WO2016121258A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2016121258A1
WO2016121258A1 PCT/JP2015/085171 JP2015085171W WO2016121258A1 WO 2016121258 A1 WO2016121258 A1 WO 2016121258A1 JP 2015085171 W JP2015085171 W JP 2015085171W WO 2016121258 A1 WO2016121258 A1 WO 2016121258A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
layer
display device
light
Prior art date
Application number
PCT/JP2015/085171
Other languages
English (en)
French (fr)
Inventor
利昭 長谷川
青柳 健一
信達 荒木
毅 城野
勝則 大坪
賢哉 萩本
保宏 水間
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2016571817A priority Critical patent/JP6761351B2/ja
Priority to CN202010372090.2A priority patent/CN111477592B/zh
Priority to CN201580074094.XA priority patent/CN107210016B/zh
Priority to CN202010372050.8A priority patent/CN111477591B/zh
Priority to US15/544,585 priority patent/US10998300B2/en
Publication of WO2016121258A1 publication Critical patent/WO2016121258A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • H01L2224/21Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
    • H01L2224/214Connecting portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24105Connecting bonding areas at different heights
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/1426Driver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present disclosure relates to a display device in which a light emitting element and a driving element are mixedly mounted in a pixel.
  • Patent Document 1 a display device in which a light emitting element and a driving IC (Integrated Circuit) for driving the light emitting element are mixedly mounted in one pixel has been developed (for example, Patent Document 1).
  • various semiconductor elements such as a light emitting element and a driving IC are formed and sealed on a temporary substrate, and thereafter, the elements are connected using a transfer technique, a TSV technique, or the like.
  • the element substrate thus formed is mounted on a printed board such as an interposer.
  • the distance between the light emitting element and the driving IC is narrowed, and a part of the light emitted from the light emitting element is easily damaged (obstructed) by the driving IC.
  • the viewing angle is narrowed and the display performance is deteriorated.
  • a display device that can achieve downsizing while suppressing deterioration of display performance in an element structure including a light emitting element and a driving element.
  • a display device includes a first wiring layer and an element portion including a plurality of pixels on a substrate, and the element portion includes one or more light-emitting elements in each pixel.
  • a light-emitting element portion including a light-emitting surface; and a driving element that drives the light-emitting element portion and is electrically connected to the light-emitting element portion through the first wiring layer.
  • An end portion of the light emitting surface of the light emitting element portion is arranged at the same height as the upper end portion of the driving element or at a position higher than the upper end portion.
  • a first wiring layer and an element portion including a plurality of pixels are provided over a substrate, and the element portion includes one or more light-emitting elements in each pixel.
  • a light-emitting element portion including the drive element Since the end of the light emitting surface of the light emitting element is disposed at the same height as the upper end of the driving element or higher than the upper end, the light emitted from the light emitting element is reflected at the upper end of the driving element. It becomes difficult to get rid of.
  • the first wiring layer and the element unit including a plurality of pixels are provided on the substrate, and the element unit includes one or a plurality of light emitting elements in each pixel.
  • a light emitting element portion including an element and a drive element that drives the light emitting element portion and is electrically connected to the light emitting element portion through a first wiring layer are provided.
  • the light emitting surface of the light emitting element portion is arranged at the same height as the upper end portion of the driving element or higher than the upper end portion, so that the light emitted from the light emitting element portion is scattered and the viewing angle is narrowed. This can be suppressed. Therefore, in an element structure including a light emitting element and a driving element, it is possible to realize a reduction in size while suppressing deterioration in display performance.
  • FIG. 3 is a schematic diagram illustrating a schematic configuration of a display device according to a first embodiment of the present disclosure.
  • FIG. It is a schematic diagram showing the example of a structure of the element part shown in FIG.
  • FIG. 3 is a cross-sectional view illustrating an example of mounting the element unit illustrated in FIGS. 1 and 2.
  • FIG. 3 is a schematic diagram showing a method for forming the element portion shown in FIG. 2 in the order of steps.
  • It is a schematic diagram which shows the process following FIG. 4A.
  • FIG. 4B It is a schematic diagram which shows the process of following FIG. 4B.
  • FIG. 4D It is a schematic diagram which shows the process following FIG. 4E.
  • FIG. 10 is a schematic diagram for explaining an operation of an element unit according to Comparative Example 1.
  • FIG. It is a schematic diagram for demonstrating the effect
  • FIG. 8B It is a schematic diagram which shows the process of following FIG. 8B.
  • FIG. 8C It is a schematic diagram which shows the process of following FIG. 8D.
  • FIG. 11A It is a schematic diagram which shows the process of following FIG. 11B. It is a schematic diagram which shows the process following FIG. 11C. It is a schematic diagram which shows the process of following FIG. 11D. It is a schematic diagram which shows the process of following FIG. 11E. It is a schematic diagram showing the structure of the element part which concerns on 4th Embodiment of this indication.
  • FIG. 12A It is a schematic diagram which expanded a part of FIG. 12A. It is a schematic diagram which shows the formation method of the element part shown in FIG. 12 in order of a process. It is a schematic diagram which shows the process of following FIG. 13A. It is a schematic diagram which shows the process following FIG. 13B. It is a schematic diagram which shows the process of following FIG. 13C. It is a schematic diagram which shows the process of following FIG. 13D. It is a schematic diagram which shows the process of following FIG. 13E. It is a schematic diagram which shows the process of following FIG. 13F. It is a schematic diagram which shows the process of following FIG. 13G. It is a schematic diagram which shows the process of following FIG. 13H. It is a schematic diagram which shows the process following FIG.
  • FIG. 15 is a schematic diagram illustrating a method of forming the element portion illustrated in FIG. 14 in the order of steps. It is a schematic diagram which shows the process of following FIG. 15A. It is a schematic diagram which shows the process following FIG. 15B. It is a schematic diagram which shows the process of following FIG. 15C. It is a schematic diagram which shows the process of following FIG. 15D. 10 is a schematic diagram for explaining an operation of an element unit according to Comparative Example 1. FIG. It is a schematic diagram for demonstrating the effect
  • FIG. 19 is a schematic diagram showing a method of forming the element part shown in FIG. 18 in the order of steps. It is a schematic diagram which shows the process of following FIG. 20A. It is a schematic diagram which shows the process following FIG. 20B. It is a schematic diagram which shows the process of following FIG. 20C. It is a schematic diagram which shows the process following FIG. 20D.
  • FIG. 22 is a schematic diagram illustrating a method of forming the element portion illustrated in FIG. 21 in the order of steps. It is a schematic diagram which shows the process of following FIG. 22A.
  • 10 is a schematic diagram illustrating a configuration of an element unit according to Modification 1.
  • FIG. 25 is a schematic plan view illustrating a main configuration of the element unit illustrated in FIG. 24.
  • FIG. 27 is a schematic diagram showing a method of forming the element portion shown in FIG. 26 in the order of steps. It is a schematic diagram which shows the process of following FIG. 27A. It is a schematic diagram which shows the process following FIG. 27B. It is a schematic diagram which shows the process of following FIG. 27C.
  • FIG. 10 is a schematic diagram illustrating a configuration of an element unit according to Modification 2-1. 10 is a schematic diagram illustrating a configuration of an element unit according to Modification 2-2.
  • FIG. FIG. 10 is a schematic diagram illustrating a configuration of an element unit according to Modification 2-3.
  • First embodiment an example of a display device in which an insulating film is formed under a light emitting element and has a light emitting surface at a position higher than a driving element
  • Second embodiment an example of a display device in which a driving element is formed in a recess and has a light emitting surface at a position higher than the driving element
  • Third Embodiment Example of display device in which a high refractive index layer covering a light emitting element is provided and a light emitting surface is provided at a position higher than a driving element 4).
  • FIG. 1 illustrates an overall configuration of a display device (display device 1) according to a first embodiment of the present disclosure.
  • FIG. 2 schematically illustrates an example of the configuration of the element unit 10A.
  • the element portion 10 ⁇ / b> A is formed not on the first substrate 10 but on the temporary substrate (second substrate 110) before peeling (before forming the rewiring layer 15) via the adhesive layer (peeling layer 120).
  • the state is shown.
  • FIG. 3 is a cross-sectional view illustrating a configuration example in a state where the element unit 10 ⁇ / b> A is mounted on the first substrate 10.
  • the display device 1 includes a light-emitting element unit 11 including one or a plurality of light-emitting elements 11R, 11G, and 11B (the light-emitting element 11a is used when there is no need for distinction), and a drive element that drives the light-emitting element unit 11
  • Reference numeral 12 denotes a light emitting device mixedly mounted in one pixel.
  • the element portion 10 ⁇ / b> A including the light emitting element 11 a and the driving element 12 is mounted on the first substrate 10 via the rewiring layer 15 and the joint portion 14.
  • the element portion 10 ⁇ / b> A is formed on a temporary substrate (not shown), for example, and then a rewiring layer 15 is formed using a transfer technique, a TSV technique, and the like, and wiring connection between elements is performed.
  • the first substrate 10 is composed of a printed circuit board such as an interposer, for example. 10 A of element parts are peeled from a temporary board
  • FIG. The first substrate 10 corresponds to a specific example of “substrate” of the present disclosure.
  • the light emitting element unit 11 includes, for example, light emitting elements 11R, 11G, and 11B that emit red (R), green (G), and blue (B) color lights.
  • Each of these light emitting elements 11R, 11G, and 11B is composed of, for example, a light emitting diode (LED) chip, and is arranged in the element portion 10A.
  • the light emitting elements 11R, 11G, and 11B are formed with a width of, for example, about several ⁇ m or more and several hundreds of ⁇ m or less, and are arranged at a narrow interval.
  • the driving element 12 is a driving IC, and is formed by, for example, a silicon (Si) layer (Si layer 12a) including an IC chip and, for example, BEOL (Back-End-of-Line) technology as shown in FIG. A multilayer wiring layer (wiring layer 12b) is included.
  • the drive element 12 is arranged side by side with the light emitting element part 11 in the element part 10A. The distance between the driving element 12 and the light emitting element 11a is also narrow.
  • the light emitting element unit 11 and the driving element 12 are sealed with a sealing layer 13.
  • the sealing layer 13 is composed of, for example, an inorganic insulating film such as a silicon oxide film and a silicon nitride film, and may be a single layer film or a laminated film. An interlayer insulating film may be included. Further, the light emitting element 11a and the driving element 12 are bonded to the base layer (the insulating film 15s, the transparent insulating film 130, the wiring layer 16, or the like) by the adhesive layers 14A and 14B.
  • the joint 14 is for soldering the rewiring layer 15 and the first substrate 10 together.
  • the joint portion 14 is made of an alloy containing, for example, tin (Sn), copper (Cu), silver (Ag), and the like.
  • the rewiring layer 15 includes, for example, a wiring that electrically connects each light emitting element 11a of the light emitting element section 11 and the driving element 12, a wiring that electrically connects the light emitting element 11a and the joint section 14, and a driving element.
  • 12 is a multilayer wiring layer including wirings that electrically connect 12 and the joints 14.
  • the rewiring layer 15 is formed adjacent to the element part 10A through a peeling process after the element part 10A is formed.
  • the rewiring layer 15 corresponds to a specific example of “first wiring layer” of the present disclosure.
  • the end e1 of the light emitting surface of the light emitting element part 11 is the same as the upper end part e2 of the driving element 12, or the upper end part. It is arranged at a position higher than e2.
  • the upper surface (for example, the upper surface of the light emitting diode chip) of the light emitting element 11a constituting the light emitting element unit 11 is the light emitting surface S1
  • the end e1 of the light emitting surface S1 is the upper end e2 of the driving element 12.
  • an insulating film 15s (first insulating film) is formed under the light emitting element 11a (on the second substrate 110 (first substrate 10) side of the light emitting element 11a).
  • An insulating film 15s is formed).
  • the sum of the thickness of the insulating film 15s and the thickness of the light emitting element 11a is equal to or greater than the thickness of the driving element 12.
  • the insulating film 15s is made of a transparent resin such as silicone, acrylic, polyimide, or epoxy.
  • the insulating film 15s may be made of an inorganic transparent material such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film.
  • the height p2 of the light emitting surface S1 can be adjusted by setting the thickness of the insulating film 15s.
  • the element unit 10A of the display device 1 can be formed as follows, for example. 4A to 4F are schematic views showing the method of forming the element portion 10A in the order of steps.
  • a peeling layer 120 and a transparent insulating film 130 are formed in this order on the second substrate 110.
  • an insulating film 15s is formed in a selective region on the transparent insulating film 130 by etching using, for example, a photolithography method.
  • the side surface of the insulating film 15s is processed to have a tapered shape 15a.
  • the wiring layer 16 is formed.
  • the taper shape 15a of the insulating film 15s can prevent the wiring layer 16 from being disconnected.
  • the wiring layer 16 is omitted in FIG. 2 for simplicity.
  • an adhesive layer 14A is formed in a region on the insulating film 15s, and an adhesive layer 14B is formed in a selective region on the transparent insulating film 130.
  • the light emitting element 11a and the driving element 12 are bonded (transferred) onto the adhesive layers 14A and 14B, respectively.
  • the sealing layer 13 is formed so as to cover the light emitting element portion 11 (light emitting element 11 a) and the driving element 12. In this way, the element portion 10A is formed.
  • the display device 1 shown in FIG. 1 can be manufactured by forming the rewiring layer 15 and the bonding portion 14 on the transparent insulating film 130 side of the element portion 10A and soldering on the first substrate 10. it can.
  • a video voltage is supplied to each pixel from a drive circuit (not shown) based on a video signal input from the outside. As a result, each pixel is driven to display an image.
  • the light emitting element portion 11 including the light emitting element 11a and the driving element 12 for driving the light emitting element portion 11a are mixedly arranged in one pixel. For this reason, the distance between the light emitting element 11a and the driving element 12 is relatively narrow. In particular, when the miniaturization is advanced, the light emitting element 11a and the driving element 12 are arranged in a close range of several ⁇ m to several hundred ⁇ m.
  • FIG. 5 shows the structure of the element portion 101A according to Comparative Example 1.
  • the light emitting element 105 is disposed on the transparent insulating film 103 via the adhesive layer 104A, and the driving element 106 is disposed via the adhesive layer 104B.
  • the light emitting element 105 is smaller in size than the driving element 106.
  • the light emitting surface s100 is disposed at a position lower than the upper end portion e102 of the driving element 106.
  • the end e1 of the light emitting surface S1 of the light emitting element unit 11 is the same as or higher than the upper end e2 of the drive element 12. Placed in position. Specifically, an insulating film 15s is provided on the substrate side of the light emitting element 11a. Thereby, the emitted light from the light emitting element part 11 (light emitting element 11a) is hard to be blocked
  • FIG. 7 schematically illustrates a configuration of an element unit (element unit 10B) according to the second embodiment of the present disclosure. 7 shows a state in which the element portion 10B is formed on the second substrate 110 via the release layer 120.
  • the light emitting element portion 11 (light emitting element 11a) and the drive element 12 are mixedly mounted in one pixel, similarly to the element portion 10A of the first embodiment.
  • the element portion 10 ⁇ / b> B is mounted on the first substrate 10 via the rewiring layer 15 and the joint portion 14.
  • the light emitting element portion 11 includes a light emitting element 11 a, and the light emitting element 11 a and the driving element 12 are covered with the sealing layer 13.
  • the end e1 of the light emitting surface S1 of the light emitting element unit 11 is disposed at the same position as the upper end e2 of the drive element 12 or higher than the upper end e2.
  • the height p1 of the end e1 of the light emitting surface S1 is higher than the height p2 of the upper end e2 of the drive element 12.
  • the present embodiment is different from the first embodiment in that the drive element 12 is disposed at a position lower than the light emitting element 11a.
  • an opening or a recess
  • the driving element 12 is bonded to the opening via an adhesive layer 14B.
  • the light emitting element 11a is bonded to a selective region on the transparent insulating film 130 via an adhesive layer 14A.
  • the element part 10B can be formed as follows, for example. 8A to 8F are schematic views showing the method of forming the element portion 10A in the order of steps.
  • a release layer 120 and a transparent insulating film 130 are formed in this order on the second substrate 110.
  • an opening H1 is formed in a selective region on the transparent insulating film 130 by etching using, for example, a photolithography method.
  • the side surface of the opening H1 is processed so as to have a tapered shape H1a.
  • the wiring layer 17 is formed.
  • the taper shape H1a of the opening H1 can prevent the wiring layer 17 from being disconnected.
  • the wiring layer 17 is omitted in FIG. 7 for simplicity.
  • an adhesive layer 14A is formed in a selective region on the transparent insulating film 130, and an adhesive layer 14B is formed in the opening H1.
  • the light emitting element 11a and the driving element 12 are bonded to the adhesive layers 14A and 14B, respectively.
  • the sealing layer 13 is formed so as to cover the light emitting element portion 11 (light emitting element 11 a) and the driving element 12. In this way, the element portion 10B is formed.
  • the second substrate 110 is separated from the transparent insulating film 130 by the peeling layer 120.
  • a rewiring layer 15 and a joining portion 14 are formed on the transparent insulating film 130 side of the element portion 10B and soldered onto the first substrate 10 to produce a display device as shown in FIG. Can do.
  • the end e1 of the light emitting surface S1 of the light emitting element portion 11 is the upper end portion of the driving element 12. It is arranged at the same position as e2 or higher than the upper end e2. Specifically, an opening (or a recess) is formed in a selective region of the transparent insulating film 130, and the driving element 12 is provided in this opening portion. Thereby, the emitted light from the light emitting element part 11 (light emitting element 11a) becomes difficult to be interrupted by the drive element 12, and it can suppress that a viewing angle narrows. Therefore, an effect equivalent to that of the first embodiment can be obtained.
  • FIG. 9 schematically illustrates a configuration of an element unit (element unit 10C) according to the third embodiment of the present disclosure.
  • FIG. 9 shows a state in which the element portion 10 ⁇ / b> C is formed on the second substrate 110 via the release layer 120.
  • the light emitting element portion (light emitting element portion 20) and the driving element 12 are mixedly mounted in one pixel, similarly to the element portion 10A of the first embodiment.
  • the element portion 10 ⁇ / b> C is mounted on the first substrate 10 via the rewiring layer 15 and the joint portion 14.
  • the light emitting element portion 20 includes the light emitting element 11 a, and the light emitting element portion 20 and the driving element 12 are covered with the sealing layer 13.
  • the end portion (end portion e3) of the light emitting surface (light emitting surface S2) of the light emitting element portion 11 is the same as or higher than the upper end portion e2 of the driving element 12. Is arranged.
  • the light emitting element portion 20 is different from the first embodiment in that the light emitting element portion 20 includes the light emitting element 11a and the high refractive index layer 18 covering the light emitting element 11a. Yes. Further, the upper surface of the high refractive index layer 18 forms a light emitting surface S2, and an end e3 of the light emitting surface S2 is disposed at a height equal to or higher than the upper end e2 of the driving element 12.
  • the high refractive index layer 18 is formed to cover the upper surface and side surfaces of the light emitting element 11a.
  • the high refractive index layer 18 is made of a material having a higher refractive index than that of the sealing layer 13.
  • the constituent material of the high refractive index layer 18 is, for example, a resin such as acrylic, epoxy, or polyimide containing at least one of sulfur (S) and phosphorus (P), or a resin containing nanoparticles such as TiO 2. Can be mentioned.
  • FIG. 10 is a schematic diagram for explaining the design parameters of the high refractive index layer 18.
  • the material and thickness of the high refractive index layer 18 are desirably set so as to satisfy the following conditional expression (A), for example.
  • n0 is the refractive index of the sealing layer 13
  • n1 is the refractive index of the high refractive index layer 18
  • L1 is the thickness of the high refractive index layer 18 facing the side surface of the light emitting element 11a
  • H1 is the light emitting surface of the light emitting element 11a ( The thickness of the high refractive index layer 18 facing the upper surface).
  • L1 ⁇ L2 and H LED> H IC magnitude relationship is established. n0 / n1 ⁇ L1 / (H1 2 + L1 2 ) 1/2 (A)
  • the element portion 10C can be formed as follows, for example. 11A to 11F are schematic views showing the method of forming the element portion 10C in the order of steps.
  • a release layer 120 and a transparent insulating film 130 are formed in this order on the second substrate 110.
  • the wiring layer 19 is patterned on the transparent insulating film 130.
  • adhesive layers 14A and 14B are formed in selective regions on the transparent insulating film 130, respectively.
  • the wiring layer 19 is omitted in FIG. 10 for simplicity.
  • the light emitting element 11a and the driving element 12 are bonded to the adhesive layers 14A and 14B, respectively.
  • the high refractive index layer 18 is formed so as to cover the light emitting element 11a.
  • the sealing layer 13 is formed so as to cover the light emitting element portion 20 (the light emitting element 11 a and the high refractive index layer 18) and the driving element 12. In this way, the element portion 10C is formed.
  • the second substrate 110 is separated from the transparent insulating film 130 by the release layer 120.
  • a rewiring layer 15 and a joining portion 14 are formed on the transparent insulating film 130 side of the element portion 10C and soldered onto the first substrate 10 to produce the display device as shown in FIG. Can do.
  • the end e3 of the light emitting surface S2 of the light emitting element portion 20 is the upper end portion of the driving element 12. It is arranged at the same position as e2 or higher than the upper end e2.
  • a high refractive index layer 18 is formed so as to cover the light emitting element 11a, and an end e3 of the upper surface (light emitting surface S2) of the high refractive index layer 18 is the driving element 12. It is arrange
  • FIG. 12A schematically illustrates the configuration of an element unit (element unit 10D) according to the fourth embodiment of the present disclosure.
  • FIG. 12B is an enlarged view of a part of the element unit 10D.
  • the light emitting element portion 11 (light emitting element 11a) and the driving element (driving element 21) are mixedly mounted in one pixel, similarly to the element portion 10A of the first embodiment.
  • the element unit 10 ⁇ / b> D is mounted on the first substrate 10 via the rewiring layer 15 and the bonding unit 14.
  • the end e1 of the light emitting surface S1 of the light emitting element unit 11 is the same as the upper end e2 of the drive element 21 or higher than the upper end e2. Is arranged.
  • the element portion 10D of the present embodiment is different from the first embodiment in that the light emitting element 11a is embedded in a part of the drive element 21.
  • the drive element 21 has a recess H2 (second recess) in a selective region, and the light emitting element 11a is formed in the recess H2.
  • a SiN film 22 (third insulating film) is formed on the bottom surface of the recess H2 as a base layer of the light emitting element 11a.
  • the height of the light emitting surface S1 can be adjusted by the thickness of the SiN film 22.
  • the element portion 10D can be formed as follows, for example. 13A to 13K are schematic views showing the method of forming the element portion 10D in the order of steps.
  • a drive element 21 made of a silicon chip or the like is formed.
  • the recess H2 is formed in the drive element 21.
  • the SiN film 22 is formed on the bottom surface of the recess H2 so as to have a predetermined thickness.
  • the light emitting element 11a is transferred, and the wiring layer 23 is formed. This wiring layer 23 is omitted in FIG. 12A for simplicity. Subsequently, as illustrated in FIG.
  • an interlayer insulating film 140 is formed so as to cover the driving element 21 and the light emitting element 11a, and then the interlayer insulating film 140 is planarized as illustrated in FIG. 13F. In this way, the element portion 10D in which the light emitting element portion 11 is embedded in the drive element 21 is formed.
  • the counter substrate 141 is bonded to the side of the interlayer insulating film 140 of the driving element 21 via an adhesive layer.
  • the Si substrate of the drive element 21 is thinned.
  • a through hole H3 is formed by TSV.
  • the wiring layer 21a1 is formed so as to fill the through hole H3.
  • solder is formed on the wiring layer 21a1.
  • the end e1 of the light emitting surface S1 of the light emitting element portion 11 is the upper end portion of the driving element 21. It is arranged at the same position as e2 or higher than the upper end e2.
  • the light emitting element 11 a is embedded in a recess H ⁇ b> 2 formed in the driving element 21, and the height of the light emitting surface S ⁇ b> 1 can be adjusted by the thickness of the SiN film 22. Thereby, the emitted light from the light emitting element part 11 (light emitting element 11a) becomes difficult to be interrupted by the drive element 21, and it can suppress that a viewing angle becomes narrow. Therefore, an effect equivalent to that of the first embodiment can be obtained.
  • FIG. 14 schematically illustrates the configuration of an element unit (element unit 10E) according to the fifth embodiment of the present disclosure.
  • FIG. 14 shows a state in which the element portion 10E is formed on the second substrate 110 via the peeling layer 120.
  • the light emitting element portion (light emitting element 11a) and the driving element (driving element 31) are mixedly mounted in one pixel, similarly to the element portion 10A of the first embodiment. Yes.
  • the element portion 10 ⁇ / b> E is mounted on the first substrate 10 via the rewiring layer 15 and the joint portion 14. Furthermore, also in the element part 10E, the light emitting element 11a and the drive element 31 are covered with the sealing layer 13.
  • the drive element 31 has a tapered shape 31c.
  • the drive element 31 is covered with a light shielding film 32 and an antireflection film 33.
  • a BEOL wiring layer 31a and a Si layer 31b including a silicon chip are stacked, and the Si layer 31b of these has a tapered shape 31c.
  • the element unit 10E as described above can be formed, for example, as follows. 15A to 15E are schematic views showing the method of forming the element portion 10E in the order of steps.
  • a photoresist film 150 is formed in a predetermined pattern on the drive element 31 composed of the wiring layer 31a and the Si layer 31b.
  • a guard ring layer 153 (a laminated film of a light shielding film and an antireflection film) is formed in advance on the wiring layer 31a.
  • the Si layer 31b is processed by etching.
  • the taper shape 31c is formed.
  • a light shielding film 32 and an antireflection film 33 are formed so as to cover the formed tapered shape 31c.
  • a photoresist film 151 is formed on the antireflection film 33 in a predetermined pattern.
  • a part of each of the light shielding film 32 and the antireflection film 33 and a part of the wiring layer 31a are removed by etching using the photoresist film 151.
  • the drive element 31 as shown in FIG. 14, the light shielding film 32, and the antireflection film 33 are formed.
  • the sealing layer 13 is formed so as to cover the light emitting element 11 a and the driving element 31. In this way, the element portion 10E is formed.
  • the substrate facing the second substrate 110 is bonded with the element portion 10E interposed therebetween, and then the second substrate 110 is separated from the transparent insulating film 130 by the release layer 120.
  • a rewiring layer 15 and a joining portion 14 are formed on the transparent insulating film 130 side of the element portion 10E, and soldered onto the first substrate 10, thereby producing a display device as shown in FIG. Can do.
  • FIG. 16 shows the structure of the element portion 101A according to Comparative Example 1.
  • the light emitting element 105 is disposed on the transparent insulating film 103 via the adhesive layer 104A
  • the driving element 106 is disposed via the adhesive layer 104B.
  • the light emitting surface s ⁇ b> 100 is disposed at a position lower than the upper end part e ⁇ b> 102 of the driving element 106.
  • Comparative Example 1 not only the viewing angle is narrowed due to the above-described damage, but also the light L101 leaked from the light emitting element 105 enters the driving element 106 (X2), and the characteristics of the transistors and the like constituting the IC Will be affected.
  • the driving element 106 X2
  • the characteristics of the transistors and the like constituting the IC Will be affected.
  • the element portion 101A is mounted on a printed circuit board or the like, part of the leaked light from the light emitting element 105 is incident on the driving element 106, causing deterioration in transistor characteristics.
  • the display quality may be deteriorated by the reflected light.
  • the drive element 31 has the tapered shape 31c, so that the emitted light from the light emitting element 11a is not easily blocked by the drive element 31, and the viewing angle is increased. Narrowing can be suppressed. Further, by covering the driving element 31 and having the light shielding film 32 and the antireflection film 33, it is possible to suppress light incident on the driving element 31 and light reflection on the side surface of the driving element 31. Therefore, it is possible to obtain the same effect as that of the first embodiment, and it is possible to suppress deterioration in characteristics in the driving element 31 and deterioration in display quality due to reflected light.
  • light sag can be suppressed by the tapered shape 31c, but any one of the first to third embodiments described above is adopted, and the light emitting surface of the light emitting element unit 11 is used.
  • the end e1 of S1 may be disposed at the same position as the upper end e2 of the drive element 12 or higher than the upper end e2.
  • FIG. 18 schematically illustrates a configuration of an element unit (element unit 10F) according to the sixth embodiment of the present disclosure.
  • FIG. 18 shows a state in which the element portion 10F is formed on the second substrate 110 via the peeling layer 120.
  • the light emitting element portion (light emitting element 11a) and the driving element (driving element 34) are mixedly mounted in one pixel, similarly to the element portion 10A of the first embodiment. Yes.
  • the element portion 10 ⁇ / b> F is mounted on the first substrate 10 via the rewiring layer 15 and the joint portion 14. Further, also in the element portion 10 ⁇ / b> F, the light emitting element 11 a and the driving element 34 are covered with the sealing layer 13.
  • the drive element 34 has a tapered shape 34c as in the fifth embodiment.
  • the drive element 34 is covered with a light shielding film 35.
  • a BEOL wiring layer 34a and a Si layer 34b including a silicon chip are stacked.
  • the wiring layer 34a and the Si layer 31b have a tapered shape 34c, and a cross section of the driving element 34 is obtained.
  • the shape has a trapezoidal shape.
  • both the Si layer 34b and the wiring layer 34a may have a tapered shape.
  • only the light shielding film 35 may be provided so as to cover the driving element 34 and not provide the antireflection film 33.
  • the case where the antireflection film 33 is formed as in the fifth embodiment is preferable because the deterioration in display quality can be suppressed.
  • the drive element 34 since the drive element 34 has the tapered shape 34c, the light emitted from the light emitting element 11a is not easily blocked by the drive element 34, and the viewing angle is narrowed. This can be suppressed.
  • the light incident on the drive element 34 can be suppressed by covering the drive element 34 and including the light shielding film 35. Therefore, the same effect as that of the first embodiment can be obtained, and the characteristic deterioration in the drive element 31 can be suppressed.
  • an antireflection film may be further formed as in the fifth embodiment.
  • the light swaying can be suppressed by the tapered shape 34c, but any one of the first to third embodiments described above is adopted, and the light emitting surface of the light emitting element unit 11 is used.
  • the end e1 of S1 may be disposed at the same position as the upper end e2 of the drive element 12 or higher than the upper end e2.
  • the taper shapes of the element portions 10E and 10F of the fifth and sixth embodiments can be formed as follows, for example.
  • 19A to 19C are schematic views showing the method of forming the element portion according to the comparative example 2 in the order of steps.
  • 20A to 20G are schematic views showing a method for forming a tapered shape in the order of steps.
  • description will be made by taking the element portion 10E shown in FIG. 14 as an example.
  • Comparative Example 2 As shown in FIGS. 19A and 19B, a part of the Si layer 1012 out of the wiring layer 1011 made of BEOL and the Si layer 1012 is etched using the photoresist film 1015 (for example, This is selectively removed by dry etching. Thereby, the taper shape 31c is formed. Thereafter, as shown in FIG. 19C, the photoresist film 1015 is removed. A light shielding film (Ti) 1014 is formed on the Si layer 1012 via a transparent insulating film 1013. In the Si processing of Comparative Example 2, since dry processing is used, the coverage of the Si side surface after processing is poor, and there is room for improvement in light shielding properties.
  • a taper shape may be formed in the Si layer 34b. That is, first, as shown in FIGS. 20A and 20B, wet processing using, for example, an alkaline etchant is performed using a mask 152 made of, for example, SiN. Thereafter, as shown in FIG. 20C, wet processing using, for example, an acid-based etchant is performed, and the mask 152 is removed. Subsequently, as shown in FIGS. 20D and 20E, wet processing using, for example, an acid-based etchant is performed, and the upper portion (the ridge portion) of the Si layer 34b is selectively removed. Thereafter, as shown in FIGS.
  • the transparent insulating film 36 and the light shielding film 35 are formed in this order so as to cover the Si layer 34b.
  • the Si layer 34b has a tapered shape, the coverage of the light shielding film 35 is improved as compared with the comparative example 2. Sufficient light shielding properties can be obtained.
  • FIG. 21 schematically illustrates the configuration of an element unit (element unit 10G) according to the seventh embodiment of the present disclosure.
  • FIG. 21 shows a state where the element portion 10G is formed on the second substrate 110 via the release layer 120.
  • the light emitting element portion (light emitting element 11a) and the drive element 12 are mixedly mounted in one pixel, similarly to the element portion 10A of the first embodiment.
  • the element portion 10 ⁇ / b> G is mounted on the first substrate 10 via the rewiring layer 15 and the joint portion 14. Further, also in the element portion 10G, the light emitting element 11a and the driving element 12 are covered with the sealing layer 13.
  • a wiring (connection wiring 37) for electrically connecting the light emitting element 11a and the driving element 12 is embedded in the sealing layer 13.
  • connection wiring 37 for electrically connecting the light emitting element 11a and the driving element 12 is embedded in the sealing layer 13.
  • no wiring for electrically connecting the light emitting element 11 a and the driving element 12 is formed in the rewiring layer 15.
  • the element portion 10G as described above can be formed, for example, as follows. 22A and 22B are schematic views showing the method of forming the element portion 10G in the order of steps.
  • the sealing layer 13 is formed so as to cover the light emitting element 11 a and the driving element 12, and then the connection hole H ⁇ b> 4 is formed in the sealing layer 13. Thereafter, as shown in FIG. 22B, the connection wiring 37 is formed so as to fill the connection hole H4. Finally, by removing a part of the surface of the formed connection wiring 37, the element portion 10G shown in FIG. 21 can be formed.
  • the second substrate 110 is separated from the transparent insulating film 130 by the peeling layer 120 after the substrate facing the second substrate 110 is bonded with the element portion 10G interposed therebetween.
  • a rewiring layer 15 and a joining portion 14 are formed on the transparent insulating film 130 side of the element portion 10G and soldered onto the first substrate 10 to produce the display device as shown in FIG. Can do.
  • connection wiring 37 that electrically connects the light emitting element 11a and the driving element 12 is embedded in the sealing layer 13, so that the connection wiring 37 functions as a light shielding film (also serves as a light shielding film). ), Light incidence on the driving element 12 can be suppressed. Therefore, an effect equivalent to that of the fifth embodiment can be obtained.
  • any one of the first to third embodiments is further adopted, and the end e1 of the light emitting surface S1 of the light emitting element unit 11 is the upper end of the driving element 12. It may be arranged at the same position as e2 or higher than the upper end e2. Thereby, the emitted light from the light emitting element part 11 (light emitting element 11a) becomes difficult to be interrupted by the drive element 12, and it can suppress that a viewing angle becomes narrow. With such a configuration, an effect equivalent to that of the first embodiment can be obtained.
  • FIG. 23 schematically illustrates the configuration of an element section (element section 10G1) according to a modification of the seventh embodiment.
  • element portion 10G1 of this modification electrical connection between the light emitting element 11a and the driving element 12 is ensured by using the connection wiring 37 and the through electrode 37a by the TSV technique. In this way, wiring connection can also be performed using the TSV technology.
  • FIG. 24 schematically illustrates a configuration of an element unit (element unit 10H) according to the eighth embodiment of the present disclosure.
  • FIG. 25 illustrates a planar configuration of a main part of the element unit 10G.
  • the light emitting element portion (light emitting element 11a) and the drive element 12 are mixedly mounted in one pixel, similarly to the element portion 10A of the first embodiment.
  • the element portion 10H is mounted on the first substrate 10 (not shown in FIG. 24) via the rewiring layer 15 and the joint portion 14.
  • a seed layer 38 is formed on the drive element 12 so as to overlap with the light emitting element 11a. It is configured to intervene between the element 12 and also serve as a light shielding layer.
  • the seed layer 38 is a base layer used when metal wiring such as copper (Cu) wiring is formed by plating. Usually, a part of the seed layer (the part corresponding to the seed layer 38) to be removed after the plating is formed is covered with a photoresist or the like and used as a light shielding layer. Further, a support post 38a is formed on the outer peripheral portion of the seed layer 38 using another wiring. The seed layer 38 and the support column 38a are formed so as to surround the side surface and the upper surface of the drive element 12 as a whole.
  • the seed layer 38 and the pillars 38a are formed so as to surround the driving element 12, so that the seed layer 38 and the pillars 38a function as a light shielding layer (also serves as a light shielding layer). 12 can suppress light incidence. Therefore, an effect equivalent to that of the fifth embodiment can be obtained.
  • any one of the first to third embodiments is further adopted, and the end e1 of the light emitting surface S1 of the light emitting element unit 11 is the upper end of the driving element 12. It may be arranged at the same position as e2 or higher than the upper end e2. Thereby, the emitted light from the light emitting element portion (light emitting element 11a) is not easily blocked by the drive element 12, and the viewing angle can be prevented from being narrowed. With such a configuration, an effect equivalent to that of the first embodiment can be obtained.
  • FIG. 26 schematically illustrates a configuration of an element unit (element unit 10I) according to the ninth embodiment of the present disclosure.
  • the light emitting element portion (light emitting element 11a) and the drive element 12 are mixedly mounted in one pixel, similarly to the element portion 10A of the first embodiment.
  • the element portion 10I is mounted on the first substrate 10 (not shown in FIG. 26) via the rewiring layer 15 and the joint portion 14.
  • FIG. 26 also illustrates the lead-out wiring 142 connected to the electrode of the light emitting element 11a.
  • the element portion 10I of the present embodiment has a light shielding resin layer 39 embedded between the light emitting element 11a and the driving element 12.
  • the light shielding resin layer 39 is made of a photosensitive resin used for a black matrix, for example.
  • the light shielding resin layer 39 is preferably embedded between the light emitting elements 11a. This is because a structure having the functions of the light shielding layer and the planarization layer can be realized.
  • the element unit 10I as described above can be formed, for example, as follows.
  • 27A to 27D are schematic views showing the method of forming the element portion 10I in the order of steps.
  • 27A to 27D three light emitting elements 11R, 11G, and 11B are illustrated as the light emitting element 11a.
  • the light emitting element 11a (light emitting elements 11R, 11G, and 11B) and the driving element 12 are bonded onto the transparent insulating film 130 (transfer-formed).
  • a light shielding resin layer 39 is formed over the entire surface of the second substrate 110.
  • the light shielding resin layer 39 for example, a negative photoresist can be used.
  • the light shielding resin layer 39 remains, for example, between the light emitting element 11a and the driving element 12 and between the pixels by performing exposure and development from the back side of the second substrate 110. To do.
  • the light shielding resin layer 39 may be exposed from the surface side using a positive photoresist. In this manner, the element portion 10I as shown in FIG. 26 can be formed.
  • the light shielding resin layer 39 is formed so as to be embedded between the light emitting element 11 a and the driving element 12, whereby light incidence from the light emitting element 11 a to the driving element 12 can be suppressed. Therefore, an effect equivalent to that of the fifth embodiment can be obtained.
  • the light shielding resin layer 39 is formed between the elements, it also serves as a planarization layer, so that generation of voids can be suppressed in the subsequent manufacturing process.
  • any one of the first to third embodiments is further adopted, and the end e1 of the light emitting surface S1 of the light emitting element unit 11 is the upper end of the driving element 12. It may be arranged at the same position as e2 or higher than the upper end e2. Thereby, the emitted light from the light emitting element portion (light emitting element 11a) is not easily blocked by the drive element 12, and the viewing angle can be prevented from being narrowed. With such a configuration, an effect equivalent to that of the first embodiment can be obtained.
  • Modifications 2-1 to 2-3> the following structure may be further adopted. That is, as in Modification 2-1 shown in FIG. 28, in a layer between the second substrate 110 and the release layer 120, a region that overlaps the lead-out wiring 142 is shielded from, for example, aluminum (Al). Layer 40 may be patterned. 29, a carbon CVD film is formed under the seed layer 41 for plating the Cu wiring layer 42 on the light emitting element 11a as in the modified example 2-2 shown in FIG. You may comprise so that it may serve as well. Furthermore, as in Modification 2-3 shown in FIG. 30, the lead-out wiring 150a may be extracted from the side surface instead of being extracted from the upper surface of the light emitting elements 11R, 11G, and 11B.
  • the present disclosure has been described with reference to the embodiments and modified examples. However, the present disclosure is not limited to these embodiments and the like, and various modifications are possible.
  • the case where the light emitting element portion includes three light emitting diode chips of R, G, and B has been described as an example, but the light emitting element portion further includes light emitting diode chips of other colors.
  • the light emitting element portion instead of any of the R, G, and B light emitting diode chips, light emitting diode chips of other colors may be included.
  • the present disclosure may be configured as follows. (1) On a substrate, a first wiring layer and an element portion including a plurality of pixels are provided. The element portion is in each pixel. A light emitting element portion including one or a plurality of light emitting elements and having a light emitting surface; A driving element that drives the light emitting element part and is electrically connected to the light emitting element part via the first wiring layer; The display device is configured such that an end portion of the light emitting surface of the light emitting element portion is disposed at the same height as the upper end portion of the driving element or higher than the upper end portion.
  • a first insulating film is provided on the substrate side of the light emitting element, The display device according to (1), wherein the sum of the thickness of the first insulating film and the thickness of the light emitting element is equal to or greater than the thickness of the drive element.
  • a second insulating film having a first recess in a selective region is provided between the light emitting element portion and the driving element and the substrate; The display device according to (1) or (2), wherein the drive element is formed by being partially embedded in the first recess of the second insulating film.
  • the light emitting element section covers the light emitting element, includes the light emitting surface, and has a high refractive index layer having a higher refractive index than the sealing layer.
  • n0 Refractive index of the sealing layer
  • n1 Refractive index of the high refractive index layer
  • L1 Thickness of the high refractive index layer facing the side surface of the light emitting element
  • H1 Thickness of the high refractive index layer facing the light emitting surface of the light emitting element .
  • the drive element has a second recess in a selective region;
  • the drive element has a trapezoidal cross-sectional shape.
  • a light shielding film is formed to cover a surface of the drive element.
  • an antireflection film is formed to cover a surface of the drive element.
  • connection wiring for electrically connecting the light emitting element and the driving element;
  • the light shielding resin layer is embedded between the pixels and between the light emitting element and the driving element, and also serves as a planarization layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

 表示装置は、基板上に、第1の配線層と、複数の画素を含む素子部とを備え、素子部は、各画素内に、1または複数の発光素子を含むと共に発光面を有する発光素子部と、発光素子部を駆動すると共に、第1の配線層を介して発光素子部と電気的に接続された駆動素子とを有するものである。発光素子部の発光面の端部は、駆動素子の上端部と同じ高さか、または上端部よりも高い位置に配置されている。

Description

表示装置
 本開示は、発光素子と駆動素子とが画素内に混載して形成された表示装置に関する。
 近年、1画素内に、発光素子とこれを駆動する駆動用IC(Integrated Circuit)とが混載された表示装置が開発されている(例えば、特許文献1)。この表示装置では、発光素子や駆動用ICなどの各種半導体素子は、仮基板上に形成、封止された後、転写技術やTSV技術などを用いて素子間接続がなされる。このようにして形成された素子基板が、インターポーザなどのプリント基板上に実装される。
特開2002-182580号公報
 上記のような表示装置では、特に小型化が進むと、発光素子と駆動用ICとの間隔が狭まり、発光素子から出射した光の一部が、駆動用ICによってけられ(遮られ)易い。この結果、視野角が狭まり、表示性能が劣化するという問題がある。
 したがって、発光素子と駆動素子とを含む素子構造において、表示性能の劣化を抑制しつつ小型化を実現することが可能な表示装置を提供することが望ましい。
 本開示の一実施の形態の表示装置は、基板上に、第1の配線層と、複数の画素を含む素子部とを備え、素子部は、各画素内に、1または複数の発光素子を含むと共に発光面を有する発光素子部と、発光素子部を駆動すると共に、第1の配線層を介して発光素子部と電気的に接続された駆動素子とを有するものである。発光素子部の発光面の端部は、駆動素子の上端部と同じ高さか、または上端部よりも高い位置に配置されている。
 本開示の一実施の形態の表示装置では、基板上に第1の配線層と、複数の画素を含む素子部とが設けられ、素子部は、各画素内に、1または複数の発光素子を含む発光素子部と、これを駆動する駆動素子とを有する。発光素子部の発光面の端部が、駆動素子の上端部と同じ高さか、または上端部よりも高い位置に配置されることにより、発光素子部から出射した光が、駆動素子の上端部においてけられにくくなる。
 本開示の一実施の形態の表示装置によれば、基板上に第1の配線層と、複数の画素を含む素子部とが設けられ、素子部は、各画素内に、1または複数の発光素子を含む発光素子部と、これを駆動すると共に、第1の配線層を介して発光素子部と電気的に接続された駆動素子とを有する。発光素子部の発光面の端部が、駆動素子の上端部と同じ高さか、または上端部よりも高い位置に配置されることにより、発光素子部から出射した光がけられ、視野角が狭くなることを抑制できる。よって、発光素子と駆動素子とを含む素子構造において、表示性能の劣化を抑制しつつ小型化を実現することが可能となる。
 尚、上記内容は本開示の一例である。本開示の効果は、上述したものに限らず、他の異なる効果であってもよいし、更に他の効果を含んでいてもよい。
本開示の第1の実施の形態に係る表示装置の概略構成を表す模式図である。 図1に示した素子部の構成例を表す模式図である。 図1および図2に示した素子部の実装例を表す断面図である。 図2に示した素子部の形成方法を工程順に示す模式図である。 図4Aに続く工程を示す模式図である。 図4Bに続く工程を示す模式図である。 図4Cに続く工程を示す模式図である。 図4Dに続く工程を示す模式図である。 図4Eに続く工程を示す模式図である。 比較例1に係る素子部の作用を説明するための模式図である。 図2に示した素子部の作用を説明するための模式図である。 本開示の第2の実施の形態に係る素子部の構成を表す模式図である。 図7に示した素子部の形成方法を工程順に示す模式図である。 図8Aに続く工程を示す模式図である。 図8Bに続く工程を示す模式図である。 図8Cに続く工程を示す模式図である。 図8Dに続く工程を示す模式図である。 図8Eに続く工程を示す模式図である。 本開示の第3の実施の形態に係る素子部の構成を表す模式図である。 図9に示した高屈折率層の設計パラメータを示す模式図である。 図9に示した素子部の形成方法を工程順に示す模式図である。 図11Aに続く工程を示す模式図である。 図11Bに続く工程を示す模式図である。 図11Cに続く工程を示す模式図である。 図11Dに続く工程を示す模式図である。 図11Eに続く工程を示す模式図である。 本開示の第4の実施の形態に係る素子部の構成を表す模式図である。 図12Aの一部を拡大した模式図である。 図12に示した素子部の形成方法を工程順に示す模式図である。 図13Aに続く工程を示す模式図である。 図13Bに続く工程を示す模式図である。 図13Cに続く工程を示す模式図である。 図13Dに続く工程を示す模式図である。 図13Eに続く工程を示す模式図である。 図13Fに続く工程を示す模式図である。 図13Gに続く工程を示す模式図である。 図13Hに続く工程を示す模式図である。 図13Iに続く工程を示す模式図である。 図13Jに続く工程を示す模式図である。 本開示の第5の実施の形態に係る素子部の構成を表す模式図である。 図14に示した素子部の形成方法を工程順に示す模式図である。 図15Aに続く工程を示す模式図である。 図15Bに続く工程を示す模式図である。 図15Cに続く工程を示す模式図である。 図15Dに続く工程を示す模式図である。 比較例1に係る素子部の作用を説明するための模式図である。 図14に示した素子部の作用を説明するための模式図である。 本開示の第6の実施の形態に係る素子部の構成を表す模式図である。 比較例2に係る素子部の形成方法を工程順に示す模式図である。 図19Aに続く工程を示す模式図である。 図19Bに続く工程を示す模式図である。 図18に示した素子部の形成方法を工程順に示す模式図である。 図20Aに続く工程を示す模式図である。 図20Bに続く工程を示す模式図である。 図20Cに続く工程を示す模式図である。 図20Dに続く工程を示す模式図である。 図20Eに続く工程を示す模式図である。 図20Fに続く工程を示す模式図である。 本開示の第7の実施の形態に係る素子部の構成を表す模式図である。 図21に示した素子部の形成方法を工程順に示す模式図である。 図22Aに続く工程を示す模式図である。 変形例1に係る素子部の構成を表す模式図である。 本開示の第8の実施の形態に係る素子部の構成を表す模式図である。 図24に示した素子部の要部構成を表す平面模式図である。 本開示の第9の実施の形態に係る素子部の構成を表す模式図である。 図26に示した素子部の形成方法を工程順に示す模式図である。 図27Aに続く工程を示す模式図である。 図27Bに続く工程を示す模式図である。 図27Cに続く工程を示す模式図である。 変形例2-1に係る素子部の構成を表す模式図である。 変形例2-2に係る素子部の構成を表す模式図である。 変形例2-3に係る素子部の構成を表す模式図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。尚、説明は以下の順序で行う。
1.第1の実施の形態(発光素子の下に絶縁膜が形成され、駆動素子よりも高い位置に発光面をもつ表示装置の例)
2.第2の実施の形態(駆動素子が凹部に形成され、駆動素子よりも高い位置に発光面をもつ表示装置の例)
3.第3の実施の形態(発光素子を覆う高屈折率層が設けられ、駆動素子よりも高い位置に発光面をもつ表示装置の例)
4.第4の実施の形態(発光素子が駆動素子に埋め込み形成された場合の例)
5.第5の実施の形態(駆動素子がテーパ形状を有する場合の例)
6.第6の実施の形態(駆動素子の断面形状が台形状を有する場合の例)
7.第7の実施の形態(発光素子と駆動素子との接続配線が遮光層を兼ねる場合の例)
8.変形例1(発光素子と駆動素子との接続配線の他の例)
9.第8の実施の形態(駆動素子に重畳するシード層が遮光層を兼ねる場合の例)
10.第9の実施の形態(発光素子と駆動素子との間に遮光樹脂層が埋め込み形成された場合の例)
11.変形例2-1~2-3(遮光層の他の例)
<第1の実施の形態>
[構成]
 図1は、本開示の第1の実施の形態に係る表示装置(表示装置1)の全体構成を表すものである。 図2は、素子部10Aの構成の一例を模式的に表したものである。尚、図2では、第1基板10ではなく、剥離前(再配線層15形成前)の仮基板(第2基板110)に接着層(剥離層120)を介して、素子部10Aが形成された状態を図示している。図3は、素子部10Aを第1基板10に実装した状態の構成例を表す断面図である。
 表示装置1は、1または複数の発光素子11R,11G,11B(特に区別の必要のない場合には発光素子11aとする)を含む発光素子部11と、この発光素子部11を駆動する駆動素子12とが、1つの画素内に混載された発光デバイスである。これらの発光素子11aと駆動素子12とを含む素子部10Aは、再配線層15および接合部14を介して第1基板10上に実装されている。表示装置1では、素子部10Aは、例えば図示しない仮基板上に形成された後、転写技術およびTSV技術などを用いて、再配線層15が形成され、素子間の配線接続が行われる。
 第1基板10は、例えばインターポーザ等のプリント基板から構成されている。素子部10Aは、仮基板から剥離され、TSV等により再配線層15が形成された後、この第1基板10に実装される。この第1基板10が、本開示の「基板」の一具体例に相当する。
 発光素子部11は、例えば赤(R),緑(G),青(B)の色光を発する発光素子11R,11G,11Bを含んで構成されている。これらの発光素子11R,11G,11Bはそれぞれ、例えば発光ダイオード(LED:Light Emitting Diode)チップから構成され、素子部10A内に並んで配置されている。発光素子11R,11G,11Bは、例えば数μm以上数100μm以下程度の幅で形成され、狭小な間隔をおいて配置されている。
 駆動素子12は、駆動用ICであり、図3に示したように、例えばICチップを含むシリコン(Si)層(Si層12a)と、例えばBEOL(Back-End of Line)技術により形成された多層配線層(配線層12b)を含んで構成されている。この駆動素子12は、素子部10A内において、発光素子部11と並んで配置されている。駆動素子12と発光素子11aとの間隔も狭小である。
 素子部10Aでは、これらの発光素子部11および駆動素子12が、封止層13により封止されている。封止層13は、例えばシリコン酸化膜およびシリコン窒化膜などの無機絶縁膜などから構成され、単層膜であってもよいし、積層膜であってもよい。層間絶縁膜を含んでいてもよい。また、発光素子11aと駆動素子12とは、接着層14A,14Bにより下地層(絶縁膜15s,透明絶縁膜130または配線層16など)に接着されている。
 接合部14は、再配線層15と第1基板10とをはんだ付けするためのものである。接合部14は、例えば錫(Sn)、銅(Cu)および銀(Ag)などを含む合金により構成されている。
 再配線層15は、例えば発光素子部11の各発光素子11aと、駆動素子12とを電気的に接続する配線や、発光素子11aと接合部14とを電気的に接続する配線、および駆動素子12と接合部14とを電気的に接続する配線などを含む多層配線層である。この再配線層15は、素子部10Aの形成後に、剥離工程などを経て、素子部10Aに隣接して形成されるものである。この再配線層15が、本開示の「第1の配線層」の一具体例に相当する。
 本実施の形態では、図2に示したように、上記のような素子部10Aにおいて、発光素子部11の発光面の端部e1が、駆動素子12の上端部e2と同じか、または上端部e2よりも高い位置に配置されている。ここでは、発光素子部11を構成する発光素子11aの上面(例えば、発光ダイオードチップの上面)が発光面S1となっており、この発光面S1の端部e1が、駆動素子12の上端部e2よりも高い位置に配置されている(端部e1の高さp1>上端部e2の高さp2)。
 具体的には、発光素子部11において、発光素子11aの下に、絶縁膜15s(第1の絶縁膜)が形成されている(発光素子11aの第2基板110(第1基板10)側に絶縁膜15sが形成されている)。この絶縁膜15sの厚みと発光素子11aの厚みとの合計は、駆動素子12の厚みと同等か、または駆動素子12の厚みよりも大きくなっている。絶縁膜15sは、例えばシリコーン、アクリル、ポリイミドまたはエポキシ等の透明樹脂から構成されている。あるいは、絶縁膜15sは、例えばシリコン酸化膜、シリコン窒化膜またはシリコン酸化窒化膜などの無機透明材料から構成されていてもよい。絶縁膜15sの厚みの設定により、発光面S1の高さp2を調整することができる。
[製造方法]
 表示装置1の素子部10Aは、例えば次のようにして形成することができる。図4A~図4Fは、素子部10Aの形成方法を工程順に表す模式図である。
 まず、図4Aに示したように、第2基板110上に、剥離層120および透明絶縁膜130(第2の絶縁膜)をこの順に形成する。この後、図4Bに示したように、透明絶縁膜130上の選択的な領域に、例えばフォトリソグラフィ法を用いたエッチングにより絶縁膜15sを形成する。この際、絶縁膜15sの側面が、テーパ形状15aを有するように加工する。続いて、図4Cに示したように、配線層16を形成する。絶縁膜15sのテーパ形状15aにより、配線層16が断線することを抑制することができる。尚、この配線層16は、図2では簡便化のため省略している。
 この後、図4Dに示したように、絶縁膜15s上の領域に接着層14Aを形成すると共に、透明絶縁膜130上の選択的な領域に接着層14Bを形成する。続いて、図4Eに示したように、これらの接着層14A,14B上に、発光素子11aと駆動素子12とをそれぞれ貼り合わせる(転写する)。最後に、図4Fに示したように、発光素子部11(発光素子11a)と、駆動素子12とを覆うように、封止層13を形成する。このようにして、素子部10Aを形成する。その後は、特に図示はしないが、第2基板110と対向する基板を、素子部10Aを間にして貼り合わせた後、第2基板110を剥離層120により透明絶縁膜130から分離する。この素子部10Aの透明絶縁膜130の側に再配線層15と接合部14とを形成し、第1基板10上にはんだ付けすることにより、図1に示した表示装置1を作製することができる。
[作用,効果]
 本実施の形態の表示装置1では、外部から入力された映像信号に基づいて、図示しない駆動回路から映像電圧が各画素に供給される。これにより、各画素が表示駆動され、映像表示がなされる。
 ここで、表示装置1の素子部10Aでは、1画素内に、発光素子11aを含む発光素子部11と、これを駆動する駆動素子12とが混載して配置されている。このため、発光素子11aと駆動素子12との間隔が比較的狭く、特に小型化が進むと発光素子11aと駆動素子12とが、数μm~数100μm程度の近接した範囲に配置される。
 図5に、比較例1に係る素子部101Aの構造を示す。尚、ここでは、第2基板101上に、剥離層102を介して形成された状態を示す。素子部101Aでは、透明絶縁膜103上に、接着層104Aを介して発光素子105が配置されると共に、接着層104Bを介して駆動素子106が配置されている。ここで一般に、発光素子105は、駆動素子106に比べてサイズが小さい。このため、比較例1の素子部101Aでは、発光面s100が駆動素子106の上端部e102よりも低い位置に配置される。この場合、発光面S100から出射された光の一部(X1の範囲の光)が、駆動素子106の上端部e102においてけられ(遮られ)てしまう。この結果、素子部101Aをプリント基板などに実装した場合、発光素子105からの出射光の一部が駆動素子106によって遮られ、視野角が狭くなる。
 これに対し、本実施の形態では、図6に示したように、発光素子部11の発光面S1の端部e1が、駆動素子12の上端部e2と同じか、または上端部e2よりも高い位置に配置されている。具体的には、発光素子11aの基板側に絶縁膜15sが設けられている。これにより、発光素子部11(発光素子11a)からの出射光が駆動素子12によって遮られにくく、視野角が狭まることを抑制できる。よって、発光素子と駆動素子とを含む素子構造において、表示性能の劣化を抑制しつつ小型化を実現することが可能となる。
 以下、本開示の他の実施の形態に係る素子部について説明する。尚、上記第1の実施の形態と同様の構成要素については同一の符号を付し、適宜その説明を省略する。
<第2の実施の形態>
[構成]
 図7は、本開示の第2の実施の形態に係る素子部(素子部10B)の構成を模式的に表したものである。尚、図7では、第2基板110上に剥離層120を介して、素子部10Bが形成された状態を示している。本実施の形態の素子部10Bでは、上記第1の実施の形態の素子部10Aと同様、発光素子部11(発光素子11a)と駆動素子12とが、1画素内に混載されている。また、素子部10Bは、図7には図示しないが、再配線層15および接合部14を介して第1基板10上に実装される。更に、素子部10Bにおいても、発光素子部11は発光素子11aを含み、この発光素子11aと駆動素子12とが、封止層13によって覆われている。
 また、本実施の形態においても、発光素子部11の発光面S1の端部e1が、駆動素子12の上端部e2と同じか、または上端部e2よりも高い位置に配置されている。図7の例では、発光面S1の端部e1の高さp1が、駆動素子12の上端部e2の高さp2よりも高くなっている。
 但し、本実施の形態では、駆動素子12が発光素子11aよりも低い位置に配置されている点で、上記第1の実施の形態と異なっている。具体的には、本実施の形態では、透明絶縁膜130の選択的な領域に開口(または凹部)が形成されており、この開口部分に駆動素子12が接着層14Bを介して貼り合わせられている。発光素子11aは、透明絶縁膜130上の選択的な領域に、接着層14Aを介して貼り合わせられている。
[素子部10Bの形成方法]
 素子部10Bは、例えば次のようにして形成することができる。図8A~図8Fは、素子部10Aの形成方法を工程順に表す模式図である。
 まず、図8Aに示したように、第2基板110上に、剥離層120および透明絶縁膜130をこの順に形成する。この後、図8Bに示したように、透明絶縁膜130上の選択的な領域に、例えばフォトリソグラフィ法を用いたエッチングにより開口H1を形成する。この際、開口H1の側面が、テーパ形状H1aを有するように加工する。続いて、図8Cに示したように、配線層17を形成する。開口H1のテーパ形状H1aにより、配線層17が断線することを抑制することができる。尚、この配線層17は、図7では簡便化のため省略している。
 この後、図8Dに示したように、透明絶縁膜130上の選択的な領域に接着層14Aを、開口H1内に接着層14Bを、それぞれ形成する。続いて、図8Eに示したように、この接着層14A,14B上に、発光素子11aと駆動素子12とをそれぞれ貼り合わせる。最後に、図8Fに示したように、発光素子部11(発光素子11a)と、駆動素子12とを覆うように、封止層13を形成する。このようにして、素子部10Bを形成する。その後は、特に図示はしないが、第2基板110と対向する基板を、素子部10Bを間にして貼り合わせた後、第2基板110を剥離層120により透明絶縁膜130から分離する。この素子部10Bの透明絶縁膜130の側に再配線層15と接合部14とを形成し、第1基板10上にはんだ付けすることにより、図1に示したような表示装置を作製することができる。
[効果]
 本実施の形態においても、1画素内に発光素子部11と駆動素子12とが混載されてなる素子部10Bにおいて、発光素子部11の発光面S1の端部e1が、駆動素子12の上端部e2と同じか、または上端部e2よりも高い位置に配置されている。具体的には、透明絶縁膜130の選択的な領域に開口(または凹部)が形成されており、この開口部分に駆動素子12が設けられている。これにより、発光素子部11(発光素子11a)からの出射光が駆動素子12によって遮られにくくなり、視野角が狭まることを抑制できる。よって、上記第1の実施の形態と同等の効果を得ることができる。
<第3の実施の形態>
[構成]
 図9は、本開示の第3の実施の形態に係る素子部(素子部10C)の構成を模式的に表したものである。尚、図9では、第2基板110上に剥離層120を介して、素子部10Cが形成された状態を示している。本実施の形態の素子部10Cでは、上記第1の実施の形態の素子部10Aと同様、発光素子部(発光素子部20)と駆動素子12とが、1画素内に混載されている。また、素子部10Cは、図9には図示しないが、再配線層15および接合部14を介して第1基板10上に実装される。更に、素子部10Cにおいても、発光素子部20は発光素子11aを含み、この発光素子部20と駆動素子12とが、封止層13によって覆われている。
 また、本実施の形態においても、発光素子部11の発光面(発光面S2)の端部(端部e3)が、駆動素子12の上端部e2と同じか、または上端部e2よりも高い位置に配置されている。
 但し、本実施の形態では、発光素子部20が発光素子11aと、この発光素子11aを覆う高屈折率層18とを含んで構成されている点で、上記第1の実施の形態と異なっている。また、高屈折率層18の上面が発光面S2を成し、この発光面S2の端部e3が、駆動素子12の上端部e2と同等以上の高さに配置されている。
 高屈折率層18は、発光素子11aの上面と側面とを覆って形成されている。この高屈折率層18は、封止層13よりも屈折率が高い材料から構成されている。高屈折率層18の構成材料としては、例えば硫黄(S)およびリン(P)のうちの少なくとも1つを含むアクリル、エポキシもしくはポリイミド等の樹脂、またはTiO2等のナノ粒子を含む樹脂等が挙げられる。
 図10は、高屈折率層18の設計パラメータを説明するための模式図である。高屈折率層18の発光面S2の端部e3から出射する光の出射角βの最大値は、90°であることが望ましい。即ち、封止層13と高屈折率層18との界面に入射角αで入射して、出射角β(β=90°)で出射した光が駆動素子12の上面に平行な方向に沿って進むことが望ましい。
 この高屈折率層18の材料および厚みは、例えば以下の条件式(A)を満足するように設定されることが望ましい。但し、n0を封止層13の屈折率、n1を高屈折率層18の屈折率、L1を発光素子11aの側面に対向する高屈折率層18の厚み、H1を発光素子11aの発光面(上面)に対向する高屈折率層18の厚みとする。また、制約として、L1<L2およびHLED>HICの大小関係が成り立つ。
 n0/n1<L1/(H12+L121/2  …………(A)
[素子部10Cの形成方法]
 素子部10Cは、例えば次のようにして形成することができる。図11A~図11Fは、素子部10Cの形成方法を工程順に表す模式図である。
 まず、図11Aに示したように、第2基板110上に、剥離層120および透明絶縁膜130をこの順に形成する。この後、図11Bに示したように、透明絶縁膜130上に、配線層19をパターン形成する。続いて、図11Cに示したように、透明絶縁膜130上の選択的な領域に接着層14A,14Bを、それぞれ形成する。尚、この配線層19は、図10では簡便化のため省略している。
 この後、図11Dに示したように、接着層14A,14B上に、発光素子11aと駆動素子12とをそれぞれ貼り合わせる。続いて、図11Eに示したように、発光素子11aを覆って高屈折率層18を形成する。このようにして、発光素子部20と駆動素子12とを形成する。最後に、図11Fに示したように、発光素子部20(発光素子11a,高屈折率層18)と、駆動素子12とを覆うように、封止層13を形成する。このようにして、素子部10Cを形成する。その後は、特に図示はしないが、第2基板110と対向する基板を、素子部10Cを間にして貼り合わせた後、第2基板110を剥離層120により透明絶縁膜130から分離する。この素子部10Cの透明絶縁膜130の側に再配線層15と接合部14とを形成し、第1基板10上にはんだ付けすることにより、図1に示したような表示装置を作製することができる。
[効果]
 本実施の形態においても、1画素内に発光素子部20と駆動素子12とが混載されてなる素子部10Cにおいて、発光素子部20の発光面S2の端部e3が、駆動素子12の上端部e2と同じか、または上端部e2よりも高い位置に配置されている。具体的には、発光素子部20において、発光素子11aを覆って高屈折率層18が形成されており、この高屈折率層18の上面(発光面S2)の端部e3が、駆動素子12の上端部e2と同等以上の高さに配置されている。これにより、発光素子部20からの出射光が駆動素子12によって遮られにくくなり、視野角が狭くなることを抑制できる。よって、上記第1の実施の形態と同等の効果を得ることができる。
<第4の実施の形態>
[構成]
 図12Aは、本開示の第4の実施の形態に係る素子部(素子部10D)の構成を模式的に表したものである。図12Bは、素子部10Dの一部を拡大して表したものである。本実施の形態の素子部10Dでは、上記第1の実施の形態の素子部10Aと同様、発光素子部11(発光素子11a)と駆動素子(駆動素子21)とが、1画素内に混載されている。また、素子部10Dは、再配線層15および接合部14を介して第1基板10上に実装される。
 また、本実施の形態においても、図12Bに示したように、発光素子部11の発光面S1の端部e1が、駆動素子21の上端部e2と同じか、または上端部e2よりも高い位置に配置されている。
 但し、本実施の形態の素子部10Dでは、発光素子11aが、駆動素子21の一部に埋め込み形成されている点で、上記第1の実施の形態と異なっている。具体的には、駆動素子21が、選択的な領域に凹部H2(第2の凹部)を有しており、発光素子11aは、この凹部H2内に形成されている。
 また、発光素子11aの下地層として、凹部H2の底面にSiN膜22(第3の絶縁膜)が形成されている。SiN膜22の厚みにより、発光面S1の高さを調整することができる。
[素子部10Dの形成方法]
 素子部10Dは、例えば次のようにして形成することができる。図13A~図13Kは、素子部10Dの形成方法を工程順に表す模式図である。
 まず、図13Aに示したように、シリコンチップなどからなる駆動素子21を形成する。この後、図13Bに示したように、駆動素子21に凹部H2を形成する。続いて、図13Cに示したように、凹部H2の底面に、SiN膜22を所定の厚みとなるように形成する。この後、図13Dに示したように、発光素子11aを転写し、配線層23を形成する。尚、この配線層23は、図12Aでは簡便化のため省略している。続いて、図13Eに示したように、駆動素子21と発光素子11aとを覆って層間絶縁膜140を形成した後、図13Fに示したように、層間絶縁膜140を平坦化する。このようにして、発光素子部11が駆動素子21に埋め込まれてなる素子部10Dを形成する。
 次いで、図13Gに示したように、駆動素子21の層間絶縁膜140の側に、対向基板141を、接着層を介して貼り合わせる。この後、図13Hに示したように、駆動素子21のSi基板を薄膜化する。続いて、図13Iに示したように、TSVにより貫通孔H3を形成する。その後、図13Jに示したように、貫通孔H3を埋め込むように配線層21a1を形成する。最後に、図13Kに示したように、配線層21a1上に、はんだ(接合部14)を形成する。これにより、図12Aに示した素子構造が形成される。
[効果]
 本実施の形態においても、1画素内に発光素子部11と駆動素子12とが混載されてなる素子部10Dにおいて、発光素子部11の発光面S1の端部e1が、駆動素子21の上端部e2と同じか、または上端部e2よりも高い位置に配置される。具体的には、発光素子11aが駆動素子21に形成された凹部H2内に埋め込まれており、発光面S1の高さは、SiN膜22の厚みにより調整可能である。これにより、発光素子部11(発光素子11a)からの出射光が駆動素子21によって遮られにくくなり、視野角が狭くなることを抑制できる。よって、上記第1の実施の形態と同等の効果を得ることができる。
<第5の実施の形態>
[構成]
 図14は、本開示の第5の実施の形態に係る素子部(素子部10E)の構成を模式的に表したものである。尚、図14では、第2基板110上に剥離層120を介して、素子部10Eが形成された状態を示している。本実施の形態の素子部10Eでは、上記第1の実施の形態の素子部10Aと同様、発光素子部(発光素子11a)と駆動素子(駆動素子31)とが、1画素内に混載されている。また、素子部10Eは、図14には図示しないが、再配線層15および接合部14を介して第1基板10上に実装される。更に、素子部10Eにおいても、発光素子11aと駆動素子31とが、封止層13によって覆われている。
 但し、本実施の形態の素子部10Eでは、上記第1の実施の形態と異なり、駆動素子31がテーパ形状31cを有している。また、駆動素子31が、遮光膜32と反射防止膜33とにより覆われている。駆動素子31では、BEOLによる配線層31aとシリコンチップを含むSi層31bとが積層されているが、これらのうちのSi層31bが、テーパ形状31cを有している。
[素子部10Eの形成方法]
 上記のような素子部10Eは、例えば次のようにして形成することができる。図15A~図15Eは、素子部10Eの形成方法を工程順に表す模式図である。
 まず、図15Aに示したように、配線層31aおよびSi層31bからなる駆動素子31上にフォトレジスト膜150を所定のパターンで形成する。尚、配線層31aには、予め、ガードリング層153(遮光膜と反射防止膜との積層膜)を形成しておく。この後、図15Bに示したように、エッチングによりSi層31bを加工する。これにより、テーパ形状31cを形成する。続いて、図15Cに示したように、形成したテーパ形状31cを覆うように、遮光膜32と反射防止膜33とを形成する。
 この後、図15Dに示したように、反射防止膜33上にフォトレジスト膜151を所定のパターンで形成する。続いて、図15Eに示したように、フォトレジスト膜151を用いたエッチングにより、遮光膜32と反射防止膜33との各一部と、配線層31aの一部とを除去する。このようにして、図14に示したような駆動素子31と、遮光膜32および反射防止膜33とを形成する。この後、図示はしないが、発光素子11aと、駆動素子31とを覆うように、封止層13を形成する。このようにして、素子部10Eを形成する。その後は、第2基板110と対向する基板を、素子部10Eを間にして貼り合わせた後、第2基板110を剥離層120により透明絶縁膜130から分離する。この素子部10Eの透明絶縁膜130の側に再配線層15と接合部14とを形成し、第1基板10上にはんだ付けすることにより、図1に示したような表示装置を作製することができる。
[効果]
 図16に、比較例1に係る素子部101Aの構造を示す。尚、ここでは、第2基板101上に、剥離層102を介して形成された状態を示す。素子部101Aでは、透明絶縁膜103上に、接着層104Aを介して発光素子105が配置されると共に、接着層104Bを介して駆動素子106が配置されている。上述したように、比較例1の素子部101Aでは、発光面s100が駆動素子106の上端部e102よりも低い位置に配置される。このため、比較例1では、上述のけられにより視野角が狭まるだけでなく、発光素子105から漏れ出た光L101が、駆動素子106に入射し(X2)、ICを構成するトランジスタなどの特性に影響を与えてしまう。この結果、素子部101Aをプリント基板などに実装した場合、発光素子105からの漏れ光の一部が駆動素子106に入射し、トランジスタ特性を劣化させる要因となる。また、駆動素子106の側面において光反射が生じると、その反射光により表示品位が低下することがある。
 これに対し、本実施の形態では、図17に示したように、駆動素子31がテーパ形状31cを有することで、発光素子11aからの出射光が駆動素子31によって遮られにくくなり、視野角が狭まることを抑制できる。また、駆動素子31を覆って、遮光膜32と反射防止膜33とを有することで、駆動素子31への光入射および駆動素子31の側面での光反射を抑制することができる。よって、上記第1の実施の形態と同等の効果を得ることができると共に、駆動素子31における特性劣化および反射光による表示品位の低下を抑制することができる。
 尚、上記第5の実施の形態では、テーパ形状31cによって光のけられを抑制できるが、更に、上記第1ないし第3の実施の形態のいずれかを採用し、発光素子部11の発光面S1の端部e1が、駆動素子12の上端部e2と同じか、または上端部e2よりも高い位置に配置されていてもよい。これにより、発光素子部11(発光素子11a)からの出射光が駆動素子12によって遮られにくくなり、視野角が狭くなることを抑制できる。よって、発光素子と駆動素子とを含む素子構造において、表示性能の劣化を抑制しつつ小型化を実現することが可能となる。
<第6の実施の形態>
[構成]
 図18は、本開示の第6の実施の形態に係る素子部(素子部10F)の構成を模式的に表したものである。尚、図18では、第2基板110上に剥離層120を介して、素子部10Fが形成された状態を示している。本実施の形態の素子部10Fでは、上記第1の実施の形態の素子部10Aと同様、発光素子部(発光素子11a)と駆動素子(駆動素子34)とが、1画素内に混載されている。また、素子部10Fは、図18には図示しないが、再配線層15および接合部14を介して第1基板10上に実装される。更に、素子部10Fにおいても、発光素子11aと駆動素子34とが、封止層13によって覆われている。
 また、本実施の形態の素子部10Fでは、上記第5の実施の形態と同様、駆動素子34がテーパ形状34cを有している。また、駆動素子34が、遮光膜35により覆われている。駆動素子34では、BEOLによる配線層34aとシリコンチップを含むSi層34bとが積層されているが、これらの配線層34aとSi層31bとが、テーパ形状34cを有し、駆動素子34の断面形状が台形状を有している。このように、Si層34bと配線層34aとの両方がテーパ形状を有していてもよい。また、駆動素子34を覆って、反射防止膜33を設けずに、遮光膜35のみが設けられていてもよい。但し、上記第5の実施の形態のように、反射防止膜33を形成した場合の方が表示品位の低下を抑制できるため望ましい。
[効果]
 本実施の形態においても、上記第5の実施の形態と同様、駆動素子34がテーパ形状34cを有することで、発光素子11aからの出射光が駆動素子34によって遮られにくくなり、視野角が狭まることを抑制できる。また、駆動素子34を覆って、遮光膜35を有することで、駆動素子34への光入射を抑制することができる。よって、上記第1の実施の形態と同等の効果を得ることができると共に、駆動素子31における特性劣化をも抑制することができる。尚、第5実施の形態のように、更に反射防止膜を形成しても構わない。
 尚、上記第6の実施の形態では、テーパ形状34cによって光のけられを抑制できるが、更に、上記第1ないし第3の実施の形態のいずれかを採用し、発光素子部11の発光面S1の端部e1が、駆動素子12の上端部e2と同じか、または上端部e2よりも高い位置に配置されていてもよい。これにより、発光素子部11(発光素子11a)からの出射光が駆動素子12によって遮られにくくなり、視野角が狭くなることを抑制できる。よって、発光素子と駆動素子とを含む素子構造において、表示性能の劣化を抑制しつつ小型化を実現することが可能となる。
[テーパ形状の他の形成方法]
 上記第5,6の実施の形態の素子部10E,10Fのテーパ形状は、例えば次のようにして形成することもできる。図19A~図19Cは、比較例2に係る素子部の形成方法を工程順に表す模式図である。図20A~図20Gは、テーパ形状の形成手法を工程順に表す模式図である。尚、ここでは、図14に示した素子部10Eを例に挙げて説明する。
 まず、比較例2では、図19Aおよび図19Bに示したように、BEOLからなる配線層1011とSi層1012とのうち、Si層1012の一部を、フォトレジスト膜1015を用いたエッチング(例えばドライエッチング)により選択的に除去する。これにより、テーパ形状31cを形成する。その後、図19Cに示したように、フォトレジスト膜1015を除去する。尚、Si層1012上には、透明絶縁膜1013を介して遮光膜(Ti)1014が形成されている。この比較例2のSi加工では、ドライ処理を用いるため、加工後のSi側面のカバレッジが悪く、遮光性において改善の余地がある。
 そこで、図20A~図20Gに示したように、Si層34bにテーパ形状を形成するとよい。即ち、まず、図20Aおよび図20Bに示したように、例えばSiNよりなるマスク152を用いて、例えばアルカリ系エッチャントによるウェット処理を行う。この後、図20Cに示したように、例えば酸系エッチャントを用いたウェット処理を行い、マスク152を除去する。続いて、図20Dおよび図20Eに示したように、例えば酸系エッチャントを用いたウェット処理を行い、Si層34bの上部(庇部分)を選択的に除去する。その後、図20Fおよび図20Gに示したように、Si層34bを覆って透明絶縁膜36と遮光膜35とをこの順に形成する。このように、Si層34bがテーパ形状を有することで、上記比較例2に比べ、遮光膜35のカバレッジ性が良好となる。十分な遮光性を得ることができる。
<第7の実施の形態>
[構成]
 図21は、本開示の第7の実施の形態に係る素子部(素子部10G)の構成を模式的に表したものである。尚、図21では、第2基板110上に剥離層120を介して、素子部10Gが形成された状態を示している。本実施の形態の素子部10Gでは、上記第1の実施の形態の素子部10Aと同様、発光素子部(発光素子11a)と駆動素子12とが、1画素内に混載されている。また、素子部10Gは、図21には図示しないが、再配線層15および接合部14を介して第1基板10上に実装される。更に、素子部10Gにおいても、発光素子11aと駆動素子12とが、封止層13によって覆われている。
 但し、本実施の形態の素子部10Gでは、上記第1の実施の形態と異なり、発光素子11aと駆動素子12とを電気的に接続する配線(接続配線37)が、封止層13に埋設されている。この場合、再配線層15には、発光素子11aと駆動素子12とを電気的に接続する配線は形成されない。
[素子部10Gの形成方法]
 上記のような素子部10Gは、例えば次のようにして形成することができる。図22Aおよび図22Bは、素子部10Gの形成方法を工程順に表す模式図である。
 まず、図22Aに示したように、発光素子11aと駆動素子12とを覆って封止層13を形成した後、封止層13に接続孔H4を形成する。この後、図22Bに示したように、接続孔H4を埋めこむように接続配線37を形成する。最後に、形成した接続配線37の表面側の一部を除去することにより、図21に示した素子部10Gを形成することができる。
 この後、図示はしないが、第2基板110と対向する基板を、素子部10Gを間にして貼り合わせた後、第2基板110を剥離層120により透明絶縁膜130から分離する。この素子部10Gの透明絶縁膜130の側に再配線層15と接合部14とを形成し、第1基板10上にはんだ付けすることにより、図1に示したような表示装置を作製することができる。
[効果]
 本実施の形態では、発光素子11aと駆動素子12とを電気的に接続する接続配線37が封止層13に埋設されることにより、この接続配線37が遮光膜として機能し(遮光膜を兼ね)、駆動素子12への光入射を抑制することができる。よって、上記第5の実施の形態と同等の効果を得ることができる。
 尚、上記第7の実施の形態において、更に、上記第1ないし第3の実施の形態のいずれかを採用し、発光素子部11の発光面S1の端部e1が、駆動素子12の上端部e2と同じか、または上端部e2よりも高い位置に配置されていてもよい。これにより、発光素子部11(発光素子11a)からの出射光が駆動素子12によって遮られにくくなり、視野角が狭くなることを抑制できる。このような構成により、上記第1の実施の形態と同等の効果を得ることができる。
<変形例1>
 図23は、上記第7の実施の形態の変形例に係る素子部(素子部10G1)の構成を模式的に表したものである。本変形例の素子部10G1では、TSV技術により接続配線37と貫通電極37aとを用いて、発光素子11aと駆動素子12との電気的接続が確保されている。このようにTSV技術を用いて配線接続を行うこともできる。
<第8の実施の形態>
[構成]
 図24は、本開示の第8の実施の形態に係る素子部(素子部10H)の構成を模式的に表したものである。図25は、素子部10Gの要部の平面構成を表したものである。本実施の形態の素子部10Hでは、上記第1の実施の形態の素子部10Aと同様、発光素子部(発光素子11a)と駆動素子12とが、1画素内に混載されている。また、素子部10Hは、再配線層15および接合部14を介して第1基板10(図24には図示せず)上に実装される。
 但し、本実施の形態の素子部10Hでは、上記第1の実施の形態と異なり、駆動素子12上に重畳してシード層38が形成されており、このシード層38が、発光素子11aと駆動素子12との間に介在して遮光層を兼ねた構成となっている。シード層38は、例えば銅(Cu)配線などの金属配線を、めっきにより形成する際に用いられる下地層である。通常めっき形成後に除去するシード層の一部(シード層38に相当する部分)をフォトレジストなどで覆っておくことで残し、遮光層として利用したものである。また、このシード層38の外周部には、他の配線を利用して支柱38aが形成されている。これらのシード層38と支柱38aとが、全体として、駆動素子12の側面および上面を囲むように形成されている。
[効果]
 本実施の形態では、駆動素子12を囲むように、シード層38および支柱38aが形成されることにより、これらのシード層38および支柱38aが遮光層として機能し(遮光層を兼ね)、駆動素子12への光入射を抑制することができる。よって、上記第5の実施の形態と同等の効果を得ることができる。
 尚、上記第8の実施の形態において、更に、上記第1ないし第3の実施の形態のいずれかを採用し、発光素子部11の発光面S1の端部e1が、駆動素子12の上端部e2と同じか、または上端部e2よりも高い位置に配置されていてもよい。これにより、発光素子部(発光素子11a)からの出射光が駆動素子12によって遮られにくくなり、視野角が狭くなることを抑制できる。このような構成により、上記第1の実施の形態と同等の効果を得ることができる。
<第9の実施の形態>
[構成]
 図26は、本開示の第9の実施の形態に係る素子部(素子部10I)の構成を模式的に表したものである。本実施の形態の素子部10Iでは、上記第1の実施の形態の素子部10Aと同様、発光素子部(発光素子11a)と駆動素子12とが、1画素内に混載されている。また、素子部10Iは、再配線層15および接合部14を介して第1基板10(図26には図示せず)上に実装される。また、図26には、発光素子11aの電極に接続された引き出し配線142についても図示している。
 但し、本実施の形態の素子部10Iでは、上記第1の実施の形態と異なり、発光素子11aと駆動素子12との間に埋め込み形成された遮光樹脂層39を有している。遮光樹脂層39は、例えばブラックマトリクスなどに用いられる感光性樹脂から構成されている。この遮光樹脂層39は、更に、発光素子11a間にも埋め込み形成されていることが望ましい。遮光層と平坦化層との機能を兼ね備えた構造を実現できるためである。
[素子部10Iの形成方法]
 上記のような素子部10Iは、例えば次のようにして形成することができる。図27A~図27Dは、素子部10Iの形成方法を工程順に表す模式図である。尚、図27A~図27Dでは、発光素子11aとして、3つの発光素子11R,11G,11Bを図示している。
 まず、図27Aに示したように、発光素子11a(発光素子11R,11G,11B)と駆動素子12とを、透明絶縁膜130上に貼り合わせる(転写形成する)。この後、図27Bに示したように、第2基板110の全面にわたって遮光樹脂層39を成膜する。遮光樹脂層39としては、例えばネガ型のフォトレジストを用いることができる。続いて、図27Cに示したように、第2基板110の裏面側から露光および現像等を行うことで、例えば発光素子11aと駆動素子12との間および画素間に、遮光樹脂層39が残存する。尚、遮光樹脂層39として、ポジ型のフォトレジストを用い、表面側から露光してもよい。このようにして、図26に示したような素子部10Iを形成することができる。
[効果]
 本実施の形態では、発光素子11aと駆動素子12との間を埋め込むように遮光樹脂層39が形成されることにより、発光素子11aから駆動素子12への光入射を抑制することができる。よって、上記第5の実施の形態と同等の効果を得ることができる。また、この遮光樹脂層39が素子間に形成されることで、平坦化層を兼ねることから、その後の製造プロセスにおいて、空隙(ボイド)の発生を抑制することができる。
 尚、上記第9の実施の形態において、更に、上記第1ないし第3の実施の形態のいずれかを採用し、発光素子部11の発光面S1の端部e1が、駆動素子12の上端部e2と同じか、または上端部e2よりも高い位置に配置されていてもよい。これにより、発光素子部(発光素子11a)からの出射光が駆動素子12によって遮られにくくなり、視野角が狭くなることを抑制できる。このような構成により、上記第1の実施の形態と同等の効果を得ることができる。
<変形例2-1~2-3>
 また、上記第9の実施の形態において、更に、次のような構造を採用しても構わない。即ち、図28に示した変形例2-1のように、第2基板110と、剥離層120との間の層において、引き出し配線142に重畳する領域に、例えばアルミニウム(Al)などよりなる遮光層40がパターン形成されていてもよい。また、図29に示した変形例2-2のように、発光素子11a上において、Cu配線層42をめっき形成するためのシード層41の下にカーボンCVD膜を形成しておき、遮光層を兼ねるように構成してもよい。更に、図30に示した変形例2-3のように、引き出し配線150aを、発光素子11R,11G,11Bの上面から取り出すのではなく、側面から取り出すようにした構成であっても構わない。
 以上、実施の形態および変形例を挙げて本開示を説明したが、本開示はこれらの実施の形態等に限定されず、種々の変形が可能である。例えば、上記実施の形態等では、発光素子部がR,G,Bの3つの発光ダイオードチップを含む場合を例示して説明したが、発光素子部が更に他の色の発光ダイオードチップを含んでいてもよいし、R,G,Bの発光ダイオードチップのいずれかに代えて他の色の発光ダイオードチップを含んでいてもよい。
 尚、本開示内容は以下のような構成であってもよい。
(1)
 基板上に、第1の配線層と、複数の画素を含む素子部とを備え、
 前記素子部は、各画素内に、
 1または複数の発光素子を含むと共に発光面を有する発光素子部と、
 前記発光素子部を駆動すると共に、前記第1の配線層を介して前記発光素子部と電気的に接続された駆動素子とを有し、
 前記発光素子部の前記発光面の端部は、前記駆動素子の上端部と同じ高さか、または前記上端部よりも高い位置に配置されている
 表示装置。
(2)
 前記発光素子部では、前記発光素子の前記基板側に第1の絶縁膜が設けられ、
 前記第1の絶縁膜の厚みと前記発光素子の厚みとの合計は、前記駆動素子の厚みと同等か、または前記駆動素子の厚み以上である
 上記(1)に記載の表示装置。
(3)
 前記発光素子部および前記駆動素子と前記基板との間に、選択的な領域に第1の凹部を有する第2の絶縁膜が設けられ、
 前記駆動素子は、前記第2の絶縁膜の前記第1の凹部に一部が埋め込まれて形成されている
 上記(1)または(2)に記載の表示装置。
(4)
 前記発光素子部と前記駆動素子とを覆う封止層を更に備え、
 前記発光素子部は、前記発光素子を覆うと共に、前記発光面を含み、かつ前記封止層よりも屈折率の高い高屈折率層を有する
 上記(1)~(3)のいずれかに記載の表示装置。
(5)
 前記高屈折率層の前記発光面の端部から出射する光の出射角の最大値は90°である
 上記(4)に記載の表示装置。
(6)
 前記高屈折率層の屈折率および厚みは、以下の条件式(A)を満たす
 上記(5)に記載の表示装置。
 n0/n1<L1/(H12+L121/2  …………(A)
 但し、
 n0:封止層の屈折率
 n1:高屈折率層の屈折率
 L1:発光素子の側面に対向する高屈折率層の厚み
 H1:発光素子の発光面に対向する高屈折率層の厚み
 とする。
(7)
 前記発光素子は、前記駆動素子の一部に埋め込み形成されている
 上記(1)に記載の表示装置。
(8)
 前記駆動素子は、選択的な領域に第2の凹部を有し、
 前記発光素子は、前記第2の凹部内に形成されている
 上記(7)に記載の表示装置。
(9)
 前記第2の凹部の底面に、前記発光面の高さを調整するための第3の絶縁膜を有する
 上記(8)に記載の表示装置。
(10)
 前記駆動素子がテーパ形状を有する
 上記(1)~(9)のいずれかに記載の表示装置。
(11)
 前記駆動素子の断面形状が台形状である
 上記(10)に記載の表示装置。
(12)
 前記駆動素子の表面を覆って遮光膜が形成されている
 上記(1)~(11)のいずれかに記載の表示装置。
(13)
 前記駆動素子の表面を覆って反射防止膜が形成されている
 上記(1)~(12)のいずれかに記載の表示装置。
(14)
 前記発光素子と前記駆動素子とを電気的に接続するための接続配線を有し、
 前記接続配線は、前記発光素子と前記駆動素子との間に介在して遮光層を兼ねる
 上記(1)~(13)のいずれかに記載の表示装置。
(15)
 前記接続配線は、TSV(Through-Silicon Via)により形成されている
 上記(14)に記載の表示装置。
(16)
 前記駆動素子に重畳すると共に、めっきによる金属配線形成用のシード層を有し、
 前記シード層は、前記発光素子と前記駆動素子との間に介在して遮光層を兼ねる
 上記(1)~(15)のいずれかに記載の表示装置。
(17)
 前記発光素子と駆動素子との間に埋め込み形成された遮光樹脂層を有する
 上記(1)~(16)のいずれかに記載の表示装置。
(18)
 前記遮光樹脂層は、前記画素間および前記発光素子と前記駆動素子との間に埋め込まれ、平坦化層を兼ねる
 上記(17)に記載の表示装置。
 本出願は、日本国特許庁において2015年1月29日に出願された日本特許出願番号第2015-015843号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (18)

  1.  基板上に、第1の配線層と、複数の画素を含む素子部とを備え、
     前記素子部は、各画素内に、
     1または複数の発光素子を含むと共に発光面を有する発光素子部と、
     前記発光素子部を駆動すると共に、前記第1の配線層を介して前記発光素子部と電気的に接続された駆動素子とを有し、
     前記発光素子部の前記発光面の端部は、前記駆動素子の上端部と同じ高さか、または前記上端部よりも高い位置に配置されている
     表示装置。
  2.  前記発光素子部では、前記発光素子の前記基板側に第1の絶縁膜が設けられ、
     前記第1の絶縁膜の厚みと前記発光素子の厚みとの合計は、前記駆動素子の厚みと同等か、または前記駆動素子の厚みよりも大きい
     請求項1に記載の表示装置。
  3.  前記発光素子部および前記駆動素子と前記基板との間に、選択的な領域に第1の凹部を有する第2の絶縁膜が設けられ、
     前記駆動素子は、前記第2の絶縁膜の前記第1の凹部に一部が埋め込まれて形成されている
     請求項1に記載の表示装置。
  4.  前記発光素子部と前記駆動素子とを覆う封止層を更に備え、
     前記発光素子部は、前記発光素子を覆うと共に、前記発光面を含み、かつ前記封止層よりも屈折率の高い高屈折率層を有する
     請求項1に記載の表示装置。
  5.  前記高屈折率層の前記発光面の端部から出射する光の出射角の最大値は90°である
     請求項4に記載の表示装置。
  6.  前記高屈折率層の屈折率および厚みは、以下の条件式(A)を満たす
     請求項5に記載の表示装置。
     n0/n1<L1/(H12+L121/2  …………(A)
     但し、
     n0:封止層の屈折率
     n1:高屈折率層の屈折率
     L1:発光素子の側面に対向する高屈折率層の厚み
     H1:発光素子の発光面に対向する高屈折率層の厚み
     とする。
  7.  前記発光素子は、前記駆動素子の一部に埋め込み形成されている
     請求項1に記載の表示装置。
  8.  前記駆動素子は、選択的な領域に第2の凹部を有し、
     前記発光素子は、前記第2の凹部内に形成されている
     請求項7に記載の表示装置。
  9.  前記第2の凹部の底面に、前記発光面の高さを調整するための第3の絶縁膜を有する
     請求項8に記載の表示装置。
  10.  前記駆動素子がテーパ形状を有する
     請求項1に記載の表示装置。
  11.  前記駆動素子の断面形状が台形状である
     請求項10に記載の表示装置。
  12.  前記駆動素子の表面を覆って遮光膜が形成されている
     請求項1に記載の表示装置。
  13.  前記駆動素子の表面を覆って反射防止膜が形成されている
     請求項1に記載の表示装置。
  14.  前記発光素子と前記駆動素子とを電気的に接続するための接続配線を有し、
     前記接続配線は、前記発光素子と前記駆動素子との間に介在して遮光層を兼ねる
     請求項1に記載の表示装置。
  15.  前記接続配線は、TSV(Through-Silicon Via)により形成されている
     請求項14に記載の表示装置。
  16.  前記駆動素子に重畳すると共に、めっきによる金属配線形成用のシード層を有し、
     前記シード層は、前記発光素子と前記駆動素子との間に介在して遮光層を兼ねる
     請求項1に記載の表示装置。
  17.  前記発光素子と駆動素子との間に埋め込み形成された遮光樹脂層を有する
     請求項1に記載の表示装置。
  18.  前記遮光樹脂層は、前記画素間および前記発光素子と前記駆動素子との間に埋め込まれ、平坦化層を兼ねる
     請求項17に記載の表示装置。
PCT/JP2015/085171 2015-01-29 2015-12-16 表示装置 WO2016121258A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016571817A JP6761351B2 (ja) 2015-01-29 2015-12-16 表示装置
CN202010372090.2A CN111477592B (zh) 2015-01-29 2015-12-16 显示装置
CN201580074094.XA CN107210016B (zh) 2015-01-29 2015-12-16 显示装置
CN202010372050.8A CN111477591B (zh) 2015-01-29 2015-12-16 显示装置
US15/544,585 US10998300B2 (en) 2015-01-29 2015-12-16 Display unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015015843 2015-01-29
JP2015-015843 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016121258A1 true WO2016121258A1 (ja) 2016-08-04

Family

ID=56542891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085171 WO2016121258A1 (ja) 2015-01-29 2015-12-16 表示装置

Country Status (4)

Country Link
US (1) US10998300B2 (ja)
JP (1) JP6761351B2 (ja)
CN (3) CN107210016B (ja)
WO (1) WO2016121258A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057830A (zh) * 2016-08-19 2016-10-26 京东方科技集团股份有限公司 一种阵列基板、显示面板及阵列基板制备方法
EP3503182A1 (en) * 2017-12-22 2019-06-26 GIO Optoelectronics Corp. Electronic package unit and manufacturing method thereof
EP3557616A1 (en) * 2018-04-18 2019-10-23 InnoLux Corporation Panel and tiled device thereof
WO2023002728A1 (ja) * 2021-07-21 2023-01-26 東レ株式会社 表示装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210016B (zh) * 2015-01-29 2020-05-29 索尼半导体解决方案公司 显示装置
JP2017009725A (ja) * 2015-06-19 2017-01-12 ソニー株式会社 表示装置
TWI660524B (zh) * 2018-07-17 2019-05-21 友達光電股份有限公司 發光裝置及其製造方法
CN109887948B (zh) * 2019-03-08 2021-11-09 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
US20200388735A1 (en) * 2019-06-05 2020-12-10 Mikro Mesa Technology Co., Ltd. Electrical contact structure for light emitting diode
US11075328B2 (en) * 2019-06-05 2021-07-27 Mikro Mesa Technology Co., Ltd. Method of forming conductive area at top surface of light-emitting diode
FR3104819A1 (fr) * 2019-12-12 2021-06-18 Valeo Vision Source lumineuse a elements semiconducteurs electroluminescents
CN111933630A (zh) * 2020-07-28 2020-11-13 华为技术有限公司 Led芯片封装模块、显示屏及其制作方法
CN212648273U (zh) 2020-07-29 2021-03-02 隆达电子股份有限公司 发光二极管装置
CN114242909B (zh) * 2020-09-09 2023-12-12 华为技术有限公司 一种显示屏及其制作方法、显示终端
CN117810213A (zh) * 2020-09-09 2024-04-02 华为技术有限公司 一种显示屏及其制作方法、显示终端
KR20220064004A (ko) * 2020-11-11 2022-05-18 삼성전자주식회사 디스플레이 모듈 및 이를 포함하는 디스플레이 장치
US20220231209A1 (en) * 2021-01-19 2022-07-21 Innostar Service Inc. Led display
CN114914229A (zh) * 2021-02-09 2022-08-16 群创光电股份有限公司 电子装置
EP4040481A1 (en) * 2021-02-09 2022-08-10 InnoLux Corporation Electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083689A (ja) * 2000-06-29 2002-03-22 Semiconductor Energy Lab Co Ltd 発光装置
JP2005266616A (ja) * 2004-03-19 2005-09-29 Hideki Matsumura 光学的表示装置及びその製造方法
JP2006065305A (ja) * 2004-07-16 2006-03-09 Semiconductor Energy Lab Co Ltd 読み取り機能付き表示装置及びそれを用いた電子機器
JP2009070814A (ja) * 2007-08-21 2009-04-02 Fujifilm Corp 散乱部材を有する有機エレクトロルミネッセンス表示装置
JP2013221991A (ja) * 2012-04-13 2013-10-28 Panasonic Corp 表示パネル

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831699A (en) * 1996-04-29 1998-11-03 Motorola, Inc. Display with inactive portions and active portions, and having drivers in the inactive portions
JP2000004049A (ja) * 1998-06-16 2000-01-07 Oki Electric Ind Co Ltd 発光素子および発光装置並びに発光素子の製造方法
US6528824B2 (en) * 2000-06-29 2003-03-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP4538951B2 (ja) 2000-12-15 2010-09-08 ソニー株式会社 素子の選択転写方法、画像表示装置の製造方法及び液晶表示装置の製造方法
US7034775B2 (en) * 2001-03-26 2006-04-25 Seiko Epson Corporation Display device and method for manufacturing the same
JP3659407B2 (ja) * 2001-08-03 2005-06-15 ソニー株式会社 発光装置
US7342256B2 (en) 2004-07-16 2008-03-11 Semiconductor Energy Laboratory Co., Ltd. Display device mounted with read function and electric appliance
US20090051278A1 (en) * 2007-08-21 2009-02-26 Fujifilm Corporation Organic electroluminescent display device having scattering member
JP5176750B2 (ja) * 2008-07-24 2013-04-03 ソニー株式会社 発光素子組立体、面状光源装置、及び、液晶表示装置組立体
JP5966412B2 (ja) * 2011-04-08 2016-08-10 ソニー株式会社 画素チップ、表示パネル、照明パネル、表示装置および照明装置
DE102013203350A1 (de) * 2013-02-28 2014-08-28 Osram Opto Semiconductors Gmbh Elektronisches Bauelement und Verfahren zu seiner Herstellung
CN103810981B (zh) * 2014-01-26 2016-01-06 京东方科技集团股份有限公司 阵列基板和显示面板
US9443835B2 (en) * 2014-03-14 2016-09-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Methods for performing embedded wafer-level packaging (eWLP) and eWLP devices, packages and assemblies made by the methods
CN107210016B (zh) * 2015-01-29 2020-05-29 索尼半导体解决方案公司 显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083689A (ja) * 2000-06-29 2002-03-22 Semiconductor Energy Lab Co Ltd 発光装置
JP2005266616A (ja) * 2004-03-19 2005-09-29 Hideki Matsumura 光学的表示装置及びその製造方法
JP2006065305A (ja) * 2004-07-16 2006-03-09 Semiconductor Energy Lab Co Ltd 読み取り機能付き表示装置及びそれを用いた電子機器
JP2009070814A (ja) * 2007-08-21 2009-04-02 Fujifilm Corp 散乱部材を有する有機エレクトロルミネッセンス表示装置
JP2013221991A (ja) * 2012-04-13 2013-10-28 Panasonic Corp 表示パネル

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057830A (zh) * 2016-08-19 2016-10-26 京东方科技集团股份有限公司 一种阵列基板、显示面板及阵列基板制备方法
EP3503182A1 (en) * 2017-12-22 2019-06-26 GIO Optoelectronics Corp. Electronic package unit and manufacturing method thereof
EP3557616A1 (en) * 2018-04-18 2019-10-23 InnoLux Corporation Panel and tiled device thereof
US10839740B2 (en) 2018-04-18 2020-11-17 Innolux Corporation Panel and tiled device thereof
WO2023002728A1 (ja) * 2021-07-21 2023-01-26 東レ株式会社 表示装置

Also Published As

Publication number Publication date
CN107210016A (zh) 2017-09-26
JP6761351B2 (ja) 2020-09-23
CN111477592A (zh) 2020-07-31
CN111477591B (zh) 2023-12-29
CN107210016B (zh) 2020-05-29
CN111477591A (zh) 2020-07-31
CN111477592B (zh) 2023-10-10
JPWO2016121258A1 (ja) 2017-11-09
US20180277528A1 (en) 2018-09-27
US10998300B2 (en) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2016121258A1 (ja) 表示装置
US11991889B2 (en) Solid-state image pickup device and manufacturing method thereof
US10535696B2 (en) Pad structure exposed in an opening through multiple dielectric layers in BSI image sensor chips
US20180145236A1 (en) Package structure for light emitting device
KR101032182B1 (ko) 반도체 패키지 및 카메라 모듈
JP4987928B2 (ja) 半導体装置の製造方法
US20090039455A1 (en) Image sensor package with trench insulator and fabrication method thereof
JP2006216935A (ja) ウェーハレベルのイメージセンサーモジュール及びその製造方法
US20140103528A1 (en) Semiconductor device
JP2011146486A (ja) 光学デバイスおよびその製造方法ならびに電子機器
JP2013143520A (ja) 撮像装置および撮像装置の製造方法
KR101640417B1 (ko) 반도체 패키지 및 이의 제조 방법
JP2009010261A (ja) 半導体パッケージおよびその製造方法
JP2008098516A (ja) 光電変換装置
US11282879B2 (en) Image sensor packaging method, image sensor packaging structure, and lens module
CN112748609A (zh) 显示装置以及显示装置的制造方法
JPWO2018047635A1 (ja) 固体撮像素子および製造方法、並びに電子機器
TWI594409B (zh) 影像傳感晶片封裝結構及封裝方法
JP2009130318A (ja) 半導体装置およびその製造方法
US20210343911A1 (en) Display device
TW202316685A (zh) 顯示裝置
CN118103961A (zh) 半导体装置及其制造方法和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571817

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15544585

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880150

Country of ref document: EP

Kind code of ref document: A1