed in a substantially rectangular shape.
  • the shape of the glass plate 10 is not limited to the above embodiment, and can be appropriately selected according to the embodiment.
  • the glass plate 10 is composed of a single glass plate.
  • the glass plate 10 may be made of laminated glass in which an outer glass plate and an inner glass plate are bonded to each other through an intermediate film.
  • the conductive line portion 2 may be laminated on the inner surface of the outer glass plate. Accordingly, a notch may be provided in a part of a region corresponding to the power feeding portions 23 to 25 of the inner glass plate so that the harness 4 can be attached to the power feeding portions 23 to 25. .
  • each power supply is separated from the end portion of the outer glass plate inward in the plane direction. Providing the portions 23 to 25 can be avoided. In other words, each of the power feeding units 23 to 25 is provided in the vicinity of the end of the outer glass plate, in particular, in contact with or near the end of the outer glass plate.
  • the shielding layer 3 is provided so that the peripheral part of the window glass 1 may be followed.
  • the region where the shielding layer 3 is provided can be set as appropriate according to the embodiment.
  • the shielding layer 3 overlaps with the driver's visual field range, the driver's field of view is obstructed by the shielding layer 3 during driving. Therefore, it is preferable to set the region of the shielding layer 3 so as not to overlap the driver's visual field range.
  • the shielding layer 3 may be omitted. In this case, the conductive line portion 2 is directly laminated on the surface of the glass plate 10.
  • the shielding layer 3 has a single layer structure.
  • the shielding layer 3 can have a multilayer structure.
  • the first ceramic layer is formed by laminating ceramics on the inner surface of the glass plate 10.
  • a silver layer is formed by laminating silver on the first ceramic layer.
  • a second ceramic layer is formed by laminating a ceramic on the silver layer.
  • the three-layer shielding layer 3 can shield electromagnetic waves by a silver layer.
  • the material of the composition shown in the following Table 2 can be utilized for this silver layer.
  • the shielding layer 3 is laminated on the inner surface of the glass plate 10.
  • the surface on which the shielding layer 3 is laminated may not be limited to the vehicle inner surface, but may be the vehicle outer surface.
  • stacks the shielding layer 3 may be suitably selected from the surface of a several glass plate.
  • the adhesiveness when attaching the window glass 1 to an automobile can be improved by laminating ceramics on the inner surface of the glass plate 10. Moreover, it can prevent that the window glass 1 becomes easy to be broken in an attachment part by this shielding layer 3 becoming a cushion between the glass plate 10 and the attachment part of a motor vehicle.
  • the components may be appropriately omitted, changed, replaced, and added according to the embodiment.
  • the arrangement of the hot wire part, the number of the filaments constituting the hot wire part, the arrangement of each filament, the shape of each filament, the number of fine wire parts, the number of power feeding parts, etc. may be appropriately selected according to the embodiment. .
  • each heat ray part (21, 22) should just be formed so that it may have a predetermined pattern so that the predetermined area
  • the region to be set can be appropriately selected according to the embodiment.
  • the conductive line portion 2 may be formed on the surface of the glass plate 10 on the vehicle outer side.
  • FIG. 4 illustrates a conductive filament portion 5 according to another embodiment.
  • the conductive wire portion 5 illustrated in FIG. 4 includes two heat wire portions (51, 52) and three power feeding portions 53 to 55.
  • the power feeding part 53 which is a positive electrode has a base part 530 and one thin line part 531 whose line width is narrower than the base part 530.
  • the power feeding unit 55 that is a positive electrode includes a base 550 and one thin line portion 551 having a line width narrower than that of the base 550.
  • the power feeding unit 54 that is a negative electrode has a base 540 and two thin wire portions (541, 542) each having a narrower line width than the base 540.
  • the three filaments 511 to 513 of the hot wire portion 51 extend from the vicinity of the upper end of the thin wire portion 531 of the power feeding portion 53, fold back, and return to the vicinity of the upper end of the thin wire portion 541 on the right side of the power feeding portion 54.
  • the two filaments (521, 522) arranged on the outer side extend from the middle of the narrow wire portion 551 of the power feeding portion 55 and are folded back. It returns to the vicinity of the upper end of the thin line portion 542 on the left side of the power feeding portion 54.
  • the two filaments (523, 524) arranged on the inner side are repeatedly folded in the same manner as the respective heat wire portions (211, 212), and finally the thin wire portion 542 on the left side of the power feeding unit 54. It is back near the top of
  • the number of filaments in such a hot wire part and the correspondence between the fine wire part and the hot wire part (strip) can be appropriately selected according to the embodiment. Further, the correspondence relationship between the positive electrode and the negative electrode of the power feeding unit may be reversed.
  • FIG. 5 illustrates a conductive line portion 6 according to another embodiment.
  • the conductive wire portion 6 illustrated in FIG. 5 includes one heat wire portion 61 and two power feeding portions (62, 63).
  • the power feeding unit 62 which is a positive electrode includes a base 620 and two thin wire portions (621, 622) whose line width is narrower than that of the base 620. Note that the fine line portion 622 arranged on the inner side has a larger line width than the fine line portion 621 arranged on the outer side.
  • the power feeding portion 63 that is a negative electrode includes a base portion 630 and two thin wire portions (631 and 632) having a line width narrower than that of the base portion 630.
  • the fine line portion 631 arranged on the inner side is thicker than the thin line portion 632 arranged on the outer side. The line width of such a thin line portion can be changed as appropriate.
  • the hot wire part 61 has five filaments 611 to 615.
  • the two filaments (611, 612) are connected to the fine wire portion 621 and the fine wire portion 632 having a narrower line width.
  • the three filaments 613 to 615 are connected to the fine line portion 622 and the fine line portion 631 having a larger line width.
  • the line width of the thin wire portion of the power feeding portion may be the same as the line width of the heat wire portion.
  • the thin wire portion of the power feeding portion may have a shape integrated with the filament of the heat wire portion.
  • the heat ray part 21 and the heat ray part 22 are extended from the lower end part 12 side of the glass plate 10.
  • FIG. Moreover, the heat ray part 21 and the heat ray part 22 are formed with the same material.
  • the arrangement and material of the heat ray portion may be appropriately selected according to the embodiment. For example, you may comprise a heat ray
  • FIG. 6 illustrates a window glass 1A provided with a heat ray portion 71 according to another embodiment.
  • the glass plate 10 is formed in a trapezoidal shape.
  • this window glass 1A is equipped with the heat ray part 71 and the two electric power feeding parts (72, 73) for supplying electricity to this heat ray part 71, and comprises what is called a wire-heated windshield.
  • the heat ray portion 71 connects the bus bar portion 711 extending along the upper end portion 11 and the left end portion 14, the bus bar portion 712 extending along the lower end portion 12, and the bus bar portions (711, 712).
  • the line 713 is provided.
  • each bus-bar part (711,712) may be formed with a copper film tape.
  • each filament 713 may be formed of a conductive metal wire or the like.
  • a tungsten wire can be used for each filament 713.
  • the material of each part of the heat ray part 71 can be suitably selected according to embodiment.
  • Each power feeding section (72, 73) has a base section (721, 731) disposed so as to be in contact with the lower end section 12 and a thin wire section (722, 732) extending from each base section (721, 731). is doing.
  • the thin wire portion 722 of the power supply portion 72 is connected to the bus bar portion 712 of the heat wire portion 71, and the thin wire portion 732 of the power supply portion 73 is connected to the bus bar portion 711 of the heat wire portion 71.
  • the wiring from the power supply from a motor vehicle is connected with each electric power feeding part (72, 73). Thereby, electricity can be supplied to the heat ray part 71 via each electric power feeding part (72, 73).
  • the bus bar portion may be handled as one region of the heat ray portion.
  • a bus-bar part may be handled as one area
  • each base (230, 240, 250) is disposed near the lower end 12 of the glass plate 10, and each thin line portion (231, 241 to 244, 251 to 253) is each base (230, 240). , 250) on the inner side of the glass plate 10 in the plane direction.
  • the positional relationship between each base portion and each thin line portion may not be limited to such an example, and may be set as appropriate according to the embodiment. That is, in each power feeding unit, the region to be thinned may be appropriately set according to the embodiment.
  • the molding apparatus 902 that press-molds the glass plate 10 has been described.
  • the method of forming the glass plate 10 of the window glass 1 is not limited to such an example, and may be formed by, for example, a self-weight bending method in which the glass plate 10 is bent by its own weight.
  • the molding apparatus has, for example, a ring-shaped (frame-shaped) mold.
  • the molding die is disposed on the transport table, and the flat glass plate 10 is placed on the molding die. In this state, the conveyance table sequentially passes through the heating furnace and the slow cooling furnace.
  • the glass plate 10 passes a heating furnace in the state in which only the peripheral part was supported. And if it heats to softening point temperature vicinity in a heating furnace, the inner side will curve below the peripheral part by dead weight, and the glass plate 10 will be shape
  • the window glass which has the structure substantially the same as the said embodiment except the shape of the electric power feeding part was assumed as the window glass which concerns on a reference example.
  • the three power feeding units are not subdivided and have a simple rectangular shape.
  • the glass plate in this reference example was a laminated glass in which an interlayer film of 0.76 mm was disposed between an outer glass plate having a thickness of 2.0 mm and an inner glass plate having a thickness of 1.8 mm.
  • the conductive material which forms a conductive filament part was made into the silver paste.
  • the pattern of the hot wire part is as shown in FIG. 1, the line width of each line (211, 212, 221 to 223) is 1.0 mm to 2.0 mm, and the line width of each line (224, 225) is 3 It was set to 0.0 mm to 7.0 mm.
  • the heating value in each wire is 2000 W / m 2
  • the total resistance value of the entire circuit is 1.16 ⁇ to 1.56 ⁇
  • the sheet resistance value of each hot wire portion is 5.0 m ⁇ / sqr to 7.0 m ⁇ / sqr. did.
  • the heat ray part shall be 40 mm away from the lower end part of the glass plate in the vicinity of the power supply part, and each power supply part was not provided with the base part and the fine wire part, and was assumed to be rectangular.
  • the length of each electric power feeding part was 50 mm, 80 mm, and 42 mm.
  • the width of each power feeding unit was set to 20 mm in common.
  • heat is generated in the conductive wire section under the conditions that the ambient temperature is 20 to 25 ° C., the energizing voltage is 12 V, and the energizing time is 25 minutes or more (when the current is stable).
  • the analysis software (Abaqus) capable of calculating the thermal stress in the glass plate, the temperature change and the thermal stress change generated in the window glass according to the reference example and the comparative example were simulated. The results are shown in FIGS.
  • FIG. 7 shows the temperature distribution (simulation result) in the vicinity of the feeding part of the window glass in the reference example.
  • FIG. 8 shows a thermal stress distribution (simulation result) in the vicinity of the feeding portion of the window glass according to the reference example.
  • FIG. 9 shows a temperature distribution (simulation result) in the vicinity of the feeding portion of the window glass in the comparative example.
  • FIG. 10 shows a thermal stress distribution (simulation result) in the vicinity of the feeding portion of the window glass according to the comparative example.
  • the thermal stress in the region where the power feeding unit is provided at the lower end of the glass plate (hereinafter also referred to as “the root of the power feeding unit”), that is, the portion indicated by the arrow P1 in FIG.
  • the thermal stress in the portion indicated by the arrow P2 in FIG. 10 is 18 MPa, and it was found that the thermal stress generated in this portion becomes very large when the power feeding portion is lengthened.
  • the region where the stress acts in the compression direction is also widened in correspondence with the wide range of the high temperature region. Therefore, by narrowing the high temperature region, that is, by lowering the temperature of the region where the power feeding unit is provided, the region where the stress acts in the compression direction is also narrowed, and the thermal stress acting on the root of the power feeding unit is also reduced. It was estimated. Accordingly, the present inventor has come up with the present invention in which the front end side of the power feeding portion is partially narrowed.
  • the window glass which has the same electric power feeding part as the said embodiment was assumed as the window glass which concerns on an Example.
  • the width of each base was 20 mm and the length was 20 mm.
  • line part 231 was 65 mm, and the line width was 8 mm.
  • the lengths of the thin wire portions corresponding to the thin wire portions 241 to 243 were 56 mm, 62 mm, and 55 mm, respectively, and the line width was 3 mm in common.
  • the length of the fine wire portion corresponding to the fine wire portion 244 was 70 mm, and the line width was 8 mm.
  • the length of the fine wire portion corresponding to the fine wire portion 251 was 40 mm, and the line width was 8 mm.
  • the lengths of the thin wire portions corresponding to the thin wire portions (252 and 253) were 46 mm and 51 mm, respectively, and the line width was 3 mm in common.
  • the other conditions of the window glass which concerns on an Example were made the same as a comparative example. That is, the arrangement of the heat ray portions in the examples was the same as that in the comparative example.
  • FIGS. 11 shows a temperature distribution (simulation result) in the vicinity of the feeding portion of the window glass in the example.
  • Z11 shows the thermal stress distribution (simulation result) near the electric power feeding part of the window glass in an Example.
  • the temperature of the region where the power feeding unit is provided is slightly lower than in the comparative example. Accordingly, the region where the stress acts in the compression direction indicated by the arrow C3 is also narrowed, and the thermal stress acting on the portion indicated by the arrow P3 is also reduced to 14.5 MPa. Therefore, it was shown that the thermal stress acting on the base of the power feeding part can be sufficiently reduced by subdividing the power feeding part.
  • Base 722 ... Fine wire part, 73 ... Power feeding part, 731 ... Base part, 732 ... Narrow wire part, 901 ... Heating furnace, 902 ... Molding device, 921 ... Upper mold, 922 ... Lower mold, 903 ... Roller conveyor, 931 ... Roller

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

 熱線部をガラス板の端部から引き離しても、ガラス板の端部付近における熱応力の上昇を抑える技術を提供する。本発明の一側面に係る窓ガラスは、ガラス板及び導電性材料により形成され、前記ガラス板のいずれかの面に配置される導電性線条部を備える車両用の窓ガラスであって、前記導電性線条部は、前記ガラス板の端部から離間して配置され、前記ガラス板の所定の領域を熱するように所定のパターンを有する熱線部と、前記ガラス板の端部付近から延びて前記熱線部に連結し、前記熱線部に給電する給電部と、を備え、前記給電部は部分的に細線化されている。

Description

車両用の窓ガラス
 本発明は、車両用の窓ガラスに関する。
 自動車等に取り付けられる車両用の窓ガラスの表面には、結露を除去するため又は氷結を溶かすための熱線部と、この熱線部に給電するための給電部と、を備える導電性線条部が設けられることがある。この導電性線条部は、銀等の導電性ペーストを窓ガラスの表面上に印刷し焼成することにより形成される。
 このような導電性線条部を有する窓ガラスの一例として、例えば、特許文献1では、ガラス板の下端側及び側端側それぞれに設けられる発熱線条と、ガラス板の下端に配置され、この発熱線条に給電するための給電用電極と、を有する導電体パターンを備えるウインドシールドが提案されている。このウインドシールドでは、ワイパーが稼動して水滴、氷、雪、霜等を押し出す領域に発熱線条を配置する。そして、発熱線条を発熱させることで、この領域に付着した氷等を融かすことができる。
特開2012-140086号公報
 上記のような窓ガラスにおいて、熱線部を加熱した際には、この熱線部により温められる領域とそうではない領域とが生じるため、ガラス板内の熱線部を配置した領域周辺で大きな温度差が生じる。特許文献1のように、ガラス板の下端部、側端部等の端部付近に熱線部を配置する場合、熱線部をガラス板の端部に近付けると、この大きな温度差の生じる領域もガラス板の端部に近付いてしまう。そうすると、この熱線部周辺で生じる大きな温度差が影響して、ガラス板の端部に作用する熱応力が大きくなってしまう。大きな熱応力はガラス板の端部でひび割れが生じる原因となるため、熱線部をガラス板の端部から引き離し、すなわち、大きな温度差の生じる領域がガラス板の端部に近付き過ぎないようにし、ガラス板の端部に作用する熱応力を低減することが行われる。
 しかしながら、本発明の発明者は、このように熱線部をガラス板の端部から引き離すことで、次のような問題点が発生しうることを見出した。すなわち、ガラス板の端部から熱線部を引き離し過ぎると、この熱線部に給電するためにガラス板の端部から延びる給電部の長さが長くなる。熱線部を加熱する際には、熱線部に流れる電流が給電部にも流れるため、給電部も発熱する。給電部の長さが長くなると、この給電部によって温められる領域が広くなってしまう。本発明の発明者は、この影響によって、給電部の設けられたガラス板の端部付近に作用する熱応力が大きくなることを見出した。
 本発明は、一側面では、このような実情を鑑みてなされたものであり、その目的は、熱線部をガラス板の端部から引き離しても、ガラス板の端部付近における熱応力の上昇を抑える技術を提供することである。
 本発明は、上述した課題を解決するために、以下の構成を採用する。
 すなわち、本発明の一側面に係る窓ガラスは、ガラス板及び導電性材料により形成され、前記ガラス板のいずれかの面に配置される導電性線条部を備える車両用の窓ガラスである。前記導電性線条部は、前記ガラス板の端部から離間して配置され、前記ガラス板の所定の領域を熱するように所定のパターンを有する熱線部と、前記ガラス板の端部付近から延びて前記熱線部に連結し、前記熱線部に給電する給電部と、を備える。そして、前記給電部は部分的に細線化されている。
 当該構成によれば、給電部は、部分的に細線化される。すなわち、給電部は、部分的に線幅が細くなる。線幅が細くなると、その部分における抵抗値が上がるため、一般的に、線幅を細くした部分の発熱量は大きくなる。一方で、給電部全体では、ガラス板を熱する領域が狭くなる、換言すると、給電部の熱を放熱する領域が広くなる。そのため、給電部において部分的に発熱量が上昇しても、その発熱量の上昇した分以上に熱を放熱することが可能になる。したがって、当該構成によれば、ガラス板の端部から熱線部を引き離すことで給電部の長さが長くなっても、給電部全体で発生する熱の量を抑えることができるため、ガラス板の端部付近における熱応力の上昇を抑えることができる。
 なお、熱線部の所定のパターンは、実施の形態に応じて適宜決定可能である。また、導電性材料は、例えば、銀、金、白金等であってもよく、導電性線条部の上記用途を達成可能であれば実施の形態に応じて適宜選択されてもよい。更に、ガラス板の端部付近とは、ガラス板の端部に接した状態であってもよく、また、車両の電源からの配線を連結可能な程度にガラス板の端部から離間した状態であってもよい。ガラス板の端部付近の領域は、給電部の発熱によりガラス板の端部で発生する熱応力が上昇し得る領域を含む。
 また、上記一側面に係る窓ガラスの別の形態として、前記給電部は、前記ガラス板の端部付近に配置される基部と、前記基部より線幅が細く、前記基部から延びる細線部と、を有してもよい。当該構成によれば、給電部は、先端側で線幅が細くなり、その部分周辺で発生する熱の量を抑えることができる。これによって、ガラス板の端部付近における熱応力の上昇を抑えることができる。
 また、上記一側面に係る窓ガラスの別の形態として、前記細線部は複数設けられてよく、前記複数の細線部は互いに離間してもよく、前記熱線部は、前記複数の細線部のいずれかに連結することで給電されるように構成されてもよい。当該構成によれば、様々な態様の熱線部との連結が容易になり、導電性線条部の設計の自由度を高めることができる。
 また、上記一側面に係る窓ガラスの別の形態として、前記熱線部は、前記複数の細線部それぞれに分かれて連結してもよい。導電性線条部のうち、熱線部は、発熱量の高い領域である。当該構成によれば、この熱線部は、複数の細線部に分かれて連結される。ここで、複数の細線部は互いに離間しているため、熱線部と各細線部との連結部を離間させることができる。すなわち、発熱量の高い領域を引き離すことができるため、当該構成によれば、給電部周辺で発生する熱の量を抑えることができ、これによって、ガラス板の端部付近における熱応力の上昇を抑えることができる。
 また、上記一側面に係る窓ガラスの別の形態として、前記複数の細線部を互いに離間する距離は、前記複数の細線部各々の線幅よりも長く構成されてもよい。当該構成によれば、隣接する細線部間の領域の幅が、各細線部の線幅よりも長く構成される。そのため、隣接する細線部間の領域の大きさを十分に確保することができ、この領域によって各細線部で発生する熱を十分に放熱することができる。したがって、当該構成によれば、給電部全体の温度上昇を抑えることができ、これによって、ガラス板の端部付近における熱応力の上昇を十分に抑えることができる。
 また、上記一側面に係る窓ガラスの別の形態として、前記給電部の基部は、前記ガラス板の端部に接するように配置されてもよい。給電部の基部は、線幅の太い部分であり、車両の電源からの配線が連結される。当該構成によれば、この基部がガラス板の端部に接するように配置されるため、車両の電源からの配線の連結が容易になる。
 また、上記一側面に係る窓ガラスの別の形態として、前記導電性材料は銀を含んでもよい。銀は、導電性が高く、比較的に入手が容易で、低価格である。そのため、当該構成によれば、低コストで質のよい導電性線条部を形成することができる。
 また、上記一側面に係る窓ガラスの別の形態として、前記窓ガラスは自動車のウインドシールドとして利用されてもよい。自動車のウインドシールドに用いられるガラス板は一般的に強化されていない。ガラス板が強化されていない場合には、ガラス板の端部に生じる熱応力で比較的に容易にガラス板にひび割れが生じてしまう。これに対して、当該構成によれば、ガラス板の端部付近における熱応力の上昇を抑えることができる。そのため、強化のされていないガラス板であっても、ひび割れが生じる可能性を低減することができる。なお、強化とは、例えば、ガラス板を約700℃まで加熱した後に、ガラス板を急冷することで、ガラス板の表面に圧縮層を持たせ、ガラス板の強度を凡そ3~5倍程度に高めることである。
 本発明によれば、熱線部をガラス板の端部から引き離しても、ガラス板の端部付近における熱応力の上昇を抑えることができる。
図1は、実施の形態に係る窓ガラスを模式的に例示する平面図である。 図2は、実施の形態に係る給電部を模式的に例示する部分拡大図である。 図3は、実施の形態に係る窓ガラスの製造工程を模式的に例示する。 図4は、他の形態に係る給電部を模式的に例示する部分拡大図である。 図5は、他の形態に係る給電部を模式的に例示する部分拡大図である。 図6は、他の形態に係る熱線部を模式的に例示する平面図である。 図7は、参考例に係る窓ガラスの熱線部を加熱した際における給電部付近の温度分布を示す。 図8は、参考例に係る窓ガラスの熱線部を加熱した際における給電部付近の熱応力分布を示す。 図9は、比較例に係る窓ガラスの熱線部を加熱した際における給電部付近の温度分布を示す。 図10は、比較例に係る窓ガラスの熱線部を加熱した際における給電部付近の熱応力分布を示す。 図11は、実施例に係る窓ガラスの熱線部を加熱した際における給電部付近の温度分布を示す。 図12は、実施例に係る窓ガラスの熱線部を加熱した際における給電部付近の熱応力分布を示す。
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。ただし、以下で説明する本実施形態は、あらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。つまり、本発明の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。
 §1 構成例
 まず、図1を用いて、本実施形態に係る窓ガラス1について説明する。図1は、本実施形態に係る窓ガラス1を模式的に例示する平面図である。なお、説明の便宜のため、図1の上下方向を「上下」と、図1の左右方向を「左右」と称することとする。図1は、車内側から見た窓ガラス1を例示している。すなわち、図1の紙面奥側が車外側であり、図1の紙面手前側が車内側である。
 本実施形態に係る窓ガラス1は、自動車に取り付けられる車両用の窓ガラスであって、具体的には自動車のウインドシールドである。図1に例示されるように、窓ガラス1は、略矩形状のガラス板10を備えており、垂直からやや傾けて自動車に取り付けられる。このガラス板10は、左右方向に延びる上端部11と、上端部11に対向し、やや湾曲した下端部12と、上端部11及び下端部12の右端同士を連結する右側端部13と、上端部11及び下端部12の左端同士を連結する左側端部14と、を有している。
 このガラス板10の車内側の面には、ガラス板10の周辺部に沿うように、車外からの視野を遮蔽する遮蔽層3が設けられている。そして、この遮蔽層3上には、下端部12から左側端部14にかけて、所定のパターンを有する導電性線条部2が形成されている。以下、これらの各構成要素について説明する。
 <ガラス板>
 まず、ガラス板10について説明する。本実施形態に係るガラス板10は、自動車の窓ガラスとして利用され、取り付けられる自動車の窓枠に応じた形状に構成される。本実施形態では、ガラス板10は、平面視では略矩形状であり、また、側面視では、車内側の面が凹となり、車外側の面が凸となるように、周縁部から中央部にかけて湾曲した形状に形成されている。
 このようなガラス板10は、実施の形態に応じて、種々の構成が可能である。また、このガラス板10には自動車用の公知のガラス板を利用することができる。例えば、ガラス板10には、熱線吸収ガラス、一般的なクリアガラス若しくはグリーンガラス、又はUVグリーンガラスが利用されてもよい。ただし、このようなガラス板10は、自動車が使用される国の安全規格に沿った可視光線透過率を実現する必要がある。例えば、日射吸収率、可視光線透過率などが安全規格を満たすように調整することができる。以下に、クリアガラスの組成の一例と、熱線吸収ガラス組成の一例を示す。
 (クリアガラス)
SiO:70~73質量%
Al:0.6~2.4質量%
CaO:7~12質量%
MgO:1.0~4.5質量%
O:13~15質量%(Rはアルカリ金属)
Feに換算した全酸化鉄(T-Fe2O3):0.08~0.14質量%
 (熱線吸収ガラス)
 熱線吸収ガラスの組成は、例えば、クリアガラスの組成を基準として、Feに換算した全酸化鉄(T-Fe)の比率を0.4~1.3質量%とし、CeOの比率を0~2質量%とし、TiOの比率を0~0.5質量%とし、ガラスの骨格成分(主に、SiOやAl)をT-Fe、CeOおよびTiOの増加分だけ減じた組成とすることができる。
 なお、ガラス板10の種類は、クリアガラス、熱線吸収ガラス等に限られず、実施の形態に応じて適宜選択可能である。例えば、ガラス板10は、アクリル系、ポリカーボネート系等の樹脂窓であってもよい。
 また、本実施形態に係るガラス板10の厚みは、特には限定されなくてもよい。ただし、軽量化の観点からは、ガラス板10の厚みは、2.2~5.1mmの範囲で設定されてもよく、2.4~3.8mmの範囲で設定されてもよく、2.7~3.2mmの範囲で設定されてもよい。更に、ガラス板10の厚みは3.1mm以下となるように設定されてもよい。
 <遮蔽層>
 次に、遮蔽層3について説明する。図1に例示されるように、本実施形態では、遮蔽層3は、ガラス板10に係る車内側の面の周縁部に形成されている。遮蔽層3は、車外からガラス板10の取り付け部分等を見えないようにするために設けられる。そのため、遮蔽層3を設ける領域は、実施の形態に応じて適宜選択設定可能である。
 この遮蔽層3の材料は、車外からの視野を遮蔽可能であれば、実施の形態に応じて適宜選択されてもよく、黒色、茶色、灰色、濃紺等の濃色のセラミックを用いてもよい。例えば、黒色のセラミックをスクリーン印刷等によってガラス板10の車内側の面上に積層し、ガラス板10と共に積層したセラミックを加熱する。これによって、窓ガラス1の周縁部に一層構造の遮蔽層3を形成することができる。なお、遮蔽層3に利用するセラミックは、種々の材料を利用することができる。例えば、以下の組成のセラミックを遮蔽層3に利用することができる。
[規則26に基づく補充 06.01.2016]  
Figure WO-DOC-TABLE-1
*1,主成分:酸化銅、酸化クロム、酸化鉄及び酸化マンガン
*2,主成分:ホウケイ酸ビスマス、ホウケイ酸亜鉛
 なお、この遮蔽層3の厚みは適宜設定可能である。例えば、遮蔽層3の厚みは、10μm~20μmの範囲で設定することができる。この遮蔽層3は、車外からの視野を遮蔽する他、紫外線をカットすることで、ガラス板10を車体に取り付けるための接着剤の劣化を防止することができる。
 <導電性線条部>
 次に、図2を更に用いて、導電性線条部2について説明する。図2は、導電性線条部2の給電部23~25を例示する部分拡大図である。図1及び図2に例示されるように、本実施形態に係る導電性線条部2は、遮蔽層3を介して、ガラス板10の車内側の面に配置されている。そして、この導電性線条部2は、ガラス板10の所定の領域を熱するように所定のパターンを有する2つの熱線部(21、22)と、各熱線部(21、22)に給電するための3つの給電部23~25と、を備えている。
 熱線部21は、下端部12とは離間して配置され、ガラス板10の中央のやや右寄りから右側端部13付近まで、下端部12に沿って設けられている。また、熱線部22は、下端部12とは離間して配置され、ガラス板10の中央のやや右寄りから左側端部14付近まで下端部12に沿って延び、その後、下端部12付近から上端部11付近まで左側端部14に沿って延びている。各熱線部(21、22)の設けられる領域は、ワイパー(不図示)の待機位置及び反転位置に対応する。このような各熱線部(21、22)のパターンは、実施の形態に応じて適宜変更可能である。
 一方、各給電部23~25は、この各熱線部(21、22)に給電するため、ガラス板10の下端部12から上方に延び、各熱線部(21、22)に連結している。給電部23及び25は正極であり、給電部24は負極である。そのため、給電部23は熱線部21に連結し、給電部25は熱線部22に連結している。また、給電部24は、両熱線部(21、22)に連結している。
 各給電部23~25には、3つの端子部を有するハーネス4が半田付け等により取り付けられ、自動車の電源からの配線(不図示)がこのハーネスを介して各給電部23~25に連結される。そのため、自動車の運転手は、操作パネル(不図示)を操作することによって、導電性線条部2に電気を供給することができる。
 導電性線条部2に電気が供給されると、各給電部23~25を介して各熱線部(21、22)に電流が生じる。そうすると、流れる電気のエネルギーによって各熱線部(21、22)は加熱され、この各熱線部(21、22)の形成された領域でガラス板10が温められる。これによって、氷結したワイパーを温めたり、この領域に付着した氷等を融かしたりすることができる。
 ただし、各熱線部(21、22)は、給電部23~25の配置されるガラス板10の下端部12から離間して設けられる。そのため、各熱線部(21、22)が下端部12から離れすぎてしまう場合には、各給電部23~25の長さが長くなってしまう。そうすると、上述のように、各給電部23~25の端部付近、すなわち、ガラス板10の下端部12における給電部23~25の設けられた領域付近の熱応力が上昇してしまい、この部分でひび割れが生じる可能性が出てきてしまう。これに対して、本実施形態では、各給電部23~25を細分化することで、各給電部23~25の発熱量を抑える。これによって、この領域付近における熱応力の上昇を抑え、ひび割れが生じる可能性を低減する。以下、各構成について詳細に説明する。
 (給電部)
 まず、各給電部23~25について説明する。各給電部23~25は、ガラス板10の下端部12付近に配置され、面方向内側に延びて各熱線部(21、22)に連結する。この各給電部23~25は、部分的に細線化されている。具体的には、給電部23は、ガラス板10の下端部12付近に配置される幅広で矩形状の基部230と、この基部230から上方に延び、基部230より線幅の細い、矩形状の細線部231と、で構成されている。
 また、給電部24は、基部230と同様の基部240と、この基部240の端部からそれぞれ上方に延び、基部240より線幅の細い4つの細線部241~244と、で構成されている。各細線部241~244は、矩形状に形成され、左右方向に互いに離間して配置されている。
 ただし、細線部244は、他の細線部241~243よりも線幅が太く構成されており、基部240付近で右側に曲がり、その後、上方に延びている。そして、細線部243は、この細線部244の折れ曲がった部分に連結している。このように、細線部は、延びる途中で枝分かれしてもよい。
 また、給電部25は、基部230及び基部240と同様の基部250と、この基部250の端部からそれぞれ上方に延び、基部250より線幅の細い3つの細線部251~253と、で構成されている。各細線部251~253は、矩形状に形成され、左右方向に互いに離間して配置されている。このような細線部251~253のうち、細線部251は、その他の細線部(252、253)よりも線幅が太く構成されている。
 各給電部23~25の各基部(230、240、250)には、ハーネス4の各端子部が取り付けられる。そのため、自動車の電源からの大きな電流に耐えうるように、各基部(230、240、250)は、ある程度の線幅を有するように構成される。
 例えば、ハーネス4との接続性の観点から、各給電部23~25の各基部(230、240、250)の幅は、10mm~20mmの範囲で設定されるのが好ましい。ただし、各基部(230、240、250)の幅は、このような範囲に限定されなくてもよく、実施の形態に応じて適宜選択可能である。
 また、ハーネス4を接着しやすいように、各基部(230、240、250)は、ガラス板10の端部(本実施形態では、下端部12)に接するように配置されるのが好ましい。ただし、ハーネス4を接着可能であれば、各基部(230、240、250)は、ガラス板10の端部から若干離間してもよい。すなわち、ガラス板10の端部付近とは、ガラス板10の端部に接した状態であってもよく、また、車両の電源からの配線(ハーネス4)を連結可能な程度にガラス板10の端部から離間した状態であってもよい。ガラス板10の端部付近の領域は、各給電部23~25の発熱によりガラス板10の端部で発生する熱応力が上昇し得る領域を含む。
 一方、各細線部(231、241~244、251~253)は、上記各基部(230、240、250)のような要請がないため、線幅を細くすることができる。ただし、線幅を細くすると抵抗値が上がるため、一般的には発熱量が上がる。他方、各給電部23~25により熱せられない領域が広がるため、発生した熱を放熱する領域が広がる。本実施形態では、各給電部23~25の各細線部(231、241~244、251~253)の線幅を細くすることで、このような放熱する領域が広がることを利用して、各給電部23~25の発熱量を抑えることを図る。
 例えば、各熱線部(21、22)に適切な量の電流を供給しつつ、各給電部23~25における発熱量を抑える観点から、各細線部(231、241~244、251~253)の幅は、1mm~10mmの範囲で設定されるのが好ましい。更に、各細線部(231、241~244、251~253)の幅は、5mm以下で設定されるのがより好ましい。ただし、各細線部(231、241~244、251~253)の幅は、このような範囲に限定されなくてもよく、実施の形態に応じて適宜選択可能である。
 なお、各細線部(231、241~244、251~253)が互いに離間する距離、すなわち、隣接する細線部の間の距離は、各細線部の線幅よりも長く構成してもよい。当該構成によれば、隣接する細線部間の領域の幅が、各細線部(231、241~244、251~253)の線幅よりも長く構成される。そのため、隣接する細線部間の領域の大きさを十分に確保することができ、この領域によって各細線部(231、241~244、251~253)で発生する熱を十分に放熱することができる。したがって、給電部23~25全体の温度上昇を抑えることができ、これによって、ガラス板10の下端部12における各給電部23~25の設けられた領域付近の熱応力の上昇を十分に抑えることができる。
 (熱線部)
 次に、各熱線部(21、22)について説明する。本実施形態では、熱線部21は、2本の細長い線条(211、212)で構成されている。各線条(211、212)は、給電部23の細線部231の上端付近から右側端部13の方に下端部12に沿って延び、右側端部13付近で一度折り返し、給電部23の方に戻ってくる。各線条(211、212)は、更に、給電部23の上方付近で折り返して再び右側端部13の方に下端部12に沿って延びている。そして、各線条(211、212)は、右側端部13付近で再度折り返し、給電部24の方に戻り、給電部24の細線部244の上端に連結している。
 また、熱線部22は、5本の細長い線条221~225で構成されている。このうち、3本の線条221~223はそれぞれ、給電部25の各細線部251~253の上端付近から左側端部14の方に下端部12に沿って延び、左側端部14付近で折り返して給電部24の方に戻り、給電部24の各細線部241~243の上端付近に連結している。一方、外側に位置する2本の線条(224、225)は、給電部25の細線部251において、線条221が連結する位置よりも下方側に連結して、左側端部14の方に下端部12に沿って延びている。また、各線条(224、225)は、左側端部14付近で折れ曲がり、左側端部14に沿って上端部11の方に延びている。そして、各線条(224、225)は、上端部11付近で折り返して、再び下端部12付近に戻り、更に、下端部12付近で折れ曲がって給電部24の方に戻り、給電部24の細線部244の上端付近に連結している。
 なお、各熱線部(21、22)で適切な発熱量を得るためには、各熱線部(21、22)の各線条(211、212、221~225)の線幅は、0.5mm~10mmの範囲で設定されるのが好ましい。また、各熱線部(21、22)の各線条(211、212、221~225)の線幅は、3mm以下で設定されるのがより好ましい。ただし、各熱線部(21、22)の各線条(211、212、221~225)の線幅は、これらの範囲に限定されなくてもよく、実施の形態に応じて適宜選択可能である。
 (その他)
 本実施形態では、このような各熱線部(21、22)と各給電部23~25とによって導電性線条部2が構成されている。このような導電性線条部2は、ガラス板10の車内側の面に、より詳細には、遮蔽層3上に、導電性を有する導電性材料を積層することで形成される。導電性線条部2の材料は、導電性を有していればよく、実施の形態に適宜選択可能である。導電性線条部2の材料の一例として、銀、金、白金等を挙げることができる。例えば、導電性線条部2は、銀粉末、ガラスフリット等を含む導電性の銀ペーストを遮蔽層3上に印刷し焼成することによって形成することができる。なお、銀は、導電性が高く、比較的に入手が容易で、低価格である。そのため、低コストで質のよい導電性線条部2を形成するためには、導電性材料は銀を含むのが好ましい。
 §2 製造方法
 次に、図3を用いて、本実施形態に係る窓ガラス1の製造方法を説明する。図3は、本実施形態に係るガラス板10のシェーピング工程を模式的に例示する。なお、以下で説明する窓ガラス1の製造工程は一例にすぎず、各製造工程は可能な限り変更されてもよい。また、以下で説明する製造工程について、実施の形態に応じて、適宜、ステップの省略、置換及び追加が可能である。
 図3に例示されるように、この製造ラインでは、上流から下流に向けて、加熱炉901及び成形装置902がこの順で配置されている。そして、加熱炉901から成形装置902及びその下流側に亘ってローラコンベア903が配置されており、加工対象となるガラス板10はこのローラコンベア903により搬送される。
 ガラス板10は、加熱炉901に搬入される前には、平板状に形成されている。そして、黒色のセラミックをスクリーン印刷等でガラス板10に係る車内側の面の周縁部に積層し、200℃程度で20分程度の仮焼きが行われる。これによって、平板状のガラス板10の周縁部に遮蔽層3が形成される。また、遮蔽層3を形成した後には、銀粉末、ガラスフリット等を含む導電性の銀ペーストが、上記導電性線条部2のパターンを形成するように遮蔽層3上に印刷される。この後に、ガラス板10は、加熱炉901に搬入される。
 加熱炉901は、種々の構成が可能であるが、例えば、電気加熱炉とすることができる。この加熱炉901は、上流側及び下流側の端部が開放する角筒状の炉本体を備えており、その内部に上流から下流へ向かってローラコンベア903が配置されている。炉本体の内壁面の上面、下面、及び一対の側面には、それぞれヒータ(図示省略)が配置されており、加熱炉901を通過するガラス板10を成形可能な温度、例えば、ガラスの軟化点付近まで加熱する。例えば、加熱炉901は、650℃程度でガラス板10を加熱する。これによって、ガラス板10は成形可能になり、また、銀ペーストが焼成されて導電性線条部2が形成される。
 成形装置902は、上型921及び下型922によりガラス板をプレスし、所定の形状に成形するように構成されている。上型921は、ガラス板10の上面全体を覆うような下に凸の曲面形状を有し、上下動可能に構成されている。また、下型922は、ガラス板10の周縁部に対応するような枠状に形成されており、その上面は上型921と対応するように曲面形状を有している。この構成により、ガラス板10は、上型921と下型922との間でプレス成形され、最終的な曲面形状に成形される。また、下型922の枠内には、ローラコンベア903が配置されており、このローラコンベア903は、下型922の枠内を通過するように、上下動可能となっている。そして、図示を省略するが、成形装置902の下流側には、徐冷装置(図示省略)が配置されており、成形されたガラス板10が冷却される。これによって、窓ガラス1が作製される。
 [特徴]
 本実施形態に係る窓ガラス1では、各給電部23~25は、細線化されている。具体的には、各給電部23~25は、各細線部(231、241~244、251~253)によって、先端側で線幅が細くなっている。線幅が細くなると、その部分における抵抗値が上昇するため、一般的に、各細線部(231、241~244、251~253)では発熱量が大きくなる。他方、各細線部(231、241~244、251~253)の間には隙間が設けられ、すなわち、各給電部23~25により熱せられる領域は狭くなり、発生した熱を放熱する領域が広くなる。そのため、本実施形態によれば、各細線部(231、241~244、251~253)で部分的に発熱量が上昇しても、その発熱量の上昇した分以上に各隙間で熱を放熱することが可能である。したがって、当該構成によれば、ガラス板10の下端部12から各熱線部(21、22)を引き離し、各給電部23~25の長さが長くなっても、各給電部23~25全体で発生する熱の量を抑えることができる。これによって、ガラス板10の下端部12における各給電部23~25の設けられた領域付近の熱応力の上昇を抑えることができる。
 また、本実施形態では、複数の細線部(231、241~244、251~253)が設けられている。そのため、各熱線部(21、22)の各線条(211、212、221~225)と各細線部(231、241~244、251~253)との多様な連結が可能になり、導電性線条部2の設計の自由度を高めることができる。
 また、本実施形態では、各熱線部(21、22)の各線条(211、212、221~225)は、複数の細線部(231、241~244、251~253)それぞれに分かれて連結する。導電性線条部2の領域のうち、各熱線部(21、22)は発熱量の高い領域であり、特に、各線条(211、212、221~225)と各細線部(231、241~244、251~253)との連結部分で発熱量が大きくなる。これに対して、当該構成によれば、各細線部(231、241~244、251~253)は離間しているため、各線条(211、212、221~225)と各細線部(231、241~244、251~253)との連結部分をそれぞれ離間させることができる。これによって、発熱量の高い領域を引き離すことができるため、本実施形態によれば、各給電部23~25周辺で発生する熱の量を抑えることができ、これによって、ガラス板10の端部(下端部12)付近における熱応力の上昇を抑えることができる。
 §3 変形例
 以上、本発明の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、適宜説明を省略した。
 (窓ガラス)
 例えば、上記実施形態では、窓ガラス1は、自動車用のウインドシールドである。しかしながら、本発明の適用可能な窓ガラスは、自動車のウインドシールドに限られる訳ではなく、実施の形態に応じて適宜選択可能である。
 なお、自動車用のウインドシールドに利用されるガラス板は、一般的に強化されていない。ガラス板が強化されていない場合には、ガラス板の端部に生じる熱応力で比較的に容易にガラス板にひび割れが生じてしまう。
 これに対して、上記実施形態によれば、ガラス板10の端部(下端部12)における給電部23~25の設けられた領域の熱応力の上昇を抑えることができる。そのため、強化のされていないガラス板10であっても、ひび割れが生じる可能性を低減することができる。
 なお、強化とは、例えば、ガラス板を約700℃まで加熱した後に、ガラス板を急冷することで、ガラス板の表面に圧縮層を持たせ、ガラス板の強度を凡そ3~5倍程度に高めることである。
 (ガラス板)
 また、例えば、ガラス板10の上記具体的な構成に関して、実施の形態に応じて、適宜、構成要素の省略、変更、置換、及び追加が行われてもよい。例えば、上記ガラス板10は、前方側に湾曲した形状を有しているが、平らな形状であってもよい。また、上記ガラス板10は略矩形状に形成されている。しかしながら、ガラス板10の形状は、上記実施形態に限定される訳ではなく、実施の形態に応じて適宜選択可能である。
 また、上記ガラス板10は、1枚のガラス板により構成されている。しかしながら、上記ガラス板10は、外側ガラス板と内側ガラス板とを中間膜を介して互いに接合した合わせガラスにより構成されてもよい。この場合、導電性線条部2は、外側ガラス板の車内側の面に積層されてもよい。また、これに応じて、内側ガラス板の給電部23~25に対応する領域の一部には、ハーネス4を給電部23~25に取り付けることができるように、切欠きが設けられてもよい。
 なお、このように導電性線条部2が外側ガラス板の車内側の面に積層される場合、各給電部23~25が外側ガラス板の端部付近から面方向内側に離れると、内側ガラス板の給電部23~25に対応する領域に設ける切欠きがその離れた分だけ大きくなってしまう。
 内側ガラス板に設ける切欠きが大きくならないようにするためには、切欠きの曲率半径を小さくする方法が考えられるが、そのような曲率半径の小さい切欠きを内側ガラス板に設けるのは技術的に困難である。そのため、各給電部23~25が外側ガラス板の端部付近から面方向内側に離れると、内側ガラス板に設ける切欠きが大きくなってしまうのを避けるのは難しい。
 そして、切欠きが大きくなってしまうと、内側ガラス板の強度が低下してしまい、ガラス板全体が割れやすくなってしまう。また、気密性等を保持するために、この切欠き周辺にはシーリング材が塗布されるが、切欠きが大きくなってしまうと、このシーリング材の使用量が増加してしまい、製造コストが上がってしまう。
 そのため、これらの理由により、上記ガラス板10をウインドシールドとして利用し、かつ、上記ガラス板10を合わせガラスで構成する場合には、外側ガラス板の端部付近から面方向内側に離れて各給電部23~25を設けることは避けられる。すなわち、各給電部23~25は、外側ガラス板の端部付近に、特に、外側ガラス板の端部に接するように又は近傍に配置されるように設けられる。
 (遮蔽層)
 また、例えば、上記実施形態では、遮蔽層3は、窓ガラス1の周縁部に沿うように設けられている。しかしながら、遮蔽層3を設ける領域は、実施の形態に応じて適宜設定可能である。ただし、運転者の視野範囲に遮蔽層3が重なってしまうと、運転の際に遮蔽層3によって運転者の視界が妨げられてしまう。そのため、運転者の視野範囲に重ならないよう遮蔽層3の領域を設定するのが好ましい。なお、遮蔽層3は省略されてもよい。この場合、導電性線条部2は、ガラス板10の面上に直接積層される。
 また、例えば、上記実施形態では、遮蔽層3は一層構造である。しかしながら、遮蔽層3は、多層構造にすることができる。例えば、ガラス板10の車内側の面にセラミックを積層することで第1セラミック層を形成する。次に、第1セラミック層の上に銀を積層することで銀層を形成する。更に、この銀層の上にセラミックを積層することで第2セラミック層を形成する。これによって、3層構造の遮蔽層3を形成することができる。この3層構造の遮蔽層3は、銀層によって電磁波を遮蔽することができる。なお、この銀層には以下の表2に示される組成の材料を利用することができる。
[規則26に基づく補充 06.01.2016] 
Figure WO-DOC-TABLE-2
*1,主成分:ホウケイ酸ビスマス、ホウケイ酸亜鉛
 また、例えば、上記実施形態では、遮蔽層3は、ガラス板10の車内側の面に積層されている。しかしながら、遮蔽層3を積層する面は、車内側の面に限定されなくてもよく、車外側の面であってもよい。また、ガラス板10が複数枚のガラス板で構成される場合には、遮蔽層3を積層する1又は複数の面は、複数枚のガラス板の面から適宜選択されてよい。
 なお、ガラス板10の車内側の面にセラミックを積層することによって、窓ガラス1を自動車に取り付ける際の接着性を高めることができる。また、この遮蔽層3がガラス板10と自動車の取り付け部分との間でクッションとなることによって、窓ガラス1が取り付け部分において割れやすくなるのを防止することができる。
 (導電性線条部)
 また、導電性線条部2の上記具体的な構成に関して、実施の形態に応じて、適宜、構成要素の省略、変更、置換、及び追加が行われてもよい。例えば、熱線部の配置、熱線部を構成する線条の本数、各線条の配置、各線条の形状、細線部の数、給電部の数等は、実施の形態に応じて適宜選択されてよい。
 一例を挙げると、各熱線部(21、22)は、ガラス板10の所定の領域を熱するように所定のパターンを有するように形成されればよく、各熱線部(21、22)の配置される領域は実施の形態に応じて適宜選択可能である。また、導電性線条部2は、ガラス板10の車外側の面に形成されてもよい。
 また、図4で例示されるように、各基部(230、240、250)から延びる細線部の数は、実施の形態に応じて適宜選択されてもよい。図4は、他の形態に係る導電性線条部5を例示する。図4で例示される導電性線条部5は、2つの熱線部(51、52)と3つの給電部53~55とを備えている。
 正極である給電部53は、基部530と、この基部530より線幅の細い1つの細線部531と、を有している。同様に、正極である給電部55は、基部550と、この基部550より線幅の細い1つの細線部551と、を有している。他方、負極である給電部54は、基部540と、この基部540よりそれぞれ線幅の細い2つの細線部(541、542)と、を有している。
 これに対して、熱線部51の3本の線条511~513は、給電部53の細線部531の上端付近から延び、折り返して、給電部54の右側の細線部541の上端付近に戻ってきている。また、熱線部52の4本の線条521~524のうち、外側に配置される2本の線条(521、522)は、給電部55の細線部551の中腹辺りから延び、折り返して、給電部54の左側の細線部542の上端付近に戻ってきている。他方、内側に配置される2本の線条(523、524)は、上記各熱線部(211、212)と同様に、折り返しを繰り返し、最終的には、給電部54の左側の細線部542の上端付近に戻ってきている。
 このような熱線部の線条の数、細線部と熱線部(線条)との対応関係は実施の形態に応じて適宜選択可能である。また、給電部の正極及び負極の対応関係は反対であってもよい。
 また、図5に例示されるように、給電部の個数は3つに限定される訳ではなく、また、熱線部の個数は2つに限定される訳でなく、これらの個数は、実施の形態に応じて適宜選択可能である。図5は、他の形態に係る導電性線条部6を例示する。図5で例示される導電性線条部6は、1つの熱線部61と2つの給電部(62、63)とを備えている。
 正極である給電部62は、基部620と、この基部620より線幅の細い2つの細線部(621、622)を備えている。なお、内側に配置される細線部622は、外側に配置される細線部621よりも線幅が太くなっている。
 また、負極である給電部63は、基部630と、この基部630より線幅の細い2つの細線部(631、632)を備えている。給電部62と同様に、この給電部63においても、内側に配置される細線部631が、外側に配置される細線部632よりも線幅が太くなっている。このような細線部の線幅は適宜変更可能である。
 これに対して、熱線部61は、5本の線条611~615を有している。このうち2本の線条(611、612)は、線幅のより細い細線部621及び細線部632に接続する。一方、3本の線条613~615は、線幅のより太い細線部622及び細線部631に接続する。このように、熱線部の線条の数に応じて細線部の線幅を変更してもよい。
 また、給電部の細線部の線幅は、熱線部の線条と同じ線幅でもよい。すなわち、給電部の細線部は、熱線部の線条と一体的な形状であってもよい。
 更に、上記実施形態では、熱線部21及び熱線部22は、ガラス板10の下端部12側から延びている。また、熱線部21及び熱線部22は、同一の材料で形成されている。しかしながら、熱線部の配置及び材料は、実施の形態に応じて適宜選択されてもよい。例えば、図6に例示するように熱線部を構成してもよい。
 図6は、他の形態に係る熱線部71を備える窓ガラス1Aを例示する。この窓ガラス1Aでは、ガラス板10は台形状に形成されている。そして、この窓ガラス1Aは、熱線部71とこの熱線部71に電気を供給するための2つの給電部(72、73)とを備えており、いわゆるワイヤーヒーテッドウインドシールドを構成している。
 具体的には、熱線部71は、上端部11並びに左側端部14に沿って延びるバスバー部711、下端部12に沿って延びるバスバー部712及び両バスバー部(711、712)間を連結する複数の線条713を有している。ここで、各バスバー部(711、712)は、銅製のフィルムテープで形成されてもよい。一方、各線条713は、導電性で金属製のワイヤ等で形成してもよい。例えば、各線条713には、タングステンワイヤを用いることができる。このように、熱線部71の各部分の材料は実施の形態に応じて適宜選択可能である。
 また、各給電部(72、73)は、下端部12に接するように配置される各基部(721、731)と各基部(721、731)から延びる各細線部(722、732)とを有している。給電部72の細線部722は熱線部71のバスバー部712に連結しており、給電部73の細線部732は熱線部71のバスバー部711に連結している。そして、各給電部(72、73)には、自動車からの電源からの配線が連結される。これによって、各給電部(72、73)を介して熱線部71に電気を供給することができる。なお、この変形例のように、バスバー部は熱線部の一領域として取り扱われてもよい。また、自動車からの配線がバスバー部に接続される場合には、バスバー部は給電部の一領域として取り扱われてもよい。
 また、上記実施形態では、各基部(230、240、250)はガラス板10の下端部12付近に配置され、各細線部(231、241~244、251~253)は各基部(230、240、250)よりもガラス板10の面方向内側に配置されている。しかしながら、各基部と各細線部との位置関係は、このような例に限定されなくてもよく、実施の形態に応じて適宜設定されてよい。すなわち、各給電部において、細線化される領域は、実施の形態に応じて適宜設定されてよい。
 (成形装置)
 また、例えば、上記実施形態では、ガラス板10をプレス成型する成形装置902を説明した。しかしながら、窓ガラス1のガラス板10を成形する方法は、このような例に限られなくてもよく、例えば、ガラス板10の自重で曲げる自重曲げ工法によって成形してもよい。自重曲げ工法では、成形装置は、例えば、リング状(枠状)の成形型を有する。成形型は搬送台の上に配置されており、平板状のガラス板10は成形型の上に載置される。この状態で、搬送台は、加熱炉及び徐冷炉内を順に通過する。このとき、成形型はリング状であるため、ガラス板10は周縁部のみが支持された状態で加熱炉を通過する。そして、加熱炉内で軟化点温度付近まで加熱されると、ガラス板10は自重によって周縁部よりも内側が下方に湾曲し、曲面状に成形される。
 以下、本発明の実施例について説明する。ただし、本発明はこの実施例に限定される訳ではない。
 <1>
 まず、ガラス板の端部に配置した給電部を長くした場合に、ガラス板の端部における給電部の設けられた領域付近に作用する熱応力がどの程度上昇するかを検証するため、次のようなシミュレーションを行った。すなわち、参考例に係る窓ガラスとして、給電部の形状以外、上記実施形態とほぼ同様の構成を有する窓ガラスを想定した。参考例では、3つの給電部は、細分化されておらず、単純な矩形状になっているものとした。この参考例におけるガラス板は、厚み2.0mmの外側ガラス板と厚み1.8mmの内側ガラス板との間に0.76mmの中間膜を配置した合わせガラスとした。また、導電性線条部を形成する導電性材料は銀ペーストとした。熱線部のパターンは、図1で示されるものとし、各線条(211、212、221~223)の線幅は1.0mm~2.0mmとし、各線条(224、225)の線幅は3.0mm~7.0mmとした。また、各線条における発熱量は2000W/mとし、回路全体の全抵抗値を1.16Ω~1.56Ωとし、各熱線部のシート抵抗値を5.0mΩ/sqr~7.0mΩ/sqrとした。更に、熱線部は、給電部付近においてガラス板の下端部から40mm離れているものとし、各給電部は、基部及び細線部を備えておらず、長方形状であるとした。なお、各給電部の長さは、50mm、80mm、42mmであるとした。また、各給電部の幅を共通して20mmとした。
 一方、この参考例と同様の構成を有し、給電部付近において熱線部をガラス板の下端部から更に40mm離し、各給電部の長さを、88mm、110mm、75mmとする窓ガラスを比較例とした。すなわち、比較例では、熱線部は、給電部付近においてガラス板の下端部から85mm離れているものとした。このような参考例及び比較例に係る窓ガラスにおいて、雰囲気温度を20~25℃、通電電圧を12V、通電時間を25分以上(電流安定時)の条件の下、導電性線条部の発熱とガラス板内の熱応力を計算可能な解析ソフト(Abaqus)を用いて、参考例及び比較例に係る窓ガラスで生じる温度変化及び熱応力変化をシミュレートした。その結果を図7~図10に示す。
 図7は、参考例における窓ガラスの給電部付近の温度分布(シミュレーション結果)を示す。また、図8は、参考例に係る窓ガラスの給電部付近の熱応力分布(シミュレーション結果)を示す。一方、図9は、比較例における窓ガラスの給電部付近の温度分布(シミュレーション結果)を示す。また、図10は、比較例に係る窓ガラスの給電部付近の熱応力分布(シミュレーション結果)を示す。
 参考例では、ガラス板の下端部における給電部の設けられた領域(以下、「給電部の根元」とも称する)、すなわち、図8の矢印P1で示す部分の熱応力は5MPaであった。一方、比較例では、図10の矢印P2で示す部分の熱応力は18MPaであり、給電部を長くすることで、この部分で発生する熱応力が非常に大きくなることが分かった。
 この原因は、次のように推定された。すなわち、図7の矢印H1と図9の矢印H2との比較から分かるように、給電部が長くなることによって、この給電部の配置された領域内で温度の高い領域が広くなった。そうすると、図8の矢印C1及び図10の矢印C2から示されるように、圧縮方向に応力が作用する領域が広くなる。比較例に係る窓ガラスでは、この圧縮方向に応力が作用する領域に対して応力バランスを取ろうとするために、給電部の根元(矢印P2で示す部分)に大きな熱応力(引っ張り)が作用しているものと推定された。
 ここで、参考例と比較例との比較から、温度の高い領域が広くなることに対応して、圧縮方向に応力が作用する領域も広くなっている。そのため、温度の高い領域を狭くする、すなわち、給電部の設けられる領域の温度を下げることで、圧縮方向に応力が作用する領域も狭くなり、給電部の根元に作用する熱応力も低減するものと推定された。そこで、本発明者は、給電部の先端側を部分的に細くする本発明を思い至った。
 <2>
 次に、給電部を細分化することによって、ガラス板に発生する熱応力をどの程度低減することができるかを検証するため、次のようなシミュレーションを行った。すなわち、実施例に係る窓ガラスとして、上記実施形態と同様の給電部を有する窓ガラスを想定した。各基部の幅は20mmとし、長さも20mmとした。また、細線部231に対応する細線部の長さを65mmとし、線幅を8mmとした。細線部241~243にそれぞれ対応する細線部の長さをそれぞれ56mm、62mm、55mmとし、線幅を共通して3mmとした。細線部244に対応する細線部の長さを70mmとし、線幅を8mmとした。細線部251に対応する細線部の長さを40mmとし、線幅を8mmとした。細線部(252、253)にそれぞれ対応する細線部の長さをそれぞれ46mm、51mmとし、線幅を共通して3mmとした。そして、実施例に係る窓ガラスのその他の条件は、比較例と同じにした。すなわち、実施例における熱線部の配置は比較例と同じにした。
 このような実施例に窓ガラスにおいて、上記と同じ条件の下、解析ソフト(Abaqus)を用いて、実施例に係る窓ガラスで生じる温度変化及び熱応力変化をシミュレートした。その結果を図11及び図12に示す。図11は、実施例における窓ガラスの給電部付近の温度分布(シミュレーション結果)を示す。また、ず11は、実施例における窓ガラスの給電部付近の熱応力分布(シミュレーション結果)を示す。
 図9及び図11を参照すると、比較例に比べて、実施例では、給電部の設けられる領域の温度がやや低下した。これに応じて、矢印C3で示される圧縮方向に応力が作用する領域も狭くなり、矢印P3で示される部分に作用する熱応力も14.5MPaに低下した。したがって、給電部を細分化することによって、給電部の根元に作用する熱応力を十分に低減できることが示された。
 1…窓ガラス、
 10…ガラス板、11…上端部、12…下端部、13…右側端部、
 14…左側端部、
 2…導電性線条部、
 21…熱線部、211…線条、212…線条、
 22…熱線部、221~225…線条、
 23…給電部、230…基部、231…細線部、
 24…給電部、240…基部、241~244…細線部、
 25…給電部、250…基部、251~253…細線部、
 3…遮蔽層、
 4…ハーネス、
 5…導電性線条部、
 51…熱線部、511~513…線条、
 52…熱線部、521~524…線条、
 53…給電部、530…基部、531…細線部、
 54…給電部、540…基部、541・542…細線部、
 55…給電部、550…基部、551…細線部、
 6…導電性線条部、
 61…熱線部、611~615…線条、
 62…給電部、620…基部、621・622…細線部、
 63…給電部、630…基部、631・632…細線部、
 71…熱線部、711・712…バスバー部、713…線条、
 72…給電部、721…基部、722…細線部、
 73…給電部、731…基部、732…細線部、
 901…加熱炉、902…成形装置、921…上型、922…下型、
 903…ローラコンベア、931…ローラ
 
 

Claims (8)

  1.  ガラス板及び導電性材料により形成され、前記ガラス板のいずれかの面に配置される導電性線条部を備える車両用の窓ガラスであって、
     前記導電性線条部は、
      前記ガラス板の端部から離間して配置され、前記ガラス板の所定の領域を熱するように所定のパターンを有する熱線部と、
      前記ガラス板の端部付近から延びて前記熱線部に連結し、前記熱線部に給電する給電部と、
     を備え、
     前記給電部は部分的に細線化されている、
    窓ガラス。
  2.  前記給電部は、前記ガラス板の端部付近に配置される基部と、前記基部より線幅が細く、前記基部から延びる細線部と、を有する、
    請求項1に記載の窓ガラス。
  3.  前記細線部は複数設けられ、
     前記複数の細線部は互いに離間し、
     前記熱線部は、前記複数の細線部のいずれかに連結することで給電される、
    請求項2に記載の窓ガラス。
  4.  前記熱線部は、前記複数の細線部それぞれに分かれて連結する、
    請求項3に記載の窓ガラス。
  5.  前記複数の細線部を互いに離間する距離は、前記複数の細線部各々の線幅よりも長く構成されている、
    請求項3又は4に記載の窓ガラス。
  6.  前記給電部の基部は、前記ガラス板の端部に接するように配置される、
    請求項2から5のいずれか1項に記載の窓ガラス。
  7.  前記導電性材料は銀を含む、
    請求項1から6のいずれか1項に記載の窓ガラス。
  8.  前記窓ガラスは自動車のウインドシールドとして利用される、
    請求項1から7のいずれか1項に記載の窓ガラス。
     
     
PCT/JP2015/085170 2015-02-04 2015-12-16 車両用の窓ガラス WO2016125403A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015019982A JP6639089B2 (ja) 2015-02-04 2015-02-04 車両用の窓ガラス
JP2015-019982 2015-02-04

Publications (1)

Publication Number Publication Date
WO2016125403A1 true WO2016125403A1 (ja) 2016-08-11

Family

ID=56563760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085170 WO2016125403A1 (ja) 2015-02-04 2015-12-16 車両用の窓ガラス

Country Status (2)

Country Link
JP (1) JP6639089B2 (ja)
WO (1) WO2016125403A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10723318B2 (en) 2016-12-20 2020-07-28 AGC Inc. Window glass for a vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6769764B2 (ja) 2016-07-19 2020-10-14 株式会社ミツトヨ 測定プローブ及び測定装置
CN112236340A (zh) * 2018-06-12 2021-01-15 日本板硝子株式会社 挡风玻璃

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158741A (en) * 1978-04-28 1979-12-14 Ford Motor Co Electric heating plate
JPH01503050A (ja) * 1987-02-17 1989-10-19 リビー‐オーウェンズ‐フォード・カンパニー 電熱窓アセンブリ製造方法と窓アセンブリ
JPH0487182A (ja) * 1990-07-26 1992-03-19 Asahi Glass Co Ltd 電熱風防合せガラス
WO1992019135A1 (en) * 1991-05-08 1992-11-12 Giocondo De Riz An anti-condensation mirror to be utilized in high humidity level environments, particularly bathrooms
WO1994005524A1 (en) * 1992-09-03 1994-03-17 Ristance Corporation Defrostable-defoggable window and method of manufacture
JPH101027A (ja) * 1996-06-12 1998-01-06 Central Glass Co Ltd 車両用の前部窓ガラス
JP2000235889A (ja) * 1998-11-10 2000-08-29 Asahi Glass Co Ltd 防曇ガラス
JP2002002452A (ja) * 2000-06-19 2002-01-09 Central Glass Co Ltd 防曇ガラスの加熱構造
WO2005105691A1 (ja) * 2004-04-28 2005-11-10 Asahi Glass Company, Limited 導電性プリントを有するガラス板およびその製造方法
JP2015003602A (ja) * 2013-06-20 2015-01-08 日本板硝子株式会社 自動車用ウインドウガラス及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733426Y2 (ja) * 1989-09-14 1995-07-31 旭硝子株式会社 自動車用電熱ガラス
US5208444A (en) * 1990-11-01 1993-05-04 Ppg Industries, Inc. Electrical connectors for electrically heated vehicle windows
KR100521606B1 (ko) * 2003-12-30 2005-10-12 현대자동차주식회사 윈드실드글라스 셋팅용 스페이서 구조
JP5585440B2 (ja) * 2010-12-28 2014-09-10 旭硝子株式会社 車両用窓ガラス
JP2014125152A (ja) * 2012-12-27 2014-07-07 Toyota Auto Body Co Ltd 車両のウインドウガラス

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158741A (en) * 1978-04-28 1979-12-14 Ford Motor Co Electric heating plate
JPH01503050A (ja) * 1987-02-17 1989-10-19 リビー‐オーウェンズ‐フォード・カンパニー 電熱窓アセンブリ製造方法と窓アセンブリ
JPH0487182A (ja) * 1990-07-26 1992-03-19 Asahi Glass Co Ltd 電熱風防合せガラス
WO1992019135A1 (en) * 1991-05-08 1992-11-12 Giocondo De Riz An anti-condensation mirror to be utilized in high humidity level environments, particularly bathrooms
WO1994005524A1 (en) * 1992-09-03 1994-03-17 Ristance Corporation Defrostable-defoggable window and method of manufacture
JPH101027A (ja) * 1996-06-12 1998-01-06 Central Glass Co Ltd 車両用の前部窓ガラス
JP2000235889A (ja) * 1998-11-10 2000-08-29 Asahi Glass Co Ltd 防曇ガラス
JP2002002452A (ja) * 2000-06-19 2002-01-09 Central Glass Co Ltd 防曇ガラスの加熱構造
WO2005105691A1 (ja) * 2004-04-28 2005-11-10 Asahi Glass Company, Limited 導電性プリントを有するガラス板およびその製造方法
JP2015003602A (ja) * 2013-06-20 2015-01-08 日本板硝子株式会社 自動車用ウインドウガラス及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10723318B2 (en) 2016-12-20 2020-07-28 AGC Inc. Window glass for a vehicle

Also Published As

Publication number Publication date
JP6639089B2 (ja) 2020-02-05
JP2016141320A (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
CN111566067B (zh) 挡风玻璃
US11559969B2 (en) Laminated glass and method of manufacturing the same
WO2018038172A1 (ja) サイドガラス
WO2018135625A1 (ja) 合わせガラス
JP7182462B2 (ja) 合わせガラス
JP6736448B2 (ja) 合わせガラス
WO2016125403A1 (ja) 車両用の窓ガラス
JP7173429B2 (ja) 合わせガラス
CN108136737B (zh) 具有改善的热分布的可加热的层压的交通工具玻璃板
CN109562604A (zh) 可加热的嵌装玻璃
JP2018115101A (ja) 合わせガラス
US20170312859A1 (en) Window glass structure for vehicle
JP7029945B2 (ja) 合わせガラス
JP6943135B2 (ja) 車両用合わせガラス
CN110603236A (zh) 夹层玻璃
JP7090126B2 (ja) 合わせガラス
CN116745179A (zh) 车辆用窗玻璃
WO2023140365A1 (ja) ウインドシールド
JP2022177338A (ja) 合わせガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881220

Country of ref document: EP

Kind code of ref document: A1