WO2016114002A1 - 多層伝送線路板 - Google Patents

多層伝送線路板 Download PDF

Info

Publication number
WO2016114002A1
WO2016114002A1 PCT/JP2015/082732 JP2015082732W WO2016114002A1 WO 2016114002 A1 WO2016114002 A1 WO 2016114002A1 JP 2015082732 W JP2015082732 W JP 2015082732W WO 2016114002 A1 WO2016114002 A1 WO 2016114002A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
layer
resin
transmission line
glass cloth
Prior art date
Application number
PCT/JP2015/082732
Other languages
English (en)
French (fr)
Inventor
近藤 裕介
悦男 水嶋
隆雄 谷川
裕希 永井
富男 福田
入野 哲朗
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015005188A external-priority patent/JP6519187B2/ja
Priority claimed from JP2015199360A external-priority patent/JP6645108B2/ja
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201580072770.XA priority Critical patent/CN107211544B/zh
Priority to EP15877954.6A priority patent/EP3247183A4/en
Priority to KR1020177019156A priority patent/KR102463613B1/ko
Priority to SG11201705578XA priority patent/SG11201705578XA/en
Priority to US15/542,722 priority patent/US10506705B2/en
Publication of WO2016114002A1 publication Critical patent/WO2016114002A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/026Coplanar striplines [CPS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0245Lay-out of balanced signal pairs, e.g. differential lines or twisted lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/04Insulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/003Manufacturing lines with conductors on a substrate, e.g. strip lines, slot lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0248Skew reduction or using delay lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Definitions

  • the present invention relates to a multilayer transmission line board, and more particularly to a multilayer transmission line board used for high-speed digital transmission by a differential transmission system of Gbps order.
  • the differential transmission method is widely used.
  • the differential transmission method is advantageous for noise reduction, signal deterioration due to the occurrence of common mode noise has become a problem as the signal speed increases.
  • a composite material of glass cloth and resin is widely used for the insulating layer of the multilayer transmission line board in order to ensure the handling of the material at the time of manufacturing the multilayer transmission line board and the mechanical characteristics of the multilayer transmission line board itself. It has been. As shown in FIG. 1, since the glass cloth has a structure in which glass fibers are woven vertically and horizontally, the glass fibers overlap at the weave portion. Therefore, in the composite material of the glass cloth and the resin, the abundance ratio of glass is high in the weave portion of the glass fiber. On the contrary, in the portion where there is no overlap of the glass fibers, the existence ratio of the glass is low.
  • the dielectric constant in the surface of the composite material also becomes nonuniform.
  • FIG. 2 in the multi-layer transmission line plate in which the differential wiring is formed, there are cases where the wiring exists in a portion where the existence ratio of the glass is high and a portion where the glass is low, but the signal speed is different in each place. A shift (skew) occurs in the arrival time of the signal on the receiving side, and the signal quality is lowered.
  • Patent Document 1 discloses a technique of intensively adding a filler having a high dielectric constant to a non-textured portion of a glass cloth to homogenize the dielectric constant in the surface of the composite material.
  • the present invention provides the following [1] to [6].
  • [1] A pair of ground layers, a differential wiring disposed between one ground layer and the other ground layer of the pair of ground layers, and between the differential wiring and the one ground layer
  • an insulating layer (Y) disposed between the differential wiring and the other ground layer, and the insulating layer (X) contains a glass cloth.
  • the insulating layer (X) or the insulating layer (Y) has a layer containing a glass cloth and a resin, the thickness of the insulating layer (X), The multilayer transmission line board which is below the thickness of the said insulating layer (Y).
  • the insulating layer (2-II) includes an insulating layer (2-IIA) and an insulating layer (2-IIB) stacked on the insulating layer (2-IIA).
  • -I) is a layer containing glass cloth and resin
  • the insulating layer (2-IIA) is a layer containing resin without containing glass cloth
  • the insulating layer (2-IIB) Is a layer containing glass cloth and resin
  • the thickness of the insulating layer (2-II) is the same as the insulating layer (2-II). Is equal to or less than the thickness of -I), multilayer transmission line plate according to [1].
  • the layer containing the glass cloth and the resin is a layer containing the glass cloth and the resin composition, and a difference in dielectric constant between the glass cloth and the resin composition is 1.0 or less.
  • the multilayer transmission line board according to any one of [1] to [3] above.
  • a pair of ground layers, a differential wiring disposed between one ground layer and the other ground layer of the pair of ground layers, and between the differential wiring and the one ground layer And an insulating layer (3-II) disposed between the differential wiring and the other ground layer, and the insulating layer (3-II) includes: And an insulating layer (3-IIA) and an insulating layer (3-IIB) laminated on the insulating layer (3-IIA), and the insulating layer (3-I) does not contain glass cloth, A layer containing a resin, wherein the insulating layer (3-IIA) does not contain a glass cloth, and is a layer containing a resin, and the insulating layer (3-IIB) contains a glass cloth and a resin.
  • a multilayer transmission line board that is a layer to be used.
  • the present invention it is possible to provide a multilayer transmission line plate that can reduce skew in differential transmission without using a complicated process and that is further excellent in handleability.
  • the “differential wiring” in the present disclosure is a conductor layer that has been subjected to circuit processing so as to function as a differential wiring of the manufactured multilayer transmission line board.
  • the conductor layer is also included.
  • the “ground layer” is a conductor layer that functions as a ground layer of the manufactured multilayer transmission line board, it also includes the conductor layer in the process of manufacturing the multilayer transmission line board.
  • the dielectric constant in the present disclosure indicates a value when measured in the 10 GHz band by a cavity resonator perturbation method (perturbation method cavity resonator: CP531, manufactured by Kanto Electronics Co., Ltd.).
  • the multilayer transmission line board according to the present embodiment is used in high-speed digital transmission by a differential transmission method of Gbps order, for example.
  • the multilayer transmission line board of the present invention includes a pair of ground layers, a differential wiring disposed between one ground layer and the other ground layer of the pair of ground layers, the differential wiring, and the one An insulating layer (X) disposed between the ground layer and an insulating layer (Y) disposed between the differential wiring and the other ground layer, the insulating layer (X)
  • the thickness of the insulating layer (Y) is equal to or less than the thickness of the insulating layer (Y), and the insulating layer (X) does not contain a glass cloth and has a resin-containing layer.
  • the layer (Y) is a multilayer transmission line board having a layer containing glass cloth and resin.
  • the insulating layer (X) or the insulating layer (Y) is not limited to a single layer, and may have a multilayer structure including a plurality of insulating materials.
  • the multilayer transmission line board of the present invention has a dielectric constant non-uniformity by using a material that does not contain a glass cloth as a part of an insulating layer made of a material containing a glass cloth in a conventional multilayer transmission line board. It is considered that the skew can be reduced.
  • Ground layer Although it does not specifically limit as a ground layer, What is applied to electrically conductive layers, such as a conventional printed wiring board (for example, metal foil etc.), can be applied.
  • a conventional printed wiring board for example, metal foil etc.
  • the metal foil for example, a copper foil, a nickel foil, an aluminum foil or the like can be applied, and a copper foil is preferable from the viewpoints of handleability and cost.
  • the metal foil may have a barrier layer formed of nickel, tin, zinc, chromium, molybdenum, cobalt, or the like.
  • the metal foil may be subjected to a surface treatment such as a surface roughening treatment or a treatment with a silane coupling agent.
  • the ground layer may have a single layer structure made of one kind of metal material, a single layer structure made of a plurality of metal materials, or a laminated structure in which a plurality of metal layers of different materials are laminated. May be. Further, the thickness of the ground layer is not particularly limited.
  • the ground layer may be formed by plating. Specifically, for example, the ground layer can be formed by performing electroless plating and electrolytic plating on the surface of the insulating layer (X), the insulating layer (Y), or the adhesive resin layer provided thereon.
  • the material for forming the differential wiring is not particularly limited, and for example, a material applicable to the ground layer can be used.
  • the differential wiring may be formed by plating.
  • the insulating layer (X) does not contain glass cloth but has a layer containing resin.
  • the resin that does not contain glass cloth and is contained in the resin-containing layer is not particularly limited, and a thermoplastic resin, a thermosetting resin, or the like can be used. From the viewpoint of improving dielectric properties, heat resistance, solvent resistance, and press moldability, a resin obtained by modifying a thermoplastic resin with a thermosetting resin may be used.
  • the thermoplastic resin include styrene-butadiene copolymer, polystyrene, triallyl cyanurate, triallyl isocyanurate, polybutadiene, liquid crystal polymer (LCP) of wholly aromatic polyester, fluororesin, polyphenylene ether, styrene elastomer, etc. Is mentioned.
  • Polyphenylene ether may be used from the viewpoints of workability, adhesion to metals and other resin materials, dielectric properties, and low transmission loss.
  • thermosetting resin include an epoxy resin, a bismaleimide resin, and a cyanate ester resin.
  • a resin obtained by modifying a thermoplastic resin with a thermosetting resin may be a polyphenylene ether derivative having at least one N-substituted maleimide group in the molecule [hereinafter referred to as polyphenylene ether derivative (A)]. ] Is preferable.
  • the polyphenylene ether derivative (A) has at least one N-substituted maleimide group in the molecule, it has excellent high frequency characteristics (low dielectric constant, low dielectric loss tangent), high adhesion to conductors, and excellent heat resistance. , High glass transition temperature, low thermal expansion coefficient and high flame retardancy.
  • the polyphenylene ether derivative (A) preferably has at least one N-substituted maleimide structure-containing group and a structural unit represented by the following general formula (I) in the molecule.
  • each R 1 is independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • X is an integer of 0 to 4.
  • Examples of the aliphatic hydrocarbon group represented by R 1 in the general formula (I) include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n -Pentyl group and the like.
  • the aliphatic hydrocarbon group may be an aliphatic hydrocarbon group having 1 to 3 carbon atoms or a methyl group.
  • Examples of the halogen atom include fluorine, chlorine, bromine, iodine and the like.
  • the halogen atom may be fluorine from the viewpoint of hardly generating harmful substances during combustion.
  • R 1 may be an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • x is an integer of 0 to 4, may be an integer of 0 to 2, or may be 2.
  • R 1 may be substituted at the ortho position on the benzene ring (provided that the substitution position of the oxygen atom is a reference).
  • the plurality of R 1 may be the same or different.
  • the structural unit represented by the general formula (I) is preferably a structural unit represented by the following general formula (I ′).
  • N-substituted maleimide structure-containing group nitrogen atoms of two maleimide groups are connected via an organic group from the viewpoint of high-frequency characteristics, adhesion to a conductor, heat resistance, glass transition temperature, thermal expansion coefficient, and flame retardancy.
  • each R 2 independently represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • Y represents an integer of 0 to 4.
  • a 1 represents the following general formula (II), ( III), a group represented by (IV) or (V).)
  • y is an integer of 0 to 4, may be an integer of 0 to 2, or may be 0.
  • y is an integer of 2 or more, the plurality of R 2 may be the same or different.
  • a 1 represents, formula (II), the group represented by (III), (IV) or (V) are as follows.
  • each R 3 independently represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • P is an integer of 0 to 4.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 3 are described in the same manner as in R 1 .
  • p is an integer of 0 to 4, and may be an integer of 0 to 2, 0, 1 or 0 from the viewpoint of availability. When p is an integer of 2 or more, the plurality of R 3 may be the same or different.
  • R 4 and R 5 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • a 2 is an alkylene group having 1 to 5 carbon atoms, an alkylidene having 2 to 5 carbon atoms A group, an ether group, a sulfide group, a sulfonyl group, a carbooxy group, a keto group, a single bond or a group represented by the following general formula (III-1): q and r are each independently an integer of 0 to 4. .)
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 4 and R 5 include the same as those in the case of R 1 .
  • the aliphatic hydrocarbon group may be an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and may be a methyl group, an ethyl group, or an ethyl group.
  • Examples of the alkylene group having 1 to 5 carbon atoms represented by A 2 include a methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4-tetramethylene group, 1,5-pentamethylene group, and the like. Is mentioned.
  • the alkylene group may be an alkylene group having 1 to 3 carbon atoms from the viewpoints of high frequency characteristics, adhesion to a conductor, heat resistance, glass transition temperature, thermal expansion coefficient, and flame retardancy, There may be.
  • Examples of the alkylidene group having 2 to 5 carbon atoms represented by A 2 include an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, an isobutylidene group, a pentylidene group, and an isopentylidene group.
  • an isopropylidene group may be used from the viewpoints of high frequency characteristics, conductor adhesion, heat resistance, glass transition temperature, thermal expansion coefficient, and flame retardancy.
  • a 2 may be an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms, among the above options.
  • q and r are each independently an integer of 0 to 4, and from the viewpoint of easy availability, either may be an integer of 0 to 2, or may be 0 or 2. When q or r is an integer greater than or equal to 2, several R ⁇ 4 > or R ⁇ 5 > may be same or different, respectively.
  • the groups represented by general formula (III-1) represented by A 2 are as follows.
  • R 6 and R 7 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • a 3 is an alkylene group having 1 to 5 carbon atoms, an isopropylidene group, an ether group, A sulfide group, a sulfonyl group, a carbooxy group, a keto group, or a single bond, and s and t are each independently an integer of 0 to 4.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 6 and R 7 are the same as those for R 4 and R 5 .
  • Examples of the alkylene group having 1 to 5 carbon atoms represented by A 3 include the same groups as the alkylene group having 1 to 5 carbon atoms represented by A 2 .
  • an alkylidene group having 2 to 5 carbon atoms may be selected.
  • s and t are integers of 0 to 4, and from the viewpoint of availability, each of them may be an integer of 0 to 2, 0, 1 or 0.
  • a plurality of R 6 s or R 7 s may be the same or different.
  • n is an integer of 0 to 10.
  • n may be an integer of 0 to 5 or an integer of 0 to 3 from the viewpoint of availability.
  • R 8 and R 9 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms, u is an integer of 1 to 8)
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 8 and R 9 are described in the same manner as in the case of R 1 .
  • u is an integer of 1 to 8, may be an integer of 1 to 3, or may be 1.
  • a 1 in the group represented by the general formula (Z) is one of the following formulas from the viewpoints of high-frequency characteristics, adhesion to a conductor, heat resistance, glass transition temperature, thermal expansion coefficient, and flame retardancy.
  • the group represented by these may be sufficient.
  • the polyphenylene ether derivative (A) as described above can be obtained, for example, by the following production method.
  • an aminophenol compound represented by the following general formula (VIII) [hereinafter sometimes referred to as aminophenol compound (VIII).
  • a polyphenylene ether having a number average molecular weight of 15000 to 25000 is subjected to a known redistribution reaction in an organic solvent, whereby a primary amino group is introduced into the molecule while reducing the molecular weight of the polyphenylene ether.
  • the polyphenylene ether compound (A ′) and a bismaleimide compound represented by the general formula (IX) [hereinafter sometimes referred to as a bismaleimide compound (IX) may be used. ] Can be subjected to a Michael addition reaction to produce a polyphenylene ether derivative (A).
  • Examples of the aminophenol compound (VIII) include o-aminophenol, m-aminophenol, and p-aminophenol.
  • Examples of the bismaleimide compound (IX) include bis (4-maleimidophenyl) methane, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, 2,2-bis (4 -(4-maleimidophenoxy) phenyl) propane and the like.
  • a predetermined amount of the bismaleimide compound (IX) and, if necessary, a reaction catalyst are charged into a polyphenylene ether compound (A ′) solution, and subjected to a Michael addition reaction while heating, keeping warm, and stirring to obtain a polyphenylene ether derivative (A). It is done.
  • the reaction conditions in this step may be, for example, a reaction temperature of 50 to 160 ° C. and a reaction time of 1 to 10 hours from the viewpoint of workability and suppression of gelation.
  • the content of the polyphenylene ether derivative (A) in the resin-containing layer that does not contain glass cloth is not particularly limited, but has excellent high-frequency characteristics (low dielectric constant, low dielectric loss tangent), high adhesion to conductors From the viewpoint of obtaining an insulating layer having excellent heat resistance, excellent heat resistance, high glass transition temperature, low coefficient of thermal expansion, and high flame retardancy, 2 to 2% of the total resin contained in the resin-containing layer does not contain glass cloth. It may be 50% by mass, 5 to 40% by mass, or 10 to 30% by mass.
  • thermosetting resin that does not contain glass cloth and is contained in the resin-containing layer
  • thermosetting resin examples include a polymaleimide compound (a) having at least two N-substituted maleimide groups in the molecule [hereinafter referred to as component (a) and Sometimes called.
  • component (a) a polymaleimide compound having at least two N-substituted maleimide groups in the molecule
  • component (a) a polymaleimide compound having at least two N-substituted maleimide groups in the molecule
  • component (a) and Sometimes called.
  • a polyaminobismaleimide compound (B) represented by the following general formula (VI) is preferable.
  • a 4 is the same as the definition of A 1 in the general formula (Z), and A 5 is a group represented by the following general formula (VII).
  • R 17 and R 18 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group or a halogen atom.
  • a 8 is a carbon number.
  • q ′ and r ′ are each independently an integer of 0 to 4.
  • R 19 and R 20 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • a 9 is an alkylene group having 1 to 5 carbon atoms, an isopropylidene group, m- or a p-phenylenediisopropylidene group, an ether group, a sulfide group, a sulfonyl group, a carbooxy group, a keto group, or a single bond, and s ′ and t ′ are each independently an integer of 0 to 4.
  • R 21 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • a 10 and A 11 are each independently an alkylene group having 1 to 5 carbon atoms, an isopropylidene group, an ether group, A sulfide group, a sulfonyl group, a carbooxy group, a keto group, or a single bond, w is an integer of 0 to 4.
  • the aliphatic hydrocarbon group may be an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and may be a methyl group or an ethyl group.
  • the alkylene group having 1 to 5 carbon atoms represented by A 10 and A 11 is explained in the same manner as in the case of A 2 in the general formula (III).
  • q ′ and r ′ are integers of 0 to 4, and from the viewpoint of availability, both of them may be integers of 0 to 2, and may be 0 or 2.
  • s ′ and t ′ are integers of 0 to 4, and from the viewpoint of availability, both may be integers of 0 to 2, may be 0 or 1, or may be 0.
  • w is an integer of 0 to 4, and may be an integer of 0 to 2 or 0 from the viewpoint of availability.
  • the component (a) is not particularly limited, and for example, the same component as the bismaleimide compound (IX) may be applied.
  • the polyamino bismaleimide compound (B) is, for example, the component (a) and an aromatic diamine compound (b) having two primary amino groups in the molecule [hereinafter referred to as component (b). Can be obtained by Michael addition reaction in an organic solvent.
  • component (b) examples include 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′-dimethyl-diphenylmethane, 4,4′-diamino-3,3′-diethyl-diphenylmethane, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 4,4 '-[1,3-phenylenebis (1-methylethylidene)] bisaniline, 4,4'-[1,4-phenylene Bis (1-methylethylidene)] bisaniline and the like.
  • the content of the polyaminobismaleimide compound (B) in the resin-containing layer that does not contain glass cloth is not particularly limited, but has excellent high-frequency characteristics (low dielectric constant, low dielectric loss tangent), high conductivity with the conductor From the viewpoint of obtaining an insulating layer having adhesiveness, excellent heat resistance, high glass transition temperature, low thermal expansion coefficient and high flame resistance, 50% of the total resin contained in the resin-containing layer does not contain glass cloth. It may be -98 mass%, 60-95 mass%, or 70-90 mass%.
  • an insulating layer having high adhesion to a conductor, excellent heat resistance, high glass transition temperature, low thermal expansion coefficient, and high flame resistance is obtained.
  • it is preferably at least one selected from the group consisting of a polyphenylene ether derivative (A) and a polyamino bismaleimide compound (B), and the combined use of the polyphenylene ether derivative (A) and the polyamino bismaleimide compound (B) More preferred.
  • These resins may be used alone or in combination of two or more.
  • an inorganic filler, a flame retardant, various additives, and the like may be further blended in the layer containing no resin and containing the resin as necessary.
  • the inorganic filler that is not contained in the glass cloth and contained in the resin-containing layer as needed is not particularly limited.
  • examples thereof include aluminum acid and silicon carbide.
  • These inorganic fillers may be used alone or in combination of two or more.
  • the shape of the inorganic filler is not particularly limited, and an inorganic filler such as a spherical shape or a crushed shape can be used.
  • the volume average particle diameter of the inorganic filler is not particularly limited, but may be, for example, 0.01 to 50 ⁇ m, or 0.1 to 15 ⁇ m.
  • the blending ratio of the inorganic filler to the resin is not particularly limited, but can be, for example, 1 to 1000 parts by mass with respect to 100 parts by mass of the total resin. Adhesiveness, toughness of an insulating layer, heat resistance, chemical resistance and the like are further improved when the blending ratio of the inorganic filler is within the above range. Furthermore, from the viewpoint of suppressing thermal expansion, it can be 1 to 800 parts by mass with respect to 100 parts by mass of the total resin, and can be 10 to 500 parts by mass.
  • flame retardant such as a bromine type, a phosphorus type, and a metal hydroxide
  • the blending ratio of the flame retardant is not particularly limited, but can be, for example, 10 to 200 parts by weight, 15 to 150 parts by weight, or 20 to 100 parts with respect to 100 parts by weight of the total resin. It can be a mass part.
  • the blending ratio of the flame retardant is 10 parts by mass or more, the flame resistance is further improved, and when it is 200 parts by mass or less, the heat resistance, adhesiveness, film forming ability, and moldability are further improved.
  • additives are not particularly limited, and examples thereof include silane coupling agents, titanate coupling agents, heat stabilizers, antistatic agents, ultraviolet absorbers, pigments, colorants, and lubricants. These additives may be used alone or in combination of two or more.
  • the insulating layer (Y) has a layer containing glass cloth and resin.
  • the layer containing the glass cloth and the resin may be a layer containing the glass cloth and the resin composition.
  • the resin composition contained in the layer containing the glass cloth and the resin is not particularly limited as long as it contains a resin, and further contains other components such as an inorganic filler, a flame retardant, and various additives as necessary. You may mix
  • the resin contained in the “resin composition” may be in any state of a monomer before curing, an oligomer in a semi-cured state (so-called B-stage state), and a polymer after curing.
  • “containing a resin” includes not only the case of containing a resin alone, but also the case of containing a resin composition.
  • the glass cloth is not particularly limited, but nonuniformity of dielectric constant can be further reduced if the yarn is knitted with high density or the fiber yarn that has been opened (open yarn). Further, if the same kind of glass fiber yarn is used for the warp and the weft, the nonuniformity of the dielectric constant can be further reduced.
  • the glass fiber include E glass, NE glass, D glass, and Q glass.
  • the warp and weft yarns using glass fiber yarn having a dielectric constant close to the resin to be impregnated can be used to reduce the dielectric constant. Uniformity can be further reduced.
  • the dielectric constant of the glass cloth is preferably 5.0 or less, more preferably 4.5 or less, from the viewpoint of reducing the nonuniformity of the dielectric constant.
  • the same thing as that contained in the layer containing the resin can be used without containing the glass cloth, and the preferred embodiment is also the same. is there.
  • the difference in dielectric constant between the glass cloth and the resin composition contained in the layer containing the glass cloth and the resin is preferably 1.0 or less, and preferably 0.5 or less, from the viewpoint of low transmission loss. More preferably, it is more preferably 0.1 or less.
  • the dielectric constant of the resin composition may be brought close to the dielectric constant of the glass cloth used.
  • the dielectric constant can be controlled to about 2 to 4 by selecting the resin type, blending ratio, and the like.
  • the dielectric constant of the resin can be further increased by adding an inorganic filler, a flame retardant, etc. having a higher dielectric constant than the resin to this resin.
  • the dielectric constant of E glass is about 6.8, and the dielectric constant of general epoxy resin is about 3.8. Therefore, 100 parts by mass of epoxy resin and alumina having a dielectric constant of about 10 with respect to the glass cloth of E glass.
  • the resin composition mixed with 300 parts by mass of the filler the difference in dielectric constant between the glass cloth and the resin composition can be reduced to 1.0 or less.
  • a known prepreg may be used alone or in combination, and a layer obtained by heating and / or pressing may be used.
  • Known (commercially available) prepregs include, for example, “GWA-900G”, “GWA-910G”, “GHA-679G”, “GHA-679G (S)”, “GZA-71G” manufactured by Hitachi Chemical Co., Ltd. (Both are trade names).
  • the multilayer transmission line board of the present invention uses a prepreg for forming a layer containing a glass cloth and a resin, and a resin film for forming a layer containing a resin without containing a glass cloth, It is obtained by appropriately combining and laminating according to the embodiment. For example, by applying circuit processing to the copper foil on one side of the laminate obtained by curing the prepreg with copper foil laminated on both sides, a differential wiring is placed on one side and a ground layer is placed on the other side The insulating film is formed, and then the resin film and the copper foil constituting the ground layer are laminated in this order on the surface on which the differential wiring is formed.
  • a prepreg for forming a layer containing a glass cloth and a resin includes the glass cloth and the resin or resin composition used for the layer containing the glass cloth and the resin.
  • the prepreg is obtained by, for example, a method of impregnating the glass cloth with a resin varnish obtained by dissolving and / or dispersing the resin or resin composition in an organic solvent.
  • the method of impregnating the resin varnish into the glass cloth is not particularly limited.
  • the method of spraying etc. are mentioned. Among these, from the viewpoint of improving the impregnation property of the resin varnish, a method of immersing the glass cloth in the resin varnish can be used.
  • the drying conditions after impregnating the resin varnish into the glass cloth can be, for example, a condition in which the content of the organic solvent in the prepreg after drying is 10% by mass or less, and a condition in which the content is 5% by mass or less. It can be.
  • a prepreg can be formed by drying a varnish containing 30 to 60% by mass of an organic solvent at 50 to 150 ° C. for about 3 to 10 minutes.
  • the difference in dielectric constant between the glass cloth and the resin composition when the prepreg is cured is preferably 1.0 or less, more preferably 0.5 or less, from the viewpoint of low transmission loss. More preferably, it is 0.1 or less.
  • the dielectric constant when the prepreg is cured is not particularly limited, but is preferably 4.0 or less and more preferably 3.8 or less from the viewpoint of suitability for use in a high frequency region. What is necessary is just to determine the thickness of a prepreg suitably according to the thickness of the insulating layer to form.
  • the resin film for forming a layer containing a resin without containing glass cloth does not contain the glass cloth but contains a resin or a resin composition used for the layer containing resin.
  • the resin film can be obtained by a known method.
  • the resin film can be obtained by mixing the resin with the other components as necessary and then forming a layer on the support.
  • the mixing method of the resin is not particularly limited, and a known method can be used.
  • a resin varnish is prepared by dissolving and / or dispersing the resin in an organic solvent, and the resin varnish is applied to the support using various coaters and heated. And a method of drying by blowing hot air or the like.
  • the resin film thus obtained may be semi-cured (B-staged).
  • the semi-cured resin film may be in a state in which an adhesive force is ensured when being laminated and cured, and in a state in which embedding property (fluidity) in the differential wiring 91 is ensured.
  • organic solvent used for a resin varnish For example, alcohols, such as methanol, ethanol, butanol; Ethers, such as ethyl cellosolve, butyl cellosolve, ethylene glycol monomethyl ether, carbitol, butyl carbitol; Acetone, methyl ethyl ketone Ketones such as methyl isobutyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and mesitylene; esters such as methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate and ethyl acetate; N, N-dimethylformamide; Organic solvents such as nitrogen-containing compounds such as N, N-dimethylacetamide and N-methyl-2-pyrrolidone can be mentioned. These organic solvents may be used alone or in combination of two or more.
  • the solid content (n) such as methanol
  • coater used when apply
  • a die coater, a comma coater, a bar coater, a kiss coater, a roll coater etc. are used. be able to.
  • the drying conditions after applying the resin varnish on the support can be, for example, a condition that the content of the organic solvent in the resin film after drying is 10% by mass or less, and 5% by mass or less. It can be set as conditions.
  • a resin film can be formed by drying a varnish containing 30 to 60% by mass of an organic solvent at 50 to 150 ° C. for about 3 to 10 minutes.
  • suitable drying conditions can be appropriately set by simple experiments in advance. What is necessary is just to determine the thickness of a resin film suitably according to the thickness of the insulating layer to form.
  • Resin film supports include, for example, polyolefins such as polyethylene, polypropylene, and polyvinyl chloride; polyesters such as polyethylene terephthalate and polyethylene naphthalate; films made of polycarbonate and polyimide, and release paper, metal foil (copper foil, aluminum, etc.) Foil, etc.).
  • the thickness of the support can be, for example, 10 to 150 ⁇ m, or 25 to 50 ⁇ m.
  • a protective film can be further laminated on the surface where the resin film support is not provided. The protective film may be the same as or different from the material of the support.
  • the thickness of the protective film is, for example, 1 to 40 ⁇ m.
  • the forming method and forming conditions of the multilayer transmission line plate according to the present invention are not particularly limited.
  • the forming method and forming conditions of the laminated plate for electrical insulating material and the multilayer plate can be applied.
  • molding is performed at a temperature of 100 to 250 ° C., a pressure of 0.2 to 10 MPa, and a heating time of 0.1 to 5 hours. it can.
  • the ground layer may be formed by laminating metal foils as described above, or may be formed using a known method such as dry plating.
  • Via holes and through holes may be formed by making holes in the insulating layer of the obtained multilayer transmission line board. Drilling can be performed, for example, by a known method such as drilling, laser, or plasma, or by combining these methods as necessary.
  • the multilayer transmission line board according to the first to third embodiments is taken as an example, and each aspect will be described with reference to the drawings.
  • the materials constituting the layers included in the multilayer transmission line plate according to the first to third embodiments, the mode of each layer, the lamination conditions, etc. are as described for the multilayer transmission line plate of the present invention described above, and the preferable mode Is the same.
  • FIG. 3 is a schematic cross-sectional view showing the multilayer transmission line board 1A according to the first embodiment of the present invention.
  • the multilayer transmission line board 1 ⁇ / b> A according to the first embodiment of the present invention includes a pair of ground layers 11, 21 and one of the pair of ground layers 11, 21 and the other ground.
  • an insulating layer (1-II) 32 disposed between the layers 21.
  • the insulating layer (1-I) 31 does not contain a glass cloth and is a layer containing a resin
  • the insulating layer (1-II) 32 is a layer containing a glass cloth and a resin.
  • 1-I) is a multilayer transmission line board in which the thickness of 31 is equal to or less than the thickness of insulating layer (1-II) 32.
  • FIG. 6 shows a schematic cross-sectional view of a conventional multilayer transmission line plate 4A.
  • the differential wiring 94 is provided on one side by applying circuit processing to the copper foil on one side of the laminated board obtained by laminating and curing the copper foil on both sides of the prepreg.
  • the insulating layer 62 having the ground layer 24 disposed on the other surface is formed, and the prepreg for forming the insulating layer 61 on the surface on the differential wiring 94 side and the copper foil constituting the ground layer 14 are arranged in this order. It was manufactured by the method of laminating and forming.
  • a multilayer transmission line board 1A according to the first embodiment of the present invention is an insulating layer 61 that is a resin-containing layer that does not contain glass cloth in the insulating layer 61 in the conventional multilayer transmission line board 4A shown in FIG.
  • 1-I a resin-containing layer that does not contain glass cloth in the insulating layer 61 in the conventional multilayer transmission line board 4A shown in FIG.
  • the thickness of the insulating layer (1-I) 31 is equal to or less than the thickness of the insulating layer (1-II) 32. This is because a stronger electric field is generated on the thin insulating layer side during signal transmission, and the electrical characteristics of the insulating layer are more strongly reflected in the signal transmission characteristics.
  • the thickness of the insulating layer (1-I) 31 is: It is important that the thickness of the insulating layer (1-II) 32, which is a layer containing glass cloth and resin, is the same as or smaller than the thickness of the insulating layer (1-II) 32.
  • the thickness of the insulating layer (1-I) 31 is not particularly limited, but is, for example, 10 to 300 ⁇ m, and can be set to 20 to 250 ⁇ m from the viewpoint of achieving both thinning and loss reduction. From 30 to 200 ⁇ m.
  • the thickness of the insulating layer (1-I) 31 is equal to or less than the thickness of the insulating layer (1-II) 32, and is less than the thickness of the insulating layer (1-II) 32 from the viewpoint of suppressing warpage of the substrate. can do. From the same viewpoint, the difference between the thickness of the insulating layer (1-I) 31 and the thickness of the insulating layer (1-II) 32 can be 0 to 150 ⁇ m, and is 0.01 to 100 ⁇ m. be able to.
  • the thickness of the insulating layer (1-II) 32 is not particularly limited, but is, for example, 30 to 400 ⁇ m, and can be set to 40 to 300 ⁇ m from the viewpoint of achieving both thinning and loss reduction. Therefore, the thickness can be set to 50 to 200 ⁇ m.
  • the multilayer transmission line board 1A according to the first embodiment of the present invention is obtained by applying circuit processing to a copper foil on one side of a laminated board obtained by curing a prepreg obtained by laminating copper foils on both sides.
  • a differential wiring 91 is formed on the surface, and an insulating layer (1-II) 32 having the ground layer 21 disposed on the other surface.
  • the resin film for forming and the copper foil which comprises the ground layer 11 can be manufactured by the method of laminating and forming in this order.
  • a multilayer transmission line board according to a second embodiment of the present invention will be described.
  • FIG. 4 is a schematic cross-sectional view showing a multilayer transmission line plate 2A according to the second embodiment of the present invention.
  • the multilayer transmission line board 2 ⁇ / b> A according to the second embodiment of the present invention includes a pair of ground layers 12 and 22, and one ground layer 12 and the other ground of the pair of ground layers 12 and 22.
  • the insulating layer (2-IIB) 42b, the insulating layer (2-I) 41 contains glass cloth and resin, and the insulating layer (2-IIA) 42a does not contain glass cloth.
  • the insulating layer (2-IIB) 42b includes a glass cloth and a resin.
  • the insulating layer (2-II) 42 thickness is less than or equal to the thickness of the insulating layer (2-I) 41, a multi-layer transmission line plate.
  • FIG. 4 shows an example in which the insulating layer (2-IIB) 42b is disposed between the differential wiring 92 and the insulating layer (2-IIA) 42a.
  • a mode in which the differential wiring 92 and the insulating layer (2-IIB) 42b are disposed may be employed.
  • the multilayer transmission line board 2A according to the second embodiment of the present invention is obtained by replacing the insulating layer 62 in the conventional multilayer transmission line board 4A shown in FIG. 6 with an insulating layer (2-IIA) that does not contain glass cloth and contains resin. )
  • an insulating layer (2-IIA) that does not contain glass cloth and contains resin.
  • the thickness of the insulating layer (2-II) 42 including the insulating layer (2-IIA) 42a is equal to the thickness of the insulating layer (2-I) 41 containing glass cloth and resin. It is important that they are the same or thinner than the thickness of the insulating layer (2-I) 41.
  • the thickness of the insulating layer (2-I) 41 is not particularly limited, but is, for example, 40 to 400 ⁇ m, and can be set to 50 to 300 ⁇ m from the viewpoint of achieving both thinning and loss reduction. From 60 to 200 ⁇ m.
  • the thickness of the insulating layer (2-II) 42 is not particularly limited, but is, for example, 40 to 400 ⁇ m, and can be set to 60 to 300 ⁇ m from the viewpoint of achieving both thinning and loss reduction. From 80 to 200 ⁇ m.
  • the thickness of the insulating layer (2-IIA) 42a is not particularly limited, but is, for example, 10 to 300 ⁇ m, and can be set to 20 to 260 ⁇ m from the viewpoint of achieving both thinning and loss reduction.
  • the thickness of the insulating layer (2-IIB) 42b is not particularly limited, but is, for example, 30 to 390 ⁇ m, and can be set to 40 to 280 ⁇ m from the viewpoint of achieving both thinning and loss reduction. Therefore, the thickness can be set to 50 to 170 ⁇ m.
  • the ratio of the thickness of the insulating layer (2-IIA) 42a to the thickness of the insulating layer (2-IIB) 42b (insulating layer (2-IIA) / insulating layer (2-IIB)) is not particularly limited. 0.1 to 3.0, and can be set to 0.3 to 2.0 from the viewpoint of achieving both thinning and loss reduction, and 0.5 to 1.8 from the same viewpoint.
  • the thickness of the insulating layer (2-I) 41 is equal to or less than the thickness of the insulating layer (2-II) 42. From the viewpoint of achieving both a reduction in thickness and a reduction in loss, the thickness of the insulating layer (2-II) 42 It can be less than this. From the same viewpoint, the difference between the thickness of the insulating layer (2-I) 41 and the thickness of the insulating layer (2-II) 42 can be 0 to 150 ⁇ m, and is 0.01 to 100 ⁇ m. be able to.
  • the multilayer transmission line board 2A according to the second embodiment of the present invention performs circuit processing on the copper foil on one side of a laminated board obtained by curing a prepreg obtained by laminating copper foil on both sides, By removing the copper foil on the surface, an insulating layer (2-IIB) 42b in which the differential wiring 92 is disposed on one surface is formed, and then the insulating layer (2-IIB) is formed on the surface on which the differential wiring 92 is formed.
  • a prepreg for forming 41 and a copper foil constituting the ground layer 12 are laminated in this order, and an insulating layer (2-IIB) 42b is provided on the surface opposite to the differential wiring 92 on the insulating layer (2-IIB) 42b.
  • 2-IIA) The resin film for forming 42a and the copper foil constituting the ground layer 22 can be laminated and molded in this order.
  • FIG. 5 is a schematic cross-sectional view showing a multilayer transmission line plate 3A according to a third embodiment of the present invention.
  • the multilayer transmission line board 3 ⁇ / b> A according to the third embodiment of the present invention includes a pair of ground layers 13 and 23, and one ground layer 13 and the other ground of the pair of ground layers 13 and 23.
  • Differential wiring 93 disposed between the layer 23, an insulating layer (3-I) 51 disposed between the differential wiring 93 and one ground layer 13, the differential wiring 93 and the other ground
  • An insulating layer (3-II) 52 disposed between the insulating layer (3-II) 52a and the insulating layer (3-IIA) 52a and the insulating layer (3-IIA) 52a.
  • the insulating layer (3-IIB) 52b, the insulating layer (3-I) 51 does not contain a glass cloth and contains a resin, and the insulating layer (3-IIA) 52a It is a layer that does not contain glass cloth and contains resin, and has an insulating layer (3-IIB) 52 Is a layer containing a glass cloth and the resin is a multilayer transmission line plate.
  • FIG. 5 shows an example in which the insulating layer (3-IIB) 52b is disposed between the differential wiring 93 and the insulating layer (3-IIA) 52a. It may be arranged between the moving wiring 93 and the insulating layer (3-IIB) 52b.
  • the multilayer transmission line board 3A is an insulating layer 62 that is a resin-containing layer that does not contain a glass cloth, but the insulating layer 62 in the conventional multilayer transmission line board 4A shown in FIG. 3-IIA) 52a, and an insulating layer (3-II) 52 having an insulating layer (3-IIB) 52b that is a layer containing glass cloth and resin, the insulating layer 61 does not contain glass cloth, By changing to the insulating layer (3-I) 51 that is a resin-containing layer, the skew is reduced without impairing the handleability.
  • the multilayer transmission line board 3A according to the third embodiment of the present invention includes a glass cloth between the differential wiring 93 and one ground layer 13 and between the differential wiring 93 and the other ground layer 23. Therefore, an effect of reducing skew can be obtained regardless of the thickness of the insulating layer (3-I) 51 and the insulating layer (3-II) 52.
  • the thickness of the insulating layer (3-I) 51 is not particularly limited, but is, for example, 10 to 300 ⁇ m, and can be set to 20 to 250 ⁇ m from the viewpoint of achieving both thinning and loss reduction. From 30 to 200 ⁇ m.
  • the thickness of the insulating layer (3-II) 52 is not particularly limited, but is, for example, 40 to 300 ⁇ m, and can be set to 60 to 250 ⁇ m from the viewpoint of achieving both thinning and loss reduction. From 80 to 200 ⁇ m.
  • the thickness of the insulating layer (3-IIA) 52a is not particularly limited. For example, it is 10 to 270 ⁇ m, and can be set to 20 to 210 ⁇ m from the viewpoint of achieving both thinning and loss reduction.
  • the thickness of the insulating layer (3-IIB) 52b is not particularly limited, but is, for example, 30 to 290 ⁇ m, and can be set to 40 to 230 ⁇ m from the viewpoint of achieving both thinning and loss reduction. Therefore, the thickness can be set to 50 to 170 ⁇ m.
  • the ratio of the thickness of the insulating layer (3-IIA) 52a to the thickness of the insulating layer (3-IIB) 52b (insulating layer (3-IIA) / insulating layer (3-IIB)) is not particularly limited. From the viewpoint of achieving both reduction and loss reduction, it can be 0.2 to 3.0, and from the same viewpoint, it can be 0.3 to 2.0, and 0.5 to 1.5. can do.
  • the multilayer transmission line board 3A according to the third embodiment of the present invention applies circuit processing to the copper foil on one side of a laminated board obtained by curing a prepreg obtained by laminating copper foil on both sides, By removing the copper foil on the surface, an insulating layer (3-IIB) 52b in which the differential wiring 93 is disposed on one surface is formed, and then the insulating layer (3-IIIB) is formed on the surface on which the differential wiring 93 is formed.
  • a resin film for forming 51 and a copper foil constituting the ground layer 13 are laminated in this order, and the insulating layer (3-IIB) 52b has an insulating layer on the surface opposite to the differential wiring 93.
  • the resin film for forming (3-IIA) 52a and the copper foil constituting the ground layer 23 can be laminated and formed in this order.
  • any of the multilayer transmission line boards according to the first, second, and third embodiments of the present invention if a low loss material is used, transmission loss is reduced and signal quality can be further improved.
  • the multilayer transmission line board of the present invention is suitably used for electronic devices that handle high-frequency signals of 1 GHz or higher, and particularly preferably used for electronic devices that handle high-frequency signals of 10 GHz or higher or high-frequency signals of 30 GHz or higher.
  • thermosetting resin composition (resin varnish) 1) 100 parts by mass of the polyphenylene ether derivative (A) obtained above, 450 parts by mass of the polyaminobismaleimide compound (B), inorganic filler AlOOH (boehmite type aluminum hydroxide, density 3.0 g / cm 3 , Kawai Lime Industry Co., Ltd.
  • thermosetting resin composition having a solid content (non-volatile content) concentration of about 55% by mass with stirring and mixing while heating at 60 ° C. using 7 parts by mass and 800 parts by mass of methyl ethyl ketone. 1) was prepared.
  • thermosetting resin composition (resin varnish) 2 A thermosetting resin composition (resin varnish) 2 having a solid content (nonvolatile content) concentration of about 55% by mass, in the same manner as in Production Example 1, except that 640 parts by mass of the inorganic filler AlOOH and 620 parts by mass of methyl ethyl ketone were used. Was prepared.
  • thermosetting resin composition (resin varnish) 3 (Preparation of thermosetting resin composition (resin varnish) 3) A thermosetting resin composition (resin varnish) 3 having a solid content (nonvolatile content) concentration of about 55 mass% in the same manner as in Production Example 1 except that the inorganic filler AlOOH was 460 parts by mass and methyl ethyl ketone was 470 parts by mass. Was prepared.
  • thermosetting resin composition (resin varnish) 1 was applied to a glass cloth (NE glass, manufactured by Nitto Boseki Co., Ltd., dielectric constant: 4.4) having a thickness of 0.1 mm, and then at 160 ° C. for 7 minutes.
  • a prepreg having a resin content (resin content) of about 54% by mass was produced by heating and drying.
  • a low profile copper foil (FV-WS, M-plane Rz: 1.5 ⁇ m, manufactured by Furukawa Electric Co., Ltd.) having a thickness of 18 ⁇ m is disposed above and below the prepreg so that the M-plane is in contact with the prepreg, temperature 230 ° C., pressure 3 Heating and pressing were performed under the conditions of 0.9 MPa and 180 minutes to produce a copper-clad laminate 1 (thickness: 130 ⁇ m).
  • the dielectric constant of a resin plate produced by heating and curing the resin varnish at a temperature of 230 ° C. for 180 minutes is expressed as a cavity resonator perturbation method (perturbation method cavity resonator: CP531, manufactured by Kanto Electronics Co., Ltd.). ) And measured in the 10 GHz band, it was 4.4 (10 GHz). That is, the difference in dielectric constant between the glass cloth and the resin composition contained in the copper clad laminate 1 was zero.
  • Example 1 (Preparation of multilayer transmission line board 1A) A multilayer transmission line board 1A shown in FIG. 3 was produced by the following procedure. First, a laminate (made by Hitachi Chemical Co., Ltd., trade name: LW-900G) having copper foil formed on both surfaces of the insulating layer (1-II) 32 was prepared. The thickness of the insulating layer (1-II) 32 of this laminate is 130 ⁇ m, the thickness of the copper foil is 18 ⁇ m, and the conductor surface roughness (Rz) on the insulating layer (1-II) 32 side is 3.0 ⁇ m. is there. Next, the inner layer circuit board P was formed by patterning the copper foil on one side of the laminated board by etching. That is, the inner layer circuit board P refers to the one in which the differential wiring 91 is disposed on one surface of the insulating layer (1-II) 32 and the ground layer 21 is disposed on the other surface.
  • a resin film for forming the insulating layer (1-I) 31 was produced by the following procedure. 48 parts by mass of 2,2-bis (4-cyanatophenyl) propane (Lonza, trade name: BADCY) (solid content), 4 parts by mass of p- ( ⁇ -cumyl) phenol (manufactured by Tokyo Chemical Industry Co., Ltd.) (Solid content) and 0.008 parts by mass (solid content) of manganese naphthenate (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 21 ml of toluene and reacted by heating at 110 ° C. for 3 hours.
  • BADCY 2,2-bis (4-cyanatophenyl) propane
  • p- ( ⁇ -cumyl) phenol manufactured by Tokyo Chemical Industry Co., Ltd.
  • Solid content Solid content
  • manganese naphthenate manufactured by Wako Pure Chemical Industries, Ltd.
  • the temperature was set to 80 ° C., and a hydrogenated styrene-butadiene copolymer (manufactured by Asahi Kasei Chemicals Corporation, trade name: Tuftec H1051, styrene content ratio: 42%, number average molecular weight Mn 66,000) in this solution was 48 mass.
  • Parts (solid content), 80 ml of toluene, and 25 ml of methyl ethyl ketone were mixed with stirring and cooled to room temperature. And from the varnish which prepared by mix
  • the ground layers 11 and 21 of the multilayer transmission line plate were patterned by etching to form measurement terminals.
  • Example 2 (Preparation of multilayer transmission line board 1B) In Example 1, except that the thickness of the resin film was changed to 80 ⁇ m, and the number of resin films to be superimposed on the surface of the inner circuit board P on the differential wiring 91 side was changed to one, Example 1 The multilayer transmission line board 1B was produced by the same procedure.
  • Example 3 (Preparation of multilayer transmission line board 1C) In Example 1, except that the thickness of the resin film was changed to 50 ⁇ m and the number of resin films to be overlapped on the surface of the inner circuit board P on the differential wiring 91 side was changed to one, Example 1 The multilayer transmission line board 1C was produced by the same procedure.
  • Example 4 (Production of multilayer transmission line plate 1D)
  • the inner layer circuit board Q was formed by patterning the copper foil on one side of the copper-clad laminate 1 by etching. That is, the inner layer circuit board Q refers to the one in which the differential wiring 91 is disposed on one surface of the insulating layer (1-II) 32 and the ground layer 21 is disposed on the other surface.
  • a multilayer transmission line board 1D was produced through the same steps as in Example 1.
  • Example 5 (Preparation of multilayer transmission line board 1E) A multilayer transmission line plate 1E was produced in the same manner as in Example 4 except that the copper-clad laminate 1 was changed to the copper-clad laminate 2 in Example 4.
  • Example 6 (Production of multilayer transmission line plate 1F) A multilayer transmission line plate 1F was produced in the same manner as in Example 4 except that the copper-clad laminate 1 was changed to the copper-clad laminate 3 in Example 4.
  • Example 7 (Preparation of multilayer transmission line plate 2A) A multilayer transmission line plate 2A shown in FIG. 4 was produced by the following procedure. First, a laminated board (trade name: LW-900G, manufactured by Hitachi Chemical Co., Ltd.) having copper foil formed on both surfaces of the insulating layer (2-IIB) 42b was prepared. The thickness of the insulating layer (2-IIB) 42b of this laminate is 80 ⁇ m, the thickness of the copper foil is 18 ⁇ m, and the conductor surface roughness (Rz) on the insulating layer (2-IIB) 42b side is 3.0 ⁇ m. is there.
  • a laminated board (trade name: LW-900G, manufactured by Hitachi Chemical Co., Ltd.) having copper foil formed on both surfaces of the insulating layer (2-IIB) 42b was prepared.
  • the thickness of the insulating layer (2-IIB) 42b of this laminate is 80 ⁇ m
  • the thickness of the copper foil is 18 ⁇ m
  • the inner layer circuit board R was formed by patterning the copper foil on one side of the laminated board by etching and removing the copper foil on the other side by etching. That is, the inner layer circuit board R refers to the one in which the differential wiring 92 is disposed on one surface of the insulating layer (2-IIB) 42b.
  • one sheet of the resin film was placed on the surface of the inner layer circuit board R from which the copper foil had been removed, and temporarily pressure bonded under the conditions of a temperature of 120 ° C., a pressure of 0.5 MPa, and a time of 40 seconds.
  • a prepreg having a thickness of 130 ⁇ m (product name: GWA-900G, manufactured by Hitachi Chemical Co., Ltd.) is overlaid on the surface of the inner circuit board R on the side of the differential wiring 92, and further opposite to the inner circuit board R of the resin film.
  • ground layers 12 and 22 of the multilayer transmission line plate were patterned by etching to form measurement terminals.
  • a hole was drilled in the ground pattern portion of the measurement terminal, and interlayer connection was made by electroless plating to produce a multilayer transmission line plate 2A.
  • Example 8 (Preparation of multilayer transmission line plate 2B) A multilayer transmission line board in the same manner as in Example 7, except that the thickness of the insulating layer (2-IIB) 42b in Example 7 was changed to 50 ⁇ m and the thickness of the resin film was changed to 80 ⁇ m. 2B was produced.
  • Example 9 (Production of multilayer transmission line plate 2C) A multilayer transmission line plate 2C was produced in the same manner as in Example 7 except that in Example 7, the thickness of the insulating layer (2-IIB) 42b was changed to 50 ⁇ m.
  • Example 10 (Preparation of multilayer transmission line plate 3A) A multilayer transmission line plate 3A shown in FIG. 5 was produced by the following procedure. First, a laminate (manufactured by Hitachi Chemical Co., Ltd., trade name: LW-900G) having copper foil formed on both surfaces of the insulating layer (3-IIB) 52b was prepared. The thickness of the insulating layer (3-IIB) 52b is 80 ⁇ m, the thickness of the copper foil is 18 ⁇ m, and the conductor surface roughness (Rz) on the insulating layer (3-IIB) 52b side is 3.0 ⁇ m.
  • a laminate manufactured by Hitachi Chemical Co., Ltd., trade name: LW-900G
  • the thickness of the insulating layer (3-IIB) 52b is 80 ⁇ m
  • the thickness of the copper foil is 18 ⁇ m
  • the conductor surface roughness (Rz) on the insulating layer (3-IIB) 52b side is 3.0 ⁇ m.
  • the inner layer circuit board S was formed by patterning the copper foil on one side of the laminated board by etching and removing the copper foil on the other side by etching. That is, the inner layer circuit board S refers to the one in which the differential wiring 93 is disposed on one surface of the insulating layer (3-IIB) 52b.
  • one 50 ⁇ m thick resin film is overlaid on the surface of the inner layer circuit board S from which the copper foil has been removed, and two 65 ⁇ m thick resin films are overlaid on the surface of the inner layer circuit board S on the differential wiring 93 side.
  • Temporary pressure bonding was performed under the conditions of 120 ° C., pressure 0.5 MPa, and time 40 seconds. Further, on the surface opposite to the inner circuit board S of the 50 ⁇ m-thick resin film and the surface opposite to the differential wiring 93 of the 65 ⁇ m-thick resin film, copper of 18 ⁇ m in thickness constituting the ground layers 23 and 13 respectively.
  • Foil made by Mitsui Mining & Smelting Co., Ltd., trade name: 3EC-VLP-18, surface roughness Rz: 3.0 ⁇ m
  • temperature 230 ° C temperature 230 ° C
  • pressure 3.0 MPa time 80 minutes
  • the multilayer transmission line board before interlayer connection was produced.
  • the ground layers 13 and 23 of the multilayer transmission line plate were patterned by etching to form measurement terminals.
  • a drill hole was drilled in the ground pattern portion of the measurement terminal, and interlayer connection was made by electroless plating to produce a multilayer transmission line plate 3A.
  • Example 11 (Preparation of multilayer transmission line plate 3B)
  • a multilayer transmission line board 3B was produced in the same manner as in Example 10 except that the thickness of the resin film temporarily bonded to the surface of the inner circuit board S from which the copper foil was removed was changed to 80 ⁇ m. .
  • Example 12 (Production of multilayer transmission line plate 3C) A multilayer transmission line plate 3C was produced in the same manner as in Example 10 except that in Example 10, the thickness of the insulating layer (3-IIB) 52b was changed to 50 ⁇ m.
  • a multilayer transmission line plate 4A shown in FIG. 6 was produced by the following procedure. First, a laminate (manufactured by Hitachi Chemical Co., Ltd., trade name: LW-900G) having copper foil formed on both surfaces of the insulating layer 62 was prepared. The thickness of the insulating layer 62 is 130 ⁇ m, the thickness of the copper foil is 18 ⁇ m, and the conductor surface roughness (Rz) on the insulating layer 62 side is 3.0 ⁇ m. Next, the inner layer circuit board T was formed by patterning the copper foil on one side of the laminated board by etching. That is, the inner layer circuit board T refers to the one in which the differential wiring 94 is disposed on one surface of the insulating layer 62 and the ground layer 24 is disposed on the other surface.
  • a prepreg having a thickness of 130 ⁇ m (product name: GWA-900G, manufactured by Hitachi Chemical Co., Ltd.) is overlaid on the surface of the inner circuit board T on the side of the differential wiring 94 and further opposite to the differential wiring 94 of the prepreg.
  • a copper foil (Mitsui Metal Mining Co., Ltd., trade name: 3EC-VLP-18, roughened surface roughness Rz: 3.0 ⁇ m) constituting the ground layer 14.
  • lamination was performed under the conditions of a temperature of 230 ° C., a pressure of 3.0 MPa, and a time of 80 minutes to obtain a multilayer transmission line plate before interlayer connection.
  • ground layers 14 and 24 of the multilayer transmission line plate were patterned by etching to form measurement terminals.
  • a hole was drilled in the ground pattern portion of the measurement terminal, and interlayer connection was made by electroless plating to produce a multilayer transmission line plate 4A.
  • a multilayer transmission line plate 5A shown in FIG. 7 was produced by the following procedure.
  • a multilayer transmission line plate 5A was produced in the same manner as in Example 1 except that in Example 1, the thickness of the insulating layer (1-II) 32 was changed to 50 ⁇ m.
  • Example 3 (Preparation of multilayer transmission line plate 6A) A multilayer transmission line plate 6A was produced in the same manner as in Example 7 except that in Example 7, the thickness of the insulating layer (2-IIB) 42b was changed to 130 ⁇ m.
  • Examples 1 to 6 in the multilayer transmission line plate 4A of Comparative Example 1 having the conventional structure, a part of the insulating layer containing glass cloth and resin is not contained in glass cloth, and the insulating layer contains resin. It is an example changed to. In each of Examples 1 to 6, the thickness of the insulating layer is different, but the skew is greatly reduced to 1 to 8%. This is considered to be because the nonuniformity of the dielectric constant is greatly improved by the replacement of the material.
  • Comparative Example 2 is an example in which the thickness of the insulating layer (1-II) 32 is made thinner than the thickness of the insulating layer (1-I) 31 in the multilayer transmission line board 1A of Example 1.
  • the skew is 39%, and the effect of reducing skew is lower than that in Example 1.
  • the electric field formed between the differential wiring 95 and the ground layers 15 and 25 is larger on the insulating layer 72 side where the distance between the differential wiring 95 and the ground layer is short. This is considered to be because the strength of the material including glass cloth is more strongly affected. That is, it is considered that the effect of nonuniformity of the dielectric constant is more affected, and as a result, the skew reduction effect is lowered.
  • Examples 7 to 9 in the multilayer transmission line plate 4A of Comparative Example 1 having the conventional structure, a part of the insulating layer 62 containing glass cloth and resin is not contained in glass cloth but contains resin. In this example, the insulating layer (2-IIA) 42a is changed. In all of Examples 7 to 9, the skew is reduced to 13 to 22%. This is considered to be because the nonuniformity of the dielectric constant is greatly improved by the replacement of the material.
  • Comparative Example 3 is an example in which the thickness of the insulating layer (2-IIB) 42b is increased in the multilayer transmission line plates of Examples 7 to 9. Even when the insulating layer 82a, which is a resin-containing layer, is laminated, as in the multilayer transmission line plate 6A of Comparative Example 3, the glass cloth is not contained and the resin is contained. When the thickness of the insulating layer 82 including the insulating layer 82a becomes thicker than the thickness of the insulating layer 81, the influence of the material including the glass cloth, that is, the influence of the layer having a nonuniform dielectric constant is increased as in the comparative example 2. As a result, it is considered that the skew reduction effect is lowered.
  • Examples 10 to 12 in the multilayer transmission line plate 4A of Comparative Example 1 having the conventional structure, a part of the insulating layer 62 that is a layer containing glass cloth and resin is not contained in glass cloth and resin is used. This is an example in which the insulating layer (3-IIA) 52a, which is a contained layer, is changed. In all of Examples 10 to 12, the skew is less than 10%, which is greatly reduced. This is considered to be because the nonuniformity of the dielectric constant is greatly improved by the replacement of the material.
  • the multilayer transmission line board of the present invention can reduce skew in differential transmission without using a complicated process. Further, each of these structures has an insulating layer containing a glass cloth, and the above-described effects can be obtained without impairing handleability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

 一対のグランド層と、前記一対のグランド層のうち一方のグランド層と他方のグランド層との間に配置された差動配線と、前記差動配線と前記一方のグランド層との間に配置された絶縁層(X)と、前記差動配線と前記他方のグランド層との間に配置された絶縁層(Y)とを有し、前記絶縁層(X)は、ガラスクロスを含有せず、樹脂を含有する層を有し、前記絶縁層(X)又は絶縁層(Y)は、ガラスクロスと樹脂とを含有する層を有し、前記絶縁層(X)の厚さが、前記絶縁層(Y)の厚さ以下である、多層伝送線路板である。

Description

多層伝送線路板
 本発明は、多層伝送線路板に関し、より詳細には、Gbpsオーダーの差動伝送方式による高速デジタル伝送に用いる多層伝送線路板に関する。
 信号の高速化に伴い、差動伝送方式が広く用いられている。差動伝送方式はノイズ低減に有利であるが、信号が高速になるのに伴い、コモンモードノイズの発生による信号劣化が問題となってきている。
 ところで、多層伝送線路板の絶縁層には、多層伝送線路板製造時における材料の取り扱い性、多層伝送線路板自体の機械的特性等を確保するため、ガラスクロスと樹脂との複合材料が広く用いられている。
 図1に示すように、ガラスクロスは、ガラス繊維を縦と横に織った構造を有するため、織り目部分ではガラス繊維が重なっている。したがって、ガラスクロスと樹脂との複合材料において、ガラス繊維の織り目部分は、ガラスの存在比率が高くなる。反対に、ガラス繊維の重なりが無い部分は、ガラスの存在比率が低くなる。一般的に樹脂とガラスとでは誘電率が異なるため、複合材料面内における樹脂とガラスとの存在比率が不均一であれば、複合材料面内における誘電率も不均一になる。
 図2に示すように、差動配線が形成された多層伝送線路板では、ガラスの存在比率が高い部分と低い部分に配線が存在する場合が生ずるが、信号速度がそれぞれの場所で異なるため、受信側で信号の到達時間にずれ(スキュー)が生じ、信号品質を低下させる。
 スキュー対策として、配線パターンをガラスの織り方向に対して斜めに配置する等の設計技術による対策が行われているが、この方法によると、配線パターンの面付けが非効率となり、材料ロスを招くことから、別の解決手段が求められている。
 特許文献1には、ガラスクロスの織り目でない部分に誘電率の高いフィラーを集中的に添加して、複合材料面内における誘電率を均質化する手法が開示されている。
特開2009-259879号公報
 しかしながら、特許文献1の手法によると、材料の製造プロセスが複雑になるため、材料コストの上昇に加え、材料品質のコントロールが困難となる場合があった。
 そこで、本発明は、複雑なプロセスを用いることなく、差動伝送においてスキューを低減することが可能で、更に取扱い性に優れる多層伝送線路板を提供することを課題とする。
 本発明者らは上記の課題を解決すべく検討を進めた結果、下記本発明により当該課題を解決できることを見出した。すなわち、本発明は、次の[1]~[6]を提供する。
[1]一対のグランド層と、前記一対のグランド層のうち一方のグランド層と他方のグランド層との間に配置された差動配線と、前記差動配線と前記一方のグランド層との間に配置された絶縁層(X)と、前記差動配線と前記他方のグランド層との間に配置された絶縁層(Y)とを有し、前記絶縁層(X)は、ガラスクロスを含有せず、樹脂を含有する層を有し、前記絶縁層(X)又は絶縁層(Y)は、ガラスクロスと樹脂とを含有する層を有し、前記絶縁層(X)の厚さが、前記絶縁層(Y)の厚さ以下である、多層伝送線路板。
[2]一対のグランド層と、前記一対のグランド層のうち一方のグランド層と他方のグランド層との間に配置された差動配線と、前記差動配線と前記一方のグランド層との間に、前記絶縁層(X)として、絶縁層(1-I)と、前記差動配線と前記他方のグランド層との間に、前記絶縁層(Y)として、絶縁層(1-II)とを含み、前記絶縁層(1-I)は、ガラスクロスを含有せず、樹脂を含有する層であり、前記絶縁層(1-II)は、ガラスクロスと樹脂とを含有する層であり、前記絶縁層(1-I)の厚さが、前記絶縁層(1-II)の厚さ以下である、上記[1]に記載の多層伝送線路板。
[3]一対のグランド層と、前記一対のグランド層のうち一方のグランド層と他方のグランド層との間に配置された差動配線と、前記差動配線と前記一方のグランド層との間に、前記絶縁層(Y)として、絶縁層(2-I)と、前記差動配線と前記他方のグランド層との間に、前記絶縁層(X)として、絶縁層(2-II)とを含み、前記絶縁層(2-II)は、絶縁層(2-IIA)と前記絶縁層(2-IIA)に積層された絶縁層(2-IIB)とを有し、前記絶縁層(2-I)は、ガラスクロスと樹脂とを含有する層であり、前記絶縁層(2-IIA)は、ガラスクロスを含有せず、樹脂を含有する層であり、前記絶縁層(2-IIB)は、ガラスクロスと樹脂とを含有する層であり、前記絶縁層(2-II)の厚さが、前記絶縁層(2-I)の厚さ以下である、上記[1]に記載の多層伝送線路板。
[4]前記ガラスクロスと樹脂とを含有する層が、ガラスクロスと樹脂組成物とを含有する層であり、該ガラスクロスと該樹脂組成物との誘電率の差が1.0以下である、上記[1]~[3]のいずれかに記載の多層伝送線路板。
[5]前記ガラスクロスの誘電率が5.0以下である、上記[1]~[4]のいずれかに記載の多層伝送線路板。
[6]一対のグランド層と、前記一対のグランド層のうち一方のグランド層と他方のグランド層との間に配置された差動配線と、前記差動配線と前記一方のグランド層との間に配置された絶縁層(3-I)と、前記差動配線と前記他方のグランド層との間に配置された絶縁層(3-II)とを含み、前記絶縁層(3-II)は、絶縁層(3-IIA)と前記絶縁層(3-IIA)に積層された絶縁層(3-IIB)とを有し、前記絶縁層(3-I)は、ガラスクロスを含有せず、樹脂を含有する層であり、前記絶縁層(3-IIA)は、ガラスクロスを含有せず、樹脂を含有する層であり、前記絶縁層(3-IIB)は、ガラスクロスと樹脂とを含有する層である、多層伝送線路板。
 本発明によれば、複雑なプロセスを用いることなく、差動伝送においてスキューを低減することが可能で、更に取扱い性に優れる多層伝送線路板を提供することができる。
ガラスクロスの織り目を示す模式図である。 ガラスクロスと差動配線の配置例を示す模式図である。 本発明の第一実施形態(実施例1)に係る多層伝送線路板を示す模式的断面図である。 本発明の第二実施形態(実施例7)に係る多層伝送線路板を示す模式的断面図である。 本発明の第三実施形態(実施例10)に係る多層伝送線路板を示す模式的断面図である。 従来の多層伝送線路板を示す模式的断面図である。 本発明の比較例2で製造した多層伝送線路板を示す模式的断面図である。 本発明の比較例3で製造した多層伝送線路板を示す模式的断面図である。
 本明細書及び添付の請求の範囲で示される数値パラメータは、当業者が本明細書で開示される教示内容を用いて、目標対象とする所望の特性に応じて、変化し得る近似値である。端点による数値範囲の使用には、その範囲内に含まれる全ての数(例えば、1~5には、1、1.5、2、2.75、3、3.80、4、及び5が含まれる)及びその範囲内の任意の範囲が含まれる。
 以下、図面を参照しながら、本発明の多層伝送線路板の実施形態について詳細に説明する。
 なお、本開示における「差動配線」とは、製造された多層伝送線路板の差動配線として機能するような回路加工を施された導体層であれば、多層伝送線路板の製造過程での該導体層をも含む。同様に、「グランド層」とは、製造された多層伝送線路板のグランド層として機能するような導体層であれば、多層伝送線路板の製造過程での該導体層をも含む。
 また、本開示における誘電率とは、空洞共振器摂動法(摂動法空洞共振器:CP531、株式会社関東電子応用開発製)にて、10GHz帯で測定したときの値を示す。
[多層伝送線路板]
 本実施形態に係る多層伝送線路板は、例えば、Gbpsオーダーの差動伝送方式による高速デジタル伝送で使用される。
 本発明の多層伝送線路板は、一対のグランド層と、前記一対のグランド層のうち一方のグランド層と他方のグランド層との間に配置された差動配線と、前記差動配線と前記一方のグランド層との間に配置された絶縁層(X)と、前記差動配線と前記他方のグランド層との間に配置された絶縁層(Y)とを有し、前記絶縁層(X)の厚さが、前記絶縁層(Y)の厚さ以下であり、前記絶縁層(X)は、ガラスクロスを含有せず、樹脂を含有する層を有し、前記絶縁層(X)又は絶縁層(Y)は、ガラスクロスと樹脂とを含有する層を有する、多層伝送線路板である。絶縁層(X)又は絶縁層(Y)は単層に限定されず、複数の絶縁材料を有する複層の構造であってもよい。
 本発明の多層伝送線路板は、従来の多層伝送線路板におけるガラスクロスを含有する材料で構成される絶縁層の一部にガラスクロスを含有しない材料を用いることで、誘電率の不均一性が軽減され、スキューを低減することができると考えられる。
(グランド層)
 グランド層としては、特に限定されないが、従来のプリント配線板等の導電層に適用されるもの(例えば、金属箔等)を適用できる。
 金属箔としては、例えば、銅箔、ニッケル箔、アルミ箔等を適用することができ、取り扱い性及びコストの観点からは、銅箔が好ましい。防錆性、耐薬品性、耐熱性の観点から、金属箔は、ニッケル、錫、亜鉛、クロム、モリブデン、コバルト等によるバリアー層が形成されていてもよい。また、絶縁層との接着性を向上させる観点から、金属箔は、表面粗化処理、シランカップリング剤等による処理などの表面処理が施されていてもよい。
 グランド層に適用される金属箔は、市販品の金属箔でもよい。市販品の金属箔としては、例えば、銅箔である「F2-WS」(古河電気工業株式会社製、商品名、Rz=2.0μm)、「FV-WS」(古河電気工業株式会社製、商品名、Rz=1.5μm)、「3ECVLP」(三井金属鉱業株式会社製、商品名、Rz=3.0μm)等が挙げられる。
 グランド層は、1種の金属材料からなる単層構造であってもよく、複数の金属材料からなる単層構造であってもよく、更には異なる材質の金属層を複数積層した積層構造であってもよい。また、グランド層の厚さは、特に限定されない。
 グランド層は、めっきにより形成されていてもよい。具体的には、例えば、絶縁層(X)、絶縁層(Y)、又はそれらの上に設けられた接着用樹脂層の表面に無電解めっき及び電解めっきを行うことによりグランド層を形成できる。
(差動配線)
 差動配線を形成する材料は、特に限定されず、例えば、グランド層に適用可能な材料を使用できる。差動配線は、めっきにより形成されていてもよい。
(ガラスクロスを含有せず、樹脂を含有する層)
 絶縁層(X)は、ガラスクロスを含有せず、樹脂を含有する層を有する。
≪樹脂≫
 ガラスクロスを含有せず、樹脂を含有する層に含まれる樹脂は、特に限定されず、熱可塑性樹脂、熱硬化性樹脂等を用いることができる。誘電特性、耐熱性、耐溶剤性、及びプレス成形性を向上させる観点から、熱可塑性樹脂を熱硬化性樹脂で変性した樹脂であってもよい。
 熱可塑性樹脂としては、例えば、スチレン-ブタジエン共重合体、ポリスチレン、トリアリルシアヌレート、トリアリルイソシアヌレート、ポリブタジエン、全芳香族ポリエステルの液晶ポリマー(LCP)、フッ素樹脂、ポリフェニレンエーテル、スチレン系エラストマー等が挙げられる。加工性、金属及び他の樹脂材料との接着性、誘電特性、並びに低伝送損失性の観点から、ポリフェニレンエーテルとしてもよい。
 熱硬化性樹脂としては、例えば、エポキシ樹脂、ビスマレイミド樹脂、シアネートエステル樹脂等が挙げられる。
 熱可塑性樹脂を熱硬化性樹脂で変性した樹脂としては、分子中に少なくとも1個のN-置換マレイミド基を有するポリフェニレンエーテル誘導体[以下、ポリフェニレンエーテル誘導体(A)と称することがある。]が好ましい。特に、ポリフェニレンエーテル誘導体(A)が分子中に少なくとも1個のN-置換マレイミド基を有すると、優れた高周波特性(低誘電率、低誘電正接)、導体との高接着性、優れた耐熱性、高ガラス転移温度、低熱膨張係数及び高難燃性を有する。
 ポリフェニレンエーテル誘導体(A)は、分子中に少なくとも1個のN-置換マレイミド構造含有基及び下記一般式(I)で表される構造単位を有するものであると好ましい。
Figure JPOXMLDOC01-appb-C000001

(式中、Rは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。xは0~4の整数である。)
 前記一般式(I)中のRが表す脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基であってもよく、メチル基であってもよい。また、ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられる。ハロゲン原子としては、燃焼時に有害物質を発生させにくい観点から、フッ素であってもよい。
 以上の中でも、Rとしては炭素数1~5の脂肪族炭化水素基であってもよい。
 xは0~4の整数であり、0~2の整数であってもよく、2であってもよい。なお、xが1又は2である場合、Rはベンゼン環上のオルト位(但し、酸素原子の置換位置を基準とする。)に置換していてもよい。また、xが2以上である場合、複数のR同士は同一であっても異なっていてもよい。
 前記一般式(I)で表される構造単位としては、具体的には、下記一般式(I')で表される構造単位であると好ましい。
Figure JPOXMLDOC01-appb-C000002
 N-置換マレイミド構造含有基としては、高周波特性、導体との接着性、耐熱性、ガラス転移温度、熱膨張係数及び難燃性の観点から、2つのマレイミド基の窒素原子同士が有機基を介して結合しているビスマレイミド構造を含有する基であってもよく、下記一般式(Z)で表される基であってもよい。
Figure JPOXMLDOC01-appb-C000003

(式中、Rは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。yは0~4の整数である。Aは、下記一般式(II)、(III)、(IV)又は(V)で表される基である。)
 Rが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同様に説明される。
 yは0~4の整数であり、0~2の整数であってもよく、0であってもよい。yが2以上の整数である場合、複数のR同士は同一であっても異なっていてもよい。
 Aが表す、一般式(II)、(III)、(IV)又は(V)で表される基は、以下のとおりである。
Figure JPOXMLDOC01-appb-C000004

(式中、Rは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。pは0~4の整数である。)
 Rが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同様に説明される。
 pは0~4の整数であり、入手容易性の観点から、0~2の整数であってもよく、0又は1であってもよく、0であってもよい。pが2以上の整数である場合、複数のR同士は同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000005

(式中、R及びRは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基、単結合又は下記一般式(III-1)で表される基である。q及びrは各々独立に0~4の整数である。)
 R及びRが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同じものが挙げられる。該脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基であってもよく、メチル基、エチル基であってもよく、エチル基であってもよい。
 Aが表す炭素数1~5のアルキレン基としては、例えば、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。該アルキレン基としては、高周波特性、導体との接着性、耐熱性、ガラス転移温度、熱膨張係数及び難燃性の観点から、炭素数1~3のアルキレン基であってもよく、メチレン基であってもよい。
 Aが表す炭素数2~5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。これらの中でも、高周波特性、導体との接着性、耐熱性、ガラス転移温度、熱膨張係数及び難燃性の観点から、イソプロピリデン基であってもよい。
 Aとしては、上記選択肢の中でも、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基であってもよい。
 q及びrは各々独立に0~4の整数であり、入手容易性の観点から、いずれも、0~2の整数であってもよく、0又は2であってもよい。q又はrが2以上の整数である場合、複数のR同士又はR同士は、それぞれ同一であっても異なっていてもよい。
 なお、Aが表す一般式(III-1)で表される基は以下のとおりである。
Figure JPOXMLDOC01-appb-C000006

(式中、R及びRは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1~5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基又は単結合である。s及びtは各々独立に0~4の整数である。)
 R及びRが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、R及びRの場合と同様に説明される。
 Aが表す炭素数1~5のアルキレン基としては、Aが表す炭素数1~5のアルキレン基と同じものが挙げられる。
 Aとしては、上記選択肢の中でも、炭素数2~5のアルキリデン基を選択してもよい。
 s及びtは0~4の整数であり、入手容易性の観点から、いずれも、0~2の整数であってもよく、0又は1であってもよく、0であってもよい。s又はtが2以上の整数である場合、複数のR同士又はR同士は、それぞれ同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000007

(式中、nは0~10の整数である。)
 nは、入手容易性の観点から、0~5の整数であってもよく、0~3の整数であってもよい。
Figure JPOXMLDOC01-appb-C000008

(式中、R及びRは各々独立に、水素原子又は炭素数1~5の脂肪族炭化水素基である。uは1~8の整数である。)
 R及びRが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同様に説明される。
 uは1~8の整数であり、1~3の整数であってもよく、1であってもよい。
 一般式(Z)で表される基の中のAとしては、高周波特性、導体との接着性、耐熱性、ガラス転移温度、熱膨張係数及び難燃性の観点から、下記式のいずれかで表される基であってもよい。
Figure JPOXMLDOC01-appb-C000009
 上記のようなポリフェニレンエーテル誘導体(A)は、例えば、以下の製造方法によって得ることができる。まず、下記一般式(VIII)で表されるアミノフェノール化合物[以下、アミノフェノール化合物(VIII)と称することがある。]と、例えば、数平均分子量15000~25000のポリフェニレンエーテルとを有機溶媒中で、公知の再分配反応をさせることにより、ポリフェニレンエーテルの低分子量化を伴いながら、分子中に第一級アミノ基を有するポリフェニレンエーテル化合物(A')[以下、ポリフェニレンエーテル化合物(A')と称することがある。]を製造し、次いで、前記ポリフェニレンエーテル化合物(A')と一般式(IX)で表されるビスマレイミド化合物[以下、ビスマレイミド化合物(IX)と称することがある。]をマイケル付加反応させることによって、ポリフェニレンエーテル誘導体(A)を製造できる。
Figure JPOXMLDOC01-appb-C000010

(式中、R及びyは、前記一般式(Z)中のものと同じである。)
Figure JPOXMLDOC01-appb-C000011

(式中、Aは、前記一般式(Z)中のものと同じである。)
 アミノフェノール化合物(VIII)としては、例えば、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール等が挙げられる。ビスマレイミド化合物(IX)としては、例えば、ビス(4-マレイミドフェニル)メタン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン等が挙げられる。
 上記ビスマレイミド化合物(IX)及び必要により反応触媒等を、ポリフェニレンエーテル化合物(A')溶液中に所定量仕込み、加熱、保温、攪拌しながらマイケル付加反応させることによりポリフェニレンエーテル誘導体(A)が得られる。この工程での反応条件としては、作業性及びゲル化抑制の観点から、例えば、反応温度は50~160℃、反応時間は1~10時間の範囲であってもよい。
 ガラスクロスを含有せず、樹脂を含有する層中のポリフェニレンエーテル誘導体(A)の含有量は、特に制限はないが、優れた高周波特性(低誘電率、低誘電正接)、導体との高接着性、優れた耐熱性、高ガラス転移温度、低熱膨張係数及び高難燃性を有する絶縁層を得る観点から、ガラスクロスを含有せず、樹脂を含有する層に含まれる樹脂総量中、2~50質量%であってもよく、5~40質量%であってもよく、10~30質量%であってもよい。
 ガラスクロスを含有せず、樹脂を含有する層に含まれる熱硬化性樹脂としては、分子中に少なくとも2個のN-置換マレイミド基を有するポリマレイミド化合物(a)[以下、(a)成分と称することがある。]、又は下記一般式(VI)で表されるポリアミノビスマレイミド化合物(B)が好ましい。
Figure JPOXMLDOC01-appb-C000012

(式中、Aは前記一般式(Z)中のAの定義と同じであり、Aは下記一般式(VII)で表される基である。)
Figure JPOXMLDOC01-appb-C000013

(式中、R17及びR18は各々独立に、炭素数1~5の脂肪族炭化水素基、炭素数1~5のアルコキシ基、水酸基又はハロゲン原子である。式中、Aは炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基、フルオレニレン基、単結合、又は下記一般式(VII-1)もしくは(VII-2)で表される基である。q’及びr’は各々独立に0~4の整数である。)
Figure JPOXMLDOC01-appb-C000014

(式中、R19及びR20は各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1~5のアルキレン基、イソプロピリデン基、m-又はp-フェニレンジイソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基又は単結合である。s’及びt’は各々独立に0~4の整数である。)
Figure JPOXMLDOC01-appb-C000015

(式中、R21は炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。A10及びA11は各々独立に、炭素数1~5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボオキシ基、ケト基又は単結合である。wは0~4の整数である。)
 前記一般式(VII)、(VII-1)又は(VII-2)中のR17、R18、R19、R20及びR21が表す炭素数1~5の脂肪族炭化水素基又はハロゲン原子としては、一般式(I)中のRと同じものが挙げられる。該脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基であってもよく、メチル基、エチル基であってもよい。
 前記一般式(VII)又は(VII-1)中のA及びAが表す炭素数1~5のアルキレン基及び炭素数2~5のアルキリデン基、及び前記一般式(VII-2)中のA10及びA11が表す炭素数1~5のアルキレン基としては、前記一般式(III)中のAの場合と同様に説明される。
 q’及びr’は0~4の整数であり、入手容易性の観点から、いずれも0~2の整数であってもよく、0又は2であってもよい。s’及びt’は0~4の整数であり、入手容易性の観点から、いずれも0~2の整数であってもよく、0又は1であってもよく、0であってもよい。wは0~4の整数であり、入手容易性の観点から、0~2の整数であってもよく、0であってもよい。
 前記(a)成分としては、特に限定されず、例えば、前記ビスマレイミド化合物(IX)と同じものを適用してもよい。
 ポリアミノビスマレイミド化合物(B)は、例えば、(a)成分と分子中に2個の一級アミノ基を有する芳香族ジアミン化合物(b)[以下、(b)成分と称することがある。]とを有機溶媒中でマイケル付加反応させることにより得られる。
 前記(b)成分としては、例えば、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチル-ジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチル-ジフェニルメタン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン等が挙げられる。
 ガラスクロスを含有せず、樹脂を含有する層中のポリアミノビスマレイミド化合物(B)の含有量は、特に制限はないが、優れた高周波特性(低誘電率、低誘電正接)、導体との高接着性、優れた耐熱性、高ガラス転移温度、低熱膨張係数及び高難燃性を有する絶縁層を得る観点から、ガラスクロスを含有せず、樹脂を含有する層に含まれる樹脂総量中、50~98質量%であってもよく、60~95質量%であってもよく、70~90質量%であってもよい。
 ガラスクロスを含有せず、樹脂を含有する層に含まれる樹脂としては、導体との高接着性、優れた耐熱性、高ガラス転移温度、低熱膨張係数及び高難燃性を有する絶縁層を得る観点から、ポリフェニレンエーテル誘導体(A)及びポリアミノビスマレイミド化合物(B)からなる群から選ばれる1種以上であることが好ましく、ポリフェニレンエーテル誘導体(A)とポリアミノビスマレイミド化合物(B)との併用がより好ましい。
 これらの樹脂は、単独で又は2種以上を組み合わせて用いてもよい。
 また、ガラスクロスを含有せず、樹脂を含有する層には、必要に応じて無機充填剤、難燃剤、各種添加剤等を更に配合してもよい。
≪無機充填剤≫
 ガラスクロスを含有せず、樹脂を含有する層に必要に応じて含まれる無機充填剤としては、特に限定されないが、例えば、アルミナ、酸化チタン、マイカ、シリカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、クレー、タルク、ホウ酸アルミニウム、ホウ酸アルミニウム、炭化ケイ素等が挙げられる。これらの無機充填剤は単独で又は2種以上を組み合わせて用いてもよい。
 無機充填剤の形状は、特に限定されず、球状、破砕状等の無機充填剤を用いることができる。
 無機充填剤の体積平均粒子径は、特に限定されないが、例えば、0.01~50μmとしてもよく、また、0.1~15μmとしてもよい。
 樹脂に対する無機充填剤の配合割合は、特に限定されないが、例えば、樹脂の合計量100質量部に対して、1~1000質量部とすることができる。無機充填剤の配合割合が前記範囲内であると接着性、絶縁層の靭性、耐熱性、耐薬品性等がより向上する。更に、熱膨張を抑制する観点からは、樹脂の合計量100質量部に対して、1~800質量部とすることができ、10~500質量部とすることができる。
 難燃剤としては、特に限定されないが、例えば、臭素系、リン系、金属水酸化物等の難燃剤が用いられる。難燃剤は、単独で又は2種以上を組み合わせて用いてもよい。
 難燃剤の配合割合は、特に限定されないが、例えば、樹脂の合計量100質量部に対して、10~200質量部とすることができ、15~150質量部とすることができ、20~100質量部とすることができる。難燃剤の配合割合が10質量部以上では耐燃性がより向上する、200質量部以下では耐熱性、接着性、フィルム形成能、及び成形性がより向上する。
 各種添加剤としては、特に限定されないが、例えば、シランカップリング剤、チタネートカップリング剤、熱安定剤、帯電防止剤、紫外線吸収剤、顔料、着色剤、滑剤等が挙げられる。これらの添加剤は、それぞれ、単独で又は2種以上を組み合わせて用いてもよい。
(ガラスクロスと樹脂とを含有する層)
 絶縁層(Y)は、ガラスクロスと樹脂とを含有する層を有する。
 ガラスクロスと樹脂とを含有する層は、ガラスクロスと樹脂組成物とを含有する層であってもよい。ガラスクロスと樹脂とを含有する層に含まれる樹脂組成物は、樹脂を含むものであれば特に限定されず、必要に応じて無機充填剤、難燃剤、各種添加剤等のその他の成分を更に配合してもよい。なお、本明細書において「樹脂組成物」に含まれる樹脂は硬化前のモノマー、半硬化状態(所謂Bステージ状態)のオリゴマー、硬化後のポリマーのいずれの状態であってもよい。また、本明細書において「樹脂を含有する」とは、樹脂を単独で含有する場合だけでなく、樹脂組成物を含有する場合も包含する。
≪ガラスクロス≫
 ガラスクロスは特に限定されないが、ヤーンを高密度に編んだもの、開繊された繊維糸(開繊糸)を用いたものであれば、誘電率の不均一性をより軽減できる。また、縦糸と横糸に同種のガラス繊維糸を用いれば、同様に誘電率の不均一性をより軽減できる。
 ガラス繊維としては、Eガラス、NEガラス、Dガラス、Qガラス等が例示でき、縦糸と横糸に、含浸する樹脂に近い誘電率のガラス繊維糸を用いたもの等を用いることで誘電率の不均一性をさらに軽減できる。
 ガラスクロスの誘電率は、誘電率の不均一性を軽減する観点から、5.0以下であることが好ましく、4.5以下であることがより好ましい。
 ガラスクロスと樹脂とを含有する層に含まれる樹脂又は樹脂組成物としては、前記ガラスクロスを含有せず、樹脂を含有する層に含まれるものと同様のものを使用でき、好ましい態様も同一である。
 ガラスクロスと樹脂とを含有する層に含まれるガラスクロスと樹脂組成物との誘電率の差は、低伝送損失性の観点から、1.0以下であることが好ましく、0.5以下であることがより好ましく、0.1以下であることがさらに好ましい。
 ガラスクロスと樹脂組成物との誘電率の差を1.0以下にするためには、使用するガラスクロスの誘電率に、樹脂組成物の誘電率を近づければよい。例えば、樹脂として前述の熱可塑性樹脂又は熱硬化性樹脂を使用すれば、樹脂種、配合比率等の選択によって誘電率を2~4程度に制御できる。ガラスクロスの誘電率が大きいために誘電率の差が更に大きい場合、この樹脂に、樹脂よりも高い誘電率を有する無機充填剤、難燃剤等を加えれば、当該樹脂の誘電率を更に高められる。例えば、Eガラスの誘電率は6.8程度で、一般的なエポキシ樹脂の誘電率は3.8程度だから、Eガラスのガラスクロスに対して、エポキシ樹脂100質量部と誘電率10程度のアルミナフィラー300質量部とを混合した樹脂組成物を用いることで、ガラスクロスと樹脂組成物との誘電率の差を1.0以下にできる。
 ガラスクロスと樹脂とを含有する層は、公知のプリプレグを単独で、又は複数貼り合わせて、加熱及び/又は加圧して得られるものを用いることもできる。公知の(市販品の)プリプレグとしては、例えば、日立化成株式会社製「GWA-900G」、「GWA-910G」、「GHA-679G」、「GHA-679G(S)」、「GZA-71G」(いずれも商品名)等が挙げられる。
(多層伝送線路板の製造方法)
 本発明の多層伝送線路板は、ガラスクロスと樹脂とを含有する層を形成するためのプリプレグ、及び、ガラスクロスを含有せず、樹脂を含有する層を形成するための樹脂フィルムを用いて、実施形態に応じて適宜組み合わせ、積層することにより得られる。例えば、両面に銅箔を積層した当該プリプレグを硬化して得られた積層板の片側の銅箔に回路加工を施すことにより、一方の面に差動配線を、他方の面にグランド層を配置した絶縁層を形成し、次いで差動配線が形成された面に、当該樹脂フィルムと、グランド層を構成する銅箔とをこの順に積層して成形する方法により製造できる。
〔プリプレグ〕
 ガラスクロスと樹脂とを含有する層を形成するためのプリプレグは、前記ガラスクロスと樹脂とを含有する層に用いられるガラスクロス及び樹脂又は樹脂組成物を含む。前記プリプレグは、例えば、前記樹脂又は樹脂組成物を有機溶媒に溶解及び/又は分散して得られた樹脂ワニスを、前記ガラスクロスに含浸する方法により得られる。
 樹脂ワニスをガラスクロスに含浸する方法としては、特に限定されないが、例えば、ガラスクロスを樹脂ワニスに浸漬する方法、各種コーターにより樹脂ワニスをガラスクロスに塗布する方法、スプレーによって樹脂ワニスをガラスクロスに吹き付ける方法等が挙げられる。これらの中でも、樹脂ワニスの含浸性を向上させる観点から、ガラスクロスを樹脂ワニスに浸漬する方法を用いることができる。
 樹脂ワニスをガラスクロスに含浸した後の乾燥条件は、例えば、乾燥後のプリプレグ中の有機溶媒の含有量が10質量%以下となる条件とすることができ、また、5質量%以下となる条件とすることができる。例えば、30~60質量%の有機溶媒を含むワニスを50~150℃で3~10分程度乾燥させることにより、プリプレグを形成することができる。
 プリプレグを硬化させた際のガラスクロスと樹脂組成物との誘電率の差は、低伝送損失性の観点から、1.0以下であることが好ましく、0.5以下であることがより好ましく、0.1以下であることがさらに好ましい。
 プリプレグを硬化させた際の誘電率は特に限定されないが、高周波領域での使用により適合する観点から、4.0以下であることが好ましく、3.8以下であることがより好ましい。
 プリプレグの厚さは、形成する絶縁層の厚さに応じて適宜決定すればよい。
〔樹脂フィルム〕
 ガラスクロスを含有せず、樹脂を含有する層を形成するための樹脂フィルムは、前記ガラスクロスを含有せず、樹脂を含有する層に用いられる樹脂又は樹脂組成物を含有する。前記樹脂フィルムは、公知の方法で得ることができ、例えば、前記樹脂を、必要に応じて前記その他の成分と混合した後、支持体上に層形成する方法により得られる。
 樹脂の混合方法は特に制限されず、公知の方法を用いることができる。
 樹脂を支持体上に層形成する方法としては、例えば、樹脂を有機溶媒に溶解及び/又は分散することにより樹脂ワニスを調製し、該樹脂ワニスを各種コーターを用いて支持体に塗布し、加熱、熱風吹きつけ等により乾燥する方法が挙げられる。
 このようにして得られる樹脂フィルムは、半硬化(Bステージ化)させたものであってもよい。半硬化した樹脂フィルムは、積層し硬化する際に接着力が確保される状態、且つ差動配線91への埋めこみ性(流動性)が確保される状態としてもよい。
 樹脂ワニスに用いる有機溶媒としては、特に限定されないが、例えば、メタノール、エタノール、ブタノール等のアルコール類;エチルセロソルブ、ブチルセロソルブ、エチレングリコールモノメチルエーテル、カルビトール、ブチルカルビトール等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、メシチレン等の芳香族炭化水素類;メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等のエステル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等の含窒素類などの有機溶媒が挙げられる。これらの有機溶媒は単独で又は2種以上を組み合わせて用いてもよい。
 樹脂ワニスの固形分(不揮発分)濃度は、特に限定されないが、例えば、5~80質量%とすることができる。
 樹脂ワニスを支持体上に塗布する際に用いるコーターは、形成する樹脂フィルムの厚さ等に応じて適宜選択すればよく、例えば、ダイコーター、コンマコーター、バーコーター、キスコーター、ロールコーター等を用いることができる。
 樹脂ワニスを支持体上に塗布した後の乾燥条件は、例えば、乾燥後の樹脂フィルム中の有機溶媒の含有量が10質量%以下となる条件とすることができ、また、5質量%以下となる条件とすることができる。例えば、30~60質量%の有機溶媒を含むワニスを50~150℃で3~10分程度乾燥させることにより、樹脂フィルムを形成できる。乾燥条件は、予め簡単な実験により適宜、好適な乾燥条件を設定できる。
 樹脂フィルムの厚さは、形成する絶縁層の厚さに応じて適宜決定すればよい。
 樹脂フィルムの支持体は、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリカーボネート、ポリイミド等からなるフィルム、更には離型紙、金属箔(銅箔、アルミニウム箔等)などが挙げられる。なお、支持体及び後述する保護フィルムには、マット処理、コロナ処理の他、離型処理等を施してもよい。
 支持体の厚さは、例えば、10~150μmとすることができ、また、25~50μmとすることができる。樹脂フィルムの支持体が設けられていない面には、保護フィルムを更に積層できる。保護フィルムは、支持体の材質と同じであってもよく、異なっていてもよい。保護フィルムの厚さは、例えば、1~40μmである。保護フィルムを積層することにより、異物混入を防止でき、樹脂フィルムをロール状に巻き取って保管することもできる。
〔積層成形条件〕
 本発明に係る多層伝送線路板の成形方法及び成形条件は、特に限定されないが、例えば、電気絶縁材料用積層板及び多層板の成形方法及び成形条件を適用できる。具体的には、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100~250℃、圧力0.2~10MPa、加熱時間0.1~5時間の範囲で成形できる。
 なお、グランド層は、上記のとおり金属箔の積層によって形成してもよく、乾式メッキ等の公知の方法を使用して形成してもよい。
 得られた多層伝送線路板の絶縁層に穴開けを行ってビアホール、スルーホールを形成してもよい。穴開けは、例えば、ドリル、レーザー、プラズマ等の公知の方法により、また必要によりこれらの方法を組み合わせて行うことができる。
 以下、本発明の多層伝送線路板の実施態様として、第一~第三実施形態に係る多層伝送線路板を例として挙げ、各態様について図面を参照しながら説明する。
 第一~第三実施形態に係る多層伝送線路板に含まれる層を構成する各材料、各層の態様、積層条件等は、前述の本発明の多層伝送線路板として説明したとおりであり、好ましい態様も同様である。
<第一実施形態に係る多層伝送線路板>
 図3は、本発明の第一実施形態に係る多層伝送線路板1Aを示す模式的断面図である。
 図3に示すように、本発明の第一実施形態に係る多層伝送線路板1Aは、一対のグランド層11、21と、一対のグランド層11、21のうち一方のグランド層11と他方のグランド層21との間に配置された差動配線91と、差動配線91と一方のグランド層11との間に配置された絶縁層(1-I)31と、差動配線91と他方のグランド層21との間に配置された絶縁層(1-II)32とを含む。絶縁層(1-I)31は、ガラスクロスを含有せず、樹脂を含有する層であり、絶縁層(1-II)32は、ガラスクロスと樹脂とを含有する層であり、絶縁層(1-I)31の厚さが、絶縁層(1-II)32の厚さ以下である、多層伝送線路板である。
 図6に従来の多層伝送線路板4Aの模式的断面図を示す。従来の多層伝送線路板4Aは、プリプレグの両面に銅箔を積層して硬化することにより得られた積層板の片側の銅箔に回路加工を施すことにより、一方の面に差動配線94を、他方の面にグランド層24を配置した絶縁層62を形成し、その差動配線94側の面に更に絶縁層61を形成するためのプリプレグとグランド層14を構成する銅箔とをこの順に積層して成形する方法により製造していた。
 本発明の第一実施形態に係る多層伝送線路板1Aは、図6に示す従来の多層伝送線路板4Aにおける絶縁層61を、ガラスクロスを含有せず、樹脂を含有する層である絶縁層(1-I)31に変更することで、取り扱い性を損なうことなくスキューの低減を図ることができる。
 このとき、絶縁層(1-I)31の厚さは、絶縁層(1-II)32の厚さ以下とすることが重要である。
 これは、信号伝送時には薄い絶縁層側に、より強い電界が生じるため、その絶縁層の電気特性が信号の伝送特性に、より強く反映されるためである。すなわち、ガラスクロスを含有せず、樹脂を含有する層である絶縁層(1-I)31の誘電率の均一性を反映させるためには、絶縁層(1-I)31の厚さが、ガラスクロスと樹脂とを含有する層である絶縁層(1-II)32の厚さと同じか、又は絶縁層(1-II)32の厚さよりも薄いことが重要である。
 絶縁層(1-I)31の厚さは、特に限定されないが、例えば、10~300μmであり、薄型化と損失低減を両立する観点からは、20~250μmとすることができ、同様の観点から、30~200μmとすることができる。
 絶縁層(1-I)31の厚さは、絶縁層(1-II)32の厚さ以下であり、基板の反り抑制の観点からは、絶縁層(1-II)32の厚さ未満とすることができる。
 また、同様の観点から、絶縁層(1-I)31の厚さと、絶縁層(1-II)32の厚さとの差は、0~150μmとすることができ、0.01~100μmとすることができる。
 絶縁層(1-II)32の厚さは、特に限定されないが、例えば、30~400μmであり、薄型化と損失低減を両立する観点からは、40~300μmとすることができ、同様の観点から、50~200μmとすることができる。
(第一実施形態に係る多層伝送線路板の製造方法)
 次に、本発明の第一実施形態に係る多層伝送線路板1Aの製造方法について説明する。
 本発明の第一実施形態に係る多層伝送線路板1Aは、例えば、両面に銅箔を積層したプリプレグを硬化して得られた積層板の片側の銅箔に回路加工を施すことにより、一方の面に差動配線91を、他方の面にグランド層21を配置した絶縁層(1-II)32を形成し、次いで差動配線91が形成された面に絶縁層(1-I)31を形成するための樹脂フィルムと、グランド層11を構成する銅箔とをこの順に積層して成形する方法により製造できる。
 以上述べた本発明の第一実施形態に係る多層伝送線路板では、図3に示すように絶縁層(1-I)31と絶縁層(1-II)32が上下反対になる構成を、上記と同様に形成して用いることもできる。
 次に、本発明の第二実施形態に係る多層伝送線路板について説明する。
<第二実施形態に係る多層伝送線路板>
 図4は、本発明の第二実施形態に係る多層伝送線路板2Aを示す模式的断面図である。
 図4に示すように、本発明の第二実施形態に係る多層伝送線路板2Aは、一対のグランド層12、22と、一対のグランド層12、22のうち一方のグランド層12と他方のグランド層22との間に配置された差動配線92と、差動配線92と一方のグランド層12との間に配置された絶縁層(2-I)41と、差動配線92と他方のグランド層22との間に配置された絶縁層(2-II)42とを含み、絶縁層(2-II)42は、絶縁層(2-IIA)42aと絶縁層(2-IIA)42aに積層された絶縁層(2-IIB)42bとを有し、絶縁層(2-I)41は、ガラスクロスと樹脂とを含有し、絶縁層(2-IIA)42aは、ガラスクロスを含有せず、樹脂を含有し、絶縁層(2-IIB)42bは、ガラスクロスと樹脂とを含有し、絶縁層(2-II)42の厚さが、絶縁層(2-I)41の厚さ以下である、多層伝送線路板である。
 図4は、絶縁層(2-IIB)42bが、差動配線92と絶縁層(2-IIA)42aとの間に配置された例を示すものであるが、絶縁層(2-IIA)42aが、差動配線92と絶縁層(2-IIB)42bとの間に配置された態様であってもよい。
 本発明の第二実施形態に係る多層伝送線路板2Aは、図6に示す従来の多層伝送線路板4Aにおける絶縁層62を、ガラスクロスを含有せず、樹脂を含有する絶縁層(2-IIA)42a、及びガラスクロスと樹脂とを含有する絶縁層(2-IIB)42bを有する絶縁層(2-II)42に変更することで誘電率の不均一性を軽減し、取り扱い性を損なうことなくスキューの低減を図ることができる。
 このとき、前述した理由から、絶縁層(2-IIA)42aを含む絶縁層(2-II)42の厚さが、ガラスクロスと樹脂とを含有する絶縁層(2-I)41の厚さと同じか、又は絶縁層(2-I)41の厚さよりも薄いことが重要である。
 絶縁層(2-I)41の厚さは、特に限定されないが、例えば、40~400μmであり、薄型化と損失低減を両立する観点からは、50~300μmとすることができ、同様の観点から、60~200μmとすることができる。
 絶縁層(2-II)42の厚さは、特に限定されないが、例えば、40~400μmであり、薄型化と損失低減を両立する観点からは、60~300μmとすることができ、同様の観点から、80~200μmとすることができる。
 絶縁層(2-IIA)42aの厚さは、特に限定されないが、例えば、10~300μmであり、薄型化と損失低減を両立する観点からは、20~260μmとすることができ、同様の観点から、30~150μmとすることができる。
 絶縁層(2-IIB)42bの厚さは、特に限定されないが、例えば、30~390μmであり、薄型化と損失低減を両立する観点からは、40~280μmとすることができ、同様の観点から、50~170μmとすることができる。
 絶縁層(2-IIA)42aの厚さと、絶縁層(2-IIB)42bの厚さとの比(絶縁層(2-IIA)/絶縁層(2-IIB))は、特に限定されないが、例えば、0.1~3.0であり、薄型化と損失低減を両立する観点からは、0.3~2.0とすることができ、同様の観点から、0.5~1.8とすることができる。
 絶縁層(2-I)41の厚さは、絶縁層(2-II)42の厚さ以下であり、薄型化と損失低減を両立する観点からは、絶縁層(2-II)42の厚さ未満とすることができる。
 また、同様の観点から、絶縁層(2-I)41の厚さと、絶縁層(2-II)42の厚さとの差は、0~150μmとすることができ、0.01~100μmとすることができる。
(第二実施形態に係る多層伝送線路板の製造方法)
 次に、本発明の第二実施形態に係る多層伝送線路板2Aの製造方法について説明する。
 本発明の第二実施形態に係る多層伝送線路板2Aは、例えば、両面に銅箔を積層したプリプレグを硬化して得られた積層板の一方の面の銅箔に回路加工を施し、他方の面の銅箔を除去することにより、一方の面に差動配線92を配置した絶縁層(2-IIB)42bを形成し、次いで差動配線92が形成された面に、絶縁層(2-I)41を形成するためのプリプレグと、グランド層12を構成する銅箔とをこの順に積層し、絶縁層(2-IIB)42bの差動配線92とは反対側の面に、絶縁層(2-IIA)42aを形成するための樹脂フィルムと、グランド層22を構成する銅箔とをこの順に積層して成形する方法により製造できる。
<第三実施形態に係る多層伝送線路板>
 図5は、本発明の第三実施形態に係る多層伝送線路板3Aを示す、模式的断面図である。
 図5に示すように、本発明の第三実施形態に係る多層伝送線路板3Aは、一対のグランド層13、23と、一対のグランド層13、23のうち一方のグランド層13と他方のグランド層23との間に配置された差動配線93と、差動配線93と一方のグランド層13との間に配置された絶縁層(3-I)51と、差動配線93と他方のグランド層23との間に配置された絶縁層(3-II)52とを含み、絶縁層(3-II)52は、絶縁層(3-IIA)52aと絶縁層(3-IIA)52aに積層された絶縁層(3-IIB)52bとを有し、絶縁層(3-I)51は、ガラスクロスを含有せず、樹脂を含有する層であり、絶縁層(3-IIA)52aは、ガラスクロスを含有せず、樹脂を含有する層であり、絶縁層(3-IIB)52bは、ガラスクロスと樹脂とを含有する層である、多層伝送線路板である。
 図5は、絶縁層(3-IIB)52bが、差動配線93と絶縁層(3-IIA)52aとの間に配置された例を示すが、絶縁層(3-IIA)52aが、差動配線93と絶縁層(3-IIB)52bとの間に配置されてもよい。
 本発明の第三実施形態に係る多層伝送線路板3Aは、図6に示す従来の多層伝送線路板4Aにおける絶縁層62を、ガラスクロスを含有せず、樹脂を含有する層である絶縁層(3-IIA)52a、及びガラスクロスと樹脂とを含有する層である絶縁層(3-IIB)52bを有する絶縁層(3-II)52に、絶縁層61を、ガラスクロスを含有せず、樹脂を含有する層である絶縁層(3-I)51に変更することで、取り扱い性を損なうことなくスキューを低減させる。
 本発明の第三実施形態に係る多層伝送線路板3Aは、差動配線93と一方のグランド層13との間と、差動配線93と他方のグランド層23との間のいずれにもガラスクロスを含有しない絶縁層が介在するため、絶縁層(3-I)51及び絶縁層(3-II)52の厚さによらず、スキュー低減効果を得られる。
 絶縁層(3-I)51の厚さは、特に限定されないが、例えば、10~300μmであり、薄型化と損失低減を両立する観点からは、20~250μmとすることができ、同様の観点から、30~200μmとすることができる。
 絶縁層(3-II)52の厚さは、特に限定されないが、例えば、40~300μmであり、薄型化と損失低減を両立する観点からは、60~250μmとすることができ、同様の観点から、80~200μmとすることができる。
 絶縁層(3-IIA)52aの厚さは、特に限定されないが、例えば、10~270μmであり、薄型化と損失低減を両立する観点からは、20~210μmとすることができ、同様の観点から、30~150μmとすることができる。
 絶縁層(3-IIB)52bの厚さは、特に限定されないが、例えば、30~290μmであり、薄型化と損失低減を両立する観点からは、40~230μmとすることができ、同様の観点から、50~170μmとすることができる。
 絶縁層(3-IIA)52aの厚さと、絶縁層(3-IIB)52bの厚さとの比(絶縁層(3-IIA)/絶縁層(3-IIB))は、特に限定されないが、薄型化と損失低減を両立する観点からは、0.2~3.0とすることができ、同様の観点から、0.3~2.0とすることができ、0.5~1.5とすることができる。
(第三実施形態に係る多層伝送線路板の製造方法)
 次に、本発明の第三実施形態に係る多層伝送線路板3Aの製造方法について説明する。
 本発明の第三実施形態に係る多層伝送線路板3Aは、例えば、両面に銅箔を積層したプリプレグを硬化して得られた積層板の一方の面の銅箔に回路加工を施し、他方の面の銅箔を除去することにより、一方の面に差動配線93を配置した絶縁層(3-IIB)52bを形成し、次いで差動配線93が形成された面に、絶縁層(3-I)51を形成するための樹脂フィルムと、グランド層13を構成する銅箔とをこの順に積層し、絶縁層(3-IIB)52bの差動配線93とは反対側の面に、絶縁層(3-IIA)52aを形成するための樹脂フィルムと、グランド層23を構成する銅箔とをこの順に積層して成形する方法により製造できる。
 本発明の第一、第二、及び第三実施形態のいずれの多層伝送線路板においても、低損失材を用いれば伝送損失が低減され、信号品質を一層向上できる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されない。本発明は、その要旨を逸脱しない範囲で変形できる。
 なお、本発明の多層伝送線路板は、1GHz以上の高周波信号を扱う電子機器に好適に用いられ、特に10GHz以上の高周波信号又は30GHz以上の高周波信号を扱う電子機器に好適に用いられる。
 以下、実施例に基づいて本発明を更に詳細に説明するが、本発明は、以下の実施例に限定されない。
[合成例1]
(ポリフェニレンエーテル誘導体(A)の製造)
 下記手順に従って、分子中に少なくとも1個のN-置換マレイミド基を有するポリフェニレンエーテル誘導体(A)を製造した。
 温度計、還流冷却管、撹拌装置を備えた加熱及び冷却可能な容積2リットルのガラス製フラスコ容器に、トルエン190質量部、PPO640(ポリフェニレンエーテル、数平均分子量:約16000、SABICイノベーティブプラスチックス社製)100質量部、p-アミノフェノール1.35質量部を投入し、フラスコ内の温度を90℃に設定し、保温して撹拌しながら溶解した。溶解を目視で確認後、パーブチル-I(t-ブチルペルオキシイソプロピルモノカーボネート、日油株式会社製)2質量部とナフテン酸マンガン0.15質量部とを添加し、溶液温度90℃で4時間反応させた後、70℃に冷却して分子末端に一級アミノ基を有するポリフェニレンエーテル化合物(A’)を得た。
 次に上記反応溶液に、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン(大和化成工業株式会社製、商品名「BMI-4000」)7.2質量部、プロピレングリコールモノメチルエーテル190質量部を加えて、攪拌しながら液温を昇温し、120℃で保温しながら4時間反応させた後、冷却及び200メッシュ濾過してポリフェニレンエーテル誘導体(A)を製造した。
[合成例2]
(ポリアミノビスマレイミド化合物(B)の製造)
 温度計、還流冷却管、撹拌装置を備えた加熱及び冷却可能な容積1リットルのガラス製フラスコ容器に、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン50質量部、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド(大和化成工業株式会社製、商品名「BMI-5100」)50質量部、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン(三井化学株式会社製、商品名「ビスアニリンM」)14質量部及びプロピレングリコールモノメチルエーテル50質量部を投入し、液温を120℃に保ったまま、撹拌しながら3時間反応させた後、冷却及び200メッシュ濾過してポリアミノビスマレイミド化合物(B)を製造した。
[製造例1]
(熱硬化性樹脂組成物(樹脂ワニス)1の調製)
 上記で得られたポリフェニレンエーテル誘導体(A)100質量部、ポリアミノビスマレイミド化合物(B)450質量部、無機充填剤AlOOH(ベーマイト型水酸化アルミニウム、密度3.0g/cm3、河合石灰工業株式会社製)870質量部、硬化促進剤パーブチル-P(α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、日油株式会社製)7質量部、G-8009L(イソシアネートマスクイミダゾール、第一工業製薬株式会社製)7質量部、メチルエチルケトン800質量部を用いて、60℃で加熱しながら攪拌及び混合して、固形分(不揮発分)濃度約55質量%の熱硬化性樹脂組成物(樹脂ワニス)1を調製した。
[製造例2]
(熱硬化性樹脂組成物(樹脂ワニス)2の調製)
 無機充填剤AlOOHを640質量部、メチルエチルケトンを620質量部とした以外は、製造例1と同様にして、固形分(不揮発分)濃度約55質量%の熱硬化性樹脂組成物(樹脂ワニス)2を調製した。
[製造例3]
(熱硬化性樹脂組成物(樹脂ワニス)3の調製)
 無機充填剤AlOOHを460質量部、メチルエチルケトンを470質量部とした以外は、製造例1と同様にして、固形分(不揮発分)濃度約55質量%の熱硬化性樹脂組成物(樹脂ワニス)3を調製した。
[製造例4]
(銅張積層板1の作製)
 前記熱硬化性樹脂組成物(樹脂ワニス)1を、厚さ0.1mmのガラスクロス(NEガラス、日東紡績株式会社製、誘電率:4.4)に塗工した後、160℃で7分間加熱乾燥して、樹脂含有量(樹脂分)約54質量%のプリプレグを作製した。このプリプレグの上下に、厚さ18μmのロープロファイル銅箔(FV-WS、M面Rz:1.5μm、古河電気工業株式会社製)をM面が接するように配置し、温度230℃、圧力3.9MPa、時間180分間の条件で加熱及び加圧を行い、銅張積層板1(厚さ:130μm)を作製した。なお、この樹脂ワニスを温度230℃、時間180分の条件で加熱硬化して作製した樹脂板の誘電率を、空洞共振器摂動法(摂動法空洞共振器:CP531、株式会社関東電子応用開発製)にて、10GHz帯で測定したところ、4.4(10GHz)であった。すなわち、銅張積層板1に含まれるガラスクロスと樹脂組成物との誘電率の差は0であった。
[製造例5]
(銅張積層板2の作製)
 熱硬化性樹脂組成物(樹脂ワニス)を前記熱硬化性樹脂組成物(樹脂ワニス)2とした以外は、製造例4と同様にして、銅張積層板2(厚さ:130μm)を作製した。なお、この樹脂ワニスから、製造例4と同様の条件で作製した樹脂板の誘電率を、製造例4と同様の条件で測定したところ、4.0(10GHz)であった。すなわち、銅張積層板2に含まれるガラスクロスと樹脂組成物との誘電率の差は0.4であった。
[製造例6]
(銅張積層板3の作製)
 熱硬化性樹脂組成物(樹脂ワニス)を前記熱硬化性樹脂組成物(樹脂ワニス)3とした以外は、製造例4と同様にして、銅張積層板3(厚さ:130μm)を作製した。なお、この樹脂ワニスから、製造例4と同様の条件で作製した樹脂板の誘電率を、製造例4と同様の条件で測定したところ、3.6(10GHz)であった。すなわち、銅張積層板3に含まれるガラスクロスと樹脂組成物との誘電率の差は0.8であった。
[実施例1]
(多層伝送線路板1Aの作製)
 図3に示す多層伝送線路板1Aを次の手順で作製した。
 まず、絶縁層(1-II)32の両面に銅箔が形成された積層板(日立化成株式会社製、商品名:LW-900G)を準備した。この積層板の絶縁層(1-II)32の厚さは130μmであり、銅箔の厚さは18μm、絶縁層(1-II)32側の導体表面粗さ(Rz)は3.0μmである。
 次に、前記積層板の片面の銅箔をエッチングでパターニングすることにより、内層回路板Pを形成した。すなわち、内層回路板Pとは絶縁層(1-II)32の一方の面に差動配線91を、他方の面にグランド層21を配置したものを指す。
 次に、絶縁層(1-I)31を形成するための樹脂フィルムを次の手順で作製した。
 2,2-ビス(4-シアナトフェニル)プロパン(ロンザ社製、商品名:BADCY)48質量部(固形分量)、p-(α-クミル)フェノール(東京化成工業株式会社製)4質量部(固形分量)、及びナフテン酸マンガン(和光純薬工業株式会社製)0.008質量部(固形分量)をトルエン21mlに溶解させ、110℃で3時間加熱反応させた。
 その後、温度を80℃とし、この溶液にスチレン-ブタジエン共重合体の水素添加物(旭化成ケミカルズ株式会社製、商品名:タフテックH1051、スチレン含有比率:42%、数平均分子量Mn66,000)48質量部(固形分量)、トルエン80ml、及びメチルエチルケトン25mlを撹拌しながら配合して室温まで冷却した。そして、ナフテン酸亜鉛(和光純薬工業株式会社製)0.02質量部(固形分量)を配合して調製したワニスから、65μm厚の半硬化の樹脂フィルムを作製した。
 次に、作製した樹脂フィルムを内層回路板Pの差動配線91側の面に2枚重ね合わせ、温度120℃、圧力0.5MPa、時間40秒の条件で仮圧着した。更に、樹脂フィルムの差動配線91とは反対側の面に、グランド層11を構成する厚さ18μmの銅箔(三井金属鉱業株式会社製、商品名:3EC-VLP-18、粗化処理された面の表面粗さRz:3.0μm)を重ね合わせて、温度230℃、圧力3.0MPa、時間80分の条件で積層し、層間接続前の多層伝送線路板を得た。
 続いて、上記多層伝送線路板のグランド層11、21をエッチングでパターニングし、測定端子を形成した。上記測定端子のグランドパターン部にドリルにより穴を開け、無電解めっきにより層間接続を行い、多層伝送線路板1Aを作製した。
[実施例2]
(多層伝送線路板1Bの作製)
 実施例1において、樹脂フィルムの厚さを80μmに変更した点、及び内層回路板Pの差動配線91側の面に重ねる樹脂フィルムの枚数を1枚に変更した点以外は、実施例1と同様の手順により、多層伝送線路板1Bを作製した。
[実施例3]
(多層伝送線路板1Cの作製)
 実施例1において、樹脂フィルムの厚さを50μmに変更した点、及び内層回路板Pの差動配線91側の面に重ねる樹脂フィルムの枚数を1枚に変更した点以外は、実施例1と同様の手順により、多層伝送線路板1Cを作製した。
 次に、各製造例で得られた銅張積層板1~3を用いて、図3に示す多層伝送線路板を作製した。
[実施例4]
(多層伝送線路板1Dの作製)
 まず、前記銅張積層板1の片面の銅箔をエッチングでパターニングすることにより、内層回路板Qを形成した。すなわち、内層回路板Qとは絶縁層(1-II)32の一方の面に差動配線91を、他方の面にグランド層21を配置したものを指す。
 次に、実施例1で作製した樹脂フィルムと前記内層回路板Qとを用いて、実施例1と同様の工程を経て多層伝送線路板1Dを作製した。
[実施例5]
(多層伝送線路板1Eの作製)
 実施例4において、銅張積層板1を銅張積層板2とした以外は、実施例4と同様にして、多層伝送線路板1Eを作製した。
[実施例6]
(多層伝送線路板1Fの作製)
 実施例4において、銅張積層板1を銅張積層板3とした以外は、実施例4と同様にして、多層伝送線路板1Fを作製した。
[実施例7]
(多層伝送線路板2Aの作製)
 図4に示す多層伝送線路板2Aを次の手順で作製した。
 まず、絶縁層(2-IIB)42bの両面に銅箔が形成された積層板(日立化成株式会社製、商品名:LW-900G)を準備した。この積層板の絶縁層(2-IIB)42bの厚さは80μmであり、銅箔の厚さは18μm、絶縁層(2-IIB)42b側の導体表面粗さ(Rz)は3.0μmである。
 次に、上記積層板の一方の面の銅箔をエッチングによりパターニングし、他方の面の銅箔をエッチングにより除去することにより、内層回路板Rを形成した。すなわち、内層回路板Rとは絶縁層(2-IIB)42bの一方の面に差動配線92を配置したものを指す。
 次に、実施例1と同様の手順に従い、50μm厚の半硬化の樹脂フィルムを作製した。
 次に、上記樹脂フィルム1枚を内層回路板Rの銅箔を除去した面に重ね、温度120℃、圧力0.5MPa、時間40秒の条件で仮圧着した。次に、厚さが130μmのプリプレグ(日立化成株式会社製、商品名:GWA-900G)を内層回路板Rの差動配線92側の面に重ね、更に該樹脂フィルムの内層回路板Rの反対側の面及び該プリプレグの差動配線92の反対側の面にそれぞれグランド層22、12を構成する厚さ18μmの銅箔(三井金属鉱業株式会社製、商品名:3EC-VLP-18、粗化処理面表面粗さRz:3.0μm)を重ね合わせて、温度230℃、圧力3.0MPa、時間80分の条件で積層し、層間接続前の多層伝送線路板を作製した。
 続いて、上記多層伝送線路板のグランド層12、22をエッチングでパターニングし、測定端子を形成した。上記測定端子のグランドパターン部にドリルにより穴を開け、無電解めっきにより層間接続を行い、多層伝送線路板2Aを作製した。
[実施例8]
(多層伝送線路板2Bの作製)
 実施例7において、絶縁層(2-IIB)42bの厚さを50μmに変更した点、及び樹脂フィルムの厚さを80μmに変更した点以外は、実施例7と同様にして、多層伝送線路板2Bを作製した。
[実施例9]
(多層伝送線路板2Cの作製)
 実施例7において、絶縁層(2-IIB)42bの厚さを50μmに変更した点以外は、実施例7と同様にして、多層伝送線路板2Cを作製した。
[実施例10]
(多層伝送線路板3Aの作製)
 図5に示す多層伝送線路板3Aを、以下の手順で作製した。
 まず、絶縁層(3-IIB)52bの両面に銅箔が形成された積層板(日立化成株式会社製、商品名:LW-900G)を準備した。絶縁層(3-IIB)52bの厚さは80μmであり、銅箔の厚さは18μm、絶縁層(3-IIB)52b側の導体表面粗さ(Rz)は3.0μmである。
 次に、上記積層板の一方の面の銅箔をエッチングによりパターニングし、他方の面の銅箔をエッチングにより除去することにより、内層回路板Sを形成した。すなわち、内層回路板Sとは絶縁層(3-IIB)52bの一方の面に差動配線93を配置したものを指す。
 次に、実施例1と同様の手順に従い、50μm厚と65μm厚の半硬化の樹脂フィルムを各々作製した。
 次に、50μm厚の樹脂フィルム1枚を内層回路板Sの銅箔を除去した面に重ね、65μm厚の樹脂フィルム2枚を内層回路板Sの差動配線93側の面に重ね、それぞれ温度120℃、圧力0.5MPa、時間40秒の条件で仮圧着した。更に該50μm厚の樹脂フィルムの内層回路板Sと反対側の面及び該65μm厚の樹脂フィルムの差動配線93と反対側の面に、それぞれグランド層23、13を構成する厚さ18μmの銅箔(三井金属鉱業株式会社製、商品名:3EC-VLP-18、粗化処理面表面粗さRz:3.0μm)を重ね合わせて、温度230℃、圧力3.0MPa、時間80分の条件で積層し、層間接続前の多層伝送線路板を作製した。
 続いて、上記多層伝送線路板のグランド層13、23をエッチングでパターニングし、測定端子を形成した。上記測定端子のグランドパターン部にドリル穴開けを行い、無電解めっきにより層間接続を行い、多層伝送線路板3Aを作製した。
[実施例11]
(多層伝送線路板3Bの作製)
 実施例10において、内層回路板Sの銅箔を除去した面に仮圧着した樹脂フィルムの厚さを80μmに変更した点以外は、実施例10と同様にして、多層伝送線路板3Bを作製した。
[実施例12]
(多層伝送線路板3Cの作製)
 実施例10において、絶縁層(3-IIB)52bの厚さを50μmに変更した点以外は、実施例10と同様にして、多層伝送線路板3Cを作製した。
[比較例1]
(多層伝送線路板4Aの作製)
 図6に示す多層伝送線路板4Aを、以下の手順で作製した。
 まず、絶縁層62の両面に銅箔が形成された積層板(日立化成株式会社製、商品名:LW-900G)を準備した。絶縁層62の厚さは130μmであり、銅箔の厚さは18μm、絶縁層62側の導体表面粗さ(Rz)は3.0μmである。
 次に、前記積層板の片面の銅箔をエッチングでパターニングすることにより、内層回路板Tを形成した。すなわち、内層回路板Tとは絶縁層62の一方の面に差動配線94を、他方の面にグランド層24を配置したものを指す。
 次に、厚さが130μmのプリプレグ(日立化成株式会社製、商品名:GWA-900G)を内層回路板Tの差動配線94側の面に重ね、更にそのプリプレグの差動配線94とは反対側の面に、グランド層14を構成する厚さ18μmの銅箔(三井金属鉱業株式会社製、商品名:3EC-VLP-18、粗化処理面表面粗さRz:3.0μm)を重ね合わせて、温度230℃、圧力3.0MPa、時間80分の条件で積層し、層間接続前の多層伝送線路板を得た。
 続いて、上記多層伝送線路板のグランド層14、24をエッチングでパターニングし、測定端子を形成した。上記測定端子のグランドパターン部にドリルにより穴を開け、無電解めっきにより層間接続を行い、多層伝送線路板4Aを作製した。
[比較例2]
(多層伝送線路板5Aの作製)
 図7に示す多層伝送線路板5Aを、以下の手順で作製した。
 実施例1において、絶縁層(1-II)32の厚さを50μmに変更した点以外は、実施例1と同様にして、多層伝送線路板5Aを作製した。
[比較例3]
(多層伝送線路板6Aの作製)
 実施例7において、絶縁層(2-IIB)42bの厚さを130μmに変更した点以外は、実施例7と同様にして、多層伝送線路板6Aを作製した。
[スキューの測定方法]
 上記で得られた各多層伝送線路板のスキューを、以下に示す方法により測定した。
 同軸ケーブル(HUBER-SUHNER社製、商品名:SUCOFLEX104)を介して接続されたネットワークアナライザー(キーサイトテクノロジー社製、商品名:N5227A)から差動配線に10GHzの高周波信号を入射し、信号が配線を伝搬する際の遅延時間を測定した。配線間の遅延時間差からスキューを算出した。
 従来構造を有する比較例1の多層伝送線路板のスキューを100%と定義し、比較例1のスキューに対する割合(%)をそれぞれ表1~3に示した。該数値が小さい方が、スキュー低減効果が高いことを示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 実施例1~6は、従来構造を有する比較例1の多層伝送線路板4Aにおいて、ガラスクロスと樹脂とを含有する絶縁層の一部を、ガラスクロスを含有せず、樹脂を含有する絶縁層に変更した例である。実施例1~6は、各々絶縁層の厚さが異なるが、いずれもスキューは1~8%に大幅に低減している。これは、材料の置き換えにより、誘電率の不均一性が大きく改善されたためであると考えられる。
 比較例2は、実施例1の多層伝送線路板1Aにおいて、絶縁層(1-II)32の厚さを、絶縁層(1-I)31の厚さより薄くした例である。比較例2は、スキューが39%であり、実施例1に比べてスキュー低減効果が低い。
 比較例2の多層伝送線路板5Aでは、差動配線95とグランド層15、25との間に形成される電界が、差動配線95とグランド層との距離が近い、絶縁層72側でより強くなるため、ガラスクロスを含む材料の影響をより強く受けるためであると考えられる。すなわち、誘電率の不均一性の影響をより受けることになり、その結果としてスキュー低減効果が低下すると考えられる。
 実施例7~9は、従来構造を有する比較例1の多層伝送線路板4Aにおいて、ガラスクロスと樹脂とを含有する絶縁層62の一部を、ガラスクロスを含有せず、樹脂を含有する層である絶縁層(2-IIA)42aに変更した例である。実施例7~9は、いずれもスキューは13~22%に低減している。これは、材料の置き換えにより誘電率の不均一性が大きく改善されたためであると考えられる。
 比較例3は、実施例7~9の多層伝送線路板において、絶縁層(2-IIB)42bの厚さを厚くした例である。
 比較例3の多層伝送線路板6Aのように、ガラスクロスを含有せず、樹脂を含有する層である絶縁層82aを積層した場合であっても、ガラスクロスを含有せず、樹脂を含有する絶縁層82aを含む絶縁層82の厚さが、絶縁層81の厚さよりも厚くなると、比較例2と同様に、ガラスクロスを含む材料の影響、すなわち誘電率の不均一な層の影響をより受けることになり、その結果としてスキュー低減効果が低下すると考えられる。
 実施例10~12は、従来構造を有する比較例1の多層伝送線路板4Aにおいて、ガラスクロスと樹脂とを含有する層である絶縁層62の一部を、ガラスクロスを含有せず、樹脂を含有する層である絶縁層(3-IIA)52aに変更した例である。実施例10~12は、いずれもスキューが10%未満となり、大幅に低減している。これは、材料の置き換えにより、誘電率の不均一性が大きく改善されたためであると考えられる。
 上述した測定結果から、本発明の多層伝送線路板が、複雑なプロセスを用いることなく、差動伝送においてスキューを低減可能であることが分かる。更に、これらの構造はいずれもガラスクロスを含んだ絶縁層を有しており、取り扱い性を損なうことなく上記の効果を得ることができる。
 1A~6A 多層伝送線路板
 11~16、21~26 グランド層
 31 絶縁層(1-I)
 32 絶縁層(1-II)
 41 絶縁層(2-I)
 42 絶縁層(2-II)
 42a 絶縁層(2-IIA)
 42b 絶縁層(2-IIB)
 51 絶縁層(3-I)
 52 絶縁層(3-II)
 52a 絶縁層(3-IIA)
 52b 絶縁層(3-IIB)
 61、62、72、81、82b ガラスクロスと樹脂とを含有する絶縁層
 71、82a ガラスクロスを含有せず、樹脂を含有する絶縁層
 91~96 差動配線

Claims (6)

  1.  一対のグランド層と、
     前記一対のグランド層のうち一方のグランド層と他方のグランド層との間に配置された差動配線と、
     前記差動配線と前記一方のグランド層との間に配置された絶縁層(X)と、
     前記差動配線と前記他方のグランド層との間に配置された絶縁層(Y)とを有し、
     前記絶縁層(X)は、ガラスクロスを含有せず、樹脂を含有する層を有し、
     前記絶縁層(X)又は絶縁層(Y)は、ガラスクロスと樹脂とを含有する層を有し、
     前記絶縁層(X)の厚さが、前記絶縁層(Y)の厚さ以下である、多層伝送線路板。
  2.  一対のグランド層と、
     前記一対のグランド層のうち一方のグランド層と他方のグランド層との間に配置された差動配線と、
     前記差動配線と前記一方のグランド層との間に、前記絶縁層(X)として、絶縁層(1-I)と、
     前記差動配線と前記他方のグランド層との間に、前記絶縁層(Y)として、絶縁層(1-II)とを含み、
     前記絶縁層(1-I)は、ガラスクロスを含有せず、樹脂を含有する層であり、
     前記絶縁層(1-II)は、ガラスクロスと樹脂とを含有する層であり、
     前記絶縁層(1-I)の厚さが、前記絶縁層(1-II)の厚さ以下である、請求項1に記載の多層伝送線路板。
  3.  一対のグランド層と、
     前記一対のグランド層のうち一方のグランド層と他方のグランド層との間に配置された差動配線と、
     前記差動配線と前記一方のグランド層との間に、前記絶縁層(Y)として、絶縁層(2-I)と、
     前記差動配線と前記他方のグランド層との間に、前記絶縁層(X)として、絶縁層(2-II)とを含み、
     前記絶縁層(2-II)は、絶縁層(2-IIA)と前記絶縁層(2-IIA)に積層された絶縁層(2-IIB)とを有し、
     前記絶縁層(2-I)は、ガラスクロスと樹脂とを含有する層であり、
     前記絶縁層(2-IIA)は、ガラスクロスを含有せず、樹脂を含有する層であり、
     前記絶縁層(2-IIB)は、ガラスクロスと樹脂とを含有する層であり、
     前記絶縁層(2-II)の厚さが、前記絶縁層(2-I)の厚さ以下である、請求項1に記載の多層伝送線路板。
  4.  前記ガラスクロスと樹脂とを含有する層が、ガラスクロスと樹脂組成物とを含有する層であり、該ガラスクロスと該樹脂組成物との誘電率の差が1.0以下である、請求項1~3のいずれか1項に記載の多層伝送線路板。
  5.  前記ガラスクロスの誘電率が5.0以下である、請求項1~4のいずれか1項に記載の多層伝送線路板。
  6.  一対のグランド層と、
     前記一対のグランド層のうち一方のグランド層と他方のグランド層との間に配置された差動配線と、
     前記差動配線と前記一方のグランド層との間に配置された絶縁層(3-I)と、
     前記差動配線と前記他方のグランド層との間に配置された絶縁層(3-II)とを含み、
     前記絶縁層(3-II)は、絶縁層(3-IIA)と前記絶縁層(3-IIA)に積層された絶縁層(3-IIB)とを有し、
     前記絶縁層(3-I)は、ガラスクロスを含有せず、樹脂を含有する層であり、
     前記絶縁層(3-IIA)は、ガラスクロスを含有せず、樹脂を含有する層であり、
     前記絶縁層(3-IIB)は、ガラスクロスと樹脂とを含有する層である、多層伝送線路板。
PCT/JP2015/082732 2015-01-14 2015-11-20 多層伝送線路板 WO2016114002A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580072770.XA CN107211544B (zh) 2015-01-14 2015-11-20 多层传输线路板
EP15877954.6A EP3247183A4 (en) 2015-01-14 2015-11-20 Multilayer transmission line plate
KR1020177019156A KR102463613B1 (ko) 2015-01-14 2015-11-20 다층 전송 선로판
SG11201705578XA SG11201705578XA (en) 2015-01-14 2015-11-20 Multilayer transmission line plate
US15/542,722 US10506705B2 (en) 2015-01-14 2015-11-20 Multilayer transmission line plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015005188A JP6519187B2 (ja) 2015-01-14 2015-01-14 多層伝送線路板
JP2015-005188 2015-01-14
JP2015199360A JP6645108B2 (ja) 2015-10-07 2015-10-07 多層伝送線路板
JP2015-199360 2015-10-07

Publications (1)

Publication Number Publication Date
WO2016114002A1 true WO2016114002A1 (ja) 2016-07-21

Family

ID=56405559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082732 WO2016114002A1 (ja) 2015-01-14 2015-11-20 多層伝送線路板

Country Status (7)

Country Link
US (1) US10506705B2 (ja)
EP (1) EP3247183A4 (ja)
KR (1) KR102463613B1 (ja)
CN (1) CN107211544B (ja)
SG (1) SG11201705578XA (ja)
TW (1) TWI704847B (ja)
WO (1) WO2016114002A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017034958A1 (en) * 2015-08-21 2017-03-02 Corning Incorporated Glass substrate assemblies having low dielectric properties
SG11201805884WA (en) 2016-01-13 2018-08-30 Hitachi Chemical Co Ltd Multilayer transmission line plate
US10405418B2 (en) 2016-12-21 2019-09-03 Industrial Technology Research Institute Differential signal transmitting circuit board
TWI605734B (zh) * 2016-12-21 2017-11-11 財團法人工業技術研究院 差動訊號傳輸電路板
US10542618B1 (en) * 2018-09-13 2020-01-21 International Business Machines Corporation Printed circuit board with routing of a conductor and dielectric strands
US11538772B2 (en) * 2020-11-19 2022-12-27 Advanced Semiconductor Engineering, Inc. Semiconductor device package and method of manufacturing the same
US20220240373A1 (en) * 2021-01-26 2022-07-28 Dell Products L.P. Inhomogeneous dielectric medium high-speed stripline trace system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099377A (ja) * 2002-09-10 2004-04-02 Shinetsu Quartz Prod Co Ltd 合成石英ガラス繊維、ストランド、ヤーン及びクロス
JP2006232952A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd ポリフェニレン樹脂組成物を含有するプリプレグ及び積層体
JP2009141233A (ja) * 2007-12-10 2009-06-25 Hitachi Ltd プリント基板とその製造方法
JP2011068549A (ja) * 2009-08-25 2011-04-07 Nippon Electric Glass Co Ltd ガラス繊維、ガラス繊維の製造方法及びガラス繊維シート状物
WO2013012053A1 (ja) * 2011-07-20 2013-01-24 パナソニック株式会社 プリント配線板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3562918B2 (ja) 1996-10-22 2004-09-08 三井化学株式会社 ペンタエリスリトールメルカプトカルボン酸エステルの製造方法
JP2000047003A (ja) 1998-07-31 2000-02-18 Seiko Epson Corp プラスチックレンズの製造方法
JP4426018B2 (ja) 1999-07-27 2010-03-03 三井化学株式会社 ペンタエリスリトールポリ(チオグリコレート)の製造方法
JP2009259879A (ja) 2008-04-14 2009-11-05 Hitachi Ltd 配線基板および多層配線基板
JP5471870B2 (ja) 2010-06-17 2014-04-16 富士通株式会社 配線基板
TW201422073A (zh) * 2012-11-22 2014-06-01 Hon Hai Prec Ind Co Ltd 電路板
TWI558276B (zh) * 2012-12-27 2016-11-11 鴻海精密工業股份有限公司 電路板
JP6107412B2 (ja) 2013-05-22 2017-04-05 富士通株式会社 シミュレーション方法、シミュレーション装置及びシミュレーションプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099377A (ja) * 2002-09-10 2004-04-02 Shinetsu Quartz Prod Co Ltd 合成石英ガラス繊維、ストランド、ヤーン及びクロス
JP2006232952A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd ポリフェニレン樹脂組成物を含有するプリプレグ及び積層体
JP2009141233A (ja) * 2007-12-10 2009-06-25 Hitachi Ltd プリント基板とその製造方法
JP2011068549A (ja) * 2009-08-25 2011-04-07 Nippon Electric Glass Co Ltd ガラス繊維、ガラス繊維の製造方法及びガラス繊維シート状物
WO2013012053A1 (ja) * 2011-07-20 2013-01-24 パナソニック株式会社 プリント配線板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3247183A4 *

Also Published As

Publication number Publication date
EP3247183A4 (en) 2018-09-12
US20180139837A1 (en) 2018-05-17
SG11201705578XA (en) 2017-08-30
KR20170103813A (ko) 2017-09-13
US10506705B2 (en) 2019-12-10
TWI704847B (zh) 2020-09-11
KR102463613B1 (ko) 2022-11-03
TW201633859A (zh) 2016-09-16
CN107211544A (zh) 2017-09-26
CN107211544B (zh) 2020-06-26
EP3247183A1 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6620844B2 (ja) 多層プリント配線板及び多層プリント配線板の製造方法
WO2016114002A1 (ja) 多層伝送線路板
KR101814992B1 (ko) 에폭시 수지 조성물
KR102077867B1 (ko) 열경화성 에폭시 수지 조성물, 절연층 형성용 접착 필름 및 다층 프린트 배선판
WO2017122376A1 (ja) 多層伝送線路板
JP6708947B2 (ja) ミリ波レーダー用印刷配線板製造用樹脂フィルムの製造方法
JP2016204639A (ja) 樹脂組成物、積層板及び多層プリント配線板
JP6443657B2 (ja) 熱硬化性絶縁樹脂組成物、並びにこれを用いた支持体付絶縁フィルム、プリプレグ、積層板及び多層プリント配線板
CN107118515A (zh) 带支撑体的树脂片
US11339251B2 (en) Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
JP6750363B2 (ja) 積層体、金属張積層体及びプリント配線板
JP6645108B2 (ja) 多層伝送線路板
JP2007273616A (ja) 多層プリント配線板の製造方法
JP6519187B2 (ja) 多層伝送線路板
JP2018014390A (ja) 多層伝送線路板
JP2018012767A (ja) 樹脂層付プリプレグ、金属張積層板及び伝送線路板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877954

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015877954

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177019156

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15542722

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 11201705578X

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE