US10998300B2 - Display unit - Google Patents
Display unit Download PDFInfo
- Publication number
- US10998300B2 US10998300B2 US15/544,585 US201515544585A US10998300B2 US 10998300 B2 US10998300 B2 US 10998300B2 US 201515544585 A US201515544585 A US 201515544585A US 10998300 B2 US10998300 B2 US 10998300B2
- Authority
- US
- United States
- Prior art keywords
- light
- emitting device
- drive device
- layer
- display unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000000758 substrate Substances 0.000 claims abstract description 70
- 238000007789 sealing Methods 0.000 claims description 24
- 239000011347 resin Substances 0.000 claims description 18
- 229920005989 resin Polymers 0.000 claims description 18
- 230000003667 anti-reflective effect Effects 0.000 claims description 12
- 230000008878 coupling Effects 0.000 claims description 10
- 238000010168 coupling process Methods 0.000 claims description 10
- 238000005859 coupling reaction Methods 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 238000007747 plating Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 193
- 238000000034 method Methods 0.000 description 155
- 230000008569 process Effects 0.000 description 112
- 238000010586 diagram Methods 0.000 description 82
- 230000000694 effects Effects 0.000 description 22
- 230000004048 modification Effects 0.000 description 18
- 238000012986 modification Methods 0.000 description 18
- 230000001629 suppression Effects 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- 230000015556 catabolic process Effects 0.000 description 8
- 238000006731 degradation reaction Methods 0.000 description 8
- 229920002120 photoresistant polymer Polymers 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000003245 working effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
- H01L25/167—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5383—Multilayer substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5386—Geometry or layout of the interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5389—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L24/19—Manufacturing methods of high density interconnect preforms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L24/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L24/24—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/20—Structure, shape, material or disposition of high density interconnect preforms
- H01L2224/21—Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
- H01L2224/214—Connecting portions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L2224/24—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
- H01L2224/241—Disposition
- H01L2224/24105—Connecting bonding areas at different heights
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L2224/24—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
- H01L2224/241—Disposition
- H01L2224/24135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/24137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L24/20—Structure, shape, material or disposition of high density interconnect preforms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00012—Relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12041—LED
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
- H01L2924/141—Analog devices
- H01L2924/1426—Driver
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/1517—Multilayer substrate
- H01L2924/15172—Fan-out arrangement of the internal vias
- H01L2924/15174—Fan-out arrangement of the internal vias in different layers of the multilayer substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/005—Processes relating to semiconductor body packages relating to encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0058—Processes relating to semiconductor body packages relating to optical field-shaping elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0066—Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
- H01L33/54—Encapsulations having a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
Definitions
- the disclosure relates to a display unit in which a light-emitting device and a drive device are mounted together in a pixel.
- a display unit in which a light-emitting device and a driving integrated circuit (IC) that drives such a light-emitting device are mounted together in a single pixel (for example, see PTL 1).
- various types of semiconductor devices such as the light-emitting device and the driving IC are formed and encapsulated on a temporary substrate, and thereafter inter-device couplings are made utilizing a transcription technique, a through-silicon via (TSV) technique, or any other equivalent technique.
- TSV through-silicon via
- an interval between the light-emitting device and the driving IC may be narrowed down, and a portion of light emitted from the light-emitting device is more likely to be vignetted (blocked) by the driving IC.
- a viewing angle may be narrowed down, causing an issue of degradation in a display performance.
- a display unit is provided, on a substrate, with a first wiring layer and a device section.
- the device section has a plurality of pixels.
- the device section includes, in each of the pixels, a light-emitting device section and a drive device.
- the light-emitting device section includes a light-emitting device and a light-emitting surface.
- the drive device drives the light-emitting device section and is electrically coupled to the light-emitting device section through the first wiring layer.
- An end of the light-emitting surface of the light-emitting device section is disposed at a position as high as an upper end of the drive device, or at a position higher than the upper end.
- the first wiring layer and the device section having the plurality of pixels are provided on a substrate, and the device section includes, in each of the pixels, the light-emitting device section that includes the one or the plurality of light-emitting devices, and the drive device that drives the light-emitting device section.
- the end of the light-emitting surface of the light-emitting device section is disposed at a position as high as the upper end of the drive device, or at a position higher than the upper end, light emitted from the light-emitting device section is less likely to be vignetted at the upper end of the drive device.
- the first wiring layer, and the device section having the plurality of pixels are provided on a substrate, and the device section includes, in each of the pixels, the light-emitting device section that includes the one or the plurality of light-emitting devices, and the drive device that drives the light-emitting device section and is electrically coupled to the light-emitting device section through the first wiring layer.
- the end of the light-emitting surface of the light-emitting device section is disposed at a position as high as the upper end of the drive device, or at a position higher than the upper end, which makes it possible to suppress vignetting of light emitted from the light-emitting device section and resultant narrowing of a viewing angle. Accordingly, it is possible to achieve downsizing while suppressing degradation in the display performance in the device structure including the light-emitting device and the drive device.
- FIG. 1 is a schematic diagram illustrating an outline configuration of a display unit according to a first embodiment of the disclosure.
- FIG. 2 is a schematic diagram illustrating a configuration example of a device section illustrated in FIG. 1 .
- FIG. 3 is a cross-sectional view of a mounting example of the device section illustrated in FIG. 1 and FIG. 2 .
- FIG. 4A is a schematic diagram illustrating a method of forming the device section illustrated in FIG. 2 in order of processes.
- FIG. 4B is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 4A .
- FIG. 4C is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 4B .
- FIG. 4D is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 4C .
- FIG. 4E is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 4D .
- FIG. 4F is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 4E .
- FIG. 5 is a schematic diagram for describing workings of a device section according to Comparative Example 1.
- FIG. 6 is a schematic diagram for describing workings of the device section illustrated in FIG. 2 .
- FIG. 7 is a schematic diagram illustrating a configuration of a device section according to a second embodiment of the disclosure.
- FIG. 8A is a schematic diagram illustrating a method of forming the device section illustrated in FIG. 7 in order of processes.
- FIG. 8B is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 8A .
- FIG. 8C is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 8B .
- FIG. 8D is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 8C .
- FIG. 8E is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 8D .
- FIG. 8F is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 8E .
- FIG. 9 is a schematic diagram illustrating a configuration of a device section according to a third embodiment of the disclosure.
- FIG. 10 is a schematic diagram illustrating design parameters of a high-refractive-index layer illustrated in FIG. 9 .
- FIG. 11A is a schematic diagram illustrating a method of forming the device section illustrated in FIG. 9 in order of processes.
- FIG. 11B is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 11A .
- FIG. 11C is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 11B .
- FIG. 11D is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 11C .
- FIG. 11E is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 11D .
- FIG. 11F is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 11E .
- FIG. 12A is a schematic diagram illustrating a configuration of a device section according to a fourth embodiment of the disclosure.
- FIG. 12B is a schematic diagram enlarging a portion of FIG. 12A .
- FIG. 13A is a schematic diagram illustrating a method of forming the device section illustrated in FIG. 12 in order of processes.
- FIG. 13B is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 13A .
- FIG. 13C is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 13B .
- FIG. 13D is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 13C .
- FIG. 13E is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 13D .
- FIG. 13F is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 13E .
- FIG. 13G is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 13F .
- FIG. 13H is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 13G .
- FIG. 13I is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 13H .
- FIG. 13J is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 13I .
- FIG. 13K is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 13J .
- FIG. 14 is a schematic diagram illustrating a configuration of a device section according to a fifth embodiment of the disclosure.
- FIG. 15A is a schematic diagram illustrating a method of forming the device section illustrated in FIG. 14 in order of processes.
- FIG. 15B is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 15A .
- FIG. 15C is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 15B .
- FIG. 15D is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 15C .
- FIG. 15E is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 15D .
- FIG. 16 is a schematic diagram for describing workings of the device section according to Comparative Example 1.
- FIG. 17 is a schematic diagram for describing workings of the device section illustrated in FIG. 14 .
- FIG. 18 is a schematic diagram illustrating a configuration of a device section according to a sixth embodiment of the disclosure.
- FIG. 19A is a schematic diagram illustrating a method of forming a device section according to Comparative Example 2 in order of processes.
- FIG. 19B is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 19A .
- FIG. 19C is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 19B .
- FIG. 20A is a schematic diagram illustrating a method of forming the device section illustrated in FIG. 18 in order of processes.
- FIG. 20B is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 20A .
- FIG. 20C is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 20B .
- FIG. 20D is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 20C .
- FIG. 20E is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 20D .
- FIG. 20F is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 20E .
- FIG. 20G is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 20F .
- FIG. 21 is a schematic diagram illustrating a configuration of a device section according to a seventh embodiment of the disclosure.
- FIG. 22A is a schematic diagram illustrating a method of forming the device section illustrated in FIG. 21 in order of processes.
- FIG. 22B is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 22A .
- FIG. 23 is a schematic diagram illustrating a configuration of a device section according to Modification Example 1.
- FIG. 24 is a schematic diagram illustrating a configuration of a device section according to an eighth embodiment of the disclosure.
- FIG. 25 is a planar schematic diagram illustrating a key part configuration of the device section illustrated in FIG. 24 .
- FIG. 26 is a schematic diagram illustrating a configuration of a device section according to a ninth embodiment of the disclosure.
- FIG. 27A is a schematic diagram illustrating a method of forming the device section illustrated in FIG. 26 in order of processes.
- FIG. 27B is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 27A .
- FIG. 27C is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 27B .
- FIG. 27D is a schematic diagram illustrating a process subsequent to the process illustrated in FIG. 27C .
- FIG. 28 is a schematic diagram illustrating a configuration of a device section according to Modification Example 2-1.
- FIG. 29 is a schematic diagram illustrating a configuration of a device section according to Modification Example 2-2.
- FIG. 30 is a schematic diagram illustrating a configuration of a device section according to Modification Example 2-3.
- First Embodiment an example of a display unit in which an insulating film is formed under a light-emitting device, and a light-emitting surface is provided at a position higher than a drive device
- Second Embodiment an example of a display unit in which a drive device is formed in a recessed portion, and a light-emitting surface is provided at a position higher than the drive device
- Third Embodiment an example of a display unit in which a high-refractive-index layer that covers a light-emitting device is provided, and a light-emitting surface is provided at a position higher than a drive device
- FIG. 1 illustrates an overall configuration of a display unit (display unit 1 ) according to a first embodiment of the disclosure.
- FIG. 2 schematically illustrates an example of a configuration of a device section 10 A. It is to be noted that FIG. 2 illustrates a state where the device section 10 A is formed on a temporary substrate (second substrate 110 ) prior to detachment (prior to formation of a rewiring layer 15 ) instead of a first substrate 10 with an adhesion layer (detachment layer 120 ) interposed in between.
- FIG. 3 is a cross-sectional view of a configuration example in which the device section 10 A is mounted on the first substrate 10 .
- the display unit 1 is a light-emitting unit in which a light-emitting device section 11 that includes one or a plurality of light-emitting devices 11 R, 11 G, and 11 B (referred to as a light-emitting device 11 a in a case where it is not necessary for them to be specifically distinguished from one another), and a drive device 12 that drives the light-emitting device section 11 are mounted together in a single pixel.
- the device section 10 A that includes the light-emitting device 11 a and the drive device 12 is mounted on the first substrate 10 with the rewiring layer 15 and a junction 14 interposed in between.
- the device section 10 A may be formed on, for example, an unillustrated temporary substrate, and thereafter the rewiring layer 15 is formed utilizing a transcription technique, a TSV technique, or any other equivalent technique to make inter-device wiring line connections.
- the first substrate 10 may include a printed circuit board such as an interposer, for example.
- the device section 10 A is detached from the temporary substrate, and is mounted on the first substrate 10 after the rewiring layer 15 is formed utilizing the TSV technique, or any other equivalent technique.
- the first substrate 10 corresponds to a specific example of a “substrate” in one embodiment of the disclosure.
- the light-emitting device section 11 includes, for example, the light-emitting devices 11 R, 11 G, and 11 B that emit color light beams of red (R), green (G), and blue (B), respectively.
- Each of these light-emitting devices 11 R, 11 G, and 11 B may be configured by, for example, a light-emitting diode (LED), and is disposed alongside inside the device section 10 A.
- the light-emitting devices 11 R, 11 G, and 11 B may be formed in width ranging, for example, from several micrometers to several hundred micrometers, and are disposed at narrow and small intervals.
- the drive device 12 is a driving IC, and may include a silicon (Si) layer (Si layer 12 a ) including, for example, an IC chip, and a multi-layer wiring layer (wiring layer 12 b ) that is formed with use of, for example, a back-end of line (BEOL) technique, as illustrated in FIG. 3 .
- the drive device 12 is disposed alongside the light-emitting device section 11 inside the device section 10 A. An interval between the drive device 12 and the light-emitting device 11 a is also narrow and small.
- the light-emitting device section 11 and the drive device 12 are sealed by a sealing layer 13 .
- the sealing layer 13 is configured by an inorganic insulating film such as a silicon oxide film and a silicon nitride film, for example, and may be a single-layer film, or may be a laminated film.
- the light-emitting device 11 a and the drive device 12 are bonded with underlayers (such as an insulating film 15 s, a transparent insulating film 130 , and a wiring layer 16 ) via adhesion layers 14 A and 14 B.
- the junction 14 serves to solder the rewiring layer 15 and the first substrate 10 .
- the junction 14 may be made of an alloy containing, for example, tin (Sn), copper (Cu), silver (Ag), or any other metallic element.
- the rewiring layer 15 is a multi-layer wiring layer that includes, for example, a wiring line for electrical coupling between each of the light-emitting devices 11 a in the light-emitting device section 11 and the drive device 12 , a wiring line for electrical coupling between the light-emitting device 11 a and the junction 14 , a wiring line for electrical coupling between the drive device 12 and the junction 14 , or any other wiring line.
- the rewiring layer 15 is formed adjacent to the device section 10 A through a process such as a detachment process.
- the rewiring layer 15 corresponds to a specific example of a “first wiring layer” in one embodiment of the disclosure.
- an end e 1 of a light-emitting surface of the light-emitting device section 11 is disposed at a position as high as an upper end e 2 of the drive device 12 , or at a position higher than the upper end e 2 , in the device section 10 A as described above.
- a top surface of the light-emitting device 11 a that configures the light-emitting device section 11 serves as a light-emitting surface S 1 , and the end e 1 of the light-emitting surface S 1 is disposed at a position higher than the upper end e 2 of the drive device 12 (a height p 1 of the end e 1 >a height p 2 of the end e 2 ).
- an insulating film 15 s (a first insulating film) is formed under the light-emitting device 11 a .
- the insulating film 15 s is formed on side of the second substrate 110 (first substrate 10 ) of the light-emitting device 11 a .
- a total of a thickness of the insulating film 15 s and a thickness of the light-emitting device 11 a is equal to or greater than a thickness of the drive device 12 .
- the insulating film 15 s is made of a transparent resin such as a silicone resin, an acrylic resin, a polyimide resin, and an epoxy resin, for example.
- the insulating film 15 s may be made of an inorganic transparent material such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film, for example. Setting of the thickness of the insulating film 15 s enables the height p 2 of the light-emitting surface S 1 to be adjusted.
- FIGS. 4A to 4F are each a schematic diagram illustrating a method of forming the device section 10 A in order of processes.
- the detachment layer 120 and the transparent insulating film 130 are formed in this order on the second substrate 110 .
- the insulating film 15 s is formed at a selective region on the transparent insulating film 130 through etching with use of, for example, a photolithographic technique.
- processing is performed to ensure that a side surface of the insulating film 15 s has a tapered shape 15 a.
- the wiring layer 16 is formed.
- the tapered shape 15 a of the insulating film 15 s makes it possible to suppress disconnection of the wiring layer 16 . It is to be noted that the wiring layer 16 is omitted in FIG. 2 for simplicity.
- an adhesion layer 14 A is formed at a region on the insulating film 15 s, and an adhesion layer 14 B is formed at a selective region on the transparent insulating film 130 .
- the light-emitting device 11 a and the drive device 12 are bonded (transcribed) on the adhesion layers 14 A and 14 B, respectively.
- the sealing layer 13 is formed to cover the light-emitting device section 11 (light-emitting device 11 a ) and the drive device 12 . In such a manner, the device section 10 A is formed.
- the second substrate 110 and a counter substrate are bonded together with the device section 10 A interposed in between, and thereafter the second substrate 110 is detached from the transparent insulating film 130 with use of the detachment layer 120 .
- the rewiring layer 15 and the junction 14 are formed on side of the transparent insulating film 130 of the device section 10 A, and are soldered on the first substrate 10 .
- the above-described processes make it possible to manufacture the display unit 1 illustrated in FIG. 1 .
- an image voltage is supplied to each pixel from an unillustrated drive circuit on the basis of an image signal that is inputted from the outside. This causes pixels to be display-driven, thus allowing images to be displayed.
- the light-emitting device section 11 that includes the light-emitting device 11 a and the drive device 12 that drives the light-emitting device section 11 are disposed together in a single pixel. Accordingly, an interval between the light-emitting device 11 a and the drive device 12 is relatively narrow. Particularly, along with the advance of downsizing, the light-emitting device 11 a and the drive device 12 are disposed within a close range from several micrometers to several hundred micrometers.
- FIG. 5 illustrates a structure of a device section 101 A according to Comparative Example 1. It is to be noted that, in this comparative example, FIG. 5 illustrates a state where the device section 101 A is formed on a second substrate 101 with a detachment layer 102 interposed in between.
- a light-emitting device 105 is disposed on a transparent insulating film 103 with an adhesion layer 104 A interposed in between, and a drive device 106 is disposed with an adhesion layer 104 B interposed in between.
- the light-emitting device 105 is typically smaller than the drive device 106 in size.
- a light-emitting surface s 100 is disposed at a lower position than an upper end e 102 of the drive device 106 .
- a portion of light (light in the range of X) that is emitted from the light-emitting surface S 100 is vignetted (blocked) at the upper end e 102 of the drive device 106 .
- the device section 101 A is mounted on a printed circuit board, or any other wiring board, a portion of light that is emitted from the light-emitting device 105 is blocked by the drive device 106 , causing a viewing angle to be narrowed down.
- the end e 1 of the light-emitting surface S 1 of the light-emitting device section 11 is disposed at a position as high as the upper end e 2 of the drive device 12 , or at a position higher than the upper end e 2 , as illustrated in FIG. 6 .
- the insulating film 15 s is provided on substrate side of the light-emitting device 11 a .
- FIG. 7 schematically illustrates a configuration of a device section (device section 10 B) according to a second embodiment of the disclosure. It is to be noted that FIG. 7 illustrates a state where the device section 10 B is formed on the second substrate 110 with the detachment layer 120 interposed in between.
- the light-emitting device section 11 (light-emitting device 11 a ) and the drive device 12 are mounted together in a single pixel, as with the device section 10 A of the above-described first embodiment.
- the device section 10 B is mounted on the first substrate 10 with the rewiring layer 15 as well as the junction 14 interposed in between, although not illustrated in FIG. 7 .
- the light-emitting device section 11 includes the light-emitting device 11 a , and the light-emitting device 11 a and the drive device 12 are covered by the sealing layer 13 .
- the end e 1 of the light-emitting surface S 1 of the light-emitting device section 11 is disposed at a position as high as the upper end e 2 of the drive device 12 , or at a position higher than the upper end e 2 .
- the height p 1 of the end e 1 of the light-emitting surface S 1 is greater than the height p 2 of the upper end e 2 of the drive device 12 .
- the present embodiment is different from the above-described first embodiment in that the drive device 12 is disposed at a lower position than the light-emitting device 11 a . More specifically, in the present embodiment, an opening (or a recessed portion) is formed at a selective region of the transparent insulating film 130 , and the drive device 12 is bonded to this opening portion with the adhesion layer 14 B interposed in between. The light-emitting device 11 a is bonded to the selective region on the transparent insulating film 130 with the adhesion layer 14 A interposed in between.
- FIGS. 8A to 8F are each a schematic diagram illustrating a method of forming the device section 10 B in order of processes.
- the detachment layer 120 and the transparent insulating film 130 are formed in this order on the second substrate 110 .
- an opening H 1 is formed at a selective region on the transparent insulating film 130 through etching with use of, for example, the photolithographic technique.
- processing is performed to ensure that a side surface of the opening H 1 has a tapered shape H 1 a .
- a wiring layer 17 is formed.
- the tapered shape H 1 a of the opening H 1 makes it possible to suppress disconnection of the wiring layer 17 . It is to be noted that the wiring layer 17 is omitted in FIG. 7 for simplicity.
- the adhesion layer 14 A is formed at a selective region on the transparent insulating film 130 , and the adhesion layer 14 B is formed inside the opening H 1 .
- the light-emitting device 11 a and the drive device 12 are bonded on the adhesion layers 14 A and 14 B, respectively.
- the sealing layer 13 is formed to cover the light-emitting device section 11 (light-emitting device 11 a ) and the drive device 12 . In such a manner, the device section 10 B is formed.
- the second substrate 110 and a counter substrate are bonded together with the device section 10 B interposed in between, and thereafter the second substrate 110 is detached from the transparent insulating film 130 with use of the detachment layer 120 .
- the rewiring layer 15 and the junction 14 are formed on side of the transparent insulating film 130 of the device section 10 B, and are soldered on the first substrate 10 , thus making it possible to manufacture the display unit as illustrated in FIG. 1 .
- the end e 1 of the light-emitting surface S 1 of the light-emitting device section 11 is disposed at a position as high as the upper end e 2 of the drive device 12 , or at a position higher than the upper end e 2 , in the device section 10 B in which the light-emitting device section 11 and the drive device 12 are mounted together in a single pixel. More specifically, the opening (or the recessed portion) is formed at a selective region of the transparent insulating film 130 , and the drive device 12 is provided at this opening portion.
- FIG. 9 schematically illustrates a configuration of a device section (device section 10 C) according to a third embodiment of the disclosure. It is to be noted that FIG. 9 illustrates a state where the device section 10 C is formed on the second substrate 110 with the detachment layer 120 interposed in between.
- a light-emitting device section (light-emitting device section 20 ) and the drive device 12 are mounted together in a single pixel, as with the device section 10 A of the above-described first embodiment.
- the device section 10 C is mounted on the first substrate 10 with the rewiring layer 15 as well as the junction 14 interposed in between, although not illustrated in FIG. 9 .
- the light-emitting device section 20 includes the light-emitting device 11 a , and the light-emitting device section 20 and the drive device 12 are covered by the sealing layer 13 .
- an end (end e 3 ) of a light-emitting surface (light-emitting surface S 2 ) of the light-emitting device section 11 is disposed at a position as high as the upper end e 2 of the drive device 12 , or at a position higher than the upper end e 2 .
- the present embodiment is different from the above-described first embodiment in that the light-emitting device section 20 includes the light-emitting device 11 a, and a high-refractive-index layer 18 that covers the light-emitting device 11 a . Further, a top surface of the high-refractive-index layer 18 forms the light-emitting surface S 2 , and the end e 3 of the light-emitting surface S 2 is disposed at a height that is equal to or greater than the upper end e 2 of the drive device 12 .
- the high-refractive-index layer 18 is formed to cover the top surface and the side surface of the light-emitting device 11 a.
- the high-refractive-index layer 18 is made of a material having the refractive index that is higher than that of the sealing layer 13 .
- Examples of the constituent material of the high-refractive-index layer 18 may include a resin containing one or both of sulfur (S) and phosphorous (P), such as an acrylic resin, an epoxy resin, and a polyimide resin; and a resin containing nanoparticles of TiO 2 , for example.
- FIG. 10 is a schematic diagram for describing design parameters of the high-refractive-index layer 18 .
- a maximum value of an emission angle ⁇ of light emitted from the end e 3 of the light-emitting surface S 2 of the high-refractive-index layer 18 may be preferably 90 degrees.
- it is preferable for the light that enters an interface between the sealing layer 13 and the high-refractive-index layer 18 at an incident angle ⁇ and is emitted at the emission angle ⁇ ( ⁇ 90 degrees) to travel along a direction in parallel with the top surface of the drive device 12 .
- a material and thickness of the high-refractive-index layer 18 may be preferably set up to satisfy Conditional Expression (A) given below, for example.
- n 0 is a refractive index of the sealing layer 13 ;
- n 1 is a refractive index of the high-refractive-index layer 18 ;
- L 1 is thickness of the high-refractive-index layer 18 facing the side surface of the light-emitting device 11 a;
- H 1 is thickness of the high-refractive-index layer 18 facing the light-emitting surface (top surface) of the light-emitting device 11 a .
- magnitude relationships of L 1 ⁇ L 2 and H LED >H IC are established.
- FIGS. 11A to 11F are each a schematic diagram illustrating a method of forming the device section 10 C in order of processes.
- the detachment layer 120 and the transparent insulating film 130 are formed in this order on the second substrate 110 .
- a pattern of a wiring layer 19 is formed on the transparent insulating film 130 .
- each of the adhesion layers 14 A and 14 B is formed at a selective region on the transparent insulating film 130 . It is to be noted that the wiring layer 19 is omitted in FIG. 10 for simplicity.
- the light-emitting device 11 a and the drive device 12 are bonded on the adhesion layers 14 A and 14 B, respectively.
- the high-refractive-index layer 18 is formed to cover the light-emitting device 11 a .
- the sealing layer 13 is formed to cover the light-emitting device section 20 (light-emitting device 11 a and the high-refractive-index layer 18 ) and the drive device 12 .
- the device section 10 C is formed.
- the second substrate 110 and a counter substrate are bonded together with the device section 10 C interposed in between, and thereafter the second substrate 110 is detached from the transparent insulating film 130 with use of the detachment layer 120 .
- the rewiring layer 15 and the junction 14 are formed on side of the transparent insulating film 130 of the device section 10 C, and are soldered on the first substrate 10 , thus making it possible to manufacture the display unit as illustrated in FIG. 1 .
- the end e 3 of the light-emitting surface S 2 of the light-emitting device section 20 is disposed at a position as high as the upper end e 2 of the drive device 12 , or at a position higher than the upper end e 2 , in the device section 10 C in which the light-emitting device section 20 and the drive device 12 are mounted together in a single pixel.
- the high-refractive-index layer 18 is formed to cover the light-emitting device 11 a, and the end e 3 of the top surface (light-emitting surface S 2 ) of the high-refractive-index layer 18 is disposed at a height that is equal to or greater than the upper end e 2 of the drive device 12 .
- light emitted from the light-emitting device section 20 is less likely to be blocked by the drive device 12 , which allows for suppression of narrowing of the viewing angle. This makes it possible to achieve the effects similar to those in the above-described first embodiment.
- FIG. 12A schematically illustrates a configuration of a device section (device section 10 D) according to a fourth embodiment of the disclosure.
- FIG. 12B is a schematic diagram enlarging a portion of the device section 10 D.
- the light-emitting device section 11 (light-emitting device 11 a ) and a drive device (drive device 21 ) are mounted together in a single pixel, as with the device section 10 A of the above-described first embodiment.
- the device section 10 D is mounted on the first substrate 10 with the rewiring layer 15 as well as the junction 14 interposed in between.
- the end e 1 of the light-emitting surface S 1 of the light-emitting device section 11 is disposed at a position as high as the upper end e 2 of the drive device 21 , or at a position higher than the upper end e 2 .
- the device section 10 D of the present embodiment is different from the above-described first embodiment in that the light-emitting device 11 a is formed to be embedded into a portion of the drive device 21 . More specifically, the drive device 21 has a recessed portion H 2 (second recessed portion) at a selective region, and the light-emitting device 11 a is formed inside the recessed portion H 2 .
- a SiN film 22 (third insulating film) is formed on the bottom surface of the recessed portion H 2 . Adjusting a thickness of the SiN film 22 enables a height of the light-emitting surface Si to be adjusted.
- FIGS. 13A to 13K are each a schematic diagram illustrating a method of forming the device section 10 D in order of processes.
- the drive device 21 made of a material such as a silicon chip is formed.
- the recessed portion H 2 is formed on the drive device 21 .
- the SiN film 22 is formed to have a predetermined thickness on the bottom surface of the recessed portion H 2 .
- the light-emitting device 11 a is transcribed to form a wiring layer 23 . It is to be noted that the wiring layer 23 is omitted in FIG. 12A for simplicity.
- FIG. 13A the drive device 21 made of a material such as a silicon chip is formed.
- an interlayer insulating film 140 is formed to cover the drive device 21 and the light-emitting device 11 a, and thereafter the interlayer insulating film 140 is planarized, as illustrated in FIG. 13F .
- the device section 10 D is formed, in which the light-emitting device 11 a is embedded into the drive device 21 .
- a counter substrate 141 is bonded on side of the interlayer insulating film 140 of the drive device 21 with an adhesion layer interposed in between.
- a S 1 substrate of the drive device 21 is thinned.
- a through-hole H 3 is formed utilizing the TSV technique.
- a wiring layer 21 a 1 is formed to embed the through-hole H 3 .
- soldering is formed on the wiring layer 21 a 1 . In such a manner, the device structure illustrated in FIG. 12A is formed.
- the end e 1 of the light-emitting surface S 1 of the light-emitting device section 11 is disposed at a position as high as the upper end e 2 of the drive device 21 , or at a position higher than the upper end e 2 , in the device section 10 D in which the light-emitting device section 11 and the drive device 12 are mounted together in a single pixel. More specifically, the light-emitting device 11 a is embedded into the recessed portion H 2 that is formed on the drive device 21 , and a height of the light-emitting surface S 1 is adjustable by a thickness of the SiN film 22 .
- FIG. 14 schematically illustrates a configuration of a device section (device section 10 E) according to a fifth embodiment of the disclosure. It is to be noted that FIG. 14 illustrates a state where the device section 10 E is formed on the second substrate 110 with the detachment layer 120 interposed in between.
- the light-emitting device section (light-emitting device 11 a ) and a drive device (drive device 31 ) are mounted together in a single pixel, as with the device section 10 A of the above-described first embodiment.
- the device section 10 E is mounted on the first substrate 10 with the rewiring layer 15 as well as the junction 14 interposed in between, although not illustrated in FIG. 14 .
- the light-emitting device 11 a and the drive device 31 are covered with the sealing layer 13 .
- the drive device 31 has a tapered shape 31 c. Further, the drive device 31 is covered with a light-shielding film 32 and an antireflective film 33 .
- a wiring layer 31 a that is formed utilizing the BEOL technique, and a Si layer 31 b that includes a silicon chip are laminated, and the Si layer 31 b of those two layers has the tapered shape 31 c.
- FIGS. 15A to 15E are each a schematic diagram illustrating a method of forming the device section 10 E in order of processes.
- a photoresist film 150 is formed in a predetermined pattern on the drive device 31 that includes the wiring layer 31 a and the Si layer 31 b.
- a guard ring layer 153 laminated film of a light-shielding film and an antireflective film
- the Si layer 31 b is processed through etching. This process forms the tapered shape 31 c.
- the light-shielding film 32 and the antireflective film 33 are formed to cover the formed tapered shape 31 c.
- a photoresist film 151 is formed in a predetermined pattern on the antireflective film 33 .
- a portion of each of the light-shielding film 32 and the antireflective film 33 and a portion of the wiring layer 31 a are removed through etching with use of the photoresist film 151 .
- the drive device 31 as well as the light-shielding film 32 and the antireflective film 33 to be formed.
- the sealing layer 13 is formed to cover the light-emitting device 11 a and the drive device 31 . In such a manner, the device section 10 E is formed.
- the second substrate 110 and a counter substrate are bonded together with the device section 10 E interposed in between, and thereafter the second substrate 110 is detached from the transparent insulating film 130 with use of the detachment layer 120 .
- the rewiring layer 15 and the junction 14 are formed on side of the transparent insulating film 130 of the device section 10 E, and are soldered on the first substrate 10 .
- FIG. 16 illustrates a structure of the device section 101 A according to Comparative Example 1. It is to be noted that, in this comparative example, FIG. 16 illustrates a state where the device section 101 A is formed on the second substrate 101 with the detachment layer 102 interposed in between.
- the light-emitting device 105 is disposed on the transparent insulating film 103 with the adhesion layer 104 A interposed in between, and the drive device 106 is disposed with the adhesion layer 104 B interposed in between.
- the light-emitting surface s 100 is disposed at a lower position than the upper end e 102 of the drive device 106 .
- a viewing angle may be narrowed down due to the above-described vignetting of light.
- light L 101 that leaks out of the light-emitting device 105 may enter the drive device 106 (X2), which may have an influence on the characteristics of components such as transistors that configure the IC.
- X2 drive device 106
- a portion of leakage light from the light-emitting device 105 may enter the drive device 106 , causing the transistor characteristics to deteriorate.
- such light reflection may cause the display quality to degrade in some cases.
- the drive device 31 has the tapered shape 31 c, as illustrated in FIG. 17 .
- the device section 10 E has the light-shielding film 32 and the antireflective film 33 that cover the drive device 31 , which makes it possible to suppress entering of light into the drive device 31 , and light reflection on the side surface of the drive device 31 . This makes it possible to achieve the effects similar to those in the above-described first embodiment, and to suppress characteristic deterioration in the drive device 31 as well as degradation in the display quality due to light reflection.
- any of the above-described first to third embodiments may be further adopted in such a manner that the end e 1 of the light-emitting surface S 1 of the light-emitting device section 11 is disposed at a position as high as the upper end e 2 of the drive device 12 , or at a position higher than the upper end e 2 .
- light emitted from the light-emitting device section 11 is less likely to be blocked by the drive device 12 , which allows for suppression of narrowing of the viewing angle. This makes it possible to achieve downsizing while suppressing degradation in a display performance in the device structure including the light-emitting device and the drive device.
- FIG. 18 schematically illustrates a configuration of a device section (device section 10 F) according to a sixth embodiment of the disclosure. It is to be noted that FIG. 18 illustrates a state where the device section 10 F is formed on the second substrate 110 with the detachment layer 120 interposed in between.
- the light-emitting device section (light-emitting device 11 a ) and a drive device (drive device 34 ) are mounted together in a single pixel, as with the device section 10 A of the above-described first embodiment.
- the device section 10 F is mounted on the first substrate 10 with the rewiring layer 15 as well as the junction 14 interposed in between, although not illustrated in FIG. 18 .
- the light-emitting device 11 a and the drive device 34 are covered with the sealing layer 13 .
- the drive device 34 has a tapered shape 34 c, as with the above-described fifth embodiment.
- the drive device 34 is covered with a light-shielding film 35 .
- a wiring layer 34 a that is formed utilizing the BEOL technique, and a Si layer 34 b that includes a silicon chip are laminated.
- Each of the wiring layer 34 a and the Si layer 34 b has the tapered shape 34 c, and a cross-sectional shape of the drive device 34 is trapezoidal.
- both of the wiring layer 34 a and the Si layer 34 b may have the tapered shape.
- the antireflective film 33 is not provided, and only the light-shielding film 35 may be provided to cover the drive device 34 .
- it may be preferable to form the antireflective film 33 because it becomes possible to suppress degradation in the display quality.
- the drive device 34 has the tapered shape 34 c, as with the above-described fifth embodiment.
- the device section 10 F has the light-shielding film 35 that covers the drive device 34 , which makes it possible to suppress entering of light into the drive device 34 .
- an antireflective film may be further provided, as with the fifth embodiment.
- any of the above-described first to third embodiments may be further adopted in such a manner that the end e 1 of the light-emitting surface S 1 of the light-emitting device section 11 is disposed at a position as high as the upper end e 2 of the drive device 12 , or at a position higher than the upper end e 2 .
- light emitted from the light-emitting device section 11 is less likely to be blocked by the drive device 12 , which allows for suppression of narrowing of the viewing angle. This makes it possible to achieve downsizing while suppressing degradation in a display performance in the device structure including the light-emitting device and the drive device.
- FIGS. 19A to 19C are each a schematic diagram illustrating a method of forming the device section according to Comparative Example 2 in order of processes.
- FIGS. 20A to 20G are each a schematic diagram illustrating a method of forming the tapered shape in order of processes. It is to be noted that the description is here provided by citing the device section 10 E illustrated in FIG. 14 as an example.
- a portion of a Si layer 1012 of a wiring layer 1011 that is formed utilizing the BEOL technique and the Si layer 1012 is removed selectively through etching (for example, dry etching) with use of a photoresist film 1015 , as illustrated in FIGS. 19A and 19B .
- etching for example, dry etching
- a photoresist film 1015 is removed.
- a light-shielding film (Ti) 1014 is formed on the Si layer 1012 with a transparent insulating film 1013 interposed in between.
- a tapered shape may be formed for a Si layer 34 b, as illustrated in FIGS. 20A to 20G .
- a wet treatment with use of, for example, an alkali-based etchant is performed using a mask 152 that is made of, for example, SiN, as illustrated in FIGS. 20A and 20B .
- the wet treatment with use of, for example, acid-based etchant is performed to remove the mask 152 .
- the wet treatment with use of, for example, the acid-based etchant is performed to selectively remove the upside (eave portion) of the Si layer 34 b.
- a transparent insulating film 36 and the light-shielding film 35 are formed in this order to cover the Si layer 34 b.
- the Si layer 34 b has a tapered shape, leading to better coverage property of the light-shielding film 35 as compared with the above-described comparative example 2. This makes it possible to achieve the adequate light-shielding property.
- FIG. 21 schematically illustrates a configuration of a device section (device section 10 G) according to a seventh embodiment of the disclosure. It is to be noted that FIG. 21 illustrates a state where the device section 10 G is formed on the second substrate 110 with the detachment layer 120 interposed in between.
- the light-emitting device section (light-emitting device 11 a ) and the drive device 12 are mounted together in a single pixel, as with the device section 10 A of the above-described first embodiment. Further, the device section 10 G is mounted on the first substrate 10 with the rewiring layer 15 as well as the junction 14 interposed in between, although not illustrated in FIG. 21 .
- the light-emitting device 11 a and the drive device 12 are covered with the sealing layer 13 .
- a wiring line (connection wiring line 37 ) for electrical coupling between the light-emitting device 11 a and the drive device 12 is embedded into the sealing layer 13 , unlike the above-described first embodiment.
- a wiring line for electrical coupling between the light-emitting device 11 a and the drive device 12 is not formed in the rewiring layer 15 .
- FIGS. 22A and 22B are each a schematic diagram illustrating a method of forming the device section 10 G in order of processes.
- the sealing layer 13 is formed to cover the light-emitting device 11 a and the drive device 12 , and thereafter a connection hole H 4 is formed in the sealing layer 13 .
- the connection wiring line 37 is formed to embed the connection hole H 4 .
- the second substrate 110 and a counter substrate are bonded together with the device section 10 G interposed in between, and thereafter the second substrate 110 is detached from the transparent insulating film 130 with use of the detachment layer 120 .
- the rewiring layer 15 and the junction 14 are formed on side of the transparent insulating film 130 of the device section 10 G, and are soldered on the first substrate 10 .
- the above-described processes make it possible to manufacture the display unit as illustrated in FIG. 1 .
- connection wiring line 37 for electrical coupling between the light-emitting device 11 a and the drive device 12 is embedded into the sealing layer 13 to thereby function as a light-shielding film (also serve as the light-shielding film), thus allowing for suppression of entering of light into the drive device 12 .
- a light-shielding film also serve as the light-shielding film
- any of the above-described first to third embodiments may be further adopted in such a manner that the end e 1 of the light-emitting surface S 1 of the light-emitting device section 11 is disposed at a position as high as the upper end e 2 of the drive device 12 , or at a position higher than the upper end e 2 .
- light emitted from the light-emitting device section 11 is less likely to be blocked by the drive device 12 , which allows for suppression of narrowing of the viewing angle.
- Such a configuration makes it possible to achieve the effects similar to those in the above-described first embodiment.
- FIG. 23 schematically illustrates a configuration of a device section (device section 10 G 1 ) according to a modification example of the above-described seventh embodiment.
- the electrical coupling between the light-emitting device 11 a and the drive device 12 is assured using the connection wiring line 37 and a through via 37 a that are based on the TSV technique. In such a manner, it is also possible to make wiring connections using the TSV technique.
- FIG. 24 schematically illustrates a configuration of a device section (device section 10 H) according to an eighth embodiment of the disclosure.
- FIG. 25 illustrates a planar configuration of a key part of the device section 10 G.
- the light-emitting device section (light-emitting device 11 a ) and the drive device 12 are mounted together in a single pixel, as with the device section 10 A of the above-described first embodiment.
- the device section 10 H is mounted on the first substrate 10 (not illustrated in FIG. 24 ) with the rewiring layer 15 as well as the junction 14 interposed in between.
- a seed layer 38 is formed in a state of being superposed on the drive device 12 , and is configured to be interposed between the light-emitting device 11 a and the drive device 12 to also serve as a light-shielding layer.
- the seed layer 38 is an underlayer to be used in forming a metallic wiring line such as a copper (Cu) wiring line, for example, through a plating treatment.
- a portion of a seed layer (a portion corresponding to the seed layer 38 ) to be typically removed after plating formation is left as it is by covering it with a material such as a photoresist that is utilized as the light-shielding layer.
- support posts 38 a are formed using other wiring lines.
- the seed layer 38 and support posts 38 a are formed to surround the side surface and top surface of the drive device 12 as a whole.
- the seed layer 38 and the support posts 38 a are formed to surround the drive device 12 .
- the seed layer 38 and the support posts 38 a function as a light-shielding film (also serve as the light-shielding film), allowing for suppression of entering of light into the drive device 12 . This makes it possible to achieve the effects similar to those in the above-described fifth embodiment.
- any of the above-described first to third embodiments may be further adopted in such a manner that the end e 1 of the light-emitting surface S 1 of the light-emitting device section 11 is disposed at a position as high as the upper end e 2 of the drive device 12 , or at a position higher than the upper end e 2 .
- light emitted from the light-emitting device section (light-emitting device 11 a ) is less likely to be blocked by the drive device 12 , which allows for suppression of narrowing of the viewing angle.
- Such a configuration makes it possible to achieve the effects similar to those in the above-described first embodiment.
- FIG. 26 schematically illustrates a configuration of a device section (device section 101 ) according to a ninth embodiment of the disclosure.
- the light-emitting device section (light-emitting device 11 a ) and the drive device 12 are mounted together in a single pixel, as with the device section 10 A of the above-described first embodiment.
- the device section 10 I is mounted on the first substrate 10 (not illustrated in FIG. 26 ) with the rewiring layer 15 as well as the junction 14 interposed in between.
- FIG. 26 also illustrates a lead-out wiring line 142 that is coupled to an electrode of the light-emitting device 11 a.
- the device section 10 I of the present embodiment has a light-shielding resin layer 39 that is formed to be embedded between the light-emitting device 11 a and the drive device 12 , unlike the above-described first embodiment.
- the light-shielding resin layer 39 is made of a photosensitive resin to be used for black matrix, for example.
- the light-shielding resin layer 39 may be further formed to be embedded also between the light-emitting devices 11 a. This is because a structure having both functions of a light-shielding layer and a planarizing layer is achievable.
- FIGS. 27A to 27D are each a schematic diagram illustrating a method of forming the device section 10 I in order of processes. It is to be noted that each of FIGS. 27A to 27D illustrates three light-emitting devices 11 R, 11 G, and 11 B as the light-emitting device 11 a.
- the light-emitting device 11 a (light-emitting devices 11 R, 11 G, and 11 B) and the drive device 12 are bonded (transcribed to be formed) onto the transparent insulating film 130 .
- the light-shielding resin layer 39 is formed over a whole surface of the second substrate 110 .
- a negative-type photoresist is usable.
- the light-shielding resin layer 39 remains between the light-emitting device 11 a and the drive device 12 , and between pixels, for example.
- a positive-type photoresist may be used as the light-shielding resin layer 39 , and the exposure may be performed from the front side. In such a manner, it is possible to form the device section 10 I as illustrated in FIG. 26 .
- the light-shielding resin layer 39 is formed to embed an interval between the light-emitting device 11 a and the drive device 12 , which allows for suppression of entering of light from the light-emitting device 11 a into the drive device 12 . This makes it possible to achieve the effects similar to those in the above-described fifth embodiment. Further, the light-shielding resin layer 39 is formed between devices to also serve as a planarizing layer, thereby allowing for suppression of occurrence of an air gap (a void) in subsequent processes.
- any of the above-described first to third embodiments may be further adopted in such a manner that the end e 1 of the light-emitting surface S 1 of the light-emitting device section 11 is disposed at a position as high as the upper end e 2 of the drive device 12 , or at a position higher than the upper end e 2 .
- light emitted from the light-emitting device section (light-emitting device 11 a ) is less likely to be blocked by the drive device 12 , which allows for suppression of narrowing of the viewing angle.
- Such a configuration makes it possible to achieve the effects similar to those in the above-described first embodiment.
- a light-shielding layer 40 made of, for example, aluminum (Al) may be patterned at a region that is superposed on a lead-out wiring line 142 in a layer between the second substrate 110 and the detachment layer 120 .
- a carbon CVD film may be formed under a seed layer 41 to be used for plating formation of a Cu wiring layer 42 , and such a carbon CVD film may be configured to also serve as a light-shielding layer.
- a configuration may also be adopted that takes out lead-out wiring lines 150 a from side surfaces of the light-emitting devices 11 R, 11 G, and 11 B instead of top surfaces thereof.
- the disclosure is described thus far with reference to the embodiments and modification examples; however, the disclosure is not limited to the embodiments and modification examples, but various modifications may be made.
- the description is provided taking as an example a case where the light-emitting device section includes three light-emitting diode chips of R, G, and B.
- the light-emitting device section may further include light-emitting diode chips of any other colors, or may include light-emitting diode chips of other colors instead of any of the light-emitting diode chips of R, G, and B.
- a display unit provided, on a substrate, with a first wiring layer and a device section having a plurality of pixels, the device section including, in each of the pixels:
- a light-emitting device section that includes a light-emitting device and a light-emitting surface
- a drive device that drives the light-emitting device section and is electrically coupled to the light-emitting device section through the first wiring layer
- an end of the light-emitting surface of the light-emitting device section is disposed at a position as high as an upper end of the drive device, or at a position higher than the upper end.
- the display unit according to (1) in which the light-emitting device section is provided with a first insulating film on substrate side of the light-emitting device), in which a total of a thickness of the first insulating film and a thickness of the light-emitting device is equal to or greater than a thickness of the drive device.
- the display unit according to (1) or (2) further including a second insulating film having a first recessed portion at a selective region, the second insulating film being provided between the substrate and the light-emitting device section as well as the drive device, the drive device being formed to allow a portion of the drive device to be embedded into the first recessed portion of the second insulating film.
- the display unit according to any one of (1) to (3), further including a sealing layer that covers the drive device and the light-emitting device section, the light-emitting device section including a high-refractive-index layer having a refractive index that is higher than a refractive index of the sealing layer, the high-refractive-index layer covering the light-emitting device and having the light-emitting surface.
- the display unit according to (4) in which a maximum value of an emission angle of light emitted from an end of the light-emitting surface of the high-refractive-index layer is 90 degrees.
- n 0 is a refractive index of the sealing layer
- n 1 is a refractive index of the high-refractive-index layer
- L 1 is a thickness of the high-refractive-index layer facing a side surface of the light-emitting device
- H 1 is a thickness of the high-refractive-index layer facing the light-emitting surface of the light-emitting device.
- the display unit according to (1) in which the light-emitting device is formed to be embedded into a portion of the drive device.
- the drive device has a second recessed portion at a selective region
- the light-emitting device is formed inside the second recessed portion.
- the display unit according to (8) further including a third insulating film that serves to adjust a height of the light-emitting surface on a bottom surface of the second recessed portion.
- the display unit according to any one of (1) to (11), further including a light-shielding film that is formed to cover a surface of the drive device.
- the display unit according to any one of (1) to (13), further including a connection wiring line for electrical coupling between the light-emitting device and the drive device, the connection wiring line being interposed between the light-emitting device and the drive device to serve as a light-shielding layer as well.
- connection wiring line is formed of a through-silicon via.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Led Device Packages (AREA)
Abstract
Description
n0/n1<L1/(H12 +L12)1/2 (A)
[Method of Forming
n0/n1<L1/(H12 +L12)1/2 (A)
Claims (19)
n0/n1<L1/(H12 +L12)1/2 (A)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP2015-015843 | 2015-01-29 | ||
JP2015015843 | 2015-01-29 | ||
JP2015-015843 | 2015-01-29 | ||
PCT/JP2015/085171 WO2016121258A1 (en) | 2015-01-29 | 2015-12-16 | Display device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180277528A1 US20180277528A1 (en) | 2018-09-27 |
US10998300B2 true US10998300B2 (en) | 2021-05-04 |
Family
ID=56542891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/544,585 Active 2036-02-26 US10998300B2 (en) | 2015-01-29 | 2015-12-16 | Display unit |
Country Status (4)
Country | Link |
---|---|
US (1) | US10998300B2 (en) |
JP (1) | JP6761351B2 (en) |
CN (3) | CN107210016B (en) |
WO (1) | WO2016121258A1 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107210016B (en) * | 2015-01-29 | 2020-05-29 | 索尼半导体解决方案公司 | Display device |
JP2017009725A (en) * | 2015-06-19 | 2017-01-12 | ソニー株式会社 | Display device |
CN106057830A (en) * | 2016-08-19 | 2016-10-26 | 京东方科技集团股份有限公司 | Array substrate, display panel and array substrate preparation method |
TWI745515B (en) * | 2017-12-22 | 2021-11-11 | 啟耀光電股份有限公司 | Electronic device and manufacturing method thereof |
US10839740B2 (en) * | 2018-04-18 | 2020-11-17 | Innolux Corporation | Panel and tiled device thereof |
TWI660524B (en) * | 2018-07-17 | 2019-05-21 | 友達光電股份有限公司 | Light emitting device and manufacturing method thereof |
CN109887948B (en) * | 2019-03-08 | 2021-11-09 | 京东方科技集团股份有限公司 | Array substrate, manufacturing method thereof and display device |
US20200388735A1 (en) * | 2019-06-05 | 2020-12-10 | Mikro Mesa Technology Co., Ltd. | Electrical contact structure for light emitting diode |
US11075328B2 (en) * | 2019-06-05 | 2021-07-27 | Mikro Mesa Technology Co., Ltd. | Method of forming conductive area at top surface of light-emitting diode |
US20220367775A1 (en) | 2019-11-12 | 2022-11-17 | Semiconductor Energy Laboratory Co., Ltd. | Display unit, display module, electronic device, and method for manufacturing the display unit |
FR3104819A1 (en) * | 2019-12-12 | 2021-06-18 | Valeo Vision | LIGHT SOURCE WITH ELECTROLUMINESCENT SEMICONDUCTOR ELEMENTS |
CN111933630A (en) * | 2020-07-28 | 2020-11-13 | 华为技术有限公司 | LED chip packaging module, display screen and manufacturing method thereof |
CN212648273U (en) | 2020-07-29 | 2021-03-02 | 隆达电子股份有限公司 | Light emitting diode device |
CN114242909B (en) * | 2020-09-09 | 2023-12-12 | 华为技术有限公司 | Display screen, manufacturing method thereof and display terminal |
CN117810213A (en) * | 2020-09-09 | 2024-04-02 | 华为技术有限公司 | Display screen, manufacturing method thereof and display terminal |
KR20220064004A (en) * | 2020-11-11 | 2022-05-18 | 삼성전자주식회사 | Display module and display apparatus having the same |
US20220231209A1 (en) * | 2021-01-19 | 2022-07-21 | Innostar Service Inc. | Led display |
EP4040481A1 (en) * | 2021-02-09 | 2022-08-10 | InnoLux Corporation | Electronic device |
TWI840743B (en) * | 2021-02-09 | 2024-05-01 | 群創光電股份有限公司 | Electronic device |
CN117396939A (en) * | 2021-07-21 | 2024-01-12 | 东丽株式会社 | Display device |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020000561A1 (en) * | 2000-06-29 | 2002-01-03 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
JP2002083689A (en) | 2000-06-29 | 2002-03-22 | Semiconductor Energy Lab Co Ltd | Luminescence device |
JP2002182580A (en) | 2000-12-15 | 2002-06-26 | Sony Corp | Selective transfer method for element, method of manufacturing image display device and method of manufacturing liquid crystal display device |
US20020135543A1 (en) * | 2001-03-26 | 2002-09-26 | Seiko Epson Corporation | Display device and method for manufacturing the same |
US20030025657A1 (en) * | 2001-08-03 | 2003-02-06 | Toshiaki Iwafuchi | Light emitting unit |
JP2005266616A (en) | 2004-03-19 | 2005-09-29 | Hideki Matsumura | Optical display device and method for manufacturing the same |
US20060011913A1 (en) | 2004-07-16 | 2006-01-19 | Shunpei Yamazaki | Display device mounted with read function and electric appliance |
JP2006065305A (en) | 2004-07-16 | 2006-03-09 | Semiconductor Energy Lab Co Ltd | Display device mounted with read function and electronic equipment using the same |
US20090051278A1 (en) | 2007-08-21 | 2009-02-26 | Fujifilm Corporation | Organic electroluminescent display device having scattering member |
JP2009070814A (en) | 2007-08-21 | 2009-04-02 | Fujifilm Corp | Organic electroluminescent display device which has dispersing member |
US20120256814A1 (en) * | 2011-04-08 | 2012-10-11 | Sony Corporation | Pixel chip, display panel, lighting panel, display unit, and lighting unit |
JP2013221991A (en) | 2012-04-13 | 2013-10-28 | Panasonic Corp | Display panel |
US20150262984A1 (en) * | 2014-03-14 | 2015-09-17 | Avago Technologies General Ip (Singapore) Pte. Ltd. | METHODS FOR PERFORMING EMBEDDED WAFER-LEVEL PACKAGING (eWLP) AND eWLP DEVICES, PACKAGES AND ASSEMBLIES MADE BY THE METHODS |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5831699A (en) * | 1996-04-29 | 1998-11-03 | Motorola, Inc. | Display with inactive portions and active portions, and having drivers in the inactive portions |
JP2000004049A (en) * | 1998-06-16 | 2000-01-07 | Oki Electric Ind Co Ltd | Manufacture of light-emitting element and light-emitting device |
JP5176750B2 (en) * | 2008-07-24 | 2013-04-03 | ソニー株式会社 | Light emitting device assembly, planar light source device, and liquid crystal display device assembly |
DE102013203350A1 (en) * | 2013-02-28 | 2014-08-28 | Osram Opto Semiconductors Gmbh | Method for manufacturing electronic semiconductor component, involves extending aperture between surface of shaped body and portion of structure by shaped body, and placing electrical conductive material in aperture |
CN103810981B (en) * | 2014-01-26 | 2016-01-06 | 京东方科技集团股份有限公司 | Array base palte and display panel |
CN107210016B (en) * | 2015-01-29 | 2020-05-29 | 索尼半导体解决方案公司 | Display device |
-
2015
- 2015-12-16 CN CN201580074094.XA patent/CN107210016B/en active Active
- 2015-12-16 CN CN202010372090.2A patent/CN111477592B/en active Active
- 2015-12-16 CN CN202010372050.8A patent/CN111477591B/en active Active
- 2015-12-16 WO PCT/JP2015/085171 patent/WO2016121258A1/en active Application Filing
- 2015-12-16 JP JP2016571817A patent/JP6761351B2/en active Active
- 2015-12-16 US US15/544,585 patent/US10998300B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020000561A1 (en) * | 2000-06-29 | 2002-01-03 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
JP2002083689A (en) | 2000-06-29 | 2002-03-22 | Semiconductor Energy Lab Co Ltd | Luminescence device |
JP2002182580A (en) | 2000-12-15 | 2002-06-26 | Sony Corp | Selective transfer method for element, method of manufacturing image display device and method of manufacturing liquid crystal display device |
US20020135543A1 (en) * | 2001-03-26 | 2002-09-26 | Seiko Epson Corporation | Display device and method for manufacturing the same |
US20030025657A1 (en) * | 2001-08-03 | 2003-02-06 | Toshiaki Iwafuchi | Light emitting unit |
JP2005266616A (en) | 2004-03-19 | 2005-09-29 | Hideki Matsumura | Optical display device and method for manufacturing the same |
US20060011913A1 (en) | 2004-07-16 | 2006-01-19 | Shunpei Yamazaki | Display device mounted with read function and electric appliance |
JP2006065305A (en) | 2004-07-16 | 2006-03-09 | Semiconductor Energy Lab Co Ltd | Display device mounted with read function and electronic equipment using the same |
US20090051278A1 (en) | 2007-08-21 | 2009-02-26 | Fujifilm Corporation | Organic electroluminescent display device having scattering member |
JP2009070814A (en) | 2007-08-21 | 2009-04-02 | Fujifilm Corp | Organic electroluminescent display device which has dispersing member |
US20120256814A1 (en) * | 2011-04-08 | 2012-10-11 | Sony Corporation | Pixel chip, display panel, lighting panel, display unit, and lighting unit |
JP2013221991A (en) | 2012-04-13 | 2013-10-28 | Panasonic Corp | Display panel |
US20150262984A1 (en) * | 2014-03-14 | 2015-09-17 | Avago Technologies General Ip (Singapore) Pte. Ltd. | METHODS FOR PERFORMING EMBEDDED WAFER-LEVEL PACKAGING (eWLP) AND eWLP DEVICES, PACKAGES AND ASSEMBLIES MADE BY THE METHODS |
Non-Patent Citations (2)
Title |
---|
International Preliminary Report on Patentability and English translation thereof dated Aug. 10, 2017 in connection with International Application No. PCT/JP2015/085171. |
Written Opinion and English translation thereof dated Mar. 8, 2016 in connection with International Application No. PCT/JP2015/085171. |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016121258A1 (en) | 2017-11-09 |
CN107210016A (en) | 2017-09-26 |
US20180277528A1 (en) | 2018-09-27 |
CN111477591B (en) | 2023-12-29 |
CN107210016B (en) | 2020-05-29 |
WO2016121258A1 (en) | 2016-08-04 |
CN111477592B (en) | 2023-10-10 |
JP6761351B2 (en) | 2020-09-23 |
CN111477592A (en) | 2020-07-31 |
CN111477591A (en) | 2020-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10998300B2 (en) | Display unit | |
US11329091B2 (en) | Solid-state image pickup unit, method of manufacturing solid-state image pickup unit, and electronic apparatus | |
US11991889B2 (en) | Solid-state image pickup device and manufacturing method thereof | |
KR102524686B1 (en) | Semiconductor device and method of manufacturing semiconductor device | |
US9373653B2 (en) | Stepped package for image sensor | |
US9263488B2 (en) | Semiconductor device, manufacturing method of semiconductor device, semiconductor wafer, and electronic equipment | |
US10134794B2 (en) | Image sensor chip sidewall interconnection | |
US9748304B2 (en) | Image sensor devices, methods of manufacture thereof, and semiconductor device manufacturing methods | |
TWI531053B (en) | Semiconductor device and method of manufacturing the same and image sensor device | |
EP4425535A1 (en) | Semiconductor device, method for producing same, and electronic device | |
JP2009130318A (en) | Semiconductor device and its fabrication process | |
KR20100079556A (en) | Cmos image sensor and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SONY SEMICONDUCTOR SOLUTIONS CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HASEGAWA, TOSHIAKI;AOYAGI, KENICHI;ARAKI, NOBUTATSU;AND OTHERS;SIGNING DATES FROM 20170609 TO 20170628;REEL/FRAME:043364/0575 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |