WO2016121758A1 - エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、樹脂シート及びプリプレグ - Google Patents

エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、樹脂シート及びプリプレグ Download PDF

Info

Publication number
WO2016121758A1
WO2016121758A1 PCT/JP2016/052185 JP2016052185W WO2016121758A1 WO 2016121758 A1 WO2016121758 A1 WO 2016121758A1 JP 2016052185 W JP2016052185 W JP 2016052185W WO 2016121758 A1 WO2016121758 A1 WO 2016121758A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
general formula
group
component
Prior art date
Application number
PCT/JP2016/052185
Other languages
English (en)
French (fr)
Inventor
一也 木口
優香 吉田
智喜 江連
竹澤 由高
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2016572060A priority Critical patent/JPWO2016121758A1/ja
Priority to CN201680007519.XA priority patent/CN107207701B/zh
Priority to KR1020177020806A priority patent/KR102539483B1/ko
Publication of WO2016121758A1 publication Critical patent/WO2016121758A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Definitions

  • the present invention relates to an epoxy resin composition, a semi-cured epoxy resin composition, a resin sheet, and a prepreg.
  • thermosetting resin composition As an insulating material used in these devices, a cured resin obtained by curing a thermosetting resin composition is widely used from the viewpoint of insulation and heat resistance.
  • the thermal conductivity of the cured resin is low, which is a major factor hindering heat dissipation. For this reason, development of the resin cured material which has high heat conductivity is desired.
  • a method of filling a resin composition with an inorganic filler made of high thermal conductive ceramic to form a composite material there is a method of filling a resin composition with an inorganic filler made of high thermal conductive ceramic to form a composite material.
  • high thermal conductive ceramics alumina, boron nitride, aluminum nitride, silica, magnesium oxide, silicon nitride, silicon carbide and the like are known.
  • Japanese Patent No. 2874089 discloses a resin composition for encapsulating a semiconductor containing a mesogenic group-containing epoxy resin having a biphenyl group, a phenol resin, and spherical alumina as essential components. This resin composition is reported to be excellent in thermal conductivity.
  • JP 2007-262398 A discloses a resin composition containing an epoxy resin having a biphenyl group, a curing agent having a xanthene group, and an inorganic filler. This resin composition is reported to be excellent in heat dissipation.
  • JP2013-234313A discloses a resin composition containing a phenol novolac resin containing a mesogenic group-containing epoxy resin, a compound having a specific structural unit, and an inorganic filler. This resin composition is reported to have high thermal conductivity after curing.
  • the cured product obtained by curing the B-stage epoxy resin composition into a C-stage by drying conditions when the epoxy resin composition is B-staged It has been found that the crosslink density decreases and the thermal conductivity may decrease. Furthermore, it has been found that the order of the mesogenic group-containing epoxy resin is disturbed, the higher order structure is not expressed, and the thermal conductivity may be significantly reduced. In addition, it was found that the thermal conductivity may decrease even though the order of the mesogenic group-containing epoxy resin is not disturbed and a higher order structure is expressed. The cause of this is unclear, and it has been a problem to improve the thermal conductivity of the cured product.
  • the terms B stage and C stage are as defined in JIS K6900: 1994.
  • the present invention provides an epoxy resin composition that exhibits high thermal conductivity after curing, a resin sheet and a prepreg using the epoxy resin composition, and a semi-cured epoxy resin composition that exhibits high thermal conductivity after curing. Let it be an issue.
  • the present inventors have cured the epoxy resin composition into a C stage when the monomer component in the phenol novolac resin remains in the B stage of the epoxy resin composition. It was found that the crosslink density of the cured product at that time decreased, and the thermal conductivity decreased. Furthermore, it was found that depending on the residual amount of the monomer component, the order of the mesogenic group-containing epoxy resin is disturbed, the higher-order structure is not expressed, and the thermal conductivity is greatly reduced. Based on the above findings, the present inventors have reached the present invention. That is, the present invention includes the following aspects.
  • curing agent of the said (B) component in the semi-hardened state (B stage) is 0.6 mass% or less of the total resin amount.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 21 and R 24 each independently represents an alkyl group, an aryl group, or an aralkyl group.
  • R 22 , R 23 , R 25 and R 26 each independently represent a hydrogen atom, an alkyl group, an aryl group or an aralkyl group.
  • m21 and m22 each independently represents an integer of 0-2.
  • n21 and n22 each independently represents an integer of 1 to 7.
  • n31 to n34 each independently represent a positive integer.
  • Ar 31 to Ar 34 each independently represents one of a group represented by the following general formula (III-a) and a group represented by the following general formula (III-b). ]
  • R 31 and R 34 each independently represents a hydrogen atom or a hydroxyl group.
  • R 32 and R 33 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the curing agent of the component (B) is any one of ⁇ 1> to ⁇ 5>, wherein the content ratio of the monomer component that is a phenol compound constituting the novolak resin is 5% by mass to 80% by mass.
  • the inorganic filler of the component (C) is at least one selected from the group consisting of boron nitride, alumina, magnesium oxide, silica, and aluminum nitride. Any one of ⁇ 1> to ⁇ 6> The epoxy resin composition described in 1.
  • a resin sheet which is a sheet-like molded body of the epoxy resin composition according to any one of ⁇ 1> to ⁇ 7>.
  • curing agent of the said (B) component is 0.6 mass% or less of the total resin amount.
  • the viscosity is 10 4 Pa ⁇ s to 10 5 Pa ⁇ s in a range of 25 ° C. to 30 ° C., and 10 2 Pa ⁇ s to 10 3 Pa ⁇ s at 100 ° C.
  • Semi-cured epoxy resin composition is 10 4 Pa ⁇ s to 10 5 Pa ⁇ s in a range of 25 ° C. to 30 ° C., and 10 2 Pa ⁇ s to 10 3 Pa ⁇ s at 100 ° C.
  • Semi-cured epoxy resin composition is 10 4 Pa ⁇ s to 10 5 Pa ⁇ s in a range of 25 ° C. to 30 ° C.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 21 and R 24 each independently represents an alkyl group, an aryl group, or an aralkyl group.
  • R 22 , R 23 , R 25 and R 26 each independently represent a hydrogen atom, an alkyl group, an aryl group or an aralkyl group.
  • m21 and m22 each independently represents an integer of 0-2.
  • n21 and n22 each independently represents an integer of 1 to 7.
  • n31 to n34 each independently represent a positive integer.
  • Ar 31 to Ar 34 each independently represents one of a group represented by the following general formula (III-a) and a group represented by the following general formula (III-b). ]
  • R 31 and R 34 each independently represents a hydrogen atom or a hydroxyl group.
  • R 32 and R 33 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the inorganic filler of the component (C) is at least one selected from the group consisting of boron nitride, alumina, magnesium oxide, silica, and aluminum nitride. Any one of ⁇ 11> to ⁇ 16> The semi-cured epoxy resin composition described in 1.
  • an epoxy resin composition that exhibits high thermal conductivity after curing, a resin sheet and a prepreg that exhibit high thermal conductivity using the epoxy resin composition, and a semi-cured epoxy resin composition that exhibits high thermal conductivity after curing are provided. can do.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the amount of each component in the composition is the amount of each of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. It means the total amount.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
  • the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • the epoxy resin composition of the present embodiment includes (A) component: an epoxy resin having a mesogenic skeleton, (B) component: a curing agent containing a novolak resin obtained by novolacizing a divalent phenol compound, and (C) component: The monomer component in the curing agent of the component (B) in the semi-cured state (B stage) is 0.6% by mass or less of the total resin amount.
  • At least one of the B stage of the epoxy resin composition of the present embodiment and the cured product of the epoxy resin composition of the present embodiment forms a highly ordered higher-order structure (smectic structure).
  • the epoxy resin having a mesogenic skeleton preferably contains a compound represented by the following general formula (I).
  • the higher order structure means a structure including a higher order structure in which constituent elements are arranged to form a micro ordered structure, and corresponds to, for example, a crystal phase and a liquid crystal phase.
  • the presence confirmation of such a higher-order structure can be easily determined by observation with a polarizing microscope. That is, in observation in the crossed Nicols state, it can be determined by whether or not interference fringes due to depolarization are seen.
  • This higher order structure usually exists in an island shape in the epoxy resin composition to form a domain structure, and one of the islands corresponds to one higher order structure.
  • the constituent elements of this higher order structure are generally formed by covalent bonds.
  • the epoxy resin composition of the present embodiment is obtained by using a high thermal conductive inorganic filler containing alumina, boron nitride, etc. and an epoxy resin having a mesogen skeleton such as a compound represented by the general formula (I) as a composite material.
  • the object exhibits a smectic structure having high order.
  • the cured product of the epoxy resin composition of the present embodiment exhibits higher thermal conductivity than the cured product composed of the epoxy resin alone.
  • each of the nematic structure and the smectic structure is a kind of liquid crystal structure.
  • the nematic structure is a liquid crystal structure in which the molecular long axis is oriented in a uniform direction and has only alignment order.
  • the smectic structure is a liquid crystal structure having a one-dimensional positional order in addition to the orientation order and having a layer structure. The order is higher in the smectic structure than in the nematic structure. For this reason, the thermal conductivity of the epoxy resin composition is higher when it exhibits a smectic structure.
  • Presence of the higher order structure in the epoxy resin composition containing the inorganic filler can be confirmed as follows.
  • a cured product of the epoxy resin composition (thickness: 0.1 ⁇ m to 20 ⁇ m) is sandwiched between slide glasses (thickness: about 1 mm), and this is used with a polarizing microscope (for example, Olympus Corporation, trade name: BX51).
  • An interference pattern is observed around the inorganic filler in a region where an inorganic filler such as alumina or boron nitride is present, and no interference pattern is observed in a region where no inorganic filler is present. From this, it can be seen that a cured product of an epoxy resin having a mesogen skeleton such as a compound represented by the general formula (I) centering on the inorganic filler forms a higher order structure.
  • the above observation should be performed not in the crossed Nicols state but in a state where the analyzer is rotated 60 ° with respect to the polarizer.
  • the resin forms a higher-order structure depending on whether an interference pattern is observed or a dark field is observed in observation in a crossed Nicol state It can be determined whether or not.
  • the dark field region where no interference pattern is observed is a portion where the resin does not form a higher order structure, or an inorganic filler It is impossible to determine whether it is a part of origin.
  • the portion of the inorganic filler becomes a dark field regardless of the angle between the polarizer and the analyzer, but the resin forms a higher order structure.
  • the part that is not visible is not a dark field, but appears to be bright with some light transmission. This makes it possible to distinguish between a portion where the resin does not form a higher order structure and a portion derived from an inorganic filler.
  • the monomer component in the curing agent (B) is a monofunctional phenol compound such as phenol, o-cresol, m-cresol, or p-cresol; a bifunctional phenol compound such as catechol, resorcinol, or hydroquinone; , 3-trihydroxybenzene, 1,2,4-trihydroxybenzene, 1,3,5-trihydroxybenzene and other trifunctional phenol compounds.
  • curing agent of a component can be performed as follows.
  • the B stage epoxy resin composition was dissolved in a solvent (tetrahydrofuran (THF) / acetonitrile (ACN) mixed solvent (50 vol% / 50 vol%)) so that the resin concentration would be 2 g / m 3 to 8 g / m 3.
  • THF tetrahydrofuran
  • ACN acetonitrile
  • Specific measurement conditions are, for example, as follows.
  • the monomer component in the curing agent contained in the B stage epoxy resin composition from the peak area ratio of the obtained chart The content rate (mass%) of is obtained.
  • the monomer component in the curing agent of the component (B) in the B stage is 0.6% by mass or less of the total resin amount from the viewpoint of forming a highly ordered high-order smectic structure, and increases the crosslinking density. From the viewpoint, it is preferably 0.3% by mass or less, and more preferably 0.2% by mass or less. If the monomer component exceeds 0.6% by mass, the crosslink density and smectic structure formation become unstable, and the thermal conductivity may be greatly reduced.
  • the epoxy resin composition is examples thereof include a method by optimizing the drying conditions of the coating layer formed by using the coating layer.
  • the “total resin amount” in defining the content of the monomer component is an epoxy resin, a curing agent, or as necessary contained in the epoxy resin composition or the semi-cured epoxy resin composition of the present embodiment.
  • the epoxy resin composition of this embodiment may contain the compound represented by general formula (I) as an epoxy resin which has a mesogenic skeleton of (A) component.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, Or it is more preferable that it is a methyl group, and it is still more preferable that it is a hydrogen atom. Further, 2 to 4 of R 1 to R 4 are preferably hydrogen atoms, 3 or 4 are preferably hydrogen atoms, and all 4 are preferably hydrogen atoms. When any of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms, at least one of R 1 and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
  • JP 2011-74366 A An example of a preferable form of the epoxy resin monomer is described in JP 2011-74366 A. Specifically, 4- ⁇ 4- (2,3-epoxypropoxy) phenyl ⁇ cyclohexyl-4- (2,3-epoxypropoxy) benzoate and 4- ⁇ 4- (2,3-epoxypropoxy) phenyl ⁇ cyclohexyl At least one selected from -4- (2,3-epoxypropoxy) -3-methylbenzoate is preferred.
  • a part of the epoxy resin monomer may be in a prepolymer state obtained by reacting with a curing agent described later.
  • the epoxy resin monomer having a mesogenic group in the molecular structure including the compound represented by the general formula (I) is generally easily crystallized, and the solubility in a solvent is often lower than that of other epoxy resin monomers.
  • crystallization may be suppressed, and solubility and moldability may be improved.
  • the epoxy resin monomer is preferably contained in an amount of 10% to 50% by volume of the total volume of the total solid content of the epoxy resin composition, and contained in an amount of 15% to 40% by volume. More preferably, the content is 20 to 35% by volume.
  • an epoxy resin composition contains the below-mentioned hardening
  • the content (volume%) of the epoxy resin monomer is represented by the following formula: (If the relevant component is not included, it is calculated as 0% by mass).
  • the content (volume%) of each material used for the epoxy resin composition is a value determined based on this method.
  • each variable is as follows.
  • Aw mass composition ratio (mass%) of epoxy resin monomer
  • Bw mass composition ratio (mass%) of curing agent
  • Cw mass composition ratio (mass%) of curing accelerator
  • Dw inorganic filler Mass composition ratio (mass%)
  • Ew Mass composition ratio (mass%) of other optional components (excluding organic solvents)
  • Ad Density of epoxy resin monomer
  • Bd Density of curing agent
  • Cd The density of the curing accelerator
  • Dd the density of the inorganic filler
  • Ed the density of other optional components (excluding the organic solvent), respectively.
  • the epoxy resin composition of the present embodiment may contain other epoxy resins that do not have a mesogenic skeleton as necessary.
  • Other epoxy resins include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol AD type epoxy resin, naphthalene type epoxy resin and An epoxy resin having one epoxy group called a reactive diluent is mentioned.
  • the content of other epoxy resins used as necessary is that at least one of the B stage of the epoxy resin composition of this embodiment and the cured product of the epoxy resin composition of this embodiment forms a higher order structure. It is not limited as much as possible.
  • the content of epoxy resin monomers includes the content of other epoxy resins.
  • Aw is the mass composition ratio (% by mass) of the epoxy resin monomer containing the other epoxy resin
  • Ad is the average value of the density of the epoxy resin monomer containing the other epoxy resin
  • the content of the epoxy resin monomer is calculated. can do.
  • the content of the epoxy resin having a mesogenic skeleton of the component (A) is preferably 5% by mass to 30% by mass with respect to the entire solid content excluding the volatile component, It is more preferably 5% by mass to 20% by mass, and further preferably 5% by mass to 15% by mass.
  • the curing agent of the present embodiment is a curing agent including (B) component: a novolak resin obtained by novolacizing a divalent phenol compound.
  • the curing agent used in the present embodiment includes a novolak resin including a compound having a structural unit represented by at least one selected from the group consisting of general formula (II-1) and general formula (II-2). It is preferable.
  • R 21 and R 24 each independently represents an alkyl group, an aryl group or an aralkyl group. These alkyl group, aryl group and aralkyl group may have a substituent.
  • substituents include aromatic groups such as aryl groups, halogen atoms, and hydroxyl groups.
  • substituents include aromatic groups such as alkyl groups and aryl groups, halogen atoms, and hydroxyl groups.
  • n21 and n22 each independently represents an integer of 0 to 2, and when m21 or m22 is 2, two R 21 or R 24 may be the same or different.
  • m21 and m22 are each independently preferably 0 or 1, and more preferably 0.
  • n21 and n22 are the number of structural units represented by the general formula (II-1) and general formula (II-2) contained in the phenol novolac resin, and each independently represents an integer of 1 to 7.
  • R 22 , R 23 , R 25 and R 26 each independently represent a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group.
  • the alkyl group, aryl group, and aralkyl group represented by R 22 , R 23 , R 25, and R 26 may have a substituent.
  • examples of the substituent include an aryl group, a halogen atom, and a hydroxyl group.
  • examples of the substituent include an alkyl group, an aryl group, a halogen atom, and a hydroxyl group.
  • R 22 , R 23 , R 25 and R 26 are preferably a hydrogen atom, an alkyl group, or an aryl group from the viewpoint of storage stability and thermal conductivity, and have a hydrogen atom and 1 to 4 carbon atoms. It is more preferably an alkyl group or an aryl group having 6 to 12 carbon atoms, and even more preferably a hydrogen atom. Furthermore, from the viewpoint of heat resistance, at least one of R 22 and R 23 is also preferably an aryl group, more preferably an aryl group having 6 to 12 carbon atoms. Similarly, at least one of R 25 and R 26 is also preferably an aryl group, more preferably an aryl group having 6 to 12 carbon atoms. The aryl group may have a structure containing a hetero atom in the aromatic ring. In this case, a heteroaryl group in which the total number of heteroatoms and carbon is 6 to 12 is preferable.
  • the curing agent may contain one type of compound having the structural unit represented by general formula (II-1) or general formula (II-2) alone, or may contain two or more types. May be. Preferably, it contains at least one compound having a structural unit derived from resorcinol represented by the general formula (II-1).
  • the compound having a structural unit derived from resorcinol represented by the general formula (II-1) may further contain at least one kind of partial structure derived from a phenol compound other than resorcinol.
  • phenolic compounds other than resorcinol include phenol, cresol, catechol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene. Can do.
  • the partial structure derived from these may be included individually by 1 type, or may be included in combination of 2 or more types.
  • the compound having a structural unit derived from catechol represented by formula (II-2) may further contain at least one kind of partial structure derived from a phenol compound other than catechol.
  • phenol compounds other than catechol include phenol, cresol, resorcinol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene, and 1,3,5-trihydroxybenzene. Can do.
  • the partial structure derived from these may be included individually by 1 type, or may be included in combination of 2 or more types.
  • the partial structure derived from the phenol compound means a monovalent or divalent group constituted by removing one or two hydrogen atoms from the benzene ring portion of the phenol compound.
  • the position where the hydrogen atom is removed is not particularly limited.
  • the partial structure derived from a phenol compound other than resorcinol includes phenol, cresol, catechol from the viewpoint of thermal conductivity and adhesiveness.
  • a partial structure derived from at least one selected from catechol and hydroquinone is more preferable.
  • the partial structure derived from a phenol compound other than catechol includes phenol, cresol from the viewpoint of thermal conductivity and adhesiveness.
  • a partial structure derived from at least one selected from resorcinol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene, and 1,3,5-trihydroxybenzene A partial structure derived from at least one selected from resorcinol and hydroquinone is more preferable.
  • the content ratio of the partial structure derived from resorcinol is not particularly limited. From the viewpoint of elastic modulus, the content ratio of the partial structure derived from resorcinol to the total mass of the compound having the structural unit derived from resorcinol represented by the general formula (II-1) is preferably 55% by mass or more. Furthermore, from the viewpoint of the glass transition temperature (Tg) and the linear expansion coefficient, it is more preferably 80% by mass or more, and further preferably 90% by mass or more from the viewpoint of thermal conductivity.
  • the content ratio of the partial structure derived from catechol is not particularly limited.
  • the content ratio of the partial structure derived from catechol to the total mass of the compound having a structural unit derived from catechol represented by the general formula (II-2) is preferably 55% by mass or more.
  • the glass transition temperature (Tg) and the linear expansion coefficient it is more preferably 80% by mass or more, and further preferably 90% by mass or more from the viewpoint of thermal conductivity.
  • the curing agent used in the present embodiment is a novolak containing a compound having a partial structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4). It is also preferable to include.
  • n31 to n34 each independently represents a positive integer and represents the number of each structural unit contained.
  • Ar 31 to Ar 34 each independently represents any one of a group represented by the general formula (III-a) and a group represented by the general formula (III-b).
  • R 31 and R 34 each independently represents a hydrogen atom or a hydroxyl group.
  • R 32 and R 33 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • a novolac resin containing a compound having a structural unit represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) is a novolak-formation of a divalent phenol compound described later. It can be generated by-product by the manufacturing method.
  • the partial structures represented by the general formulas (III-1) to (III-4) may be included as the main chain skeleton of the curing agent, or may be included as part of the side chain. . Furthermore, each structural unit constituting the partial structure represented by any one of the general formulas (III-1) to (III-4) may be included randomly or regularly. It may be included or may be included in a block shape.
  • the substitution position of the hydroxyl group is not particularly limited as long as it is on the aromatic ring.
  • a plurality of Ar 31 to Ar 34 may all be the same atomic group or include two or more types of atomic groups. Also good. Ar 31 to Ar 34 each independently represents one of a group represented by general formula (III-a) and a group represented by general formula (III-b).
  • R 31 and R 34 in formulas (III-a) and (III-b) each independently represent a hydrogen atom or a hydroxyl group, and are preferably a hydroxyl group from the viewpoint of thermal conductivity. Further, the substitution positions of R 31 and R 34 are not particularly limited.
  • R 32 and R 33 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • alkyl group having 1 to 8 carbon atoms in R 32 and R 33 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, pentyl group, hexyl. Groups, heptyl groups, and octyl groups.
  • substitution positions of R 32 and R 33 in general formula (III-a) and general formula (III-b) are not particularly limited.
  • Ar 31 to Ar 34 in the general formulas (III-1) to (III-4) are groups derived from dihydroxybenzene (general formulas) from the viewpoint of achieving the effects of the present embodiment, particularly excellent thermal conductivity.
  • the “group derived from dihydroxybenzene” means a divalent group formed by removing two hydrogen atoms from the aromatic ring portion of dihydroxybenzene, and the position at which the hydrogen atom is removed is not particularly limited.
  • the “group derived from dihydroxynaphthalene” means a divalent group formed by removing two hydrogen atoms from the aromatic ring portion of dihydroxynaphthalene, and the position at which the hydrogen atom is removed is not particularly limited.
  • Ar 31 to Ar 34 are more preferably groups derived from dihydroxybenzene, such as 1,2-dihydroxybenzene (catechol). More preferably, it is at least one selected from the group consisting of a group derived from and a group derived from 1,3-dihydroxybenzene (resorcinol). Furthermore, it is preferable that at least a group derived from resorcinol is included as Ar 31 to Ar 34 from the viewpoint of particularly improving thermal conductivity. Further, from the viewpoint of particularly enhancing the thermal conductivity, in the general formulas (III-1) to (III-4), the structural units to which n31 to n34 are attached may contain a group derived from resorcinol. preferable.
  • the content of the structural unit containing a group derived from resorcinol is, from the viewpoint of elastic modulus, a compound having a partial structure represented by at least one of general formula (III-1) to general formula (III-4). It is preferable that it is 55 mass% or more in the total mass. Furthermore, it is more preferably 80% by mass or more from the viewpoint of Tg and linear expansion coefficient, and further preferably 90% by mass or more from the viewpoint of thermal conductivity.
  • the total value of mx and nx is preferably 20 or less, more preferably 15 or less, and still more preferably 10 or less from the viewpoint of fluidity. Note that the lower limit of the total value of mx and nx is not particularly limited.
  • the novolak resin having a partial structure represented by at least one of general formula (III-1) to general formula (III-4) is particularly dihydroxybenzene in which Ar 31 to Ar 34 are substituted or unsubstituted and substituted or non-substituted.
  • Ar 31 to Ar 34 are substituted or unsubstituted and substituted or non-substituted.
  • the synthesis is easy and a curing agent having a low softening point tends to be obtained. Therefore, there are advantages such as easy manufacture and handling of a resin composition containing such a resin.
  • Whether the novolak resin has a partial structure represented by at least one of general formulas (III-1) to (III-4) is determined by field desorption ionization mass spectrometry (FD-MS). Thus, it can be determined by whether or not the fragment component includes a component corresponding to the partial structure represented by at least one of the general formulas (III-1) to (III-4).
  • the molecular weight of the novolak resin having a partial structure represented by at least one of general formula (III-1) to general formula (III-4) is not particularly limited.
  • the number average molecular weight (Mn) is preferably 2000 or less, more preferably 1500 or less, and even more preferably 350 to 1500.
  • the weight average molecular weight (Mw) is preferably 2000 or less, more preferably 1500 or less, and further preferably 400 to 1500. Mn and Mw are measured by a usual method using GPC (gel permeation chromatography).
  • the hydroxyl equivalent of the novolak resin having a partial structure represented by at least one of general formula (III-1) to general formula (III-4) is not particularly limited.
  • the hydroxyl group equivalent is preferably 50 g / eq to 150 g / eq on average, more preferably 50 g / eq to 120 g / eq, and 55 g / eq to 120 g / eq. More preferably, it is eq.
  • the novolac resin may contain a monomer component that is a phenol compound constituting the novolac resin.
  • the content ratio (hereinafter also referred to as “monomer content ratio”) of the monomer component that is a phenol compound constituting the novolak resin is not particularly limited. From the viewpoint of thermal conductivity and moldability, it is preferably 5% by mass to 80% by mass, more preferably 15% by mass to 60% by mass, and further preferably 20% by mass to 50% by mass. .
  • the monomer content is 80% by mass or less, monomer components that do not contribute to cross-linking during the curing reaction are reduced, and the high-molecular structure to be cross-linked is increased. Conductivity is improved. Moreover, since it is easy to flow at the time of shaping
  • the ratio of the number of equivalents of phenolic hydroxyl groups of the curing agent (number of equivalents of phenolic hydroxyl groups) to the number of equivalents of epoxy groups of the epoxy resin monomer (number of equivalents of phenolic hydroxyl groups / number of equivalents of epoxy groups) ) Is preferably 0.5 to 2.0, more preferably 0.8 to 1.2.
  • the content of the curing agent containing the novolak resin obtained by novolakizing the divalent phenol compound of the component (B) is 3% by mass to the entire solid content excluding the volatile components. It is preferably 20% by mass, more preferably 3% by mass to 10% by mass, and still more preferably 3% by mass to 8% by mass.
  • the epoxy resin composition of the present embodiment includes at least one inorganic filler. Thereby, high thermal conductivity can be achieved.
  • the inorganic filler may be non-conductive or conductive.
  • a non-conductive inorganic filler By using a non-conductive inorganic filler, the risk of a decrease in insulation tends to be reduced. Moreover, it exists in the tendency for thermal conductivity to improve more by using a conductive inorganic filler.
  • the material for the non-conductive inorganic filler examples include aluminum oxide (alumina), magnesium oxide, aluminum nitride, boron nitride, silicon nitride, silica (silicon oxide), aluminum hydroxide, and barium sulfate.
  • the material for the conductive inorganic filler examples include gold, silver, nickel, and copper.
  • it is preferably at least one selected from the group consisting of magnesium oxide, silica (silicon oxide), aluminum nitride, aluminum oxide (alumina) and boron nitride, and nitrided from the viewpoint of handling properties. More preferably, it is at least one selected from the group consisting of aluminum, aluminum oxide (alumina) and boron nitride.
  • These inorganic fillers may be used alone or in combination of two or more.
  • the inorganic filler having a small particle diameter is packed in the voids of the inorganic filler having a large particle diameter, thereby filling the inorganic filler more densely than using only the inorganic filler having a single particle diameter. It becomes possible to exhibit higher thermal conductivity.
  • aluminum oxide having a volume average particle diameter of 16 ⁇ m to 20 ⁇ m is oxidized in the inorganic filler by 60 mass% to 75 mass% and volume average particle diameter of 2 ⁇ m to 4 ⁇ m.
  • More compact packing can be achieved by mixing aluminum oxide having a volume average particle size of 0.3 to 0.5 ⁇ m in a proportion of 10 to 20% by mass with aluminum in an amount of 10 to 20% by mass. Become.
  • the boron filler having a volume average particle diameter of 20 ⁇ m to 60 ⁇ m is oxidized in the inorganic filler by 60 mass% to 90 mass% and the volume average particle diameter of 2 ⁇ m to 4 ⁇ m.
  • Higher thermal conductivity can be achieved by mixing aluminum oxide having a volume average particle size of 0.3 ⁇ m to 0.5 ⁇ m in a proportion in the range of 5% by mass to 20% by mass with 5% by mass to 20% by mass of aluminum. .
  • the volume average particle diameter (D50) of the inorganic filler can be measured using a laser diffraction method.
  • the inorganic filler in the epoxy resin composition is extracted and measured using a laser diffraction / scattering particle size distribution analyzer (for example, trade name: LS230, manufactured by Beckman Coulter, Inc.).
  • LS230 laser diffraction / scattering particle size distribution analyzer
  • the filler component is extracted from the epoxy resin composition and sufficiently dispersed in a dispersion medium with an ultrasonic disperser, etc., and the particle size distribution of this dispersion liquid Measure.
  • the volume average particle diameter (D50) refers to the particle diameter at which accumulation from the small particle diameter side is 50% in the volume cumulative particle diameter distribution curve obtained from the above measurement.
  • FIG. 1 is a general view showing a particle size distribution measured using a laser diffraction method, with the particle size on the horizontal axis and the volume accumulation on the vertical axis.
  • the content of the inorganic filler in the epoxy resin composition is not particularly limited. Among these, from the viewpoint of thermal conductivity, when the total volume of the epoxy resin composition is 100% by volume, it is preferably over 65% by volume, more preferably over 70% by volume, and more preferably 90% by volume or less.
  • the epoxy resin composition of this embodiment it is preferable to use together a hardening accelerator as needed.
  • a curing accelerator in combination, the epoxy resin composition can be further sufficiently cured.
  • the type and content of the curing accelerator are not particularly limited, but it is desirable to select an appropriate one from the viewpoint of reaction rate, reaction temperature, storage property, and the like. Details are described below.
  • the curing accelerator examples include imidazole compounds, tertiary amine compounds, organic phosphine compounds, complexes of organic phosphine compounds and organic boron compounds, and the like.
  • the curing accelerators can be used without particular limitation, and may be commercially available.
  • the curing accelerator is preferably at least one selected from the group consisting of an organic phosphine compound and a complex of an organic phosphine compound and an organic boron compound from the viewpoint of heat resistance.
  • organic phosphine compound examples include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, and tris (dialkylphenyl).
  • Phosphine tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine And alkyldiarylphosphine.
  • an organic phosphine compound and an organic boron compound include tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / tetra-p-tolylborate, tetrabutylphosphonium / tetraphenylborate, and tetraphenylphosphonium.
  • a hardening accelerator may be used individually by 1 type, or may use 2 or more types together.
  • a method for efficiently producing a semi-cured epoxy resin composition and a cured epoxy resin composition which will be described later, a method of mixing and using two kinds of curing accelerators having different reaction start temperatures and reaction rates between an epoxy resin monomer and a novolac resin Is mentioned.
  • a semi-cured epoxy resin composition when producing a semi-cured epoxy resin composition, it is heated to a temperature of 150 ° C. or lower and only triphenylphosphine is allowed to act, so that the semi-cured epoxy resin composition is maintained in a state where flexibility and flowability are maintained without excessively proceeding the curing reaction.
  • a cured epoxy resin composition can be produced.
  • it can be heated to a temperature of 150 ° C. or higher to cause tetraphenylphosphonium / tetraphenylborate to act, and the curing reaction can proceed sufficiently.
  • the production methods of the semi-cured epoxy resin composition and the cured epoxy resin composition are not limited to this.
  • the mixing ratio can be determined without any particular limitation depending on the characteristics (for example, how much flexibility is required) required for the semi-cured epoxy resin composition. it can.
  • the content rate of the hardening accelerator in the epoxy resin composition of the present embodiment is not particularly limited.
  • the total mass of the epoxy resin monomer and the curing agent is preferably 0.5% by mass to 1.5% by mass, more preferably 0.5% by mass to 1% by mass, More preferably, it is from 75% by mass to 1% by mass.
  • the epoxy resin composition of this embodiment further contains at least one silane coupling agent.
  • the silane coupling agent is insulated by forming a covalent bond between the surface of the inorganic filler and the resin surrounding it (equivalent to a binder), transferring heat efficiently, and preventing moisture from entering. It can play a role in improving reliability.
  • the type of silane coupling agent is not particularly limited, and may be selected from commercially available products. In consideration of reducing the compatibility between the epoxy resin monomer and the curing agent, and reducing thermal conduction defects at the interface between the cured product of the epoxy resin monomer and the inorganic filler, in this embodiment, an epoxy group and an amino group at the terminal are used. It is preferable to use a silane coupling agent having a group, a mercapto group, a ureido group, or a hydroxyl group.
  • silane coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane.
  • silane coupling agent oligomers (made by Hitachi Chemical Techno Service Co., Ltd.) represented by trade name: SC-6000KS2 can be further mentioned. These silane coupling agents may be used alone or in combination of two or more.
  • the epoxy resin composition of this embodiment may further contain at least one kind of organic solvent.
  • the organic solvent By including the organic solvent, the epoxy resin composition can be adapted to various molding processes.
  • a commonly used organic solvent can be used. Specific examples include alcohol solvents, ether solvents, ketone solvents, amide solvents, aromatic hydrocarbon solvents, ester solvents, nitrile solvents, and the like.
  • methyl isobutyl ketone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, sulfolane, cyclohexanone and methyl ethyl ketone can be used.
  • These organic solvents may be used individually by 1 type, or may be used as a mixed solvent which used 2 or more types together.
  • the epoxy resin composition of the present embodiment can contain other components as necessary in addition to the above components.
  • examples of other components include a dispersant and a plasticizer.
  • Dispersants include, for example, manufactured by Big Chemie Japan Co., Ltd., trade name: DISPERBYK series (“DISPERBYK” is a registered trademark), manufactured by Ajinomoto Fine Techno Co., Ltd., trade name: Ajisper series (“Azisper” is a registered trademark) , Manufactured by Enomoto Kasei Co., Ltd., trade name: HIPLAAD series ("HIPLAAD” is a registered trademark), and manufactured by Kao Corporation, trade name: Homogenol series (“Homogenol” is a registered trademark). These dispersants may be used alone or in combination of two or more.
  • the semi-cured epoxy resin composition of the present embodiment comprises (A) component: an epoxy resin having a mesogenic skeleton, (B) component: a curing agent containing a novolak resin obtained by novolacizing a divalent phenol compound, and (C) Component: An inorganic filler is included, and the monomer component in the curing agent of the component (B) is 0.6% by mass or less of the total resin amount.
  • the semi-cured epoxy resin composition of the present embodiment can be obtained by semi-curing the epoxy resin composition of the present embodiment. As the conditions for the semi-curing treatment, the conditions exemplified in the section of the resin sheet described later can be applied.
  • the viscosity of the semi-cured epoxy resin composition of the present embodiment is 10 4 Pa ⁇ s to 10 5 Pa ⁇ s at normal temperature (range of 25 ° C. to 30 ° C.), and 10 2 Pa ⁇ s to 10 3 at 100 ° C. Pa ⁇ s is preferred.
  • the viscosity of the semi-cured epoxy resin composition is measured by DMA (dynamic viscoelasticity measuring apparatus; frequency 1 Hz, load 40 g: temperature rising rate 3 ° C./min).
  • the semi-cured epoxy resin composition of the present embodiment preferably forms a highly ordered higher order structure (smectic structure). Whether or not the semi-cured epoxy resin composition of the present embodiment forms a smectic structure can be confirmed by the above-described method. Specific examples of each component contained in the semi-cured epoxy resin composition of the present embodiment are the same as those of the epoxy resin composition of the present embodiment.
  • the resin sheet of this embodiment is a sheet-like molded body of the epoxy resin composition of this embodiment.
  • the resin sheet of this embodiment can be manufactured by apply
  • the resin sheet of this embodiment is excellent in thermal conductivity and electrical insulation by being formed from the epoxy resin composition of this embodiment.
  • the thickness of the resin sheet of the present embodiment is not particularly limited and can be appropriately selected depending on the purpose.
  • the thickness can be 50 ⁇ m to 500 ⁇ m, and from the viewpoint of thermal conductivity, electrical insulation, and flexibility, it is preferably 80 ⁇ m to 300 ⁇ m.
  • the resin sheet of this embodiment is, for example, a varnish-like epoxy resin composition (hereinafter also referred to as “resin varnish”) prepared by adding an organic solvent such as methyl ethyl ketone and cyclohexanone to the epoxy resin composition of this embodiment.
  • resin varnish a varnish-like epoxy resin composition
  • the support include a release film such as a PET (polyethylene terephthalate) film.
  • the application of the resin varnish can be performed by a known method. Specifically, it can be performed by a method such as comma coating, die coating, lip coating, or gravure coating.
  • a method for forming an epoxy resin composition layer having a predetermined thickness include a comma coating method in which an object to be coated is passed between gaps, and a die coating method in which a resin varnish whose flow rate is adjusted from a nozzle is applied.
  • the thickness of the coating layer (epoxy resin composition layer) before drying is 50 ⁇ m to 500 ⁇ m, it is preferable to use a comma coating method.
  • the drying method is not particularly limited as long as at least a part of the organic solvent contained in the resin varnish can be removed, and can be appropriately selected from commonly used drying methods according to the organic solvent contained in the resin varnish. In general, a heat treatment method at about 80 ° C. to 150 ° C. can be mentioned.
  • the resin sheet (epoxy resin composition layer) of this embodiment hardly undergoes curing reaction. For this reason, although it has flexibility, its flexibility as a sheet is poor. Therefore, in a state where a support such as a PET film is removed, the sheet is not self-supporting and may be difficult to handle.
  • the resin sheet of this embodiment is obtained by semi-curing the epoxy resin composition layer constituting the resin sheet. That is, the resin sheet of the present embodiment is preferably a B stage sheet that is further heat-treated until the epoxy resin composition layer is in a semi-cured state (B stage).
  • B stage a semi-cured state
  • the B stage sheet has a viscosity of 10 4 Pa ⁇ s to 10 5 Pa ⁇ s at room temperature (25 ° C. to 30 ° C.), and 10 2 Pa ⁇ s to 10 3 Pa ⁇ s at 100 ° C.
  • the resin sheet which consists of a certain epoxy resin composition is meant. Moreover, the cured epoxy resin composition after curing described later is not melted by heating.
  • the viscosity is measured by DMA (dynamic viscoelasticity measuring apparatus; frequency 1 Hz, load 40 g: temperature rising rate 3 ° C./min).
  • the conditions for heat-treating the resin sheet of the present embodiment are not particularly limited as long as the epoxy resin composition layer can be made a B stage.
  • the heat treatment conditions can be appropriately selected according to the configuration of the epoxy resin composition.
  • the heat treatment is preferably performed by a method selected from hot vacuum press, hot roll laminating and the like in order to reduce voids in the epoxy resin composition layer generated when the resin varnish is applied. Thereby, a B-stage sheet having a flat surface can be efficiently produced.
  • the epoxy resin composition of the present embodiment is subjected to heat and pressure treatment under reduced pressure (eg, 1 kPa) at 100 ° C. to 200 ° C. for 1 minute to 3 minutes with a press pressure of 1 MPa to 20 MPa.
  • reduced pressure eg, 1 kPa
  • the material layer can be semi-cured to the B stage.
  • a resin varnish on a support and paste two resin sheets in a dry state, and then heat and pressurize them to semi-cure to B stage.
  • it is desirable to bond the application surfaces of the epoxy resin composition layer surfaces on which the epoxy resin composition layer is not in contact with the support.
  • both surfaces of the resulting B-stage resin sheet that is, the surface exposed by peeling off the support
  • a resin sheet having a cured epoxy resin composition layer produced using such a resin sheet exhibits high thermal conductivity and insulation.
  • the thickness of the B stage sheet can be appropriately selected according to the purpose.
  • the thickness may be 50 ⁇ m to 500 ⁇ m, and is preferably 80 ⁇ m to 300 ⁇ m from the viewpoint of thermal conductivity, electrical insulation, and flexibility.
  • a resin sheet having a cured epoxy resin composition layer can be produced by hot pressing while laminating two or more resin sheets.
  • the residual ratio of volatile components in the B-stage sheet is preferably 2.0% by mass or less from the viewpoint of suppressing the formation of bubbles due to the generation of outgas when the epoxy resin composition layer is cured. More preferably, it is more preferably 0.8% by mass or less.
  • the residual ratio of volatile components is obtained from the change in mass before and after drying by drying a sample obtained by cutting a B-stage sheet 40 mm long and 40 mm wide for 2 hours in a thermostat preheated to 190 ° C.
  • the resin sheet of the present embodiment may be a cured epoxy resin composition layer obtained by curing the epoxy resin composition layer of the present embodiment.
  • a resin sheet having a cured epoxy resin composition layer can be produced by curing an uncured resin sheet or a B-stage sheet.
  • the method of the curing treatment can be appropriately selected according to the configuration of the epoxy resin composition, the purpose of the cured epoxy resin composition, etc., and is preferably heating and pressure treatment.
  • a resin comprising a cured epoxy resin composition by heating an uncured resin sheet or B stage sheet at 100 ° C. to 250 ° C. for 1 hour to 10 hours, preferably 130 ° C. to 230 ° C. for 1 hour to 8 hours.
  • a sheet is obtained.
  • the heat treatment is preferably performed while applying a pressure of 1 MPa to 20 MPa.
  • the resin sheet made of the cured epoxy resin composition obtained by the above method has high thermal conductivity and high heat resistance.
  • the following method is mentioned as an example of the method of manufacturing the resin sheet which consists of a cured epoxy resin composition.
  • a B stage sheet is sandwiched between two matte surfaces of copper foil (thickness 80 ⁇ m to 120 ⁇ m) each having a mat surface, and a pressure of 1 MPa at a temperature of 130 ° C. to 230 ° C. for 3 to 10 minutes. Heating and pressing are performed at ⁇ 20 MPa, and copper foil is bonded to both sides of the B stage sheet.
  • the B stage sheet is heated at 130 to 230 ° C. for 1 to 8 hours.
  • the copper foil portion of the resin sheet is removed by etching treatment to obtain a resin sheet made of the cured epoxy resin composition.
  • the prepreg of this embodiment has a fiber base material and the epoxy resin composition of this embodiment impregnated in the fiber base material.
  • the epoxy resin composition of this embodiment contained in the prepreg of this embodiment may be a B stage.
  • the prepreg of the present embodiment having such a configuration is excellent in thermal conductivity and electrical insulation.
  • the thixotropy improves the epoxy resin composition containing an inorganic filler. For this reason, sedimentation of the inorganic filler in the coating process, the impregnation process and the like when producing the prepreg can be suppressed. Therefore, it is possible to suppress the occurrence of the density distribution of the inorganic filler in the thickness direction of the prepreg. As a result, a prepreg excellent in thermal conductivity and electrical insulation can be obtained.
  • any fiber base material such as a woven fabric or a non-woven fabric is not particularly limited as long as it is usually used when producing a metal foil-laminated laminate or a multilayer printed wiring board. Used for.
  • the opening of the fiber base material is not particularly limited. From the viewpoint of thermal conductivity and electrical insulation, the mesh opening is preferably 5 times or more the volume average particle diameter (D50) of the inorganic filler. In addition, when the particle size distribution curve of the inorganic filler has a plurality of peaks, it is more preferable that the opening be 5 times or more the average particle diameter of the inorganic filler corresponding to the peak having the largest particle diameter.
  • the material of the fiber base material is not particularly limited. Specifically, inorganic fibers such as glass, alumina, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia, aramid, polyether ether ketone, polyether imide, polyether sulfone, carbon, Examples thereof include organic fibers such as cellulose and mixed papers thereof. Among these, glass fiber woven fabric is preferably used. Thereby, for example, when a printed wiring board is configured using a prepreg, a printed wiring board that is flexible and can be arbitrarily bent can be obtained. Furthermore, it becomes possible to reduce the dimensional change of the printed wiring board accompanying the temperature change and moisture absorption in the manufacturing process.
  • the thickness of the fiber base material is not particularly limited. From the viewpoint of imparting better flexibility, it is preferably 30 ⁇ m or less, and more preferably 15 ⁇ m or less from the viewpoint of impregnation. Although the minimum of the thickness of a fiber base material is not restrict
  • the impregnation amount (content ratio) of the epoxy resin composition of the present embodiment in the prepreg of the present embodiment is preferably 50% by mass to 99.9% by mass in the total mass of the fiber base material and the epoxy resin composition.
  • the amount of impregnation (content) of the epoxy resin composition of the present embodiment excluding the volatile component in the prepreg of the present embodiment is the fiber substrate and It is preferably 50% by mass to 99.9% by mass in the total mass of the epoxy resin composition excluding volatile components.
  • the prepreg of this embodiment can be produced by impregnating a resin varnish into a fiber base material and removing at least a part of the organic solvent by a heat treatment at 80 ° C. to 150 ° C.
  • the method for impregnating the fiber base material with the resin varnish there is no particular limitation on the method for impregnating the fiber base material with the resin varnish.
  • coating with a coating machine can be mentioned.
  • a vertical coating method in which a fiber base material is pulled through a resin varnish, a horizontal coating method in which a resin varnish is coated on a support film and then impregnated by pressing the fiber base material can be exemplified. From the viewpoint of suppressing the uneven distribution of the inorganic filler in the fiber base material, the horizontal coating method is preferable.
  • the prepreg in the present embodiment may be used after the surface has been smoothed in advance by hot pressing with a press, a roll laminator or the like before being laminated or pasted.
  • the method of the hot press treatment is the same as the method mentioned in the method for producing the B stage sheet.
  • the processing conditions such as the heating temperature, the degree of pressure reduction, and the press pressure in the hot pressurizing process of the prepreg are the same as the conditions mentioned in the heating and pressurizing process of the B stage sheet.
  • the solvent residual ratio in the prepreg of the present embodiment is preferably 2.0% by mass or less, more preferably 1.0% by mass or less, and further preferably 0.8% by mass or less.
  • the solvent residual rate is determined from the mass change before and after drying when a sample obtained by cutting the prepreg into 40 mm in width and 40 mm in length is dried in a thermostat preheated to 190 ° C. for 2 hours.
  • ((C) component: inorganic filler) AA-18 [Alumina particles, manufactured by Sumitomo Chemical Co., Ltd., D50: 18 ⁇ m] AA-3 [Alumina particles, manufactured by Sumitomo Chemical Co., Ltd., D50: 3 ⁇ m] AA-04 [Alumina particles, manufactured by Sumitomo Chemical Co., Ltd., D50: 0.40 ⁇ m] HP-40 [boron nitride particles, manufactured by Mizushima Alloy Iron Co., Ltd., D50: 40 ⁇ m]
  • the obtained CRN was measured for Mn (number average molecular weight) and Mw (weight average molecular weight) as follows. Measurement of Mn and Mw was performed using a high performance liquid chromatography manufactured by Hitachi, Ltd., trade name: L6000, and a data analysis device, trade name: C-R4A, manufactured by Shimadzu Corporation. As the GPC column for analysis, trade names: G2000HXL and G3000HXL manufactured by Tosoh Corporation were used. The sample concentration was 0.2% by mass, tetrahydrofuran was used as the mobile phase, and the measurement was performed at a flow rate of 1.0 mL / min. A calibration curve was prepared using a polystyrene standard sample, and Mn and Mw were calculated using polystyrene conversion values.
  • the hydroxyl equivalent was measured as follows.
  • the hydroxyl equivalent was measured by acetyl chloride-potassium hydroxide titration method.
  • the determination of the titration end point was performed by potentiometric titration instead of the coloring method using an indicator because the solution color was dark.
  • the hydroxyl group of the measurement resin is acetylated in a pyridine solution, the excess reagent is decomposed with water, and the resulting acetic acid is titrated with a potassium hydroxide / methanol solution.
  • the obtained CRN is a mixture of compounds having a partial structure represented by at least one of the general formulas (III-1) to (III-4), and Ar is represented by the general formula (III-a )
  • R 31 is a hydroxyl group
  • R 32 and R 33 are hydrogen atoms, a group derived from 1,2-dihydroxybenzene (catechol) and a group derived from 1,3-dihydroxybenzene (resorcinol)
  • TPP Triphenylphosphine [Wako Pure Chemical Industries, Ltd., trade name]
  • KBM-573 3-phenylaminopropyltrimethoxysilane [silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd., trade name]
  • Example 1 ⁇ Preparation of epoxy resin composition> Component (A): 7.84% by mass of epoxy resin monomer (resin A) as an epoxy resin having a mesogenic skeleton, Component (C): 35.68% by mass of HP-40 as an inorganic filler, and 7 of AA-3 .85% by mass, 7.85% by mass of AA-04, (B) component: 4.62% by mass of CRN as a curing agent containing a novolak resin in which a divalent phenol compound is novolakized, and TPP as a curing accelerator 0.08% by mass, 28.82% by mass of MEK as a solvent, and 7.26% by mass of CHN were mixed to obtain an epoxy resin varnish as an epoxy resin composition containing the solvent.
  • the density of boron nitride (HP-40) is 2.20 g / cm 3
  • the density of alumina (AA-3 and AA-04) is 3.98 g / cm 3
  • epoxy resin monomer (resin A) and curing agent CRN The density of the mixture was 1.20 g / cm 3
  • the ratio of the inorganic filler to the total volume of the total solid content of the epoxy resin composition was calculated to be 70% by volume.
  • the copper foil of the cured epoxy resin composition with copper foil obtained above was removed by etching to obtain a sheet-like cured epoxy resin composition (cured resin sheet).
  • the obtained resin sheet cured product was cut into 10 mm length and 10 mm width to obtain a sample.
  • the sample was subjected to X-ray diffraction measurement (using an X-ray diffractometer manufactured by Rigaku Corporation) with a tube voltage of 40 kV, a tube current of 20 mA, and 2 ⁇ of 2 ° to 30 ° using a CuK ⁇ 1 wire. Smectic structure formation was confirmed by the presence or absence of a diffraction peak in the range of ⁇ 10 °.
  • Epoxy resin monomer (resin A) 7.84 mass%, HP-40 35.68 mass%, AA-3 7.85 mass%, AA-04 7.85 mass%, CRN 4.62 mass% %, TPP 0.08% by mass, MEK 19.38% by mass, and CHN 16.70% by mass were mixed to obtain an epoxy resin varnish as an epoxy resin composition containing a solvent.
  • the density of boron nitride is 2.20 g / cm 3
  • the density of alumina is 3.98 g / cm 3
  • the density of the mixture of epoxy resin monomer (resin A) and CRN is 1.20 g / cm 3
  • the epoxy resin composition When the ratio of the inorganic filler to the total volume of the total solid content of the product was calculated, it was 70% by volume.
  • a B-stage epoxy resin composition and a cured epoxy resin composition were prepared in the same manner as in Example 1 except that the epoxy resin varnish obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 1.
  • Epoxy resin monomer (resin A) 7.84 mass%, HP-40 35.68 mass%, AA-3 7.85 mass%, AA-04 7.85 mass%, CRN 4.62 mass% %, TPP 0.08% by mass, and CHN 36.08% by mass were mixed to obtain an epoxy resin varnish as an epoxy resin composition containing a solvent.
  • the density of boron nitride is 2.20 g / cm 3
  • the density of alumina is 3.98 g / cm 3
  • the density of the mixture of epoxy resin monomer (resin A) and CRN is 1.20 g / cm 3
  • the epoxy resin composition When the ratio of the inorganic filler to the total volume of the total solid content of the product was calculated, it was 70% by volume.
  • a B-stage epoxy resin composition and a cured epoxy resin composition were prepared in the same manner as in Example 1 except that the epoxy resin varnish obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 1.
  • Example 4 Preparation of epoxy resin composition> Epoxy resin monomer (resin A) 7.84 mass%, HP-40 35.68 mass%, AA-3 7.85 mass%, AA-04 7.85 mass%, CRN 4.62 mass% %, TPP 0.08% by mass, and CHN 36.08% by mass were mixed to obtain an epoxy resin varnish as an epoxy resin composition containing a solvent.
  • the density of boron nitride is 2.20 g / cm 3
  • the density of alumina is 3.98 g / cm 3
  • the density of the mixture of epoxy resin monomer (resin A) and CRN is 1.20 g / cm 3
  • the epoxy resin composition When the ratio of the inorganic filler to the total volume of the total solid content of the product was calculated, it was 70% by volume.
  • a cured epoxy resin composition was prepared in the same manner as in Example 1 except that the B-stage epoxy resin composition obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
  • Inorganic filler with respect to the total volume of the total solid content of the epoxy resin composition, with the density of alumina being 3.98 g / cm 3 and the density of the mixture of epoxy resin monomer (resin A) and CRN being 1.20 g / cm 3 The ratio was calculated to be 74% by volume.
  • Inorganic filler with respect to the total volume of the total solid content of the epoxy resin composition, with the density of alumina being 3.98 g / cm 3 and the density of the mixture of epoxy resin monomer (resin A) and CRN being 1.20 g / cm 3 The ratio was calculated to be 74% by volume.
  • a cured epoxy resin composition was prepared in the same manner as in Example 5 except that the B-stage epoxy resin composition obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
  • Example 7 ⁇ Preparation of epoxy resin composition> Epoxy resin monomer (resin A) 6.03 mass%, AA-18 48.08 mass%, AA-3 17.48 mass%, AA-04 7.28 mass%, CRN 3.38 mass% %, TPP 0.06% by mass, KBM-573 0.08% by mass, and CHN 17.61% by mass were mixed to obtain an epoxy resin varnish as an epoxy resin composition containing a solvent.
  • Inorganic filler with respect to the total volume of the total solid content of the epoxy resin composition, with the density of alumina being 3.98 g / cm 3 and the density of the mixture of epoxy resin monomer (resin A) and CRN being 1.20 g / cm 3 The ratio was calculated to be 74% by volume.
  • a B-stage epoxy resin composition and a cured epoxy resin composition were prepared in the same manner as in Example 5 except that the epoxy resin varnish obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
  • Epoxy resin monomer (resin A) 6.03 mass%, AA-18 48.08 mass%, AA-3 17.48 mass%, AA-04 7.28 mass%, CRN 3.38 mass% %, TPP 0.06% by mass, KBM-573 0.08% by mass, and CHN 17.61% by mass were mixed to obtain an epoxy resin varnish as an epoxy resin composition containing a solvent.
  • Inorganic filler with respect to the total volume of the total solid content of the epoxy resin composition, with the density of alumina being 3.98 g / cm 3 and the density of the mixture of epoxy resin monomer (resin A) and CRN being 1.20 g / cm 3 The ratio was calculated to be 74% by volume.
  • a cured epoxy resin composition was prepared in the same manner as in Example 5 except that the B-stage epoxy resin composition obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 2.
  • Epoxy resin monomer (resin A) 7.84 mass%, HP-40 35.68 mass%, AA-3 7.85 mass%, AA-04 7.85 mass%, CRN 4.62 mass% %, TPP 0.08% by mass, and CHN 36.08% by mass were mixed to obtain an epoxy resin varnish as an epoxy resin composition containing a solvent.
  • the density of boron nitride is 2.20 g / cm 3
  • the density of alumina is 3.98 g / cm 3
  • the density of the mixture of epoxy resin monomer (resin A) and CRN is 1.20 g / cm 3
  • the epoxy resin composition When the ratio of the inorganic filler to the total volume of the total solid content of the product was calculated, it was 70% by volume.
  • a cured epoxy resin composition was prepared in the same manner as in Example 1 except that the B-stage epoxy resin composition obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 1.
  • Inorganic filler with respect to the total volume of the total solid content of the epoxy resin composition, with the density of alumina being 3.98 g / cm 3 and the density of the mixture of epoxy resin monomer (resin A) and CRN being 1.20 g / cm 3 The ratio was calculated to be 74% by volume.
  • a cured epoxy resin composition was prepared in the same manner as in Example 5 except that the B-stage epoxy resin composition obtained above was used, and evaluated in the same manner as described above. The results are shown in Table 1.
  • Example 3 is 130 ° C., 5 minutes
  • Example 4 is 100 ° C., 10 minutes
  • Comparative Example 1 is 100 ° C., 5 minutes.
  • the hot pressurization is the same condition, and the monomer content of the curing agent in the total resin amount contained in the B-stage epoxy resin composition varies depending on the drying conditions.
  • the monomer content of the curing agent is 0.34 mass% (Example 3, 130 ° C., 5 minutes) ⁇ 0.52 mass% (Example 4, 100 ° C., 10 minutes) ⁇ 0.65 mass% (Comparative Example) 1, 100 ° C., 5 minutes) depending on the heating temperature and heating time, and the smaller the monomer content of the curing agent, the higher the thermal conductivity (16.7 W / (m ⁇ K) (Example 3)> 14.8 W / (m ⁇ K) (Example 4)> 8.4 W / (m ⁇ K) (Comparative Example 1)).
  • Examples 7 and 8 and Comparative Example 2 having the same composition, and the higher the heating temperature during drying and the longer the time, the lower the monomer content of the curing agent and the higher the thermal conductivity. Even when the drying conditions are the same, the monomer content of the curing agent varies depending on the solvent. In Examples 1 to 3, the monomer content of the curing agent tends to decrease when the amount of MEK is large. Similar trends are seen in Examples 5 and 7, and Examples 6 and 8. From the above results, it was found that high thermal conductivity was exhibited by setting the monomer component in the curing agent in the B stage of the epoxy resin composition to 0.6% by mass or less of the total resin amount.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 (A)成分:メソゲン骨格を有するエポキシ樹脂と、(B)成分:2価のフェノール化合物をノボラック化したノボラック樹脂を含む硬化剤と、(C)成分:無機充填材とを含み、その半硬化状態(Bステージ)における(B)成分の硬化剤中のモノマー成分が、全樹脂量の0.6質量%以下であるエポキシ樹脂組成物、エポキシ樹脂組成物のシート状成形体である樹脂シート、繊維基材と、繊維基材に含浸されたエポキシ樹脂組成物と、を有するプリプレグ及び半硬化エポキシ樹脂組成物。

Description

エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、樹脂シート及びプリプレグ
 本発明は、エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、樹脂シート及びプリプレグに関する。
 発電機、モーター、プリント配線板、ICチップ等の、電子機器又は電気機器の多くは、電気を通すための導体と絶縁材料とを含んで構成される。近年、これらの機器の小型化に伴って発熱量が増大している。このため、絶縁材料においていかに熱を放散させるかが重要な課題となっている。
 これらの機器に用いられている絶縁材料としては、絶縁性、耐熱性等の観点から、熱硬化性樹脂組成物を硬化して得られる樹脂硬化物が広く使われている。しかし、一般的に樹脂硬化物の熱伝導率は低く、熱放散を妨げている大きな要因となっている。このため、高熱伝導性を有する樹脂硬化物の開発が望まれている。
 樹脂硬化物の高熱伝導化を達成する手法として、高熱伝導性セラミックスからなる無機充填材を樹脂組成物に充填してコンポジット材料とする方法がある。高熱伝導性セラミックスとしては、アルミナ、窒化ホウ素、窒化アルミニウム、シリカ、酸化マグネシウム、窒化ケイ素、炭化ケイ素等が知られている。
 他に、高熱伝導性を有する樹脂硬化物として、高架橋密度の樹脂組成物の硬化物、又は分子構造中にメソゲン基を有する樹脂組成物の硬化物が提案されている。
 上記に関連し、特許第2874089号公報には、ビフェニル基を有するメソゲン基含有エポキシ樹脂とフェノール樹脂と球状アルミナとを必須成分とする半導体封止用樹脂組成物が開示されている。この樹脂組成物は、熱伝導性に優れると報告されている。
 また、特開2007-262398号公報には、ビフェニル基を有するエポキシ樹脂とキサンテン基を有する硬化剤と無機充填材とを含有する樹脂組成物が開示されている。この樹脂組成物は、放熱性に優れると報告されている。
 更に、特開2013-234313号公報には、メソゲン基含有エポキシ樹脂と特定の構造単位を有する化合物を含むフェノールノボラック樹脂と無機充填材とを含有する樹脂組成物が開示されている。この樹脂組成物は、硬化後における熱伝導率が高いことが報告されている。
 メソゲン基含有エポキシ樹脂とフェノールノボラック樹脂について種々検討したところ、エポキシ樹脂組成物をBステージ化する際の乾燥条件により、Bステージのエポキシ樹脂組成物を硬化してCステージとした際の硬化物の架橋密度が低下し、熱伝導率が低下する場合があることが分かった。さらに、メソゲン基含有エポキシ樹脂の秩序性が乱れ、高次構造が発現せず熱伝導率が大幅に低下する場合があることが分かった。また、メソゲン基含有エポキシ樹脂の秩序性が乱れておらず高次構造が発現しているにもかかわらず熱伝導率が低下する場合もあることが分かった。
 この原因は、何によるものか不明であり、硬化物の熱伝導率を向上させることが課題であった。
 なお、Bステージ及びCステージとの用語は、JIS K6900:1994の定義による。
 本発明は、上記課題に鑑み、硬化後に高熱伝導性を発揮するエポキシ樹脂組成物並びにそれを用いた樹脂シート及びプリプレグ並びに硬化後に高熱伝導性を発揮する半硬化エポキシ樹脂組成物を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、エポキシ樹脂組成物のBステージにおいて、フェノールノボラック樹脂中のモノマー成分が残留すると、エポキシ樹脂組成物を硬化してCステージとした際の硬化物の架橋密度が低下し、熱伝導率が低下することがわかった。更に、モノマー成分の残留量によっては、メソゲン基含有エポキシ樹脂の秩序性が乱れ、高次構造が発現せず熱伝導率が大幅に低下することがわかった。本発明者等は、上記知見に基づいて本発明に至った。すなわち、本発明は以下の態様を包含する。
<1> (A)成分:メソゲン骨格を有するエポキシ樹脂と、(B)成分:2価のフェノール化合物をノボラック化したノボラック樹脂を含む硬化剤と、(C)成分:無機充填材とを含み、その半硬化状態(Bステージ)における前記(B)成分の硬化剤中のモノマー成分が、全樹脂量の0.6質量%以下であるエポキシ樹脂組成物。
<2> 前記エポキシ樹脂組成物のBステージ及び前記エポキシ樹脂組成物の硬化物の少なくとも一方が、スメクチック構造を形成する<1>に記載のエポキシ樹脂組成物。
<3> 前記(A)成分のメソゲン骨格を有するエポキシ樹脂が、下記一般式(I)で表される化合物を含む<1>又は<2>に記載のエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000015
[一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。]
<4> 前記(B)成分の硬化剤が、下記一般式(II-1)及び下記一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含むノボラック樹脂を含む<1>~<3>のいずれか一項に記載のエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000016
[一般式(II-1)及び一般式(II-2)中、R21及びR24はそれぞれ独立に、アルキル基、アリール基又はアラルキル基を表す。R22、R23、R25及びR26はそれぞれ独立に、水素原子、アルキル基、アリール基又はアラルキル基を表す。m21及びm22はそれぞれ独立に0~2の整数を表す。n21及びn22はそれぞれ独立に1~7の整数を表す。]
<5> 前記(B)成分の硬化剤が、下記一般式(III-1)~下記一般式(III-4)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含むノボラック樹脂を含む<1>~<3>のいずれか一項に記載のエポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
[一般式(III-1)~一般式(III-4)中、m31~m34及びn31~n34はそれぞれ独立に、正の整数を表す。Ar31~Ar34はそれぞれ独立に、下記一般式(III-a)で表される基及び下記一般式(III-b)で表される基のいずれか1つを表す。]
Figure JPOXMLDOC01-appb-C000021
[一般式(III-a)及び一般式(III-b)中、R31及びR34はそれぞれ独立に、水素原子又は水酸基を表す。R32及びR33はそれぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。]
<6> 前記(B)成分の硬化剤は、前記ノボラック樹脂を構成するフェノール化合物であるモノマー成分の含有比率が5質量%~80質量%である<1>~<5>のいずれか一項に記載のエポキシ樹脂組成物。
<7> 前記(C)成分の無機充填材は、窒化ホウ素、アルミナ、酸化マグネシウム、シリカ及び窒化アルミニウムからなる群より選択される少なくとも1種である<1>~<6>のいずれか一項に記載のエポキシ樹脂組成物。
<8> <1>~<7>のいずれか一項に記載のエポキシ樹脂組成物のシート状成形体である樹脂シート。
<9> Bステージである<8>に記載の樹脂シート。
<10> 繊維基材と、前記繊維基材に含浸された<1>~<7>のいずれか一項に記載のエポキシ樹脂組成物と、を有するプリプレグ。
<11> (A)成分:メソゲン骨格を有するエポキシ樹脂と、(B)成分:2価のフェノール化合物をノボラック化したノボラック樹脂を含む硬化剤と、(C)成分:無機充填材とを含み、前記(B)成分の硬化剤中のモノマー成分が、全樹脂量の0.6質量%以下である半硬化エポキシ樹脂組成物。
<12> 粘度が、25℃~30℃の範囲で10Pa・s~10Pa・sであり、100℃で10Pa・s~10Pa・sである<11>に記載の半硬化エポキシ樹脂組成物。
<13> スメクチック構造を含む<11>又は<12>に記載の半硬化エポキシ樹脂組成物。
<14> 前記(A)成分のメソゲン骨格を有するエポキシ樹脂が、下記一般式(I)で表される化合物を含む<11>~<13>のいずれか一項に記載の半硬化エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000022
[一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。]
<15> 前記(B)成分の硬化剤が、下記一般式(II-1)及び下記一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含むノボラック樹脂を含む<11>~<14>のいずれか一項に記載の半硬化エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000023
[一般式(II-1)及び一般式(II-2)中、R21及びR24はそれぞれ独立に、アルキル基、アリール基又はアラルキル基を表す。R22、R23、R25及びR26はそれぞれ独立に、水素原子、アルキル基、アリール基又はアラルキル基を表す。m21及びm22はそれぞれ独立に0~2の整数を表す。n21及びn22はそれぞれ独立に1~7の整数を表す。]
<16> 前記(B)成分の硬化剤が、下記一般式(III-1)~下記一般式(III-4)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含むノボラック樹脂を含む<11>~<14>のいずれか一項に記載の半硬化エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
[一般式(III-1)~一般式(III-4)中、m31~m34及びn31~n34はそれぞれ独立に、正の整数を表す。Ar31~Ar34はそれぞれ独立に、下記一般式(III-a)で表される基及び下記一般式(III-b)で表される基のいずれか1つを表す。]
Figure JPOXMLDOC01-appb-C000028
[一般式(III-a)及び一般式(III-b)中、R31及びR34はそれぞれ独立に、水素原子又は水酸基を表す。R32及びR33はそれぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。]
<17> 前記(C)成分の無機充填材は、窒化ホウ素、アルミナ、酸化マグネシウム、シリカ及び窒化アルミニウムからなる群より選択される少なくとも1種である<11>~<16>のいずれか一項に記載の半硬化エポキシ樹脂組成物。
 本発明によれば、硬化後に高熱伝導性を発揮するエポキシ樹脂組成物並びにそれを用いた高熱伝導性を発揮する樹脂シート及びプリプレグ並びに硬化後に高熱伝導性を発揮する半硬化エポキシ樹脂組成物を提供することができる。
レーザー回折法を用いて測定される、粒子径を横軸に、体積累積を縦軸にとった粒子径分布を示す一般図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 更に、本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
<エポキシ樹脂組成物>
 本実施形態のエポキシ樹脂組成物は、(A)成分:メソゲン骨格を有するエポキシ樹脂と、(B)成分:2価のフェノール化合物をノボラック化したノボラック樹脂を含む硬化剤と、(C)成分:無機充填材とを含み、その半硬化状態(Bステージ)における(B)成分の硬化剤中のモノマー成分が、全樹脂量の0.6質量%以下である。
 本実施形態のエポキシ樹脂組成物のBステージ及び本実施形態のエポキシ樹脂組成物の硬化物の少なくとも一方は、秩序性の高い高次構造(スメクチック構造)を形成していることが好ましい。
 メソゲン骨格を有するエポキシ樹脂は、後述の一般式(I)で表される化合物を含むことが好ましい。
 高次構造とは、その構成要素が配列してミクロな秩序構造を形成した高次構造体を含む構造を意味し、例えば、結晶相及び液晶相が相当する。このような高次構造体の存在確認は、偏光顕微鏡観察によって容易に判断することが可能である。すなわち、クロスニコル状態での観察において、偏光解消による干渉縞が見られるか否かで判別可能である。
 この高次構造体は、通常エポキシ樹脂組成物中に島状に存在して、ドメイン構造を形成しており、その島の1つが1つの高次構造体に対応する。この高次構造体の構成要素自体は一般には共有結合により形成されている。
 本実施形態において、高次構造がスメクチック構造であるか否かは、下記方法により判断することができる。
 CuKα1線を用い、管電圧40kV、管電流20mA、2θ=2°~30°の範囲で、株式会社リガク製X線解析装置を用いてX線回折測定を行い、2θ=2°~10°の範囲の回折ピークの有無により、高次構造がスメクチック構造であるか否かを確認する。
 アルミナ、窒化ホウ素等を含む高熱伝導性無機充填材と一般式(I)で表される化合物等のメソゲン骨格を有するエポキシ樹脂とを用いてコンポジット材料とすることで、本実施形態のエポキシ樹脂組成物は、高い秩序性を有するスメクチック構造を示す。その結果、本実施形態のエポキシ樹脂組成物の硬化物は、エポキシ樹脂単体からなる硬化物よりも高い熱伝導性を示す。
 なお、ネマチック構造及びスメクチック構造はそれぞれ液晶構造の一種である。ネマチック構造は分子長軸が一様な方向を向いており、配向秩序のみを持つ液晶構造である。これに対し、スメクチック構造は配向秩序に加えて一次元の位置の秩序を持ち、層構造を有する液晶構造である。秩序性はネマチック構造よりもスメクチック構造の方が高い。このため、エポキシ樹脂組成物の熱伝導性もスメクチック構造を示す場合の方が高くなる。
 無機充填材を含むエポキシ樹脂組成物における高次構造の存在は、以下のように確認することができる。
 エポキシ樹脂組成物の硬化物(厚さ:0.1μm~20μm)を、スライドガラス(厚さ:約1mm)に挟み、これを偏光顕微鏡(例えば、オリンパス株式会社製、商品名:BX51)を用いて観察する。アルミナ、窒化ホウ素等の無機充填材が存在する領域では無機充填材の周囲に干渉模様が観察され、無機充填材が存在しない領域では干渉模様は観察されない。このことより、無機充填材を中心として一般式(I)で表される化合物等のメソゲン骨格を有するエポキシ樹脂の硬化物が高次構造を形成していることが分かる。
 上記の観察はクロスニコル状態ではなく、偏光子に対して検光子を60°回転させた状態で行うことが必要である。すなわち、無機充填材を含まず、樹脂と硬化剤のみから構成される硬化物では、クロスニコル状態での観察において干渉模様が観察されるか暗視野となるかで、樹脂が高次構造を形成しているか否かを判断できる。一方、無機充填材を含んだ硬化物では、クロスニコル状態で観察を行うと、干渉模様が観察されない暗視野の領域は、樹脂が高次構造を形成していない部分であるのか、無機充填材由来の部分であるのかの判別が不可能である。
 しかし、偏光子に対して検光子を60°回転させた状態で観察すると、無機充填材の部分は偏光子と検光子の角度に関係なく暗視野となるが、樹脂が高次構造を形成していない部分は暗視野ではなく、多少ではあるが光が透過して明るく見える。これにより、樹脂が高次構造を形成していない部分と、無機充填材由来の部分との判別が可能となる。
 (B)成分の硬化剤中のモノマー成分は、フェノール、o-クレゾール、m-クレゾール、p-クレゾール等の単官能のフェノール化合物;カテコール、レゾルシノール、ヒドロキノン等の2官能のフェノール化合物;1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1,3,5-トリヒドロキシベンゼン等の3官能のフェノール化合物などが挙げられる。
 (B)成分の硬化剤中のモノマー成分の定量は、以下のように行うことができる。
 Bステージのエポキシ樹脂組成物を溶剤(テトラヒドロフラン(THF)/アセトニトリル(ACN)混合溶媒(50体積%/50体積%))にて樹脂濃度が2g/m~8g/mとなるように溶解する。この溶液をメンブレンフィルター(孔径:0.2μm)でろ過し無機充填材の取り除かれたろ液を得る。このろ液について、逆相クロマトグラフィー(例えば、株式会社日立製作所製L-7000シリーズ)にて、硬化剤中のモノマー成分を検出する。
 具体的な測定条件は、例えば、以下の通りである。カラムはMightysil RP-18(4.6mmφ×150mm,5μm)(関東化学株式会社製)を40℃で使用し、流速を0.5mL/分~2.0mL/分とし、グラジエント法により分離し(3液系(ACN/THF/水(20体積%/5体積%/75体積%)混合溶媒:20分、ACN/THF(80体積%/20体積%)混合溶媒:15分、ACN/THF(50体積%/50体積%))、フォトダイオードアレイ検出器を用い、検出波長は278nmとする。得られたチャートのピーク面積比よりBステージのエポキシ樹脂組成物に含有する硬化剤中のモノマー成分の含有率(質量%)を求める。
 Bステージにおける(B)成分の硬化剤中のモノマー成分は、秩序性の高い高次構造であるスメクチック構造を形成する観点から全樹脂量の0.6質量%以下とされ、架橋密度を増大する観点から0.3質量%以下であることが好ましく、0.2質量%以下であることがより好ましい。
 モノマー成分が0.6質量%を超えると架橋密度の低下及びスメクチック構造の形成が不安定となるため、熱伝導率が大きく低下することがある。
 本実施形態のエポキシ樹脂組成物の半硬化状態(Bステージ)における(B)成分の硬化剤中のモノマー成分を、全樹脂量の0.6質量%以下とするには、エポキシ樹脂組成物を用いて形成した塗布層の乾燥条件の適正化による方法等が挙げられる。
 本実施形態において、モノマー成分の含有率を規定する際の「全樹脂量」とは、本実施形態のエポキシ樹脂組成物又は半硬化エポキシ樹脂組成物に含まれるエポキシ樹脂、硬化剤、必要に応じて用いられるその他の樹脂成分及びこれら樹脂成分の反応物の合計量をいう。
 以下、エポキシ樹脂組成物に用いる材料について説明する。
((A)成分:メソゲン骨格を有するエポキシ樹脂(エポキシ樹脂モノマー))
 本実施形態のエポキシ樹脂組成物は、(A)成分のメソゲン骨格を有するエポキシ樹脂として一般式(I)で表される化合物を含んでもよい。
Figure JPOXMLDOC01-appb-C000029
 一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表し、水素原子又は炭素数1~2のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることが更に好ましい。
 更にR~Rのうちの2個~4個が水素原子であることが好ましく、3個又は4個が水素原子であることが好ましく、4個すべてが水素原子であることが好ましい。R~Rのいずれかが炭素数1~3のアルキル基である場合、R及びRの少なくとも一方が炭素数1~3のアルキル基であることが好ましい。
 なお、エポキシ樹脂モノマーの好ましい形態の例は、特開2011-74366号公報に記載されている。具体的には、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル-4-(2,3-エポキシプロポキシ)ベンゾエート及び4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル-4-(2,3-エポキシプロポキシ)-3-メチルベンゾエートから選ばれる少なくとも一つが好ましい。
 また、エポキシ樹脂モノマーの一部は、後述の硬化剤等により反応させて得たプレポリマーの状態であってもよい。一般式(I)で表される化合物を含め、分子構造中にメソゲン基を有するエポキシ樹脂モノマーは一般的に結晶化し易く、溶媒への溶解度もその他のエポキシ樹脂モノマーと比べると低いものが多い。しかし、エポキシ樹脂モノマーの一部を重合させることで結晶化が抑制され、溶解性及び成形性が向上する場合がある。
 エポキシ樹脂モノマーは、成形性及び接着性の観点から、エポキシ樹脂組成物の全固形分の全体積の10体積%~50体積%で含有されることが好ましく、15体積%~40体積%で含有されることがより好ましく、20体積%~35体積%で含有されることが更に好ましい。
 なお、エポキシ樹脂組成物が後述の硬化剤及び硬化促進剤を含む場合、ここでいうエポキシ樹脂モノマーの含有率には、特に断らない限り、これら硬化剤及び硬化促進剤の含有率を含めるものとする。
 本実施形態のエポキシ樹脂組成物がエポキシ樹脂モノマー、硬化剤、硬化促進剤、無機充填材及び有機溶剤を除くその他の任意成分を含む場合、エポキシ樹脂モノマーの含有率(体積%)は、次式により求めた値とする(該当する成分が含まれない場合は0質量%として計算)。以下、エポキシ樹脂組成物に用いる各材料の含有率(体積%)は、本方法に基づいて求めた値である。
 エポキシ樹脂モノマーの含有率(体積%)={((Aw/Ad)+(Bw/Bd)+(Cw/Cd))/((Aw/Ad)+(Bw/Bd)+(Cw/Cd)+(Dw/Dd)+(Ew/Ed))}×100
 ここで、各変数は以下の通りである。Aw:エポキシ樹脂モノマーの質量組成比(質量%)を、Bw:硬化剤の質量組成比(質量%)を、Cw:硬化促進剤の質量組成比(質量%)を、Dw:無機充填材の質量組成比(質量%)を、Ew:その他の任意成分(有機溶剤を除く)の質量組成比(質量%)を、Ad:エポキシ樹脂モノマーの密度を、Bd:硬化剤の密度を、Cd:硬化促進剤の密度を、Dd:無機充填材の密度を、Ed:その他の任意成分(有機溶剤を除く)の密度を、それぞれ表す。
 本実施形態のエポキシ樹脂組成物は、必要に応じてメソゲン骨格を有さないその他のエポキシ樹脂を含有してもよい。その他のエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、水素添加したビスフェノールA型エポキシ樹脂、水素添加したビスフェノールAD型エポキシ樹脂、ナフタレン型エポキシ樹脂及び反応性希釈剤とよばれるエポキシ基を1つ有しているエポキシ樹脂が挙げられる。
 必要に応じて用いられるその他のエポキシ樹脂の含有率は、本実施形態のエポキシ樹脂組成物のBステージ及び本実施形態のエポキシ樹脂組成物の硬化物の少なくとも一方が高次構造を形成することができる限り、制限されない。
 エポキシ樹脂組成物がその他のエポキシ樹脂を含む場合、エポキシ樹脂モノマーの含有率(体積%)には、その他のエポキシ樹脂の含有率を含めるものとする。上記式におけるAwをその他のエポキシ樹脂を含むエポキシ樹脂モノマーの質量組成比(質量%)とし、Adをその他のエポキシ樹脂を含むエポキシ樹脂モノマーの密度の平均値として、エポキシ樹脂モノマーの含有率を計算することができる。
 本実施形態のエポキシ樹脂組成物における、(A)成分のメソゲン骨格を有するエポキシ樹脂の含有率は、揮発成分を除く固形分全体に対して、5質量%~30質量%であることが好ましく、5質量%~20質量%であることがより好ましく、5質量%~15質量%であることが更に好ましい。
((B)成分:2価のフェノール化合物をノボラック化したノボラック樹脂を含む硬化剤)
 本実施形態の硬化剤は、(B)成分:2価のフェノール化合物をノボラック化したノボラック樹脂を含む硬化剤である。本実施形態で用いられる硬化剤は、一般式(II-1)及び一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含むノボラック樹脂を含むことが好ましい。
Figure JPOXMLDOC01-appb-I000030
 一般式(II-1)及び一般式(II-2)において、R21及びR24はそれぞれ独立に、アルキル基、アリール基又はアラルキル基を表す。これらアルキル基、アリール基及びアラルキル基は、置換基を有していてもよい。R21及びR24がアルキル基の場合、該置換基としては、アリール基等の芳香族基、ハロゲン原子、水酸基などを挙げることができる。R21及びR24がアリール基又はアラルキル基の場合、該置換基としては、アルキル基、アリール基等の芳香族基、ハロゲン原子、水酸基などを挙げることができる。
 m21及びm22はそれぞれ独立に、0~2の整数を表し、m21又はm22が2の場合、2つのR21又はR24は同一であっても異なっていてもよい。本実施形態において、m21及びm22はそれぞれ独立に、0又は1であることが好ましく、0であることがより好ましい。
 n21及びn22はフェノールノボラック樹脂に含まれる一般式(II-1)及び一般式(II-2)で表される構造単位の数であり、それぞれ独立に、1~7の整数を表す。
 一般式(II-1)及び一般式(II-2)において、R22、R23、R25及びR26はそれぞれ独立に、水素原子、アルキル基、アリール基、又はアラルキル基を表す。R22、R23、R25及びR26で表されるアルキル基、アリール基、及びアラルキル基は、置換基を有していてもよい。R22、R23、R25及びR26がアルキル基の場合、該置換基としては、アリール基、ハロゲン原子、水酸基等を挙げることができる。R22、R23、R25及びR26がアリール基、又はアラルキル基の場合、該置換基としては、アルキル基、アリール基、ハロゲン原子、水酸基等を挙げることができる。
 R22、R23、R25及びR26としては、保存安定性と熱伝導性の観点から、水素原子、アルキル基、又はアリール基であることが好ましく、水素原子、炭素数1~4であるアルキル基又は炭素数6~12であるアリール基であることがより好ましく、水素原子であることが更に好ましい。
 更に、耐熱性の観点から、R22及びR23の少なくとも一方はアリール基であることもまた好ましく、炭素数6~12であるアリール基であることがより好ましい。また、R25及びR26の少なくとも一方も同様にアリール基であることもまた好ましく、炭素数6~12であるアリール基であることがより好ましい。
 なお、上記アリール基は芳香族環にヘテロ原子を含む構造であってもよい。この場合、ヘテロ原子と炭素の合計数が6~12となるヘテロアリール基であることが好ましい。
 硬化剤は、一般式(II-1)又は一般式(II-2)で表される構造単位を有する化合物を1種類単独で含むものであってもよいし、2種類以上を含むものであってもよい。好ましくは、一般式(II-1)で表されるレゾルシノールに由来する構造単位を有する化合物の少なくとも1種を含む場合である。
 一般式(II-1)で表されるレゾルシノールに由来する構造単位を有する化合物は、レゾルシノール以外のフェノール化合物に由来する部分構造の少なくとも1種類を更に含んでいてもよい。レゾルシノール以外のフェノール化合物としては、例えば、フェノール、クレゾール、カテコール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン及び1,3,5-トリヒドロキシベンゼンを挙げることができる。本実施形態においては、これらに由来する部分構造を1種類単独で含んでいても、2種類以上を組み合わせて含んでいてもよい。
 また、一般式(II-2)で表されるカテコールに由来する構造単位を有する化合物においても同様に、カテコール以外のフェノール化合物に由来する部分構造の少なくとも1種類を更に含んでいてもよい。カテコール以外のフェノール化合物としては、例えば、フェノール、クレゾール、レゾルシノール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン及び1,3,5-トリヒドロキシベンゼンを挙げることができる。本実施形態においては、これらに由来する部分構造を1種類単独で含んでいても、2種類以上を組み合わせて含んでいてもよい。
 ここで、フェノール化合物に由来する部分構造とは、フェノール化合物のベンゼン環部分から1個又は2個の水素原子を取り除いて構成される1価又は2価の基を意味する。なお、水素原子が取り除かれる位置は特に制限されない。
 一般式(II-1)で表されるレゾルシノールに由来する構造単位を有する化合物において、レゾルシノール以外のフェノール化合物に由来する部分構造としては、熱伝導性及び接着性の観点から、フェノール、クレゾール、カテコール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、及び1,3,5-トリヒドロキシベンゼンから選ばれる少なくとも1種類に由来する部分構造であることが好ましく、カテコール及びヒドロキノンから選ばれる少なくとも1種類に由来する部分構造であることがより好ましい。
 また、一般式(II-2)で表されるカテコールに由来する構造単位を有する化合物において、カテコール以外のフェノール化合物に由来する部分構造としては、熱伝導性及び接着性の観点から、フェノール、クレゾール、レゾルシノール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、及び1,3,5-トリヒドロキシベンゼンから選ばれる少なくとも1種類に由来する部分構造であることが好ましく、レゾルシノール及びヒドロキノンから選ばれる少なくとも1種類に由来する部分構造であることがより好ましい。
 一般式(II-1)で表されるレゾルシノールに由来する構造単位を有する化合物において、レゾルシノールに由来する部分構造の含有比率については特に制限されない。弾性率の観点から、一般式(II-1)で表されるレゾルシノールに由来する構造単位を有する化合物の全質量に対するレゾルシノールに由来する部分構造の含有比率が55質量%以上であることが好ましい。更に、ガラス転移温度(Tg)と線膨張率の観点から、80質量%以上であることがより好ましく、熱伝導性の観点から、90質量%以上であることが更に好ましい。
 また、一般式(II-2)で表されるカテコールに由来する構造単位を有する化合物において、カテコールに由来する部分構造の含有比率については特に制限されない。弾性率の観点から、一般式(II-2)で表されるカテコールに由来する構造単位を有する化合物の全質量に対するカテコールに由来する部分構造の含有比率が55質量%以上であることが好ましい。更に、ガラス転移温度(Tg)と線膨張率の観点から、80質量%以上であることがより好ましく、熱伝導性の観点から、90質量%以上であることが更に好ましい。
 更に、本実施形態で用いられる硬化剤は、一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される部分構造を有する化合物を含むノボラックを含むことも好ましい。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 一般式(III-1)~一般式(III-4)中、m31~m34及びn31~n34はそれぞれ独立に、正の整数を表し、それぞれの構造単位が含有される数を表す。また、Ar31~Ar34はそれぞれ独立に、一般式(III-a)で表される基及び一般式(III-b)で表される基のいずれか1つを表す。
Figure JPOXMLDOC01-appb-C000035
 一般式(III-a)及び一般式(III-b)中、R31及びR34はそれぞれ独立に、水素原子又は水酸基を表す。R32及びR33はそれぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。
一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含むノボラック樹脂は、2価のフェノール化合物をノボラック化する後述の製造方法によって副生成的に生成可能なものである。
 一般式(III-1)~一般式(III-4)で表される部分構造は、硬化剤の主鎖骨格として含まれていてもよく、又は側鎖の一部として含まれていてもよい。更に、一般式(III-1)~一般式(III-4)のいずれか1つで表される部分構造を構成するそれぞれの構造単位は、ランダムに含まれていてもよいし、規則的に含まれていてもよいし、ブロック状に含まれていてもよい。
 また、一般式(III-1)~一般式(III-4)において、水酸基の置換位置は芳香族環上であれば特に制限されない。
 一般式(III-1)~一般式(III-4)のそれぞれについて、複数存在するAr31~Ar34は全て同一の原子団であってもよいし、2種類以上の原子団を含んでいてもよい。なお、Ar31~Ar34はそれぞれ独立に一般式(III-a)で表される基及び一般式(III-b)で表される基のいずれか1つを表す。
 一般式(III-a)及び一般式(III-b)におけるR31及びR34はそれぞれ独立に、水素原子又は水酸基を表し、熱伝導性の観点から水酸基であることが好ましい。また、R31及びR34の置換位置は特に制限されない。
 また、一般式(III-a)及び一般式(III-b)におけるR32及びR33はそれぞれ独立に、水素原子又は炭素数1~8であるアルキル基を表す。R32及びR33における炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、及びオクチル基が挙げられる。また、一般式(III-a)及び一般式(III-b)におけるR32及びR33の置換位置は特に制限されない。
 一般式(III-1)~一般式(III-4)におけるAr31~Ar34は、本実施形態の効果、特に優れた熱伝導性を達成する観点から、ジヒドロキシベンゼンに由来する基(一般式(III-a)においてR31が水酸基であって、R32及びR33が水素原子である基)、及びジヒドロキシナフタレンに由来する基(一般式(III-b)においてR34が水酸基である基)から選ばれる少なくとも1種類であることが好ましい。
 ここで、「ジヒドロキシベンゼンに由来する基」とは、ジヒドロキシベンゼンの芳香環部分から水素原子を2つ取り除いて構成される2価の基を意味し、水素原子が取り除かれる位置は特に制限されない。また、「ジヒドロキシナフタレンに由来する基」とは、ジヒドロキシナフタレンの芳香環部分から水素原子を2つ取り除いて構成される2価の基を意味し、水素原子が取り除かれる位置は特に制限されない。
 また、本実施形態のエポキシ樹脂組成物の生産性及び流動性の観点からは、Ar31~Ar34はジヒドロキシベンゼンに由来する基であることがより好ましく、1,2-ジヒドロキシベンゼン(カテコール)に由来する基及び1,3-ジヒドロキシベンゼン(レゾルシノール)に由来する基からなる群より選ばれる少なくとも1種類であることが更に好ましい。更に、熱伝導性を特に高める観点から、Ar31~Ar34として少なくともレゾルシノールに由来する基を含むことが好ましい。
 また、熱伝導性を特に高める観点から、一般式(III-1)~一般式(III-4)において、n31~n34が付された構造単位は、レゾルシノールに由来する基を含んでいることが好ましい。
 レゾルシノールに由来する基を含む構造単位の含有率は、弾性率の観点から、一般式(III-1)~一般式(III-4)のうち少なくとも1つで表される部分構造を有する化合物の総質量中において55質量%以上であることが好ましい。更に、Tgと線膨張率の観点から、80質量%以上であることがより好ましく、熱伝導性の観点から、90質量%以上であることが更に好ましい。
 一般式(III-1)~一般式(III-4)におけるmx及びnx(xは31、32、33又は34のいずれかの同一の値)の比は、流動性の観点から、mx/nx=20/1~1/5であることが好ましく、20/1~5/1であることがより好ましく、20/1~10/1であることが更に好ましい。また、mx及びnxの合計値は、流動性の観点から20以下であることが好ましく、15以下であることがより好ましく、10以下であることが更に好ましい。
 なお、mx及びnxの合計値の下限値は特に制限されない。
 一般式(III-1)~一般式(III-4)のうち少なくとも1つで表される部分構造を有するノボラック樹脂は、特にAr31~Ar34が置換又は非置換のジヒドロキシベンゼン及び置換又は非置換のジヒドロキシナフタレンの少なくとも1種類である場合、これらを単純にノボラック化した樹脂等と比較して、その合成が容易であり、軟化点の低い硬化剤が得られる傾向にある。したがって、このような樹脂を含む樹脂組成物の製造及び取り扱いも容易になる等の利点がある。
 なお、ノボラック樹脂が一般式(III-1)~一般式(III-4)のうちの少なくとも1つで表わされる部分構造を有するか否かは、電界脱離イオン化質量分析法(FD-MS)によってそのフラグメント成分として一般式(III-1)~一般式(III-4)のうちの少なくとも1つで表わされる部分構造に相当する成分が含まれるか否かによって判断することができる。
 一般式(III-1)~一般式(III-4)のうちの少なくとも1つで表される部分構造を有するノボラック樹脂の分子量は特に制限されない。流動性の観点から、数平均分子量(Mn)としては2000以下であることが好ましく、1500以下であることがより好ましく、350~1500であることが更に好ましい。また、重量平均分子量(Mw)としては2000以下であることが好ましく、1500以下であることがより好ましく、400~1500であることが更に好ましい。Mn及びMwは、GPC(ゲルパーミエーションクロマトグラフィ)を用いた通常の方法により測定される。
 一般式(III-1)~一般式(III-4)のうち少なくとも1つで表される部分構造を有するノボラック樹脂の水酸基当量は特に制限されない。耐熱性に関与する架橋密度の観点から、水酸基当量は平均値で50g/eq~150g/eqであることが好ましく、50g/eq~120g/eqであることがより好ましく、55g/eq~120g/eqであることが更に好ましい。
 ノボラック樹脂は、ノボラック樹脂を構成するフェノール化合物であるモノマー成分を含んでいてもよい。ノボラック樹脂を構成するフェノール化合物であるモノマー成分の含有比率(以下、「モノマー含有比率」ともいう)としては特に制限されない。熱伝導性及び成形性の観点から、5質量%~80質量%であることが好ましく、15質量%~60質量%であることがより好ましく、20質量%~50質量%であることが更に好ましい。
 モノマー含有比率が80質量%以下であることで、硬化反応の際に架橋に寄与しないモノマー成分が少なくなり、架橋する高分子量体が多くなるため、より高密度な高次構造が形成され、熱伝導率が向上する。また、5質量%以上であることで、成形の際に流動し易いため、無機充填材との密着性がより向上し、より優れた熱伝導性と耐熱性が達成できる傾向にある。
 本実施形態においては、硬化剤のフェノール性水酸基の当量数(フェノール性水酸基の当量数)と、エポキシ樹脂モノマーのエポキシ基の当量数との比(フェノール性水酸基の当量数/エポキシ基の当量数)が0.5~2.0となることが好ましく、0.8~1.2となることがより好ましい。
 本実施形態のエポキシ樹脂組成物における、(B)成分の2価のフェノール化合物をノボラック化したノボラック樹脂を含む硬化剤の含有率は、揮発成分を除く固形分全体に対して、3質量%~20質量%であることが好ましく、3質量%~10質量%であることがより好ましく、3質量%~8質量%であることが更に好ましい。
((C)成分:無機充填材)
 本実施形態のエポキシ樹脂組成物は、無機充填材の少なくとも1種を含む。これにより、高い熱伝導率を達成することができる。
 無機充填材は非導電性であっても、導電性であってもよい。非導電性の無機充填材を使用することによって絶縁性の低下するリスクが軽減される傾向にある。また導電性の無機充填材を使用することによって熱伝導性がより向上する傾向にある。
 非導電性の無機充填材の材質として具体的には、酸化アルミニウム(アルミナ)、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、シリカ(酸化ケイ素)、水酸化アルミニウム、硫酸バリウム等が挙げられる。また導電性の無機充填材の材質としては、金、銀、ニッケル、銅等が挙げられる。中でも熱伝導率の観点から、酸化マグネシウム、シリカ(酸化ケイ素)、窒化アルミニウム、酸化アルミニウム(アルミナ)及び窒化ホウ素からなる群より選択される少なくとも1種であることが好ましく、ハンドリング性の観点から窒化アルミニウム、酸化アルミニウム(アルミナ)及び窒化ホウ素からなる群より選択される少なくとも1種であることがより好ましい。
 これら無機充填材は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いることができる。
 無機充填材は、2種類以上の互いに体積平均粒子径の異なるものを混合して用いることが好ましい。これにより大粒子径の無機充填材の空隙に小粒子径の無機充填材がパッキングされることによって、単一粒子径の無機充填材のみを使用するよりも無機充填材が密に充填されるため、より高熱伝導率を発揮することが可能となる。
 具体的には、無機充填材として酸化アルミニウムを使用する場合、無機充填材中に、体積平均粒子径16μm~20μmの酸化アルミニウムを60質量%~75質量%、体積平均粒子径2μm~4μmの酸化アルミニウムを10質量%~20質量%、体積平均粒子径0.3μm~0.5μmの酸化アルミニウムを10質量%~20質量%の範囲の割合で混合することによって、より最密充填化が可能となる。
 更に、無機充填材として酸化アルミニウム及び窒化ホウ素を使用する場合、無機充填材中に、体積平均粒子径20μm~60μmの窒化ホウ素を60質量%~90質量%、体積平均粒子径2μm~4μmの酸化アルミニウムを5質量%~20質量%、体積平均粒子径0.3μm~0.5μmの酸化アルミニウムを5質量%~20質量%の範囲の割合で混合することによって、より高熱伝導化が可能となる。
 無機充填材の体積平均粒子径(D50)は、レーザー回折法を用いて測定することができる。例えば、エポキシ樹脂組成物中の無機充填材を抽出し、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター社製、商品名:LS230)を用いて測定する。具体的には、有機溶剤、硝酸、王水等を用い、エポキシ樹脂組成物中からフィラー成分を抽出し、超音波分散機等で十分に分散媒中に分散し、この分散液の粒子径分布を測定する。
 体積平均粒子径(D50)は、上記測定より得られた体積累積粒子径分布曲線において、小粒径側からの累積が50%となる粒子径のことをいう。図1に、レーザー回折法を用いて測定される、粒子径を横軸に、体積累積を縦軸にとった粒子径分布を示す一般図を示す。
 エポキシ樹脂組成物中の無機充填材の含有量は特に制限されない。中でも熱伝導性の観点から、エポキシ樹脂組成物の全体積を100体積%とした場合に、65体積%を超えることが好ましく、70体積%を超え、90体積%以下であることがより好ましい。
(硬化促進剤)
 本実施形態のエポキシ樹脂組成物においては、必要に応じて硬化促進剤を併用することが好ましい。硬化促進剤を併用することで、エポキシ樹脂組成物を更に十分に硬化させることができる。硬化促進剤の種類及び含有量は特に制限されないが、反応速度、反応温度、保管性等の観点から、適切なものを選択することが望ましい。以下に詳細を記載する。
 硬化促進剤としては、イミダゾール化合物、第3級アミン化合物、有機ホスフィン化合物、有機ホスフィン化合物と有機ボロン化合物との錯体等が挙げられる。通常用いられる硬化促進剤を特に制限なく用いることができ、市販されているものであってもよい。
 中でも、硬化促進剤としては、耐熱性の観点から、有機ホスフィン化合物、及び有機ホスフィン化合物と有機ボロン化合物との錯体からなる群より選択される少なくとも1つであることが好ましい。
 有機ホスフィン化合物としては、具体的には、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキル・アルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。
 また、有機ホスフィン化合物と有機ボロン化合物との錯体としては、具体的には、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ-p-トリルボレート、テトラブチルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・n-ブチルトリフェニルボレート、ブチルトリフェニルホスホニウム・テトラフェニルボレート、メチルトリブチルホスホニウム・テトラフェニルボレート等が挙げられる。
 硬化促進剤は、1種類単独で用いても2種類以上を併用してもよい。後述の半硬化エポキシ樹脂組成物及び硬化エポキシ樹脂組成物を効率良く作製する手法として、エポキシ樹脂モノマーとノボラック樹脂との反応開始温度及び反応速度が異なる2種類の硬化促進剤を混合して用いる方法が挙げられる。
 例えば、一般式(I)で表される化合物と、一般式(II-1)及び一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含むノボラック樹脂との反応の場合は、トリフェニルホスフィンとテトラフェニルホスホニウム・テトラフェニルボレートの組み合わせが挙げられる。上記の反応の場合、トリフェニルホスフィンでは150℃以下の温度で反応が進む。これに対し、テトラフェニルホスホニウム・テトラフェニルボレートでは150℃以下の温度では反応がほとんど進まない。つまり、半硬化エポキシ樹脂組成物を作製する際には150℃以下の温度に加熱してトリフェニルホスフィンのみを作用させ、硬化反応を進行させすぎずに柔軟性及びフロー性を保った状態の半硬化エポキシ樹脂組成物が作製できる。硬化エポキシ樹脂組成物を作製する際には150℃以上の温度に加熱してテトラフェニルホスホニウム・テトラフェニルボレートも作用させ、硬化反応を十分に進行させることが可能である。なお、半硬化エポキシ樹脂組成物及び硬化エポキシ樹脂組成物の作製方法はこの限りではない。
 硬化促進剤の2種類以上を併用して用いる場合、混合割合は半硬化エポキシ樹脂組成物に求める特性(例えば、どの程度の柔軟性を必要とするか)によって特に制限されることなく決めることができる。
 なお、本実施形態のエポキシ樹脂組成物中の硬化促進剤の含有率は特に制限されない。成形性の観点から、エポキシ樹脂モノマーと硬化剤の合計質量の0.5質量%~1.5質量%であることが好ましく、0.5質量%~1質量%であることがより好ましく、0.75質量%~1質量%であることが更に好ましい。
(シランカップリング剤)
 本実施形態のエポキシ樹脂組成物は、シランカップリング剤の少なくとも1種を更に含むことが好ましい。シランカップリング剤は、無機充填材の表面とそれを取り囲む樹脂との間で共有結合を形成する役割(バインダ剤に相当)、熱を効率良く伝達する役割、及び水分の浸入を妨げることによって絶縁信頼性を向上させる役割を果たすことができる。
 シランカップリング剤の種類は特に限定されず、市販品から選択し、使用してもよい。エポキシ樹脂モノマーと硬化剤との相溶性、及びエポキシ樹脂モノマーの硬化物と無機充填材との界面での熱伝導欠損を低減することを考慮すると、本実施形態においては、末端にエポキシ基、アミノ基、メルカプト基、ウレイド基、又は水酸基を有するシランカップリング剤を用いることが好適である。
 シランカップリング剤の具体例としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン等が挙げられる。また、商品名:SC-6000KS2に代表されるシランカップリング剤オリゴマー(日立化成テクノサービス株式会社製)を更に挙げることもできる。これらのシランカップリング剤は1種類単独で用いても、2種類以上を併用してもよい。
(有機溶剤)
 本実施形態のエポキシ樹脂組成物は、有機溶剤の少なくとも1種類を更に含んでいてもよい。有機溶剤を含むことで、エポキシ樹脂組成物を種々の成形プロセスに適合させることができる。有機溶剤としては通常用いられる有機溶剤を用いることができる。具体的には、アルコール溶剤、エーテル溶剤、ケトン溶剤、アミド溶剤、芳香族炭化水素溶剤、エステル溶剤、ニトリル溶剤等を挙げることができる。例えば、メチルイソブチルケトン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、γ-ブチロラクトン、スルホラン、シクロヘキサノン及びメチルエチルケトンを用いることができる。これらの有機溶剤は1種類単独で用いても、2種類以上を併用した混合溶剤として用いてもよい。
(その他の成分)
 本実施形態のエポキシ樹脂組成物は、上記成分に加え、必要に応じてその他の成分を含むことができる。その他の成分の例としては、分散剤、可塑剤等が挙げられる。分散剤としては例えば、ビックケミー・ジャパン株式会社製、商品名:DISPERBYKシリーズ(「DISPERBYK」は、登録商標)、味の素ファインテクノ株式会社製、商品名:アジスパーシリーズ(「アジスパー」は、登録商標)、楠本化成株式会社製、商品名:HIPLAADシリーズ(「HIPLAAD」は、登録商標)、花王株式会社製、商品名:ホモゲノールシリーズ(「ホモゲノール」は、登録商標)が挙げられる。これらの分散剤は1種類単独で用いても、2種類以上を併用してもよい。
<半硬化エポキシ樹脂組成物>
 本実施形態の半硬化エポキシ樹脂組成物は、(A)成分:メソゲン骨格を有するエポキシ樹脂と、(B)成分:2価のフェノール化合物をノボラック化したノボラック樹脂を含む硬化剤と、(C)成分:無機充填材とを含み、前記(B)成分の硬化剤中のモノマー成分が、全樹脂量の0.6質量%以下である。
 本実施形態の半硬化エポキシ樹脂組成物は、本実施形態のエポキシ樹脂組成物を半硬化処理することで得ることができる。半硬化処理の条件等は、後述の樹脂シートの項で例示された条件を適用することが可能である。
 本実施形態の半硬化エポキシ樹脂組成物の粘度は、常温(25℃~30℃の範囲)で10Pa・s~10Pa・sであり、100℃で10Pa・s~10Pa・sであることが好ましい。半硬化エポキシ樹脂組成物の粘度は、DMA(動的粘弾性測定装置;周波数1Hz、荷重40g:昇温速度3℃/分)によって測定される。
 本実施形態の半硬化エポキシ樹脂組成物は、秩序性の高い高次構造(スメクチック構造)を形成していることが好ましい。本実施形態の半硬化エポキシ樹脂組成物がスメクチック構造を形成しているか否かは、上述の方法により確認することができる。
 本実施形態の半硬化エポキシ樹脂組成物に含有される各成分の具体例等は、本実施形態のエポキシ樹脂組成物の場合と同様である。
<樹脂シート> 
 本実施形態の樹脂シートは、本実施形態のエポキシ樹脂組成物のシート状成形体である。本実施形態の樹脂シートは、例えば、本実施形態のエポキシ樹脂組成物を支持体上に塗布し、必要に応じて含まれる有機溶剤の少なくとも一部を除去することで製造することができる。本実施形態の樹脂シートは、本実施形態のエポキシ樹脂組成物から形成されることで、熱伝導性及び電気絶縁性に優れる。
 本実施形態の樹脂シートの厚さは特に制限されず、目的に応じて適宜選択することができる。例えば、厚さを50μm~500μmとすることができ、熱伝導率、電気絶縁性、及び可とう性の観点から、80μm~300μmであることが好ましい。
 本実施形態の樹脂シートは、例えば、本実施形態のエポキシ樹脂組成物にメチルエチルケトン、シクロヘキサノン等の有機溶剤を添加して調製したワニス状のエポキシ樹脂組成物(以下、「樹脂ワニス」ともいう)を支持体上に付与して塗布層(エポキシ樹脂組成物層)を形成した後、塗布層から有機溶剤の少なくとも一部を除去して乾燥して製造することができる。支持体の例としては、PET(ポリエチレンテレフタレート)フィルム等の離型フィルムが挙げられる。
 樹脂ワニスの付与は、公知の方法により実施することができる。具体的には、コンマコート、ダイコート、リップコート、グラビアコート等の方法により行うことができる。所定の厚さのエポキシ樹脂組成物層を形成する方法としては、ギャップ間に被塗工物を通過させるコンマコート法、ノズルから流量を調節した樹脂ワニスを塗布するダイコート法等が挙げられる。例えば、乾燥前の塗布層(エポキシ樹脂組成物層)の厚さが50μm~500μmである場合は、コンマコート法を用いることが好ましい。
 乾燥方法は、樹脂ワニスに含まれる有機溶剤の少なくとも一部を除去できれば特に制限されず、通常用いられる乾燥方法から、樹脂ワニスに含まれる有機溶剤に応じて適宜選択することができる。一般的には、80℃~150℃程度で加熱処理する方法を挙げることができる。
 本実施形態の樹脂シート(エポキシ樹脂組成物層)は硬化反応がほとんど進行していない。このため、可とう性を有するものの、シートとしての柔軟性に乏しい。従って、PETフィルム等の支持体を除去した状態ではシートの自立性に乏しく、取り扱いが難しい場合がある。
 上記の理由から、本実施形態の樹脂シートは、これを構成するエポキシ樹脂組成物層を半硬化処理したものであることが好ましい。すなわち、本実施形態の樹脂シートは、エポキシ樹脂組成物層が半硬化状態(Bステージ)になるまで、更に加熱処理されてなるBステージシートであることが好ましい。エポキシ樹脂組成物層を半硬化処理することで、熱伝導性及び電気絶縁性に優れ、Bステージシートとしての可とう性及び可使時間に優れる樹脂シートを得ることができる。
 本実施形態においてBステージシートとは、粘度が常温(25℃~30℃)で10Pa・s~10Pa・sであり、100℃で10Pa・s~10Pa・sであるエポキシ樹脂組成物からなる樹脂シートを意味する。また、後述の硬化後の硬化エポキシ樹脂組成物は、加温によって溶融することはない。なお、上記粘度はDMA(動的粘弾性測定装置;周波数1Hz、荷重40g:昇温速度3℃/分)によって測定される。
 本実施形態の樹脂シートを加熱処理する条件は、エポキシ樹脂組成物層をBステージにすることができれば特に制限されない。加熱処理条件は、エポキシ樹脂組成物の構成に応じて適宜選択することができる。加熱処理は、樹脂ワニスを付与する際に生じたエポキシ樹脂組成物層中の空隙(ボイド)を減らすため、熱真空プレス、熱ロールラミネート等から選択される方法により行うことが好ましい。これにより、表面が平坦なBステージシートを効率良く製造することができる。
 具体的には、例えば、減圧下(例えば、1kPa)、100℃~200℃で1分間~3分間、1MPa~20MPaのプレス圧力で加熱及び加圧処理することで、本実施形態のエポキシ樹脂組成物層をBステージにまで半硬化させることができる。
 なお、樹脂ワニスを支持体上に付与し、乾燥した状態の樹脂シートを2枚貼り合わせた後で、加熱及び加圧処理を行ってBステージにまで半硬化させることが好ましい。このとき、エポキシ樹脂組成物層の塗布面(エポキシ樹脂組成物層が支持体と接していない面)同士を貼り合わせることが望ましい。エポキシ樹脂組成物層同士が接するように貼り合わせると、得られるBステージの樹脂シートの両面(すなわち、支持体を剥離して露出する表面)がより平坦となり、被着体との接着性が良好となる。このような樹脂シートを用いて作製した硬化エポキシ樹脂組成物層を有する樹脂シートは、高い熱伝導率と絶縁性を発揮する。
 Bステージシートの厚さは、目的に応じて適宜選択することができる。例えば、50μm~500μmとすることができ、熱伝導性、電気絶縁性、及び可とう性の観点から、80μm~300μmであることが好ましい。また、2層以上の樹脂シートを積層しながら、熱プレスすることにより硬化エポキシ樹脂組成物層を有する樹脂シートを作製することもできる。
 Bステージシートにおける揮発成分の残存率は、エポキシ樹脂組成物層を硬化させる際のアウトガスの発生による気泡の形成を抑える観点から、2.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましく、0.8質量%以下であることが更に好ましい。揮発成分の残存率は、Bステージシートを縦40mm、横40mmに切って得た試料を190℃に予熱した恒温槽中で2時間乾燥させ、乾燥前後の質量変化から求める。
 また、本実施形態の樹脂シートは、本実施形態のエポキシ樹脂組成物層を硬化処理してなる硬化エポキシ樹脂組成物層であってもよい。硬化エポキシ樹脂組成物層を有する樹脂シートは、未硬化状態の樹脂シート又はBステージシートを硬化処理することで製造することができる。硬化処理の方法は、エポキシ樹脂組成物の構成、硬化エポキシ樹脂組成物の目的等に応じて適宜選択することができ、加熱及び加圧処理であることが好ましい。
 例えば、未硬化状態の樹脂シート又はBステージシートを100℃~250℃で1時間~10時間、好ましくは130℃~230℃で1時間~8時間加熱することで硬化エポキシ樹脂組成物からなる樹脂シートが得られる。加熱処理は、1MPa~20MPaの圧力をかけながら行うことが好ましい。
 上記方法により得られる硬化エポキシ樹脂組成物からなる樹脂シートは、高熱伝導性と高耐熱性を有する。硬化エポキシ樹脂組成物からなる樹脂シートを製造する方法の一例としては、以下の方法が挙げられる。まず、Bステージシートを片面がマット面である2枚の銅箔(厚さ80μm~120μm)のマット面とそれぞれ接するように挟んだ状態で温度130℃~230℃で3~10分間、圧力1MPa~20MPaで加熱及び加圧処理を行い、Bステージシートの両面に銅箔を接着させる。続いて、Bステージシートを130℃~230℃で1時間~8時間加熱する。その後、樹脂シートの銅箔部分をエッチング処理にて除去し、硬化エポキシ樹脂組成物からなる樹脂シートを得る。
<プリプレグ> 
 本実施形態のプリプレグは、繊維基材と、繊維基材に含浸された本実施形態のエポキシ樹脂組成物と、を有する。本実施形態のプリプレグに含まれる本実施形態のエポキシ樹脂組成物は、Bステージであってもよい。かかる構成を有する本実施形態のプリプレグは、熱伝導性及び電気絶縁性に優れる。また、無機充填材を含有するエポキシ樹脂組成物は、チキソ性が向上する。このため、プリプレグを作製する際の塗工工程、含浸工程等における無機充填材の沈降を抑制することができる。したがって、プリプレグの厚さ方向での無機充填材の濃淡分布の発生を抑えることができる。その結果、熱伝導性及び電気絶縁性に優れるプリプレグが得られる。
 プリプレグを構成する繊維基材としては、金属箔貼り積層板又は多層プリント配線板を製造する際に通常用いられるものであればよく、通常、織布、不織布等の繊維基材が特に制限されずに用いられる。
 繊維基材の目開きは特に制限されない。熱伝導率及び電気絶縁性の観点から、目開きは無機充填材の体積平均粒子径(D50)の5倍以上であることが好ましい。また、無機充填材の粒度分布曲線が複数のピークを有する場合、粒子径が最大となるピークに対応する無機充填材の平均粒子径の5倍以上の目開きであることがより好ましい。
 繊維基材の材質は特に制限されない。具体的には、ガラス、アルミナ、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維、アラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維、これらの混抄系などを挙げることができる。中でも、ガラス繊維の織布が好ましく用いられる。これにより例えば、プリプレグを用いてプリント配線板を構成する場合、屈曲性があり任意に折り曲げ可能なプリント配線板を得ることができる。更に、製造プロセスでの温度変化、吸湿等に伴うプリント配線板の寸法変化を小さくすることも可能となる。
 繊維基材の厚さは特に限定されない。より良好な可とう性を付与する観点から、30μm以下であることが好ましく、含浸性の観点から15μm以下であることがより好ましい。繊維基材の厚さの下限は特に制限されないが、通常5μm程度である。
 本実施形態のプリプレグにおける本実施形態のエポキシ樹脂組成物の含浸量(含有率)は、繊維基材及びエポキシ樹脂組成物の総質量中に50質量%~99.9質量%であることが好ましい。
 エポキシ樹脂組成物が有機溶剤等の揮発分を含有している場合、本実施形態のプリプレグにおける、揮発分を除く本実施形態のエポキシ樹脂組成物の含浸量(含有率)は、繊維基材及び揮発分を除くエポキシ樹脂組成物の総質量中に50質量%~99.9質量%であることが好ましい。
 本実施形態のプリプレグは、樹脂ワニスを繊維基材に含浸し、80℃~150℃の加熱処理により有機溶剤の少なくとも一部を除去して製造することができる。
 また、樹脂ワニスを繊維基材に含浸する方法に特に制限はない。例えば、塗工機により塗布する方法を挙げることができる。詳細には、繊維基材を樹脂ワニスにくぐらせて引き上げる縦型塗工法、支持フィルム上に樹脂ワニスを塗工してから繊維基材を押し付けて含浸させる横型塗工法等を挙げることができる。繊維基材内での無機充填材の偏在を抑える観点からは横型塗工法が好適である。
 本実施形態におけるプリプレグは、積層又は貼付する前に、プレス、ロールラミネータ等による熱間加圧処理により、あらかじめ表面を平滑化してから使用してもよい。熱間加圧処理の方法は、Bステージシートの製造方法で挙げた方法と同様である。また、プリプレグの熱間加圧処理における加熱温度、減圧度、プレス圧等の処理条件についても、Bステージシートの加熱及び加圧処理で挙げた条件と同様である。
 本実施形態のプリプレグにおける溶剤残存率は、2.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましく、0.8質量%以下であることが更に好ましい。
 溶剤残存率は、プリプレグを横40mm、縦40mmに切って得た試料を190℃に予熱した恒温槽中で2時間乾燥させたときの、乾燥前後の質量変化から求める。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 以下にエポキシ樹脂組成物の作製に用いた材料とその略号を示す。
 ・((A)成分:メソゲン骨格を有するエポキシ樹脂(エポキシ樹脂モノマー(樹脂A)))
Figure JPOXMLDOC01-appb-C000036
[4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル-4-(2,3-エポキシプロポキシ)ベンゾエート、エポキシ当量:212g/eq、特開2011-74366号公報に記載の方法により製造]
((C)成分:無機充填材)
 ・AA-18[アルミナ粒子、住友化学株式会社製、D50:18μm]
 ・AA-3[アルミナ粒子、住友化学株式会社製、D50:3μm]
 ・AA-04[アルミナ粒子、住友化学株式会社製、D50:0.40μm]
 ・HP-40[窒化ホウ素粒子、水島合金鉄株式会社製、D50:40μm]
((B)成分:2価のフェノール化合物をノボラック化したノボラック樹脂を含む硬化剤)
 ・CRN[カテコールレゾルシノールノボラック(質量基準の仕込み比:カテコール/レゾルシノール=5/95)樹脂、シクロヘキサノン50質量%含有]
<CRNの合成方法>
 撹拌機、冷却器及び温度計を備えた3Lのセパラブルフラスコに、レゾルシノール627g、カテコール33g、37質量%ホルムアルデヒド316.2g、シュウ酸15g、水300gを入れ、オイルバスで加温しながら100℃に昇温した。104℃前後で還流し、還流温度で4時間反応を続けた。その後、水を留去しながらフラスコ内の温度を170℃に昇温した。170℃を保持しながら8時間反応を続けた。反応後、減圧下20分間濃縮を行い、系内の水等を除去し、目的であるノボラック樹脂CRNを得た。
 また、得られたCRNについて、FD-MS(電界脱離イオン化質量分析法)により構造を確認したところ、一般式(III-1)~一般式(III-4)で表される部分構造すべての存在が確認できた。
 なお、上記反応条件では、一般式(III-1)で表される部分構造を有する化合物が最初に生成し、これが更に脱水反応することで一般式(III-2)~一般式(III-4)のうちの少なくとも1つで表される部分構造を有する化合物が生成すると考えられる。
 得られたCRNについて、Mn(数平均分子量)、Mw(重量平均分子量)の測定を次のようにして行った。
 Mn及びMwの測定は、株式会社日立製作所製の高速液体クロマトグラフィ、商品名:L6000、及び株式会社島津製作所製のデータ解析装置、商品名:C-R4Aを用いて行った。分析用GPCカラムは東ソー株式会社製、商品名:G2000HXL及びG3000HXLを使用した。試料濃度は0.2質量%、移動相にはテトラヒドロフランを用い、流速1.0mL/minで測定を行った。ポリスチレン標準サンプルを用いて検量線を作成し、それを用いてポリスチレン換算値でMn及びMwを計算した。
 得られたCRNについて、水酸基当量の測定を次のようにして行った。
 水酸基当量は、塩化アセチル-水酸化カリウム滴定法により測定した。なお、滴定終点の判断は溶液の色が暗色のため、指示薬による呈色法ではなく、電位差滴定によって行った。具体的には、測定樹脂の水酸基をピリジン溶液中塩化アセチル化した後に、過剰の試薬を水で分解し、生成した酢酸を水酸化カリウム/メタノール溶液で滴定したものである。
 得られたCRNは、一般式(III-1)~一般式(III-4)のうちの少なくとも1つで表される部分構造を有する化合物の混合物であり、Arが、一般式(III-a)においてR31が水酸基であり、R32及びR33が水素原子である1,2-ジヒドロキシベンゼン(カテコール)に由来する基及び1,3-ジヒドロキシベンゼン(レゾルシノール)に由来する基であり、低分子希釈剤として単量体成分(レゾルシノール)を35%含む硬化剤(水酸基当量62g/eq、数平均分子量422、重量平均分子量564)を含むノボラック樹脂であった。
(硬化促進剤)
 ・TPP:トリフェニルホスフィン[和光純薬工業株式会社製、商品名]
(添加剤)
 ・KBM-573:3-フェニルアミノプロピルトリメトキシシラン[シランカップリング剤、信越化学工業株式会社製、商品名]
(溶剤)
 ・MEK:メチルエチルケトン
 ・CHN:シクロヘキサノン
(支持体)
 ・PETフィルム[帝人・デュポン株式会社製、商品名:A53、厚さ50μm]
 ・銅箔[古河電気工業株式会社製、厚さ:105μm、GTSグレード]
(実施例1)
<エポキシ樹脂組成物の調製>
 (A)成分:メソゲン骨格を有するエポキシ樹脂としてエポキシ樹脂モノマー(樹脂A)を7.84質量%、(C)成分:無機充填材としてHP-40を35.68質量%、AA-3を7.85質量%、AA-04を7.85質量%、(B)成分:2価のフェノール化合物をノボラック化したノボラック樹脂を含む硬化剤としてCRNを4.62質量%、硬化促進剤としてTPPを0.08質量%、溶剤としてMEKを28.82質量%、及びCHNを7.26質量%混合し、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニスを得た。
 窒化ホウ素(HP-40)の密度を2.20g/cm、アルミナ(AA-3及びAA-04)の密度を3.98g/cm、及びエポキシ樹脂モノマー(樹脂A)と硬化剤CRNとの混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、70体積%であった。
<Bステージのエポキシ樹脂組成物の作製>
 上記エポキシ樹脂ワニスを、アプリケーターを用いて乾燥後の厚さが200μmとなるようにPETフィルム上に塗布した後、常温(20℃~30℃)で5分、更に130℃で5分間乾燥させた。その後、真空プレスにて熱間加圧(プレス温度:150℃、真空度:1kPa、プレス圧:15MPa、加圧時間:1分)を行い、Bステージのエポキシ樹脂組成物を得た。
<Bステージのエポキシ樹脂組成物に含まれる全樹脂量中の硬化剤のモノマー含有率>
 Bステージのエポキシ樹脂組成物に含まれる全樹脂量中の硬化剤のモノマー含有率は、上述の方法によって求めた。
<銅箔付硬化エポキシ樹脂組成物の作製>
 上記で得られたBステージのエポキシ樹脂組成物のPETフィルムを剥がした後、2枚の銅箔で、銅箔のマット面がそれぞれBステージのエポキシ樹脂組成物に対向するようにして挟み、真空プレスにて真空熱圧着(プレス温度:180℃、真空度:1kPa、プレス圧:15MPa、加圧時間:6分)した。その後、大気圧条件下、150℃で2時間、210℃で4時間加熱し、銅箔付硬化エポキシ樹脂組成物を得た。
<熱伝導率の測定>
 上記で得られた銅箔付硬化エポキシ樹脂組成物の銅箔をエッチングして取り除き、シート状の硬化エポキシ樹脂組成物(樹脂シート硬化物)を得た。得られた樹脂シート硬化物を縦10mm、横10mmに切って試料を得た。試料をグラファイトスプレーにて黒化処理した後、キセノンフラッシュ法(NETZSCH社製の商品名:LFA447 nanoflash)にて熱拡散率を評価した。この値と、アルキメデス法で測定した密度と、DSC(示差走査熱量測定装置;Perkin Elmer社製の商品名:DSC Pyris1)にて測定した比熱との積から、樹脂シート硬化物の厚さ方向の熱伝導率を求めた。
 結果を表1に示した。
(スメクチック構造形成の確認)
 上記で得られた銅箔付硬化エポキシ樹脂組成物の銅箔をエッチングして取り除き、シート状の硬化エポキシ樹脂組成物(樹脂シート硬化物)を得た。得られた樹脂シート硬化物を縦10mm、横10mmに切って試料を得た。試料をCuKα1線を用い、管電圧40kV、管電流20mA、2θが2°~30°の範囲でX線回折測定(株式会社リガク製X線回折装置を使用)を行い、2θが2°~10°の範囲での回折ピークの有無により、スメクチック構造形成を確認した。
(実施例2)
<エポキシ樹脂組成物の調製>
 エポキシ樹脂モノマー(樹脂A)を7.84質量%、HP-40を35.68質量%、AA-3を7.85質量%、AA-04を7.85質量%、CRNを4.62質量%、TPPを0.08質量%、MEKを19.38質量%、及びCHNを16.70質量%混合し、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニスを得た。
 窒化ホウ素の密度を2.20g/cm、アルミナの密度を3.98g/cm、及びエポキシ樹脂モノマー(樹脂A)とCRNとの混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、70体積%であった。
 上記で得られたエポキシ樹脂ワニスを用いたこと以外は、実施例1と同様にしてBステージのエポキシ樹脂組成物及び硬化エポキシ樹脂組成物を作製し、上記と同様にして評価した。
 その結果を表1に示した。
(実施例3)
<エポキシ樹脂組成物の調製>
 エポキシ樹脂モノマー(樹脂A)を7.84質量%、HP-40を35.68質量%、AA-3を7.85質量%、AA-04を7.85質量%、CRNを4.62質量%、TPPを0.08質量%、及びCHNを36.08質量%混合し、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニスを得た。
 窒化ホウ素の密度を2.20g/cm、アルミナの密度を3.98g/cm、及びエポキシ樹脂モノマー(樹脂A)とCRNとの混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、70体積%であった。
 上記で得られたエポキシ樹脂ワニスを用いたこと以外は、実施例1と同様にしてBステージのエポキシ樹脂組成物及び硬化エポキシ樹脂組成物を作製し、上記と同様にして評価した。
 その結果を表1に示した。
(実施例4)
<エポキシ樹脂組成物の調製>
 エポキシ樹脂モノマー(樹脂A)を7.84質量%、HP-40を35.68質量%、AA-3を7.85質量%、AA-04を7.85質量%、CRNを4.62質量%、TPPを0.08質量%、及びCHNを36.08質量%混合し、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニスを得た。
 窒化ホウ素の密度を2.20g/cm、アルミナの密度を3.98g/cm、及びエポキシ樹脂モノマー(樹脂A)とCRNとの混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、70体積%であった。
<Bステージのエポキシ樹脂組成物の作製>
 上記エポキシ樹脂ワニスを、アプリケーターを用いて乾燥後の厚さが200μmとなるようにPETフィルム上に塗布した後、常温(20~30℃)で5分、更に100℃で10分間乾燥させた。その後、真空プレスにて熱間加圧(プレス温度:150℃、真空度:1kPa、プレス圧:15MPa、加圧時間:1分)を行い、Bステージのエポキシ樹脂組成物を得た。
 上記で得られたBステージのエポキシ樹脂組成物を用いたこと以外は、実施例1と同様にして硬化エポキシ樹脂組成物を作製し、上記と同様にして評価した。
 その結果を表2に示した。
(実施例5)
<エポキシ樹脂組成物の調製>
 エポキシ樹脂モノマー(樹脂A)を6.03質量%、AA-18を48.08質量%、AA-3を17.48質量%、AA-04を7.28質量%、CRNを3.38質量%、TPPを0.06質量%、KBM-573を0.08質量%、MEKを14.47質量%及びCHNを3.14質量%混合し、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニスを得た。
 アルミナの密度を3.98g/cm、及びエポキシ樹脂モノマー(樹脂A)とCRNとの混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、74体積%であった。
<Bステージのエポキシ樹脂組成物の作製>
 上記エポキシ樹脂ワニスを、アプリケーターを用いて乾燥後の厚さが200μmとなるようにPETフィルム上に塗布した後、120℃で10分間乾燥させた。その後、真空プレスにて熱間加圧(プレス温度:150℃、真空度:1kPa、プレス圧:1MPa、加圧時間:1分)を行い、Bステージのエポキシ樹脂組成物を得た。
<銅箔付硬化エポキシ樹脂組成物の作製>
 上記で得られたBステージのエポキシ樹脂組成物のPETフィルムを剥がした後、2枚の銅箔で、銅箔のマット面がそれぞれBステージのエポキシ樹脂組成物に対向するようにして挟み、真空プレスにて真空熱圧着(プレス温度:180℃、真空度:1kPa、プレス圧:4MPa、加圧時間:6分)した。その後、大気圧条件下、150℃で2時間、210℃で4時間加熱し、銅箔付硬化エポキシ樹脂組成物を得た。
 上記で得られたBステージのエポキシ樹脂組成物及び硬化エポキシ樹脂組成物を用い、上記と同様にして評価した。
 その結果を表2に示した。
(実施例6)
<エポキシ樹脂組成物の調製>
 エポキシ樹脂モノマー(樹脂A)を6.03質量%、AA-18を48.08質量%、AA-3を17.48質量%、AA-04を7.28質量%、CRNを3.38質量%、TPPを0.06質量%、KBM-573を0.08質量%、MEKを14.47質量%及びCHNを3.14質量%混合し、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニスを得た。
 アルミナの密度を3.98g/cm、及びエポキシ樹脂モノマー(樹脂A)とCRNとの混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、74体積%であった。
<Bステージのエポキシ樹脂組成物の作製>
 上記エポキシ樹脂ワニスを、アプリケーターを用いて乾燥後の厚さが200μmとなるようにPETフィルム上に塗布した後、100℃で10分間乾燥させた。その後、真空プレスにて熱間加圧(プレス温度:150℃、真空度:1kPa、プレス圧:1MPa、加圧時間:1分)を行い、Bステージのエポキシ樹脂組成物を得た。
 上記で得られたBステージのエポキシ樹脂組成物を用いたこと以外は、実施例5と同様にして硬化エポキシ樹脂組成物を作製し、上記と同様にして評価した。
 その結果を表2に示した。
(実施例7)
<エポキシ樹脂組成物の調製>
 エポキシ樹脂モノマー(樹脂A)を6.03質量%、AA-18を48.08質量%、AA-3を17.48質量%、AA-04を7.28質量%、CRNを3.38質量%、TPPを0.06質量%、KBM-573を0.08質量%、及びCHNを17.61質量%混合し、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニスを得た。
 アルミナの密度を3.98g/cm、及びエポキシ樹脂モノマー(樹脂A)とCRNとの混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、74体積%であった。
 上記で得られたエポキシ樹脂ワニスを用いたこと以外は、実施例5と同様にしてBステージのエポキシ樹脂組成物及び硬化エポキシ樹脂組成物を作製し、上記と同様にして評価した。
 その結果を表2に示した。
(実施例8)
<エポキシ樹脂組成物の調製>
 エポキシ樹脂モノマー(樹脂A)を6.03質量%、AA-18を48.08質量%、AA-3を17.48質量%、AA-04を7.28質量%、CRNを3.38質量%、TPPを0.06質量%、KBM-573を0.08質量%、及びCHNを17.61質量%混合し、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニスを得た。
 アルミナの密度を3.98g/cm、及びエポキシ樹脂モノマー(樹脂A)とCRNとの混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、74体積%であった。
<Bステージのエポキシ樹脂組成物の作製>
 上記エポキシ樹脂ワニスを、アプリケーターを用いて乾燥後の厚さが200μmとなるようにPETフィルム上に塗布した後、100℃で10分間乾燥させた。その後、真空プレスにて熱間加圧(プレス温度:150℃、真空度:1kPa、プレス圧:1MPa、加圧時間:1分)を行い、Bステージのエポキシ樹脂組成物を得た。
 上記で得られたBステージのエポキシ樹脂組成物を用いたこと以外は、実施例5と同様にして硬化エポキシ樹脂組成物を作製し、上記と同様にして評価した。
 その結果を表2に示した。
(比較例1)
<エポキシ樹脂組成物の調製>
 エポキシ樹脂モノマー(樹脂A)を7.84質量%、HP-40を35.68質量%、AA-3を7.85質量%、AA-04を7.85質量%、CRNを4.62質量%、TPPを0.08質量%、及びCHNを36.08質量%混合し、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニスを得た。
 窒化ホウ素の密度を2.20g/cm、アルミナの密度を3.98g/cm、及びエポキシ樹脂モノマー(樹脂A)とCRNとの混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、70体積%であった。
<Bステージのエポキシ樹脂組成物の作製>
 上記エポキシ樹脂ワニスを、アプリケーターを用いて乾燥後の厚さが200μmとなるようにPETフィルム上に塗布した後、常温(20~30℃)で5分、更に100℃で5分間乾燥させた。その後、真空プレスにて熱間加圧(プレス温度:150℃、真空度:1kPa、プレス圧:15MPa、加圧時間:1分)を行い、Bステージのエポキシ樹脂組成物を得た。
 上記で得られたBステージのエポキシ樹脂組成物を用いたこと以外は、実施例1と同様にして硬化エポキシ樹脂組成物を作製し、上記と同様にして評価した。
 その結果を表1に示した。
(比較例2)
<エポキシ樹脂組成物の調製>
 エポキシ樹脂モノマー(樹脂A)を6.03質量%、AA-18を48.08質量%、AA-3を17.48質量%、AA-04を7.28質量%、CRNを3.38質量%、TPPを0.06質量%、KBM-573を0.08質量%、及びCHNを17.61質量%混合し、溶剤を含むエポキシ樹脂組成物としてエポキシ樹脂ワニスを得た。
 アルミナの密度を3.98g/cm、及びエポキシ樹脂モノマー(樹脂A)とCRNとの混合物の密度を1.20g/cmとして、エポキシ樹脂組成物の全固形分の全体積に対する無機充填材の割合を算出したところ、74体積%であった。
<Bステージのエポキシ樹脂組成物の作製>
 上記エポキシ樹脂ワニスを、アプリケーターを用いて乾燥後の厚さが200μmとなるようにPETフィルム上に塗布した後、100℃で5分間乾燥させた。その後、真空プレスにて熱間加圧(プレス温度:150℃、真空度:1kPa、プレス圧:1MPa、加圧時間:1分)を行い、Bステージのエポキシ樹脂組成物を得た。
 上記で得られたBステージのエポキシ樹脂組成物を用いたこと以外は、実施例5と同様にして硬化エポキシ樹脂組成物を作製し、上記と同様にして評価した。
 その結果を表1に示した。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
 同じ組成の実施例3、4と、比較例1を比較すると、乾燥条件は、実施例3が130℃、5分、実施例4が100℃、10分で、比較例1が100℃、5分で熱間加圧はすべて同じ条件であり、Bステージのエポキシ樹脂組成物に含まれる全樹脂量中の硬化剤のモノマー含有率が、乾燥条件で異なる。硬化剤のモノマー含有率は、0.34質量%(実施例3、130℃、5分)<0.52質量%(実施例4、100℃、10分)<0.65質量%(比較例1、100℃、5分)で加熱温度及び加熱時間により変化し、硬化剤のモノマー含有率が少ないほど、熱伝導率が高くなる(16.7W/(m・K)(実施例3)>14.8W/(m・K)(実施例4)>8.4W/(m・K)(比較例1))。同様なことが同じ組成の実施例7、8、比較例2にも言え、乾燥時の加熱温度が高く、時間が長いほど硬化剤のモノマー含有率が少なくなり熱伝導率が高くなる。乾燥条件が同じ場合でも、溶剤によって硬化剤のモノマー含有率が変化し、実施例1~3では、MEK量が多いと硬化剤のモノマー含有率が少なくなる傾向にある。実施例5と実施例7、実施例6と実施例8にも同様な傾向がみられる。
 以上の結果より、エポキシ樹脂組成物のBステージにおける硬化剤中のモノマー成分を全樹脂量の0.6質量%以下とすることで、高い熱伝導性を発揮することがわかった。
 2015年1月29日に出願された日本国特許出願2015-15402号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (17)

  1. (A)成分:メソゲン骨格を有するエポキシ樹脂と、(B)成分:2価のフェノール化合物をノボラック化したノボラック樹脂を含む硬化剤と、(C)成分:無機充填材とを含み、その半硬化状態(Bステージ)における前記(B)成分の硬化剤中のモノマー成分が、全樹脂量の0.6質量%以下であるエポキシ樹脂組成物。
  2. 前記エポキシ樹脂組成物のBステージ及び前記エポキシ樹脂組成物の硬化物の少なくとも一方が、スメクチック構造を形成する請求項1に記載のエポキシ樹脂組成物。
  3. 前記(A)成分のメソゲン骨格を有するエポキシ樹脂が、下記一般式(I)で表される化合物を含む請求項1又は請求項2に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    [一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。]
  4. 前記(B)成分の硬化剤が、下記一般式(II-1)及び下記一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含むノボラック樹脂を含む請求項1~請求項3のいずれか一項に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002

    [一般式(II-1)及び一般式(II-2)中、R21及びR24はそれぞれ独立に、アルキル基、アリール基又はアラルキル基を表す。R22、R23、R25及びR26はそれぞれ独立に、水素原子、アルキル基、アリール基又はアラルキル基を表す。m21及びm22はそれぞれ独立に0~2の整数を表す。n21及びn22はそれぞれ独立に1~7の整数を表す。]
  5. 前記(B)成分の硬化剤が、下記一般式(III-1)~下記一般式(III-4)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含むノボラック樹脂を含む請求項1~請求項3のいずれか一項に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    [一般式(III-1)~一般式(III-4)中、m31~m34及びn31~n34はそれぞれ独立に、正の整数を表す。Ar31~Ar34はそれぞれ独立に、下記一般式(III-a)で表される基及び下記一般式(III-b)で表される基のいずれか1つを表す。]
    Figure JPOXMLDOC01-appb-C000007

    [一般式(III-a)及び一般式(III-b)中、R31及びR34はそれぞれ独立に、水素原子又は水酸基を表す。R32及びR33はそれぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。]
  6. 前記(B)成分の硬化剤は、前記ノボラック樹脂を構成するフェノール化合物であるモノマー成分の含有比率が5質量%~80質量%である請求項1~請求項5のいずれか一項に記載のエポキシ樹脂組成物。
  7. 前記(C)成分の無機充填材は、窒化ホウ素、アルミナ、酸化マグネシウム、シリカ及び窒化アルミニウムからなる群より選択される少なくとも1種である請求項1~請求項6のいずれか一項に記載のエポキシ樹脂組成物。
  8. 請求項1~請求項7のいずれか一項に記載のエポキシ樹脂組成物のシート状成形体である樹脂シート。
  9. Bステージである請求項8に記載の樹脂シート。
  10. 繊維基材と、前記繊維基材に含浸された請求項1~請求項7のいずれか一項に記載のエポキシ樹脂組成物と、を有するプリプレグ。
  11. (A)成分:メソゲン骨格を有するエポキシ樹脂と、(B)成分:2価のフェノール化合物をノボラック化したノボラック樹脂を含む硬化剤と、(C)成分:無機充填材とを含み、前記(B)成分の硬化剤中のモノマー成分が、全樹脂量の0.6質量%以下である半硬化エポキシ樹脂組成物。
  12. 粘度が、25℃~30℃の範囲で10Pa・s~10Pa・sであり、100℃で10Pa・s~10Pa・sである請求項11に記載の半硬化エポキシ樹脂組成物。
  13. スメクチック構造を含む請求項11又は請求項12に記載の半硬化エポキシ樹脂組成物。
  14. 前記(A)成分のメソゲン骨格を有するエポキシ樹脂が、下記一般式(I)で表される化合物を含む請求項11~請求項13のいずれか一項に記載の半硬化エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000008

    [一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。]
  15. 前記(B)成分の硬化剤が、下記一般式(II-1)及び下記一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含むノボラック樹脂を含む請求項11~請求項14のいずれか一項に記載の半硬化エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000009

    [一般式(II-1)及び一般式(II-2)中、R21及びR24はそれぞれ独立に、アルキル基、アリール基又はアラルキル基を表す。R22、R23、R25及びR26はそれぞれ独立に、水素原子、アルキル基、アリール基又はアラルキル基を表す。m21及びm22はそれぞれ独立に0~2の整数を表す。n21及びn22はそれぞれ独立に1~7の整数を表す。]
  16. 前記(B)成分の硬化剤が、下記一般式(III-1)~下記一般式(III-4)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含むノボラック樹脂を含む請求項11~請求項14のいずれか一項に記載の半硬化エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000010

    Figure JPOXMLDOC01-appb-C000011

    Figure JPOXMLDOC01-appb-C000012

    Figure JPOXMLDOC01-appb-C000013

    [一般式(III-1)~一般式(III-4)中、m31~m34及びn31~n34はそれぞれ独立に、正の整数を表す。Ar31~Ar34はそれぞれ独立に、下記一般式(III-a)で表される基及び下記一般式(III-b)で表される基のいずれか1つを表す。]
    Figure JPOXMLDOC01-appb-C000014

    [一般式(III-a)及び一般式(III-b)中、R31及びR34はそれぞれ独立に、水素原子又は水酸基を表す。R32及びR33はそれぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。]
  17. 前記(C)成分の無機充填材は、窒化ホウ素、アルミナ、酸化マグネシウム、シリカ及び窒化アルミニウムからなる群より選択される少なくとも1種である請求項11~請求項16のいずれか一項に記載の半硬化エポキシ樹脂組成物。
PCT/JP2016/052185 2015-01-29 2016-01-26 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、樹脂シート及びプリプレグ WO2016121758A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016572060A JPWO2016121758A1 (ja) 2015-01-29 2016-01-26 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、樹脂シート及びプリプレグ
CN201680007519.XA CN107207701B (zh) 2015-01-29 2016-01-26 环氧树脂组合物、半固化环氧树脂组合物、树脂片及预浸渍体
KR1020177020806A KR102539483B1 (ko) 2015-01-29 2016-01-26 에폭시 수지 조성물, 반경화 에폭시 수지 조성물, 수지 시트 및 프리프레그

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-015402 2015-01-29
JP2015015402 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016121758A1 true WO2016121758A1 (ja) 2016-08-04

Family

ID=56543369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052185 WO2016121758A1 (ja) 2015-01-29 2016-01-26 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、樹脂シート及びプリプレグ

Country Status (5)

Country Link
JP (1) JPWO2016121758A1 (ja)
KR (1) KR102539483B1 (ja)
CN (1) CN107207701B (ja)
TW (1) TW201641583A (ja)
WO (1) WO2016121758A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096601A1 (ja) * 2016-11-22 2018-05-31 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁層付き物品
WO2018096602A1 (ja) * 2016-11-22 2018-05-31 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁層付き物品
WO2018096603A1 (ja) * 2016-11-22 2018-05-31 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁層付き物品
WO2018235918A1 (ja) * 2017-06-23 2018-12-27 積水化学工業株式会社 樹脂材料、樹脂材料の製造方法及び積層体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200143356A (ko) * 2018-04-10 2020-12-23 쇼와덴코머티리얼즈가부시끼가이샤 에폭시 수지, 에폭시 수지 조성물, 에폭시 수지 경화물 및 복합 재료

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288247A (ja) * 2000-04-06 2001-10-16 Matsushita Electric Works Ltd リン含有エポキシ樹脂組成物及び、該リン含有エポキシ樹脂を用いる難燃性の樹脂シート、樹脂付き金属箔、プリプレグ及び積層板、多層板
JP2011094005A (ja) * 2009-10-29 2011-05-12 Shin Kobe Electric Mach Co Ltd エポキシ樹脂組成物の製造法、並びにプリプレグの製造法、積層板及び配線板の製造法
WO2011135925A1 (ja) * 2010-04-27 2011-11-03 住友化学株式会社 ジエポキシ化合物、その製造方法および該ジエポキシ化合物を含む組成物
JP2012017405A (ja) * 2010-07-08 2012-01-26 Nippon Steel Chem Co Ltd エポキシ樹脂組成物、成形物、ワニス、フィルム状接着剤及びフィルム状接着剤付き銅箔
JP2013227451A (ja) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP2013234313A (ja) * 2011-11-02 2013-11-21 Hitachi Chemical Co Ltd エポキシ樹脂組成物、その半硬化体および硬化体、並びにそれを用いた樹脂シート、プリプレグ、積層板、金属基板、プリント配線板、およびパワー半導体装置
JP2016023227A (ja) * 2014-07-18 2016-02-08 日立化成株式会社 エポキシ樹脂組成物、熱伝導材料前駆体、bステージシート、プリプレグ、放熱材料、積層板、金属基板及びプリント配線板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107312161B (zh) * 2011-11-02 2021-10-26 日立化成株式会社 环氧树脂组合物、半固化或固化环氧树脂组合物及它们的制造方法、使用这些组合物的产品
US10000679B2 (en) * 2012-07-05 2018-06-19 Hitachi Chemical Company, Ltd. Phenolic resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288247A (ja) * 2000-04-06 2001-10-16 Matsushita Electric Works Ltd リン含有エポキシ樹脂組成物及び、該リン含有エポキシ樹脂を用いる難燃性の樹脂シート、樹脂付き金属箔、プリプレグ及び積層板、多層板
JP2011094005A (ja) * 2009-10-29 2011-05-12 Shin Kobe Electric Mach Co Ltd エポキシ樹脂組成物の製造法、並びにプリプレグの製造法、積層板及び配線板の製造法
WO2011135925A1 (ja) * 2010-04-27 2011-11-03 住友化学株式会社 ジエポキシ化合物、その製造方法および該ジエポキシ化合物を含む組成物
JP2012017405A (ja) * 2010-07-08 2012-01-26 Nippon Steel Chem Co Ltd エポキシ樹脂組成物、成形物、ワニス、フィルム状接着剤及びフィルム状接着剤付き銅箔
JP2013234313A (ja) * 2011-11-02 2013-11-21 Hitachi Chemical Co Ltd エポキシ樹脂組成物、その半硬化体および硬化体、並びにそれを用いた樹脂シート、プリプレグ、積層板、金属基板、プリント配線板、およびパワー半導体装置
JP2013227451A (ja) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP2016023227A (ja) * 2014-07-18 2016-02-08 日立化成株式会社 エポキシ樹脂組成物、熱伝導材料前駆体、bステージシート、プリプレグ、放熱材料、積層板、金属基板及びプリント配線板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096601A1 (ja) * 2016-11-22 2018-05-31 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁層付き物品
WO2018096602A1 (ja) * 2016-11-22 2018-05-31 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁層付き物品
WO2018096603A1 (ja) * 2016-11-22 2018-05-31 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁層付き物品
WO2018235918A1 (ja) * 2017-06-23 2018-12-27 積水化学工業株式会社 樹脂材料、樹脂材料の製造方法及び積層体

Also Published As

Publication number Publication date
CN107207701A (zh) 2017-09-26
KR102539483B1 (ko) 2023-06-02
KR20170109551A (ko) 2017-09-29
TW201641583A (zh) 2016-12-01
CN107207701B (zh) 2020-07-24
JPWO2016121758A1 (ja) 2017-11-09

Similar Documents

Publication Publication Date Title
JP7201029B2 (ja) エポキシ樹脂組成物、樹脂シート、プリプレグ、樹脂付金属箔、金属基板、及びパワー半導体装置
JP6304419B2 (ja) 樹脂組成物、並びにそれを用いた樹脂シート、プリプレグ、積層板、金属基板、プリント配線板及びパワー半導体装置
JP6311820B2 (ja) エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、配線板、半硬化エポキシ樹脂組成物の製造方法及び硬化エポキシ樹脂組成物の製造方法
JP6102082B2 (ja) エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP5928477B2 (ja) 樹脂組成物、並びにそれを用いた樹脂シート、プリプレグ、積層板、金属基板及びプリント配線板
WO2016121758A1 (ja) エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、樹脂シート及びプリプレグ
JP2016155985A (ja) エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、及びそれらを用いた樹脂シート、プリプレグ、積層板、金属基板、配線板、パワー半導体装置
WO2016098709A1 (ja) エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、エポキシ樹脂組成物の製造方法、及び硬化体
JP7115538B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、樹脂シート、bステージシート、cステージシート、硬化物、樹脂付金属箔、金属基板、及びパワー半導体装置
WO2017145413A1 (ja) エポキシ樹脂組成物、樹脂シート、bステージシート、cステージシート、硬化物、樹脂付金属箔及び金属基板
JP6132041B2 (ja) 樹脂組成物、並びにそれを用いた樹脂シート、プリプレグ、積層板、金属基板及びプリント配線板
WO2017209210A1 (ja) エポキシ樹脂組成物、bステージシート、硬化エポキシ樹脂組成物、樹脂シート、樹脂付金属箔、及び金属基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572060

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177020806

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743361

Country of ref document: EP

Kind code of ref document: A1