WO2016121419A1 - 円すいころ軸受 - Google Patents

円すいころ軸受 Download PDF

Info

Publication number
WO2016121419A1
WO2016121419A1 PCT/JP2016/050147 JP2016050147W WO2016121419A1 WO 2016121419 A1 WO2016121419 A1 WO 2016121419A1 JP 2016050147 W JP2016050147 W JP 2016050147W WO 2016121419 A1 WO2016121419 A1 WO 2016121419A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer ring
tapered roller
raceway surface
tapered
diameter side
Prior art date
Application number
PCT/JP2016/050147
Other languages
English (en)
French (fr)
Inventor
崇 川井
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015219472A external-priority patent/JP6798780B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP16743023.0A priority Critical patent/EP3252326B1/en
Priority to MX2017009747A priority patent/MX2017009747A/es
Priority to US15/542,181 priority patent/US10288114B2/en
Priority to CN201680004950.9A priority patent/CN107110204B/zh
Publication of WO2016121419A1 publication Critical patent/WO2016121419A1/ja
Priority to US16/298,146 priority patent/US10619668B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/088Ball or roller bearings self-adjusting by means of crowning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/50Crowning, e.g. crowning height or crowning radius
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture

Definitions

  • the present invention relates to a tapered roller bearing.
  • Transmission units and differential units are required to be compact for the purpose of reducing fuel consumption and expanding vehicle interior space.
  • tapered roller bearings incorporated in transmission units and the like are also required to have low torque and compactness, and in order to realize this, an increase in load capacity is required.
  • Patent Document 1 discloses a tapered roller bearing in which a load coefficient is improved by increasing a roller coefficient (roller filling rate) from 0.94.
  • the contact surface pressure with the rolling surface of the inner ring raceway surface is usually higher than the contact surface pressure with the rolling surface of the outer ring rolling surface. Therefore, many of the raceway surfaces composed of the above composite crowning surfaces are applied to the rolling surface of the inner ring where the load conditions are severe, but in reality, the raceway surface of the outer ring where the load conditions are relatively loose is actually applied. It has hardly been applied.
  • the present inventors examined the application of the composite crowning surface not only to the inner ring raceway surface but also to the outer ring raceway surface in order to meet the recent demand for further increase in load capacity for tapered roller bearings.
  • the following problems became clear. That is, in order to avoid excessive edge loading due to contact between the raceway surface of the outer ring and the end of the tapered roller, the radius of curvature of the small arc portion provided at the end of the raceway surface of the outer ring is made as small as possible (that is, It was thought that it was preferable to make the curvature as large as possible) and to separate as much as possible from the rolling surface of the tapered roller.
  • the present invention aims to increase the productivity of tapered roller bearings in which a composite crowning surface is applied to the raceway surface of the outer ring.
  • the outer ring and inner ring raceway surfaces are usually subjected to super finishing after grinding.
  • the superfinishing process for example, as shown in Patent Document 2 described above, the grindstone is reciprocated along the generatrix direction of the raceway surface with the grindstone pressed against the raceway surface while rotating the outer ring or the inner ring. (See FIG. 7).
  • the present inventor performed the above-described superfinishing on the raceway surface of the outer ring composed of the composite crowning surface, and it became clear that the cycle time becomes longer as the curvature of the end curve of the raceway surface is larger. .
  • the cause is considered as follows.
  • the grinding wheel itself is deformed (worn) following the raceway surface while machining the raceway surface with the grinding stone, so that the contact state between the grinding wheel and the raceway surface becomes good, and the processing efficiency is increased. That is, the grindstone is worn by following the large arc portion by polishing the large arc portion at the center of the raceway surface, and then the grindstone is reduced by polishing the small arc portion at the end of the raceway surface with this grindstone. Wear along the arc. At this time, if the difference in curvature between the large arc portion and the small arc portion is large, it takes time for the grindstone worn along the large arc portion to follow the small arc portion, and the machining efficiency during this time decreases. Similarly, it takes time for the grindstone worn following the small arc portion to follow the large arc portion, further reducing the machining efficiency.
  • the present invention provides an inner ring having a tapered raceway surface on the outer peripheral surface, an outer ring having a tapered raceway surface on the inner peripheral surface, a raceway surface of the inner ring, and a raceway surface of the outer ring.
  • a tapered roller bearing including a plurality of tapered rollers which are arranged to freely roll between and having a tapered rolling surface on an outer peripheral surface, and a cage for holding the plurality of tapered rollers at a predetermined interval.
  • the outer ring raceway surface is a composite crowning surface comprising a central curve provided at a central portion in the generatrix direction and end curves having a smaller radius of curvature than the central curve provided on both sides of the central curve in the generatrix direction.
  • the central curve or the end curve is not limited to the arc curve but includes a non-arc curve (for example, a logarithmic curve).
  • a non-arc curve for example, a logarithmic curve
  • the minimum radii of curvature in the non-arc curve are defined as radii of curvature R 1 , R 2 , R 3 .
  • the difference between the curvature radius R 1 of the central curve and the curvature radii R 2 and R 3 of the end curves is kept within a predetermined range, and the drop amount of each end curve
  • the cycle time of the superfinishing process is shortened, and the productivity is improved.
  • the drop amount at both ends of the raceway surface of the outer ring is 0.02 mm or more.
  • the end (end curve) of the raceway surface of the outer ring can be sufficiently separated from the tapered roller, so that contact between the corner of the tapered roller and the raceway surface of the outer ring is avoided as much as possible. Generation of an edge load can be reliably prevented.
  • the preload applied to the tapered roller bearing is released, and the outer ring may move to the smaller diameter side in the axial direction with respect to the tapered roller.
  • the rolling surface of the tapered roller overhangs from the raceway surface of the outer ring to the large diameter side, and an excessive edge load may occur.
  • the aluminum housing has a large amount of thermal expansion, and thus the above problem becomes significant when the outer ring is fixed to the inner peripheral surface of the aluminum housing. Even when such thermal expansion occurs, if the preload is increased so that preload loss does not occur, the load applied to the bearing during normal use becomes excessive and the bearing life is shortened.
  • the tapered roller rolling surface (hereinafter also referred to as “roller rolling surface”) is the outer ring raceway surface. It is preferable to set the width in the generatrix direction of the raceway surface of the outer ring with respect to the roller rolling surface so that it does not overhang on the large diameter side. Specifically, in the state where the inner ring, the outer ring, and the plurality of tapered rollers are arranged at regular positions, the dimension in the generatrix direction of the region on the larger diameter side from the rolling surface of each tapered roller in the raceway surface of the outer ring. W 2 (see FIG.
  • the “state in which the inner ring, the outer ring, and the tapered roller are disposed at regular positions” means a state in which an appropriate axial preload is applied to the inner ring and the outer ring.
  • a downward load is applied to the inner ring.
  • the plurality of tapered rollers arranged at equal intervals in the circumferential direction most of the load is applied to the lower half tapered rollers, and the tapered rollers near the upper end are substantially unloaded.
  • the distance between the raceway surfaces of the inner and outer rings that sandwich the tapered rollers near the upper end to which almost no load is applied is slightly widened, and the tapered rollers can move to the smaller diameter side in the axial direction with respect to the outer ring. Yes (see dotted line in FIG. 6).
  • the raceway surface of the outer ring is placed on the rolling surface of the tapered roller at the normal position (solid line in FIG. 6). It is necessary to extend to the smaller diameter side than reference).
  • the inner ring, the outer ring, and the plurality of tapered rollers are arranged at regular positions, the distance W 3 between the small-diameter side end surface of each tapered roller and the small collar portion of the inner ring is reduced.
  • the movement can be restricted by bringing the tapered roller into contact with the small collar portion of the inner ring, so that the width in the generatrix direction of the raceway surface of the outer ring can be reduced.
  • the distance W 3 above it is preferable to 0.4mm or less.
  • the small diameter side end surface of the outer ring is set.
  • the amount of drop can be reduced by reducing the width of the end curve without moving the position.
  • the position of the small-diameter side end surface of the outer ring can be moved in the same manner as described above by providing a cylindrical surface between the chamfered portion provided at the small-diameter side end portion of the inner peripheral surface of the outer ring and the raceway surface.
  • the drop amount can be reduced by reducing the width of the end curve.
  • the cycle time of superfinishing of the raceway surface of the outer ring composed of the composite crowning surface is shortened, and the productivity can be increased.
  • FIG. 2 is an axial cross-sectional view showing a state where an outer ring of the tapered roller bearing of FIG. 1 has moved in the axial direction. It is an enlarged view of the tapered roller bearing of FIG. It is a side view which shows a mode that super finishing is given to the track surface of an outer ring.
  • the tapered roller bearing 1 of the present embodiment includes an inner ring 2 having a tapered raceway surface 2a on the outer peripheral surface, and an outer ring 3 having a tapered raceway surface 3a on the inner peripheral surface.
  • a plurality of tapered rollers 4 having a tapered rolling surface 4a on the outer circumferential surface and a tapered roller 4 are arranged in a circumferential direction between the raceway surface 2a of the inner ring 2 and the raceway surface 3a of the outer ring 3. It is comprised with the holder
  • the inner ring 2, the outer ring 3, and the tapered roller 4 are made of a steel material, for example, bearing steel, carburized steel, stainless steel or the like.
  • the cage 5 is integrally formed of metal or resin.
  • the small diameter side (left side in FIG. 1) of the tapered roller 4 in the axial direction is the “small diameter side”
  • the large diameter side of the tapered roller 4 (right side in FIG. 1). ) Is called the “large diameter side”.
  • This tapered roller bearing 1 is incorporated into, for example, a transmission unit or a differential unit of an automobile. Specifically, as shown in FIG. 1, the outer peripheral surface 3 b of the outer ring 3 is press-fitted into the inner peripheral surface 10 a of the housing 10, and the inner peripheral surface 2 b of the inner ring 2 is press-fitted into the outer peripheral surface 20 a of the shaft 20.
  • the housing 10 is made of, for example, aluminum
  • the shaft 20 is made of, for example, chrome molybdenum steel.
  • the shoulder surface 10b of the housing 10 and the shoulder surface 20b of the shaft 20 sandwich and press the end surface 3c on the small diameter side of the outer ring 3 and the end surface 2c on the large diameter side of the inner ring 2 from both sides in the axial direction.
  • An axial preload is applied to 1.
  • a shim 30 is interposed between the end surface 3c on the small-diameter side of the outer ring 3 and the shoulder surface 10b of the housing 10, and the preload applied to the tapered roller bearing 1 is set by appropriately setting the thickness of the shim 30. The size of is adjusted.
  • the inner ring 2 has a small collar portion 2d provided on the small diameter side of the raceway surface 2a and a large collar portion 2e provided on the large diameter side of the raceway surface 2a.
  • the raceway surface 2a of the inner ring 2 is a crowning surface composed of a single curve, or a composite crowning surface composed of a central curve and end curves provided on both sides thereof. Each curve is composed of an arc or a logarithmic curve.
  • the raceway surface 3a of the outer ring 3 includes a central curve 3a1 provided at the central portion in the busbar direction, and a small-diameter side end curve 3a2 adjacent to the small-diameter side (left side in the drawing) of the central curve 3a1. And an end curve 3a3 on the large diameter side adjacent to the large diameter side (right side in the figure) of the central curve 3a1.
  • the central curve 3a1 is arcuate curve of radius of curvature R 1
  • the end portion curves 3a2 of the small-diameter side is circular arc curve of radius of curvature R 2
  • the end portion curves 3a3 of the large diameter side is the radius of curvature R 3 It is an arc curve.
  • the central curve 3a1 and the end curves 3a2 and 3a3 are smoothly continuous so as to have a common tangent line at the boundaries P 1 and P 2 .
  • the curvatures of the curves 3a1, 3a2, 3a3 of the raceway surface 3a are exaggerated.
  • the ratios R 2 / R 1 , R 3 / R 1 of the curvature radii R 2 and R 3 of the end curves 3 a 2 and 3 a 3 of the raceway surface 3 a of the outer ring 3 and the curvature radius R 1 of the central curve 3 a 1 are 0. It is set to be 02 or more, preferably 0.04 or more.
  • R 2 / R 1 and R 3 / R 1 are set to 0.3 or less, preferably 0.1 or less.
  • the drop amounts D 1 and D 2 of the end curves 3a2 and 3a3 are both 0.02 mm or more and 0.07 mm or less.
  • the drop amounts D 1 and D 2 of the end curves 3a2 and 3a3 are orthogonal to the generatrix direction of the raceway surface 3a (specifically, the linear direction connecting both ends (boundaries P 1 and P 2 ) of the central curve 3a1). This is the width of each end curve 3a2, 3a3 in the direction to be.
  • the axial width W 1 (see FIG. 6) of the chamfered portion 3d provided at the small-diameter end of the inner peripheral surface of the outer ring 3 is large, the end on the small-diameter side of the raceway surface 3a.
  • the axial direction width of the partial curve 3a2 is reduced.
  • Axial width W 1 of the chamfered portion 3d is an example 0.5mm or more.
  • the axial width W 1 of the chamfered portion 3d is, for example, 1.0mm or less.
  • the rolling surface 4a of the tapered roller 4 is constituted by a substantially linear tapered surface, a crowning surface made of a single curve, or a composite crowning surface made of a central curve and end curves provided on both sides thereof. At both ends of the outer peripheral surface of the tapered roller 4, chamfered portions 4b and 4c adjacent to the rolling surface 4a are formed.
  • the cage 5 has a small-diameter-side annular portion 5a, a large-diameter-side annular portion 5b, and a plurality of column portions 5c that connect the small-diameter-side annular portion 5a and the large-diameter-side annular portion 5b in the axial direction (FIG. 1 and FIG. (See FIG. 2).
  • the cage 5 is disposed on the outer diameter side of the center of the tapered roller 4 and at a position not in contact with the outer ring 3.
  • the column surface 5d that contacts the tapered roller 4 is inclined so that the distance from the column surface 5d that faces in the circumferential direction increases toward the inner diameter.
  • the inner ring 2 and the outer ring 3 rotate relative to each other while the large-diameter side end surface 4e of the tapered roller 4 and the large collar portion 2e of the inner ring 2 are in sliding contact with each other.
  • the rolling surface 4a of the tapered roller 4 is larger than the raceway surface 3a of the outer ring 3. May overhang and cause excessive edge loading.
  • the raceway surface 3a of the outer ring 3 is larger in diameter than the rolling surface 4a of the tapered roller 4.
  • the dimension W 2 in the generatrix direction (that is, the distance in the generatrix direction between the large-diameter side end of the rolling surface 4a of the tapered roller 4 and the large-diameter side end of the raceway surface 3a of the outer ring 3) eliminates preload loss. It is preferable to ensure a larger size in consideration. In particular, when the housing 10 is made of aluminum, the amount of thermal expansion of the housing 10 increases, so that the preload of the tapered roller bearing 1 is easily released. In this case, the generatrix direction dimension W 2 of the region is preferably, for example, 0.6mm or more.
  • the distance W 3 (see FIG. 6) between the end surface 4d on the small diameter side of the tapered roller 4 and the small flange portion 2d of the inner ring 2 is set to be small in advance.
  • the raceway surface 3a of the outer ring 3 (particularly, the end curve 3a2 on the small diameter side) does not extend to the small diameter side, and the track surface 3a of the outer ring 3 is moved.
  • the overhang to the small diameter side of the rolling surface 4a of the tapered roller 4 can be prevented.
  • the distance W 3 when the distance W 3 is too small, the oil from the gap between the small rib portion 2d of the end face 4d and the inner ring 2 of the small diameter side of the tapered roller 4 is less likely to flow, the distance W 3 above 0 .2 mm or more is preferable.
  • the raceway surface 2 a of the inner ring 2, the raceway surface 3 a of the outer ring 3, and the rolling surface 4 a of the tapered roller 4 are subjected to superfinishing after being ground.
  • the superfinishing process for the raceway surface 3a of the outer ring 3 is performed along the generatrix direction of the raceway surface 3a while pressing the grindstone 6 against the raceway surface 3a in a state where the outer ring 3 is rotated around the central axis as shown in FIG. This is done by reciprocating.
  • the grindstone 6 may be slightly vibrated in the direction of the generatrix while reciprocating the grindstone 6 over the entire raceway surface 3a.
  • the difference between the curvature radius R 1 of the central curve 3a1 and the curvature radii R 2 and R 3 of the end curves 3a2 and 3a3 is relatively small (R 2 / R 1 ⁇ 0.02, R 3 / R 1 ⁇ 0.02), the grindstone 6 when the grindstone 6 moves from the central curve 3a1 to the end curves 3a2, 3a3, or from the end curves 3a2, 3a3 to the central curve 3a1.
  • the amount of deformation at the tip of can be relatively small.
  • the grindstone 6 follows the respective curves 3a1, 3a2, 3a3 at an early stage and is efficiently processed, so that the cycle time of superfinishing is shortened and the productivity of the tapered roller bearing 1 is increased.
  • the present invention is not limited to the above embodiment.
  • the case where the central curve 3a1 and the end curves 3a2 and 3a3 of the raceway surface 3a of the outer ring 3 are both arc-shaped curves is shown, but not limited to this, any or all of these may be used. It is good also as a non-arc curve (for example, logarithmic curve).
  • the central curve 3a1 can be an arc curve
  • both end curves 3a2 and 3a3 can be logarithmic curves.
  • the radius of curvature R 3 of the curvature radius R 2 and the large diameter side end portion curves 3a3 of the smaller diameter end curves 3a2 may be the same or may be different.
  • the curvature radius ratios R 2 / R 1 and R 3 / R 1 of the center curve and end curve of the outer ring raceway surface are 0.02 or more, and the drop amount of the end curve is 0.07 mm.
  • the cycle time of superfinishing of the outer ring raceway surface was 30 seconds or less.
  • Comparative Examples 1 to 5 in which R 2 / R 1 and R 3 / R 1 are smaller than 0.02 and the drop amount of the end curve is larger than 0.07 mm are super-finishing of the outer ring raceway surface. Cycle time was longer than 30 seconds.
  • the drop amount of the end curve of the outer ring raceway surface is 0.02 mm or more
  • the width W 2 of the region on the larger diameter side from the tapered roller of the outer ring raceway surface is 0.6 mm or more
  • distance W 3 between the small-diameter side end face of the tapered roller inner ring of the small rib portion is 0.4mm or less.
  • Example 8 since the drop amount of the end curve of the outer ring raceway surface was less than 0.02 mm, excessive edge stress was generated, and damage was generated from the edge portion.
  • the drop amount of the end curve of the outer ring raceway surface is 0.02 mm or more, but the width W 2 of the region on the larger diameter side from the tapered roller on the outer ring raceway surface is smaller.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 円すいころ軸受1の外輪3の軌道面3aが、母線方向中央部に設けられた中央曲線3a1と、該中央曲線3a1の母線方向両側に設けられ、中央曲線3a1よりも曲率半径の小さい端部曲線3a2,3a3とからなる複合クラウニング面で構成される。外輪3の軌道面3aの全面には、超仕上げが施されている。中央曲線3a1の曲率半径Rと各端部曲線3a2,3a3の曲率半径R,Rとの比R/R,R/Rは何れも0.02以上である。各端部曲線3a2,3a3のドロップ量は何れも0.07mm以下である。

Description

円すいころ軸受
 本発明は、円すいころ軸受に関する。
 自動車のトランスミッションユニットやデファレンシャルユニット(以下、トランスミッションユニット等と言う。)は、低燃費化や車内空間の拡大を目的としてコンパクト化が要求されている。これに伴って、トランスミッションユニット等に組み込まれる円すいころ軸受にも、低トルク化、コンパクト化が要求されており、これを実現するために負荷容量の増大が求められている。例えば特許文献1には、ころ係数(ころ充填率)を0.94より大きくすることで、負荷容量の向上を図った円すいころ軸受が示されている。
 近年、トランスミッションユニット等へのコンパクト化の要求が益々強まっており、これに組み込まれる軸受にも負荷容量のさらなる増大が求められている。また、トランスミッションユニット等のコンパクト化を目的として、アルミハウジングの採用やハウジングの肉厚削減が検討されている。この場合、ユニット全体の剛性が低下し、円すいころ軸受に大きなモーメント荷重が加わるため、円すいころ軸受の負荷条件はさらに厳しくなる。また、アルミハウジングを採用した場合、ハウジングの熱膨張量が大きくなり、円すいころ軸受の予圧の低下(いわゆる「予圧抜け」)が生じやすくなるため、円すいころ軸受にはさらなる高機能化が要求される。
 上記のように、円すいころ軸受に対する要求は益々厳しくなっており、特許文献1のようにころ係数を大きくするだけでは対応することが難しくなっている。
 円すいころ軸受の負荷容量をさらに高める方法として、例えば、内輪及び外輪の軌道面にクラウニング形状を付与することが知られている。例えば特許文献2には、軌道面の母線方向中央部を曲率半径の大きい円弧曲線(大円弧部)とすると共に、軌道面の母線方向両端部を曲率半径の小さい円弧曲線(小円弧部)とした、いわゆる複合クラウニング面からなる軌道面が示されている。このように、軌道面を複合クラウニング面とすることで、通常の使用時には、軌道面の中央の大円弧部ところとを接触させることで、両者の接触長さを大きくして面圧を下げ、早期の表面起点剥離等の不具合を防止することができる。一方、軌道面の端部に小円弧部を設けることで、この部分をころから離れる側に逃がすことができるため、例えば円すいころ軸受に高荷重が加わった場合でも、外輪の軌道面と円すいころの端部との接触が可及的に回避され、過度のエッジロードの発生を防止できる。
特開2005-188738号公報 特開2007-260829号公報
 ところで、円すいころ軸受では、通常、内輪の軌道面ところの転動面との接触面圧の方が、外輪の転動面ところの転動面との接触面圧よりも高くなる。よって、上記のような複合クラウニング面からなる軌道面は、負荷条件の厳しい内輪の転動面へは数多く適用されているが、負荷条件の比較的緩い外輪の転動面へは、実際にはほとんど適用されてこなかった。
 本発明者らは、上記のように、近年の円すいころ軸受に対する負荷容量のさらなる増大の要求にこたえるべく、内輪の軌道面だけでなく、外輪の軌道面への複合クラウニング面の適用を検討したところ、以下のような問題が明らかとなった。すなわち、外輪の軌道面と円すいころの端部との接触による過度のエッジロードを回避するためには、外輪の軌道面の端部に設けられる小円弧部の曲率半径をできるだけ小さくし(すなわち、曲率をできるだけ大きくし)、円すいころの転動面からなるべく大きく離反させることが好ましいと考えられていた。しかし、本発明者の検証によれば、軌道面の端部の小円弧部の曲率を大きくしすぎると、軌道面に施す超仕上げ加工のサイクルタイムが長くなり、生産性が大幅に低下するという問題があることが明らかとなった。
 本発明は、外輪の軌道面に複合クラウニング面を適用した円すいころ軸受の生産性を高めることを目的とする。
 外輪及び内輪の軌道面には、通常、研削加工の後に超仕上げ加工が施される。超仕上げ加工は、例えば上記の特許文献2に示されているように、外輪あるいは内輪を回転させながら軌道面に砥石を押し当てた状態で、砥石を軌道面の母線方向に沿って往復動させることにより行われる(図7参照)。本発明者が、複合クラウニング面からなる外輪の軌道面に上記のような超仕上げ加工を施したところ、軌道面の端部曲線の曲率が大きいほど、サイクルタイムが長くなることが明らかとなった。その原因は以下のようなものと考えられる。
 超仕上げ加工では、砥石で軌道面を加工しながら、砥石自身も軌道面に倣って変形(摩耗)することで、砥石と軌道面との接触状態が良好となり、加工効率が高まる。すなわち、軌道面の中央部の大円弧部を研磨することにより砥石が大円弧部に倣って摩耗し、続いてこの砥石で軌道面の端部の小円弧部を研磨することで、砥石が小円弧部に倣って摩耗する。このとき、大円弧部と小円弧部の曲率の差が大きいと、大円弧部に倣って摩耗した砥石が小円弧部に倣うまでに時間がかかり、この間の加工効率が低下する。同様に、小円弧部に倣って摩耗した砥石が、大円弧部に倣うまでにも時間がかかり、加工効率がさらに低下する。
 以上の知見に基づいて、本発明は、外周面にテーパ状の軌道面を有する内輪と、内周面にテーパ状の軌道面を有する外輪と、前記内輪の軌道面と前記外輪の軌道面との間に転動自在に配され、外周面にテーパ状の転動面を有する複数の円すいころと、前記複数の円すいころを所定間隔で保持する保持器とを備えた円すいころ軸受であって、前記外輪の軌道面が、母線方向中央部に設けられた中央曲線と、該中央曲線の母線方向両側に設けられ、前記中央曲線よりも曲率半径の小さい端部曲線とからなる複合クラウニング面で構成され、前記外輪の軌道面の全面に超仕上げが施されており、前記中央曲線の曲率半径Rと各端部曲線の曲率半径R,Rとの比R/R,R/Rが何れも0.02以上であり、且つ、各端部曲線のドロップ量が何れも0.07mm以下である円すいころ軸受を提供する。
 尚、中央曲線あるいは端部曲線は、円弧曲線に限らず、非円弧曲線(例えば対数曲線)を含む。非円弧曲線の場合、当該非円弧曲線における最小曲率半径を曲率半径R,R,Rとする。
 上記のように、外輪の軌道面において、中央曲線の曲率半径Rと各端部曲線の曲率半径R,Rとの差を所定範囲内に抑え、且つ、各端部曲線のドロップ量を所定以下とすることで、超仕上げ加工のサイクルタイムが短縮され、生産性が向上する。
 上記の円すいころ軸受は、前記外輪の軌道面の両端部のドロップ量を何れも0.02mm以上とすることが好ましい。これにより、外輪の軌道面の端部(端部曲線)を円すいころから十分に離反させることができるため、円すいころの角部と外輪の軌道面との接触が可及的に回避され、過度なエッジロードの発生を確実に防止することができる。
 ところで、外輪が固定されるハウジングに熱膨張が生じると、円すいころ軸受に加わっていた予圧が抜けてしまい、外輪が円すいころに対して軸方向で小径側に移動することがある。この場合、円すいころの転動面が外輪の軌道面から大径側にオーバーハングし、過度のエッジロードが発生する恐れがある。特に、アルミハウジングは熱膨張量が大きいため、アルミハウジングの内周面に外輪を固定した場合、上記の問題が顕著となる。このような熱膨張が生じた場合にも、予圧抜けが生じないように予圧荷重を大きくすると、通常使用時に軸受に加わる負荷が過大となり、軸受寿命が短くなってしまう。
 そこで、円すいころ軸受に予圧抜けが生じ、外輪が円すいころに対して軸方向に移動した場合でも、円すいころの転動面(以下、「ころ転動面」とも言う。)が外輪の軌道面から大径側にオーバーハングしないように、ころ転動面に対する外輪の軌道面の母線方向幅を設定することが好ましい。具体的には、内輪、外輪、及び複数の円すいころが正規の位置に配された状態で、外輪の軌道面のうち、各円すいころの転動面よりも大径側の領域の母線方向寸法W(図1参照)を、予圧抜けによる外輪の相対移動量を考慮して設定することが好ましい。例えば、上記の領域の母線方向寸法Wを0.6mm以上とすれば、予圧抜けが生じやすい場合(例えば、外輪がアルミハウジングに固定される場合)でも、ころ転動面の外輪軌道面に対するオーバーハングを防止できる。尚、「内輪、外輪、及び円すいころが正規の位置に配された状態」とは、内輪及び外輪に適正な軸方向の予圧が付与された状態のことを言う。
 例えば、トランスミッションの水平姿勢の回転軸を支持する軸受のうち、主にラジアル方向荷重を受ける円すいころ軸受では、内輪に下向きの荷重が加わる。この場合、周方向等間隔に配された複数の円すいころのうち、下半分の円すいころに大半の荷重が加わり、上端付近の円すいころは略無負荷状態となる。このとき、ほとんど負荷が加わっていない上端付近の円すいころを挟持する内外輪の軌道面の間隔がごく僅か広がり、この分だけ、円すいころが外輪に対して軸方向で小径側に移動することがある(図6の点線参照)。このような場合、ころ転動面が外輪の軌道面に対して小径側にオーバーハングする事態を防止するために、外輪の軌道面を、正規位置の円すいころの転動面(図6の実線参照)よりも小径側に延ばしておく必要がある。このとき、内輪、外輪、及び複数の円すいころが正規の位置に配された状態で、各円すいころの小径側端面と前記内輪の小鍔部との距離Wを小さくしておけば、円すいころが小径側に移動した場合でも、円すいころを内輪の小鍔部に当接させることで移動を規制できるため、外輪の軌道面の母線方向幅を小さくすることができる。具体的に、上記の距離Wは、0.4mm以下とすることが好ましい。
 ところで、外輪軌道面の小径側の端部曲線について、曲率半径を変えずにドロップ量を小さくしようとする場合、例えば外輪の小径側端面の軸方向位置を大径側に移動させて、端部曲線の幅を縮小することが考えられる。しかし、外輪の小径側端面と内輪の大径側端面の軸方向間隔は、円すいころ軸受が組み込まれる装置(例えばトランスミッション等)に応じて決まっていることが多いため、外輪の小径側端面の位置をむやみに変更することはできない。そこで、外輪の内周面の小径側端部に設けられた面取り部の軸方向幅W(図6参照)を大きくする(例えば0.5mm以上とする)ことにより、外輪の小径側端面の位置を移動させることなく、端部曲線の幅を縮小してドロップ量を小さくすることができる。
 あるいは、外輪の内周面の小径側端部に設けられた面取り部と前記軌道面との間に円筒面を設けることによっても、上記と同様に、外輪の小径側端面の位置を移動させることなく、端部曲線の幅を縮小してドロップ量を小さくすることができる。
 以上のように、本発明の円すいころ軸受によれば、複合クラウニング面からなる外輪の軌道面の超仕上げ加工のサイクルタイムが短縮され、生産性を高めることができる。
本発明の一実施形態に係る円すいころ軸受の軸方向断面図である。 上記円すいころ軸受の軸直交方向断面図である。 上記円すいころ軸受の外輪軌道面を誇張して示す側面図である。 他の例の円すいころ軸受の軸方向断面図である。 図1の円すいころ軸受の外輪が軸方向移動した様子を示す軸方向断面図である。 図1の円すいころ軸受の拡大図である。 外輪の軌道面に超仕上げ加工を施す様子を示す側面図である。
 以下、本発明の一実施形態に係る円すいころ軸受を、図面に基づいて説明する。
 本実施形態の円すいころ軸受1は、図1及び図2に示すように、外周面にテーパ状の軌道面2aを有する内輪2と、内周面にテーパ状の軌道面3aを有する外輪3と、内輪2の軌道面2aと外輪3の軌道面3aの間に転動自在に配され、外周面にテーパ状の転動面4aを有する複数の円すいころ4と、円すいころ4を円周方向等間隔に保持する保持器5とで構成される。内輪2、外輪3、及び円すいころ4は、鋼材で形成され、例えば軸受鋼、浸炭鋼、ステンレス鋼等で形成される。保持器5は、金属あるいは樹脂で一体に形成される。尚、以下の説明では、軸方向(内輪2及び外輪3の軸方向)で円すいころ4の小径側(図1の左側)を「小径側」、円すいころ4の大径側(図1の右側)を「大径側」と言う。
 この円すいころ軸受1は、例えば自動車のトランスミッションユニットやデファレンシャルユニットに組み込まれる。具体的には、図1に示すように、外輪3の外周面3bがハウジング10の内周面10aに圧入され、内輪2の内周面2bが軸20の外周面20aに圧入される。ハウジング10は例えばアルミニウムで形成され、軸20は例えばクロムモリブデン鋼で形成される。ハウジング10の肩面10bと軸20の肩面20bとで、外輪3の小径側の端面3cと内輪2の大径側の端面2cとが軸方向両側から挟持加圧され、これにより円すいころ軸受1に軸方向の予圧が付与されている。図示例では、外輪3の小径側の端面3cとハウジング10の肩面10bとの間にシム30を介在させ、このシム30の厚さを適宜設定することにより、円すいころ軸受1に付与する予圧の大きさを調節している。
 内輪2は、軌道面2aの小径側に設けられた小鍔部2dと、軌道面2aの大径側に設けられた大鍔部2eとを有する。内輪2の軌道面2aは、単一曲線からなるクラウニング面、あるいは、中央曲線及びその両側に設けられた端部曲線からなる複合クラウニング面とされる。各曲線は、円弧あるいは対数曲線で構成される。
 外輪3の軌道面3aは、図3に示すように、母線方向中央部に設けられた中央曲線3a1と、中央曲線3a1の小径側(図中左側)に隣接する小径側の端部曲線3a2と、中央曲線3a1の大径側(図中右側)に隣接する大径側の端部曲線3a3とで構成される。本実施形態では、中央曲線3a1は曲率半径Rの円弧曲線であり、小径側の端部曲線3a2は曲率半径Rの円弧曲線であり、大径側の端部曲線3a3は曲率半径Rの円弧曲線である。中央曲線3a1と各端部曲線3a2,3a3とは、境界P,Pにおいて共通の接線を有するように、滑らかに連続している。尚、図3では、軌道面3aの各曲線3a1,3a2,3a3の曲率を誇張して示している。
 外輪3の軌道面3aの各端部曲線3a2,3a3の曲率半径R,Rと、中央曲線3a1の曲率半径Rとの比R/R,R/Rは、0.02以上、好ましくは0.04以上となるように設定される。また、R/R,R/Rは、0.3以下、好ましくは0.1以下となるように設定される。各端部曲線3a2,3a3のドロップ量D,Dは、何れも0.02mm以上、0.07mm以下とされる。尚、端部曲線3a2,3a3のドロップ量D,Dとは、軌道面3aの母線方向{詳しくは、中央曲線3a1の両端部(境界P,P)をつなぐ直線方向}と直交する方向における、各端部曲線3a2,3a3の幅である。
 本実施形態では、外輪3の内周面の小径側端部に設けられた面取り部3dの軸方向幅W(図6参照)を大きめに設定することで、軌道面3aの小径側の端部曲線3a2の軸方向幅を小さくしている。これにより、外輪3の小径側端面3cの軸方向位置を変更することなく、小径側の端部曲線3a2のドロップ量Dを小さくすることができる。面取り部3dの軸方向幅Wは、例えば0.5mm以上とされる。また、小径側の端部曲線3a2のドロップ量Dを0.02mm以上確保するために、面取り部3dの軸方向幅Wは、例えば1.0mm以下とされる。
 尚、面取り部3dの軸方向幅Wを大きくする代わりに(あるいはこれに加えて)、図4に示すように、面取り部3dと軌道面3aとの間に円筒面3fを設けることにより、小径側の端部曲線3a2のドロップ量Dを抑えてもよい。
 円すいころ4の転動面4aは、略直線状のテーパ面、単一曲線からなるクラウニング面、あるいは、中央曲線及びその両側に設けられた端部曲線からなる複合クラウニング面で構成される。円すいころ4の外周面の両端には、転動面4aに隣接した面取り部4b,4cが形成される。
 本実施形態の円すいころ軸受1は、例えば、内輪2の内径が15~120mmの範囲、外輪3の外径が30~250mmの範囲、組み幅(外輪3の小径側端面3cと内輪2の大径側端面2cとの軸方向幅)が7~50mmの範囲とされる。また、本実施形態の円すいころ軸受1は、円すいころ4が高密度で充填されており、具体的には下記の式で表されるころ係数γが、γ>0.94となっている。
 γ=(Z・DA)/(π・PCD)
 ここで、Z:ころ本数、DA:ころ平均径、PCD:ころピッチ円径
 保持器5は、小径側環状部5aと、大径側環状部5bと、小径側環状部5aと大径側環状部5bとを軸方向につなぐ複数の柱部5cとを有する(図1及び図2参照)。保持器5は、円すいころ4の中心よりも外径側で、且つ、外輪3とは接触しない位置に配される。柱部5cのうち、円すいころ4と接触する柱面5dは、周方向で対向する柱面5dとの間隔が内径に行くほど広がるように傾斜している。
 円すいころ軸受1は、円すいころ4の大径側端面4eと内輪2の大鍔部2eとを摺接させながら、内輪2と外輪3とが相対回転する。このとき、何らかの原因により予圧抜けが生じ、外輪3が円すいころ4に対して小径側に移動すると(図5参照)、円すいころ4の転動面4aが外輪3の軌道面3aから大径側にオーバーハングし、過度のエッジロードが発生する恐れがある。
 そこで、内輪2、外輪3、及び円すいころ4が正規の位置に配された状態(図1参照)で、外輪3の軌道面3aのうち、円すいころ4の転動面4aよりも大径側の領域の母線方向寸法W(すなわち、円すいころ4の転動面4aの大径側端部と、外輪3の軌道面3aの大径側端部との母線方向距離)は、予圧抜けを考慮して大きめに確保することが好ましい。特に、ハウジング10がアルミニウム製である場合、ハウジング10の熱膨張量が大きくなるため、円すいころ軸受1の予圧が抜けやすくなる。このような場合、上記領域の母線方向寸法Wは、例えば0.6mm以上とすることが好ましい。
 本実施形態では、円すいころ4の小径側の端面4dと内輪2の小鍔部2dとの距離W(図6参照)を、予め小さめに設定している。具体的には、内輪2、外輪3、及び円すいころ4を正規の位置に配した状態で、上記の距離Wを0.4mm以下としている。これにより、何らかの原因により円すいころ4が小径側へ移動した場合でも、小鍔部2dに早期に当接する(図6の点線参照)。これにより、円すいころ4の小径側への移動量が抑えられるため、外輪3の軌道面3a(特に、小径側の端部曲線3a2)を小径側に延ばすことなく、外輪3の軌道面3aに対する円すいころ4の転動面4aの小径側へのオーバーハングを防止できる。尚、上記の距離Wが小さすぎると、円すいころ4の小径側の端面4dと内輪2の小鍔部2dとの間の隙間から油が流入しにくくなるため、上記の距離Wは0.2mm以上とすることが好ましい。
 内輪2の軌道面2a、外輪3の軌道面3a、及び円すいころ4の転動面4aには、研削加工が施された後、超仕上げ加工が施される。外輪3の軌道面3aに対する超仕上げ加工は、外輪3を中心軸周りに回転させた状態で、図7に示すように、砥石6を軌道面3aに押し付けながら軌道面3aの母線方向に沿って往復動させることにより行われる。このとき、砥石6を軌道面3a全体で往復動させながら、砥石6を母線方向で微小振動させてもよい。こうして、砥石6を中央曲線3a1に押し付けることで、砥石6の先端面が中央曲線3a1に倣って変形しながら、中央曲線3a1が研磨される。そして、砥石6を端部曲線3a2,3a3に押し付けることで、砥石6の先端面が端部曲線3a2,3a3に倣って変形しながら、端部曲線3a2,3a3が研磨される。
 このとき、上記のように、中央曲線3a1の曲率半径Rと各端部曲線3a2,3a3の曲率半径R,Rとの差が比較的小さく抑えられているため(R/R≧0.02、R/R≧0.02)、中央曲線3a1から端部曲線3a2,3a3へ、あるいは端部曲線3a2,3a3から中央曲線3a1へ砥石6が移動する際の、砥石6の先端の変形量が比較的小さくて済む。これにより、砥石6が各曲線3a1,3a2,3a3に早期に倣い、効率良く加工が行われるため、超仕上げ加工のサイクルタイムが短縮され、円すいころ軸受1の生産性が高められる。
 本発明は上記の実施形態に限られない。例えば、上記の実施形態では、外輪3の軌道面3aの中央曲線3a1及び端部曲線3a2,3a3を何れも円弧曲線とした場合を示したが、これに限らず、これらの何れかあるいは全てを非円弧曲線(例えば対数曲線)としてもよい。例えば、中央曲線3a1を円弧曲線とし、両端部曲線3a2,3a3を対数曲線とすることができる。また、小径側の端部曲線3a2の曲率半径Rと大径側の端部曲線3a3の曲率半径Rは、同じでもよいし、異ならせてもよい。
 本発明による効果を確認するために、以下のような試験を行った。まず、設計寸法(特に、外輪軌道面の諸元)が異なる複数種の円すいころ軸受を作成し、それぞれ実施例1~8、比較例1~5とした。各円すいころ軸受は、図1~3に示す実施形態と同様の構成を有し、各部の設計寸法は、下記の表1に示す通りである。これらの円すいころ軸受に対し、以下の項目(1)~(3)について調べた。
Figure JPOXMLDOC01-appb-T000001
A(mm):外輪3の外径寸法
B(mm):外輪3の軸方向幅
(mm):外輪3の軌道面3aの中央曲線3a1の母線方向寸法
(mm):外輪3の軌道面3aの小径側の端部曲線3a2の母線方向寸法
(mm):外輪3の軌道面3aの大径側の端部曲線3a3の母線方向寸法
(mm):外輪3の軌道面3aの中央曲線3a1の曲率半径
(mm):外輪3の軌道面3aの小径側の端部曲線3a2の曲率半径
(mm):外輪3の軌道面3aの大径側の端部曲線3a3の曲率半径
(mm):外輪3の軌道面3aの小径側の端部曲線3a2のドロップ量
(mm):外輪3の軌道面3aの大径側の端部曲線3a3のドロップ量
(mm):外輪3の小径側の面取り部3dの軸方向幅
(mm):外輪3の軌道面3aのうち、円すいころ4の転動面4aよりも大径側の領域の母線方向寸法
(mm):円すいころ4の小径側の端面4dと内輪2の小鍔部2dとの距離
(1)外輪軌道面の超仕上げ加工のサイクルタイム
 各円すいころ軸受の外輪の軌道面に対し、図7に示す方法で超仕上げ加工を施し、このときのサイクルタイムを測定した。判定基準は、サイクルタイムが30秒以下の場合は○、30秒を超えた場合は×とした。
(2)面圧(エッジ応力)
 各円すいころ軸受の内外輪に所定の予圧を付した状態で内輪を回転させ、このときの面圧を測定した。面圧の測定は、X線による残留応力測定により負荷荷重を測定することにより行った。測定箇所は、内外輪の軌道面端部ところが接触するエッジ部を測定した。判定基準は、面圧が4000MPa以下の場合は○、4000MPaを超えた場合は×とした。
(3)予圧抜け時の円すいころの位置
 円すいころ軸受の内外輪に所定の予圧を付した状態で内輪を回転させ、このときのころ転動面外径側に、外輪軌道面大径側からオーバーハングした際に生じるスジ状のエッジ当り痕の発生有無を確認した。ころ大径側転動面にスジ状のエッジ当り痕が発生した場合は×とした。
 表1に示すように、外輪軌道面の中央曲線と端部曲線の曲率半径比R/R,R/Rが0.02以上、且つ、端部曲線のドロップ量が0.07mm以下である実施例1~8は、外輪軌道面の超仕上げ加工のサイクルタイムが30秒以下であった。これに対し、R/R,R/Rが0.02より小さく、且つ、端部曲線のドロップ量が0.07mmより大きい比較例1~5は、外輪軌道面の超仕上げ加工のサイクルタイムが30秒より長かった。また、R/R,R/Rが特に大きい(0.04以上である)実施例4、5、6、8は、超仕上げのサイクルタイムが特に短かった。
 また、実施例1~6は、外輪軌道面の端部曲線のドロップ量が0.02mm以上、外輪軌道面の円すいころよりも大径側の領域の幅Wが0.6mm以上、且つ、内輪の小鍔部と円すいころの小径側の端面との距離Wが0.4mm以下である。これらの実施例1~6は、エッジ応力が発生せず、予圧抜け時にも面圧分布に以上は無かったため、十分な耐久性を有している。
 これに対し、実施例8は、外輪軌道面の端部曲線のドロップ量が0.02mm未満であるため、過度のエッジ応力が生じ、エッジ部から損傷が生じた。また、実施例7及び比較例1~5は、外輪軌道面の端部曲線のドロップ量は0.02mm以上であるが、外輪軌道面の円すいころよりも大径側の領域の幅Wが0.6mm未満、且つ、内輪の小鍔部と円すいころの小径側の端面との距離Wが0.4mmを超えているため、予圧抜け時に、円すいころの転動面が外輪の軌道面に対してオーバーハングして、軌道面の端部のエッジがころ転動面に接触し、ころ転動面あるいは内外輪の軌道面のエッジ部から損傷が生じた。
1     円すいころ軸受
2     内輪
2a   軌道面
2d   小鍔部
2e   大鍔部
3     外輪
3a   軌道面
3a1 中央曲線
3a2,3a3       端部曲線
3d,3e    面取り部
4     円すいころ
4a   転動面
5     保持器
10   ハウジング
20   軸
30   シム
 

Claims (6)

  1.  外周面にテーパ状の軌道面を有する内輪と、内周面にテーパ状の軌道面を有する外輪と、前記内輪の軌道面と前記外輪の軌道面との間に転動自在に配され、外周面にテーパ状の転動面を有する複数の円すいころと、前記複数の円すいころを所定間隔で保持する保持器とを備えた円すいころ軸受であって、
     前記外輪の軌道面が、母線方向中央部に設けられた中央曲線と、該中央曲線の母線方向両側に設けられ、前記中央曲線よりも曲率半径の小さい端部曲線とからなる複合クラウニング面で構成され、
     前記外輪の軌道面の全面に超仕上げが施されており、
     前記中央曲線の曲率半径Rと各端部曲線の曲率半径R,Rとの比R/R,R/Rが何れも0.02以上であり、且つ、各端部曲線のドロップ量が何れも0.07mm以下である円すいころ軸受。
  2.  各端部曲線のドロップ量が何れも0.02mm以上である請求項1記載の円すいころ軸受。
  3.  前記内輪、前記外輪、及び前記複数の円すいころが正規の位置に配された状態で、前記外輪の軌道面のうち、各円すいころの転動面よりも大径側の領域の母線方向寸法が0.6mm以上である請求項1又は2記載の円すいころ軸受。
  4.  前記内輪が、前記軌道面の小径側に設けられた小鍔部を有し、
     前記内輪、前記外輪、及び前記複数の円すいころが正規の位置に配された状態で、各円すいころの小径側端面と前記内輪の小鍔部との距離が0.4mm以下である請求項1~3の何れかに記載の円すいころ軸受。
  5.  前記外輪の内周面の小径側端部に設けられた面取り部の軸方向幅が0.5mm以上である請求項1~4の何れかに記載の円すいころ軸受。
  6.  前記外輪の内周面の小径側端部に設けられた面取り部と前記軌道面との間に円筒面を設けた請求項1~5の何れかに記載の円すいころ軸受。
     
PCT/JP2016/050147 2015-01-28 2016-01-05 円すいころ軸受 WO2016121419A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16743023.0A EP3252326B1 (en) 2015-01-28 2016-01-05 Tapered roller bearing
MX2017009747A MX2017009747A (es) 2015-01-28 2016-01-05 Cojinete de rodillos conicos.
US15/542,181 US10288114B2 (en) 2015-01-28 2016-01-05 Tapered roller bearing
CN201680004950.9A CN107110204B (zh) 2015-01-28 2016-01-05 圆锥滚子轴承
US16/298,146 US10619668B2 (en) 2015-01-28 2019-03-11 Tapered roller bearing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-014201 2015-01-28
JP2015014201 2015-01-28
JP2015219472A JP6798780B2 (ja) 2015-01-28 2015-11-09 円すいころ軸受
JP2015-219472 2015-11-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/542,181 A-371-Of-International US10288114B2 (en) 2015-01-28 2016-01-05 Tapered roller bearing
US16/298,146 Continuation US10619668B2 (en) 2015-01-28 2019-03-11 Tapered roller bearing

Publications (1)

Publication Number Publication Date
WO2016121419A1 true WO2016121419A1 (ja) 2016-08-04

Family

ID=56543041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050147 WO2016121419A1 (ja) 2015-01-28 2016-01-05 円すいころ軸受

Country Status (1)

Country Link
WO (1) WO2016121419A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217243Y2 (ja) * 1985-05-04 1990-05-14
JPH0495318U (ja) * 1991-01-14 1992-08-18
JPH11201151A (ja) * 1998-01-14 1999-07-27 Ntn Corp 円すいころ軸受
JP2004322307A (ja) * 2003-04-09 2004-11-18 Nsk Ltd 超仕上げ加工装置、超仕上げ加工方法、転動体及び転がり軸受
JP2007260829A (ja) * 2006-03-28 2007-10-11 Ntn Corp ころ軸受軌道輪の超仕上げ加工方法
JP2008223862A (ja) * 2007-03-12 2008-09-25 Nsk Ltd 円すいころ軸受
JP2013099818A (ja) * 2011-11-08 2013-05-23 Nsk Ltd 超仕上げ加工装置、超仕上げ加工方法、及び超仕上げ加工された軌道面を有する軸受の外輪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217243Y2 (ja) * 1985-05-04 1990-05-14
JPH0495318U (ja) * 1991-01-14 1992-08-18
JPH11201151A (ja) * 1998-01-14 1999-07-27 Ntn Corp 円すいころ軸受
JP2004322307A (ja) * 2003-04-09 2004-11-18 Nsk Ltd 超仕上げ加工装置、超仕上げ加工方法、転動体及び転がり軸受
JP2007260829A (ja) * 2006-03-28 2007-10-11 Ntn Corp ころ軸受軌道輪の超仕上げ加工方法
JP2008223862A (ja) * 2007-03-12 2008-09-25 Nsk Ltd 円すいころ軸受
JP2013099818A (ja) * 2011-11-08 2013-05-23 Nsk Ltd 超仕上げ加工装置、超仕上げ加工方法、及び超仕上げ加工された軌道面を有する軸受の外輪

Similar Documents

Publication Publication Date Title
JP6798780B2 (ja) 円すいころ軸受
JP5444642B2 (ja) 組合せ軸受
EP2952763B1 (en) Multipoint contact ball bearing
EP1908970A1 (en) Needle roller bearing and bearing structure
JP2008261476A (ja) スラスト針状ころ軸受
JP6472671B2 (ja) 円すいころ軸受
JP2018105500A (ja) スラストころ軸受及びスラストころ軸受用軌道輪
US20130163907A1 (en) Rolling bearing
WO2016121419A1 (ja) 円すいころ軸受
JP2015102144A (ja) 自動調心ころ軸受
JP2008002503A (ja) スラストころ軸受
EP3636943B1 (en) Rolling bearing and method for manufacturing such a rolling bearing
JP2005003121A (ja) 円筒ころ軸受
JP5163512B2 (ja) 転がり軸受
JP4075364B2 (ja) 円筒ころ軸受
JP2008232221A (ja) スラスト針状ころ軸受
JP2006064037A (ja) 転がり軸受
JP6970454B2 (ja) ベアリング装置
JP2009222166A (ja) 自動調心ころ軸受
JP2016142278A (ja) 円すいころ軸受及びこれに用いられる保持器
JP2023036977A (ja) 転がり軸受
JP4492101B2 (ja) 自動調心ころ軸受
WO2018123397A1 (ja) スラストころ軸受及びスラストころ軸受用軌道輪
JP2020143695A (ja) クロスローラ軸受
JP2014194244A (ja) 自動調心ころ軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743023

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15542181

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/009747

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016743023

Country of ref document: EP