WO2016119593A1 - 磷酸铁锂溶剂热制备工艺 - Google Patents

磷酸铁锂溶剂热制备工艺 Download PDF

Info

Publication number
WO2016119593A1
WO2016119593A1 PCT/CN2016/070752 CN2016070752W WO2016119593A1 WO 2016119593 A1 WO2016119593 A1 WO 2016119593A1 CN 2016070752 W CN2016070752 W CN 2016070752W WO 2016119593 A1 WO2016119593 A1 WO 2016119593A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron phosphate
organic solvent
lithium iron
lithium
preparation process
Prior art date
Application number
PCT/CN2016/070752
Other languages
English (en)
French (fr)
Inventor
何向明
徐程浩
王莉
李建军
尚玉明
高剑
王要武
Original Assignee
江苏华东锂电技术研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华东锂电技术研究院有限公司, 清华大学 filed Critical 江苏华东锂电技术研究院有限公司
Publication of WO2016119593A1 publication Critical patent/WO2016119593A1/zh
Priority to US15/658,392 priority Critical patent/US20170320737A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of preparation of a positive active material for a lithium ion battery, in particular to a solvothermal preparation process and a preparation device for lithium iron phosphate.
  • Lithium iron phosphate (LiFePO4, LFP) is an important active material for lithium ion battery and has a wide range of applications in the market of energy storage and power batteries.
  • LFP preparations there are two main types of LFP preparations, namely ferrous oxalate (A123 Systems, USA), iron red (Valence Technology, etc.), iron phosphate (Phostech Lithium, Canada, A123 Systems, USA).
  • the solid phase preparation process represented by the company and the liquid phase process is represented by a solvothermal process route (Clariant Chemicals, Switzerland, Hanwa Chemical Co., etc.).
  • the solid phase preparation process has become the most widely used preparation process in the prior art due to low production cost, but the LFP particle size distribution prepared by the solid phase preparation process is not uniform, and the product controllability is poor, thereby limiting the LFP itself.
  • the performance of electrochemical performance leads to a decrease in product performance.
  • the liquid phase preparation process especially the solvothermal preparation process, has the advantages of easy realization of low-temperature synthesis continuous, high crystal purity of the product, uniform particle size distribution, easy in-situ carbonization, excellent electrochemical performance, etc. compared with the solid phase preparation process.
  • the solvothermal preparation process usually uses a mixed solvent of water and an organic solvent as a solvothermal reaction medium, which generates a large amount of waste liquid during the preparation process, how to properly handle a large amount of waste liquid, recycles lithium resources in the waste liquid, and organic Solvents are the key to the liquid phase preparation process.
  • a lithium salt and an organic solvent in the waste liquid are generally recovered by distillation, but distillation is required.
  • a solvothermal preparation process for lithium iron phosphate comprising:
  • S1 providing an organic solvent, ferrous sulfate, lithium hydroxide, and a phosphoric acid solution, the phosphoric acid solution comprising water and phosphoric acid;
  • the precursor solution is subjected to a solvothermal reaction, and after the reaction is completed, a first suspension is obtained;
  • the filtrate is flashed to obtain water and a second suspension, respectively, the second suspension comprises the organic solvent and lithium sulfate, and the lithium sulfate is suspended in the organic form in the form of a precipitate.
  • the second suspension comprises the organic solvent and lithium sulfate, and the lithium sulfate is suspended in the organic form in the form of a precipitate.
  • the second suspension is subjected to solid-liquid separation to obtain the lithium sulfate and the organic solvent, and the organic solvent is returned to the step S1 for recycling, and the other portion is used to the step S7;
  • step S7 mixing the water obtained in step S5 with a portion of the organic solvent obtained in step S6, and performing countercurrent washing on the lithium iron phosphate wet material to obtain purified lithium iron phosphate wet material and washing liquid, respectively.
  • the composition of the washing liquid is the same as the composition of the filtrate, and the washing liquid is returned to the step S5 for recycling with the filtrate;
  • the solvothermal preparation process of lithium iron phosphate comprehensively treats the waste liquid by flash evaporation and centrifugal separation, and comprehensively utilizes the waste liquid through two circulation lines, so that the waste liquid can be quickly and efficiently
  • the water, the organic solvent and the lithium sulfate by-product are separated, and the amount of the fresh organic solvent and the production cost of the LEP are greatly reduced, and the LEP of the product having high crystal purity, uniform particle size distribution and excellent electrochemical performance can be prepared, and the whole
  • the production process does not produce secondary pollutants such as waste liquid, waste residue and waste gas. It is truly green, energy-saving and environmentally friendly. It has a strong demonstration effect and meets the national energy conservation and environmental protection requirements.
  • FIG. 1 is a schematic view showing a process flow of a solvothermal preparation process of lithium iron phosphate provided by the present invention.
  • FIG. 2 is a schematic structural view of a solvothermal preparation device for lithium iron phosphate provided by the present invention.
  • Lithium iron phosphate solvothermal preparation equipment 10
  • Product preparation unit 100
  • Feeding device 110 Organic solvent raw material tank 111 First mixing tank 112 Second mixing tank 113 Third mixing tank 114
  • Reaction device 120
  • Solvothermal reactor 121
  • Meter 122 Feed pump 123
  • Discharge pump 124
  • Filter feed inlet 131
  • Filter outlet 132 Filter out the liquid outlet
  • Countercurrent washing device 140
  • Countercurrent washing inlet 141
  • Countercurrent washing outlet 142
  • Countercurrent washing inlet 143
  • Countercurrent washing outlet 144
  • First sink 145 Second sink
  • Waste treatment cycle unit 200 Flash unit 210 Flash inlet 211 Flash outlet 212 Flash outlet 213
  • Gas-liquid separator 215
  • Solid-liquid separation device 220 Solid-liquid separation feed port 221
  • Solid-liquid separation outlet 222
  • Solid-liquid separation outlet 223 Pump 300
  • the present invention provides a solvothermal preparation process of lithium iron phosphate, comprising:
  • S1 providing an organic solvent, ferrous sulfate, lithium hydroxide, and a phosphoric acid solution, the phosphoric acid solution comprising water and phosphoric acid;
  • the precursor solution is subjected to a solvothermal reaction, and after the reaction is completed, a first suspension is obtained;
  • the filtrate is flashed to obtain water and a second suspension, respectively, the second suspension comprises the organic solvent and lithium sulfate, and the lithium sulfate is suspended in the organic form in the form of a precipitate.
  • the second suspension comprises the organic solvent and lithium sulfate, and the lithium sulfate is suspended in the organic form in the form of a precipitate.
  • the second suspension is subjected to solid-liquid separation to obtain the lithium sulfate and the organic solvent, and the organic solvent is returned to the step S1 for recycling, and the other portion is used to the step S7;
  • step S7 mixing the water obtained in step S5 with a portion of the organic solvent obtained in step S6, and performing countercurrent washing on the lithium iron phosphate wet material to obtain purified lithium iron phosphate wet material and washing liquid, respectively.
  • the composition of the washing liquid is the same as the composition of the filtrate, and the washing liquid is returned to the step S5 for recycling with the filtrate;
  • the organic solvent is miscible with water and can dissolve the ferrous sulfate and lithium hydroxide, but the organic solvent cannot dissolve lithium sulfate.
  • the organic solvent may be one or more selected from the group consisting of ethanol, ethylene glycol, glycerol, diethylene glycol, triethylene glycol, tetraethylene glycol, butyl triol, n-butanol and isobutanol, preferably It is one or more of ethanol, ethylene glycol and glycerol.
  • the organic solvent in the examples of the present invention is ethylene glycol.
  • the ferrous sulfate may specifically be ferrous sulfate heptahydrate (FeSO 4 • 7H 2 O).
  • the lithium hydroxide may specifically be lithium hydroxide monohydrate (LiOH•H 2 O).
  • the mass ratio of phosphoric acid in the phosphoric acid solution may be 40% to 86%. In the embodiment of the invention, the mass ratio of phosphoric acid in the phosphoric acid solution is 85%.
  • step S2 in the precursor solution, the organic solvent is mixed with the water to form a mixed solvent, which is a reaction medium for the solvothermal reaction.
  • a mixed solvent which is a reaction medium for the solvothermal reaction.
  • the molar ratio of the lithium hydroxide to the ferrous sulfate is greater than or equal to 3:1, and the molar ratio in the range can ensure that all the ferrous ions in the ferrous sulfate are converted into the solvothermal reaction.
  • the lithium iron phosphate crystal In the lithium iron phosphate crystal.
  • the organic solvent, ferrous sulfate, lithium hydroxide, and a phosphoric acid solution are mixed is not limited as long as the precursor solution can be obtained.
  • the organic solvent is first mixed with the ferrous sulfate to obtain a first mixed solution, and the organic solvent is mixed with the lithium hydroxide to obtain a second mixed solution, and then the first A mixed solution, a second mixed solution, and a phosphoric acid solution are mixed to obtain the precursor solution.
  • step S3 the lithium iron phosphate crystal is synthesized after the solvothermal reaction is completed, and the lithium iron phosphate crystal is dispersed in the mixed solvent.
  • the first suspension includes the lithium iron phosphate crystal, the mixed solvent, and a by-product lithium sulfate dissolved in the mixed solvent.
  • the temperature of the solvothermal reaction may be 120 ° C to 300 ° C
  • the pressure range may be 0.2 MPa to 2.0 MPa
  • the reaction time may be 0.5 hours to 10 hours.
  • the filtering method may be a common filtering method such as vacuum filtration, pressure filtration, vacuum filtration, or the like.
  • the first suspension is filtered using a continuous precision membrane filter.
  • the filtered temperature is preferably from 80 ° C to 180 ° C, and the first suspension has a lower viscosity in the temperature range, thereby facilitating rapid and efficient filtration of the first suspension. More preferably, the temperature of the filtration is preferably from 100 to 140 °C.
  • step S5 water is directly separated from the third mixed solution by a flashing method, and the lithium sulfate may be precipitated in the organic solvent in a precipitate form to form the second suspension. liquid.
  • the filtrate may further contain a small amount of unreacted phosphate, which may be converted into a lithium phosphate precipitate during the flashing process and precipitated in the organic solvent, so the first A small amount of lithium phosphate precipitate may be present in the second suspension.
  • the flashing refers to a process in which the saturated water is boiled into water vapor due to a sudden drop in pressure after the relatively high pressure saturated water enters the relatively low pressure vessel.
  • the specific steps of the flashing include:
  • the filtrate is preheated to 100 ° C to 160 ° C under normal pressure
  • the filtrate preheated to 100 ° C to 160 ° C is passed into a gas-liquid separator, and the pressure in the gas-liquid separator is 3 kPa to 60 kPa.
  • the water in the filtrate reaches a saturated state between 100 ° C and 160 ° C.
  • the filtrate enters a gas-liquid separator having a pressure of 3 kPa to 60 kPa, the water in the filtrate rapidly boils and vaporizes, thereby rapidly Detached from the filtrate.
  • step S6 the by-product lithium sulfate and the organic solvent can be quickly separated by simple solid-liquid separation.
  • the separated lithium sulfate may be treated with a strong alkali such as sodium hydroxide to reproduce the lithium hydroxide raw material.
  • the separated organic solvent is mostly returned to the step S1 for recycling, and the other portion is mixed with the flashed water in the step S6, and then the lithium iron phosphate wet material is washed by countercurrent washing. It will be appreciated that the small amount of lithium phosphate precipitate may also be separated along with the lithium sulfate.
  • the method of solid-liquid separation is centrifugal separation.
  • the purpose of the countercurrent washing is to carry away impurities such as sulfate, lithium ions and the like adsorbed in the lithium iron phosphate wet material to achieve purification of the lithium iron phosphate wet material.
  • the countercurrent washing can be a multi-stage countercurrent washing, and the multi-stage countercurrent washing can quickly and efficiently purify the lithium iron phosphate wet material.
  • the countercurrent washing is a three-stage countercurrent washing.
  • the washing liquid after the countercurrent washing is the same as the composition of the filtrate, and the washing liquid may enter the re-entry step S6 together with the filtrate to be processed and recycled.
  • the purified lithium iron phosphate wet material may be dried by a common drying method such as natural air drying, spray drying, heat drying, vacuum drying, and microwave drying.
  • the solvothermal preparation process of lithium iron phosphate provides two circulation lines for comprehensive treatment and utilization of waste liquid, and one is an organic solvent circulation line, and the organic solvent becomes waste liquid after the solvothermal reaction, and the waste liquid is processed.
  • the organic solvent further participates in the reaction as a raw material; one is a washing liquid circulation line, and the water and the organic solvent obtained by the waste liquid treatment can carry out countercurrent washing on the lithium iron phosphate wet material, and the washing liquid in the countercurrent washing reaction can be reused again.
  • the liquid treatment gives water and an organic solvent.
  • the solvothermal preparation process of lithium iron phosphate provided by the invention can comprehensively treat the waste liquid by flash evaporation and centrifugal separation, and can quickly and efficiently separate the water, the organic solvent and the lithium sulfate by-product in the waste liquid, which is separated.
  • the two methods are simple, easy to implement and low in energy consumption, which reduces the production cost of LFP.
  • the comprehensive utilization of waste liquid through two circulation lines greatly reduces the amount of fresh organic solvent and further reduces the LFP. Cost of production.
  • the solvothermal preparation process of lithium iron phosphate provided by the invention can reduce the amount of organic solvent in the existing preparation process from 32 cubic meters per ton of LFP to 1 cubic meter per ton of LFP, and can make the production cost of LFP from existing 10 About 10,000 yuan / ton is lower than 35,000 yuan / ton.
  • the solvothermal preparation process of lithium iron phosphate provided by the invention has the advantages of low-temperature synthesis continuous and easy in-situ carbonization, and the prepared LFP product has high crystal purity, uniform particle size distribution, excellent electrochemical performance, and the entire production process does not occur.
  • Secondary pollutants such as waste liquid, waste residue and waste gas, real green energy conservation and environmental protection, have a strong demonstration effect, in line with national energy conservation and environmental protection requirements.
  • the present invention further provides a lithium iron phosphate solvothermal preparation apparatus 10 comprising a product preparation unit 100 and a waste liquid processing cycle unit 200.
  • the product preparation unit 100 includes a feeding device 110, a reaction device 120, a filtering device 130, and a countercurrent washing device 140 that are sequentially connected.
  • the waste liquid processing cycle unit 200 includes a flashing device 210 and a solid-liquid separating device 220 that are connected to each other.
  • the feeding device 110 is used to supply a reaction raw material to the reaction device 120.
  • the reaction raw materials are the organic solvent, ferrous sulfate, lithium hydroxide, and a phosphoric acid solution.
  • the feeding device 110 includes an organic solvent raw material tank 111, a first mixing tank 112, a second mixing tank 113, and a third mixing tank 114.
  • the organic solvent raw material tanks 111 are connected to the first mixing tank 112 and the second mixing tank 113, respectively.
  • the first mixing tank 112 and the second mixing tank 113 are simultaneously connected to the third mixing tank 114.
  • the organic solvent raw material tank 111 is used to supply the organic solvent to the first mixing tank 112 and the second mixing tank 113.
  • the first mixing tank 112 is configured to mix the organic solvent with the ferrous sulfate to form the first mixed solution.
  • the second mixing tank 113 is configured to mix the organic solvent with the lithium hydroxide to form the second mixed solution.
  • the third mixing tank 114 is configured to mix the first mixed solution, the second mixed solution and the phosphoric acid solution to form the precursor solution, and the precursor solution is the reaction raw material. It will be appreciated that those skilled in the art may also employ other feed devices to provide the reaction materials to the reaction device 120.
  • the reaction device 120 is configured to perform a solvothermal reaction on the reaction raw material to synthesize the lithium iron phosphate crystal.
  • the reaction apparatus 120 includes a solvothermal reaction vessel 121 which is a place where the solvothermal reaction proceeds.
  • the solvothermal reactor 121 is a high temperature autoclave.
  • the solvothermal reactor 121 may be a sealed autoclave, and the internal pressure of the reactor is raised by pressurizing the sealed autoclave or using the autogenous pressure of the steam inside the reactor to raise the reaction raw material inside the reactor.
  • the reaction is carried out under high temperature and high pressure conditions.
  • the reaction device 120 may further include a meter 122 for controlling the amount of the reaction raw material in the solvothermal reactor 121.
  • the filtering device 130 is configured to filter the first suspension.
  • the filtering device 130 includes a filtering inlet port 131, a filtering outlet port 132, and a filtering liquid outlet port 133.
  • the filter feed port 131 is connected to the reaction device 120, and the first suspension enters the filter device 130 through the filter feed port 131.
  • the filtration outlet 132 is connected to the countercurrent washing device 140, and the filtered lithium iron phosphate wet material enters the countercurrent washing device 140 through the filtering outlet 132.
  • the filtered liquid outlet 133 is connected to the flashing device 210, and the filtrate obtained by the filtration enters the flashing device 210 through the filtered liquid outlet 133.
  • the filtering device 130 can be a common filtering device such as a tubular filter, a continuous pressure filter, a membrane filter, or a vacuum filter. In an embodiment of the invention, the filtering device 130 is a continuous precision membrane filter.
  • the countercurrent washing device 140 is used for washing and purifying the lithium iron phosphate wet material.
  • the countercurrent washing device 140 includes a countercurrent washing inlet 141, a countercurrent washing outlet 142, a countercurrent washing inlet 143, and a countercurrent washing outlet 144.
  • the counter-current washing inlet 141 is connected to the filtering outlet 132, and the filtered lithium iron phosphate wet material enters the counter-current washing device 140 from the counter-current washing inlet 141, after the purification
  • the lithium iron phosphate wet material is discharged from the countercurrent washing discharge port 142 and proceeds to the next step.
  • the counter-current washing liquid inlet 143 is respectively connected to the flashing device 210 and the solid-liquid separating device 220, and the flashed water and the organic solvent obtained by centrifugation simultaneously enter from the counter-current washing liquid inlet 143.
  • the counter-current washing liquid outlet port 144 is connected to the flashing device 210, and the filtrate liquid obtained after the counter-current washing is completed into the flashing device 210 through the counter-current washing liquid outlet port 144.
  • the counter-current washing device 140 is a three-stage counter-current washing device, and the counter-current washing device 140 includes a first washing tank 145, a second washing tank 146 and a third washing tank 147 which are sequentially connected;
  • the counter-current washing inlet port 141 and the counter-current washing liquid outlet port 144 are disposed on the first washing tank 145, and the counter-current washing outlet port 142 and the counter-current washing liquid inlet port 143 are disposed on the third washing tank 147;
  • the lithium iron phosphate wet material moves from the first washing tank 145 to the third washing tank 147, and the water and the organic solvent are from the third washing tank 147 to the first The washing tank 145 moves.
  • the flashing device 210 is configured to flash the filtrate to directly remove water in the filtrate, and obtain the second suspension.
  • the flashing device 210 includes a flash inlet port 211, a flash outlet port 212, and a flash outlet port 213.
  • the flashing liquid inlet 211 is respectively connected to the filtering liquid outlet 133 and the counter-current washing liquid outlet 144, and the filtered liquid obtained by filtering and the filtering liquid obtained by countercurrent washing are taken from the flashing liquid inlet. 211 enters the flash unit 210.
  • the flash outlet port 212 is connected to the countercurrent washing inlet port 143, and the flashed water enters the countercurrent washing device 140 through the flash outlet port 212.
  • the flash discharge port 213 is connected to the solid-liquid separation device 220, and the second suspension obtained by flashing enters the solid-liquid separation device 220 through the flash discharge port 213.
  • the flash device 210 includes a preheater 214 and a gas-liquid separator 215 that are connected to each other.
  • the preheater 214 is configured to heat the filtrate to bring the water in the filtrate to a saturated state.
  • the gas-liquid separator 215 is capable of providing a vacuum environment to rapidly boil water in the filtrate after being preheated by the preheater in a low pressure environment.
  • the flash inlet port 211 is disposed on the preheater 214, and the flash outlet port 212 and the flash outlet port 213 are disposed on the gas-liquid separator 215.
  • the solid-liquid separation device 220 is configured to perform solid-liquid separation of lithium sulfate and an organic solvent in the second suspension.
  • the solid-liquid separation device 220 includes a solid-liquid separation feed port 221, a solid-liquid separation discharge port 222, and a solid-liquid separation liquid outlet port 223.
  • the solid-liquid separation feed port 221 is connected to the flash discharge port 213, and the second suspension liquid enters the solid-liquid separation device 220 through the solid-liquid separation feed port 221.
  • the lithium sulfate is discharged from the solid-liquid separation and discharge port 222.
  • the solid-liquid separation liquid outlet 223 is respectively connected to the counter-current washing liquid inlet 143 and the feeding device 110, and a part of the organic solvent separated by solid-liquid separation enters the feeding device 110 for re-ingreding, and another A portion of the wet lithium iron phosphate wet material is washed and purified together with the water removed in the flash unit 210 into the countercurrent washing device 140.
  • the solid-liquid separation device 220 is a centrifugal separator.
  • the lithium iron phosphate solvothermal preparation apparatus may further include a plurality of transfer pumps 300 for conveying liquid materials from one device to another.
  • the lithium iron phosphate solvothermal preparation device comprehensively treats the waste liquid through a flashing device and a solid-liquid separation device, and the two devices have simple structure and low energy consumption, and can quickly and efficiently remove water in the waste liquid.
  • the separation of organic solvents and lithium sulfate by-products reduces the production cost of LFP.
  • the liquid outlet of the flashing device and the liquid outlet of the solid-liquid separation device are respectively connected to the liquid inlet of the countercurrent washing device, and the water and the organic solvent obtained by the waste liquid treatment can be used for the lithium iron phosphate.
  • the wet material is subjected to countercurrent washing, and the liquid outlet of the countercurrent washing device is further connected to the liquid inlet of the flashing device, and the washing liquid after the countercurrent washing can further enter the waste liquid processing unit for waste liquid treatment, thereby forming a washing liquid.
  • the establishment of the new organic solvent greatly reduced the production cost of LFP.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供一种磷酸铁锂溶剂热制备工艺,通过闪蒸以及离心分离的方法对废液中的水、有机溶剂以及硫酸锂副产物进行分离,分离出来的有机溶剂一部分作为原料重新参与反应,从而形成了有机溶剂循环线路;分离出来的有机溶剂另一部分与分离出来的水用作逆流洗涤的溶剂使用,逆流洗涤完毕后的洗涤液进行废液处理又可以分离出水和有机溶剂,从而形成了洗涤液循环线路。本发明通过对废液进行综合处理及利用,大大降低了有机溶剂的用量和磷酸铁锂的生产成本。

Description

磷酸铁锂溶剂热制备工艺 技术领域
本发明涉及锂离子电池正极活性材料制备领域,具体涉及一种磷酸铁锂的溶剂热制备工艺及制备设备。
背景技术
磷酸铁锂(LiFePO4, LFP)作为一种重要的锂离子电池正极活性材料,在储能与动力电池的市场具有广泛的应用。目前LFP的制备主要有两大类工艺路线,分别为以草酸亚铁工艺(美国A123 Systems公司等)、铁红工艺(美国Valence Technology公司等)、磷酸铁工艺(加拿大Phostech Lithium 公司、美国A123 Systems公司等)为代表的固相法制备工艺以及以溶剂热工艺路线(瑞士Clariant Chemicals公司、韩国Hanwa Chemical公司等)为代表液相法制备工艺。
固相法制备工艺由于生产成本低而成为现有技术中应用最为广泛的一种制备工艺,但是使用固相法制备工艺制备出的LFP粒度分布不均一、产品可控性差,从而限制了LFP本身电化学性能的发挥,导致产品性能降低。液相法制备工艺尤其是溶剂热制备工艺相较于固相法制备工艺而言,具有易实现低温合成连续化、产品结晶纯度高、粒度分布均匀、容易实现原位碳化、电化学性能优异等优点,然而溶剂热制备工艺通常以水和有机溶剂的混合溶剂作为溶剂热的反应介质,在制备过程中会产生大量废液,如何合理处理大量废液,回收利用废液中的锂资源以及有机溶剂是液相法制备工艺的关键。现有技术在进行锂资源以及有机溶剂回收时,由于锂盐溶解在水和有机溶剂组成的混合溶剂中,一般采用蒸馏的方法来回收废液中的锂盐和有机溶剂,然而进行蒸馏需要使用复杂的蒸馏设备,而且蒸馏的能耗很高,导致LEP的生产成本大幅增加;如果不对废液中的锂资源以及有机溶剂进行回收,则会造成锂资源以及有机溶剂的大量浪费,同样会导致LEP的生产成本大幅增加。
发明内容
有鉴于此,确有必要提供一种能够制备出高品质磷酸铁锂材料而且生产成本低的磷酸铁锂溶剂热制备工艺。
一种磷酸铁锂溶剂热制备工艺,包括:
S1,提供有机溶剂、硫酸亚铁、氢氧化锂以及磷酸溶液,所述磷酸溶液包括水和磷酸;
S2,将所述有机溶剂、硫酸亚铁、氢氧化锂以及磷酸溶液混合,得到前驱体溶液;
S3,使所述前驱体溶液进行溶剂热反应,反应完毕后得到第一悬浊液;
S4,过滤所述第一悬浊液,分别得到磷酸铁锂湿物料和过滤液,所述过滤液包括所述有机溶剂、水和硫酸锂;
S5,将所述过滤液进行闪蒸,分别得到水和第二悬浊液,所述第二悬浊液包括所述有机溶剂和硫酸锂,所述硫酸锂以沉淀的形式悬浮在所述有机溶剂中;
S6,对所述第二悬浊液进行固液分离,分别得到所述硫酸锂和所述有机溶剂,该有机溶剂一部分返回步骤S1进行循环使用,另一部分进入步骤S7使用;
S7,将步骤S5中获得的所述水和步骤S6中获得的部分所述有机溶剂混合,对所述磷酸铁锂湿物料进行逆流洗涤,分别得到纯化后的磷酸铁锂湿物料以及洗涤液,所述洗涤液的组成成分与所述过滤液的组成成分相同,将该洗涤液返回步骤S5中与所述过滤液一起进行循环使用;
S8,干燥所述纯化后的磷酸铁锂湿物料,得到所述磷酸铁锂晶体。
本发明提供的磷酸铁锂溶剂热制备工艺,通过闪蒸以及离心分离的方法对废液进行综合处理,并通过两条循环线路对废液进行综合利用,不仅能快速、高效地将废液中的水、有机溶剂以及硫酸锂副产物分离开,而且大幅降低了新鲜有机溶剂的用量和LEP的生产成本,不仅能制备出产品结晶纯度高、粒度分布均匀、电化学性能优异的LEP,而且整个生产过程不产生废液、废渣和废气等二次污染物,真正的绿色节能环保,具有很强的示范性效应,符合国家节能环保要求。
附图说明
图1为本发明提供的磷酸铁锂溶剂热制备工艺流程示意图。
图2为本发明提供的磷酸铁锂溶剂热制备设备结构示意图。
主要元件符号说明
磷酸铁锂溶剂热制备设备 10
产品制备单元 100
进料装置 110
有机溶剂原料罐 111
第一混料罐 112
第二混料罐 113
第三混料罐 114
反应装置 120
溶剂热反应釜 121
计量仪 122
进料泵 123
出料泵 124
过滤装置 130
过滤进料口 131
过滤出料口 132
过滤出液口 133
逆流洗涤装置 140
逆流洗涤进料口 141
逆流洗涤出料口 142
逆流洗涤进液口 143
逆流洗涤出液口 144
第一洗涤槽 145
第二洗涤槽 146
第三洗涤槽 147
废液处理循环单元 200
闪蒸装置 210
闪蒸进液口 211
闪蒸出液口 212
闪蒸出料口 213
预热器 214
气液分离器 215
固液分离装置 220
固液分离进料口 221
固液分离出料口 222
固液分离出液口 223
输送泵 300
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合附图及具体实施例对本发明提供的磷酸铁锂溶剂热制备工艺及制备设备作进一步的详细说明。
请参阅图1,本发明提供一种磷酸铁锂溶剂热制备工艺,包括:
S1,提供有机溶剂、硫酸亚铁、氢氧化锂以及磷酸溶液,所述磷酸溶液包括水和磷酸;
S2,将所述有机溶剂、硫酸亚铁、氢氧化锂以及磷酸溶液混合,得到前驱体溶液;
S3,使所述前驱体溶液进行溶剂热反应,反应完毕后得到第一悬浊液;
S4,过滤所述第一悬浊液,分别得到磷酸铁锂湿物料和过滤液,所述过滤液包括所述有机溶剂、水和硫酸锂;
S5,将所述过滤液进行闪蒸,分别得到水和第二悬浊液,所述第二悬浊液包括所述有机溶剂和硫酸锂,所述硫酸锂以沉淀的形式悬浮在所述有机溶剂中;
S6,对所述第二悬浊液进行固液分离,分别得到所述硫酸锂和所述有机溶剂,该有机溶剂一部分返回步骤S1进行循环使用,另一部分进入步骤S7使用;
S7,将步骤S5中获得的所述水和步骤S6中获得的部分所述有机溶剂混合,对所述磷酸铁锂湿物料进行逆流洗涤,分别得到纯化后的磷酸铁锂湿物料以及洗涤液,所述洗涤液的组成成分与所述过滤液的组成成分相同,将该洗涤液返回步骤S5中与所述过滤液一起进行循环使用;
S8,干燥所述纯化后的磷酸铁锂湿物料,得到所述磷酸铁锂晶体。
在步骤S1中,所述有机溶剂能与水互溶,并且可以溶解所述硫酸亚铁以及氢氧化锂,但该有机溶剂不能溶解硫酸锂。所述有机溶剂可以为选自乙醇、乙二醇、丙三醇、二甘醇、三甘醇、四甘醇、丁三醇、正丁醇及异丁醇中的一种或多种,优选为乙醇、乙二醇及丙三醇中的一种或多种。本发明实施例中所述有机溶剂为乙二醇。所述硫酸亚铁具体可以为七水硫酸亚铁(FeSO4•7H2O)。所述氢氧化锂具体可以为一水氢氧化锂(LiOH•H2O)。所述磷酸溶液中磷酸的质量比可以为40%至86%。本发明实施例中,所述磷酸溶液中磷酸的质量比为85%。
在步骤S2中,在所述前驱体溶液中,所述有机溶剂与所述水混合形成混合溶剂,该混合溶剂为所述溶剂热反应的反应介质。优选地,所述氢氧化锂与硫酸亚铁的摩尔比大于等于3:1,该范围内的摩尔比可以保证所述硫酸亚铁中的二价铁离子在所述溶剂热反应中全部转化到所述磷酸铁锂晶体中。
将所述有机溶剂、硫酸亚铁、氢氧化锂以及磷酸溶液进行混合的方式不限,只要能得到所述前驱体溶液即可。在本发明实施例中,先将所述有机溶剂与所述硫酸亚铁进行混合得到第一混合溶液,将所述有机溶剂与所述氢氧化锂混合得到第二混合溶液,再将所述第一混合溶液、第二混合溶液以及磷酸溶液进行混合得到所述前驱体溶液。
在步骤S3中,所述溶剂热反应完毕后合成出了所述磷酸铁锂晶体,所述磷酸铁锂晶体分散在所述混合溶剂中。所述第一悬浊液包括所述磷酸铁锂晶体、所述混合溶剂以及溶解在所述混合溶剂中的副产物硫酸锂。所述溶剂热反应的温度可以为120℃~300℃,压力范围可以为0.2MPa~2.0MPa,反应时间可以为0.5小时~10小时。
在步骤S4中,所述过滤的方法可以为减压过滤、加压过滤、真空抽滤等常用的过滤方法。在本发明实施例中,采用连续精密膜过滤器对所述第一悬浊液进行过滤。所述过滤的温度优选为80℃~180℃,在该温度范围所述第一悬浊液具有较低的黏度,从而有利于所述第一悬浊液实现快速、高效地过滤。更为优选地,所述过滤的温度优选为100~140℃。
在步骤S5中,通过闪蒸的方法直接将水从所述第三混合溶液中分离出来,可以使所述硫酸锂以沉淀的形式在所述有机溶剂中析出,从而形成所述第二悬浊液。可以理解,所述过滤液中可能还含有少量未反应的磷酸根,该少量未反应的磷酸根在闪蒸过程中可转变为磷酸锂沉淀一并在所述有机溶剂中析出,故所述第二悬浊液中可能存在少量的磷酸锂沉淀。
所述闪蒸是指相对高压的饱和水进入相对低压的容器中后由于压力的突然降低使所述饱和水沸腾变成水蒸汽的过程。在本发明实施例中,所述闪蒸的具体步骤包括:
S51,在一预热器中将所述过滤液在常压下预热至100℃至160℃;
S52,将所述预热至100℃至160℃的过滤液通入一气液分离器中,该气液分离器内的压力为3kPa至60kPa。
在100℃至160℃之间,所述过滤液中的水达到饱和状态,当该过滤液进入压力为3kPa至60kPa的气液分离器时,所述过滤液中的水迅速沸腾汽化,从而迅速从所述过滤液中脱离出来。
在步骤S6中,通过简单的固液分离即可以使所述副产物硫酸锂和所述有机溶剂快速分离。分离出的所述硫酸锂可经过氢氧化钠等强碱处理,重新制得所述氢氧化锂原料。分离出的所述有机溶剂大部分返回步骤S1中进行循环使用,另一部分与步骤S6中闪蒸出来的水混合后对所述磷酸铁锂湿物料采用逆流洗涤的方式进行洗涤。可以理解,所述少量的磷酸锂沉淀也可跟随所述硫酸锂一并被分离出来。在本发明实施例中,所述固液分离的方法为离心分离。
在步骤S7中,所述逆流洗涤的目的是将所述磷酸铁锂湿物料中吸附的硫酸根、锂离子等杂质带走,以实现对所述磷酸铁锂湿物料的纯化。所述逆流洗涤可为多级逆流洗涤,所述多级逆流洗涤可快速、有效地对所述磷酸铁锂湿物料进行纯化。本发明实施例中,所述逆流洗涤为三级逆流洗涤。所述逆流洗涤后的洗涤液与所述过滤液的组成成分相同,该洗涤液可与所述过滤液一起进入重新进入步骤S6中进行处理并循环利用。
在步骤S8中,对所述纯化的磷酸铁锂湿物料进行干燥的方式可以为自然风干、喷雾干燥、加热干燥、真空干燥、微波干燥等常用干燥方法。
本发明提供的磷酸铁锂溶剂热制备工艺提供了两条循环线路来综合处理及利用废液,一条是有机溶剂循环线路,有机溶剂在所述溶剂热反应后变为废液,废液处理得到的有机溶剂进一步作为原料重新参与反应;一条是洗涤液循环线路,废液处理得到的水和有机溶剂可对所述磷酸铁锂湿物料进行逆流洗涤,逆流洗涤反应完毕的洗涤液可再次进行废液处理得到水和有机溶剂。
本发明提供的磷酸铁锂溶剂热制备工艺,通过闪蒸以及离心分离的方法对废液进行综合处理,能快速、高效地将废液中的水、有机溶剂以及硫酸锂副产物分离开,这两种方法操作简单、容易实现且能耗较低,从而降低了LFP的生产成本;通过两条循环线路对废液进行综合利用,大幅降低了新鲜有机溶剂的用量,并进一步大幅降低了LFP的生产成本。本发明提供的磷酸铁锂溶剂热制备工艺,能使现有制备工艺中有机溶剂的用量由32立方米/吨LFP降低到1立方米/吨LFP,并能使LFP的生产成本从现有10万元/吨左右较低到3.5万元/吨以内。
本发明提供的磷酸铁锂溶剂热制备工艺,具有低温合成连续化、容易实现原位碳化等优点,制备出的LFP产品结晶纯度高、粒度分布均匀、电化学性能优异,而且整个生产过程不产生废液、废渣和废气等二次污染物,真正的绿色节能环保,具有很强的示范性效应,符合国家节能环保要求。
请参阅图2,本发明进一步提供一种磷酸铁锂溶剂热制备设备10,包括产品制备单元100和废液处理循环单元200。所述产品制备单元100包括依次连接的进料装置110、反应装置120、过滤装置130以及逆流洗涤装置140。所述废液处理循环单元200包括相互连接的闪蒸装置210以及固液分离装置220。
所述进料装置110用于为所述反应装置120提供反应原料。所述反应原料为所述有机溶剂、硫酸亚铁、氢氧化锂及磷酸溶液。在本发明实施例中,所述进料装置110包括有机溶剂原料罐111、第一混料罐112、第二混料罐113及第三混料罐114。所述有机溶剂原料罐111分别与所述第一混料罐112及第二混料罐113相连。所述第一混料罐112及第二混料罐113同时与所述第三混料罐114相连。所述有机溶剂原料罐111用于为所述第一混料罐112以及第二混料罐113提供所述有机溶剂。所述第一混料罐112用于将所述有机溶剂与所述硫酸亚铁进行混合形成所述第一混合溶液。所述第二混料罐113用于将所述有机溶剂与所述氢氧化锂进行混合形成所述第二混合溶液。所述第三混料罐114用于将所述第一混合溶液、第二混合溶液及磷酸溶液混合形成所述前驱体溶液,所述前驱体溶液即所述反应原料。可以理解,本领域技术人员也可以采用其他进料装置来为所述反应装置120提供所述反应原料。
所述反应装置120用于使所述反应原料进行溶剂热反应,从而合成出所述磷酸铁锂晶体。所述反应装置120包括一溶剂热反应釜121,该溶剂热反应釜121是所述溶剂热反应进行的场所。在本发明实施例中,该溶剂热反应釜121为一高温高压釜。具体地,所述溶剂热反应釜121可为一密封高压釜,通过对该密封高压釜加压或利用反应釜内部蒸汽的自生压力使反应釜内部压力上升,从而使反应釜内部的反应原料在高温高压条件下进行反应。所述反应装置120可进一步包括一计量仪122,该计量仪122用于控制所述溶剂热反应釜121中所述反应原料的进量。
所述过滤装置130用于对所述第一悬浊液进行过滤。所述过滤装置130包括一过滤进料口131,一过滤出料口132以及一过滤出液口133。所述过滤进料口131与所述反应装置120相连,所述第一悬浊液通过所述过滤进料口131进入所述过滤装置130中。所述过滤出料口132与所述逆流洗涤装置140相连,过滤得到的所述磷酸铁锂湿物料通过所述过滤出料口132进入所述逆流洗涤装置140。所述过滤出液口133与所述闪蒸装置210相连,过滤得到的所述过滤液通过所述过滤出液口133进入所述闪蒸装置210。该过滤装置130可为管式过滤机、连续式加压过滤机、膜过滤器、真空过滤机等常用过滤设备。在本发明实施例中,所述过滤装置130为连续精密膜过滤器。
所述逆流洗涤装置140用于对所述磷酸铁锂湿物料进行洗涤纯化。所述逆流洗涤装置140包括一逆流洗涤进料口141、一逆流洗涤出料口142、一逆流洗涤进液口143以及一逆流洗涤出液口144。所述逆流洗涤进料口141与所述过滤出料口132相连,所述过滤后得到的磷酸铁锂湿物料从所述逆流洗涤进料口141进入所述逆流洗涤装置140,所述纯化后的磷酸铁锂湿物料从所述逆流洗涤出料口142出料并进入下一步工序。所述逆流洗涤进液口143分别与所述闪蒸装置210以及固液分离装置220相连,闪蒸出来的水和离心分离得到的所述有机溶剂同时从所述逆流洗涤进液口143进入所述逆流洗涤装置。所述逆流洗涤出液口144与所述闪蒸装置210相连,逆流洗涤完毕后得到的所述过滤液通过所述逆流洗涤出液口144进入所述闪蒸装置210。
在本发明实施例中,所述逆流洗涤装置140为一三级逆流洗涤装置,该逆流洗涤装置140包括依次连接的第一洗涤槽145、第二洗涤槽146以及第三洗涤槽147;所述逆流洗涤进料口141以及逆流洗涤出液口144设置在所述第一洗涤槽145上,所述逆流洗涤出料口142以及逆流洗涤进液口143设置在所述第三洗涤槽147上;在进行逆流洗涤时,所述磷酸铁锂湿物料从所述第一洗涤槽145向所述第三洗涤槽147运动,所述水和有机溶剂从所述第三洗涤槽147向所述第一洗涤槽145运动。
所述闪蒸装置210用于对所述过滤液进行闪蒸以直接脱除所述过滤液中的水,并得到所述第二悬浊液。所述闪蒸装置210包括一闪蒸进液口211、一闪蒸出液口212以及一闪蒸出料口213。所述闪蒸进液口211分别与所述过滤出液口133以及逆流洗涤出液口144相连,过滤得到的所述过滤液以及逆流洗涤得到的所述过滤液从所述闪蒸进液口211进入所述闪蒸装置210。所述闪蒸出液口212与所述逆流洗涤进液口143相连,闪蒸出来的水通过所述闪蒸出液口212进入所述逆流洗涤装置140。所述闪蒸出料口213与所述固液分离装置220相连,闪蒸得到的所述第二悬浊液通过所述闪蒸出料口213进入所述固液分离装置220。
在本发明实施例中,所述闪蒸装置210包括相互连接的预热器214和气液分离器215。所述预热器214用于对所述过滤液进行加热,以使所述过滤液中的水达到饱和状态。所述气液分离器215能够提供真空环境,以使经所述预热器预热后的所述过滤液中的水在低压环境中迅速沸腾汽化。所述闪蒸进液口211设置在所述预热器214上,所述闪蒸出液口212以及闪蒸出料口213设置在所述气液分离器215上。
所述固液分离装置220用于对所述第二悬浊液中的硫酸锂和有机溶剂进行固液分离。所述固液分离装置220包括一固液分离进料口221、一固液分离出料口222以及一固液分离出液口223。所述固液分离进料口221与所述闪蒸出料口213相连,所述第二悬浊液通过所述固液分离进料口221进入所述固液分离装置220。所述硫酸锂从所述固液分离出料口222出料。所述固液分离出液口223分别与所述逆流洗涤进液口143与所述进料装置110相连,固液分离出的所述有机溶剂一部分进入所述进料装置110进行重新配料,另一部分与所述闪蒸装置210中脱除的水一起进入所述逆流洗涤装置140中对所述磷酸铁锂湿物料进行洗涤纯化。在本发明实施例中,所述固液分离装置220为离心分离机。
所述磷酸铁锂溶剂热制备设备可进一步包括多个输送泵300,该输送泵300用于将液态的物料从一个装置输送至另一装置。
本发明提供的磷酸铁锂溶剂热制备设备,通过闪蒸装置以及固液分离装置对废液进行综合处理,这两种设备结构简单、能耗低,能快速、高效地将废液中的水、有机溶剂以及硫酸锂副产物分离开,降低了LFP的生产成本。所述闪蒸装置的出液口和所述固液分离装置的出液口分别与所述逆流洗涤装置进液口相连,能使利用废液处理得到的水和有机溶剂对所述磷酸铁锂湿物料进行逆流洗涤,所述逆流洗涤装置的出液口进一步与闪蒸装置的进液口相连,逆流洗涤完毕的洗涤液可进一步进入废液处理利用单元进行废液处理,从而形成一个洗涤液的循环线路;所述固液分离装置的出液口还与所述进料装置相连,可以使废液处理得到的有机溶剂重新配料进行反应,从而形成一个有机溶剂循环线路,该两条循环线路的建立大大降低了新鲜有机溶剂的使用,进一步大幅降低了LFP的生产成本。

Claims (8)

  1. 一种磷酸铁锂溶剂热制备工艺,包括:
    S1,提供有机溶剂、硫酸亚铁、氢氧化锂以及磷酸溶液,所述磷酸溶液包括水和磷酸;
    S2,将所述有机溶剂、硫酸亚铁、氢氧化锂以及磷酸溶液混合,得到前驱体溶液;
    S3,使所述前驱体溶液进行溶剂热反应,反应完毕后得到第一悬浊液;
    S4,过滤所述第一悬浊液,分别得到磷酸铁锂湿物料和过滤液,所述过滤液包括所述有机溶剂、水和硫酸锂;
    S5,将所述过滤液进行闪蒸,分别得到水和第二悬浊液,所述第二悬浊液包括所述有机溶剂和硫酸锂,所述硫酸锂以沉淀的形式悬浮在所述有机溶剂中;
    S6,对所述第二悬浊液进行固液分离,分别得到所述硫酸锂和所述有机溶剂,该有机溶剂一部分返回步骤S1进行循环使用,另一部分进入步骤S7使用;
    S7,将步骤S5中获得的所述水和步骤S6中获得的部分所述有机溶剂混合,对所述磷酸铁锂湿物料进行逆流洗涤,分别得到纯化后的磷酸铁锂湿物料以及洗涤液,所述洗涤液的组成成分与所述过滤液的组成成分相同,将该洗涤液返回步骤S5中与所述过滤液一起进行循环使用;
    S8,干燥所述纯化后的磷酸铁锂湿物料,得到所述磷酸铁锂晶体。
  2. 如权利要求1所述的磷酸铁锂溶剂热制备工艺,其特征在于,所述有机溶剂为选自乙醇、乙二醇、丙三醇、二甘醇、三甘醇、四甘醇、丁三醇、正丁醇及异丁醇中的一种或多种。
  3. 如权利要求1所述的磷酸铁锂溶剂热制备工艺,其特征在于,所述有机溶剂为乙二醇。
  4. 如权利要求1所述的磷酸铁锂溶剂热制备工艺,其特征在于,所述溶剂热反应的温度为120℃~300℃,压力范围为0.2MPa~2.0MPa,反应时间为0.5小时~10小时。
  5. 如权利要求1所述的磷酸铁锂溶剂热制备工艺,其特征在于,采用连续精密膜过滤器对所述第一悬浊液进行过滤,所述过滤的温度为80℃~180℃。
  6. 如权利要求1所述的磷酸铁锂溶剂热制备工艺,其特征在于,所述闪蒸的具体步骤包括:
    在一预热器中将所述第三混合液在常压下预热至100℃至160℃;
    将所述预热至100℃至160℃的第三混合液通入一气液分离器中,该气液分离器内的压力为3kPa至60kPa。
  7. 如权利要求1所述的磷酸铁锂溶剂热制备工艺,其特征在于,所述逆流洗涤为三级逆流洗涤。
  8. 如权利要求1所述的磷酸铁锂溶剂热制备工艺,其特征在于,在所述步骤S2中,所述氢氧化锂与硫酸亚铁的摩尔比大于等于3:1。
PCT/CN2016/070752 2015-01-27 2016-01-13 磷酸铁锂溶剂热制备工艺 WO2016119593A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/658,392 US20170320737A1 (en) 2015-01-27 2017-07-25 Solvothermal method for making lithium iron phosphate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510040329.5 2015-01-27
CN201510040329.5A CN104600302A (zh) 2015-01-27 2015-01-27 磷酸铁锂溶剂热制备工艺

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/658,392 Continuation US20170320737A1 (en) 2015-01-27 2017-07-25 Solvothermal method for making lithium iron phosphate

Publications (1)

Publication Number Publication Date
WO2016119593A1 true WO2016119593A1 (zh) 2016-08-04

Family

ID=53125936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070752 WO2016119593A1 (zh) 2015-01-27 2016-01-13 磷酸铁锂溶剂热制备工艺

Country Status (3)

Country Link
US (1) US20170320737A1 (zh)
CN (1) CN104600302A (zh)
WO (1) WO2016119593A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702020A (zh) * 2022-05-09 2022-07-05 兰州兰石中科纳米科技有限公司 一种钛白粉副废硫酸亚铁制备纳米磷酸铁锂生产线

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600302A (zh) * 2015-01-27 2015-05-06 江苏华东锂电技术研究院有限公司 磷酸铁锂溶剂热制备工艺
CN106129408B (zh) * 2016-08-29 2018-09-11 张家港合志纳米科技有限公司 利用溶剂热法制备低比表面高电化学性能lfp的工艺及装置
CN114725557A (zh) * 2022-04-11 2022-07-08 天津市捷威动力工业有限公司 一种磷酸铁锂废料的回收复用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022482A (zh) * 2012-10-29 2013-04-03 北大先行科技产业有限公司 电池级片状水合磷酸铁及其制备方法
CN103515578A (zh) * 2013-07-15 2014-01-15 江苏华东锂电技术研究院有限公司 锂离子电池正极材料的制备方法
CN104051731A (zh) * 2014-04-10 2014-09-17 魏宏政 一种无污染零排放制备磷酸铁锂的方法
CN104600302A (zh) * 2015-01-27 2015-05-06 江苏华东锂电技术研究院有限公司 磷酸铁锂溶剂热制备工艺
CN204407414U (zh) * 2015-01-27 2015-06-17 江苏华东锂电技术研究院有限公司 磷酸铁锂溶剂热制备设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101186347A (zh) * 2007-11-22 2008-05-28 山东东昌精细化工科技有限公司 从废水中回收低沸点有机溶剂的方法
CN103030128A (zh) * 2011-09-29 2013-04-10 北京当升材料科技股份有限公司 采用溶剂热法制备纳米级磷酸亚铁锂的工业生产方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022482A (zh) * 2012-10-29 2013-04-03 北大先行科技产业有限公司 电池级片状水合磷酸铁及其制备方法
CN103515578A (zh) * 2013-07-15 2014-01-15 江苏华东锂电技术研究院有限公司 锂离子电池正极材料的制备方法
CN104051731A (zh) * 2014-04-10 2014-09-17 魏宏政 一种无污染零排放制备磷酸铁锂的方法
CN104600302A (zh) * 2015-01-27 2015-05-06 江苏华东锂电技术研究院有限公司 磷酸铁锂溶剂热制备工艺
CN204407414U (zh) * 2015-01-27 2015-06-17 江苏华东锂电技术研究院有限公司 磷酸铁锂溶剂热制备设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702020A (zh) * 2022-05-09 2022-07-05 兰州兰石中科纳米科技有限公司 一种钛白粉副废硫酸亚铁制备纳米磷酸铁锂生产线
CN114702020B (zh) * 2022-05-09 2023-07-21 兰州兰石中科纳米科技有限公司 一种钛白粉副废硫酸亚铁制备纳米磷酸铁锂生产线

Also Published As

Publication number Publication date
CN104600302A (zh) 2015-05-06
US20170320737A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
WO2016119593A1 (zh) 磷酸铁锂溶剂热制备工艺
JP6177434B2 (ja) 常圧で結晶水無しのナノリン酸鉄リチウムの水相合成法
CN105540619A (zh) 从高镁锂比盐湖卤水中直接制取电池级碳酸锂的方法
JP2016528140A5 (zh)
CN108288737B (zh) 一种从废旧锂电池正极材料中回收六氟磷酸锂的方法
WO2016119594A1 (zh) 磷酸铁锂溶剂热制备设备
CN114713154B (zh) 一种制备六氟磷酸锂的系统及工艺方法
CN103030128A (zh) 采用溶剂热法制备纳米级磷酸亚铁锂的工业生产方法
CN106082516A (zh) 一种分盐结晶工艺和装置
CN109504861B (zh) 一种循环回收水热法制电极材料反应母液中残余锂的方法
CN114725557A (zh) 一种磷酸铁锂废料的回收复用方法
CN110980775A (zh) 一种连续碳化生产多品级碳酸锂的生产方法
CN101570337A (zh) 一种电池级氟化锂的生产方法
CN103723736A (zh) 一种白炭黑生产工艺中资源回收的方法
CN203486906U (zh) 一种六氟磷酸锂合成装置
CN103694151A (zh) 一种用溶剂萃取直接合成对乙酰氨基苯磺酰氯干品的方法
CN217822960U (zh) 一种废旧电解液回收碳酸锂/磷酸锂的系统
CN204407414U (zh) 磷酸铁锂溶剂热制备设备
CN116477597A (zh) 一种二氟磷酸钠的制备方法
CN103739475B (zh) 一种电池级无水醋酸锂的制备方法
CN113716783B (zh) 一种工业尾液回收碘及用回收碘制备偏振液及碘化钾的制备工艺
CN106187987B (zh) 一种丙烯基-1,3-磺酸内酯的环保提纯方法
CN106129441A (zh) 一种硫酸氧钒溶液的清洁快速制备方法及用途
CN104693255A (zh) 从酒石酸乙酰异戊酰泰乐菌素结晶母液中回收酒石酸乙酰异戊酰泰乐碱的方法
CN210505590U (zh) 一种二氟磷酸锂生产装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742655

Country of ref document: EP

Kind code of ref document: A1