WO2016114283A1 - 高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法 - Google Patents

高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法 Download PDF

Info

Publication number
WO2016114283A1
WO2016114283A1 PCT/JP2016/050773 JP2016050773W WO2016114283A1 WO 2016114283 A1 WO2016114283 A1 WO 2016114283A1 JP 2016050773 W JP2016050773 W JP 2016050773W WO 2016114283 A1 WO2016114283 A1 WO 2016114283A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer flocculant
vortex mixer
aqueous solution
mixing
pressure
Prior art date
Application number
PCT/JP2016/050773
Other languages
English (en)
French (fr)
Inventor
平松 達生
佳浩 照屋
Original Assignee
巴工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巴工業株式会社 filed Critical 巴工業株式会社
Priority to US15/542,877 priority Critical patent/US10201788B2/en
Priority to CN201680005440.3A priority patent/CN107106941B/zh
Priority to KR1020177018288A priority patent/KR101984528B1/ko
Publication of WO2016114283A1 publication Critical patent/WO2016114283A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/54Mixing liquids with solids wetting solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/59Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/115Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis
    • B01F27/1152Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis with separate elements other than discs fixed on the discs, e.g. vanes fixed on the discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/811Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles in two or more consecutive, i.e. successive, mixing receptacles or being consecutively arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2113Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/212Measuring of the driving system data, e.g. torque, speed or power data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2213Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2214Speed during the operation
    • B01F35/22142Speed of the mixing device during the operation
    • B01F35/221422Speed of rotation of the mixing axis, stirrer or receptacle during the operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7173Feed mechanisms characterised by the means for feeding the components to the mixer using gravity, e.g. from a hopper
    • B01F35/71731Feed mechanisms characterised by the means for feeding the components to the mixer using gravity, e.g. from a hopper using a hopper
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5227Processes for facilitating the dissolution of solid flocculants in water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/127Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering by centrifugation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/305Treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step

Definitions

  • the present invention relates to a polymer flocculant mixed dissolution system and a polymer flocculant mixed dissolution method capable of generating a polymer flocculant solution in a short time with low power, and in particular, solid polymer flocculence.
  • the present invention relates to a technique for dissolving an agent in water as a solvent.
  • sludge In the sludge treatment field, sludge is concentrated and dehydrated. At that time, in order to improve the sludge concentration efficiency and dewatering efficiency, a flocculant is added to agglomerate the sludge. Further, in the field of water treatment, the suspension is coagulated and precipitated. At this time, in order to improve the coagulation sedimentation efficiency, a treatment for coagulating the suspension by adding a coagulant to the water to be treated is performed.
  • various flocculants such as inorganic flocculants and cationic or anionic polymer flocculants are selectively used.
  • the solid polymer flocculant has a disadvantage that it is difficult to dissolve in a liquid while high aggregation effect by cross-linking aggregation is obtained. For this reason, the solid polymer flocculant is not directly added to sludge, but is dissolved in water in advance to form an aqueous solution, and then added to sludge or the like so as to achieve a predetermined chemical injection rate.
  • the polymer flocculant has another problem that it degrades over a long time after making it into an aqueous solution and the agglomeration effect decreases, it is not possible to prepare a large amount of aqueous solution in advance and store it in a tank or the like. It is not preferable. In order to sufficiently obtain the original flocculating effect of the polymer flocculant, it is preferable to add a fresh aqueous solution having a short elapsed time after being dissolved in water.
  • Patent Document 1 discloses a technique in which an undissolved polymer flocculant is crushed and dissolved in water using a cylindrical mesh filter and a roller that rotates in the filter.
  • Patent Documents 2 and 3 are also techniques for crushing undissolved polymer flocculants and dissolving them in water.
  • Patent Document 4 discloses a technique in which an undissolved polymer flocculant is crushed and dissolved in water using a colloid mill.
  • Patent Documents 5 and 6 are also techniques for crushing an undissolved polymer flocculant and dissolving it in water. As a technique for crushing undissolved polymer flocculant, use of a fixed disk and a rotating disk has also been studied.
  • the polymer flocculant can be dissolved in a short time by using the technique disclosed in Patent Documents 1-6, but the power required for mechanically crushing the undissolved polymer flocculant is never small. Absent. Furthermore, there is a concern that the action of mechanically crushing the polymer flocculant destroys the molecular structure of the polymer flocculant and causes deterioration of the agglomeration action.
  • the present invention has been made in order to solve the above-mentioned problems mentioned as an example, and an object of the present invention is to provide a polymer flocculant capable of generating a polymer flocculant solution in a short time with low power.
  • An object of the present invention is to provide a mixed dissolution system and a method for mixing and dissolving a polymer flocculant.
  • Another object of the present invention is to provide a polymer flocculant mixing and dissolving system capable of quickly dissolving an undissolved polymer flocculant without adding mechanical action such as crushing and crushing. It is to provide a method for mixing and dissolving a molecular flocculant.
  • the polymer flocculant mixing and dissolving system of the present invention comprises a mixing tank for mixing a solid polymer flocculant with water as a solvent, and an aqueous solution containing the mixed polymer flocculant, A liquid feeding means for feeding liquid from the mixing tank, a casing disposed in the middle of the flow path of the aqueous solution discharged from the liquid feeding means, and an impeller having a radial groove formed on the entire circumference.
  • a vortex mixer for mixing and dissolving the polymer flocculant by rotating the impeller within the casing and applying pressure while forming a vortex flow of the aqueous solution along the inner peripheral wall of the casing;
  • Pressure adjusting means arranged in the middle of the flow path of the aqueous solution that has passed through the mixer and controlling the pressure on the discharge side of the vortex mixer, the pressure adjusting means corresponding to the type of polymer flocculant Has information on the set pressure value Based on the information, the pressure in the discharge side of the vortex mixer so that the pressure corresponding to the kind of polymer flocculant, characterized by pressure control.
  • the vortex pump is sometimes referred to as a cascade pump.
  • the flow path of the aqueous solution from the liquid feeding means to the pressure adjusting means may be configured such that at least two or more vortex mixers that sequentially pressurize the aqueous solution at each stage are arranged in series.
  • Power detection means for detecting the power of the vortex mixer at each stage, and rotation of the impeller of each stage vortex mixer so that the power of the vortex mixer at each stage detected by the power detection means becomes equal
  • a power adjustment means for controlling the number may be further provided.
  • Power adjustment means for controlling the power of the vortex mixer of each stage based on the flow rate of the aqueous solution fed by the liquid delivery means and the information, further comprising power setting value information of the vortex mixer of each stage It can also be configured.
  • “so that the power of the vortex mixers at each stage is equal” means that the power is equalized in the direction in which the unequal state is eliminated, so that the power is completely equal. It doesn't mean that. Therefore, even if there is a difference in power (for example, about ⁇ 10%), if equalization is included, it is included in “so that the power of the vortex mixers in each stage is equal”.
  • the method for mixing and dissolving the polymer flocculant of the present invention includes a step of mixing a solid polymer flocculant with water as a solvent, and feeding an aqueous solution containing the mixed polymer flocculant into a vortex mixer. A step of applying pressure while forming a vortex flow of the aqueous solution along the inner peripheral wall of the casing of the vortex mixer to mix and dissolve the polymer flocculant in the vortex mixer, and the aqueous solution that has passed through the vortex mixer.
  • a solid polymer flocculant is mixed with water as a solvent, and an aqueous solution obtained by mixing is fed into a vortex mixer, and in this vortex mixer, a vortex flow of an aqueous solution along the inner peripheral wall of a casing is formed.
  • the polymer flocculant is mixed and dissolved by pressurization.
  • the present invention since mechanical action such as crushing and crushing is not used, anxiety that the molecular structure of the polymer flocculant is destroyed and deteriorated, and further, in the sludge treatment process and the water treatment process. There is also an advantage that the anxiety that is affected can be reduced compared to the conventional case.
  • FIG. 1 is a schematic diagram showing the overall configuration of a polymer flocculant mixing and dissolving system (hereinafter referred to as “mixing and dissolving system”) according to the present embodiment.
  • the mixing and dissolving system 1 includes a mixing tank 2 for mixing a solid polymer flocculant with water as a solvent.
  • the mixing tank 2 is a closed or open tank capable of storing water as a solvent. Water as a solvent is supplied into the tank through a flow path such as a pipe connected to the upper part of the tank.
  • the mixing tank 2 can further include stirring means for stirring the water in the tank and dispersing the polymer flocculant.
  • a stirrer 21 that rotates a stirring blade disposed in a tank by a drive motor can be used. You may employ
  • the volume of the mixing tank 2 can be appropriately designed according to the amount of the aqueous solution to be prepared.
  • the volume can be designed to be suitable for operation by setting the mixing time (that is, the residence time) in the tank to 5 to 15 minutes, preferably 10 minutes.
  • the reason for setting this mixing time is to ensure the time necessary for swelling the polymer flocculant to such an extent that it can be dissolved in the subsequent step. If the mixing time is too short, the polymer flocculant may not swell sufficiently, and may not be sufficiently dissolved even in the subsequent steps. On the other hand, if it is too long, it is against the purpose of obtaining a fresh aqueous solution. In addition, there is a disadvantage that the mixing tank 2 is enlarged.
  • Water as a solvent can be continuously supplied into the tank. If the continuous supply method is adopted, there is an advantage that the mixing tank 2 can be miniaturized. Instead of the continuous supply method, a batch method may be employed in which a fixed amount of water is poured into the tank, the polymer flocculant is added, and then the inserted amount of water (aqueous solution) is extracted.
  • the powdery or granular solid polymer flocculant is quantitatively added to the mixing tank 2 using, for example, a hopper 22 disposed at the top of the mixing tank 2.
  • the hopper 22 has a main body formed in a conical body such as an inverted cone or an inverted pyramid, stores the polymer flocculant therein, and quantitatively cuts out the polymer flocculant from the bottom to mix the tank 2. It is the composition added to.
  • the hopper 22 may be a closed system so that the polymer flocculant does not absorb moisture during storage, and may further take moisture-proof measures such as blowing dry gas.
  • a discharging means 22a for cutting out the polymer flocculant from the hopper in a fixed amount is disposed.
  • a screw conveyor type quantitative feeder can be used as an example of the discharging means 22a.
  • the hopper 22 is a preferable example of means for quantitatively adding the polymer flocculant to the mixing tank 2, and other addition means may be adopted, or an operator may add it manually. Also good.
  • the mixing tank 2 is connected to a liquid feed pump 3 which is an example of a liquid feed means for continuously extracting the aqueous solution in the tank and feeding it to a downstream process.
  • the aqueous solution withdrawn from the mixing tank 2 contains already dissolved polymer flocculant and swollen undissolved polymer flocculant. Further, it may contain a polymer flocculant powder. Since the aqueous solution has a high viscosity in the amount of the polymer flocculant dissolved, the aqueous solution is sent to the downstream process using the liquid feed pump 3.
  • a single screw pump suitable for feeding a highly viscous liquid in a fixed amount can be used.
  • other types of metering pumps may be used, and a configuration may be adopted in which metering is performed by a combination of a flow rate adjusting valve and a pump. You may employ
  • the first vortex mixer 4A is connected to a flow path such as a pipe connected to the discharge side of the liquid feed pump 3, and then the second vortex mixer 4B is connected. That is, the first vortex mixer 4A and the second vortex mixer 4B for mixing and dissolving the polymer flocculant are arranged in series in two stages.
  • a valve V (V1, V2, V3) or a pressure gauge is provided in the middle of the flow path from the liquid feed pump 3 to the first vortex mixer 4A and in the middle of the flow path from the first vortex mixer 4A to the second vortex mixer 4B.
  • P (P1, P2, P3) or the like may be provided.
  • a coupled meter can be used as an example of the pressure gauge P1. Furthermore, in order to enable the operation of the first vortex mixer 4A alone, a bypass flow path for sending downstream without passing through the second vortex mixer 4B may be provided.
  • the first vortex mixer 4A and the second vortex mixer 4B may be arranged with vortex mixers with different processing capabilities, but it is preferable to use the same structure and the same processing capability. In this way, the convenience in terms of maintenance is enhanced, for example, the number of spare parts can be reduced.
  • the structure of the vortex mixers 4A and 4B will be described in more detail.
  • a casing 41 having an aqueous solution suction port 41a and a discharge port 41b, an impeller 42 corresponding to an impeller in terms of a pump,
  • a drive motor 43 as a drive mechanism for rotating the vehicle 42 is provided.
  • the drive motor 43 is shown in a block diagram.
  • the casing 41 communicates with each of the suction port 41a and the discharge port 41b of the aqueous solution and has an internal region 41c that rotatably accommodates the impeller 42.
  • the inner region 41c has an inner peripheral surface 41d that faces the outer peripheral edge of the impeller 42 through a gap in a non-contact manner.
  • the aqueous solution sucked into the casing 41 from the suction port 41a is transferred while being pressurized in the casing inner region 41c by the rotating impeller 42, and is discharged from the discharge port 41b.
  • the suction port 41a and the discharge port 41b are preferably arranged closer to the upper portion of the casing 41, thereby ensuring a long pressurization distance in the casing 41.
  • a buffer region 44 having an enlarged volume is formed at the discharge port 41b. Since the aqueous solution discharged from the casing 41 forms a vortex flow, the vortex flow can be eliminated by the buffer region 44.
  • the inlet 41 a is provided with an inlet 41 e for injecting so-called “priming water” into the casing 41 at startup.
  • the impeller 42 is formed in a generally disc shape, and is arranged in the inner region 41c of the casing 41 so as to be rotatable about a line extending in a direction perpendicular to the center of the circle (perpendicular to the paper surface) as a rotation axis.
  • a large number of grooves 45 for forming a fine vortex flow along the inner peripheral surface 41 d of the casing 41 are formed radially on the outer peripheral edge of the impeller 42.
  • the plurality of radial grooves 45 are formed on the outer peripheral edge of the impeller 42 over the entire circumference. For details of the shape of the groove 45, as shown in a partially enlarged perspective view of FIG.
  • a first blade portion 45a having a plane formed in the rotational direction and a direction perpendicular to the rotational direction. It is comprised by the part 45b of the 2nd blade
  • the first blade portion 45a is formed such that the upper end protrudes outward from the second blade portion 45b.
  • the second blade portion 45b is formed in a triangular cross section whose thickness increases from the upper end toward the lower end. Therefore, the size of the groove can be changed by changing the size of the first blade portion 45a and the second blade portion 45b.
  • the size of the groove 45 can be changed as appropriate, by making the shape as shown in FIG.
  • a fine vortex flow is repeatedly formed along the casing inner peripheral wall 41d by the groove 45 of the rotating impeller 42, thereby The aqueous solution inside can be pressurized.
  • the provision of the second blade portion 45b makes it possible to form a uniform vortex flow on both sides (left and right direction) of the impeller 42, and to promote mixing and dissolution of the polymer flocculant. .
  • the second blade portion 45b is not necessarily provided.
  • a rotating shaft 46 is connected to the impeller 42 along the rotating shaft.
  • the rotation shaft 46 penetrates the casing 41 and is connected to a drive motor 43 disposed outside.
  • the drive shaft 43 is configured to rotate when the drive motor 43 is driven.
  • the portion that penetrates the casing 41 can be sealed by a sealing mechanism (not shown) such as a mechanical seal.
  • the vortex mixers 4A and 4B are further provided with power adjusting means for making the rotational speed of the impeller 42 variable.
  • an inverter 47 can be used as an example of the power adjusting means. Accordingly, the first vortex mixer 4A and the second vortex mixer 4B can operate the impeller 42 at the same rotation speed or at different rotation speeds, and by changing the rotation speed, the polymer flocculant can be operated.
  • the initial setting value may be set to a frequency of 60 Hz (or 50 Hz), and the frequency may be variably adjusted so as to obtain an appropriate rotational speed.
  • the power (load factor) of the inverter 47 can be used as an index for obtaining an appropriate rotational speed.
  • the power [kW] of the drive motor 43 may be measured using a dynamometer or the like, and the measurement result may be used as an index.
  • the power measured from the inverter 47 with a built-in dynamometer may be used as an index.
  • other power detection means may be used.
  • the first vortex mixer 4A and the second vortex mixer 4B work so as to work equally with each other, in other words, when a state where the work is biased to one side is improved.
  • the time can be mentioned. That is, since pressurization is performed by the two-stage vortex mixers 4A and 4B, it is easier to pressurize to the target pressure when operating at as high a rotational speed as possible.
  • an uneven state occurs in which work is biased on one side, an overload is likely to occur in the drive motor 43 that is biased. Therefore, the overload of the drive motor 43 is prevented by improving so as to work equally. If it can be improved to work evenly, the power consumption can be minimized, and a power saving effect can be obtained.
  • Adjustment means are provided.
  • the pressure adjusting valve 5 that adjusts the pressure by changing the valve opening, the pressure sensor 51, and the opening of the pressure adjusting valve 5 so that the detected value of the pressure sensor 51 becomes a predetermined pressure.
  • a combination of pressure control units 52 to be controlled can be used.
  • the predetermined pressure is, for example, a set pressure value determined in advance according to the type of the polymer flocculant.
  • the present embodiment focuses on the property that the polymer flocculant dissolves easily when the pressure is high because penetration into the solvent is facilitated, and the degree of pressure varies depending on the type.
  • a configuration in which pressurization is controlled to a pressure suitable for dissolution is employed. Therefore, it is preferable to have information on the pressure setting value determined in advance in association with the type of the polymer flocculant, or store it in the memory of the computer of the pressure control unit 52 or the like.
  • the pressure set value may be determined based on, for example, the component and molecular weight of the polymer flocculant, or may be determined by actually performing a test. Then, depending on the type of polymer flocculant, the operator sets the pressure setting value of the pressure control unit 52, or the pressure control unit 52 reads information from the memory or the like and sets the pressure setting value.
  • the aqueous solution (that is, the polymer flocculant solution) that has passed through the pressure regulating valve 5 may be added to the sludge in the sludge treatment process as it is, or may be added to the sludge once through a buffer tank or the like. Good. In the water treatment step, it can be similarly added to the water to be treated.
  • the sludge to which the polymer flocculant solution has been added so as to achieve a predetermined chemical injection rate is supplied to, for example, a decanter type centrifugal concentrator or centrifugal dehydrator, and solid-liquid separation for concentration or dehydration do.
  • the water to be treated to which the polymer flocculant solution is added so as to obtain a predetermined chemical injection rate, is supplied to a settling tank, a filter, and the like to perform solid-liquid separation.
  • the polymer flocculant solution prepared by the mixed dissolution system 1 of the present embodiment is not limited to the type of solid-liquid separation device, and can be used for a known solid-liquid separation device.
  • the vortex mixers 4A and 4B having the configuration shown in FIG. 2 are shown as a preferred form, but a general vortex pump may be used instead.
  • the vortex pump may also be referred to as a cascade pump.
  • the type of the polymer flocculant applied to the mixing and dissolving system 1 of the present embodiment is not particularly limited, and can be appropriately selected according to the type and composition of the treated sludge and treated water. .
  • cationic polymer flocculants are the mainstream, but anionic and amphoteric polymer flocculants may also be used.
  • methacrylic acid ester or acrylic acid ester can be used. More specifically, dimethylaminoethyl methacrylate or dimethylaminoethyl acrylate can be used.
  • a crosslinkable or amidine polymer flocculant may be used.
  • polymer flocculants have a molecular weight of 1.5 to 16 million. Generally, the larger the molecular weight, the higher the viscosity of the aqueous solution. Therefore, the viscosity can be grasped by using the molecular weight as a guide.
  • the liquid feed pump 3, the first vortex mixer 4 ⁇ / b> A, and the second vortex mixer 4 ⁇ / b> B are each driven, and the set value of the control pressure by the pressure controller 52 is determined / changed.
  • the pressure set value is set to 0.3 MPa.
  • the polymer flocculant mixed with water dissolves in water in the mixing tank 2, but a part remains undissolved. However, the mixing tank 2 is in a swollen state by securing a mixing time with water of about 10 minutes.
  • the water (aqueous solution) whose viscosity has been increased by dissolving the polymer flocculant is fed into the first vortex mixer 4A by the liquid feed pump 3 while containing the undissolved polymer flocculant.
  • the flow rate of the liquid feed pump 3 can be set to 8 to 25 L / min, for example.
  • the first vortex mixer 4A and the second vortex mixer 4B set the frequency to 60 Hz (or 50 Hz) by the inverter 47, for example, and drive the drive motor 43.
  • the appropriate value of the frequency corresponding to the type of the polymer flocculant is known in advance, the appropriate value is set.
  • the impeller 42 is rotated, for example, within a range of 800 to 3500 min ⁇ 1 .
  • the aqueous solution sent to the first vortex mixer 4A by the liquid feed pump 3 repeatedly forms a fine vortex flow along the inner peripheral surface 41d of the casing 41 by the rotating impeller 42, and is pressurized by this.
  • an aqueous solution that was ⁇ 0.05 MPa near the suction port is pressurized to 0.12 MPa near the discharge port.
  • the impeller 42 rotates in a non-contact manner with respect to other portions, the action of mechanically crushing the polymer flocculant and the shear stress hardly occur.
  • the mixing and dissolution of the polymer flocculant is promoted by the fine vortex flow repeatedly formed through the fine grooves 45 formed radially and the pressurizing action.
  • the aqueous solution that has passed through the first vortex mixer 4A is repeatedly pressurized by the rotating impeller 42 along the inner peripheral surface 41d of the casing 41 in the subsequent second vortex mixer 4B. Go.
  • an aqueous solution that was 0.12 MPa near the suction port is pressurized to a target pressure of 0.3 MPa near the discharge port. That is, the vortex mixers 4A and 4B having a two-stage configuration in series are sequentially pressurized to a pressure suitable for dissolving the polymer flocculant.
  • the second vortex mixer 4B promotes the mixing and dissolution of the polymer flocculant by the fine vortex flow that is repeatedly formed through the fine grooves 45 formed radially and the pressurizing action.
  • the polymer flocculant can be completely dissolved by pressurizing to a pressure suitable for dissolving the polymer flocculant.
  • the increase in the viscosity of the second aqueous solution converges because the polymer flocculant is completely dissolved.
  • rotational speed a of the liquid feed pump 3 [min -1] are determined rotational speed c [min -1] of the rotational speed of the first vortex mixer 4A b [min -1] and a second vortex mixer 4B .
  • the indicated value of the pressure sensor 51 changes when the required flow rate becomes F1 [L / min], but is automatically controlled to an appropriate pressure (pressure set value) by the pressure adjustment valve 5.
  • the rotation speed b [min ⁇ 1 ] of the first vortex mixer 4A and the rotation of the second vortex mixer 4B are maintained so as to keep the power (ie, power consumption) of the first vortex mixer 4A and the second vortex mixer 4B properly.
  • a deviation is given to the number c [min ⁇ 1 ].
  • FIG. 4A shows the result of the actual test. Since the inverter load factor% was biased to 46/62, the frequency of the second eddy current mixer 4B was lowered to 52 Hz. The inverter load factor% was substantially equal to 46/48. Alternatively, using a dynamometer or the like, the power [kW] of the drive motor 43 of each of the first vortex mixer 4A and the second vortex mixer 4B is measured, and the frequency has a deviation so that the power of both is equal. Do it.
  • the polymer flocculant can be dissolved with a low motive power with reduced power consumption.
  • Such power control can be automatically controlled by a control unit using a computer. Or you may make it an operator control. Thereafter, even after shifting to the normal operation, monitoring may be performed as appropriate, and the power may be adjusted so that the first vortex mixer 4A and the second vortex mixer 4B work equally with each other.
  • feedforward control can be performed.
  • the rotational speed c [min -1] for example, the power of the rotational speed of the first vortex mixer 4A b [min -1] and a second vortex mixer 4B is equalized
  • the set value with a deviation is determined in association with the required flow rate of the aqueous solution and controlled based on this information.
  • Feed-forward control is performed to change the rotation speed.
  • the viscosity of the aqueous solution of the polymer flocculant varies greatly depending on the component and molecular weight. Furthermore, in this embodiment, since the vortex mixers 4A and 4B are arranged in series to promote dissolution sequentially, the viscosity of the aqueous solution passing through the first vortex mixer 4A at the front stage and the second vortex mixer 4B at the rear stage is high. Different. Accordingly, the work tends to be uneven between the first vortex mixer 4A and the second vortex mixer 4B.
  • the load on the second vortex mixer 4B in the latter stage is often excessive as compared with the first vortex mixer 4A in the first stage.
  • This tendency is particularly strong in the case of a cross-linked polymer flocculant that is difficult to dissolve among those having a relatively low viscosity. Therefore, for example, the polymer flocculant is classified according to the viscosity of the aqueous solution. Then, the second eddy current mixer 4B is operated with the rotational speed c [min ⁇ 1 ] lower than the rotational speed b [min ⁇ 1 ] of the first vortex mixer 4A.
  • the first eddy current mixer 4A is set to a frequency of 60 Hz
  • the second eddy current mixer 4B is set to a frequency of 50 Hz. That is, the rotational speed is set to have a deviation so that the power is even.
  • overload of the drive motor 43 of the second vortex mixer 4B can be prevented.
  • a polymer flocculent can be dissolved with the low power which suppressed electric power consumption more.
  • the required flow rate [L / min] of the aqueous solution and the rotational speed [min ⁇ 1 ] of the vortex mixers 4A and 4B (or the frequency [Hz]). ) Is determined in association with the viscosity of the polymer flocculant, and based on this information, the rotation speed b [min ⁇ 1 ] of the first vortex mixer 4A and the rotation of the second vortex mixer 4B are determined.
  • the number c [min ⁇ 1 ] can be set appropriately.
  • the first vortex mixer 4B and the second vortex mixer 4B in which an aqueous solution containing an undissolved polymer flocculant that could not be dissolved in the mixing tank 2 is arranged in series.
  • the pressure is adjusted so that the pressure on the discharge side of the second vortex mixer 4B in the subsequent stage becomes a pressure suitable for dissolving the polymer flocculant.
  • each of the vortex mixers 4A and 4B is provided with an impeller 42 in which a radial groove 45 is formed on the outer periphery of the eddy current mixer 4A.
  • the aqueous solution can be pressurized to a high pressure by repeatedly forming along the surface 41d.
  • an aqueous solution (dissolved solution) of the polymer flocculant can be obtained in a short time and with low power, and an excellent sludge treatment can be performed using the fresh aqueous solution of the polymer flocculant. And water treatment can be performed. Therefore, as compared with the conventional large storage tank and the melting method using a stirrer, the entire system can be saved in space, and the operating load of the system can be reduced. Furthermore, since it can be dissolved in a short time, the planned dissolution operation of the polymer flocculant becomes unnecessary.
  • the vortex mixer may have three or more stages.
  • the impeller 42 rotates in a non-contact manner with respect to other parts, and therefore, the action of mechanically crushing the polymer flocculant and the shear stress are hardly expressed.
  • anxiety that the molecular structure of the polymer flocculant is destroyed and deteriorated, and anxiety that affects the sludge treatment process and the water treatment process can be reduced as compared with the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Sludge (AREA)

Abstract

【課題】高分子凝集剤の溶解液を短時間で且つ低動力で生成することのできる高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法を提供する。 【解決手段】固体状の高分子凝集剤を、溶媒である水と混合するための混合槽(2)と、混合した高分子凝集剤を含んだ水溶液を、前記混合槽から送液する送液手段(3)と、前記送液手段から吐出される前記水溶液の流路の途中に配置されるケーシングと、外周に放射状の溝が全周に亘って形成された羽根車を有し、前記ケーシング内で前記羽根車を回転させて、該ケーシングの内周壁に沿う水溶液の渦流れを形成しながら加圧して、さらに圧力調節手段で吐出側の圧力を調節して、高分子凝集剤を混合溶解させるための渦流ミキサー(4A,4B)を備えた構成とする。

Description

高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法
 本発明は、高分子凝集剤の溶解液を短時間で且つ低動力で生成することのできる高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法に関し、特に、固体状の高分子凝集剤を溶媒である水に溶かすための技術に関する。
 汚泥処理の分野においては、汚泥の濃縮処理や脱水処理が行われる。その際、汚泥の濃縮効率や脱水効率を向上させるために、凝集剤を添加して汚泥を凝集させる処理が行われる。また、水処理の分野においては、懸濁物の凝集沈殿処理が行われる。その際にも、凝集沈殿効率を向上させるために、凝集剤を被処理水に添加して懸濁物を凝集させる処理が行われる。
 前述の汚泥処理や水処理では、無機系凝集剤,カチオン系やアニオン系の高分子凝集剤など、種々の凝集剤が選択的に用いられる。その中で、固体状の高分子凝集剤は、架橋凝集による高い凝集効果が得られる一方で、液体に溶け難いという短所がある。そのため、固体状の高分子凝集剤を汚泥等に直接添加することはせず、予め水に溶解させて水溶液にしてから、所定の薬注率となるように汚泥等に添加する。
 但し、高分子凝集剤には、水溶液にしてから長時間が経過すると劣化して凝集効果が低下する別の問題がある為、水溶液を予め多量に調製してタンク等に貯留しておくことは好ましくない。高分子凝集剤本来の凝集効果を十分に得るためには、水に溶かしてからの経過時間が出来るだけ短い、フレッシュな水溶液を添加するのが好ましい。
 しかしながら、高分子凝集剤は、溶解時間が短いと未溶解のまま残存してしまう問題がある。未溶解の高分子凝集剤は、汚泥等に添加しても速やかに凝集作用を発揮しないので、従来においても未溶解の高分子凝集剤が出来るだけ残らないようにする溶解方法や、未溶解の高分子凝集剤を溶かすための装置を追加配置する検討がなされている(例えば、特許文献1-6参照)。
 特許文献1には、筒形メッシュ状フィルタと、フィルタ内を回動するローラを用いて、未溶解の高分子凝集剤を押し潰して水に溶解させる技術が開示されている。特許文献2,3も、未溶解の高分子凝集剤を押し潰して水に溶解させる技術である。また、特許文献4には、コロイドミルを用いて未溶解の高分子凝集剤を擦り潰して水に溶解させる技術が開示されている。特許文献5,6も、未溶解の高分子凝集剤を擦り潰して水に溶解させる技術である。未溶解の高分子凝集剤を擦り潰す技術としては、固定ディスクと回転ディスクを用いることも検討されている。特許文献1-6に開示されている技術を用いれば、高分子凝集剤を短時間で溶解可能と考えられるが、未溶解の高分子凝集剤を機械的に潰すために要する動力は決して小さくはない。さらに、高分子凝集剤を機械的に潰す作用が、高分子凝集剤の分子構造まで破壊して、凝集作用の劣化を招くことも懸念される。
特許第3184797号公報 特許第5037002号公報 特許第5521272号公報 特許第3184729号公報 特開2001-026650号公報 特開平10-176064号公報
 本発明は、一例として挙げた上記問題点を解決するためになされたものであり、その目的は、高分子凝集剤の溶解液を短時間で且つ低動力で生成することのできる高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法を提供することにある。
 また、本発明の他の目的は、押し潰すや擦り潰す等の機械的な作用を加えることなく、速やかに未溶解の高分子凝集剤を溶解することのできる高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法を提供することにある。
(1)本発明の高分子凝集剤混合溶解システムは、固体状の高分子凝集剤を、溶媒である水と混合するための混合槽と、混合した高分子凝集剤を含んだ水溶液を、前記混合槽から送液する送液手段と、前記送液手段から吐出される前記水溶液の流路の途中に配置されるケーシングと、外周に放射状の溝が全周に亘って形成された羽根車を有し、前記ケーシング内で前記羽根車を回転させて、該ケーシングの内周壁に沿う水溶液の渦流れを形成しながら加圧して、高分子凝集剤を混合溶解させるための渦流ミキサーと、前記渦流ミキサーを通過した前記水溶液の流路の途中に配置され、前記渦流ミキサーの吐出側の圧力を制御する圧力調節手段と、を備え、前記圧力調節手段は、高分子凝集剤の種類に対応付けて決めた圧力設定値の情報を有し、前記情報に基づいて、前記渦流ミキサーの吐出側の圧力が高分子凝集剤の種類に対応する圧力となるように、圧力制御することを特徴とする。
 ここで、一般の渦流(かりゅう)ポンプであっても、膨潤した未溶解の高分子凝集剤を溶解する目的で使用されている場合は、本発明の作用・効果を得る目的で使用されているので、前記渦流ミキサーに含まれると解釈される。なお、渦流(かりゅう)ポンプは、カスケードポンプと称されることもある。
(2)前記送液手段から前記圧力調節手段に至る水溶液の流路には、各段で水溶液を順次加圧する少なくとも2段以上の渦流ミキサーが直列配置された構成とすることもできる。
(3)各段の渦流ミキサーの動力を検知する動力検知手段と、前記動力検知手段で検知される各段の渦流ミキサーの動力が均等になるように、各段の渦流ミキサーの羽根車の回転数を制御する動力調節手段と、をさらに備えた構成とすることもできる。
(4)前記送液手段で送液する水溶液の流量設定値に対応付けられ、且つ、各段の渦流ミキサーの動力が均等になるように回転数の偏差をもたせた、各段の渦流ミキサーの動力設定値の情報を有し、前記送液手段で送液する水溶液の流量と前記情報に基づいて各段の渦流ミキサーの動力を制御する動力調節手段を、さらに備えた構成とすることもできる。
(5)目標濃度になるように高分子凝集剤を溶解させたときの水溶液の粘度に対応付けられ、且つ、各段の渦流ミキサーの動力が均等になるように回転数の偏差をもたせた、各段の渦流ミキサーの動力設定値の情報を有し、前記送液手段で送液する水溶液の流量と前記情報に基づいて各段の渦流ミキサーの動力を制御する動力調節手段を、さらに備えた構成とすることもできる。
 なお、「各段の渦流ミキサーの動力が均等になるように」とは、不均等な状態が解消される方向に向けて均等化するという技術的意義であり、動力を完全に同じ値に揃えることを意味するのではない。従って、たとえ動力に差異(例えば、±10%程度)があったとしても均等化がされていれば「各段の渦流ミキサーの動力が均等になるように」に含まれる。
(6)本発明の高分子凝集剤の混合溶解方法は、固体状の高分子凝集剤を、溶媒である水と混合する工程と、混合した高分子凝集剤を含む水溶液を、渦流ミキサーに送り込む工程と、前記渦流ミキサーにおいて、該渦流ミキサーのケーシングの内周壁に沿って水溶液の渦流れを形成しながら加圧して、高分子凝集剤を混合溶解させる工程と、前記渦流ミキサーを通過した前記水溶液の流路の途中に配置した圧力調節手段で前記渦流ミキサーの吐出側の圧力を制御する工程と、を含み、前記圧力を制御する工程は、高分子凝集剤の種類に対応付けて決めた圧力設定値の情報に基づいて、前記渦流ミキサーの吐出側の圧力が高分子凝集剤の種類に対応する圧力となるように、圧力制御することを特徴とする。
 本発明は、固体状の高分子凝集剤を溶媒である水に混合し、混合により得られた水溶液を渦流ミキサーに送り込み、この渦流ミキサーにおいてケーシングの内周壁に沿う水溶液の渦流れを形成しながら加圧することによって、高分子凝集剤を混合溶解させる構成である。係る構成としたことにより、押し潰すや擦り潰すといった機械的作用を利用せずに、未溶解の高分子凝集剤を速やかに混合溶解させることが可能となる。その結果、短時間で且つ低動力で高分子凝集剤の溶解液を得ることができ、このフレッシュな高分子凝集剤の水溶液を用いることで良好な汚泥処理や水処理等を行うことができる。
 さらに、本発明によれば、押し潰すや擦り潰すといった機械的作用を利用しないので、高分子凝集剤の分子構造が破壊されて劣化することの不安視、さらには汚泥処理工程や水処理工程に影響が及ぶ不安視を、従来に比べて軽減できる利点もある。
本発明の実施形態に従う高分子凝集剤混合溶解システムの構成を示す図である。 上記システムの渦流ミキサーの構成を説明するための図である。 上記システムによる混合溶解について説明する図である。 上記システムの渦流ミキサーの動力変更について説明する図である。
 以下、本発明の好ましい実施形態に従う高分子凝集剤混合溶解システムについて、添付図面を参照しながら説明する。但し、以下に説明する実施形態によって本発明の技術的範囲は何ら限定解釈されることはない。
 図1は、本実施形態に従う高分子凝集剤混合溶解システム(以下、「混合溶解システム」と称す)の全体構成を示す概略図である。図1に示すように、混合溶解システム1は、固体状の高分子凝集剤を、溶媒である水と混合するための混合槽2を備えている。混合槽2は、溶媒である水を貯留することのできる密閉系又は開放系の槽である。溶媒である水は、例えば槽上部に接続した配管等の流路を通じて槽内に供給する。混合槽2は、槽内の水を撹拌して、高分子凝集剤を分散させるための撹拌手段をさらに備えることができる。撹拌手段の一例として、槽内に配置した撹拌羽根を駆動モータで回転させる撹拌機21を用いることができる。撹拌機以外の公知の撹拌手段を採用してもよい。
 混合槽2の容積は、調製する水溶液の量に応じて適宜設計することができる。一例として、槽内での混合時間(すなわち滞留時間)を5分~15分、好ましくは10分に設定して運転するのに適した容積に設計することができる。この混合時間に設定する理由は、後段の工程で溶解し得る程度にまで高分子凝集剤を膨潤させるのに必要な時間を確保するためである。混合時間が短過ぎると、高分子凝集剤の膨潤が不十分となり後段の工程によっても十分に溶解することができない場合がある。また反対に長過ぎると、フレッシュな水溶液を得るという目的に反することとなる。また、混合槽2が大型化してしまうという欠点もある。溶媒である水は、連続的に槽内に供給する連続供給方式とすることができる。連続供給方式とすれば混合槽2を小型化できる利点もある。連続供給方式に代えて、一定量の水を槽内に張り込み、高分子凝集剤を添加した後、張り込んだ量の水(水溶液)を抜き出すバッチ方式としてもよい。
 粉状又は粒状にされた固体状の高分子凝集剤は、例えば混合槽2の上部に配置したホッパー22を用いて定量的に混合槽2に添加する。ホッパー22は、逆円錐や逆角錐等の錐状体に形成された本体部を有し、内部に高分子凝集剤を貯留すると共に、底部から定量的に高分子凝集剤を切り出して混合槽2に添加する構成となっている。ホッパー22は、貯留時に高分子凝集剤が吸湿しないように密閉系とし、さらに乾燥気体を吹き込むなどの防湿対策を行ってもよい。ホッパー22の底部には、高分子凝集剤をホッパーから定量に切り出すための排出手段22aが配置されている。排出手段22aの一例として、スクリューコンベア式の定量フィーダを用いることができる。なお、ホッパー22は、高分子凝集剤を定量的に混合槽2に添加する手段の好ましい一例であり、他の添加手段を採用してもよく、若しくは作業員が手作業で添加するようにしてもよい。
 混合槽2には、槽内の水溶液を連続的に抜き出して下流の工程に送液するための送液手段の一例である送液ポンプ3が接続されている。混合槽2から抜き出される水溶液は、既に溶解した高分子凝集剤と、膨潤した未溶解の高分子凝集剤を含んでいる。更には、高分子凝集剤の継粉(ままこ)を含む場合もある。水溶液は、高分子凝集剤が溶解した分において粘性が高くなっているので、送液ポンプ3を用いて下流の工程に送り込む構成となっている。さらに送液ポンプ3の一例として、粘性の高い液体を定量で送液するのに適した一軸ねじポンプを用いることができる。勿論、他の形式の定量ポンプであってもよく、流量調節バルブとポンプの組み合わせによって定量に送液する構成としてもよい。ポンプ以外の送液手段を採用してもよい。
 送液ポンプ3の吐出側に接続された配管等の流路には、第1渦流ミキサー4Aが接続されており、続いて第2渦流ミキサー4Bが接続されている。すなわち、高分子凝集剤を混合溶解させるための第1渦流ミキサー4Aと第2渦流ミキサー4Bが2段に直列に配置された構成になっている。送液ポンプ3から第1渦流ミキサー4Aまでの流路の途中、及び第1渦流ミキサー4Aから第2渦流ミキサー4Bまでの流路の途中には、バルブV(V1,V2,V3)や圧力計P(P1,P2,P3)などを設けるようにしてもよい。なお、第1渦流ミキサーの吸入側は、負圧になる場合があるので、圧力計P1の一例として連成計を用いることもできる。さらに、第1渦流ミキサー4A単独での運転を可能にするために、第2渦流ミキサー4Bを経由しないで下流に送るためのバイパス流路を設けるようにしてもよい。
 第1渦流ミキサー4Aと第2渦流ミキサー4Bは、処理能力が異なるスペックの渦流ミキサーを配置してもよいが、同じ構造で同じ処理能力のものを用いることが好ましい。このようにすれば、予備品等の点数を少なくできるなどメンテナンス面での利便性が高まる。渦流ミキサー4A,4Bの構成についてより詳しく説明すると、図2に示すように、水溶液の吸入口41aと吐出口41bを有するケーシング41と、ポンプでいうところのインペラに相当する羽根車42と、羽根車42を回動させる駆動機構としての駆動モータ43を備えている。作図の便宜上、駆動モータ43はブロック図で示している。
 ケーシング41は、水溶液の吸入口41a及び吐出口41bのそれぞれと連通すると共に、羽根車42を回転可能に収容する内部領域41cを有している。この内部領域41cは、羽根車42の外周縁に対して非接触に隙間を介して対向する内周面41dを有する。吸入口41aからケーシング41に吸入された水溶液は、回転する羽根車42によってケーシング内部領域41cを加圧されながら移送され、吐出口41bから排出される。吸入口41aと吐出口41bは、ケーシング41の上部寄りに配置することが好ましく、これによりケーシング41内での加圧距離を長く確保する。吐出口41bには、容積が拡大したバッファー領域44が形成されている。ケーシング41から吐出された水溶液は、渦流れを形成しているので、このバッファー領域44によって渦流れを消失させることができる。また、吸入口41aには、起動時に所謂「呼び水」をケーシング41内に注入するための注入口41eが設けられている。
 羽根車42は、概ね円盤状に形成されており、その円の中心から直角方向(紙面に対して鉛直方向)に延びる線を回転軸として回転可能なように、ケーシング41の内部領域41cに配置されている。羽根車42の外周縁には、ケーシング41の内周面41dに沿って細かい渦流れを形成するための多数の溝45が放射状に形成されている。この放射状の多数の溝45は、羽根車42の外周縁に全周に亘って形成されている。溝45の形状について詳しくは、図2(b)の部分拡大斜視図に示すように、回転方向に向かって平面が形成された第1の羽根の部位45aと、回転方向に対して直角方向に平面が形成された第2の羽根の部位45bによって構成されている。第1の羽根の部位45aは、第2の羽根の部位45bよりも上端が外方に突出するように形成されている。さらに、第2の羽根の部位45bは、その上端から下端に向かうにつれて厚みが増す断面三角形状に形成されている。従って、第1の羽根の部位45aと第2の羽根の部位45bの大きさを変えることによって、溝の大きさを変えることができる。溝45の大きさは適宜変更可能であるが、図2のような形状とすることにより、回転する羽根車42の溝45によって細かい渦流れをケーシング内周壁41dに沿って繰り返し形成し、これにより内部の水溶液を加圧することができる。特に、第2の羽根の部位45bを備えたことで、羽根車42の両面側(左右方向)に整った渦流れを形成することができ、高分子凝集剤の混合溶解を促進させることができる。但し、第2の羽根の部位45bを必ずしも備えなくともよい。
 羽根車42には、回転シャフト46が前記回転軸に沿って接続されている。回転シャフト46は、ケーシング41を貫通して、外部に配置されている駆動モータ43に連結されており、駆動モータ43を駆動させると羽根車42が回転するように構成されている。ケーシング41を貫通する部分は、メカニカルシール等のシール機構(不図示)によって封止することができる。渦流ミキサー4A,4Bは、更に、羽根車42の回転数を可変に設定可能にするための動力調節手段を備えている。動力調節手段の一例としては、インバータ47を用いることができる。従って、第1渦流ミキサー4Aと第2渦流ミキサー4Bは、羽根車42を同回転数,又は互いに異なる回転数で運転することが可能であり、回転数を変えることによって、その高分子凝集剤にとって最適な混合溶解を実現することができる。例えば、初期設定値を周波数60Hz(又は50Hz)とし、そこから適正な回転数となるように周波数を可変に調整してもよい。適正な回転数とするための指標として、インバータ47の電力(負荷率)を採用することができる。或いは、動力計等を用いて、駆動モータ43の動力[kW]を測定し、その測定結果を指標に用いてもよい。さらには、動力計を内蔵したインバータ47から測定した動力を指標にしてもよい。勿論、他の動力検知手段を用いてもよい。
 動力を変える状況としては、第1渦流ミキサー4Aと第2渦流ミキサー4Bが互いに均等に仕事をするように、言い換えると、一方に偏った仕事をしている状態が発生したときにそれを改善するときを挙げることができる。すなわち、2段の渦流ミキサー4A,4Bで加圧しているため、出来るだけ回転数を高くして運転した方が目標圧まで加圧しやすい。反面、一方に仕事が偏る不均等な状態が発生すると、偏った方の駆動モータ43に過負荷が生じやすい。従って、均等に仕事をするように改善することで、駆動モータ43の過負荷を防ぐのである。均等に仕事をするように改善できれば、消費電力を必要最小限に抑えることが可能となり、省電力の効果も得られる。
 動力を改善するタイミングの一例としては、通常運転時の他にも、(1)汚泥処理工程等の処理量に応じて水溶液の必要量が変化した際に、送液ポンプの流量の変化に合わせて動力を変えるとき、(2)高分子凝集剤の種類に適した加圧を実行するために動力を変えるときがある。この(1)と(2)の場合の動力を変える手順については、後で詳しく説明する。
 説明を図1に戻すと、第2渦流ミキサー4Bの吐出側に接続された配管等の流路には、第2渦流ミキサー4Bの吐出側の圧力が、所定の圧力となるように制御する圧力調節手段が設けられている。圧力調節手段の一例として、バルブ開度を変えて圧力を調節する圧力調節バルブ5と、圧力センサー51と、圧力センサー51の検出値が所定の圧力となるように圧力調節バルブ5の開度を制御する圧力制御部52の組み合わせを用いることができる。所定の圧力とは、例えば高分子凝集剤の種類に応じて予め決めた設定圧力値である。すなわち、本実施形態は、高分子凝集剤の溶解は、圧力が高いと溶媒への浸透が促進されて溶け易く、しかも種類によって圧力の程度が異なるという特性に着目し、その高分子凝集剤の溶解に適した圧力にまで加圧制御する構成を採用する。そのため、高分子凝集剤の種類に対応付けて予め決定した圧力設定値の情報を所持しておくか、若しくは、圧力制御部52のコンピュータのメモリ等に格納しておくのが好ましい。圧力設定値は、例えば高分子凝集剤の成分や分子量等に基づいて決定してもよく、実際に試験を行って決定してもよい。そして、高分子凝集剤の種類に応じて、オペレーターが圧力制御部52の圧力設定値を設定するか、若しくは、圧力制御部52がメモリ等から情報を読み出して圧力設定値を設定する。
 圧力調整バルブ5を通過した水溶液(すなわち、高分子凝集剤溶解液)は、そのまま汚泥処理工程の汚泥に添加してもよく、バッファー槽等を一旦経由してから汚泥に添加するようにしてもよい。水処理工程においても同様に被処理水に添加することができる。汚泥処理工程においては、所定の薬注率となるように高分子凝集剤溶解液を添加した汚泥を、例えばデカンタタイプの遠心濃縮機や遠心脱水機に供給して、濃縮や脱水の固液分離をする。水処理工程においても同様に、所定の薬注率となるように高分子凝集剤溶解液を添加した被処理水を、沈降槽や濾過機等に供給して固液分離をする。但し、本実施形態の混合溶解システム1で調製した高分子凝集剤溶解液は、固液分離装置の種類に制限されることはなく、公知の固液分離装置に使用可能である。なお、本実施形態では、好ましい形態として図2の構成の渦流ミキサー4A,4Bを示したが、代替として一般の渦流(かりゅう)ポンプを用いてもよい。図2の渦流ミキサー4A,4Bは、渦流ポンプの構造をベースとしてそのミキシング機能を強化した渦流式ターボミキサーである。従って、効果は劣るが一般の渦流ポンプでも未溶解の高分子凝集剤を溶解できる場合があるからである。なお、渦流ポンプは、カスケードポンプとも称されることもある。
 本実施形態の混合溶解システム1に適用される高分子凝集剤の種類は、特に制限されることはなく、被処理汚泥や被処理水等の種類や組成等に応じて適宜選択することができる。汚泥処理においては、カチオン系の高分子凝集剤が主流であるが、その他にもアニオン系や両性の高分子凝集剤を用いる場合もある。カチオン系の高分子凝集剤の一例としては、メタクリル酸エステルやアクリル酸エステルを用いることができる。より具体的には、メタクリル酸ジメチルアミノエチルやアクリル酸ジメチルアミノエチルを用いることができる。カチオン系の高分子凝集剤の他の例としては、架橋系やアミジン系の高分子凝集剤を用いることもできる。これら高分子凝集剤の分子量は、150~1600万であり、一般的に分子量が大きい程、その水溶液の粘性は高い。従って、分子量を目安として、その粘性を把握することもできる。
 (作用)
 続いて、上述の混合溶解システム1を用いて、高分子凝集剤の溶解液を得る方法について説明する。なお、以下の説明では、カチオン系の高分子凝集剤の場合を主体にして説明するが、特筆しない限り、他の高分子凝集剤でも同様の作用・効果を奏する。混合溶解システム1が起動されると、まず、溶媒である水を混合槽2に所定の流量で供給すると共に、所定の濃度の水溶液となるように高分子凝集剤を所定の流量で添加する。濃度の一例としては、0.1~0.3質量%、好ましくは0.2質量%に設定することができる。その一方で、送液ポンプ3、第1渦流ミキサー4A及び第2渦流ミキサー4Bを各々駆動させると共に、圧力制御部52による制御圧力の設定値を決定/変更する。ここでは、一例として圧力設定値を0.3MPaとする。
 水と混合された高分子凝集剤は、混合槽2内で水に溶解していくが、一部は未溶解で残存する。但し、混合槽2において水との混合時間を10分程度確保していることで、膨潤した状態になっている。高分子凝集剤が溶解することで粘度が増した水(水溶液)は、送液ポンプ3によって未溶解の高分子凝集剤を含んだ状態で第1渦流ミキサー4Aに送り込まれる。送液ポンプ3の流量は、例えば8~25L/minに設定することができる。
 一方、図3に示すように、第1渦流ミキサー4A及び第2渦流ミキサー4Bは、例えばインバータ47で周波数60Hz(又は50Hz)に設定して駆動モータ43を駆動させる。高分子凝集剤の種類に応じた周波数の適正値を予め把握している場合は、その適正値に設定する。羽根車42は、例えば800~3500min-1の範囲内で回転させる。送液ポンプ3によって第1渦流ミキサー4Aに送り込まれた水溶液は、回転する羽根車42によって細かい渦流れをケーシング41の内周面41dに沿って繰り返し形成し、これにより加圧されていく。一例として、吸入口付近で-0.05MPaであった水溶液を、吐出口付近で0.12MPaまで加圧する。このように、羽根車42によって細かい渦流れを繰り返し形成しながら加圧することによって、高分子凝集剤が十分に混合されて水に溶解していく。このとき、溶解が進むことで水溶液の粘度も増していくこととなる。既述のように、羽根車42は、他の部位に対して非接触で回転するので、機械的に高分子凝集剤を潰す作用や剪断応力は殆ど発現しない。放射状に形成した細かい溝45を通じて繰り返し形成される細かい渦流れと、その加圧作用によって、高分子凝集剤の混合溶解が促進されるのである。
 第1渦流ミキサー4Aを通過した水溶液は、続く第2渦流ミキサー4Bにおいても、回転する羽根車42によって細かい渦流れをケーシング41の内周面41dに沿って繰り返し形成し、これにより加圧されていく。一例として、吸入口付近で0.12MPaであった水溶液を、吐出口付近で目標圧力である0.3MPaまで加圧する。すなわち、直列の2段構成になっている渦流ミキサー4A,4Bによって、その高分子凝集剤が溶解するのに適した圧力まで順次加圧するのである。第2渦流ミキサー4Bにおいても、第1渦流ミキサー4Aと同様に、放射状に形成した細かい溝45を通じて繰り返し形成される細かい渦流れと、その加圧作用によって、高分子凝集剤の混合溶解が促進される。さらに、その高分子凝集剤が溶解するのに適した圧力にまで加圧することによって、高分子凝集剤を完全に溶解することができる。このとき、高分子凝集剤が完全に溶解したことで、第2水溶液の粘度は増加が収束する。
 ここで、既述した動力を変える手順について、図4(a)を参照しながら説明しておく。まず、(1)汚泥処理工程や水処理工程等の処理量に応じて水溶液の必要量が変化した際に、送液ポンプ3の流量の変化に合わせて動力を変える場合について説明する。例えば水溶液の必要流量をF1[L/min]とした場合、必要流量F1[L/min]に合わせて、送液ポンプ3の回転数a[min-1]が決まる。さらに、送液ポンプ3の回転数a[min-1]に合わせて、第1渦流ミキサー4Aの回転数b[min-1]と第2渦流ミキサー4Bの回転数c[min-1]が決まる。必要流量がF1[L/min]になることで圧力センサー51の指示値が変化するが、圧力調整バルブ5により適正な圧力(圧力設定値)に自動制御される。そしてさらに、第1渦流ミキサー4Aと第2渦流ミキサー4Bの動力(すなわち電力消費)を適正に保つように、第1渦流ミキサー4Aの回転数b[min-1]と第2渦流ミキサー4Bの回転数c[min-1]に偏差をもたすようにする。具体的には、第1渦流ミキサー4Aと第2渦流ミキサー4Bの各々のインバータ47の負荷率を検知し、両者の負荷率が均等になるように周波数に偏差をもたすようにする。すなわち動力が均等になるように回転数を制御する。図4(a)には、実際に試験を行った結果を示しており、インバータの負荷率%が46/62と偏りが生じていたため、第2渦流ミキサー4Bの周波数を52Hzに下げることによって、インバータの負荷率%が46/48に略均等した。或いは、動力計等を用いて、第1渦流ミキサー4Aと第2渦流ミキサー4Bの各々の駆動モータ43の動力[kW]を測定し、両者の動力が均等になるように周波数に偏差をもたすようにする。このように動力を変えることによって、より電力消費を抑えた低動力で高分子凝集剤を溶解させることができる。このような動力の制御は、コンピュータによる制御部で自動制御する構成とすることができる。或いはオペレーターが制御するようにしてもよい。以後、通常運転に移行した後も、適宜監視を行い、第1渦流ミキサー4Aと第2渦流ミキサー4Bが互いに均等に仕事をするように動力を調節するようにしてもよい。
 上述のフィードバックによる制御に代えて、フィードフォワードによる制御を行うこともできる。例えば図4(b)に模式的に示すように、第1渦流ミキサー4Aの回転数b[min-1]と第2渦流ミキサー4Bの回転数c[min-1]に例えば動力が均等になるように偏差をもたせた設定値を、水溶液の必要流量に対応付けて決めておき、この情報に基づいて制御することが一例として挙げられる。具体的には、流量F1から流量F2に流量を変える場合、流量F2に対応する第1渦流ミキサー4Aの回転数b[min-1]と第2渦流ミキサー4Bの回転数c[min-1]に回転数を変更するフィードフォワードによる制御を行う。第1渦流ミキサー4Aの回転数b[min-1]と第2渦流ミキサー4Bの回転数c[min-1]の偏差をどの位もたせるかは、例えば実際に試験を行う等して決定することができる。一例として、上述のフィードバックによる制御を行って、種々の流量に対して第1渦流ミキサー4Aと第2渦流ミキサー4Bの動力が均等になる回転数の偏差のデータを動力設定値の情報として取得し、このデータに基づいて決定することができる。
 次に、(2)高分子凝集剤の種類に適した加圧を実行するために動力を変える場合について説明する。既述したように、高分子凝集剤は、成分や分子量によって、水溶液の粘度が大きく異なる。さらに、本実施形態では、渦流ミキサー4A,4Bを直列配置して順次溶解を促進させているので、前段の第1渦流ミキサー4Aと後段の第2渦流ミキサー4Bとでは通水する水溶液の粘度が異なる。その分、第1渦流ミキサー4Aと第2渦流ミキサー4Bとで仕事が不均等になり易い。特に、水溶液の粘度が比較的低いものは、前段の第1渦流ミキサー4Aに比して後段の第2渦流ミキサー4Bの負荷が過多になることが多い。とりわけ、粘度が比較的低いものの中でも溶解し難い架橋系の高分子凝集剤の場合にその傾向が強い。そこで、例えば水溶液の粘度で高分子凝集剤を分類し、例えば0.2質量%純水溶解の粘度が100~300mPa・s(B型粘度計で測定)よりも低い高分子凝集剤の場合は、第1渦流ミキサー4Aの回転数b[min-1]よりも第2渦流ミキサー4Bの回転数c[min-1]を下げて運転するようにする。一例として、第1渦流ミキサー4Aを周波数60Hzとし、第2渦流ミキサー4Bを周波数50Hzに設定する。すなわち動力が均等になるように回転数に偏差をもたせた設定にする。このように動力を変えることによって、第2渦流ミキサー4Bの駆動モータ43の過負荷を防止できる。そして、より電力消費を抑えた低動力で高分子凝集剤を溶解させることができる。
 より利便的には、例えば図4(c)に模式的に示すように、水溶液の必要流量[L/min]と渦流ミキサー4A,4Bの回転数[min-1](若しくは、周波数[Hz])の設定値の関係を、高分子凝集剤の粘度に対応付けて決めておき、この情報に基づいて、第1渦流ミキサー4Aの回転数b[min-1]と第2渦流ミキサー4Bの回転数c[min-1]を適正に設定することもできる。
 上述の実施形態の混合溶解システム1は、混合槽2で溶解することができなかった未溶解の高分子凝集剤を含んだ水溶液を、直列に配置した第1渦流ミキサー4Aと第2渦流ミキサー4Bに通水すると共に、後段の第2渦流ミキサー4Bの吐出側の圧力が、その高分子凝集剤の溶解に適した圧力になるように圧力調整する構成である。さらに、各渦流ミキサー4A,4Bは、外周に放射状の溝45が全周に亘って形成された羽根車42を備えたことで、この回転する羽根車42によって細かい渦流れをケーシング41の内周面41dに沿って繰り返し形成して、高い圧力まで水溶液を加圧することができる。その結果、高分子凝集剤の混合溶解を促進させることができ、膨潤した未溶解の高分子凝集剤を速やかに且つ完全に溶解させることが可能となる。更には、たとえ混合時に高分子凝集剤の継粉(ままこ)ができてしまった場合であっても、完全に溶解させることが可能である。
 このような混合溶解システム1によれば、短時間で且つ低動力で高分子凝集剤の水溶液(溶解液)を得ることができ、このフレッシュな高分子凝集剤の水溶液を用いて良好な汚泥処理や水処理等を行うことができる。従って、旧来の大型貯留槽と撹拌機による溶解方法と比較すれば、システム全体の省スペース化を実現でき、またシステムの運転荷重を小さくできる。さらには、短時間で溶解できるので、高分子凝集剤の計画的溶解作業が不要となる。渦流ミキサーは3段以上にしてもよい。
 さらに、本実施形態の混合溶解システム1によれば、羽根車42が他の部位に対して非接触で回転するので、機械的に高分子凝集剤を潰す作用や剪断応力は殆ど発現しない。その結果、高分子凝集剤の分子構造が破壊されて劣化することの不安視、さらには汚泥処理工程や水処理工程に影響が及ぶ不安視を、従来に比べて軽減できる利点もある。
 1 高分子凝集剤混合溶解システム
 2 混合槽
 3 送液ポンプ
 4A 第1渦流ミキサー
 4B 第2渦流ミキサー
 45 溝
 5  圧力調節バルブ
 51 圧力センサー
 52 圧力制御部

Claims (6)

  1.  固体状の高分子凝集剤を、溶媒である水と混合するための混合槽と、
     混合した高分子凝集剤を含んだ水溶液を、前記混合槽から送液する送液手段と、
     前記送液手段から吐出される前記水溶液の流路の途中に配置されるケーシングと、外周に放射状の溝が全周に亘って形成された羽根車を有し、前記ケーシング内で前記羽根車を回転させて、該ケーシングの内周壁に沿う水溶液の渦流れを形成しながら加圧して、高分子凝集剤を混合溶解させるための渦流ミキサーと、
     前記渦流ミキサーを通過した前記水溶液の流路の途中に配置され、前記渦流ミキサーの吐出側の圧力を制御する圧力調節手段と、を備え、
     前記圧力調節手段は、高分子凝集剤の種類に対応付けて決めた圧力設定値の情報を有し、前記情報に基づいて、前記渦流ミキサーの吐出側の圧力が高分子凝集剤の種類に対応する圧力となるように、圧力制御することを特徴とする高分子凝集剤混合溶解システム。
  2.  前記送液手段から吐出される前記水溶液の流路には、各段で水溶液を順次加圧する少なくとも2段以上の渦流ミキサーが直列配置されていることを特徴とする請求項1に記載の高分子凝集剤混合溶解システム。
  3.  各段の渦流ミキサーの動力を検知する動力検知手段と、
     前記動力検知手段で検知される各段の渦流ミキサーの動力が均等になるように、各段の渦流ミキサーの羽根車の回転数を制御する動力調節手段と、をさらに備えていることを特徴とする請求項2に記載の高分子凝集剤混合溶解システム。
  4.  前記送液手段で送液する水溶液の流量設定値に対応付けられ、且つ、各段の渦流ミキサーの動力が均等になるように回転数の偏差をもたせた、各段の渦流ミキサーの動力設定値の情報を有し、前記送液手段で送液する水溶液の流量と前記情報に基づいて各段の渦流ミキサーの動力を制御する動力調節手段を、さらに備えていることを特徴とする請求項2に記載の高分子凝集剤混合溶解システム。
  5.  目標濃度になるように高分子凝集剤を溶解させたときの水溶液の粘度に対応付けられ、且つ、各段の渦流ミキサーの動力が均等になるように回転数の偏差をもたせた、各段の渦流ミキサーの動力設定値の情報を有し、前記送液手段で送液する水溶液の流量と前記情報に基づいて各段の渦流ミキサーの動力を制御する動力調節手段を、さらに備えていることを特徴とする請求項2に記載の高分子凝集剤混合溶解システム。
  6.  固体状の高分子凝集剤を、溶媒である水と混合する工程と、
     混合した高分子凝集剤を含む水溶液を、渦流ミキサーに送り込む工程と、
     前記渦流ミキサーにおいて、該渦流ミキサーのケーシングの内周壁に沿って水溶液の渦流れを形成しながら加圧して、高分子凝集剤を混合溶解させる工程と、
     前記渦流ミキサーを通過した前記水溶液の流路の途中に配置した圧力調節手段で前記渦流ミキサーの吐出側の圧力を制御する工程と、を含み、
     前記圧力を制御する工程は、高分子凝集剤の種類に対応付けて決めた圧力設定値の情報に基づいて、前記渦流ミキサーの吐出側の圧力が高分子凝集剤の種類に対応する圧力となるように、圧力制御することを特徴とする高分子凝集剤の混合溶解方法。

     
PCT/JP2016/050773 2015-01-14 2016-01-13 高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法 WO2016114283A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/542,877 US10201788B2 (en) 2015-01-14 2016-01-13 Polymer flocculant mixing and dissolving system configured to control pressure on discharge side of regenerative mixer and method thereof
CN201680005440.3A CN107106941B (zh) 2015-01-14 2016-01-13 高分子絮凝剂混合溶解系统及高分子絮凝剂混合溶解方法
KR1020177018288A KR101984528B1 (ko) 2015-01-14 2016-01-13 고분자응집제 혼합용해시스템 및 고분자응집제의 혼합용해방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-005439 2015-01-14
JP2015005439A JP5731089B1 (ja) 2015-01-14 2015-01-14 高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法

Publications (1)

Publication Number Publication Date
WO2016114283A1 true WO2016114283A1 (ja) 2016-07-21

Family

ID=53486840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050773 WO2016114283A1 (ja) 2015-01-14 2016-01-13 高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法

Country Status (5)

Country Link
US (1) US10201788B2 (ja)
JP (1) JP5731089B1 (ja)
KR (1) KR101984528B1 (ja)
CN (1) CN107106941B (ja)
WO (1) WO2016114283A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181633A1 (ja) * 2020-03-12 2021-09-16 巴工業株式会社 高分子凝集剤混合溶解システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5731089B1 (ja) * 2015-01-14 2015-06-10 巴工業株式会社 高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法
JP5943528B1 (ja) * 2015-10-29 2016-07-05 巴工業株式会社 高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法
WO2021161608A1 (ja) * 2020-02-10 2021-08-19 日本スピンドル製造株式会社 分散装置及び粉体供給部材
JP7476633B2 (ja) 2020-04-09 2024-05-01 栗田工業株式会社 高分子凝集剤の溶解システム
CN111841435B (zh) * 2020-06-30 2021-12-03 江苏金湖输油泵有限公司 具有出料均匀功能的转子泵
CN112387000B (zh) * 2020-10-19 2022-04-01 中建西部建设北方有限公司 一种混凝土搅拌站废水废渣再利用工艺及再利用系统
CN117380054A (zh) * 2023-02-28 2024-01-12 山东蓝湾新材料有限公司 一种复合絮凝剂的制备装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047917Y2 (ja) * 1984-08-29 1992-02-28
JPH04283239A (ja) * 1990-09-27 1992-10-08 Dennis G Pardikes ドライポリマーの混合方法と装置
JPH0686987A (ja) * 1991-09-05 1994-03-29 Tetsuo Wada 排水処理装置
JPH10176064A (ja) * 1996-12-19 1998-06-30 Tokyo Met Gov Gesuido Service Kk 汚泥脱水方法およびポリマー溶解方法
JP3184797B2 (ja) * 1998-03-19 2001-07-09 ミヤマ株式会社 ミキシング装置
JP3184729B2 (ja) * 1995-02-24 2001-07-09 ミヤマ株式会社 混合溶解装置
JP2002307100A (ja) * 2001-02-08 2002-10-22 Saitama Livestock Farm Ltd 汚泥処理方法
WO2010050416A1 (ja) * 2008-10-31 2010-05-06 Mtアクアポリマー株式会社 水溶性高分子の溶解方法
JP2011183314A (ja) * 2010-03-09 2011-09-22 Kurita Water Ind Ltd 薬剤注入装置及びその運転方法
JP5037002B2 (ja) * 2004-11-25 2012-09-26 ダイヤニトリックス株式会社 高分子凝集剤を用いた汚泥の凝集脱水処理方法及び廃水の凝集沈殿処理方法
JP2013215733A (ja) * 2013-07-22 2013-10-24 Imacs Kk 撹拌方法及び循環型ミキサ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428961B2 (ja) 1973-08-08 1979-09-20
JPS5521272A (en) 1978-08-03 1980-02-15 Naomi Yukie Ornamental article that use native rock
US5372421A (en) * 1986-06-05 1994-12-13 Pardikes; Dennis Method of inverting, mixing, and activating polymers
DE4132066A1 (de) 1990-09-27 1992-04-02 Dennis G Pardikes Mischvorrichtung fuer trockene polymere und elektrolyte
US5344619A (en) * 1993-03-10 1994-09-06 Betz Paperchem, Inc. Apparatus for dissolving dry polymer
JPH11128705A (ja) * 1997-11-04 1999-05-18 Masujiro Arita 粉体分散溶解方法及びその装置
JP2001026650A (ja) 1999-07-15 2001-01-30 Kobayashi Eng Works Ltd ポリマー連続溶解装置
JP4428849B2 (ja) * 2000-11-02 2010-03-10 オルガノ株式会社 濃度測定装置付き高分子凝集剤溶解・注入装置
JP3848238B2 (ja) * 2002-11-07 2006-11-22 清和工業株式会社 着色廃水の処理方法及びそれに用いる装置
KR200318592Y1 (ko) * 2003-04-10 2003-07-02 서영전자산업 주식회사 와류펌프
WO2005077848A1 (ja) * 2004-02-18 2005-08-25 Tomoe Engineering Co., Ltd. 汚泥の濃縮システム及び濃縮方法
TW200621653A (en) 2004-11-25 2006-07-01 Dia Nitrix Co Ltd Method for dewatering of sludge with polymer flocculant and method for flocculation of wastewater with polymer flocculant
JP4211991B2 (ja) * 2005-06-30 2009-01-21 株式会社不動テトラ 排泥処理用凝集剤液の製造方法及び製造装置
TW200744959A (en) 2006-04-12 2007-12-16 Dia Nitrix Co Ltd Method for treating sludge or waste water
KR200448590Y1 (ko) * 2009-11-27 2010-04-27 (주)플록마스터 응집제 용해 장치
CN102134118B (zh) * 2011-01-20 2013-05-08 苏州科技学院 一种配制有机高分子混凝剂的装置与方法
CN102489192A (zh) * 2011-11-11 2012-06-13 上海蓝宇水处理有限公司 通用型游泳池投药机
US9592479B2 (en) * 2012-05-16 2017-03-14 Halliburton Energy Services, Inc. Automatic flow control in mixing fracturing gel
JP5731089B1 (ja) * 2015-01-14 2015-06-10 巴工業株式会社 高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法
WO2016157646A1 (ja) * 2015-03-31 2016-10-06 株式会社クボタ 急速撹拌機の制御方法および急速撹拌機
CA3056425A1 (en) * 2017-03-16 2018-09-20 UGSI Chemical Feed, Inc. High-capacity polymer system and method of preparing polymeric mixtures

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047917Y2 (ja) * 1984-08-29 1992-02-28
JPH04283239A (ja) * 1990-09-27 1992-10-08 Dennis G Pardikes ドライポリマーの混合方法と装置
JPH0686987A (ja) * 1991-09-05 1994-03-29 Tetsuo Wada 排水処理装置
JP3184729B2 (ja) * 1995-02-24 2001-07-09 ミヤマ株式会社 混合溶解装置
JPH10176064A (ja) * 1996-12-19 1998-06-30 Tokyo Met Gov Gesuido Service Kk 汚泥脱水方法およびポリマー溶解方法
JP3184797B2 (ja) * 1998-03-19 2001-07-09 ミヤマ株式会社 ミキシング装置
JP2002307100A (ja) * 2001-02-08 2002-10-22 Saitama Livestock Farm Ltd 汚泥処理方法
JP5037002B2 (ja) * 2004-11-25 2012-09-26 ダイヤニトリックス株式会社 高分子凝集剤を用いた汚泥の凝集脱水処理方法及び廃水の凝集沈殿処理方法
WO2010050416A1 (ja) * 2008-10-31 2010-05-06 Mtアクアポリマー株式会社 水溶性高分子の溶解方法
JP2011183314A (ja) * 2010-03-09 2011-09-22 Kurita Water Ind Ltd 薬剤注入装置及びその運転方法
JP2013215733A (ja) * 2013-07-22 2013-10-24 Imacs Kk 撹拌方法及び循環型ミキサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181633A1 (ja) * 2020-03-12 2021-09-16 巴工業株式会社 高分子凝集剤混合溶解システム
JPWO2021181633A1 (ja) * 2020-03-12 2021-09-16

Also Published As

Publication number Publication date
CN107106941B (zh) 2019-08-23
US20180071699A1 (en) 2018-03-15
JP5731089B1 (ja) 2015-06-10
KR101984528B1 (ko) 2019-05-31
JP2016129878A (ja) 2016-07-21
US10201788B2 (en) 2019-02-12
KR20170091145A (ko) 2017-08-08
CN107106941A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
JP5731089B1 (ja) 高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法
JP4427798B2 (ja) 差速回転濃縮機における運転制御方法並びに運転制御装置
CA2978533C (en) Rapid stirring machine
JP4849380B2 (ja) スクリュープレスのケーキ含水率一定制御方法
JP4505038B1 (ja) ウェットマスターバッチの製造方法
JP2009050754A (ja) 汚泥脱水装置
JP6770949B2 (ja) 急速撹拌機の制御方法および急速撹拌機
JP5943528B1 (ja) 高分子凝集剤混合溶解システム及び高分子凝集剤の混合溶解方法
JP2019104032A (ja) スクリュープレス型脱水機の運転方法及びスクリュープレス型脱水機の制御装置
KR101675025B1 (ko) 응집제 용해 시스템
JP5041298B2 (ja) 回転濃縮機に連設するスクリュープレスの運転制御方法
JP2008168215A (ja) 二段式凝集混和槽
JP2010247043A5 (ja)
JP2010247044A5 (ja)
JP5846038B2 (ja) スクリュープレスにおける圧入圧力一定制御方法
WO2021181633A1 (ja) 高分子凝集剤混合溶解システム
KR100856702B1 (ko) 급속혼화를 위한 교반실 및 혼화수조
JP2006249644A (ja) パルパー制御装置
KR101031191B1 (ko) 소화슬러지 응집장치
JP2012030158A (ja) 汚泥濃縮脱水システム及びその制御方法
JP6941783B2 (ja) 凝集剤溶解装置の運転制御方法
JP4868286B2 (ja) 複数連式スクリュープレスの流量一定制御方法並びに流量一定制御装置
CN107970856B (zh) 高效分散装置
JP2012005930A (ja) 固液分離システムおよびその制御方法
JP2021121443A (ja) スクリュープレスにおける背圧制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177018288

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15542877

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737354

Country of ref document: EP

Kind code of ref document: A1