WO2016123753A1 - 一种三维打印机及控制方法 - Google Patents

一种三维打印机及控制方法 Download PDF

Info

Publication number
WO2016123753A1
WO2016123753A1 PCT/CN2015/072200 CN2015072200W WO2016123753A1 WO 2016123753 A1 WO2016123753 A1 WO 2016123753A1 CN 2015072200 W CN2015072200 W CN 2015072200W WO 2016123753 A1 WO2016123753 A1 WO 2016123753A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
movement value
control signal
dimensional printer
print
Prior art date
Application number
PCT/CN2015/072200
Other languages
English (en)
French (fr)
Inventor
虞立
蔡世光
Original Assignee
英华达(上海)科技有限公司
英华达(上海)电子有限公司
英华达股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英华达(上海)科技有限公司, 英华达(上海)电子有限公司, 英华达股份有限公司 filed Critical 英华达(上海)科技有限公司
Priority to CN201580000091.1A priority Critical patent/CN104870172B/zh
Priority to PCT/CN2015/072200 priority patent/WO2016123753A1/zh
Priority to TW105101044A priority patent/TWI592288B/zh
Publication of WO2016123753A1 publication Critical patent/WO2016123753A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/02Moulding by agglomerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • Embodiments of the present invention relate to the field of three-dimensional printer technologies, and in particular, to a three-dimensional printer and a control method.
  • 3D printing also known as 3D printing, is a kind of rapid prototyping technology. It is a technique for constructing objects by layer-by-layer printing based on digital model files and using adhesive materials such as powder metal or plastic. . 3D printing has begun to be widely used in industrial design, mold manufacturing and other fields.
  • a 3D printer is made up of control components, mechanical components, printheads, consumables, and media.
  • the 3D printer generally has four main motors, which are responsible for the movement and feeding of the nozzles in the X-axis, Y-axis, and Z-axis directions, respectively.
  • the accuracy of the motor directly determines the print result.
  • 3D printers mainly adopt open-loop control. When the motor is out of step and overshoot, it may cause defective products to be printed, thereby reducing the yield and causing waste of materials and time.
  • the embodiment of the invention provides a 3D printer and a control method, which can achieve precise control of the motor and improve the accuracy of the 3D printing.
  • a 3D printer of an embodiment of the invention includes:
  • One or more first sensing elements disposed on a rotor of the motor
  • a second sensing element for making the first sensing element when the rotor rotates Generate an inductive signal
  • control component configured to receive the sensing signal, convert the sensing signal into a printing movement value, and generate a control signal according to the printing movement value and the preset printing data, for controlling the operation of the motor;
  • the print movement value is used to indicate the moving distance of the print head or the work panel.
  • a method for controlling a 3D printer according to an embodiment of the present invention includes:
  • the technical solution of the present invention by sensing the rotation of the motor rotor in the 3D printer to sense the displacement of the print head or the work panel, and controlling the motor according to this, the movement of the print head or the work panel can be accurately controlled, and the 3D printing is improved. Precision.
  • 1 is a schematic structural view of a 3D printer
  • FIG. 2 is a block diagram of a 3D printer system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a 3D printer control mechanism according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for controlling a 3D printer according to an embodiment of the present invention
  • 5a, 5b, 5c, and 5d are schematic diagrams of sensing elements used in a 3D printer control mechanism according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a 3D printer control mechanism according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a 3D printer control signal generating apparatus according to an embodiment of the present invention.
  • FIG. 8a is a schematic structural diagram of a 3D printer forward motion control apparatus according to an embodiment of the present invention.
  • FIG. 8b is a schematic structural diagram of a 3D printer reverse motion control apparatus according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of the structure of a 3D printer.
  • the 3D printer generally includes a rack 1, a base 2, an X-axis moving system 3, a Y-axis moving system 4, a Z-axis moving system 5, a printing device 6, a work panel 7, a controller (not shown), and a power source (not shown). ).
  • the printing device 6 includes a print head, a connection mechanism, a feeding mechanism, and the like.
  • the X-axis moving system 3, the Y-axis moving system 4, and the Z-axis moving system 5 are respectively used for controlling the movement of the printing device and the work panel, so that the printing device and the working panel are relatively moved, so that the printing head feeds the raw materials provided by the feeding mechanism according to the printing data. It is printed on the work panel 7 to complete 3D printing.
  • X The axis moving system 3, the Y-axis moving system 4, and the Z-axis moving system respectively include a motor 8, a moving rail, a gear, a gear belt, and the like. In the example of Fig.
  • an X-axis moving system 3 and a Z-axis moving system 5 are provided on the chassis 1 for controlling the movement of the printing device 6 in the X-axis direction and the Z-axis direction, respectively, and the Y-axis moving system 4 is set.
  • the Z-axis movement system controls the movement of the work panel along the Z-axis.
  • the structure is also shown in Figure 1. Some differences.
  • a controller (not shown) and a power source (not shown) are generally disposed on the chassis 1 or the base 2.
  • the controller is configured to control the motor of each mobile system and the motor operation of the feeding mechanism according to the set print data.
  • the controller can be implemented in hardware by specialized hardware or executing machine readable instructions.
  • the controller can be a specially designed permanent circuit or logic device (such as a dedicated processor such as an FPGA or ASIC) for performing the set control operations, or can include programmable logic devices or circuits temporarily configured by software ( Such as the use of a general purpose processor, a microcontroller or other programmable processor) for performing the set control operations.
  • the power supply is used to power each motor and controller.
  • the 3D printer may include a controller 8, an X-axis moving system 3, a Y-axis moving system 4, a Z-axis moving system 5, a printing device 6, and a work panel 7.
  • the X-axis moving system 3, the Y-axis moving system 4, and the Z-axis moving system 5 respectively include a motor driver, a motor, and an inductive device.
  • the motor driver receives the control signal of the controller 8 and drives the motor to operate according to the control signal.
  • the sensing device senses the operation of the motor and provides an inductive signal to the controller 8.
  • Each mobile system may also include a transmission system, an end stop, etc., and will not be described again here.
  • the controller 8 is configured to generate control signals of each mobile system according to the set print data and the sensing signals provided from the sensing devices of the mobile systems, and provide each control signal to each
  • the motor drive of the mobile system is used to control the operation of the motors of each mobile system.
  • the controller 8 can be implemented by a specially designed permanent circuit or logic device (such as a dedicated processor such as an FPGA or an ASIC), or a programmable logic device or circuit temporarily configured by software (including a general purpose processor, a microcontroller, or the like). Programmable processor) implementation.
  • the controller 8 is also used to control the feeding device and the electric heat shower head in the printing device 6.
  • the motor driver of the feeding device (e.g., the extruder) of the printing device 6 controls the operation of the motor in accordance with a control signal supplied from the controller 8, thereby realizing the extrusion of the raw material.
  • the controller 8 is also used to control the heating of the hot bed on the work panel 7.
  • the 3D printer provides at least one data port 9, and the controller 8 acquires print data through the data port 9.
  • the data port 9 can be a card slot that can receive a memory card insertion.
  • the memory card can be a flash storage device of various formats, such as an MMC card, an SD card, a mini-SD card, a micro-SD card, a memory stick, an xD image card, and the like.
  • the data port 9 can also be a bus port for connecting an external device such as a PC, such as a universal serial bus (USB) port, a PCI interface, or the like. If the processor chip of controller 8 does not support the data port, port converter 10 can be utilized to provide port translation between data port 9 and controller 8, such as a UART or the like.
  • the 3D printer also includes a power source 11, a power stabilizer 12, and a regulator 13.
  • the power source 11 provides power to the various components.
  • the power stabilizer 12 is a device for stabilizing the power source, such as a voltage regulator.
  • the regulator 13 is used to adjust the voltage and current supplied to the components, and also enables on/off control of the component power supply.
  • the regulator 13 can be implemented by a device such as a MOS, a MOSFET, a relay, or the like, or a specially designed circuit.
  • FIG. 3 is a schematic diagram of a 3D printer control mechanism according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for controlling a 3D printer according to an embodiment of the present invention.
  • the 3D printer may include a motor 31, a printhead (not shown), a work panel (not shown), one or more first inductive elements 32, a second inductive element 33, and a control assembly 34. .
  • One or more first inductive elements 32 are disposed on the rotor of the motor 31.
  • the second sensing element 33 When the motor rotor rotates, the second sensing element 33 generates an induction signal under the action of the first sensing element 22 (step S41).
  • the control component 34 receives the sensing signal of the second sensing component, converts the sensing signal into a printing movement value, and generates a control signal according to the printing movement value and the preset printing data (step S42), for controlling the The operation of the motor.
  • the print movement value is a value indicating a moving distance of the print head or the work panel.
  • the first inductive element 32 and the second inductive element 33 may be various possible inductive devices, such as electromagnetic inductive elements, light inductive elements, infrared inductive elements, and the like.
  • Figures 5a, 5b, 5c show several examples of providing sensing elements in a 3D printer.
  • the first inductive element 52 is disposed on the surface of the rotor of the motor at equal intervals in the direction of rotation R (e.g., clockwise or counterclockwise) of the rotor of the motor
  • the second induction Element 53 is disposed inside motor housing 50.
  • the first sensing element 52 is disposed on each of the blades (i.e., the convex portions) of the motor rotor 51.
  • the first inductive elements 52 are disposed on the blades of the motor rotor 51 in an equally spaced manner, i.e., every other blade. In the example shown in Fig. 5d, the first inductive elements 52 are disposed in the grooves of the motor rotor 51 at equal intervals.
  • the first inductive element is a magnet, such as a magnetic steel; and the second inductive element is a Hall switch.
  • the Hall switch may be disposed at any of the magnetic fields of the one or more magnets, such as the inner wall of the motor casing, and the like. As the rotor rotates, the magnets are in turn close to and away from the Hall switch, causing the Hall switch to generate an induced current.
  • Bnp be the magnetic induction intensity of the operating point "ON”
  • BRP is the magnetic induction intensity of the "off" of the release point.
  • the Hall switch When the applied magnetic induction exceeds Bnp, the Hall switch outputs a low level; when the magnetic induction intensity falls below Bnp, Huo The output level of the switch is unchanged; when the magnetic induction decreases to BRP, the output of the Hall switch transitions from low to high. Therefore, it can be based on the number of pulses of the received induced current and the setting of the magnet. Calculate the angle at which the rotor turns.
  • One or more magnets may be disposed on the surface of the rotor of the motor at equal intervals in the direction of rotation of the rotor of the motor.
  • the magnet spacing can be determined based on factors such as control accuracy and interference between the magnets. The smaller the interval between the magnets, the larger the number of magnets provided on the rotor, and the narrower the pulse width of the Hall switch output, so that the rotation of the rotor at a smaller angle can be recognized, which is advantageous for improving the control precision.
  • a magnet can be placed on each blade of the rotor of the motor.
  • the motor 31 described above may be any one of a plurality of motors for controlling the movement of the print head or the work panel in the 3D printer, that is, the solution of the embodiment of the present invention may be applied to any or all of the motors.
  • the motor in the X-axis moving system 3 the movement of the print head in the X-axis direction can be more precisely controlled, thereby improving the printing accuracy.
  • the above description takes only one of the motors as an example, and the solution can be applied to other motors in the same manner.
  • FIG. 6 is a schematic diagram of a 3D printer control mechanism according to another embodiment of the present invention.
  • control component 34 can include:
  • An analog/digital conversion unit 36 configured to perform analog/digital conversion on the sensing signal to obtain a digital signal
  • a counting unit 37 configured to perform counting according to the digital signal, and obtain a counting result
  • the control signal generating unit 38 is configured to generate the print movement value by using the counting result.
  • control signal is used to control the power on/off of the motor or to adjust the drive voltage or current of the motor.
  • control signal generating unit 38 may obtain a target movement value based on the print data, and compare the print movement value with the target movement value; when the printing When the movement value is equal to the target movement value, the control signal is generated for disconnecting the power of the motor, or the control signal is generated for reducing at least one of the following operating parameters: driving voltage and driving current of the motor The pulse width of the drive current and the frequency of the drive current.
  • the print movement value may be a distance that the print head or the work panel moves along the guide rail, or a rotation angle of the rotor.
  • Control component 34 can be implemented by the controller described above. It can be implemented by one or more components, such as a microcontroller and a digital signal processor DSP.
  • control component 34 is configured to generate the control signal for turning off the power of the motor, or generate the control signal for reducing at least one of the following operating parameters: a driving voltage, a driving current of the motor, a pulse width of the drive current and a frequency of the drive current.
  • control component 34 can generate a control signal to disconnect the power supply to the motor.
  • the control component 34 can determine the operating parameters of the motor according to the calculated displacement or rotation angle and the target displacement or the target rotation angle, such as the driving voltage, the driving current, the pulse width of the driving current, and the driving. Adjust the frequency of the current, etc.
  • the width of the control current pulse can be adjusted by a pulse width modulator (PWM); when an AC motor or a variable frequency motor is used, the frequency of the control current can be adjusted by using a frequency converter. ,and many more.
  • PWM pulse width modulator
  • the specific algorithm for converting the angle of rotation of the rotor of the motor into displacement, or converting the target displacement to the target rotation angle depends on the type of motor and the type and parameters of the transmission structure (such as screw, transmission gear and toothed belt).
  • the parameters of the screw are mainly the pitch, the number of heads and the lead.
  • the pitch refers to the axial distance of the corresponding points of the two adjacent teeth on the thread. Usually indicated by P.
  • the number of heads is the number of threads, for example, the double-headed screw has two non-intersecting spirals intertwined with each other.
  • the lead refers to the axial distance of the corresponding point of the adjacent two teeth on the same spiral line, Expressed in L.
  • the motor is driven by a 4 screw with a pitch of 2 mm.
  • the lead has a lead of 8 mm, that is, when the motor rotates one turn, it advances by 8 mm.
  • the parameters of the gear and the toothed belt are mainly the number of teeth, the pitch of the toothed belt, and the like.
  • the motor rotates once, which will drive the synchronous wheel to rotate one revolution, that is, the distance of 15 teeth forward, corresponding to the timing belt, which is the distance of 30mm forward ( 15 ⁇ 2).
  • FIG. 7 is a schematic structural diagram of a 3D printer control signal generating apparatus according to an embodiment of the present invention.
  • the control signal generating device includes a position adjuster, a speed regulator, a current regulator, a PWM generator, a power driver, an inductor, and an A/D converter.
  • the power driver supplies a drive signal to the motor M.
  • the inductor senses the rotation of the motor rotor and outputs the sensing signal to the A/D converter.
  • the A/D converter supplies the sense signal to the current regulator after analog-to-digital conversion.
  • the current regulator adjusts a drive signal output to the PWM generator according to an output signal of the A/D converter, thereby causing the PWM generator to generate a pulse width modulation signal of the drive motor M according to the drive signal.
  • control component is used to:
  • a second control signal is generated for providing a reverse current to the motor to move the printhead or the work panel in a second direction opposite the first direction.
  • FIG. 8a is a schematic structural diagram of a forward motion control apparatus for a 3D printer according to an embodiment of the present invention.
  • the control assembly when forward motion is required, the control assembly is configured to generate a first control signal that controls the gear of the passive shaft 82 and the gear of the drive shaft 81 to be engaged such that the passive shaft 82 is on the drive shaft 81.
  • the driving of the print head or the working panel is driven in a first direction, that is, forward.
  • the control unit when reverse motion is required, the control unit is configured to generate a second control signal, and the gears of the reverse shaft 83 are controlled to mesh with the gears of the drive shaft 81 and the gear of the passive shaft 82, respectively. Separating the gear of the drive shaft 81 from the gear of the driven shaft 82 such that the print head or the working panel is driven by the driven shaft 82 in a second direction opposite to the first direction. , that is, reverse, move.
  • the hardware may be implemented by specialized hardware or hardware that executes machine readable instructions.
  • the hardware can be a specially designed permanent circuit or logic device (such as a dedicated processor such as an FPGA or ASIC) for performing a particular operation.
  • the hardware may also include programmable logic devices or circuits (such as including general purpose processors or other programmable processors) that are temporarily configured by software for performing particular operations.
  • the machine readable instructions corresponding to some of the modules in the figures may cause an operating system or the like operating on a computer to perform some or all of the operations described herein.
  • the non-transitory computer readable storage medium may be inserted into a memory provided in an expansion board within the computer or written to a memory provided in an expansion unit connected to the computer.
  • the CPU or the like installed on the expansion board or the expansion unit can perform part and all of the actual operations according to the instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

本发明公开了一种三维打印机及控制方法。该三维打印机包括:电机、打印头、工作面板;一个或多个第一感应元件,设置在所述电机的转子上;第二感应元件,用于在所述转子转动时,在所述第一感应元件的作用下产生感应信号;控制组件,用于接收所述感应信号,将该感应信号转化为打印移动值,根据所述打印移动值和预先设定的打印数据生成控制信号,用于控制所述电机的运转;其中,所述打印移动值用于表示所述打印头或所述工作面板的移动距离。

Description

一种三维打印机及控制方法 技术领域
本发明实施例涉及三维打印机技术领域,特别涉及一种三维打印机及控制方法。
发明背景
三维打印,也叫3D打印,即快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。3D打印已开始广泛应用在工业设计、模具制造等领域。
3D打印机是由控制组件、机械组件、打印头、耗材和介质等组成的。除散热风扇外,3D打印机一般具有4个主电机,分别负责喷头的X轴、Y轴和Z轴方向的移动以及进料。电机的精确性直接决定了打印结果。但是目前3D打印机主要采用开环控制的方式,当电机发生的失步、过冲现象时,可能导致打印出次品,从而降低良品率,并造成材料和时间的浪费。
发明内容
有鉴于此,本发明实施例提供了一种3D打印机及控制方法,可以实现对电机的精确控制,提高3D打印的精度。
本发明实施例的一种3D打印机包括:
电机、打印头、工作面板;
一个或多个第一感应元件,设置在所述电机的转子上;
第二感应元件,用于在所述转子转动时,在所述第一感应元件的作 用下产生感应信号;
控制组件,用于接收所述感应信号,将该感应信号转化为打印移动值,根据所述打印移动值和预先设定的打印数据生成控制信号,用于控制所述电机的运转;其中,所述打印移动值用于表示所述打印头或所述工作面板的移动距离。
本发明实施例的一种3D打印机的控制方法包括:
在三维打印机的电机的转子上设置一个或多个第一感应元件;
所述转子转动时,利用第二感应元件在所述第一感应元件的作用下产生感应信号;
将所述感应信号转化为打印移动值,根据所述打印移动值和预先设定的打印数据生成控制信号,用于控制所述电机的运转;其中,所述打印移动值用于表示所述三维打印机的打印头或工作面板的移动距离。
根据本发明技术方案,通过感应3D打印机中电机转子的旋转来感知打印头或工作面板的位移情况,并据此对电机进行控制,可以精确地控制打印头或工作面板的移动,提高3D打印的精度。
附图简要说明
以下附图仅为本发明技术方案的一些例子,本发明并不局限于图中示出的特征。以下附图中,相似的标号表示相似的元素:
图1为一种3D打印机结构示意图;
图2为本发明实施例的一种3D打印机系统方块图;
图3为本发明实施例的一种3D打印机控制机构的示意图;
图4为本发明实施例的一种3D打印机控制方法的流程图;
图5a、5b、5c、5d为本发明实施例的一种3D打印机控制机构中采用的感应元件示意图;
图6为本发明另一实施例的一种3D打印机控制机构的示意图,
图7为本发明实施例的一种3D打印机控制信号发生装置的结构示意图;
图8a为本发明实施例的一种3D打印机正向运动控制装置的结构示意图;
图8b为本发明实施例的一种3D打印机反向运动控制装置的结构示意图。
实施本发明的方式
为了描述上的简洁和直观,下文通过描述若干代表性的实施例来对本发明的方案进行阐述。实施例中大量的细节仅用于帮助理解本发明的方案。但是很明显,本发明的技术方案实现时可以不局限于这些细节。为了避免不必要地模糊了本发明的方案,一些实施方式没有进行细致地描述,而是仅给出了框架。下文中,“包括”是指“包括但不限于”,“根据......”是指“至少根据......,但不限于仅根据......”。下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。
图1为3D打印机结构示意图。3D打印机一般包括机架1、底座2、X轴移动系统3、Y轴移动系统4、Z轴移动系统5、打印装置6、工作面板7、控制器(未示出)和电源(未示出)。
打印装置6包括打印头、连接机构、送料机构等。X轴移动系统3、Y轴移动系统4、Z轴移动系统5分别用于控制打印装置和工作面板的移动,使得打印装置和工作面板相对运动,使得打印头将送料机构提供的原料按照打印数据打印在工作面板7上,从而完成3D打印。X 轴移动系统3、Y轴移动系统4和Z轴移动系统分别包括电机8、移动导轨、齿轮、齿轮带等。在图1的例子中,X轴移动系统3和Z轴移动系统5设置在机架1上,用于控制打印装置6分别在X轴方向和Z轴方向上的移动,Y轴移动系统4设置在底座2上,用于控制工作面板7在Y轴方向上移动。也有一些3D打印机采用X轴移动系统、Y轴移动系统控制打印装置分别沿X轴、Y轴的移动,Z轴移动系统控制工作面板沿Z轴的移动,其结构也会与图1所示有一些差别。
控制器(未示出)和电源(未示出)一般设置在机架1或底座2上。控制器用于根据设定的打印数据控制各移动系统的电机以及送料机构的电机运转。控制器可以以由专门的硬件或执行机器可读指令的硬件实现。例如,控制器可以是专门设计的永久性电路或逻辑器件(如专用处理器,如FPGA或ASIC)用于完成设定的控制操作,也可以包括由软件临时配置的可编程逻辑器件或电路(如包括通用处理器、单片机或其它可编程处理器)用于执行设定的控制操作。电源用于向各电机和控制器提供动力。
图2本发明实施例的一种3D打印机系统方块图。如图2所示,该3D打印机可以包括:控制器8、X轴移动系统3、Y轴移动系统4、Z轴移动系统5、打印装置6、工作面板7。
X轴移动系统3、Y轴移动系统4、Z轴移动系统5分别包括电机驱动器、电机和感应装置。电机驱动器接收控制器8的控制信号,根据控制信号驱动电机运转。感应装置感应电机的运转,并将感应信号提供给控制器8。各移动系统还可以包括传动系统、限位开关(Endstop)等,这里不再赘述。
控制器8用于根据设定的打印数据和从各移动系统的感应装置提供的感应信号产生各移动系统的控制信号,将各控制信号提供给各 移动系统的电机驱动器用于控制各移动系统的电机的运转。控制器8可以由专门设计的永久性电路或逻辑器件(如专用处理器,如FPGA或ASIC)实现,也可以由软件临时配置的可编程逻辑器件或电路(如包括通用处理器、单片机或其它可编程处理器)实现。
控制器8还用于控制打印装置6中送料装置和电热喷头。打印装置6的送料装置(如挤出装置)的电机驱动器根据控制器8提供的控制信号控制电机运转,实现原料的挤出。控制器8还用于控制工作面板7上的热床的加热。
3D打印机提供至少一个数据端口9,控制器8通过数据端口9获取打印数据。数据端口9可以是一个卡槽,可以接收存储卡插入。存储卡可以是各种格式的Flash存储设备,例如MMC卡、SD卡、mini-SD卡、micro-SD卡、记忆棒、xD图像卡等。数据端口9也可以是用于连接外部设备(如PC)的总线端口,例如通用串行总线(USB)端口、PCI接口等。如果控制器8的处理器芯片不支持该数据端口,则可以利用端口转换器10提供数据端口9和控制器8之间的端口转换,例如UART等。
该3D打印机还包括电源11、电源稳定器12和调节器13。电源11为各部件提供动力。电源稳定器12是用于稳定电源的器件,如稳压器。调节器13用于调节向各部件提供的电压、电流,还可以实现对部件电源的开/关控制。调节器13可以由MOS、MOSFET、继电器等器件,或专门设计的电路实现。
图3为本发明实施例的一种3D打印机控制机构的示意图。图4为本发明实施例的一种3D打印机控制方法的流程图。如图2所示,该3D打印机可以包括:电机31、打印头(未示出)、工作面板(未示出)、一个或多个第一感应元件32、第二感应元件33和控制组件34。
一个或多个第一感应元件32设置在所述电机31的转子上。
所述电机转子转动时,第二感应元件33在所述第一感应元件22的作用下产生感应信号(步骤S41)。
控制组件34接收所述第二感应元件的感应信号,将所述感应信号转化为打印移动值,根据该打印移动值和预先设定的打印数据生成控制信号(步骤S42),用于控制所述电机的运转。其中,打印移动值是表示所述打印头或所述工作面板的移动距离的值。
第一感应元件32和第二感应元件33可以是各种可行的感应器件,例如电磁感应元件、光感应元件、红外感应元件等。图5a、5b、5c示出在3D打印机中设置感应元件的几个例子。如图5a所示的例子中,第一感应元件52在所述电机转子的转动方向R(例如顺时针或逆时针)上以等间隔的方式设置在所述电机转子的表面上,第二感应元件53设置在电机机壳50内部。如图5b所示的例子中,电机转子51的各个叶片(即凸起部分)上设置有第一感应元件52。如图5c所示的例子中,第一感应元件52以等间隔方式,即每隔一个叶片的方式,设置在电机转子51的叶片上。如图5d所示的例子中,第一感应元件52以等间隔方式设置在电机转子51的凹槽中。
一个例子中,第一感应元件为磁体,如磁钢;第二感应元件为霍尔开关。霍尔开关可以设置在所述一个或多个磁体的磁场中的任意位置,例如电机机壳内壁上,等。当转子转动时,各磁体依次靠近并远离霍尔开关,使得霍尔开关产生感应电流。设Bnp为工作点“开”的磁感应强度,BRP为释放点“关”的磁感应强度,当外加的磁感应强度超过Bnp时,霍尔开关输出低电平;当磁感应强度降到Bnp以下时,霍尔开关输出电平不变;当磁感应强度降到BRP时,霍尔开关输出才由低电平跃变为高电平。因此,可以根据接收到的感应电流的脉冲数和磁体的设置间 隔计算出转子转过的角度。
一个或多个磁体可以在所述电机转子的转动方向上以等间隔的方式设置在所述电机转子的表面上。磁体间隔可以根据对控制精度的要求以及磁体之间的干扰等因素来确定。磁体间隔越小,转子上设置的磁体数目越多,霍尔开关输出的脉冲脉宽越窄,因此能够识别出转子更小角度的转动,从而有利于提高控制精度。一个例子中,可以在电机转子的每个叶片上设置一个磁体。
上述电机31可以是3D打印机中用于控制打印头或工作面板移动的多个电机中的任意一个,即本发明实施例的方案可以应用在这些电机中的任一电机或全部电机上。例如,当上述方案应用于X轴移动系统3中的电机时,可以更精确地控制打印头在X轴方向上的移动,从而提高打印精度。以上描述仅以其中一个电机为例,可以以相同的方式将该方案应用在其它电机上。
图6为本发明另一实施例的一种3D打印机控制机构的示意图。如图6所示,控制组件34可以包括:
模/数转换单元36,用于对所述感应信号进行模/数转换得到数字信号;
计数单元37,用于根据所述数字信号进行计数,并获得计数结果,
控制信号生成单元38,用于利用所述计数结果生成所述打印移动值。
一个例子中,所述控制信号用于控制所述电机的电源通/断,或者用于对所述电机的驱动电压或电流进行调整。
一个例子中,控制信号生成单元38可以根据所述打印数据获得目标移动值,并比较所述打印移动值与所述目标移动值;当所述打印 移动值等于所述目标移动值时,产生所述控制信号用于断开所述电机的电源,或者产生所述控制信号用于减小以下至少一个工作参数:所述电机的驱动电压、驱动电流、所述驱动电流的脉冲宽度、所述驱动电流的频率。所述打印移动值可以是所述打印头或所述工作面板沿导轨移动的距离,或者所述转子的转动角度。
控制组件34可以由上述控制器实现。可以由一个或多个元件实现,例如单片机和数字信号处理器DSP共同实现等。
一个例子中,控制组件34用于产生所述控制信号用于断开所述电机的电源,或者产生所述控制信号用于减小以下至少一个工作参数:所述电机的驱动电压、驱动电流、所述驱动电流的脉冲宽度、所述驱动电流的频率。例如,当判断计算得到的位移或转动角度达到目标位移或目标转动角度时,控制组件34可以产生一个控制信号,来断开该电机的电源连接。再例如,控制组件34可以根据计算得到的位移或转动角度与目标位移或目标转动角度的关系对所述电机的工作参数,例如驱动电压、驱动电流、所述驱动电流的脉冲宽度、所述驱动电流的频率等,进行调整。这种调整的具体操作是根据实际采用的电机的种类而定的。例如,当采用直流电机或步进电机时,可以采用脉宽调制器(PWM)对控制电流脉冲的宽度进行调整;当采用交流电机或变频电机时,可以采用变频器对控制电流的频率进行调整,等等。
关于将电机转子的转动角度换算为位移,或者将目标位移换算目标转动角度的具体算法则与采用的电机种类、传动结构(如丝杆、传动齿轮和齿带等)的型号和参数有关。丝杆的参数主要有螺距、头数和导程这三项。螺距指的是螺纹上相邻的两牙对应点的轴向距离。通常用P表示。头数就是螺纹的线数,例如,双头丝杆有两条不相交的螺旋线互相缠绕形成。导程指同一螺旋线上相邻两牙对应点的轴向距离,可 以用L表示。因此如果是单线的螺纹,导程就等于螺距。如果是多线螺纹,导程就等于头数乘以螺距(L=nP)。例如,电机以一个4头螺距2mm的丝杆为轴,这样的丝杆,导程为8mm,也即,电机旋转一圈,则前进8mm。齿轮和齿带的参数主要是齿数、齿带节距等。例如,使用的同步轮有15个齿,同步带节距2mm,那么电机旋转一周,会带动同步轮旋转一周,也就是前进15个齿的距离,对应到同步带上,就是前进30mm的距离(15×2)。
图7为本发明实施例的一种3D打印机控制信号发生装置的结构示意图。该控制信号发生装置包括位置调节器、速度调节器、电流调节器、PWM发生器、功率驱动器、感应器、A/D转换器。功率驱动器将驱动信号提供给电机M。感应器感应电机转子的转动,将感应信号输出给A/D转换器。A/D转换器将感应信号进行模/数转换后提供给电流调节器。电流调节器根据A/D转换器的输出信号调节输出到PWM发生器的驱动信号,从而使得PWM发生器根据该驱动信号产生驱动电机M的脉宽调制信号。
当所述电机为直流电机时,所述控制组件用于:
产生第一控制信号用于向所述电机提供正向电流,使所述打印头或所述工作面板沿第一方向移动;
产生第二控制信号用于向所述电机提供反向电流,使所述打印头或所述工作面板沿与所述第一方向相反的第二方向移动。
图8a为本发明实施例的一种3D打印机正向运动控制装置的结构示意图。如图8a所示,需要正向运动时,控制组件用于产生第一控制信号,控制被动轴82的齿轮和所述主动轴81的齿轮咬合,使得所述被动轴82在所述主动轴81的驱动下带动所述打印头或所述工作面板沿第一方向,即正向,移动。
如图8b所示,需要反向运动时,控制组件用于产生第二控制信号,控制所述倒档轴83的齿轮分别与所述主动轴81的齿轮和所述被动轴82的齿轮咬合,并将所述主动轴81的齿轮与所述被动轴82的齿轮分离,使所述打印头或所述工作面板在所述被动轴82的带动下沿与所述第一方向相反的第二方向,即反向,移动。
需要说明的是,上述各流程和各结构图中不是所有的步骤和模块都是必须的,可以根据实际的需要忽略某些步骤或模块。各步骤的执行顺序不是固定的,可以根据需要进行调整。各模块的划分仅仅是为了便于描述采用的功能上的划分,实际实现时,一个模块可以分由多个模块实现,多个模块的功能也可以由同一个模块实现,这些模块可以位于同一个设备中,也可以位于不同的设备中。
各例中,硬件可以由专门的硬件或执行机器可读指令的硬件实现。例如,硬件可以为专门设计的永久性电路或逻辑器件(如专用处理器,如FPGA或ASIC)用于完成特定的操作。硬件也可以包括由软件临时配置的可编程逻辑器件或电路(如包括通用处理器或其它可编程处理器)用于执行特定操作。
图中的一些模块对应的机器可读指令可以使计算机上操作的操作系统等来完成这里描述的部分或者全部操作。非易失性计算机可读存储介质可以是插入计算机内的扩展板中所设置的存储器中或者写到与计算机相连接的扩展单元中设置的存储器。安装在扩展板或者扩展单元上的CPU等可以根据指令执行部分和全部实际操作。
综上所述,权利要求的范围不应局限于以上描述的例子中的实施方式,而应当将说明书作为一个整体并给予最宽泛的解释。

Claims (17)

  1. 一种三维打印机,其特征在于,包括:
    电机、打印头、工作面板;
    一个或多个第一感应元件,设置在所述电机的转子上;
    第二感应元件,用于在所述转子转动时,在所述第一感应元件的作用下产生感应信号;
    控制组件,用于接收所述感应信号,将该感应信号转化为打印移动值,根据所述打印移动值和预先设定的打印数据生成控制信号,用于控制所述电机的运转;其中,所述打印移动值用于表示所述打印头或所述工作面板的移动距离。
  2. 如权利要求1所述的三维打印机,其特征在于,所述控制信号用于控制所述电机的电源通/断,或者用于对所述电机的驱动电压或电流进行调整。
  3. 如权利要求1所述的三维打印机,其特征在于,所述控制组件包括:
    模/数转换单元,用于对所述感应信号进行模/数转换得到数字信号;
    计数单元,用于对所述数字信号进行计数,并获得计数结果;
    控制信号生成单元,用于利用所述计数结果生成所述打印移动值。
  4. 如权利要求3所述的三维打印机,其特征在于,所述控制信号生成单元用于:
    根据所述打印数据获得目标移动值,并比较所述打印移动值与所述目标移动值;
    当所述打印移动值等于所述目标移动值时,产生所述控制信号用于 断开所述电机的电源,或者产生所述控制信号用于减小以下至少一个工作参数:所述电机的驱动电压、驱动电流、所述驱动电流的脉冲宽度、所述驱动电流的频率。
  5. 如权利要求4所述的三维打印机,其特征在于,
    所述打印移动值为所述打印头或所述工作面板沿导轨移动的距离,或者所述转子的转动角度。
  6. 如权利要求1所述的三维打印机,其特征在于,
    所述第一感应元件为磁体;
    所述第二感应元件为霍尔开关,用于当所述转子转动时,在所述一个或多个第一感应元件的磁场中产生感应电流。
  7. 如权利要求1所述的三维打印机,其特征在于,所述一个或多个第一感应元件在所述转子的转动方向上以等间隔的方式设置在所述转子上。
  8. 如权利要求1所述的三维打印机,其特征在于,当所述电机为直流电机时,所述控制组件用于:
    产生第一控制信号用于向所述电机提供正向电流,使所述打印头或所述工作面板沿第一方向移动;
    产生第二控制信号用于向所述电机提供反向电流,使所述打印头或所述工作面板沿与所述第一方向相反的第二方向移动。
  9. 如权利要求1所述的三维打印机,其特征在于,当所述电机为交流电机时,所述三维打印机进一步包括:主动轴、被动轴和倒档轴;
    所述控制组件用于:
    产生第一控制信号用于控制所述被动轴的齿轮和所述主动轴的齿轮咬合,使得所述被动轴在所述主动轴的驱动下带动所述打印头或所述工作面板沿第一方向移动;
    产生第二控制信号用于控制所述倒档轴的齿轮分别与所述主动轴的齿轮和所述被动轴的齿轮咬合,并将所述主动轴的齿轮与所述被动轴的齿轮分离,使所述打印头或所述工作面板在所述被动轴的带动下沿与所述第一方向相反的第二方向移动。
  10. 一种三维打印机的控制方法,包括:
    在三维打印机的电机的转子上设置一个或多个第一感应元件;
    所述转子转动时,利用第二感应元件在所述第一感应元件的作用下产生感应信号;
    将所述感应信号转化为打印移动值,根据所述打印移动值和预先设定的打印数据生成控制信号,用于控制所述电机的运转;其中,所述打印移动值用于表示所述三维打印机的打印头或工作面板的移动距离。
  11. 如权利要求10所述的三维打印机控制方法,其特征在于,所述控制信号用于控制所述电机的电源通/断,或者用于对所述电机的驱动电压或电流进行调整。
  12. 如权利要求11所述的三维打印机控制方法,其特征在于,所述将感应信号转化为打印移动值包括:
    对所述感应信号进行模/数转换得到数字信号;
    对所述数字信号进行计数并获得计数结果;
    利用所述计数结果生成所述打印移动值。
  13. 如权利要求12所述的三维打印机控制方法,其特征在于,所述根据所述打印移动值和预先设定的打印数据生成控制信号包括:
    根据所述打印数据获得目标移动值,并比较所述打印移动值与所述目标移动值;
    当所述打印移动值等于所述目标移动值时,产生所述控制信号用于断开所述电机的电源,或者产生所述控制信号用于减小以下至少一个工 作参数:所述电机的驱动电压、驱动电流、所述驱动电流的脉冲宽度、所述驱动电流的频率。
  14. 如权利要求13所述的三维打印机控制方法,其特征在于,所述打印移动值为所述打印头或所述工作面板沿导轨移动的距离,或者所述转子的转动角度。
  15. 如权利要求10所述的三维打印机控制方法,其特征在于,
    所述第一感应元件为磁体,所述第二感应元件为霍尔开关。
  16. 如权利要求10所述的三维打印机控制方法,其特征在于,进一步包括:当所述电机为直流电机时,
    产生第一控制信号用于向所述电机提供正向电流,使所述打印头或所述工作面板沿第一方向移动;
    产生第二控制信号用于向所述电机提供反向电流,使所述打印头或所述工作面板沿与所述第一方向相反的第二方向移动。。
  17. 如权利要求10所述的三维打印机控制方法,其特征在于,进一步包括:
    产生第一控制信号用于控制被动轴的齿轮与主动轴的齿轮咬合,使得所述被动轴在所述主动轴的驱动下带动所述打印头或所述工作面板沿第一方向移动;
    产生第二控制信号用于控制倒档轴的齿轮分别与所述主动轴的齿轮和所述被动轴的齿轮咬合,并将所述主动轴的齿轮与所述被动轴的齿轮分离,使所述打印头或所述工作面板在所述被动轴的带动下沿与所述第一方向相反的第二方向移动。
PCT/CN2015/072200 2015-02-04 2015-02-04 一种三维打印机及控制方法 WO2016123753A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580000091.1A CN104870172B (zh) 2015-02-04 2015-02-04 一种三维打印机及控制方法
PCT/CN2015/072200 WO2016123753A1 (zh) 2015-02-04 2015-02-04 一种三维打印机及控制方法
TW105101044A TWI592288B (zh) 2015-02-04 2016-01-14 快速成型裝置及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072200 WO2016123753A1 (zh) 2015-02-04 2015-02-04 一种三维打印机及控制方法

Publications (1)

Publication Number Publication Date
WO2016123753A1 true WO2016123753A1 (zh) 2016-08-11

Family

ID=53915182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072200 WO2016123753A1 (zh) 2015-02-04 2015-02-04 一种三维打印机及控制方法

Country Status (3)

Country Link
CN (1) CN104870172B (zh)
TW (1) TWI592288B (zh)
WO (1) WO2016123753A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107364130A (zh) * 2017-08-17 2017-11-21 安徽康力节能电器科技有限公司 一种移动式三维打印机
CN114571720A (zh) * 2022-01-25 2022-06-03 深圳市纵维立方科技有限公司 一种光固化打印机
CN115042429A (zh) * 2022-07-04 2022-09-13 浙江理工大学 一种微米纤维高精度打印的研究方法
CN114571720B (zh) * 2022-01-25 2024-06-04 深圳市纵维立方科技有限公司 一种光固化打印机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568571B (zh) * 2015-08-28 2017-02-01 東友科技股份有限公司 列印平台調校系統及其調校方法
CN106042379B (zh) * 2016-06-08 2018-02-06 大连思攀科技有限公司 3d打印头、3d打印机及其3d打印方法
CN106853684B (zh) * 2017-01-03 2019-05-31 成都墨之坊科技有限公司 耗材状态检测装置及方法
CN107351376A (zh) * 2017-07-20 2017-11-17 华南理工大学 基于3d打印技术的掩膜制作装置及其掩膜制作方法
CN210100725U (zh) * 2019-05-16 2020-02-21 珠海赛纳打印科技股份有限公司 喷墨控制电路及3d打印设备
CN110271185A (zh) * 2019-07-01 2019-09-24 严铜 用于熔融沉积型3d打印机的进料装置
CN112667174B (zh) * 2020-12-28 2023-08-22 虎丘影像(苏州)股份有限公司 一种打印控制方法、装置及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129538A (ja) * 1997-11-04 1999-05-18 Canon Inc 画像形成装置
CN1509513A (zh) * 2001-05-28 2004-06-30 ���µ�����ҵ��ʽ���� 电机驱动装置及包括该装置的设备
CN103684134A (zh) * 2012-09-13 2014-03-26 上海海拉电子有限公司 一种用于无刷直流电机的位置传感器
CN203622958U (zh) * 2013-11-14 2014-06-04 西安中科麦特电子技术设备有限公司 一种3d打印设备运动机构和供料系统的控制系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955853A (en) * 1997-01-31 1999-09-21 Hewlett-Packard Company Direct current motor for closed-loop feedback control
US20140120196A1 (en) * 2012-10-29 2014-05-01 Makerbot Industries, Llc Quick-release extruder
CN202965529U (zh) * 2012-12-03 2013-06-05 苏州工业园区鑫海胜电子有限公司 一种电机与打印机集成控制系统
CN203665947U (zh) * 2013-11-14 2014-06-25 广东职业技术学院 可自调工作台水平度的3d立体打印机
CN103786344B (zh) * 2014-01-20 2017-05-31 广州捷和电子科技有限公司 3d打印机的送料机构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129538A (ja) * 1997-11-04 1999-05-18 Canon Inc 画像形成装置
CN1509513A (zh) * 2001-05-28 2004-06-30 ���µ�����ҵ��ʽ���� 电机驱动装置及包括该装置的设备
CN103684134A (zh) * 2012-09-13 2014-03-26 上海海拉电子有限公司 一种用于无刷直流电机的位置传感器
CN203622958U (zh) * 2013-11-14 2014-06-04 西安中科麦特电子技术设备有限公司 一种3d打印设备运动机构和供料系统的控制系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107364130A (zh) * 2017-08-17 2017-11-21 安徽康力节能电器科技有限公司 一种移动式三维打印机
CN114571720A (zh) * 2022-01-25 2022-06-03 深圳市纵维立方科技有限公司 一种光固化打印机
CN114571720B (zh) * 2022-01-25 2024-06-04 深圳市纵维立方科技有限公司 一种光固化打印机
CN115042429A (zh) * 2022-07-04 2022-09-13 浙江理工大学 一种微米纤维高精度打印的研究方法

Also Published As

Publication number Publication date
CN104870172B (zh) 2017-07-28
CN104870172A (zh) 2015-08-26
TW201636191A (zh) 2016-10-16
TWI592288B (zh) 2017-07-21

Similar Documents

Publication Publication Date Title
WO2016123753A1 (zh) 一种三维打印机及控制方法
US7541763B2 (en) Servo control device
CN100517946C (zh) 用于控制电机驱动的方法和装置
EP3217530B1 (en) Motor drive controlling apparatus, motor drive controlling method, and tube pump
JPWO2009128198A1 (ja) モータ駆動装置、集積回路装置、モータ装置、およびモータ駆動システム
KR20120005216A (ko) 화상형성장치, 모터 제어 장치 및 그 모터 제어 방법
CN104139527A (zh) 三维打印机
JP5519734B2 (ja) モータの駆動の準備の完了時にデータの通信速度を変更するマスタ装置
US9647584B2 (en) Motor drive controller and control method of motor drive controller
TWI426695B (zh) 電動機驅動器控制裝置
EP2530827A3 (en) Control device, actuator system, and control method
JP4959779B2 (ja) ステッピングモータ駆動装置及び駆動方法
US20160246281A1 (en) Motor control device, motor control system and motor control method
JP4613532B2 (ja) モータ制御装置
Antipin et al. Application of the drive systems through the stepper motors in the process equipment, manipulators and pushers without feedback
CN204036855U (zh) 三维打印机
JP2015159660A (ja) サーボモータ制御装置
JP3929828B2 (ja) サーボ制御装置
JP2007073071A (ja) サーボ制御装置
CN203788207U (zh) 两相混合式步进电机驱动控制系统
JP2016144344A (ja) 制御装置、ロボット及び制御方法
CN215934754U (zh) 一种3d打印步进电机的闭环控制装置
TWI570533B (zh) CNC servo control drive system
JP2014033586A (ja) モータ制御装置およびモータ制御方法
US20210367547A1 (en) Command generation device and command generation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: OTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/11/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15880709

Country of ref document: EP

Kind code of ref document: A1