WO2016117300A1 - Pmセンサの異常診断装置 - Google Patents

Pmセンサの異常診断装置 Download PDF

Info

Publication number
WO2016117300A1
WO2016117300A1 PCT/JP2016/000133 JP2016000133W WO2016117300A1 WO 2016117300 A1 WO2016117300 A1 WO 2016117300A1 JP 2016000133 W JP2016000133 W JP 2016000133W WO 2016117300 A1 WO2016117300 A1 WO 2016117300A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
amount
output
abnormality diagnosis
filter
Prior art date
Application number
PCT/JP2016/000133
Other languages
English (en)
French (fr)
Inventor
藤井 宏明
真吾 中田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112016000390.0T priority Critical patent/DE112016000390T5/de
Priority to US15/544,044 priority patent/US20170370317A1/en
Publication of WO2016117300A1 publication Critical patent/WO2016117300A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/008Mounting or arrangement of exhaust sensors in or on exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • This disclosure is an invention relating to an abnormality diagnosis device for a PM sensor that detects particulate matter (PM) in exhaust gas from an internal combustion engine.
  • PM particulate matter
  • in-cylinder injection type gasoline engine In the internal combustion engines mounted on vehicles, demand for in-cylinder gasoline engines is expected to increase as fuel efficiency regulations are tightened. However, the in-cylinder injection type gasoline engine generates more particulate matter (PM) than the intake port injection type gasoline engine. As a countermeasure, there is one in which a filter for collecting PM discharged from the engine is disposed in the exhaust passage of the engine.
  • a PM sensor for detecting the amount of PM in the exhaust gas is arranged downstream of the filter for collecting PM, and the amount of PM detected by this PM sensor is set. There is one that determines the presence or absence of a filter failure based on this.
  • Patent Document 1 Japanese Patent Laid-Open No. 2012-13058.
  • the output value of the PM sensor is 0 when the regeneration control for burning and removing the PM collected by the filter is stopped.
  • the inlet side of some of the plurality of cells provided in the filter is closed and the outlet side of the remaining cells (that is, cells whose inlet side is opened) is closed. There is what was made the structure.
  • This disclosure is intended to provide a PM sensor abnormality diagnosis device that can easily detect abnormality in output of a PM sensor.
  • an abnormality diagnosis device for a PM sensor is a filter that collects particulate matter (hereinafter referred to as “PM”) in exhaust gas of an internal combustion engine, and is provided in the filter.
  • a structure having at least one cell in which the inlet side of some of the plurality of cells is closed and the outlet side of the remaining cells is opened, or the outlet side of some of the cells is closed and out of the remaining cells A single plug filter having a structure having at least one cell having an open inlet side, a PM sensor for detecting the amount of PM in exhaust gas that has passed through the single plug filter, and the PM sensor based on the output of the PM sensor
  • An abnormality diagnosis unit that performs sensor abnormality diagnosis for determining whether or not there is an output abnormality.
  • the single plug filter maintains a PM collection rate lower than that of the conventional filter (collection rate lower than 100%) (see FIG. 5), and PM flows out of the single plug filter. If the PM sensor on the downstream side of the plug filter is normal, the output of the PM sensor should be a value larger than 0 (a value corresponding to the amount of PM flowing out from the single plug filter) (see FIG. 6). Therefore, in a system in which a PM sensor is arranged on the downstream side of the single plug filter, if the output of the PM sensor is monitored, it can be determined whether there is an abnormality in the output of the PM sensor, and the abnormality in the output of the PM sensor is easily detected. be able to.
  • an outflow PM amount estimation unit that estimates the amount of PM flowing out from the single plug filter (hereinafter referred to as “filter outflow PM amount”) based on the operating condition of the internal combustion engine and the PM collection rate of the single plug filter is provided.
  • the abnormality diagnosis unit compares the PM amount detected based on the output of the PM sensor (hereinafter referred to as “sensor detected PM amount”) with the filter outflow PM amount estimated by the outflow PM amount estimation unit, thereby diagnosing the sensor abnormality It is good to do.
  • the sensor detected PM amount and the filter outflow PM amount should almost match. Therefore, if the sensor detected PM amount and the filter outflow PM amount are compared, it is possible to accurately determine the presence or absence of PM sensor output abnormality (abnormal output value).
  • an exhaust PM amount estimation unit that estimates the PM amount discharged from the internal combustion engine (hereinafter referred to as “internal combustion engine exhaust PM amount”) based on the operating conditions of the internal combustion engine is provided, and the abnormality diagnosis unit outputs the output of the PM sensor.
  • the sensor abnormality diagnosis may be performed by comparing the change rate of the engine and the change rate of the internal combustion engine exhaust PM amount estimated by the exhaust PM amount estimation unit.
  • FIG. 1 is a diagram illustrating a schematic configuration of an engine control system according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of the single-ended filter along the exhaust gas flow direction.
  • FIG. 3 is a cross-sectional view taken along the direction perpendicular to the direction of exhaust gas flow on the inlet side of the single-ended filter.
  • FIG. 4 is a cross-sectional view taken along a direction perpendicular to the exhaust gas flow direction on the outlet side of the single plug filter.
  • FIG. 5 is a diagram showing the relationship between the PM deposition amount and the PM collection rate.
  • FIG. 6 is a time chart showing the behavior of the PM sensor output.
  • FIG. 7 is a diagram for explaining a method of estimating the engine exhaust PM amount.
  • FIG. 8 is a diagram for explaining the first sensor abnormality diagnosis.
  • FIG. 9 is a time chart for explaining the second sensor abnormality diagnosis.
  • FIG. 10 is a flowchart showing the flow of processing of the first sensor abnormality diagnosis routine.
  • FIG. 11 is a flowchart showing the flow of processing of the second sensor abnormality diagnosis routine.
  • Engine 11 that is an in-cylinder injection internal combustion engine is an in-cylinder injection gasoline engine that directly injects gasoline as fuel into the cylinder.
  • An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11, and an air flow meter 14 for detecting the intake air amount is provided downstream of the air cleaner 13.
  • a throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14.
  • a surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18.
  • the surge tank 18 is provided with an intake manifold 20 that introduces air into each cylinder of the engine 11.
  • Each cylinder of the engine 11 has a fuel injection valve 21 that directly injects fuel (gasoline) into the cylinder. It is attached.
  • An ignition plug 22 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in each cylinder is ignited by spark discharge of the ignition plug 22 of each cylinder.
  • the exhaust pipe 23 of the engine 11 is provided with an exhaust gas sensor 24 (such as an air-fuel ratio sensor or an oxygen sensor) that detects the air-fuel ratio or rich / lean of the exhaust gas.
  • an exhaust gas sensor 24 such as an air-fuel ratio sensor or an oxygen sensor
  • a catalyst 25 such as a three-way catalyst for purifying CO, HC, NO x and the like in the gas is provided.
  • a single plug filter 31 that collects particulate matter (PM) in the exhaust gas of the engine 11 is provided on the downstream side of the catalyst 25 in the exhaust pipe 23 of the engine 11.
  • the catalyst 25 and the single plug filter 31 may be accommodated in one case or in separate cases.
  • a PM sensor 32 that detects the amount of PM in the exhaust gas that has passed through the single plug filter 31 is provided on the downstream side of the single plug filter 31.
  • a cooling water temperature sensor 26 for detecting the cooling water temperature and a knock sensor 27 for detecting knocking are attached to the cylinder block of the engine 11.
  • a crank angle sensor 29 that outputs a pulse signal every time the crankshaft 28 rotates by a predetermined crank angle is attached to the outer peripheral side of the crankshaft 28, and the crank angle and the engine are determined based on the output signal of the crank angle sensor 29. The rotation speed is detected.
  • the outputs of these various sensors are input to an electronic control unit (hereinafter referred to as “ECU”) 30.
  • the ECU 30 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the ignition timing are determined according to the engine operating state.
  • the throttle opening (intake air amount) and the like are controlled.
  • the single plug filter 31 has a plurality of cells 33 extending in the exhaust gas flow direction (direction from the inlet side to the outlet side) partitioned by a porous partition wall (partition wall) 34.
  • the end portion on the inlet side of some of the cells 33 among the plurality of cells 33 is closed by the sealing member 35, and the outlet side of all the cells 33 is open.
  • a cell 33A in which the inlet side is closed and the outlet side is opened hereinafter referred to as “inlet closed cell”) 33A
  • a cell in which both the inlet side and the outlet side are opened hereinafter referred to as “double-side open cell”) 33B;
  • inlet closed cell in which both the inlet side and the outlet side are opened
  • PM for example, SOOT particles having a particle diameter of 20 to 100 nm
  • ash which is a non-combustible substance in the exhaust gas (for example, ash due to the oil of the engine 11), is also collected by adhering to the pores of the partition wall 34 and the surface wall surface.
  • the regeneration control includes, for example, fuel cut control that is executed when a predetermined fuel cut execution condition is satisfied (for example, during deceleration). Further, when the PM accumulation amount of the single plug filter 31 exceeds a predetermined upper limit value, for example, control for making the air-fuel ratio lean or control for increasing the exhaust temperature is executed as regeneration control.
  • the single plug filter 31 first accumulates PM in the pores of the partition wall 34. Thereafter, PM is deposited on the surface of the partition wall 34. In the pore accumulation region where PM accumulates in the pores of the partition wall 34 (region where the PM deposition amount is relatively small), the PM trapping rate decreases after increasing once as the PM deposition amount increases. Thereafter, in the surface layer deposition region where PM is deposited on the surface layer wall surface of the partition wall 34, the PM collection rate is substantially constant.
  • the ECU 30 performs sensor abnormality diagnosis for determining whether there is an output abnormality of the PM sensor 32 based on the output of the PM sensor 32 by executing each routine for sensor abnormality diagnosis of FIGS. I am doing so.
  • the single plug filter 31 maintains a PM collection rate lower than that of the conventional filter (collection rate lower than 100%) (see FIG. 5), and PM flows out of the single plug filter 31. Therefore, if the PM sensor 32 on the downstream side of the single plug filter 31 is normal, the output of the PM sensor 32 should be a value larger than 0 (a value corresponding to the amount of PM flowing out of the single plug filter 31). Yes (see FIG. 6). Therefore, in a system in which the PM sensor 32 is arranged on the downstream side of the single plug filter 31, if the output of the PM sensor 32 is monitored, it can be determined whether there is an abnormality in the output of the PM sensor 32. Can be easily detected.
  • the ECU 30 executes a first sensor abnormality diagnosis routine of FIG. 10 described later, whereby the PM accumulation amount of the single plug filter 31 is a predetermined value A (PM necessary for stabilizing the PM collection rate). After exceeding the accumulation amount), the first sensor abnormality diagnosis is performed.
  • a filter outflow PM amount (a PM amount flowing out from the single plug filter 31) is estimated based on the operating condition of the engine 11 and the PM collection rate of the single plug filter 31, and the sensor detection PM.
  • the amount (PM amount detected based on the output of the PM sensor 32) and the filter outflow PM amount are compared to determine whether there is an abnormality in the output of the PM sensor 32.
  • the sensor detected PM amount and the filter outflow PM amount should substantially match. Therefore, if the sensor detected PM amount is compared with the filter outflow PM amount, it is possible to accurately determine the presence or absence of an output abnormality (abnormal output value) of the PM sensor 32.
  • the engine discharge is based on the engine speed, engine load (for example, intake pipe pressure, intake air amount, etc.), cooling water temperature, operation history, and the like.
  • the PM amount PME (PM amount discharged from the engine 11) is calculated by a map or a mathematical expression.
  • a map or mathematical expression of the engine exhaust PM amount PME is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 30.
  • the PM accumulation amount is calculated by a map or a mathematical formula based on the operating condition of the engine 11, the sensor detected PM amount, and the like, and the PM collection rate is calculated by the map or the mathematical formula etc. according to the PM deposition amount.
  • the amount of accumulated PM according to the output of the differential pressure sensor May be calculated by a map or a mathematical expression.
  • a map or formula of the PM accumulation amount and PM collection rate is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 30.
  • the filter outflow PM amount PMF is calculated by the following equation using the engine exhaust PM amount PME and the PM collection rate.
  • Filter outflow PM amount PMF Engine exhaust PM amount PME x (1-PM collection rate) After estimating (calculating) the filter outflow PM amount PMF in this way, whether or not the absolute value
  • the ECU 30 executes a second sensor abnormality diagnosis routine of FIG. 11 described later, so that the PM accumulation amount of the single plug filter 31 is a predetermined value A (necessary to stabilize the PM collection rate). 2nd sensor abnormality diagnosis is performed after exceeding the PM accumulation amount).
  • the engine exhaust PM amount (PM amount discharged from the engine 11) is estimated based on the operating conditions of the engine 11, and the change rate (for example, increase rate) of the output of the PM sensor 32, A change rate (for example, an increase rate) of the engine exhaust PM amount is compared to determine whether there is an abnormality in the output of the PM sensor 32.
  • the output S1 of the PM sensor 32 is read and the operating condition of the engine 11 is read. Based on (engine speed, engine load, cooling water temperature, operation history, etc.), the engine exhaust PM amount PME1 is calculated by a map or a mathematical formula (see FIG. 7).
  • the fuel injection timing of the engine 11 is forcibly changed (advanced) to forcibly change (increase) the amount of PM discharged from the engine 11, and then the output S2 of the PM sensor 32 is read.
  • the engine exhaust PM amount PME2ME is calculated by a map or a mathematical expression.
  • the increase in the output of the PM sensor 32 depends on whether or not the absolute value
  • the increase rate ⁇ S of the output of the PM sensor 32 is larger than the upper limit value ( ⁇ PME + ⁇ ) of the normal range, it is determined that the increase rate ⁇ S of the output of the PM sensor 32 is excessive, and the output of the PM sensor 32 Judge as abnormal.
  • the sensor abnormality diagnosis of the present embodiment described above is executed by the ECU 30 in accordance with each routine for sensor abnormality diagnosis of FIGS.
  • the processing contents of each routine will be described below.
  • the first sensor abnormality diagnosis routine shown in FIG. 10 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 30, and serves as an abnormality diagnosis unit.
  • step 101 it is determined whether or not the PM accumulation amount of the single plug filter 31 has exceeded a predetermined value A (see FIG. 5).
  • the predetermined value A is a PM deposition amount necessary for stabilizing the PM collection rate of the single plug filter 31.
  • the PM deposition amount at the time of shifting from the pore deposition region to the surface layer deposition region or more than that. A slightly larger PM deposition amount is set.
  • step 101 If it is determined in step 101 that the PM accumulation amount does not exceed the predetermined value A, it is determined that the PM collection rate is not stable, and processing relating to the first sensor abnormality diagnosis after step 102 is performed. This routine is terminated without executing.
  • step 101 determines whether the PM accumulation amount has exceeded the predetermined value A. If it is determined in step 101 that the PM accumulation amount has exceeded the predetermined value A, it is determined that the PM collection rate is stable, and the processing related to the first sensor abnormality diagnosis after step 102 is performed. Is executed as follows.
  • step 102 the PM amount detected based on the output of the PM sensor 32 is acquired as the sensor detected PM amount.
  • step 103 the engine exhaust PM amount PME is calculated by a map or a mathematical formula based on the operating conditions (engine speed, engine load, coolant temperature, operation history, etc.) of the engine 11, and this engine exhaust PM amount.
  • the filter outflow PM amount PMF is calculated by the following equation using the PME and the PM collection rate.
  • Filter outflow PM amount PMF Engine exhaust PM amount PME x (1-PM collection rate)
  • the processing in step 103 serves as an outflow PM amount estimation unit.
  • step 104 the sensor detected PM amount PMS is in the normal range depending on whether or not the absolute value
  • step 104 If it is determined in step 104 that the absolute value
  • step 104 if it is determined in step 104 that the absolute value
  • PMF + ⁇ the upper limit
  • the second sensor abnormality diagnosis routine shown in FIG. 11 is repeatedly executed at a predetermined period during the power-on period of the ECU 30, and serves as an abnormality diagnosis unit.
  • step 201 it is determined whether or not a predetermined execution condition is satisfied, for example, based on whether or not the engine operating state is a steady state.
  • this routine is terminated without executing the processing from step 202 onward.
  • step 201 determines whether or not the execution condition is satisfied. If it is determined in step 201 that the execution condition is satisfied, the process proceeds to step 202, where it is determined whether or not the PM accumulation amount of the single plug filter 31 has exceeded a predetermined value A (see FIG. 5). judge.
  • step 202 If it is determined in step 202 that the PM accumulation amount does not exceed the predetermined value A, it is determined that the PM collection rate is not stable, and the processing related to the second sensor abnormality diagnosis in step 203 and subsequent steps is performed. This routine is terminated without executing.
  • step 202 if it is determined in step 202 that the PM accumulation amount has exceeded the predetermined value A, it is determined that the PM collection rate is stable, and processing related to the second sensor abnormality diagnosis after step 203 is performed. Is executed as follows.
  • step 203 the output S1 of the PM sensor 32 is acquired, and then the process proceeds to step 204.
  • the engine exhaust PM amount PME1. Is calculated by a map or a mathematical expression.
  • the processing in step 204 serves as an exhausted PM amount estimation unit.
  • step 205 where the fuel injection timing of the engine 11 is forcibly advanced to increase the amount of PM discharged from the engine 11.
  • the process proceeds to step 206, and after obtaining the output S2 of the PM sensor 32, the process proceeds to step 207, and the engine exhaust PM amount PME2 is calculated by a map or a mathematical formula based on the operating condition of the engine 11.
  • the processing in step 207 also serves as an exhausted PM amount estimation unit.
  • step 210 PM is determined depending on whether or not the absolute value
  • step 210 If it is determined in step 210 that the absolute value of the difference
  • step 210 when it is determined in step 210 that the absolute value
  • the increase rate ⁇ S of the output of the PM sensor 32 is larger than the upper limit value ( ⁇ PME + ⁇ ) of the normal range, it is determined that the increase rate ⁇ S of the output of the PM sensor 32 is excessive, and the output of the PM sensor 32 Judge as abnormal.
  • the first and second sensor abnormality diagnosis for determining the presence or absence of the output abnormality of the PM sensor 32 is performed. Thereby, the presence or absence of an output abnormality of the PM sensor 32 can be determined, and the output abnormality of the PM sensor 32 can be easily detected.
  • the filter outflow PM amount PMF is estimated based on the operating condition of the engine 11 and the PM collection rate of the single plug filter 31, and the sensor detected PM amount PMS and the filter outflow PM amount PMF are compared. Thus, the presence or absence of an output abnormality of the PM sensor 32 is determined. Thereby, the presence or absence of an output abnormality (abnormal output value) of the PM sensor 32 can be accurately determined.
  • the engine exhaust PM amount is estimated based on the operating condition of the engine 11, and the increase rate of the output of the PM sensor 32 is compared with the increase rate of the engine exhaust PM amount.
  • the presence / absence of output abnormality is determined. As a result, it is possible to accurately determine the presence or absence of an output abnormality (output linearity abnormality) of the PM sensor 32.
  • the fuel injection timing of the engine 11 is forcibly advanced to calculate the rate of change of the output of the PM sensor 32 and the rate of change of the engine exhaust PM amount.
  • the change rate of the output of the PM sensor 32 and the engine discharge The rate of change of the PM amount can be calculated. Accordingly, the second sensor abnormality diagnosis can be performed by calculating the change rate of the output of the PM sensor 32 and the change rate of the engine exhaust PM amount in a short period of time.
  • the first sensor abnormality diagnosis and the second sensor abnormality diagnosis are performed after the PM accumulation amount of the single plug filter 31 exceeds the predetermined value A.
  • sensor abnormality diagnosis can be performed when the PM accumulation amount of the single plug filter 31 exceeds the predetermined value A and the PM collection rate is stable.
  • the sensor abnormality diagnosis can be performed in a state where the change in the output of the PM sensor 32 due to is almost eliminated, and the abnormality diagnosis accuracy of the PM sensor 32 can be improved.
  • the sensor detected PM amount is in the normal range depending on whether or not the absolute value of the difference between the sensor detected PM amount and the filter outflow PM amount is equal to or less than a predetermined value in the first sensor abnormality diagnosis. It is determined whether or not it is within.
  • the present invention is not limited to this. For example, whether the sensor detected PM amount is within the normal range is determined based on whether the ratio between the sensor detected PM amount and the filter outflow PM amount is within a predetermined range. Also good.
  • the output increase rate of the PM sensor 32 is normal depending on whether or not the ratio between the increase rate of the output of the PM sensor 32 and the increase rate of the engine exhaust PM amount is within a predetermined range. You may make it determine whether it is in the range.
  • the increase rate of the output of the PM sensor 32 and the increase rate of the engine exhaust PM amount are compared in the second sensor abnormality diagnosis.
  • the present invention is not limited to this.
  • the decrease rate of the output of the sensor 32 may be compared with the decrease rate of the engine exhaust PM amount.
  • the fuel injection timing is forcibly changed to calculate the rate of change of the output of the PM sensor 32 and the rate of change of the engine exhaust PM amount.
  • the present invention is not limited to this.
  • the number of divided fuel injections or the fuel pressure is forcibly changed, or two or three of the fuel injection timing, the number of fuel divided injections, and the fuel pressure are used. One of them may be forcibly changed.
  • the engine operating state changes according to the driver's request or the like without forcibly changing the fuel injection timing, the number of fuel split injections, or the fuel pressure (engine 11), the rate of change of the output of the PM sensor 32 and the rate of change of the engine exhausted PM amount may be calculated.
  • the first sensor abnormality diagnosis and the second sensor abnormality diagnosis are performed after the PM accumulation amount of the single plug filter 31 exceeds the predetermined value A.
  • the first sensor abnormality diagnosis and the second sensor abnormality diagnosis may be performed before the PM accumulation amount exceeds the predetermined value A.
  • the present disclosure is applied to a system including a single plug filter having a structure in which the inlet sides of some cells are closed and the outlet sides of all cells are opened.
  • the present disclosure is not limited to this.
  • the present disclosure may be applied to a system including a single plug filter having a structure in which the inlet side of some cells is closed and the outlet side of some of the remaining cells (cells whose inlet side is opened) is closed. .
  • a single plug filter having a structure in which the outlet side of some cells is closed and the inlet side of all cells is opened, or the remaining cells (cells in which the outlet side is opened) with the outlet side of some cells closed may be applied to a system including a single plug filter having a structure in which the inlet side of some of the cells is closed.
  • the present disclosure can be applied to any system including a single plug filter having a structure in which both the inlet side and the outlet side of some cells are open.
  • the present disclosure is applied to a system equipped with an in-cylinder injection gasoline engine.
  • the present disclosure is not limited to this, and a diesel engine or an intake port injection gasoline may be used as long as the system includes a single plug filter. Even a system equipped with an engine can be implemented by applying the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

エンジン(11)の排出ガス中のPMを捕集する片栓フィルタ(31)の下流側にPMセンサ(32)を配置し、このPMセンサ(32)の出力に基づいて第1及び第2のセンサ異常診断を行う。第1のセンサ異常診断では、エンジン(11)の運転条件と片栓フィルタ(31)のPM捕集率とに基づいてフィルタ流出PM量(片栓フィルタ31から流出するPM量)を推定し、センサ検出PM量(PMセンサ32の出力に基づいて検出したPM量)とフィルタ流出PM量とを比較してPMセンサ(32)の出力異常の有無を判定する。第2のセンサ異常診断では、エンジン(11)の運転条件に基づいてエンジン排出PM量(エンジン(11)から排出されるPM量)を推定し、PMセンサ(32)の出力の増加率とエンジン排出PM量の増加率とを比較してPMセンサ(32)の出力異常の有無を判定する。

Description

PMセンサの異常診断装置 関連出願の相互参照
 本出願は、2015年1月20日に出願された日本特許出願番号2015-8401号に基づくもので、ここにその記載内容を援用する。
 本開示は、内燃機関の排出ガス中の粒子状物質(PM)を検出するPMセンサの異常診断装置に関する発明である。
 車両に搭載される内燃機関においては、燃費規制の強化に伴って、筒内噴射式のガソリンエンジンの需要増加が予想されている。しかし、筒内噴射式のガソリンエンジンは、吸気ポート噴射式のガソリンエンジンに比べて、粒子状物質(PM)の排出量が多くなる。この対策として、エンジンの排気通路にエンジンから排出されるPMを捕集するフィルタを配置するようにしたものがある。
 このようなPM捕集用のフィルタを備えたシステムにおいては、PM捕集用のフィルタの下流側に排出ガス中のPM量を検出するPMセンサを配置し、このPMセンサで検出したPM量に基づいてフィルタの故障の有無を判定するようにしたものがある。
 更に、PMセンサの異常診断技術として、例えば、特許文献1(特開2012-13058号公報)に記載されたものがある。このものは、PM捕集用のフィルタの下流側にPMセンサを配置したシステムにおいて、フィルタに捕集されたPMを燃焼させて除去する再生制御の実行停止中に、PMセンサの出力値が0に張り付いた場合に、PMセンサに故障が生じたと判定するようにしている。
 また、従来、PM捕集用のフィルタにおいては、フィルタに設けられた複数のセルのうちの一部のセルの入口側が閉鎖されて残りのセル(つまり入口側が開放されたセル)の出口側が閉鎖された構造としたものがある。
 上記従来のフィルタは、PM堆積量が増加した後は、PM捕集率がほぼ100%に維持されて(図5参照)、フィルタからPMがほとんど流出しないため、フィルタの下流側のPMセンサが正常であっても、PMセンサの出力が0付近に維持される(図6参照)。このため、従来のフィルタの下流側にPMセンサを配置したシステムでは、PMセンサの出力が正常であるか否かを判定することが難しく、PMセンサの出力異常を検出することが困難である。
特開2012-13058号公報
 本開示は、PMセンサの出力異常を容易に検出することができるPMセンサの異常診断装置を提供することを目的とする。
 本開示の一態様によれば、PMセンサの異常診断装置は、内燃機関の排出ガス中の粒子状物質(以下「PM」と表記する)を捕集するフィルタであって該フィルタに設けられた複数のセルのうちの一部のセルの入口側が閉鎖されて残りのセルのうち出口側が開放されたセルを少なくとも一つ以上有する構造又は一部のセルの出口側が閉鎖されて残りのセルのうち入口側が開放されたセルを少なくとも一つ以上有する構造の片栓フィルタと、この片栓フィルタを通過した排出ガス中のPM量を検出するPMセンサと、このPMセンサの出力に基づいて該PMセンサの出力異常の有無を判定するセンサ異常診断を行う異常診断部とを備える。
 片栓フィルタは、PM捕集率が従来のフィルタよりも低い捕集率(100%よりも低い捕集率)に維持されて(図5参照)、片栓フィルタからPMが流出するため、片栓フィルタの下流側のPMセンサが正常であれば、PMセンサの出力が0よりも大きい値(片栓フィルタから流出するPM量に応じた値)になるはずである(図6参照)。従って、片栓フィルタの下流側にPMセンサを配置したシステムでは、PMセンサの出力を監視すれば、PMセンサの出力異常の有無を判定することができ、PMセンサの出力異常を容易に検出することができる。
 この場合、内燃機関の運転条件と片栓フィルタのPM捕集率とに基づいて、片栓フィルタから流出するPM量(以下「フィルタ流出PM量」という)を推定する流出PM量推定部を備え、異常診断部は、PMセンサの出力に基づいて検出したPM量(以下「センサ検出PM量」という)と、流出PM量推定部で推定したフィルタ流出PM量とを比較して、センサ異常診断を行うようにすると良い。
 PMセンサの出力が正常であれば、センサ検出PM量とフィルタ流出PM量とがほぼ一致するはずである。従って、センサ検出PM量とフィルタ流出PM量とを比較すれば、PMセンサの出力異常(出力値の異常)の有無を精度良く判定することができる。
 また、内燃機関の運転条件に基づいて、内燃機関から排出されるPM量(以下「内燃機関排出PM量」という)を推定する排出PM量推定部を備え、異常診断部は、PMセンサの出力の変化率と、排出PM量推定部で推定した内燃機関排出PM量の変化率とを比較して、センサ異常診断を行うようにしても良い。
 内燃機関から排出されるPM量が変化すると、それに応じて、片栓フィルタから流出するPM量が変化して、PMセンサの出力が変化するため、PMセンサの出力が正常であれば、PMセンサの出力の変化率と内燃機関排出PM量の変化率とがほぼ一致するはずである。従って、PMセンサの出力の変化率と内燃機関排出PM量の変化率とを比較すれば、PMセンサの出力異常(出力のリニアリティ異常)の有無を精度良く判定することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は本開示の一実施例におけるエンジン制御システムの概略構成を示す図である。 図2は片栓フィルタの排出ガス流れ方向に沿った断面図である。 図3は片栓フィルタの入口側の排出ガス流れ方向に対して直角方向に沿った断面図である。 図4は片栓フィルタの出口側の排出ガス流れ方向に対して直角方向に沿った断面図である。 図5はPM堆積量とPM捕集率との関係を示す図である。 図6はPMセンサ出力の挙動を示すタイムチャートである。 図7はエンジン排出PM量の推定方法を説明する図である。 図8は第1のセンサ異常診断を説明する図である。 図9は第2のセンサ異常診断を説明するタイムチャートである。 図10は第1のセンサ異常診断ルーチンの処理の流れを示すフローチャートである。 図11は第2のセンサ異常診断ルーチンの処理の流れを示すフローチャートである。
 以下、本開示を実施するための形態を具体化した一実施例を説明する。
 まず、図1に基づいてエンジン制御システムの概略構成を説明する。
 筒内噴射式の内燃機関であるエンジン11は、燃料としてガソリンを筒内に直接噴射する筒内噴射式のガソリンエンジンである。このエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
 更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、エンジン11の各気筒には、それぞれ筒内に燃料(ガソリン)を直接噴射する燃料噴射弁21が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各気筒の点火プラグ22の火花放電によって各気筒内の混合気に着火される。
 一方、エンジン11の排気管23には、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ又は酸素センサ等)が設けられ、この排出ガスセンサ24の下流側に、排出ガス中のCO,HC,NO等を浄化する三元触媒等の触媒25が設けられている。
 また、エンジン11の排気管23のうちの触媒25の下流側には、エンジン11の排出ガス中の粒子状物質(PM)を捕集する片栓フィルタ31が設けられている。触媒25と片栓フィルタ31は、一つのケース内に収容するようにしても良いし、別々のケース内に収容するようにしても良い。更に、片栓フィルタ31の下流側には、片栓フィルタ31を通過した排出ガス中のPM量を検出するPMセンサ32が設けられている。
 また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、ノッキングを検出するノックセンサ27が取り付けられている。また、クランク軸28の外周側には、クランク軸28が所定クランク角回転する毎にパルス信号を出力するクランク角センサ29が取り付けられ、このクランク角センサ29の出力信号に基づいてクランク角やエンジン回転速度が検出される。
 これら各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)30に入力される。このECU30は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。
 図2乃至図4に示すように、片栓フィルタ31は、排出ガス流れ方向(入口側から出口側に向かう方向)に延びる複数のセル33が多孔質の隔壁(仕切壁)34によって区画形成され、複数のセル33のうちの一部のセル33の入口側の端部が封止部材35で閉鎖されて、全てのセル33の出口側が開放された構造となっている。本実施例では、入口側が閉鎖されて出口側が開放されたセル(以下「入口閉鎖セル」という)33Aと、入口側と出口側が両方とも開放されたセル(以下「両側開放セル」という)33Bとが隣り合うように交互に配置されている。
 この片栓フィルタ31は、両側開放セル33Bの入口側からセル33B内に排出ガスが流入すると、両側開放セル33B内の圧力が上昇して、入口閉鎖セル33A内の圧力が両側開放セル33B内の圧力に対して相対的に低くなる。このため、両側開放セル33Bから排出ガスの一部が、多孔質の隔壁34を通過して入口閉鎖セル33A内に流入して、入口閉鎖セル33Aの出口側からセル33A外へ流出する。その際、排出ガス中のPM(例えば粒径が20~100nmのSOOT粒子)が隔壁34の気孔内(気孔の内壁面)や表層壁面に付着して捕集される。また、排出ガス中の不燃性物質(例えばエンジン11のオイルに起因する灰分)であるアッシュも隔壁34の気孔内や表層壁面に付着して捕集される。
 ところで、PM捕集用の片栓フィルタ31を備えたシステムでは、片栓フィルタ31のPM堆積量(片栓フィルタ31に堆積したPMの量)が多くなり過ぎると、排気の圧力損失が大きくなる。このため、ECU30は、片栓フィルタ31に捕集されたPMを燃焼させて除去する再生制御を実施して、片栓フィルタ31を再生させる(片栓フィルタ31のPM堆積量を減少させる)ようにしている。再生制御としては、例えば、所定の燃料カット実行条件が成立したとき(例えば減速時)に実行される燃料カット制御がある。また、片栓フィルタ31のPM堆積量が所定の上限値を越えたときに、再生制御として例えば空燃比をリーンにする制御や排気温度を上昇させる制御等を実行する。
 図5に示すように、片栓フィルタ31は、再生制御等によりPMが除去された後(PM堆積量がほぼ0になった後)には、まず、隔壁34の気孔内にPMが堆積し、その後、隔壁34の表層壁面にPMが堆積する。隔壁34の気孔内にPMが堆積する気孔内堆積領域(PM堆積量が比較的少ない領域)では、PM堆積量の増加に伴って、PM捕集率が一旦上昇した後に低下する。この後、隔壁34の表層壁面にPMが堆積する表層堆積領域では、PM捕集率がほぼ一定となる。
 また、ECU30は、後述する図10及び図11のセンサ異常診断用の各ルーチンを実行することで、PMセンサ32の出力に基づいてPMセンサ32の出力異常の有無を判定するセンサ異常診断を行うようにしている。
 片栓フィルタ31は、PM捕集率が従来のフィルタよりも低い捕集率(100%よりも低い捕集率)に維持されて(図5参照)、片栓フィルタ31からPMが流出する。このため、片栓フィルタ31の下流側のPMセンサ32が正常であれば、PMセンサ32の出力が0よりも大きい値(片栓フィルタ31から流出するPM量に応じた値)になるはずである(図6参照)。従って、片栓フィルタ31の下流側にPMセンサ32を配置したシステムでは、PMセンサ32の出力を監視すれば、PMセンサ32の出力異常の有無を判定することができ、PMセンサ32の出力異常を容易に検出することができる。
 本実施例では、ECU30により後述する図10の第1のセンサ異常診断ルーチンを実行することで、片栓フィルタ31のPM堆積量が所定値A(PM捕集率が安定するのに必要なPM堆積量)を越えた後に、第1のセンサ異常診断を行う。この第1のセンサ異常診断では、エンジン11の運転条件と片栓フィルタ31のPM捕集率とに基づいてフィルタ流出PM量(片栓フィルタ31から流出するPM量)を推定し、センサ検出PM量(PMセンサ32の出力に基づいて検出したPM量)と、フィルタ流出PM量とを比較して、PMセンサ32の出力異常の有無を判定する。
 PMセンサ32の出力が正常であれば、センサ検出PM量とフィルタ流出PM量とがほぼ一致するはずである。従って、センサ検出PM量とフィルタ流出PM量とを比較すれば、PMセンサ32の出力異常(出力値の異常)の有無を精度良く判定することができる。
 具体的には、第1のセンサ異常診断では、図7に示すように、エンジン回転速度、エンジン負荷(例えば吸気管圧力や吸入空気量等)、冷却水温、運転履歴等に基づいて、エンジン排出PM量PME(エンジン11から排出されるPM量)をマップ又は数式等により算出する。エンジン排出PM量PMEのマップ又は数式等は、予め試験データや設計データ等に基づいて作成され、ECU30のROMに記憶されている。
 また、エンジン11の運転条件やセンサ検出PM量等に基づいてPM堆積量をマップ又は数式等により算出し、このPM堆積量に応じてPM捕集率をマップ又は数式等により算出する。尚、片栓フィルタ31の上流側排気圧と下流側排気圧との差(前後差圧)を検出する差圧センサを備えたシステムの場合には、差圧センサの出力に応じたPM堆積量をマップ又は数式等により算出するようにしても良い。PM堆積量やPM捕集率のマップ又は数式等は、予め試験データや設計データ等に基づいて作成され、ECU30のROMに記憶されている。
 この後、エンジン排出PM量PMEとPM捕集率とを用いて、次式によりフィルタ流出PM量PMFを算出する。
   フィルタ流出PM量PMF=エンジン排出PM量PME×(1-PM捕集率)
 このようにして、フィルタ流出PM量PMFを推定(算出)した後、センサ検出PM量PMSとフィルタ流出PM量PMFとの差の絶対値|PMS-PMF|が所定値α以下であるか否かによって、センサ検出PM量PMSが正常範囲(PMF±αの範囲)内であるか否かを判定する。
 その結果、図8の(a)に示すように、センサ検出PM量PMSとフィルタ流出PM量PMFとの差の絶対値|PMS-PMF|が所定値α以下の場合、つまり、センサ検出PM量PMSが正常範囲(PMF±αの範囲)内の場合には、PMセンサ32が正常(PMセンサ32の出力異常無し)と判定する。
 これに対して、図8の(b),(c)に示すように、センサ検出PM量PMSとフィルタ流出PM量PMFとの差の絶対値|PMS-PMF|が所定値αよりも大きい場合、つまり、センサ検出PM量PMSが正常範囲(PMF±αの範囲)外の場合には、PMセンサ32の出力異常(出力値の異常)と判定する。この際、図8の(b)に示すように、センサ検出PM量PMSが正常範囲の下限値(PMF-α)よりも小さい場合には、PMセンサ32の出力が過小であると判断して、PMセンサ32の出力異常と判定する。一方、図8の(c)に示すように、センサ検出PM量PMSが正常範囲の上限値(PMF+α)よりも大きい場合には、PMセンサ32の出力が過大であると判断して、PMセンサ32の出力異常と判定する。
 更に、本実施例では、ECU30により後述する図11の第2のセンサ異常診断ルーチンを実行することで、片栓フィルタ31のPM堆積量が所定値A(PM捕集率が安定するのに必要なPM堆積量)を越えた後に、第2のセンサ異常診断を行う。この第2のセンサ異常診断では、エンジン11の運転条件に基づいてエンジン排出PM量(エンジン11から排出されるPM量)を推定し、PMセンサ32の出力の変化率(例えば増加率)と、エンジン排出PM量の変化率(例えば増加率)とを比較して、PMセンサ32の出力異常の有無を判定する。
 エンジン11から排出されるPM量が変化すると、それに応じて、片栓フィルタ31から流出するPM量が変化して、PMセンサ32の出力が変化するため、PMセンサ32の出力が正常であれば、PMセンサ32の出力の変化率とエンジン排出PM量の変化率とがほぼ一致するはずである。従って、PMセンサ32の出力の変化率とエンジン排出PM量の変化率とを比較すれば、PMセンサ32の出力異常(出力のリニアリティ異常)の有無を精度良く判定することができる。
 具体的には、第2のセンサ異常診断では、図9に示すように、エンジン11の燃料噴射時期を強制的に変化させる前に、PMセンサ32の出力S1 を読み込むと共に、エンジン11の運転条件(エンジン回転速度、エンジン負荷、冷却水温、運転履歴等)に基づいてエンジン排出PM量PME1 をマップ又は数式等により算出する(図7参照)。
 この後、エンジン11の燃料噴射時期を強制的に変化(進角)させて、エンジン11から排出されるPM量を強制的に変化(増加)させた後に、PMセンサ32の出力S2 を読み込むと共に、エンジン11の運転条件に基づいてエンジン排出PM量PME2 をマップ又は数式等により算出する。
 この後、PMセンサ32の出力の増加率ΔS=S2 /S1 を算出すると共に、エンジン排出PM量の増加率ΔPME=PME2 /PME1 を算出する。そして、PMセンサ32の出力の増加率ΔSとエンジン排出PM量の増加率ΔPMEとの差の絶対値|ΔS-ΔPME|が所定値β以下であるか否かによって、PMセンサ32の出力の増加率ΔSが正常範囲(ΔPME±βの範囲)内であるか否かを判定する。
 その結果、PMセンサ32の出力の増加率ΔSとエンジン排出PM量の増加率ΔPMEとの差の絶対値|ΔS-ΔPME|が所定値β以下の場合、つまり、PMセンサ32の出力の増加率ΔSが正常範囲(ΔPME±βの範囲)内の場合には、PMセンサ32が正常(PMセンサ32の出力異常無し)と判定する。
 これに対して、PMセンサ32の出力の増加率ΔSとエンジン排出PM量の増加率ΔPMEとの差の絶対値|ΔS-ΔPME|が所定値βよりも大きい場合、つまり、PMセンサ32の出力の増加率ΔSが正常範囲(ΔPME±βの範囲)外の場合には、PMセンサ32の出力異常(出力のリニアリティ異常)と判定する。この際、PMセンサ32の出力の増加率ΔSが正常範囲の下限値(ΔPME-β)よりも小さい場合には、PMセンサ32の出力の増加率ΔSが過小であると判断して、PMセンサ32の出力異常と判定する。一方、PMセンサ32の出力の増加率ΔSが正常範囲の上限値(ΔPME+β)よりも大きい場合には、PMセンサ32の出力の増加率ΔSが過大であると判断して、PMセンサ32の出力異常と判定する。
 以上説明した本実施例のセンサ異常診断は、ECU30によって図10及び図11のセンサ異常診断用の各ルーチンに従って実行される。以下、各ルーチンの処理内容を説明する。
 図10に示す第1のセンサ異常診断ルーチンは、ECU30の電源オン期間中に所定周期で繰り返し実行され、異常診断部としての役割を果たす。
 ステップ101で、片栓フィルタ31のPM堆積量が所定値A(図5参照)を越えたか否かを判定する。この所定値Aは、片栓フィルタ31のPM捕集率が安定するのに必要なPM堆積量であり、例えば、気孔内堆積領域から表層堆積領域に移行する際のPM堆積量又はそれよりも少し多いPM堆積量に設定される。
 このステップ101で、PM堆積量が所定値Aを越えていないと判定された場合には、PM捕集率が安定していないと判断して、ステップ102以降の第1のセンサ異常診断に関する処理を実行することなく、本ルーチンを終了する。
 一方、上記ステップ101で、PM堆積量が所定値Aを越えたと判定された場合には、PM捕集率が安定していると判断して、ステップ102以降の第1のセンサ異常診断に関する処理を次のようにして実行する。
 ステップ102で、PMセンサ32の出力に基づいて検出したPM量をセンサ検出PM量として取得する。
 この後、ステップ103に進み、エンジン11の運転条件(エンジン回転速度、エンジン負荷、冷却水温、運転履歴等)に基づいてエンジン排出PM量PMEをマップ又は数式等により算出し、このエンジン排出PM量PMEとPM捕集率とを用いて、次式によりフィルタ流出PM量PMFを算出する。
   フィルタ流出PM量PMF=エンジン排出PM量PME×(1-PM捕集率)
 このステップ103の処理が流出PM量推定部としての役割を果たす。
 この後、ステップ104に進み、センサ検出PM量PMSとフィルタ流出PM量PMFとの差の絶対値|PMS-PMF|が所定値α以下であるか否かによって、センサ検出PM量PMSが正常範囲(PMF±αの範囲)内であるか否かを判定する。
 このステップ104で、差の絶対値|PMS-PMF|が所定値α以下と判定された場合、つまり、センサ検出PM量PMSが正常範囲(PMF±αの範囲)内と判定された場合には、ステップ105に進み、PMセンサ32が正常(PMセンサ32の出力異常無し)と判定する。
 これに対して、上記ステップ104で、差の絶対値|PMS-PMF|が所定値αよりも大きいと判定された場合、つまり、センサ検出PM量PMSが正常範囲(PMF±αの範囲)外と判定された場合には、ステップ106に進み、PMセンサ32の出力異常(出力値の異常)と判定する。この際、センサ検出PM量PMSが正常範囲の下限値(PMF-α)よりも小さい場合には、PMセンサ32の出力が過小であると判断して、PMセンサ32の出力異常と判定する。一方、センサ検出PM量PMSが正常範囲の上限値(PMF+α)よりも大きい場合には、PMセンサ32の出力が過大であると判断して、PMセンサ32の出力異常と判定する。
 また、図11に示す第2のセンサ異常診断ルーチンは、ECU30の電源オン期間中に所定周期で繰り返し実行され、異常診断部としての役割を果たす。
 本ルーチンが起動されると、まず、ステップ201で、所定の実行条件が成立しているか否かを、例えば、エンジン運転状態が定常状態であるか否か等によって判定する。
 このステップ201で、実行条件が不成立と判定された場合には、ステップ202以降の処理を実行することなく、本ルーチンを終了する。
 一方、上記ステップ201で、実行条件が成立していると判定された場合には、ステップ202に進み、片栓フィルタ31のPM堆積量が所定値A(図5参照)を越えたか否かを判定する。
 このステップ202、PM堆積量が所定値Aを越えていないと判定された場合には、PM捕集率が安定していないと判断して、ステップ203以降の第2のセンサ異常診断に関する処理を実行することなく、本ルーチンを終了する。
 一方、上記ステップ202で、PM堆積量が所定値Aを越えたと判定された場合には、PM捕集率が安定していると判断して、ステップ203以降の第2のセンサ異常診断に関する処理を次のようにして実行する。
 まず、ステップ203で、PMセンサ32の出力S1 を取得した後、ステップ204に進み、エンジン11の運転条件(エンジン回転速度、エンジン負荷、冷却水温、運転履歴等)に基づいてエンジン排出PM量PME1 をマップ又は数式等により算出する。このステップ204の処理が排出PM量推定部としての役割を果たす。
 この後、ステップ205に進み、エンジン11の燃料噴射時期を強制的に進角させて、エンジン11から排出されるPM量を強制的に増加させる。この後、ステップ206に進み、PMセンサ32の出力S2 を取得した後、ステップ207に進み、エンジン11の運転条件に基づいてエンジン排出PM量PME2 をマップ又は数式等により算出する。このステップ207の処理も排出PM量推定部としての役割を果たす。
 この後、ステップ208に進み、PMセンサ32の出力の増加率ΔS=S2 /S1 を算出した後、ステップ209に進み、エンジン排出PM量の増加率ΔPME=PME2 /PME1 を算出する。
 この後、ステップ210に進み、PMセンサ32の出力の増加率ΔSとエンジン排出PM量の増加率ΔPMEとの差の絶対値|ΔS-ΔPME|が所定値β以下であるか否かによって、PMセンサ32の出力の増加率ΔSが正常範囲(ΔPME±βの範囲)内であるか否かを判定する。
 このステップ210で、差の絶対値|ΔS-ΔPME|が所定値β以下と判定された場合、つまり、PMセンサ32の出力の増加率ΔSが正常範囲(ΔPME±βの範囲)内と判定された場合には、ステップ211に進み、PMセンサ32が正常(PMセンサ32の出力異常無し)と判定する。
 これに対して、上記ステップ210で、差の絶対値|ΔS-ΔPME|が所定値βよりも大きいと判定された場合、つまり、PMセンサ32の出力の増加率ΔSが正常範囲(ΔPME±βの範囲)外と判定された場合には、ステップ212に進み、PMセンサの出力異常(出力のリニアリティ異常)と判定する。この際、PMセンサ32の出力の増加率ΔSが正常範囲の下限値(ΔPME-β)よりも小さい場合には、PMセンサ32の出力の増加率ΔSが過小であると判断して、PMセンサ32の出力異常と判定する。一方、PMセンサ32の出力の増加率ΔSが正常範囲の上限値(ΔPME+β)よりも大きい場合には、PMセンサ32の出力の増加率ΔSが過大であると判断して、PMセンサ32の出力異常と判定する。
 以上説明した本実施例では、片栓フィルタ31の下流側のPMセンサ32の出力が0よりも大きい値(片栓フィルタ31から流出するPM量に応じた値)になることに着目して、PMセンサ32の出力に基づいてPMセンサ32の出力異常の有無を判定する第1及び第2のセンサ異常診断を行うようにしている。これにより、PMセンサ32の出力異常の有無を判定することができ、PMセンサ32の出力異常を容易に検出することができる。
 第1のセンサ異常診断では、エンジン11の運転条件と片栓フィルタ31のPM捕集率とに基づいてフィルタ流出PM量PMFを推定し、センサ検出PM量PMSとフィルタ流出PM量PMFとを比較して、PMセンサ32の出力異常の有無を判定するようにしている。これにより、PMセンサ32の出力異常(出力値の異常)の有無を精度良く判定することができる。
 第2のセンサ異常診断では、エンジン11の運転条件に基づいてエンジン排出PM量を推定し、PMセンサ32の出力の増加率とエンジン排出PM量の増加率とを比較して、PMセンサ32の出力異常の有無を判定するようにしている。これにより、PMセンサ32の出力異常(出力のリニアリティ異常)の有無を精度良く判定することができる。
 また、本実施例では、エンジン11の燃料噴射時期を強制的に進角させてPMセンサ32の出力の変化率及びエンジン排出PM量の変化率を算出するようにしている。このようにすれば、エンジン11の燃料噴射時期を強制的に進角させて、エンジン11から排出されるPM量を強制的に変化させたときに、PMセンサ32の出力の変化率及びエンジン排出PM量の変化率を算出することができる。これにより、短期間でPMセンサ32の出力の変化率及びエンジン排出PM量の変化率を算出して第2のセンサ異常診断を行うことができる。
 また、本実施例では、片栓フィルタ31のPM堆積量が所定値Aを越えた後に第1のセンサ異常診断や第2のセンサ異常診断を実施するようにしている。このようにすれば、片栓フィルタ31のPM堆積量が所定値Aを越えてPM捕集率が安定した状態のときに、センサ異常診断を実施することができるため、PM捕集率の変化によるPMセンサ32の出力の変化をほぼ排除した状態で、センサ異常診断を実施することができ、PMセンサ32の異常診断精度を向上させることができる。
 尚、上記実施例では、第1のセンサ異常診断の際に、センサ検出PM量とフィルタ流出PM量との差の絶対値が所定値以下であるか否かによって、センサ検出PM量が正常範囲内であるか否かを判定するようにしている。しかし、これに限定されず、例えば、センサ検出PM量とフィルタ流出PM量との比が所定範囲内か否かによって、センサ検出PM量が正常範囲内であるか否かを判定するようにしても良い。
 また、上記実施例では、第2のセンサ異常診断の際に、PMセンサ32の出力の増加率とエンジン排出PM量の増加率との差の絶対値が所定値以下であるか否かによって、PMセンサ32の出力の増加率が正常範囲内であるか否かを判定するようにしている。しかし、これに限定されず、例えば、PMセンサ32の出力の増加率とエンジン排出PM量の増加率との比が所定範囲内であるか否かによって、PMセンサ32の出力の増加率が正常範囲内であるか否かを判定するようにしても良い。
 更に、上記実施例では、第2のセンサ異常診断の際に、PMセンサ32の出力の増加率とエンジン排出PM量の増加率とを比較するようにしているが、これに限定されず、PMセンサ32の出力の減少率とエンジン排出PM量の減少率とを比較するようにしても良い。
 また、上記実施例では、第2のセンサ異常診断の際に、燃料噴射時期を強制的に変化させてPMセンサ32の出力の変化率及びエンジン排出PM量の変化率を算出するようにしている。しかし、これに限定されず、例えば、燃料の分割噴射回数又は燃料圧力を強制的に変化させるようにしたり、或は、燃料噴射時期と燃料の分割噴射回数と燃料圧力のうちの二つ又は三つを強制的に変化させるようにしても良い。
 また、第2のセンサ異常診断の際に、燃料噴射時期や燃料の分割噴射回数や燃料圧力を強制的に変化させずに、運転者の要求等に応じてエンジン運転状態が変化したとき(エンジン11から排出されるPM量が変化したとき)に、PMセンサ32の出力の変化率及びエンジン排出PM量の変化率を算出するようにしても良い。
 また、上記実施例では、片栓フィルタ31のPM堆積量が所定値Aを越えた後に第1のセンサ異常診断や第2のセンサ異常診断を実施するようにしているが、これに限定されず、PM堆積量が所定値Aを越える前に第1のセンサ異常診断や第2のセンサ異常診断を実施するようにしても良い。
 また、上記実施例では、一部のセルの入口側が閉鎖されて全てのセルの出口側が開放された構造の片栓フィルタを備えたシステムに本開示を適用したが、これに限定されず、一部のセルの入口側が閉鎖されて残りのセル(入口側が開放されたセル)のうち一部のセルの出口側が閉鎖された構造の片栓フィルタを備えたシステムに本開示を適用しても良い。或は、一部のセルの出口側が閉鎖されて全てのセルの入口側が開放された構造の片栓フィルタや、一部のセルの出口側が閉鎖されて残りのセル(出口側が開放されたセル)のうち一部のセルの入口側が閉鎖された構造の片栓フィルタを備えたシステムに本開示を適用しても良い。要は、一部のセルの入口側と出口側が両方とも開放された構造の片栓フィルタを備えたシステムであれば、本開示を適用することができる。
 また、上記実施例では、筒内噴射式ガソリンエンジンを搭載したシステムに本開示を適用したが、これに限定されず、片栓フィルタを備えたシステムであれば、ディーゼルエンジンや吸気ポート噴射式ガソリンエンジンを搭載したシステムであっても、本開示を適用して実施できる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 

Claims (7)

  1.  内燃機関(11)の排出ガス中の粒子状物質(以下「PM」と表記する)を捕集するフィルタであって該フィルタに設けられた複数のセル(33)のうちの一部のセルの入口側が閉鎖されて残りのセルのうち出口側が開放されたセルを少なくとも一つ以上有する構造又は一部のセルの出口側が閉鎖されて残りのセルのうち入口側が開放されたセルを少なくとも一つ以上有する構造の片栓フィルタ(31)と、
     前記片栓フィルタ(31)を通過した排出ガス中のPM量を検出するPMセンサ(32)と、
     前記PMセンサ(32)の出力に基づいて該PMセンサ(32)の出力異常の有無を判定するセンサ異常診断を行う異常診断部(30)と
     を備えていることを特徴とするPMセンサの異常診断装置。
  2.  前記内燃機関(11)の運転条件と前記片栓フィルタ(31)のPM捕集率とに基づいて、前記片栓フィルタ(31)から流出するPM量(以下「フィルタ流出PM量」という)を推定する流出PM量推定部(30)を備え、
     前記異常診断部(30)は、前記PMセンサ(32)の出力に基づいて検出したPM量(以下「センサ検出PM量」という)と、前記流出PM量推定部(30)で推定したフィルタ流出PM量とを比較して、前記センサ異常診断を行うことを特徴とする請求項1に記載のPMセンサの異常診断装置。
  3.  前記異常診断部(30)は、前記センサ検出PM量と前記フィルタ流出PM量との差が所定値よりも大きい場合に、前記PMセンサ(32)の出力異常と判定することを特徴とする請求項2に記載のPMセンサの異常診断装置。
  4.  前記内燃機関(11)の運転条件に基づいて、前記内燃機関(11)から排出されるPM量(以下「内燃機関排出PM量」という)を推定する排出PM量推定部(30)を備え、
     前記異常診断部(30)は、前記PMセンサ(32)の出力の変化率と、前記排出PM量推定部(30)で推定した内燃機関排出PM量の変化率とを比較して、前記センサ異常診断を行うことを特徴とする請求項1に記載のPMセンサの異常診断装置。
  5.  前記異常診断部(30)は、前記PMセンサ(32)の出力の変化率と前記内燃機関排出PM量の変化率との差が所定値よりも大きい場合に、前記PMセンサ(32)の出力異常と判定することを特徴とする請求項4に記載のPMセンサの異常診断装置。
  6.  前記異常診断部(30)は、前記内燃機関(11)の燃料噴射時期、燃料の分割噴射回数、燃料圧力のうちの少なくとも一つを強制的に変化させて前記PMセンサ(32)の出力の変化率及び前記内燃機関排出PM量の変化率を算出することを特徴とする請求項4又は5に記載のPMセンサの異常診断装置。
  7.  前記異常診断部(30)は、前記片栓フィルタ(31)のPM堆積量が所定値を越えた後に前記センサ異常診断を実施することを特徴とする請求項1乃至6のいずれかに記載のPMセンサの異常診断装置。

     
PCT/JP2016/000133 2015-01-20 2016-01-13 Pmセンサの異常診断装置 WO2016117300A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016000390.0T DE112016000390T5 (de) 2015-01-20 2016-01-13 Anomaliendiagnosevorrichtung für einen PM-Sensor
US15/544,044 US20170370317A1 (en) 2015-01-20 2016-01-13 Abnormality diagnosis device for pm sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-008401 2015-01-20
JP2015008401A JP6365319B2 (ja) 2015-01-20 2015-01-20 Pmセンサの異常診断装置

Publications (1)

Publication Number Publication Date
WO2016117300A1 true WO2016117300A1 (ja) 2016-07-28

Family

ID=56416855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000133 WO2016117300A1 (ja) 2015-01-20 2016-01-13 Pmセンサの異常診断装置

Country Status (4)

Country Link
US (1) US20170370317A1 (ja)
JP (1) JP6365319B2 (ja)
DE (1) DE112016000390T5 (ja)
WO (1) WO2016117300A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7113598B2 (ja) * 2017-07-14 2022-08-05 株式会社Soken パティキュレートフィルタの故障検出装置及び故障検出方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106426A (ja) * 1991-10-18 1993-04-27 Nissan Motor Co Ltd デイーゼル機関の排気後処理装置
JP2004251137A (ja) * 2003-02-18 2004-09-09 Ngk Insulators Ltd ハニカムフィルタ及び排ガス浄化システム
JP2010275977A (ja) * 2009-05-29 2010-12-09 Honda Motor Co Ltd 粒子状物質検出手段の故障判定装置
JP2013234643A (ja) * 2012-05-11 2013-11-21 Denso Corp 検査方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533362B2 (ja) * 2010-07-05 2014-06-25 トヨタ自動車株式会社 Pmセンサの故障検出装置
US8769937B2 (en) * 2012-01-31 2014-07-08 GM Global Technology Operations LLC Soot sensor monitoring
JP6459437B2 (ja) * 2014-11-26 2019-01-30 いすゞ自動車株式会社 診断装置及びセンサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106426A (ja) * 1991-10-18 1993-04-27 Nissan Motor Co Ltd デイーゼル機関の排気後処理装置
JP2004251137A (ja) * 2003-02-18 2004-09-09 Ngk Insulators Ltd ハニカムフィルタ及び排ガス浄化システム
JP2010275977A (ja) * 2009-05-29 2010-12-09 Honda Motor Co Ltd 粒子状物質検出手段の故障判定装置
JP2013234643A (ja) * 2012-05-11 2013-11-21 Denso Corp 検査方法

Also Published As

Publication number Publication date
US20170370317A1 (en) 2017-12-28
JP6365319B2 (ja) 2018-08-01
JP2016133060A (ja) 2016-07-25
DE112016000390T5 (de) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6358101B2 (ja) 異常診断装置
JP4363211B2 (ja) 内燃機関の排気浄化装置の異常検出装置
JP2007315275A (ja) 排気浄化フィルタ故障診断装置及び方法
CN105089759A (zh) 用于对排气净化设备的组件的拆除进行诊断的方法和装置
WO2015145996A1 (ja) 内燃機関の制御装置
JP2016136011A (ja) 内燃機関の制御装置
JP2009191694A (ja) 内燃機関の排気浄化装置
AU2015271980A1 (en) Diagnostic system for internal combustion engine
JP6251143B2 (ja) 火花点火エンジンの制御装置
WO2015141139A1 (ja) 内燃機関のpm検出装置
WO2016114110A1 (ja) 内燃機関の制御装置
JP5772791B2 (ja) フィルタの異常判定装置
JP6436075B2 (ja) 排気浄化システムの故障診断装置
JP6365319B2 (ja) Pmセンサの異常診断装置
JP2006057523A (ja) エンジン制御システムの異常診断装置
JP6339653B2 (ja) Dpfのpm堆積量推定方法
JP2011185095A (ja) 内燃機関の排気浄化システム
JP4380354B2 (ja) 内燃機関の添加弁異常診断装置
JP5366015B2 (ja) 内燃機関の排気浄化装置
JP6107574B2 (ja) 内燃機関の排気浄化装置
JP6287896B2 (ja) 触媒の劣化診断装置
JP2019116876A (ja) センサ診断システム
JP2015007386A (ja) 異常検出装置
WO2017006511A1 (ja) 排気浄化装置
JP6720889B2 (ja) 異常検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16739911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15544044

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016000390

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16739911

Country of ref document: EP

Kind code of ref document: A1