WO2016114134A1 - 移動状況推定装置、移動状況推定方法およびプログラム記録媒体 - Google Patents

移動状況推定装置、移動状況推定方法およびプログラム記録媒体 Download PDF

Info

Publication number
WO2016114134A1
WO2016114134A1 PCT/JP2016/000146 JP2016000146W WO2016114134A1 WO 2016114134 A1 WO2016114134 A1 WO 2016114134A1 JP 2016000146 W JP2016000146 W JP 2016000146W WO 2016114134 A1 WO2016114134 A1 WO 2016114134A1
Authority
WO
WIPO (PCT)
Prior art keywords
movement
monitoring target
state
estimated
monitoring
Prior art date
Application number
PCT/JP2016/000146
Other languages
English (en)
French (fr)
Inventor
博義 宮野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/543,408 priority Critical patent/US10325160B2/en
Priority to JP2016569286A priority patent/JP6969871B2/ja
Publication of WO2016114134A1 publication Critical patent/WO2016114134A1/ja
Priority to US16/296,468 priority patent/US10657386B2/en
Priority to US16/296,516 priority patent/US10755108B2/en
Priority to US16/921,447 priority patent/US20200334472A1/en
Priority to US17/849,211 priority patent/US20220327839A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • G06T7/248Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/254Analysis of motion involving subtraction of images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • G06V20/53Recognition of crowd images, e.g. recognition of crowd congestion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30242Counting objects in image
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors

Definitions

  • the present invention relates to a movement situation estimation device, a movement situation estimation method, and a program recording medium.
  • Patent Document 1 describes a person counting device that measures the number of people from an image of crowded images.
  • the person counting device described in Patent Document 1 extracts the head of a person included in an image based on a head model, and uses the feature information such as position information and color distribution to match the same person between frames.
  • the determined head positions are connected, and the number of people is measured from the connection result.
  • Non-Patent Document 1 describes a method for estimating the number of crowds.
  • the method described in Non-Patent Document 1 captures the crowd state including the overlap of persons with a “crowd-patch” that shows a local image, and performs regression learning on the number of people in the patch. Estimate the number of people from still images.
  • Patent Document 2 describes a traffic measurement system capable of obtaining traffic data at a survey target point.
  • the system described in Patent Literature 2 identifies a passerby of a survey target area from an image obtained by imaging a predetermined survey target area, and determines the number of passersby.
  • Non-Patent Document 1 by using the crowd patch described in Non-Patent Document 1, it is possible to recognize the crowd in the image without depending on the frame rate.
  • the crowd patch described in Non-Patent Document 1 it is possible to predict the number of people that can exist in a predetermined region in the image, but how many objects the observation target moves It is difficult to estimate.
  • An exemplary object of the present invention is to provide a movement situation estimation apparatus, a movement situation estimation method, and a movement situation estimation program that can accurately estimate the movement situation of a monitoring target even in a congested environment.
  • the movement status estimation apparatus uses a plurality of temporally continuous images, and estimates quantity in each local area, with quantity estimation means for estimating the quantity of monitoring targets for each local area of each image. It is characterized by comprising movement status estimation means for estimating the movement status of the monitoring object from the time series change of the quantity.
  • the movement state estimation method uses a plurality of temporally continuous images to estimate the number of monitoring targets for each local region of each image, and at the time of the amount estimated in each of the local regions.
  • the movement status of the monitoring target is estimated from the series change.
  • a program recording medium uses a plurality of temporally continuous images on a computer to estimate the quantity of a monitoring target for each local region of the plurality of images, and each of the local regions
  • a program for executing a movement situation estimation process for estimating the movement situation of the monitoring target from the time-series change of the quantity estimated in step 1 is recorded.
  • FIG. 1 is a block diagram illustrating an embodiment of a movement status estimation apparatus.
  • FIG. 2 is an explanatory diagram illustrating an example of processing for estimating the quantity to be monitored.
  • FIG. 3 is an explanatory diagram illustrating an example of the movement status of the monitoring target.
  • FIG. 4 is an explanatory diagram showing a relationship between a local region in which the quantity to be monitored is estimated and particles present in the local region.
  • FIG. 5 is an explanatory diagram illustrating an example of processing for updating the weight value when the local regions overlap.
  • FIG. 6 is an explanatory diagram illustrating an example of a situation where the detection probabilities are different.
  • FIG. 7 is an explanatory diagram illustrating an example of processing for calculating the quantity of monitoring targets that have passed a predetermined position.
  • FIG. 8 is a flowchart illustrating an operation example of the movement state estimation apparatus.
  • FIG. 9 is a block diagram illustrating an overview of the movement status estimation apparatus.
  • FIG. 10 is a block diagram illustrating a
  • FIG. 1 is a block diagram showing an embodiment of a movement situation estimation apparatus according to the present invention.
  • the movement state estimation device 100 of this embodiment includes an image input unit 11, a number of people estimation unit 12, a flow calculation unit 13, a state storage device 14, a state prediction unit 15, a staying information calculation unit 16, and an individual person.
  • a detection unit 17, a state update unit 18, and a number of people output unit 19 are provided.
  • the arrows shown in the figure show an example of the data flow.
  • the flow of data in the movement status estimation device 100 is not limited to a specific direction.
  • the image input unit 11 acquires an image at a certain processing time from a video (moving image).
  • the image acquired by the image input unit 11 is referred to as a “target image”.
  • the image input unit 11 receives input of a plurality of target images that are temporally continuous.
  • the number estimation unit 12 estimates the number of photographed people for each local region in the target image. That is, the number estimating unit 12 estimates the number of persons (the number of monitoring targets) for each local region of the input target image.
  • the method for estimating the number of people by the number-of-people estimation unit 12 is not particularly limited.
  • the number-of-people estimation unit 12 may estimate the number of people by comparing the crowd patch described in Non-Patent Document 1 and the local region of the target image, for example, as in the method described in Patent Document 1
  • the number of people may be estimated using a plurality of images including images.
  • FIG. 2 is an explanatory diagram showing an example of processing for estimating the number of people.
  • the number estimating unit 12 extracts a local region 21 from the target image 20 and estimates the number of persons included in the local region 21. In the example shown in FIG. 2, the number estimating unit 12 estimates that there are four people in the local region 21.
  • the number output unit 19 outputs an image representing the number of persons estimated for each local area in a mode (color, shading, etc.) according to the number of persons. May be. The specific process executed by the number-of-people output unit 19 will be described later.
  • the number estimation unit 12 can capture the number of people in each local region (time series change). Particularly in a crowded environment, it is conceivable that people move in a certain group. Therefore, the number estimating unit 12 estimates the movement status of the person from the transition of the number of persons in the local area.
  • the number estimating unit 12 predicts the future position of the person from the movement of the person when the number of persons is estimated.
  • the number estimating unit 12 may assume that the monitoring target moves in all directions at an equal probability and at a constant speed in the initial state. Further, the number estimating unit 12 estimates the future number of persons in each local region based on the predicted position of the future person.
  • prediction the estimation of the future number of people by the number of people estimation unit 12 is hereinafter referred to as “prediction”.
  • the person estimation unit 12 may assume that each person moves at a constant speed, but may use a prediction result of a state prediction unit 15 described later.
  • the number-of-people estimation unit 12 compares the number of people predicted in advance for each local region at a certain time in the future with the number of people estimated for each local region from the target image at that time. Then, the person estimation unit 12 estimates the movement state of the person with emphasis on the local area where the difference in the number of persons is smaller. Specifically, the number-of-people estimation unit 12 determines that a person who is in a specific local area has moved to a local area where the difference in the number of persons estimated from the target image is the smallest among a plurality of local areas close to the local area. It may be estimated.
  • FIG. 3 is an explanatory diagram illustrating an example of a movement situation of a person.
  • the density map illustrated in FIG. 3 indicates that more people are present in regions with lighter colors.
  • the person estimation unit 12 estimates that there are many persons in the region 31a and the region 31b of the target image at a certain time.
  • the number-of-people estimation unit 12 it is assumed that many persons have moved to the region 32a and the region 32b of the target image at different points in time. From this time series change, it becomes possible to grasp the movement of the person from the area 31a to the area 32a (arrow 33a) and the movement of the person from the area 31b to the area 32b (arrow 33b).
  • the number of persons estimation unit 12 is a person included in the target image at a certain point in time, or a person who has newly appeared at the certain point in time, or an existing person who has appeared in the target image before the point in time (that is, has been shot It may be determined whether the person has moved within the area. For example, when the presence of a person is estimated at a position where the movement of the person is not predicted from the target image, the person estimation unit 12 may determine that the person is a newly appearing person.
  • the flow calculation unit 13 calculates an optical flow for the target image.
  • the method for calculating the optical flow is not particularly limited.
  • the flow calculation unit 13 may calculate an optical flow using feature points as in the Lucas-Kanade method, or may calculate an optical flow using a variational method as in the Horn-Schunck method. .
  • the state storage device 14 stores the past state of the person.
  • the state of the person includes the position, speed, and likelihood (weight value) of the person at the past time point.
  • the person's state may include the person's operation state (moving state or stationary state).
  • the state storage device 14 may hold a variable s i indicating whether the person is in a moving state or a stationary state as the state of each particle.
  • the sum of the particle weight values w i corresponds to the quantity to be monitored, that is, the number of people. For example, when 100 particles are newly dispersed per monitoring target in the PHD particle filter, the weight value of each particle set at that time is “0.01”.
  • the state prediction unit 15 uses the past person state stored in the state storage device 14 to predict the state of the person at the time when the image input unit 11 acquires the image.
  • the state prediction unit 15 may predict whether the movement state or the stationary state of the person is included in addition to the position, speed, and weight value of the person.
  • the state prediction unit 15 predicts the future state of the person using a plurality of particles that represent the state of the person.
  • a method in which the state prediction unit 15 predicts the state of an object using a PHD particle filter will be described.
  • the state prediction unit 15 predicts the state of the person at the time when the image input unit 11 acquires the target image.
  • one monitoring target state is expressed by a plurality of particles.
  • the method by which the state prediction unit 15 predicts the position and speed is the same as the prediction method performed by a general particle filter.
  • the position of the particle at a certain time is x
  • the position of the particle after the dt has elapsed is represented by x + v ⁇ dt + e.
  • e represents noise that cannot be expressed by the constant velocity motion model, and is, for example, a random value generated based on a normal distribution with a predetermined standard deviation.
  • the velocity of the particle at the position x is v
  • the velocity of the particle after dt has elapsed is represented by v + f.
  • f represents noise that cannot be expressed by the constant velocity motion model, and is, for example, a random value generated based on a normal distribution with a predetermined standard deviation.
  • the state prediction unit 15 predicts the operation state.
  • the motion state of the person transitions from the stationary state to the moving state according to a predetermined probability P
  • the motion state transitions from the moving state to the stationary state based on a predetermined probability Q.
  • the state prediction unit 15 When s i represents a stationary state, the state prediction unit 15 generates a uniform random number from 0 to 1, and if the random value is equal to or less than P, changes the s i to a value indicating the moving state. On the other hand, when s i represents an operating state, the state prediction unit 15 generates a uniform random number from 0 to 1, and if the random value is equal to or less than Q, changes s i to a value indicating a stationary state.
  • the state prediction unit 15 may predict the state of the variable s i based on the past history and statistical results. For example, it is assumed that the tracking target person changes from a stationary state to a moving state, and s i is a value indicating the moving state. If this transition has been made recently and a predetermined period has not elapsed since the transition to the moving state, it can be assumed that the tracking target does not immediately return to the stationary state. Therefore, in this case, the state prediction unit 15 may hold the operation state in the movement state for a certain period.
  • the state prediction unit 15 may hold the operation state in a stationary state for a certain period.
  • the state prediction unit 15 may change the state of transition of the operation state according to the location in the image. For example, the state prediction unit 15 may set the transition probability Q from the moving state to the stationary state to be small in the region where the passage in the image is shown. In addition, the state prediction unit 15 may set the transition probability Q to be large in an area where an area with a lot of waiting in the image is shown.
  • the stay information calculation unit 16 uses the target image acquired by the image input unit 11 to extract a region that is determined to be a stay.
  • the staying information calculation unit 16 determines, for example, for each pixel whether or not it is a temporary stationary object using a method of detecting an object that has been stationary for a long period of time, and is determined to be a temporary stationary object by a labeling process. May be detected.
  • the individual person detection unit 17 individually detects a person from the target image. For example, a person shown on the front side of an image is often shielded by other objects and can be detected by a general detection method. Therefore, the individual person detection unit 17 sets an area in which a person can be individually detected (hereinafter referred to as an individual detection area), and detects a person from the individual detection area of the target image.
  • an individual detection area an area in which a person can be individually detected
  • the state update unit 18 updates the state of the person predicted by the state prediction unit 15 based on the estimation result of the number estimation unit 12. Further, the state update unit 18 may update the state of the person based on the processing results of the flow calculation unit 13, the stay information calculation unit 16, and the individual person detection unit 17. Hereinafter, a method in which the state update unit 18 updates the monitoring target will be specifically described.
  • the state update unit 18 updates the state of the person in the corresponding region according to the number of people in each local region estimated by the number estimation unit 12.
  • the state updating unit 18 updates the weight value w i of the particles predicted to exist in the corresponding region according to the number of people in each local region estimated by the number estimating unit 12.
  • the state update unit 18 updates the weight value w i of each particle so that the sum of the weights of the local regions is equal to the number of people.
  • the state update unit 18 uses a predetermined value ⁇ from 0 to 1 so that the change of the weight value w i becomes gradual, and the sum of the updated weights is (1 ⁇ ) ⁇ may update the weight value w i of each particle such that the (previous sum of the weights of) + (alpha ⁇ number). In this way, the state update unit 18 may update the particle weight values so that the sum of the weight values approaches the number of people in the local region.
  • FIG. 4 is an explanatory diagram showing the relationship between the local area where the number of persons is estimated and the particles existing in the local area.
  • white or black circles indicate particles.
  • Black particles indicate particles whose moving direction (arrow in the figure) is the same as or within a predetermined angle with a specific direction.
  • the state update unit 18 updates the weight value of each particle so that the sum of the weight values becomes 2 for the three particles included in the local region 41c.
  • the state update unit 18 may update the weight value of the particles individually for each local region, and collect the overlapping local regions together. You may update the weight value of particle
  • FIG. 5 is an explanatory diagram showing an example of processing for updating the weight value when the local regions overlap.
  • the number of persons is estimated for three local regions that partially overlap.
  • the state update unit 18 may update the weight values of the particles in a lump for a region where the local region 42a, the local region 42b, and the local region 42c are combined. Further, the state updating unit 18 may individually update the weights of particles included in each local region for each of the local region 42a, the local region 42b, and the local region 42c.
  • the state update unit 18 may update all the weight values of the particles included in the local region at the same rate, or may update at different rates for each particle. For example, the state update unit 18 may change the weight value to be updated according to the detection probability of the person. Specifically, when the detection probability of each particle is P i and the estimated number of people is H, the state update unit 18 sets the weight value w i of each particle to be updated to [(1-P i ) *. W i + H * (P i * w i ) / ⁇ sum of (P i * w i ) ⁇ ] may be calculated.
  • the state update unit 18 can set a weight value that is affected by the estimated number of people H as the detection probability increases. In the case where the person is not detected, since the detection probability is 0, the weight value does not change.
  • update processing can be performed with priority given to information of a region with a higher detection probability.
  • FIG. 6 is an explanatory diagram showing an example of a situation where the detection probabilities are different.
  • the back side of the target image is often photographed at a low depression angle.
  • the state updating unit 18 updates the weight of the particles existing on the near side to a higher value, and updates the weight of the particles existing on the far side to a lower value.
  • the state updating unit 18 newly generates a particle at that position. Specifically, the state update unit 18 may generate new particles randomly in the vicinity of the position in accordance with a normal distribution with a predetermined standard deviation.
  • the state update unit 18 may update the weight value w i of particles that are close to the optical flow of the target image to increase. At this time, the state updating unit 18 updates the particle weight value w i so as not to change the sum of the weights.
  • L i is a value that increases as the particle moves closer to the optical flow.
  • the state update unit 18 may update the weight value of each particle with [L i * w i / ⁇ (sum of (L i * w i )) ⁇ * S. By performing such an update, the weight value w i increases as the particle moves closer to the optical flow.
  • the method of updating the weight value of the particle that moves close to the optical flow is not limited to the above method.
  • the state update unit 18 simply multiplies the particle weight value by a positive constant when the angle ⁇ formed by both vectors is equal to or smaller than the threshold, and then the sum of the weight values multiplied by the constant is the original weight value.
  • Each weight value may be normalized so as to be equal to the sum S.
  • the state update unit 18 may determine a particle having a distance between both vectors equal to or smaller than a threshold as a particle having a close motion.
  • the state update unit 18 may update the particle weight value according to the proximity between the region determined by the stay information calculation unit 16 as a stay and the moving state of the particle. Specifically, the state update unit 18 increases the weight value of the particle as the distance between the region determined by the stay information calculation unit 16 and the particle whose movement state is predicted to be stationary is closer. May be updated. At this time, the state updating unit 18 may update the particle weight value by using a method similar to the method for updating the weight value of the particle that moves close to the optical flow, for example.
  • the state update unit 18 when the individual person detection unit 17 detects a person in the individual detection area, the state update unit 18 generally uses a PHD particle filter for the weight value of particles existing in the area corresponding to the detected person.
  • the weight value may be updated by a simple method. That is, the state update unit 18 updates the weight value of the particles included in each local region by a method other than using the estimated number of people in each local region for the range in which the individual person detection unit 17 detects the person. May be. As described above, it is possible to improve the accuracy of tracking the monitoring target by selecting a more suitable prediction method according to the area of the image to be captured.
  • the state update unit 18 deletes particles whose weight value w i is equal to or smaller than the threshold value. Further, the state update unit 18 updates the position information of the person in the same manner as a general tracking process. The state update unit 18 records the updated state of the person in the state storage device 14. Further, the state update unit 18 may perform resampling to respread particles according to the weight value of each particle.
  • the number output unit 19 outputs the number of people within the shooting range based on the state of the person. Specifically, persons output unit 19, the state update unit 18 using the weight values w i of the updated particles, and outputs the number of people included in the target image.
  • the number output unit 19 may calculate the sum of the particle weight values w i and output the number of persons within the imaging range. Further, when outputting the number of persons existing in a predetermined area, the number output unit 19 may specify particles existing in the area and calculate the sum of the weight values w i of the specified particles.
  • the number output unit 19 calculates, for example, the sum of the weight values w i of the particles in a stationary state and outputs the number of people staying in the imaging range. May be.
  • the number output unit 19 uses the current particle state and the past particle state to straddle the number of people who have moved in a specific direction or a line defined at a predetermined position in the imaging range (that is, a predetermined number).
  • the number of people who passed the line may be output.
  • the number-of-people output unit 19 outputs the number of people who have passed a predetermined position based on the weight of the particles that have passed that position.
  • the number-of-people output unit 19 specifies, for example, particles whose direction connecting the past position and the current position is the same as or within a predetermined angle with the specific direction. You may calculate the sum total of the weight value of particle
  • the number output unit 19 may use the past particle weight value, the current particle weight value, or the weight value of both particles when calculating the sum of the weight values of the particles. An average may be used.
  • the number-of-people output unit 19 identifies the particles that have passed the predetermined line when moving from the previous position to the current position, and sets the weight value of those particles. Calculate the sum. For example, when only particles moving in a specific direction among particles passing through a predetermined line are targeted, the number-of-persons output unit 19 has an inner product of a normal vector of the predetermined line and a vector indicating the moving direction of the particles. Zero or more particles may be targeted. Specifically, if the predetermined line here is a horizontal straight line, the particles passing through the straight line include particles moving from a position above the straight line to a position below the straight line. There are particles that move from a lower position to an upper position.
  • the number-of-people output unit 19 targets particles moving from the top to the bottom among these particles, the normal vector with respect to a horizontal straight line (in this case, a vector heading directly below) and the moving direction of each particle
  • the inner product of the vectors indicating is calculated, and particles whose inner product is 0 or more are targeted.
  • the number output unit 19 can output the number of persons who have passed a predetermined line during a predetermined period by accumulating the sum of the weight values within the predetermined period. As in the case of calculating the number of people who have moved in a specific direction as the particle weight value used when calculating the sum of the weight values, the number-of-people output unit 19 Both can be used.
  • FIG. 7 is an explanatory diagram showing an example of processing for calculating the quantity of monitoring targets that have passed a predetermined position.
  • a dotted circle illustrated in FIG. 7 indicates a past particle, and a solid circle indicates a current particle.
  • the arrow illustrated in FIG. 7 indicates the movement state of particles from the past to the present.
  • the number-of-persons output unit 19 identifies particles that have passed through the solid line 52 from above to below, and calculates the sum of the weights of the identified particles.
  • the particle 50b, the particle 50c, and the particle 50d pass through the solid line 52 from the upper direction to the lower direction. Therefore, the number-of-people output unit 19 calculates the sum of the weights of the particles 50b, 50c, and 50d and outputs it as the number of people passing through. For example, when it is desired to output the number of passing people within a certain period, the number output unit 19 may add up the sum of the weights of particles within the certain period.
  • the image input unit 11, the number of people estimation unit 12, the flow calculation unit 13, the state prediction unit 15, the staying information calculation unit 16, the individual person detection unit 17, the state update unit 18, and the number of people output unit 19 may be realized by a program. These units can be realized by a processor of a computer that operates according to the program.
  • FIG. 10 is a block diagram illustrating a hardware configuration of the computer apparatus 200 that implements the movement state estimation apparatus 100.
  • the computer apparatus 200 includes a CPU (Central Processing Unit) 201, a ROM (Read Only Memory) 202, a RAM (Random Access Memory) 203, a storage device 204, a drive device 205, a communication interface 206, and an input / output interface. 207.
  • the movement state estimation device 100 can be realized by the configuration (or part thereof) shown in FIG.
  • the CPU 201 executes the program 208 using the RAM 203.
  • the program 208 may be stored in the ROM 202.
  • the program 208 may be recorded on a recording medium 209 such as a flash memory and read by the drive device 205 or transmitted from an external device via the network 210.
  • the communication interface 206 exchanges data with an external device via the network 210.
  • the input / output interface 207 exchanges data with peripheral devices (such as an input device and a display device).
  • the communication interface 206 and the input / output interface 207 can function as means for acquiring or outputting data.
  • the movement status estimation apparatus 100 may be configured by a single circuit (such as a processor) or may be configured by a combination of a plurality of circuits.
  • the circuit here may be either dedicated or general purpose.
  • the CPU 201 functions as the image input unit 11, the number of people estimation unit 12, the flow calculation unit 13, the state prediction unit 15, the stay information calculation unit 16, the individual person detection unit 17, the state update unit 18, and the number of people output unit 19 according to the program 208. May be.
  • the image input unit 11, the number of people estimation unit 12, the flow calculation unit 13, the state prediction unit 15, the staying information calculation unit 16, the individual person detection unit 17, the state update unit 18, and the number of people output unit 19 are each dedicated hardware. It may be realized by hardware. Further, the state storage device 14 may be realized by the storage device 204 or may be an external device connected via the communication interface 206.
  • FIG. 8 is a flowchart illustrating an operation example of the movement state estimation apparatus 100 according to the present embodiment.
  • the number of persons estimation unit 12 estimates the number of persons for each local region of each image using a plurality of temporally continuous images (step S11). Then, the number estimating unit 12 estimates the movement situation of the person from the time series change of the quantity estimated in each local region (step S12).
  • the number estimation unit 12 predicts the future number of persons in each local region by predicting the future position of the person from the estimated movement state of the person.
  • the movement status of the person can be determined from the state of the particles representing the person, for example.
  • the number-of-people estimation unit 12 can predict the number of future people, for example, from the positions of future particles predicted by the state prediction unit 15. Then, the number estimating unit 12 places importance on the local area where the difference between the predicted number of persons and the estimated number of persons is small for each local area.
  • the number-of-people estimation unit 12 estimates the number of people for each local region of each image using a plurality of temporally continuous images, and the number of people estimated in each local region.
  • the movement situation of the person is estimated from the series change. Therefore, according to the present embodiment, it is possible to accurately estimate the movement state of a person even in a crowded environment where it is difficult to track individual persons.
  • the state prediction unit 15 predicts the future state of the person using a plurality of particles expressing the person's state, and the number of people output unit 19 selects the number of people for the weighted particles. calculate. That is, according to the present embodiment, it is possible to measure the number of persons who have passed a specific location by tracking the state of the monitoring target using particles having weight values. Further, according to the present embodiment, it is possible to measure not only the number of people who have passed a specific location but also the number of people moving in a specific direction. As a result, it is possible to measure not only a simple congestion at a certain place but also a flow rate (human flow) at that place.
  • FIG. 9 is a block diagram showing an outline of the movement status estimation apparatus in the present embodiment.
  • the movement status estimation apparatus shown in FIG. 9 uses a plurality of temporally continuous images to estimate a quantity to be monitored for each local area of each image, and a quantity estimated in each local area.
  • a movement situation estimation unit 82 that estimates the movement situation of the monitoring target from the time series change of the above.
  • the quantity estimation unit 81 and the movement status estimation unit 82 correspond to the number of people estimation unit 12 in the above-described embodiment.
  • the movement status estimation apparatus having such a configuration can accurately estimate the movement status of the monitoring target even in a congested environment.
  • the movement state estimation unit 82 may predict the future position of the monitoring target based on the movement state of the monitoring target at the estimated time point to predict the future quantity of the monitoring target in each local region.
  • the movement state estimation unit 82 compares the quantity of the future monitoring target predicted for each local area with the quantity of the monitoring target estimated for each local area from the target image at a future time point.
  • the movement status of the monitoring target may be estimated with emphasis on a small local area.
  • the movement status estimation unit 82 may estimate whether the monitoring target captured in the target image is a new monitoring target or a monitoring target that has moved within the target image, and estimate the movement status of the monitoring target.
  • the movement state estimation apparatus may include a prediction unit (for example, the state prediction unit 15) that predicts the future state of the monitoring target using a plurality of particles that express the state of the monitoring target.
  • the movement status estimation device may update the weight value set for the particles predicted to be included in each local region according to the estimated number of monitoring targets in each local region (for example, the state An updating unit 18) may be provided.
  • the movement state estimation unit 82 may estimate the movement state of the monitoring target from the time series change of the sum of the weight values of the particles included in each local region. According to such a configuration, it is possible to cope with various movement situations performed by the monitoring target.
  • the update unit is set to the particles so that the sum of the weight values set for the particles predicted to be included in the local region approaches the estimated number of monitoring targets in the corresponding local region.
  • the weight value may be updated.
  • a weight value is set so that the total is 1 for the particles expressing the state of one monitoring target. Further, at least the position and speed of the monitoring target are set for the particles expressing the state of the monitoring target. The prediction unit predicts the future position of the monitoring target based on the position and velocity set for the particles.
  • the movement state estimation device may include a quantity output unit (for example, the number output unit 19) that outputs the quantity to be monitored according to the weight set for the particles.
  • a quantity output unit for example, the number output unit 19
  • the quantity output unit may output the quantity to be monitored that has passed a predetermined position based on the weight of the particles that have passed that position.
  • the movement state estimation apparatus may include a flow calculation unit (for example, the flow calculation unit 13) that calculates the optical flow of the target image. Then, the updating unit may update so as to increase the weight value of particles that move close to the optical flow. According to such a configuration, it is possible to estimate the movement state with emphasis on particles close to the motion estimated from the image.
  • a flow calculation unit for example, the flow calculation unit 13
  • the updating unit may update so as to increase the weight value of particles that move close to the optical flow. According to such a configuration, it is possible to estimate the movement state with emphasis on particles close to the motion estimated from the image.
  • the movement state estimation device may include a stay information calculation unit (for example, stay information calculation unit 16) that extracts an area determined as a stay from the target image. Then, the prediction unit predicts the future movement state of the object to be viewed, and the update unit increases the weight value of the particle as the particle whose movement state is predicted to be stationary is closer to the region where it is determined to be stagnant. You may update as you do. According to such a configuration, it is possible to appropriately determine the state of the monitoring target that has not moved.
  • stay information calculation unit for example, stay information calculation unit 16
  • the movement state estimation device may include a monitoring target detection unit that detects a monitoring target from a target image (specifically, an individual detection region set in the target image as a range in which the monitoring target can be individually detected). Good. Then, the update unit detects particles that are predicted to be included in each local region by a method other than using the estimated number of monitoring targets in each local region for the range in which the monitoring target detection unit detects the monitoring target.
  • the weight value set to may be updated.
  • An example of such a method is a method in which a general PHD particle filter updates the weight value.
  • the present invention is preferably applied to a movement state estimation device that estimates the number of moving objects.
  • the present invention is suitably applied to an apparatus for estimating the flow of an object such as a person or a car or the number of objects passing through a specific location from an image captured by the camera, for example, in a monitoring system using a fixed camera or the like. Is done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Image Analysis (AREA)
  • Traffic Control Systems (AREA)

Abstract

[課題]混雑した環境でも監視対象の移動状況を精度よく推定できる移動状況推定装置、移動状況推定方法および移動状況推定プログラムを提供する。[解決手段]本発明による移動状況推定装置は、数量推定手段81と、移動状況推定手段82とを備えている。数量推定手段81は、時間的に連続する複数の画像を用いて、各画像の局所領域ごとに監視対象の数量を推定する。移動状況推定手段82は、各局所領域において推定された数量の時系列変化から監視対象の移動状況を推定する。

Description

移動状況推定装置、移動状況推定方法およびプログラム記録媒体
 本発明は移動状況推定装置、移動状況推定方法およびプログラム記録媒体に関する。
 画像中の群衆を認識する技術が種々提案されている。例えば、特許文献1には、人混みを撮影した映像から人の数を計測する人数計測装置が記載されている。特許文献1に記載された人数計測装置は、画像に含まれる人の頭部を頭部モデルに基づいて抽出し、位置情報や色分布等の特徴量を用いて、フレーム間で同一の人物と判断される頭部位置を連結し、その連結結果から人の人数を計測する。
 また、非特許文献1には、群衆の人数を推定する方法が記載されている。非特許文献1に記載された方法は、人物同士の重なりを含めた群衆状態を局所的な画像で示す「群衆パッチ(crowd-patch)」で捉え、パッチ内の人数を回帰学習することで、静止画像から人数を推定する。
 なお、特許文献2には、調査対象地点における通行量データを得ることができる通行量測定システムが記載されている。特許文献2に記載されたシステムは、所定の調査対象領域を撮像した画像から調査対象領域の通行人を識別し、その通行人の数を判定する。
特開2010-198566号公報 特開2001-76291号公報
池田浩雄、大網亮磨、「群衆パッチ学習に基づく人数推定」、第12回情報科学技術フォーラム講演論文集、情報処理学会、pp.129-130、Sept. 2013
 混雑した環境では、撮影される人物の重なりが大きく、個々の人物を検出することや個々の人物を追跡することが困難である。そのため、どの程度の人数が移動しているかを判断することは難しい。例えば、特許文献1に記載された方法を用いた場合、フレームレートが低い場合など、同一の人物と判断される頭部位置を追跡できなければ、撮影された人の流れや人数を計測することは困難である。また、特許文献2に記載されたシステムも、混雑環境では調査対象領域内の個々の通行人を認識するのは困難なため、領域内の通行人の量を適切に把握することが難しい。
 一方、非特許文献1に記載された群衆パッチを用いることで、フレームレートに依存せずに画像中の群衆を認識することは可能である。しかし、非特許文献1に記載された群衆パッチを用いた場合、画像中の所定の領域に存在し得る人数を予測することは可能だが、その観測対象の物体がどの程度の数だけ移動しているか推定することは困難である。
 本発明の例示的な目的の一つは、混雑した環境でも監視対象の移動状況を精度よく推定できる移動状況推定装置、移動状況推定方法および移動状況推定プログラムを提供することである。
 本発明による移動状況推定装置は、時間的に連続する複数の画像を用いて、当該各画像の局所領域ごとに監視対象の数量を推定する数量推定手段と、前記局所領域の各々において推定された前記数量の時系列変化から前記監視対象の移動状況を推定する移動状況推定手段とを備えたことを特徴とする。
 本発明による移動状況推定方法は、時間的に連続する複数の画像を用いて、当該各画像の局所領域ごとに監視対象の数量を推定し、前記局所領域の各々において推定された前記数量の時系列変化から前記監視対象の移動状況を推定することを特徴とする。
 本発明によるプログラム記録媒体は、コンピュータに、時間的に連続する複数の画像を用いて、当該複数の画像の局所領域ごとに監視対象の数量を推定する数量推定処理、および、前記局所領域の各々において推定された前記数量の時系列変化から前記監視対象の移動状況を推定する移動状況推定処理を実行させるためのプログラムを記録したことを特徴とする。
 本発明によれば、混雑した環境でも監視対象の移動状況を精度よく推定できる。
図1は、移動状況推定装置の一実施形態を例示するブロック図である。 図2は、監視対象の数量を推定する処理の例を示す説明図である。 図3は、監視対象の移動状況の例を示す説明図である。 図4は、監視対象の数量が推定された局所領域と、その局所領域に存在する粒子との関係を示す説明図である。 図5は、局所領域が重なった場合に重み値を更新する処理の例を示す説明図である。 図6は、検知確率が異なる状況の例を示す説明図である。 図7は、所定の位置を通過した監視対象の数量を算出する処理の例を示す説明図である。 図8は、移動状況推定装置の動作例を示すフローチャートである。 図9は、移動状況推定装置の概要を例示するブロック図である。 図10は、コンピュータ装置のハードウェア構成を例示するブロック図である。
[実施形態]
 以下、本発明の実施形態を図面を参照して説明する。なお、本発明でいう監視対象は、以下の実施形態の説明においては人物が例示されているが、人物以外の自転車や自動車のような物体であってもよい。
 図1は、本発明による移動状況推定装置の一実施形態を示すブロック図である。本実施形態の移動状況推定装置100は、画像入力部11と、人数推定部12と、フロー計算部13と、状態記憶装置14と、状態予測部15と、滞留情報計算部16と、個別人物検出部17と、状態更新部18と、人数出力部19とを備えている。なお、同図に示す矢印は、データの流れの一例を示すものである。移動状況推定装置100におけるデータの流れは、特定の方向に限定されない。
 画像入力部11は、映像(動画)からある処理時刻の時点における画像を取得する。以下、画像入力部11が取得した画像のことを「対象画像」と記す。画像入力部11は、時間的に連続する複数の対象画像の入力を受け付ける。
 人数推定部12は、撮影された人数を対象画像中の局所領域ごとに推定する。すなわち、人数推定部12は、入力された対象画像の局所領域ごとに人数(監視対象の数量)を推定する。
 人数推定部12が人数を推定する方法は、特に限定されない。人数推定部12は、例えば、非特許文献1に記載された群衆パッチと対象画像の局所領域とを比較して人数を推定してもよく、特許文献1に記載された方法のように、対象画像を含む複数の画像を利用して人数を推定してもよい。
 図2は、人数を推定する処理の例を示す説明図である。図2に例示するように、人数推定部12は、対象画像20から局所領域21を抽出し、その局所領域21に含まれる人物の数を推定する。図2に示す例では、人数推定部12は、局所領域21に4人存在すると推定する。
 なお、人数出力部19は、図2に密度マップ30によって例示されるように、局所領域ごとに推定された人数を、その人数に応じた態様(色、濃淡など)で表した画像を出力してもよい。なお、人数出力部19が実行する具体的な処理は、後述される。
 上述したように、画像入力部11から時間的に連続する複数の対象画像が入力されるため、人数推定部12は、各局所領域における人数の推移(時系列変化)を捉えることができる。特に、混雑した環境では、人物がある程度の集団で移動することが考えられる。そこで、人数推定部12は、局所領域の人数の推移から人物の移動状況を推定する。
 具体的には、人数推定部12は、人数が推定された時点における人物の動きから人物の将来の位置を予測する。人数推定部12は、初期状態では監視対象が全ての方向に等確率および等速で移動すると仮定しておけばよい。さらに、人数推定部12は、予測された将来の人物の位置に基づき、各局所領域における将来の人数も推定する。説明の便宜上、以下においては、人数推定部12による将来の人数の推定のことを「予測」という。
 人物の位置を予測する際、人数推定部12は、各人物が等速で移動すると仮定してもよいが、後述する状態予測部15の予測結果を用いてもよい。
 人数推定部12は、将来のある時点において、局所領域ごとに事前に予測された人数と、当該時点において対象画像から局所領域ごとに推定された人数とを比較する。そして、人数推定部12は、人数の差がより小さい局所領域を重視して、人物の移動状況を推定する。具体的には、人数推定部12は、特定の局所領域にいた人物が、当該局所領域に近接する複数の局所領域のうち対象画像から推定された人数の差が最も小さい局所領域へ移動したと推定してもよい。
 また、図2に例示する密度マップ30は、人物の移動状況を表す。図3は、人物の移動状況の例を示す説明図である。図3に例示する密度マップは、色が薄い領域ほど多くの人物が存在することを示している。
 例えば、人数推定部12が、ある時点における対象画像の領域31aおよび領域31bに多くの人物がいたと推定したとする。人数推定部12が推定を続けた結果、別の時点における対象画像の領域32aおよび領域32bに多くの人物が移動したとする。この時系列変化から、領域31aから領域32aへの人物の移動(矢印33a)と領域31bから領域32bへの人物の移動(矢印33b)を把握することが可能になる。
 また、人数推定部12は、ある時点における対象画像に含まれる人物が、当該時点において新規に現れた人物であるか、当該時点より前に対象画像に現れていた既存の人物(すなわち撮影された領域内で移動した人物)かを判断してもよい。例えば、人数推定部12は、対象画像から人物の移動が予測されていなかった位置において人物の存在を推定した場合、当該人物が新規に現れた人物であると判断してもよい。
 フロー計算部13は、対象画像についてオプティカルフローを計算する。オプティカルフローの計算方法は、特に限定されない。フロー計算部13は、例えば、Lucas-Kanade法のように特徴点を用いてオプティカルフローを計算してもよく、Horn-Schunck法のように変分法を用いてオプティカルフローを計算してもよい。
 状態記憶装置14は、人物の過去の状態を記憶する。ここで、人物の状態には、過去の時点における人物の位置、速度、尤度(重み値)が含まれる。また、人物の状態には、人物の動作状態(移動状態または静止状態)が含まれていてもよい。
 例えば、PHD(Probability Hypothesis Density)パーティクルフィルタを用いる場合、1つの監視対象の状態は、複数の粒子で表現される。この場合、状態記憶装置14は、粒子の数をNとすると、i番目(i=1・・・N)の粒子の状態として、通常のパーティクルフィルタで保持される情報である、位置x、速度v及び重み値wを保持する。状態記憶装置14は、各粒子の状態として、これらの情報に加えて、人物が移動状態か静止状態かを表す変数sを保持してもよい。
 なお、粒子の重み値wの総和は、監視対象の数量、すなわち人数に対応する。例えば、PHDパーティクルフィルタにおいて、1つの監視対象あたり100個の粒子を新たに散布する場合、そのときに設定される各粒子の重み値は、「0.01」になる。
 状態予測部15は、状態記憶装置14に記憶されている過去の人物の状態を用いて、画像入力部11が画像を取得した時刻における人物の状態を予測する。状態予測部15は、人物の位置、速度および重み値以外に、その人物の動作状態が移動状態か静止状態かも含めて予測してもよい。
 具体的には、状態予測部15は、人物の状態を表現する複数の粒子を用いて、当該人物の将来の状態を予測する。なお、本実施形態では、状態予測部15がPHDパーティクルフィルタを用いて物体の状態を予測する方法が説明される。状態予測部15は、画像入力部11が対象画像を取得した時刻における人物の状態を予測する。
 上述した例のように、PHDパーティクルフィルタを用いた場合では、1つの監視対象の状態は複数の粒子で表現される。粒子の数をNとすると、i番目(i=1・・・N)の粒子の状態は、通常のPHDパーティクルフィルタで保持される情報である、位置x、速度v及び重み値wを用いて表される。なお、粒子の状態は、さらに人物が移動状態か静止状態かを表す変数sを用いて表されていてもよい。
 状態予測部15が位置および速度を予測する方法は、一般的なパーティクルフィルタで行われる予測方法と同様である。例えば、ある時点における粒子の位置をxとしたとき、当該粒子のdt経過後の位置は、x+v×dt+eで表される。ここで、eは、等速運動モデルでは表現できないノイズを表し、例えば、予め定められた標準偏差の正規分布に基づいて生成される乱数値である。また、位置xにおける粒子の速度をvとしたとき、当該粒子のdt経過後の速度は、v+fで表される。ここで、fは、等速運動モデルでは表現できないノイズを表し、例えば、予め定められた標準偏差の正規分布に基づいて生成される乱数値である。
 以下、状態予測部15が動作状態を予測する方法を説明する。ここでは、人物の動作状態は、予め定められた確率Pに従って静止状態から移動状態に遷移し、予め定められた確率Qに基づいて移動状態から静止状態に動作状態が遷移するものとする。
 sが静止状態を表す場合、状態予測部15は、0から1の一様乱数を生成し、その乱数値がP以下であれば、移動状態を示す値にsを変更する。一方、sが動作状態を表す場合、状態予測部15は、0から1の一様乱数を生成し、その乱数値がQ以下であれば、静止状態を示す値にsを変更する。
 他にも、状態予測部15は、過去の履歴や統計結果に基づいて変数sの状態を予測してもよい。例えば、追跡対象の人物が静止状態から移動状態に遷移し、sが移動状態を示す値になっているとする。この遷移が最近行われたものであり、移動状態に遷移してから予め定められた期間を経過していない場合、この追跡対象は、すぐには静止状態に戻らないと推測できる。そこで、この場合、状態予測部15は、動作状態を移動状態に一定期間保持するようにしてもよい。
 同様に、追跡対象の人物が移動状態から静止状態に遷移し、sが静止状態を示す値になっているとする。この遷移が最近行われたものであり、静止状態に遷移してから予め定められた期間を経過していない場合、この追跡対象は、すぐには移動状態に戻らないと推測できる。この場合、状態予測部15は、動作状態を静止状態に一定期間保持するようにしてもよい。
 他にも、状態予測部15は、画像中の場所に応じて動作状態を遷移させる状況を変化させてもよい。例えば、状態予測部15は、画像中の通路が映された領域では、移動状態から静止状態への遷移確率Qを小さく設定してもよい。また、状態予測部15は、画像中の待ち合わせが多いエリアが映された領域では、遷移確率Qを大きく設定してもよい。
 滞留情報計算部16は、画像入力部11で取得された対象画像を用いて、滞留物と判定される領域を抽出する。滞留情報計算部16は、例えば、長期間静止している物体を検知する手法を用いて、一時的な静止物体か否かを画素ごとに判定し、ラベリング処理によって一時的な静止物と判定される領域を検出してもよい。
 個別人物検出部17は、対象画像から人物を個別に検出する。例えば、画像の手前側に映された人物は、他の物体による遮蔽が少ないため、一般的な検出方法で検出できる場合が多い。そこで、個別人物検出部17は、人物を個別に検知可能な領域(以下、個別検知領域と記す。)を設定しておき、対象画像の個別検知領域から人物を検出する。
 状態更新部18は、状態予測部15が予測した人物の状態を、人数推定部12の推定結果に基づいて更新する。また、状態更新部18は、フロー計算部13、滞留情報計算部16および個別人物検出部17の処理結果に基づいて人物の状態を更新してもよい。以下、状態更新部18が監視対象を更新する方法を具体的に説明する。
 状態更新部18は、人数推定部12が推定した各局所領域の人数に応じて、対応する領域における人物の状態を更新する。本実施形態では、状態更新部18は、人数推定部12が推定した各局所領域の人数に応じて、対応する領域に存在すると予測された粒子の重み値wを更新する。
 状態更新部18は、具体的には、局所領域の重みの総和が人数と等しくなるように、各粒子の重み値wを更新する。このとき、状態更新部18は、重み値wの変化が緩やかになるように、予め定められた0から1までの値αを用いて、更新後の重みの総和が(1-α)×(前回の重みの総和)+(α×人数)になるように各粒子の重み値wを更新してもよい。このように、状態更新部18は、重み値の総和が局所領域の人数に近づくように粒子の重み値を更新してもよい。
 図4は、人数が推定された局所領域と、その局所領域に存在する粒子との関係を示す説明図である。図4において、白または黒の円が粒子を示す。黒の粒子は、移動方向(図中の矢印)が特定方向と同一または所定の角度内にある粒子を示す。図4に示す例では、対象画像の局所領域41aに存在し、移動方向が特定方向と同一または所定の角度内にある人物は、4人である。また、局所領域41bに存在し、移動方向が特定方向と同一または所定の角度内にある人物は、3人である。また、局所領域41cに存在し、移動方向が特定方向と同一または所定の角度内にある人物は、2人である。例えば、状態更新部18は、局所領域41cに含まれる3つの粒子に対して、重み値の合計が2になるように、各粒子の重み値を更新する。
 また、人数推定部12が重なり合う局所領域を対象に人数を推定した場合、状態更新部18は、局所領域ごとに個別に粒子の重み値を更新してもよく、重なり合う局所領域を一まとめにした領域に対して、粒子の重み値を一括で更新してもよい。領域を一まとめにして粒子の重み値を更新する場合、状態更新部18は、重なっている領域の人数を、各局所領域の人数を加味した人数(例えば、重なっている局所領域の人数の平均)とすればよい。
 図5は、局所領域が重なった場合に重み値を更新する処理の例を示す説明図である。図5に示す例では、部分的に重なる3つの局所領域に対して人数を推定する場合を示す。この場合、状態更新部18は、局所領域42a、局所領域42bおよび局所領域42cを一まとめにした領域に対して、粒子の重み値を一括で更新してもよい。また、状態更新部18は、各局所領域に含まれる粒子の重みを、局所領域42a、局所領域42bおよび局所領域42cのそれぞれについて個別に更新してもよい。
 状態更新部18は、局所領域に含まれる粒子の重み値を、すべて同じ割合で更新してもよく、粒子ごとに異なる割合で更新してもよい。状態更新部18は、例えば、人物の検知確率に応じて、更新する重み値を変化させてもよい。具体的には、各粒子の検知確率をPとし、推定される人数をHとしたとき、状態更新部18は、更新する各粒子の重み値wを、[(1-P)*w+H*(P*w)/{(P*w)の総和}]と算出してもよい。
 このような重み値wを採用することで、状態更新部18は、検知確率が高いほど、推定される人数Hの影響を受ける重み値を設定できる。なお、仮に人物が検知されない場所の場合、検知確率が0になるため、重み値は変化しない。検知確率に応じて更新する重み値を変化させることで、例えば、低俯角から撮影された画像について、より検知確率の高い領域の情報を優先して更新処理を行うことが可能になる。
 図6は、検知確率が異なる状況の例を示す説明図である。図6に例示するように、対象画像の奥側は低俯角で撮影されることが多い。例えば、局所領域43の周囲44の検知確率は、手前から奥にかけて低くなると想定される。そこで、状態更新部18は、手前側に存在する粒子の重みを高めに更新し、奥側に存在する粒子の重みを低めに更新する。
 なお、人数推定部12が人数を推定した局所領域に対応する位置に粒子が存在しない場合、状態更新部18は、その位置に新規に粒子を発生させる。具体的には、状態更新部18は、予め定められた標準偏差の正規分布に従って、その位置の近傍にランダムに新規に粒子を生成すればよい。
 また、状態更新部18は、対象画像のオプティカルフローに近い動きの粒子の重み値wを増加させるように更新してもよい。このとき、状態更新部18は、重みの総和を変えないように、粒子の重み値wを更新する。
 例えば、オプティカルフローのベクトルと、粒子の動きを示すベクトルとの動きの近さLは、両ベクトルのなす角度をθとすると、L=(cosθ+1)/2で、算出される。Lは、動きがオプティカルフローに近い粒子ほど大きくなる値である。重み値の総和をSとしたとき、状態更新部18は、各粒子の重み値を[L*w/{(L*w)の総和}]*Sで更新してもよい。このような更新をすることで、オプティカルフローに近い動きをする粒子ほど重み値wが大きくなる。
 なお、オプティカルフローに近い動きの粒子の重み値を更新する方法は、上記方法に限定されない。他にも、状態更新部18は、両ベクトルのなす角度θが閾値以下の場合に粒子の重み値を単純に正の定数倍し、その後、定数倍した重み値の総和が元の重み値の総和Sと等しくなるように各重み値を正規化してもよい。また、状態更新部18は、動きの近さを判定する際に、両ベクトルの距離が閾値以下の粒子を、動きが近い粒子と判定してもよい。
 また、状態更新部18は、滞留情報計算部16が滞留物と判定した領域と粒子の移動状態との近さに応じて、粒子の重み値を更新してもよい。具体的には、状態更新部18は、滞留情報計算部16が滞留物と判定した領域と移動状態が静止状態と予測された粒子との距離が近いほど、その粒子の重み値を大きくするように更新してもよい。このとき、状態更新部18は、例えば、オプティカルフローに近い動きの粒子の重み値を更新する方法と同様の方法を用いて、粒子の重み値を更新すればよい。
 また、状態更新部18は、個別人物検出部17が個別検知領域において人物を検出した場合、検出された人物に対応する領域に存在する粒子の重み値については、PHDパーティクルフィルタで行われる一般的な方法で重み値を更新してもよい。すなわち、状態更新部18は、個別人物検出部17が人物を検出した範囲については、推定された各局所領域の人数を用いる以外の方法で、各局所領域に含まれる粒子の重み値を更新してもよい。このように、撮影される画像の領域に応じて、より適した予測方法を選択することで、監視対象を追跡する精度を高めることが可能になる。
 状態更新部18は、重み値wが閾値以下の粒子を削除する。また、状態更新部18は、一般的な追跡処理と同様に人物の位置情報を更新する。状態更新部18は、更新した人物の状態を状態記憶装置14に記録する。また、状態更新部18は、各粒子の重み値に応じて粒子を散布し直すリサンプリングを行ってもよい。
 人数出力部19は、人物の状態に基づいて、撮影範囲内の人数を出力する。具体的には、人数出力部19は、状態更新部18が更新した粒子の重み値wを用いて、対象画像に含まれる人数を出力する。
 上述したように、粒子の重み値wの総和は、人数に対応する。そのため、人数出力部19は、粒子の重み値wの総和を算出して、撮影範囲内の人数を出力してもよい。また、所定の領域に存在する人数を出力する場合、人数出力部19は、その領域に存在する粒子を特定し、特定された粒子の重み値wの総和を算出すればよい。
 また、各粒子の状態に動作状態が含まれている場合、人数出力部19は、例えば、静止状態の粒子の重み値wの総和を算出して、撮影範囲内に滞留する人数を出力してもよい。
 また、人数出力部19は、現在の粒子の状態と過去の粒子の状態とを用いて、特定方向に移動した人数や、撮影範囲の所定の位置に定められた線をまたいだ(すなわち、所定の線を通過した)人数を出力してもよい。具体的には、人数出力部19は、所定の位置を通過した人数を、その位置を通過した粒子の重みに基づいて出力する。以下、時間的に変化する粒子を用いた人数の算出方法を説明する。
 特定方向に移動した人数を算出する場合、人数出力部19は、例えば、過去の位置と現在の位置とを結ぶ方向が、特定方向と同一または所定の角度内にある粒子を特定し、それらの粒子の重み値の総和を算出してもよい。なお、人数出力部19は、粒子の重み値の総和を算出する際、過去の粒子の重み値を用いてもよく、現在の粒子の重み値を用いてもよく、両方の粒子の重み値の平均を用いてもよい。
 また、所定の線を通過した人数を算出する場合、人数出力部19は、前回の位置から今回の位置へ移動する際に所定の線を通過した粒子を特定し、それらの粒子の重み値の総和を算出する。例えば、所定の線を通過する粒子のうち特定方向に移動した粒子のみを対象とする場合、人数出力部19は、その所定の線の法線ベクトルと粒子の移動方向を示すベクトルとの内積が0以上の粒子を対象としてもよい。具体的には、ここでいう所定の線が水平な直線であるとすると、この直線を通過する粒子には、この直線よりも上の位置から下の位置に移動する粒子と、この直線よりも下の位置から上の位置に移動する粒子とが存在する。人数出力部19は、これらの粒子のうちの上から下に移動する粒子を対象とする場合には、水平な直線に対する法線ベクトル(この場合、真下に向かうベクトル)と各々の粒子の移動方向を示すベクトルの内積を算出し、内積が0以上の粒子を対象とする。
 そして、人数出力部19は、所定期間内の重み値の総和を積算することで、所定期間に所定の線を通過した人数を出力できる。なお、人数出力部19は、重み値の総和を算出する際に用いられる粒子の重み値として、特定方向に移動した人数を算出する場合と同様に、現在の重み値、過去の重み値またはその両方を用いることが可能である。
 なお、現在の時点で新たに生成された粒子は、過去の状態を有していないため、これらの人数を算出するための対象には含まれない。
 図7は、所定の位置を通過した監視対象の数量を算出する処理の例を示す説明図である。図7に例示する点線の円は過去の粒子を示し、実線の円は現在の粒子を示す。また、図7に例示する矢印は、過去から現在への粒子の移動状況を示す。
 一例として、実線52で示した位置を上方向から下方向へ通過した人数を算出する場合を想定する。このとき、人数出力部19は、実線52を上方向から下方向へ通過した粒子を特定し、特定した粒子の重みの総和を算出する。図7に示す例では、粒子50b、粒子50cおよび粒子50dが実線52を上方向から下方向へ通過している。そこで、人数出力部19は、粒子50b、粒子50cおよび粒子50dの粒子の重みの総和を算出し、通過人数として出力する。例えば、一定期間内の通過人数を出力したい場合、人数出力部19は、一定期間内の粒子の重みの総和を積算すればよい。
 画像入力部11、人数推定部12、フロー計算部13、状態予測部15、滞留情報計算部16、個別人物検出部17、状態更新部18および人数出力部19は、プログラムによって実現され得る。また、これらの各部は、このプログラムに従って動作するコンピュータのプロセッサによって実現され得る。
 図10は、移動状況推定装置100を実現するコンピュータ装置200のハードウェア構成を例示するブロック図である。コンピュータ装置200は、CPU(Central Processing Unit)201と、ROM(Read Only Memory)202と、RAM(Random Access Memory)203と、記憶装置204と、ドライブ装置205と、通信インタフェース206と、入出力インタフェース207とを備える。移動状況推定装置100は、図10に示される構成(又はその一部)によって実現され得る。
 CPU201は、RAM203を用いてプログラム208を実行する。プログラム208は、ROM202に記憶されていてもよい。また、プログラム208は、フラッシュメモリなどの記録媒体209に記録され、ドライブ装置205によって読み出されてもよいし、外部装置からネットワーク210を介して送信されてもよい。通信インタフェース206は、ネットワーク210を介して外部装置とデータをやり取りする。入出力インタフェース207は、周辺機器(入力装置、表示装置など)とデータをやり取りする。通信インタフェース206及び入出力インタフェース207は、データを取得又は出力する手段として機能することができる。
 なお、移動状況推定装置100は、単一の回路(プロセッサ等)によって構成されてもよいし、複数の回路の組み合わせによって構成されてもよい。ここでいう回路(circuitry)は、専用又は汎用のいずれであってもよい。
 CPU201は、プログラム208に従って、画像入力部11、人数推定部12、フロー計算部13、状態予測部15、滞留情報計算部16、個別人物検出部17、状態更新部18および人数出力部19として機能してもよい。
 また、画像入力部11、人数推定部12、フロー計算部13、状態予測部15、滞留情報計算部16、個別人物検出部17、状態更新部18および人数出力部19は、それぞれが専用のハードウェアで実現されていてもよい。また、状態記憶装置14は、記憶装置204によって実現されてもよいし、通信インタフェース206を介して接続された外部装置であってもよい。
 次に、本実施形態の移動状況推定装置100の動作を説明する。図8は、本実施形態の移動状況推定装置100の動作例を示すフローチャートである。人数推定部12は、時間的に連続する複数の画像を用いて、各画像の局所領域ごとに人数を推定する(ステップS11)。そして、人数推定部12は、各局所領域において推定された数量の時系列変化から人物の移動状況を推定する(ステップS12)。
 具体的には、人数推定部12は、推定された時点の人物の移動状況から人物の将来の位置を予測して各局所領域における将来の人数を予測する。人物の移動状況は、例えば、人物を表す粒子の状態から判断できる。人数推定部12は、例えば、状態予測部15が予測した将来の粒子の位置から、将来の人数を予測できる。そして、人数推定部12は、各局所領域について、予測された人数と推定された人数の差が小さい局所領域を重視する。
 以上のように、本実施形態では、人数推定部12が、時間的に連続する複数の画像を用いて、各画像の局所領域ごとに人数を推定し、各局所領域において推定された人数の時系列変化から人物の移動状況を推定する。そのため、本実施形態によれば個々の人物を追跡することが困難な混雑した環境でも、人物の移動状況を精度よく推定できる。
 また、本実施形態では、状態予測部15が、人物の状態を表現する複数の粒子を用いて、人物の将来の状態を予測し、人数出力部19が、重みを有する粒子を対象として人数を算出する。すなわち、本実施形態によれば、重み値を有する粒子を用いて監視対象の状態を追跡することにより、特定の箇所を通過した人数の測定が可能である。また、本実施形態によれば、特定の箇所を単に通過した人数だけでなく、特定の方向へ移動する人物の人数を測定することが可能である。これにより、ある場所の単純な混み具合だけでなく、その場所における流量(人の流れ)を測定することも可能になる。
[概要]
 次に、本発明の実施形態の概要を説明する。図9は、本実施形態における移動状況推定装置の概要を示すブロック図である。図9に示す移動状況推定装置は、時間的に連続する複数の画像を用いて、各画像の局所領域ごとに監視対象の数量を推定する数量推定部81と、各局所領域において推定された数量の時系列変化から監視対象の移動状況を推定する移動状況推定部82とを備えている。数量推定部81および移動状況推定部82は、上述した実施形態における人数推定部12に相当する。
 このような構成の移動状況推定装置は、混雑した環境でも監視対象の移動状況を精度よく推定できる。
 また、移動状況推定部82は、推定された時点の監視対象の移動状況から監視対象の将来の位置を予測して各局所領域における監視対象の将来の数量を予測してもよい。移動状況推定部82は、局所領域ごとに予測された将来の監視対象の数量と、将来の時点において対象画像から局所領域ごとに推定された監視対象の数量とを比較し、数量の差がより小さい局所領域を重視して、監視対象の移動状況を推定してもよい。
 また、移動状況推定部82は、対象画像に撮影された監視対象が、新規の監視対象か対象画像内を移動した監視対象かを判断して、監視対象の移動状況を推定してもよい。
 また、移動状況推定装置は、監視対象の状態を表現する複数の粒子を用いて、監視対象の将来の状態を予測する予測部(例えば、状態予測部15)を備えてもよい。また、移動状況推定装置は、推定された各局所領域の監視対象の数量に応じて、その各局所領域に含まれると予測された粒子に設定される重み値を更新する更新部(例えば、状態更新部18)を備えてもよい。
 そして、移動状況推定部82は、各局所領域に含まれる粒子の重み値の総和の時系列変化から監視対象の移動状況を推定してもよい。このような構成によれば、監視対象が行う様々な移動状況に対応することが可能になる。
 具体的には、更新部は、局所領域に含まれると予測された粒子に設定される重み値の総和が、推定された対応する局所領域の監視対象の数量に近づくように、粒子に設定される重み値を更新してもよい。
 なお、1の監視対象の状態を表現する粒子には、合計が1になるように重み値が設定される。また、監視対象の状態を表現する粒子には、少なくとも、その監視対象の位置および速度が設定される。予測部は、粒子に設定された位置および速度に基づいて、監視対象の将来の位置を予測する。
 また、移動状況推定装置は、粒子に設定された重みに応じて監視対象の数量を出力する数量出力部(例えば、人数出力部19)を備えてもよい。
 具体的には、数量出力部は、所定の位置を通過した監視対象の数量を、その位置を通過した粒子の重みに基づいて出力してもよい。
 また、移動状況推定装置は、対象画像のオプティカルフローを計算するフロー計算部(例えば、フロー計算部13)を備えてもよい。そして、更新部は、オプティカルフローに近い動きの粒子の重み値を増加させるように更新してもよい。このような構成によれば、画像から推定される動きに近い粒子を重視して移動状況を推定することが可能になる。
 また、移動状況推定装置は、対象画像から滞留物と判定される領域を抽出する滞留情報計算部(例えば、滞留情報計算部16)を備えてもよい。そして、予測部は、視対象の将来の移動状態を予測し、更新部は、移動状態が静止状態と予測された粒子が滞留物と判定された領域に近いほど、その粒子の重み値を大きくするように更新してもよい。このような構成によれば、移動していない監視対象の状態を適切に判断できる。
 また、移動状況推定装置は、対象画像(具体的には、監視対象を個別に検知可能な範囲として対象画像に設定された個別検知領域)から監視対象を検出する監視対象検出部を備えてもよい。そして、更新部は、監視対象検出手段が監視対象を検出した範囲については、推定された各局所領域の監視対象の数量を用いる以外の方法で、その各局所領域に含まれると予測された粒子に設定される重み値を更新してもよい。このような方法としては、例えば、一般的なPHDパーティクルフィルタが重み値を更新する方法が挙げられる。
 このように、本発明の移動状況推定方法と、監視対象を実際に検出する方法とを組み合わせることで、監視対象の移動状況の推定精度を向上させることができる。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。すなわち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2015年1月14日に出願された日本出願特願2015-004963を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、移動する物体の数量を推定する移動状況推定装置に好適に適用される。本発明は、例えば、固定カメラ等を用いた監視システムなどにおいて、カメラで撮影された映像から人物や車などの物体の流れや、特定箇所を通過する物体の数を推定する装置に好適に適用される。
 11  画像入力部
 12  人数推定部
 13  フロー計算部
 14  状態記憶装置
 15  状態予測部
 16  滞留情報計算部
 17  個別人物検出部
 18  状態更新部
 19  人数出力部
 20  対象画像
 21,41a~41c,42a~42c,43  局所領域
 50a~50f,51a~51f  粒子

Claims (14)

  1.  時間的に連続する複数の画像を用いて、当該各画像の局所領域ごとに監視対象の数量を推定する数量推定手段と、
     前記局所領域の各々において推定された前記数量の時系列変化から前記監視対象の移動状況を推定する移動状況推定手段とを備えた
     移動状況推定装置。
  2.  前記移動状況推定手段は、推定された時点の前記監視対象の前記移動状況から前記監視対象の将来の位置を予測して前記局所領域の各々における前記監視対象の将来の数量を予測し、前記局所領域ごとに予測された将来の前記監視対象の数量と、将来の時点において対象画像から前記局所領域ごとに推定された前記監視対象の数量とを比較し、数量の差がより小さい前記局所領域を重視して、前記監視対象の前記移動状況を推定する
     請求項1記載の移動状況推定装置。
  3.  前記移動状況推定手段は、前記画像に含まれる前記監視対象が新規の監視対象か既存の監視対象かを判断して、前記監視対象の移動状況を推定する
     請求項1または請求項2記載の移動状況推定装置。
  4.  前記監視対象の状態を表現する複数の粒子を用いて、前記監視対象の将来の状態を予測する予測手段と、
     推定された前記局所領域の各々の監視対象の数量に応じて、当該局所領域の各々に含まれると予測された前記粒子に設定される重み値を更新する更新手段とを備え、
     前記移動状況推定手段は、前記局所領域の各々に含まれる前記粒子の前記重み値の総和の時系列変化から前記監視対象の前記移動状況を推定する
     請求項1から請求項3のうちのいずれか1項に記載の移動状況推定装置。
  5.  前記更新手段は、前記局所領域に含まれると予測された前記粒子に設定される前記重み値の総和が推定された対応する前記局所領域の前記監視対象の数量に近づくように、前記重み値を更新する
     請求項4記載の移動状況推定装置。
  6.  前記粒子に設定された重みに応じて前記監視対象の数量を出力する数量出力手段を備えた
     請求項4または請求項5記載の移動状況推定装置。
  7.  前記数量出力手段は、所定の位置を通過した前記監視対象の数量を、当該位置を通過した前記粒子の前記重みに基づいて出力する
     請求項6記載の移動状況推定装置。
  8.  前記画像のオプティカルフローを計算するフロー計算手段を備え、
     前記更新手段は、前記オプティカルフローに近い動きの前記粒子の前記重み値を増加させる
     請求項4から請求項7のうちのいずれか1項に記載の移動状況推定装置。
  9.  前記対象画像から滞留物と判定される領域を抽出する滞留情報計算手段を備え、
     前記予測手段は、前記監視対象の将来の前記移動状態を予測し、
     前記更新手段は、前記移動状態が静止状態であると予測された粒子が前記滞留物と判定された領域に近いほど、当該粒子の前記重み値を大きくする
     請求項4から請求項8のうちのいずれか1項に記載の移動状況推定装置。
  10.  前記対象画像から前記監視対象を検出する監視対象検出手段を備え、
     前記更新手段は、前記監視対象検出手段が前記監視対象を検出した範囲については、推定された前記局所領域の各々の前記監視対象の数量を用いる以外の方法で、当該局所領域の各々に含まれると予測された前記粒子に設定される前記重み値を更新する
     請求項4から請求項9のうちのいずれか1項に記載の移動状況推定装置。
  11.  時間的に連続する複数の画像を用いて、当該各画像の局所領域ごとに監視対象の数量を推定し、
     前記局所領域の各々において推定された前記数量の時系列変化から前記監視対象の移動状況を推定する
     移動状況推定方法。
  12.  推定された時点の前記監視対象の前記移動状況から前記監視対象の将来の位置を予測して前記局所領域の各々における前記監視対象の将来の数量を予測し、
     前記局所領域ごとに予測された将来の前記監視対象の数量と、将来の時点において前記対象画像から前記局所領域ごとに推定された前記監視対象の数量とを比較し、
     数量の差がより小さい前記局所領域を重視して、前記監視対象の前記移動状況を推定する
     請求項11記載の移動状況推定方法。
  13.  コンピュータに、
     時間的に連続する複数の画像を用いて、当該複数の画像の局所領域ごとに監視対象の数量を推定する数量推定処理、および、
     前記局所領域の各々において推定された前記数量の時系列変化から前記監視対象の移動状況を推定する移動状況推定処理
     を実行させるためのプログラムを記録したプログラム記録媒体。
  14.  前記コンピュータに、
     前記移動状況推定処理において、推定された時点の前記監視対象の前記移動状況から前記監視対象の将来の位置を予測して前記局所領域の各々における前記監視対象の将来の数量を予測させ、前記局所領域ごとに予測された将来の前記監視対象の数量と、将来の時点において前記対象画像から前記局所領域ごとに推定された前記監視対象の数量とを比較させ、数量の差がより小さい前記局所領域を重視して、前記監視対象の前記移動状況を推定させる
     請求項13記載のプログラム記録媒体。
PCT/JP2016/000146 2015-01-14 2016-01-13 移動状況推定装置、移動状況推定方法およびプログラム記録媒体 WO2016114134A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/543,408 US10325160B2 (en) 2015-01-14 2016-01-13 Movement state estimation device, movement state estimation method and program recording medium
JP2016569286A JP6969871B2 (ja) 2015-01-14 2016-01-13 移動状況推定装置、移動状況推定方法およびプログラム
US16/296,468 US10657386B2 (en) 2015-01-14 2019-03-08 Movement state estimation device, movement state estimation method and program recording medium
US16/296,516 US10755108B2 (en) 2015-01-14 2019-03-08 Movement state estimation device, movement state estimation method and program recording medium
US16/921,447 US20200334472A1 (en) 2015-01-14 2020-07-06 Movement state estimation device, movement state estimation method and program recording medium
US17/849,211 US20220327839A1 (en) 2015-01-14 2022-06-24 Movement state estimation device, movement state estimation method and program recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-004963 2015-01-14
JP2015004963 2015-01-14

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/543,408 A-371-Of-International US10325160B2 (en) 2015-01-14 2016-01-13 Movement state estimation device, movement state estimation method and program recording medium
US16/296,468 Continuation US10657386B2 (en) 2015-01-14 2019-03-08 Movement state estimation device, movement state estimation method and program recording medium
US16/296,516 Continuation US10755108B2 (en) 2015-01-14 2019-03-08 Movement state estimation device, movement state estimation method and program recording medium

Publications (1)

Publication Number Publication Date
WO2016114134A1 true WO2016114134A1 (ja) 2016-07-21

Family

ID=56405682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000146 WO2016114134A1 (ja) 2015-01-14 2016-01-13 移動状況推定装置、移動状況推定方法およびプログラム記録媒体

Country Status (3)

Country Link
US (5) US10325160B2 (ja)
JP (4) JP6969871B2 (ja)
WO (1) WO2016114134A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025831A1 (ja) * 2016-08-04 2018-02-08 日本電気株式会社 人流推定装置、表示制御装置、人流推定方法および記録媒体
WO2018051944A1 (ja) * 2016-09-13 2018-03-22 日本電気株式会社 人流推定装置、人流推定方法および記録媒体
JP2018116511A (ja) * 2017-01-18 2018-07-26 日本放送協会 状態推定器、及びプログラム
JP2018180619A (ja) * 2017-04-04 2018-11-15 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム
JP2019128605A (ja) * 2018-01-19 2019-08-01 日本電信電話株式会社 予測装置、予測方法及びコンピュータプログラム
WO2019229979A1 (ja) * 2018-06-01 2019-12-05 日本電気株式会社 情報処理装置、制御方法、及びプログラム
WO2019244627A1 (ja) * 2018-06-22 2019-12-26 日本電信電話株式会社 推定方法、推定装置及び推定プログラム
JPWO2021181612A1 (ja) * 2020-03-12 2021-09-16

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10789484B2 (en) 2016-03-07 2020-09-29 Nec Corporation Crowd type classification system, crowd type classification method and storage medium for storing crowd type classification program
WO2018011944A1 (ja) * 2016-07-14 2018-01-18 三菱電機株式会社 群集監視装置、および、群集監視システム
US10839552B2 (en) * 2017-06-01 2020-11-17 Nec Corporation Image processing apparatus, tracking method, and program
SG10201802673VA (en) * 2018-03-29 2019-10-30 Nec Asia Pacific Pte Ltd Method and system for integration and automatic switching of crowd estimation techniques
JP7216487B2 (ja) * 2018-06-21 2023-02-01 キヤノン株式会社 画像処理装置およびその制御方法
US20220343712A1 (en) * 2019-08-22 2022-10-27 Nippon Telegraph And Telephone Corporation Number of people estimation device, number of people estimation method, and number of people estimation program
JP7443002B2 (ja) * 2019-09-13 2024-03-05 キヤノン株式会社 画像解析装置、画像解析方法、及びプログラム
JP7533571B2 (ja) * 2020-03-27 2024-08-14 日本電気株式会社 人流予測システム、人流予測方法および人流予測プログラム
US11373425B2 (en) * 2020-06-02 2022-06-28 The Nielsen Company (U.S.), Llc Methods and apparatus for monitoring an audience of media based on thermal imaging
US11595723B2 (en) 2020-08-20 2023-02-28 The Nielsen Company (Us), Llc Methods and apparatus to determine an audience composition based on voice recognition
US11553247B2 (en) 2020-08-20 2023-01-10 The Nielsen Company (Us), Llc Methods and apparatus to determine an audience composition based on thermal imaging and facial recognition
US11763591B2 (en) 2020-08-20 2023-09-19 The Nielsen Company (Us), Llc Methods and apparatus to determine an audience composition based on voice recognition, thermal imaging, and facial recognition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234285A (ja) * 2011-04-28 2012-11-29 Dainippon Printing Co Ltd 画像解析装置、画像解析方法、画像解析プログラム及び記録媒体
WO2014112407A1 (ja) * 2013-01-16 2014-07-24 日本電気株式会社 情報処理システム、情報処理方法及びプログラム

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460880A (ja) * 1990-06-29 1992-02-26 Shimizu Corp 動体識別解析管理システム
JP2855157B2 (ja) * 1990-07-17 1999-02-10 清水建設株式会社 群衆歩行シミュレーションシステム
JP2001076291A (ja) 1999-09-02 2001-03-23 Nri & Ncc Co Ltd 通行量測定システム
US6633232B2 (en) * 2001-05-14 2003-10-14 Koninklijke Philips Electronics N.V. Method and apparatus for routing persons through one or more destinations based on a least-cost criterion
US7123918B1 (en) * 2001-08-20 2006-10-17 Verizon Services Corp. Methods and apparatus for extrapolating person and device counts
JP2006031645A (ja) * 2004-07-12 2006-02-02 Nariyuki Mitachi 動的群集密度のリアルタイム推定方法及び群集事故防止システム
JP2006270865A (ja) * 2005-03-25 2006-10-05 Victor Co Of Japan Ltd 画像監視装置
JP2007243342A (ja) * 2006-03-06 2007-09-20 Yokogawa Electric Corp 画像監視装置及び画像監視システム
WO2008058296A2 (en) * 2006-11-10 2008-05-15 Verificon Corporation Method and apparatus for analyzing activity in a space
JP4624396B2 (ja) 2007-10-26 2011-02-02 パナソニック株式会社 状況判定装置、状況判定方法、状況判定プログラム、異常判定装置、異常判定方法および異常判定プログラム
US20090158309A1 (en) 2007-12-12 2009-06-18 Hankyu Moon Method and system for media audience measurement and spatial extrapolation based on site, display, crowd, and viewership characterization
CN102007516A (zh) 2008-04-14 2011-04-06 汤姆森特许公司 自动跟踪对象的技术
JP2009294887A (ja) * 2008-06-05 2009-12-17 Vector Research Institute Inc 建築設備制御システムおよびプログラム
JP2010198566A (ja) 2009-02-27 2010-09-09 Nec Corp 人数計測装置、方法及びプログラム
WO2012111138A1 (ja) * 2011-02-18 2012-08-23 株式会社日立製作所 歩行者移動情報検出装置
JP5680524B2 (ja) * 2011-12-09 2015-03-04 株式会社日立国際電気 画像処理装置
US9165190B2 (en) 2012-09-12 2015-10-20 Avigilon Fortress Corporation 3D human pose and shape modeling
JP2014106879A (ja) * 2012-11-29 2014-06-09 Railway Technical Research Institute 人の分布状況推定システム
US9955124B2 (en) * 2013-06-21 2018-04-24 Hitachi, Ltd. Sensor placement determination device and sensor placement determination method
EP3312770B1 (en) * 2013-06-28 2023-05-10 NEC Corporation Crowd state recognition device, method, and program
JP5613815B1 (ja) * 2013-10-29 2014-10-29 パナソニック株式会社 滞留状況分析装置、滞留状況分析システムおよび滞留状況分析方法
JP6331785B2 (ja) * 2014-07-08 2018-05-30 日本電気株式会社 物体追跡装置、物体追跡方法および物体追跡プログラム
JP5854098B2 (ja) * 2014-08-08 2016-02-09 大日本印刷株式会社 情報表示装置及び情報表示用プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234285A (ja) * 2011-04-28 2012-11-29 Dainippon Printing Co Ltd 画像解析装置、画像解析方法、画像解析プログラム及び記録媒体
WO2014112407A1 (ja) * 2013-01-16 2014-07-24 日本電気株式会社 情報処理システム、情報処理方法及びプログラム

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11106920B2 (en) 2016-08-04 2021-08-31 Nec Corporation People flow estimation device, display control device, people flow estimation method, and recording medium
US11074461B2 (en) 2016-08-04 2021-07-27 Nec Corporation People flow estimation device, display control device, people flow estimation method, and recording medium
US10936882B2 (en) 2016-08-04 2021-03-02 Nec Corporation People flow estimation device, display control device, people flow estimation method, and recording medium
WO2018025831A1 (ja) * 2016-08-04 2018-02-08 日本電気株式会社 人流推定装置、表示制御装置、人流推定方法および記録媒体
JPWO2018025831A1 (ja) * 2016-08-04 2019-06-13 日本電気株式会社 人流推定装置、人流推定方法およびプログラム
US10970559B2 (en) 2016-09-13 2021-04-06 Nec Corporation People flow estimation device, people flow estimation method, and recording medium
US10970558B2 (en) 2016-09-13 2021-04-06 Nec Corporation People flow estimation device, people flow estimation method, and recording medium
JPWO2018051944A1 (ja) * 2016-09-13 2019-07-04 日本電気株式会社 人流推定装置、人流推定方法およびプログラム
WO2018051944A1 (ja) * 2016-09-13 2018-03-22 日本電気株式会社 人流推定装置、人流推定方法および記録媒体
US10810442B2 (en) 2016-09-13 2020-10-20 Nec Corporation People flow estimation device, people flow estimation method, and recording medium
JP2018116511A (ja) * 2017-01-18 2018-07-26 日本放送協会 状態推定器、及びプログラム
US11450114B2 (en) 2017-04-04 2022-09-20 Canon Kabushiki Kaisha Information processing apparatus, information processing method, and computer-readable storage medium, for estimating state of objects
JP2018180619A (ja) * 2017-04-04 2018-11-15 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム
JP2019128605A (ja) * 2018-01-19 2019-08-01 日本電信電話株式会社 予測装置、予測方法及びコンピュータプログラム
JPWO2019229979A1 (ja) * 2018-06-01 2021-05-13 日本電気株式会社 情報処理装置、制御方法、及びプログラム
JP7006782B2 (ja) 2018-06-01 2022-01-24 日本電気株式会社 情報処理装置、制御方法、及びプログラム
WO2019229979A1 (ja) * 2018-06-01 2019-12-05 日本電気株式会社 情報処理装置、制御方法、及びプログラム
US12039451B2 (en) 2018-06-01 2024-07-16 Nec Corporation Information processing device, control method, and program
WO2019244627A1 (ja) * 2018-06-22 2019-12-26 日本電信電話株式会社 推定方法、推定装置及び推定プログラム
JPWO2021181612A1 (ja) * 2020-03-12 2021-09-16
JP7327645B2 (ja) 2020-03-12 2023-08-16 日本電気株式会社 画像処理装置、画像処理システム、画像処理方法、および画像処理プログラム

Also Published As

Publication number Publication date
JP7163945B2 (ja) 2022-11-01
US10325160B2 (en) 2019-06-18
US20190205660A1 (en) 2019-07-04
US20190220672A1 (en) 2019-07-18
US20220327839A1 (en) 2022-10-13
JPWO2016114134A1 (ja) 2017-10-26
JP7428213B2 (ja) 2024-02-06
JP6969871B2 (ja) 2021-11-24
JP2024041997A (ja) 2024-03-27
US10657386B2 (en) 2020-05-19
JP2021036437A (ja) 2021-03-04
JP2022166067A (ja) 2022-11-01
US10755108B2 (en) 2020-08-25
US20180005046A1 (en) 2018-01-04
US20200334472A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP7163945B2 (ja) 移動状況推定装置、移動状況推定方法およびプログラム記録媒体
JP6561830B2 (ja) 情報処理システム、情報処理方法及びプログラム
JP6213843B2 (ja) 画像処理システム、画像処理方法及びプログラム
CN104103030B (zh) 图像分析方法、照相机装置、控制装置及控制方法
CN105144705B (zh) 对象监视系统、对象监视方法和用于提取待监视对象的程序
US9940633B2 (en) System and method for video-based detection of drive-arounds in a retail setting
US9858486B2 (en) Device and method for detecting circumventing behavior and device and method for processing cause of circumvention
JP2020149704A (ja) ビデオデータを用いた活動モニタリングのためのシステム及び方法
JP6120404B2 (ja) 移動体行動分析・予測装置
JP5271227B2 (ja) 群衆監視装置および方法ならびにプログラム
US20150146006A1 (en) Display control apparatus and display control method
KR102584708B1 (ko) 과소 및 과밀 환경을 지원하는 군중위험관리시스템 및 방법
KR20140132140A (ko) 군중 궤적 추출을 이용한 비정상 행동 검출에 기초한 영상 감시 방법 및 영상 감시 장치
JP2021149687A (ja) 物体認識装置、物体認識方法及び物体認識プログラム
JP5864231B2 (ja) 移動方向識別装置
JP5599228B2 (ja) 繁忙検知システム及び繁忙検知プログラム
Li et al. A video-based algorithm for moving objects detection at signalized intersection
CN116704394A (zh) 视频流中的异常行为检测

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569286

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15543408

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737205

Country of ref document: EP

Kind code of ref document: A1