WO2016121256A1 - 車両の制御装置 - Google Patents
車両の制御装置 Download PDFInfo
- Publication number
- WO2016121256A1 WO2016121256A1 PCT/JP2015/085134 JP2015085134W WO2016121256A1 WO 2016121256 A1 WO2016121256 A1 WO 2016121256A1 JP 2015085134 W JP2015085134 W JP 2015085134W WO 2016121256 A1 WO2016121256 A1 WO 2016121256A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clutch
- motor
- parameter
- value
- torque value
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/50—Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/06—Control by electric or electronic means, e.g. of fluid pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/38—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
- B60K6/387—Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/101—Infinitely variable gearings
- B60W10/108—Friction gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0043—Signal treatments, identification of variables or parameters, parameter estimation or state estimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0062—Adapting control system settings
- B60W2050/0075—Automatic parameter input, automatic initialising or calibrating means
- B60W2050/0083—Setting, resetting, calibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/02—Clutches
- B60W2510/0275—Clutch torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/02—Clutches
- B60W2510/0291—Clutch temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/08—Electric propulsion units
- B60W2510/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/10—Change speed gearings
- B60W2510/1005—Transmission ratio engaged
- B60W2510/101—Transmission neutral state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/91—Electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/92—Hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/40—Actuators for moving a controlled member
- B60Y2400/406—Hydraulic actuators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/42—Clutches or brakes
- B60Y2400/424—Friction clutches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/304—Signal inputs from the clutch
- F16D2500/30404—Clutch temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/904—Component specially adapted for hev
- Y10S903/912—Drive line clutch
- Y10S903/914—Actuated, e.g. engaged or disengaged by electrical, hydraulic or mechanical means
Definitions
- the present invention relates to a vehicle control device including a clutch between a drive motor and drive wheels.
- the clutch pressure is step-changed while the vehicle is stopped in wet clutch slip control (hereinafter referred to as WSC control) in which the clutch between the drive motor and the drive wheels is slip-controlled to travel.
- WSC control wet clutch slip control
- a technique for correcting a point at which the clutch starts to generate torque capacity hereinafter referred to as zero point.
- An object of the present invention is to provide a vehicle control device capable of early detection of a zero point of a clutch between a drive motor and a drive wheel.
- the friction engagement element provided between the drive motor and the drive wheels, the shift means capable of selecting a travel range and a non-travel range
- a computing means for performing is
- the zero point hydraulic pressure command value can be obtained at an early stage only by acquiring the parameters for the travel range and the non-travel range, respectively. Also, since the motor torque value can be calculated instantaneously with high accuracy from the motor current value, for example, the acquisition time when acquiring the parameter is short. Therefore, the opportunity for acquiring these parameters can be increased, and the learning frequency can be increased.
- FIG. 1 is an overall system diagram illustrating a rear-wheel drive hybrid vehicle according to a first embodiment.
- FIG. 3 is a control block diagram illustrating an arithmetic processing program in the integrated controller according to the first embodiment. It is a figure which shows an example of the target driving force map used for target driving force calculation in the target driving force calculating part of FIG. It is a figure which shows the normal mode map used for selection of the target mode in the mode selection part of FIG. It is a figure which shows an example of the target charging / discharging amount map used for the calculation of target charging / discharging electric power in the target charging / discharging calculating part of FIG. It is a characteristic view showing the relationship between the 2nd clutch oil pressure command value of Example 1 and a motor torque value.
- 6 is a flowchart illustrating second clutch learning correction control according to the first embodiment. 2 is a Tmgn correction amount map of Example 1.
- FIG. 1 is an overall system diagram showing a hybrid vehicle by rear wheel drive to which the engine start control device of the first embodiment is applied.
- the drive system of the hybrid vehicle in the first embodiment includes an engine E, a first clutch CL1, a motor generator MG, a second clutch CL2, an automatic transmission AT, a propeller shaft PS, It has a differential DF, a left drive shaft DSL, a right drive shaft DSR, a left rear wheel RL (drive wheel), and a right rear wheel RR (drive wheel).
- FL is the left front wheel
- FR is the right front wheel.
- the engine E is, for example, a gasoline engine, and the valve opening degree of the throttle valve and the like are controlled based on a control command from the engine controller 1 described later.
- the engine output shaft is provided with a flywheel FW.
- the first clutch CL1 is a clutch interposed between the engine E and the motor generator MG, and the control generated by the first clutch hydraulic unit 6 based on a control command from the first clutch controller 5 described later. Fastening / release including slip fastening is controlled by hydraulic pressure.
- the motor generator MG is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator, and the three-phase AC generated by the inverter 3 is generated based on a control command from a motor controller 2 described later. It is controlled by applying.
- the motor generator MG can operate as an electric motor that is driven to rotate by receiving power supplied from the battery 4 (hereinafter, this state is referred to as “power running”), or when the rotor is rotated by an external force.
- power running power supplied from the battery 4
- the rotor of the motor generator MG is connected to the input shaft of the automatic transmission AT via a damper (not shown).
- the second clutch CL2 is a clutch interposed between the motor generator MG and the left and right rear wheels RL, RR, and is created by the AT hydraulic control unit 8 based on a control command from the AT controller 7 described later. Fastening / release including slip fastening is controlled by the control hydraulic pressure.
- the automatic transmission AT is a transmission that automatically switches stepped gear ratios such as forward 5 speed, reverse 1 speed, etc. according to vehicle speed, accelerator opening, etc., and the second clutch CL2 is newly added as a dedicated clutch However, some frictional engagement elements are used among a plurality of frictional engagement elements that are engaged at each gear stage of the automatic transmission AT.
- the output shaft of the automatic transmission AT is connected to the left and right rear wheels RL and RR via a propeller shaft PS, a differential DF, a left drive shaft DSL, and a right drive shaft DSR as vehicle drive shafts.
- the first clutch CL1 and the second clutch CL2 are, for example, wet multi-plate clutches that can continuously control the oil flow rate and hydraulic pressure with a proportional solenoid.
- the automatic transmission AT has a mechanical oil pump, and supplies hydraulic pressure to an AT control unit 8 (to be described later) as the input shaft of the automatic transmission AT rotates.
- the first travel mode is an electric vehicle travel mode (hereinafter, abbreviated as “EV travel mode”) as a motor use travel mode in which the first clutch CL1 is disengaged and travels using only the power of the motor generator MG as a power source. It is.
- the second travel mode is an engine use travel mode (hereinafter abbreviated as “HEV travel mode”) in which the first clutch CL1 is engaged and the engine E is included in the power source.
- the third travel mode is an abbreviated engine use slip travel mode (hereinafter referred to as “WSC travel mode”) in which the second clutch CL2 is slip-controlled while the first clutch CL1 is engaged and the engine E is included in the power source.
- WSC travel mode engine use slip travel mode
- This mode is a mode in which creep running can be achieved particularly when the battery SOC is low or the engine water temperature is low.
- the first clutch CL1 is engaged and the engine is started using the torque of the motor generator MG.
- the “HEV travel mode” has three travel modes of “engine travel mode”, “motor assist travel mode”, and “travel power generation mode”.
- engine running mode the drive wheels are moved using only the engine E as a power source.
- motor-assisted travel mode the drive wheels are moved using the engine E and the motor generator MG as power sources.
- running power generation mode the motor generator MG functions as a generator at the same time as the drive wheels RR and RL are moved using the engine E as a power source.
- motor generator MG is operated as a generator using the power of engine E.
- braking energy is regenerated and electric power is generated by the motor generator MG and used for charging the battery 4.
- there is a power generation mode in which the motor generator MG is operated as a generator using the power of the engine E when the vehicle is stopped.
- the hybrid vehicle control system includes an engine controller 1, a motor controller 2, an inverter 3, a battery 4, a first clutch controller 5, and a first clutch hydraulic unit 6. , An AT controller 7, an AT hydraulic control unit 8, a brake controller 9, and an integrated controller 10.
- the engine controller 1, the motor controller 2, the first clutch controller 5, the AT controller 7, the brake controller 9, and the integrated controller 10 are connected via a CAN communication line 11 that can exchange information with each other. Has been.
- the engine controller 1 inputs engine speed information from the engine speed sensor 12, and controls an engine operating point (Ne: engine speed, Te: engine torque) in accordance with a target engine torque command or the like from the integrated controller 10. For example, to a throttle valve actuator (not shown). Information such as the engine speed Ne is supplied to the integrated controller 10 via the CAN communication line 11.
- the motor controller 2 inputs information from the resolver 13 that detects the rotor rotation position of the motor generator MG, and according to a target motor torque command from the integrated controller 10 or the like, the motor operating point (Nm: motor rotation speed) of the motor generator MG. , Tm: Motor torque) is output to the inverter 3.
- the motor controller 2 monitors the battery SOC indicating the state of charge of the battery 4.
- the battery SOC information is used as control information for the motor generator MG and is supplied to the integrated controller 10 via the CAN communication line 11. Is done.
- the first clutch controller 5 inputs sensor information from the first clutch hydraulic pressure sensor 14 and the first clutch stroke sensor 15, and engages / releases the first clutch CL ⁇ b> 1 according to the first clutch control command from the integrated controller 10.
- a command to control is output to the first clutch hydraulic unit 6.
- Information on the first clutch stroke C1S is supplied to the integrated controller 10 via the CAN communication line 11.
- the AT controller 7 is an inhibitor switch signal of an inhibitor switch 28 that outputs a range signal corresponding to the operation position of an accelerator opening sensor 16, a vehicle speed sensor 17, a second clutch hydraulic pressure sensor 23, and a select lever 27 operated by a driver. And the target second clutch torque capacity TCL2 from the integrated controller 10.
- the AT controller 7 has a shift map in which a target shift speed is set in advance based on the vehicle speed VSP and the accelerator pedal opening APO, calculates the target shift speed according to the shift schedule shown in the shift map, and sets the target shift speed. Outputs the engagement / release command of the friction engagement element that achieves the step.
- a second clutch oil pressure command value that achieves the target second clutch torque capacity TCL2 is calculated and output to the AT oil pressure control unit 8.
- the AT controller 7 includes a second clutch learning correction control unit 700 that performs learning correction so that the relationship between the second clutch hydraulic pressure command value and the second clutch torque capacity matches. This second clutch learning correction control will be described later.
- the AT hydraulic control unit 8 controls the electromagnetic control valve based on the current command value corresponding to the engagement / release command of the friction engagement element that achieves the target shift speed. Further, the second clutch electromagnetic control valve is controlled based on a current command value corresponding to the second clutch hydraulic pressure command value. Thereby, a desired control hydraulic pressure is output to each frictional engagement element.
- the AT hydraulic control unit 8 includes a manual valve 8 a that is linked to the select lever 27. When the select lever 27 is switched from the N range position to the D range (or R range) position, the movement is transmitted to the manual valve 8a by a physical interlocking mechanism, and the spool position of the manual valve 8a is changed to the clutch original pressure and the second clutch.
- the control hydraulic pressure is supplied to the second clutch CL2 by displacing the clutch source pressure and the hydraulic chamber of the second clutch CL2 from a position corresponding to the D range where the communication with the hydraulic chamber of the CL2 is cut off. It becomes possible.
- the accelerator pedal opening APO, the vehicle speed VSP, and the inhibitor switch signal are supplied to the integrated controller 10 via the CAN communication line 11. Further, the inhibitor switch signal is sent to an in-meter display 29 provided in a combination meter (not shown), and the current range position is displayed.
- the brake controller 9 inputs sensor information from the wheel speed sensor 19 and the brake stroke sensor 20 that detect the wheel speeds of the four wheels. For example, when the brake is depressed, braking is performed with respect to the required braking force obtained from the brake stroke BS. When the braking force alone is insufficient, the regenerative cooperative brake control is performed based on the regenerative cooperative control command from the integrated controller 10 so that the shortage is supplemented by the mechanical braking force (braking force by the friction brake).
- the integrated controller 10 manages the energy consumption of the entire vehicle and has a function for running the vehicle with the highest efficiency.
- the integrated controller 10 is a motor rotation speed Nm (the motor-side rotation speed of the second clutch CL2, hereinafter referred to as input rotation).
- the motor rotation number sensor 21 that detects the resolver 13 and the second clutch output rotation speed N2out (the driving wheel side rotation speed of the second clutch CL2, hereinafter referred to as output rotation).
- the second clutch output rotational speed sensor 22 for detecting the engagement pressure of the second clutch CL2, the second clutch hydraulic sensor 23 for detecting the engagement pressure of the second clutch CL2, the brake hydraulic sensor 24, and the temperature of the second clutch CL2.
- Information from the temperature sensor 25 to be detected, information from the G sensor 26 to detect longitudinal acceleration, and information obtained through the CAN communication line 11 are input.
- the integrated controller 10 controls the operation of the engine E based on the control command to the engine controller 1, the operation control of the motor generator MG based on the control command to the motor controller 2, and the first control command to the first clutch controller 5. Engagement / release control of the clutch CL1 and engagement / release control of the second clutch CL2 by a control command to the AT controller 7 are performed.
- the integrated controller 10 includes a target driving force calculation unit 100, a mode selection unit 200, a target charge / discharge calculation unit 300, and an operating point command unit 400.
- the target driving force calculation unit 100 calculates a target driving torque tFoO from the accelerator pedal opening APO and the vehicle speed VSP using the target driving torque map shown in FIG.
- FIG. 4 is a normal mode map of the first embodiment.
- the normal mode map has an EV travel mode, a WSC travel mode, and an HEV travel mode, and the target mode is calculated from the accelerator pedal opening APO and the vehicle speed VSP.
- the “HEV travel mode” is forcibly set as the target mode.
- the HEV ⁇ WSC switching line has a rotational speed smaller than the idle rotational speed of the engine E when the automatic transmission AT is in the first speed in the region below the predetermined accelerator opening APO1. It is set in a region lower than the lower limit vehicle speed VSP1. Further, since a large driving force is required in a region where the accelerator opening APO1 is greater than or equal to, the WSC travel mode is set up to a vehicle speed VSP1 'region that is higher than the lower limit vehicle speed VSP1. When the battery SOC is low and the EV travel mode cannot be achieved, the WSC travel mode is selected even when starting.
- the target charge / discharge calculation unit 300 calculates the target charge / discharge power tP from the battery SOC using the target charge / discharge amount map shown in FIG.
- the operating point command unit 400 uses the accelerator pedal opening APO, the target driving torque tFoO, the target mode, the vehicle speed VSP, and the target charging / discharging power tP as a target for reaching the operating point, as a transient target engine torque. And a target motor torque, a target second clutch torque capacity, a target gear position of the automatic transmission AT, and a first clutch solenoid current command are calculated.
- the operating point command unit 400 is provided with an engine start control unit that starts the engine E when transitioning from the EV travel mode to the HEV travel mode.
- the second clutch CL2 is set to the second clutch torque capacity according to the target drive torque to be in the slip control state
- the motor generator MG is set to the rotation speed control
- the target motor rotation speed is equivalent to the drive wheel rotation speed.
- a clutch torque capacity is generated in the first clutch CL1, and the engine is started.
- the output shaft torque is stabilized by the clutch torque capacity of the second clutch CL2, and the motor torque is increased by the rotational speed control even when the motor rotational speed is about to decrease by engaging the first clutch CL1.
- the engine can be started reliably.
- FIG. 6 is a characteristic diagram showing the relationship between the second clutch hydraulic pressure command value and the motor torque value.
- the second clutch hydraulic pressure command value and the second clutch torque are substantially increased.
- (C) in FIG. 6 represents the relationship between the torque capacity actually generated with respect to the command value
- (A) in FIG. 6 shows that a desired torque capacity can be generated with a lower command value as an initial setting characteristic.
- FIG. 6B shows the characteristics when recognizing that the desired torque capacity can be generated with a higher command value as the initial setting characteristics.
- P0 is the second clutch command hydraulic pressure at the actual zero point.
- the second clutch torque capacity characteristic is shifted due to individual differences, secular changes, and the like. It is particularly important to properly learn the zero point, which is the point at which the second clutch CL2 begins to generate torque capacity, because it affects the start response and durability. Therefore, in the first embodiment, the second clutch hydraulic pressure command value at the zero point is calculated early.
- ⁇ is the clutch friction coefficient
- N is the number of drive plates
- D is the second clutch diameter
- P is the second clutch hydraulic pressure
- A is the pressure receiving area of the second clutch hydraulic pressure
- F is the return spring reaction force
- i the planetary gear Is the ratio.
- the balance formula of the motor generator MG is expressed as follows, assuming that the motor torque at WSC is Tmgwsc and the motor torque at the neutral time when the second clutch CL2 is completely released (hereinafter referred to as N hour) is Tmgn. It is expressed by (4) and (5).
- Tmgwsc Tfric_mg + TCL2 + Tfric_op (4)
- N: Tmgn Tfric_mg + Tfric_op (5)
- Tfric_mg is motor friction
- Tfric_op mechanical oil pump friction.
- TCL2 Tmgwsc ⁇ Tmgn (6)
- P0 Pwsc ⁇ (Tmgwsc ⁇ Tmgn) / ( ⁇ ⁇ N ⁇ D ⁇ A / i) (7)
- the second zero point hydraulic pressure command value P0 at the zero point is the second clutch hydraulic pressure command value Pwsc at the time of WSC, the motor torque Tmgwsc at this time, and the motor torque acquired at the time of N It can be calculated from Tmgn.
- the characteristic (C) of FIG. 6 since the characteristic gradient is defined by Y, the characteristic can be determined by the motor torque Tmgwsc corresponding to Pwsc.
- the command value corresponding to Tmgn becomes the second zero point hydraulic pressure command value P0 at the zero point, and the second zero point hydraulic pressure command value P0 can be instantaneously calculated backward. Therefore, in Example 1, the second zero point hydraulic pressure command value P0 at the zero point is calculated by calculation.
- the motor torque value can be calculated instantaneously with high accuracy from, for example, the motor current value, the acquisition time when acquiring parameters such as Tmgwsc and Tmgn is short. Therefore, the opportunity for acquiring these parameters can be increased, and the learning frequency can be increased.
- FIG. 7 is a flowchart showing the second clutch learning correction control of the first embodiment.
- step S1 it is determined whether or not the vehicle is in the travel range (D, R range). When the travel range is selected, the process proceeds to step S2.
- step S2 it is determined whether or not the WSC mode is in effect. If it is in the WSC mode, the process proceeds to step S3.
- step S3 second clutch temperatures temp_wsc, Pwsc, Tmgwsc (hereinafter, each information is referred to as a first parameter) are acquired.
- step S4 it is determined whether or not the vehicle is in the EV mode and the vehicle is stopped due to brake ON (hereinafter referred to as a learning condition during non-traveling range). If the learning condition during non-driving range is satisfied, step S4 is performed. Proceed to S5, otherwise repeat this step.
- step S5 the second clutch temperature temp_n and Tmgn (hereinafter, each piece of information is referred to as a second parameter) when the motor generator MG is rotated while the second clutch CL2 is completely released are acquired.
- step S6 it is determined whether or not both the first parameter and the second parameter have been acquired. If acquired, the process proceeds to step S7. Otherwise, the process returns to step S1.
- step S7 a correction amount of Tmgn is calculated based on the difference between temp_wsc and temp_n, and Tmgn is corrected.
- FIG. 8 is a Tmgn correction amount map of the first embodiment.
- ⁇ temp is a value obtained by subtracting temp_n from temp_wsc. When ⁇ temp is positive, the temperature is lower when the second parameter is obtained than when the WSC mode is obtained when the first parameter is obtained. Then, the viscosity resistance of the oil is large, and the motor friction and the mechanical oil pump friction are large.
- step S8 P0 is calculated based on Pwsc, Tmgwsc, and corrected Tmgn.
- Example 1 has the following effects. (1) a second clutch CL2 (friction engagement element) provided between the motor generator MG (drive motor) and the drive wheel; A select lever 27 (shift means) capable of selecting a travel range and a non-travel range; Step S3 (first acquisition means) for acquiring a first parameter including at least Tmgwsc (first motor torque value) that is a torque value of the motor generator MG when the travel range is selected; Step S5 (second acquisition means) for acquiring a second parameter including at least Tmgn (second motor torque value) which is a torque value of the motor generator MG when the non-traveling range is selected; Step S8 (calculation means) for calculating a zero point hydraulic pressure command value P0 at which the second clutch CL2 starts to generate torque capacity based on the first parameter and the second parameter; Equipped with.
- first acquisition means for acquiring a first parameter including at least Tmgwsc (first motor torque value) that is a torque value of the motor generator MG when the travel range is selected
- the zero point hydraulic pressure command value P0 can be obtained instantaneously only by acquiring the parameters for the traveling range and the non-traveling range, and the zero point hydraulic pressure command value P0 for the second clutch CL2 can be obtained early.
- the motor torque value can be calculated instantaneously with high accuracy from, for example, the motor current value, the acquisition time when acquiring parameters such as Tmgwsc and Tmgn is short. Therefore, the opportunity for acquiring these parameters can be increased, and the learning frequency can be increased.
- Step S3 acquires, as a first parameter, Tmgwsc, which is a motor torque value in the WSC mode when the second clutch CL2 is slipping, and a hydraulic pressure command value to the second clutch CL2 at the time of Tmgwsc acquisition.
- Tmgwsc which is a motor torque value in the WSC mode when the second clutch CL2 is slipping
- a hydraulic pressure command value to the second clutch CL2 at the time of Tmgwsc acquisition Get a Pwsc
- Tmgn which is a motor torque value at N when the second clutch CL2 is released is acquired as the second parameter. That is, if the second clutch CL2 is under slip control, the correlation between the torque value generated by the motor generator MG and the second clutch torque capacity is extremely strong, and when the second clutch CL2 is fully released, The correlation between the torque value generated by motor generator MG and various types of friction is extremely strong. Therefore, it is possible to obtain a highly accurate zero point hydraulic pressure command value P0.
- Step S3 acquires the second clutch temperature temp_wsc (first temperature value) at the time of Tmgwsc acquisition as the first parameter
- Step S5 acquires the second clutch temperature temp_n (second temperature value) at the time of acquiring Tmgn as the second parameter
- step S7 when temp_n is different from temp_wsc, Tmgn is corrected based on ⁇ temp which is a difference between temp_n and temp_wsc, and a zero point hydraulic pressure command value P0 is calculated based on the corrected Tmgn. Therefore, even if the first parameter and the second parameter are acquired in different temperature environments, it is possible to obtain a highly accurate zero point hydraulic pressure command value P0 by correcting it as a value acquired in the same temperature environment.
- the present invention has been described based on the first embodiment, the specific configuration may be other configurations.
- the FR hybrid vehicle has been described in the first embodiment, it may be an FF hybrid vehicle.
- a hybrid vehicle including an engine and a motor generator has been described.
- an electric vehicle using only a motor as a drive source is also applicable, and the same effects as those of the first embodiment can be obtained. it can.
- the second parameter is acquired in the WSC mode.
- the second clutch CL2 performs the slip control, it may be in a mode other than the WSC mode.
- the stepped transmission was illustrated as an automatic transmission, it may be a continuously variable transmission.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Transmission Device (AREA)
Abstract
Description
本発明の目的は、駆動用モータと駆動輪との間のクラッチのゼロ点を早期に検出可能な車両の制御装置を提供することにある。
まず、ハイブリッド車両の駆動系構成を説明する。図1は実施例1のエンジン始動制御装置が適用された後輪駆動によるハイブリッド車両を示す全体システム図である。実施例1におけるハイブリッド車の駆動系は、図1に示すように、エンジンEと、第1クラッチCL1と、モータジェネレータMGと、第2クラッチCL2と、自動変速機ATと、プロペラシャフトPSと、ディファレンシャルDFと、左ドライブシャフトDSLと、右ドライブシャフトDSRと、左後輪RL(駆動輪)と、右後輪RR(駆動輪)と、を有する。なお、FLは左前輪、FRは右前輪である。
第1クラッチCL1は、エンジンEとモータジェネレータMGとの間に介装されたクラッチであり、後述する第1クラッチコントローラ5からの制御指令に基づいて、第1クラッチ油圧ユニット6により作り出された制御油圧により、スリップ締結を含む締結・解放が制御される。
第2クラッチCL2は、モータジェネレータMGと左右後輪RL,RRとの間に介装されたクラッチであり、後述するATコントローラ7からの制御指令に基づいて、AT油圧コントロールユニット8により作り出された制御油圧により、スリップ締結を含む締結・解放が制御される。
「エンジン走行モード」は、エンジンEのみを動力源として駆動輪を動かす。「モータアシスト走行モード」は、エンジンEとモータジェネレータMGの2つを動力源として駆動輪を動かす。「走行発電モード」は、エンジンEを動力源として駆動輪RR,RLを動かすと同時に、モータジェネレータMGを発電機として機能させる。
定速運転時や加速運転時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる。また、減速運転時は、制動エネルギを回生してモータジェネレータMGにより発電し、バッテリ4の充電のために使用する。
また、さらなるモードとして、車両停止時には、エンジンEの動力を利用してモータジェネレータMGを発電機として動作させる発電モードを有する。
動作点指令部400では、アクセルペダル開度APOと、目標駆動トルクtFoOと、目標モードと、車速VSPと、目標充放電電力tPとから、これらの動作点到達目標として、過渡的な目標エンジントルクと目標モータトルクと目標第2クラッチトルク容量と自動変速機ATの目標変速段と第1クラッチソレノイド電流指令を演算する。
次に、第2クラッチCL2における第2クラッチ油圧指令値と実際に第2クラッチCL2が発生する第2クラッチトルク容量との関係を学習補正する第2クラッチ学習補正制御処理について説明する。上述したように、WSCモードでは、第2クラッチCL2をスリップ制御するため、第2クラッチ油圧指令値に対して実際に発生する第2クラッチトルク容量との関係性(以下、第2クラッチトルク容量特性と記載する。)がずれていると、適正なトルクを駆動輪に伝達することができず、所望の動力性能を得ることができない。図6は第2クラッチ油圧指令値とモータトルク値との関係を表す特性図である。尚、モータトルク値の変化特性は、第2クラッチCL2がトルク容量を持っているときの第2クラッチトルク容量の変化特性と一致するため、実質的に第2クラッチ油圧指令値と第2クラッチトルク容量との関係を表すものとして以下に述べる。図6中の(C)は指令値に対して実際に発生するトルク容量の関係を表し、図6中の(A)は初期設定の特性として低めの指令値で所望のトルク容量が発生できると認識している場合の特性、図6中の(B)は初期設定の特性として高めの指令値で所望のトルク容量が発生できると認識している場合の特性を表す。また、P0は実際のゼロ点における第2クラッチ指令油圧である。
TCL2=μ・2N・D/2・(P・A-F)/i=μ・N・D・(P・A-F)/i‥‥(1)
ここで、μはクラッチ摩擦係数、Nはドライブプレート枚数、Dは第2クラッチ直径、Pは第2クラッチ油圧、Aは第2クラッチ油圧の受圧面積、Fはリターンスプリング反力、iは遊星ギヤ比である。
F=P0・A‥‥(2)
この式(2)を式(1)に代入すると、下記式(3)が得られる。
P0=P-Tc/(μ・N・D・A/i)‥‥(3)
WSC時:Tmgwsc=Tfric_mg+TCL2+Tfric_op‥‥(4)
N時:Tmgn=Tfric_mg+Tfric_op‥‥(5)
ここで、Tfric_mgはモータフリクション、Tfric_opは機械式オイルポンプフリクションである。
TCL2=Tmgwsc-Tmgn‥‥(6)
今、WSC時の第2クラッチ油圧指令値をPwscとすると、式(6)を式(3)に代入することで下記式(7)が得られる。
P0=Pwsc-(Tmgwsc-Tmgn)/(μ・N・D・A/i)‥‥(7)
ステップS1では、走行レンジ(D,Rレンジ)か否かを判断し、走行レンジの時はステップS2に進み、非走行レンジ(N,Pレンジ)の時はステップS4に進む。
ステップS2では、WSCモード中か否かを判断し、WSCモードのときはステップS3に進み、それ以外のときは本ステップを繰り返す。
ステップS3では、第2クラッチ温度temp_wsc,Pwsc,Tmgwsc(以下、これら各情報を第1パラメータと記載する。)を取得する。
ステップS5では、第2クラッチ温度temp_n,第2クラッチCL2が完全解放状態でモータジェネレータMGを回転させたときのTmgn(以下、これら各情報を第2パラメータと記載する。)を取得する。
ステップS7では、temp_wscとtemp_nとの差に基づいてTmgnの補正量を算出し、Tmgnを補正する。図8は実施例1のTmgn補正量マップである。Δtempは、temp_wscからtemp_nを減算した値である。Δtempが正の場合、第2パラメータ取得時であるN時は、第1パラメータを取得したWSCモード時より温度が低い。そうすると、油の粘性抵抗が大きく、モータフリクションや機械式オイルポンプフリクションが大きくなるため、その分をTmgnから減算補正する。一方、Δtempが負の場合、第2パラメータ取得時であるN時は、第1パラメータを取得したWSCモード時より温度が高い。そうすると、油の粘性抵抗が小さく、モータフリクションや機械式オイルポンプフリクションが小さくなるため、その分をTmgnに加算補正する。このように、温度環境が異なるタイミングで取得した値を、同じ温度環境で取得した値として補正することで、精度の高いP0が得られる。
ステップS8では、Pwscと、Tmgwscと、補正後のTmgnとに基づいて、P0を演算する。
(1)モータジェネレータMG(駆動用モータ)と駆動輪との間に設けられた第2クラッチCL2(摩擦締結要素)と、
走行レンジと非走行レンジとを選択可能なセレクトレバー27(シフト手段)と、
走行レンジ選択時に、少なくともモータジェネレータMGのトルク値であるTmgwsc(第1モータトルク値)を含む第1パラメータを取得するステップS3(第1取得手段)と、
非走行レンジ選択時に、少なくともモータジェネレータMGのトルク値であるTmgn(第2モータトルク値)を含む第2パラメータを取得するステップS5(第2取得手段)と、
第1パラメータ及び第2パラメータに基づき、第2クラッチCL2がトルク容量を発生し始めるゼロ点油圧指令値P0を演算するステップS8(演算手段)と、
を備えた。
よって、走行レンジと非走行レンジとでそれぞれパラメータを取得するのみでゼロ点油圧指令値P0を瞬時に得ることができ、第2クラッチCL2のゼロ点油圧指令値P0を早期に得ることができる。また、モータトルク値は、例えばモータ電流値から精度よく瞬時に演算できるため、TmgwscやTmgnといったパラメータを取得する際の取得時間が短い。よって、これらパラメータを取得できる機会を増やすことができ、学習頻度を増大できる。
ステップS5は、第2パラメータとして、第2クラッチCL2解放時であるN時のモータトルク値であるTmgnを取得する。
すなわち、第2クラッチCL2がスリップ制御中であれば、モータジェネレータMGが発生するトルク値と第2クラッチトルク容量との相関が極めて強く、また、第2クラッチCL2が完全解放されているときは、モータジェネレータMGが発生するトルク値と各種フリクションとの相関が極めて強い。よって、精度の高いゼロ点油圧指令値P0を得ることができる。
ステップS5は、第2パラメータとして、Tmgn取得時の第2クラッチ温度temp_n(第2温度値)を取得し、
ステップS7は、temp_nがtemp_wscと異なる場合、temp_nとtemp_wscとの差であるΔtempに基づいてTmgnを補正し、補正されたTmgnに基づいてゼロ点油圧指令値P0を演算する。
よって、第1パラメータと第2パラメータとが異なる温度環境で取得されたとしても、同じ温度環境で取得した値として補正することで、精度の高いゼロ点油圧指令値P0を得ることができる。
以上、本発明を実施例1に基づいて説明したが、具体的な構成は他の構成であっても良い。例えば、実施例1では、FR型のハイブリッド車両について説明したが、FF型のハイブリッド車両であっても構わない。
また、実施例1では、エンジンとモータジェネレータとを備えたハイブリッド車両について説明したが、モータのみを駆動源とする電気自動車のも適用可能であり、実施例1と同様の作用効果を得ることができる。
また、実施例1では、WSCモードにおいて第2パラメータを取得したが、第2クラッチCL2がスリップ制御を行っているときは、WSCモード以外のときであっても構わない。
また、自動変速機として有段変速機を例示したが、無段変速機であっても構わない。
Claims (3)
- 駆動用モータと駆動輪との間に設けられた摩擦締結要素と、
走行レンジと非走行レンジとを選択可能なシフト手段と、
前記走行レンジ選択時に、少なくとも前記駆動用モータのトルク値である第1モータトルク値を含む第1パラメータを取得する第1取得手段と、
前記非走行レンジ選択時に、少なくとも前記駆動用モータのトルク値である第2モータトルク値を含む第2パラメータを取得する第2取得手段と、
前記第1パラメータと前記第2パラメータとに基づき、前記摩擦締結要素がトルク容量を発生し始めるゼロ点油圧指令値を演算する演算手段と、
を備えた車両の制御装置。 - 請求項1に記載の車両の制御装置において、
前記第1取得手段は、前記第1パラメータとして、前記摩擦締結要素スリップ時の前記第1モータトルク値を取得すると共に、前記第1モータトルク値取得時の前記摩擦締結要素への油圧指令値を取得し、
前記第2取得手段は、前記第2パラメータとして、前記摩擦締結要素解放時の前記第2モータトルク値を取得するものである車両の制御装置。 - 請求項1または2に記載の車両の制御装置において、
前記第1取得手段は、前記第1パラメータとして、前記第1モータトルク値取得時の第1温度値を取得し、
前記第2取得手段は、前記第2パラメータとして、前記第2モータトルク値取得時の第2温度値を取得し、
前記演算手段は、前記第2温度値が前記第1温度値と異なる場合、前記第2温度値と前記第1温度値との差に基づいて前記第2モータトルク値を補正し、補正された前記第2モータトルク値に基づいて前記ゼロ点油圧指令値を演算するものである車両の制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177021253A KR20170104146A (ko) | 2015-01-30 | 2015-12-16 | 차량의 제어 장치 |
JP2016571815A JP6353557B2 (ja) | 2015-01-30 | 2015-12-16 | 車両の制御装置 |
US15/547,183 US10344811B2 (en) | 2015-01-30 | 2015-12-16 | Vehicle controlling device |
CN201580074568.0A CN107208789B (zh) | 2015-01-30 | 2015-12-16 | 车辆的控制装置 |
EP15880148.0A EP3252348A4 (en) | 2015-01-30 | 2015-12-16 | Vehicle controlling device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-016356 | 2015-01-30 | ||
JP2015016356 | 2015-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016121256A1 true WO2016121256A1 (ja) | 2016-08-04 |
Family
ID=56542889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/085134 WO2016121256A1 (ja) | 2015-01-30 | 2015-12-16 | 車両の制御装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10344811B2 (ja) |
EP (1) | EP3252348A4 (ja) |
JP (1) | JP6353557B2 (ja) |
KR (1) | KR20170104146A (ja) |
CN (1) | CN107208789B (ja) |
WO (1) | WO2016121256A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10981555B2 (en) * | 2018-08-07 | 2021-04-20 | Hyundai Motor Company | Vehicle equipped with electric motor and parking control method therefor |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109305027A (zh) * | 2018-11-28 | 2019-02-05 | 王德恒 | 一种电力驱动的混合动力电动车 |
WO2021141053A1 (ja) * | 2020-01-10 | 2021-07-15 | 株式会社デンソー | 回転電機の制御装置 |
JP2022030163A (ja) * | 2020-08-06 | 2022-02-18 | トヨタ自動車株式会社 | 摩擦係合要素の温度推定装置 |
CN114715155B (zh) * | 2022-05-05 | 2022-11-29 | 阿波罗智能技术(北京)有限公司 | 用于控制车辆的方法、装置及自动驾驶车辆 |
CN114696691B (zh) * | 2022-05-31 | 2022-09-02 | 华能太原东山燃机热电有限责任公司 | 一种燃机电厂发电机的安全控制方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10512359A (ja) * | 1995-11-03 | 1998-11-24 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | サーボクラッチ制御装置 |
JP2009006781A (ja) * | 2007-06-27 | 2009-01-15 | Nissan Motor Co Ltd | 車両の制御装置 |
JP2012163117A (ja) * | 2011-02-03 | 2012-08-30 | Jatco Ltd | 車両の制御装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO314174B1 (no) * | 1995-12-18 | 2003-02-10 | Luk Getriebe Systeme Gmbh | Motorkjöretöy |
JP5693152B2 (ja) * | 2010-11-01 | 2015-04-01 | ジヤトコ株式会社 | 車両の油圧制御装置 |
JP5383626B2 (ja) | 2010-11-01 | 2014-01-08 | ジヤトコ株式会社 | 車両の制御装置 |
CN103502070B (zh) * | 2011-07-06 | 2016-02-17 | 爱信艾达株式会社 | 控制装置 |
US9447747B2 (en) * | 2012-05-04 | 2016-09-20 | Ford Global Technologies, Llc | Methods and systems for stopping an engine |
KR101371461B1 (ko) * | 2012-09-06 | 2014-03-10 | 기아자동차주식회사 | 하이브리드 차량의 엔진클러치의 토크전달 시작점 학습 제어 방법 및 시스템 |
-
2015
- 2015-12-16 CN CN201580074568.0A patent/CN107208789B/zh active Active
- 2015-12-16 US US15/547,183 patent/US10344811B2/en active Active
- 2015-12-16 JP JP2016571815A patent/JP6353557B2/ja active Active
- 2015-12-16 KR KR1020177021253A patent/KR20170104146A/ko active IP Right Grant
- 2015-12-16 EP EP15880148.0A patent/EP3252348A4/en not_active Withdrawn
- 2015-12-16 WO PCT/JP2015/085134 patent/WO2016121256A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10512359A (ja) * | 1995-11-03 | 1998-11-24 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | サーボクラッチ制御装置 |
JP2009006781A (ja) * | 2007-06-27 | 2009-01-15 | Nissan Motor Co Ltd | 車両の制御装置 |
JP2012163117A (ja) * | 2011-02-03 | 2012-08-30 | Jatco Ltd | 車両の制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3252348A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10981555B2 (en) * | 2018-08-07 | 2021-04-20 | Hyundai Motor Company | Vehicle equipped with electric motor and parking control method therefor |
Also Published As
Publication number | Publication date |
---|---|
KR20170104146A (ko) | 2017-09-14 |
US10344811B2 (en) | 2019-07-09 |
CN107208789B (zh) | 2019-07-19 |
EP3252348A4 (en) | 2018-01-24 |
CN107208789A (zh) | 2017-09-26 |
US20180023639A1 (en) | 2018-01-25 |
JP6353557B2 (ja) | 2018-07-04 |
EP3252348A1 (en) | 2017-12-06 |
JPWO2016121256A1 (ja) | 2017-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6353557B2 (ja) | 車両の制御装置 | |
EP2639130B1 (en) | Hybrid vehicle control device | |
EP2743149A1 (en) | Hybrid vehicle control unit | |
JP5223603B2 (ja) | ハイブリッド車両の制御装置 | |
JP5233647B2 (ja) | ハイブリッド車両の制御装置 | |
JP6012026B2 (ja) | 車両の制御装置 | |
JP2010149640A (ja) | エンジン始動制御装置及びエンジン始動制御方法 | |
JP5212199B2 (ja) | ハイブリッド車両のクラッチ制御装置 | |
JP2012086738A (ja) | ハイブリッド車両のモード切り替え制御装置 | |
JP5200733B2 (ja) | ハイブリッド車両のクラッチ制御装置 | |
JP5309969B2 (ja) | ハイブリッド車両の制御装置 | |
JP5239819B2 (ja) | ハイブリッド車両の制御装置 | |
JP5251958B2 (ja) | ハイブリッド車両の制御装置 | |
JP2012092975A (ja) | 自動変速機 | |
JP5550524B2 (ja) | 自動変速機 | |
JP5309676B2 (ja) | 車両の発進制御装置 | |
JP5223378B2 (ja) | 車両の発進制御装置 | |
JP2012092939A5 (ja) | ||
JP2012091560A (ja) | ハイブリッド車両の制御装置 | |
JP2010167804A (ja) | ハイブリッド車両の制御装置 | |
WO2014181616A1 (ja) | ハイブリッド車両の制御装置 | |
JP2010143417A (ja) | ハイブリッド車両の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15880148 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016571815 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015880148 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177021253 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15547183 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |