WO2016111107A1 - ホーンアンテナ - Google Patents
ホーンアンテナ Download PDFInfo
- Publication number
- WO2016111107A1 WO2016111107A1 PCT/JP2015/084238 JP2015084238W WO2016111107A1 WO 2016111107 A1 WO2016111107 A1 WO 2016111107A1 JP 2015084238 W JP2015084238 W JP 2015084238W WO 2016111107 A1 WO2016111107 A1 WO 2016111107A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- horn
- dielectric plate
- cavity
- conductor film
- conductor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P7/00—Resonators of the waveguide type
- H01P7/06—Cavity resonators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/06—Waveguide mouths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
Definitions
- the present invention relates to a horn antenna formed on a dielectric plate.
- Patent Document 1 discloses an antenna using a post wall waveguide.
- the antenna includes a post wall waveguide formed in a dielectric block and a slab waveguide continuous with the post wall waveguide.
- the post wall waveguide includes a conductor foil formed on both surfaces of the dielectric plate and a plurality of conductor posts that electrically connect the conductor foil.
- a conductive wall called a post wall is formed by the plurality of conductor posts. The electromagnetic wave propagated through the post wall waveguide is emitted to the space through the slab waveguide.
- Patent Document 2 discloses a horn antenna integrated MMIC package using a laminated substrate.
- This horn antenna-integrated MMIC package includes a horn antenna that flares in a fan shape only in the magnetic field direction or electric field surface direction of a radiated electromagnetic wave, and a cavity that houses the MMIC.
- a part of the plurality of dielectric sheets constituting the laminated substrate is cut out to form a horn antenna cavity.
- a cavity is arrange
- a plurality of metal vias are disposed on the side wall of the horn antenna.
- An object of the present invention is to provide a horn antenna having a structure suitable for wide band.
- the horn antenna according to the first aspect of the present invention is: A horn-type radiator formed on the first dielectric plate and facing the endfire direction; An opening formed on a second dielectric plate overlaid on the first dielectric plate, disposed at a position that partially overlaps the horn-type radiator, and facing the same direction as the horn-type radiator.
- the horn type radiator is A first conductor film and a second conductor film disposed on an upper surface and a lower surface of the first dielectric plate; A first post wall composed of a plurality of first conductor posts connecting the first conductor film and the second conductor film; The second conductive film is interposed between the first dielectric plate and the second dielectric plate; The first cavity is A third conductor film disposed on the second dielectric plate; A second post wall comprising a plurality of second conductor posts connecting the second conductor film and the third conductor film.
- the horn antenna according to the second aspect of the present invention in addition to the configuration of the horn antenna according to the first aspect, in the operating frequency band of the horn type radiator, there are two cavities of the first cavity and the horn type radiator. Shows double resonance characteristics.
- the opening of the horn-type radiator and the opening of the first cavity are the same virtual. It is arranged on a plane.
- the horn antenna according to the fourth aspect of the present invention is further formed on the second dielectric plate and disposed behind the first cavity. It has a second cavity that operates as a reflector.
- the operating frequency bandwidth can be widened by electromagnetically coupling the horn-type radiator and the first cavity.
- the first cavity and the horn-type radiator exhibit double resonance characteristics, so that a wide band can be achieved.
- the degree of electromagnetic coupling between them can be increased.
- the gain of the horn antenna can be increased by the second cavity operating as a reflector.
- FIG. 1A and 1B are perspective views of a cavity layer and a radiator layer of the horn antenna according to the first embodiment, respectively.
- FIG. 2A is a plan sectional view of the cavity layer
- FIG. 2B is a plan sectional view of the radiator layer.
- 3A is a cross-sectional view taken along one-dot chain line 3A-3A in FIGS. 2A and 2B
- FIG. 3B is a cross-sectional view taken along one-dot chain line 3B-3B in FIGS. 2A and 2B.
- FIG. 4 is a graph showing the simulation result of the return loss of the horn antenna according to Example 1 in comparison with the return loss of the horn antenna according to the comparative example.
- FIG. 5A is a diagram illustrating a planar shape and dimensions of the horn antenna according to Example 1 to be simulated
- FIG. 5B is a diagram illustrating a cross-sectional shape and dimensions of the horn antenna according to Example 1 to be simulated.
- 6A is a perspective view of the cavity layer of the horn antenna according to the second embodiment
- FIG. 6B is a plan sectional view of the cavity layer of the horn antenna according to the second embodiment
- FIG. 7 is a graph showing the simulation results of the directivity characteristics in the elevation angle direction of the horn antenna according to the second embodiment in comparison with the simulation results of the directivity characteristics of the horn antenna according to the first embodiment.
- FIG. 7 is a graph showing the simulation results of the directivity characteristics in the elevation angle direction of the horn antenna according to the second embodiment in comparison with the simulation results of the directivity characteristics of the horn antenna according to the first embodiment.
- FIG. 8 is a diagram showing the planar shape and dimensions of the horn antenna according to the second embodiment to be simulated.
- 9A is a schematic plan view of a connection portion between the high-frequency integrated circuit and the post wall waveguide
- FIG. 9B is a cross-sectional view taken along one-dot chain line 9B-9B in FIG. 9A.
- Example 1A and 1B are perspective views of the cavity layer 20 and the radiator layer 10 of the horn antenna according to the first embodiment, respectively.
- the radiator layer 10 includes a first dielectric plate 11, a first conductor film 12 disposed on the lower surface of the first dielectric plate 11, and the first dielectric plate 11.
- a second conductor film 13 disposed on the upper surface is included.
- a plurality of first conductor posts 14 penetrating the first dielectric plate 11 in the thickness direction connect the first conductor film 12 and the second conductor film 13.
- a plurality of first conductor posts 14 form a first post wall 15.
- a post wall waveguide 16 and a horn radiator 17 are formed in the first dielectric plate 11.
- the first conductor film 12 and the second conductor film 13 act as the upper and lower conductive walls of the post wall waveguide 16 and the horn type radiator 17, and the first post wall 15 becomes the post wall waveguide 16 and the horn. It acts as the left and right conductive walls of the mold radiator 17.
- a post wall waveguide 16 is continuous with the horn radiator 17.
- the opening of the horn-type radiator 17 faces the endfire direction (direction in which the end face faces) of the first dielectric plate 11.
- the electromagnetic wave propagated through the post wall waveguide 16 is radiated to the space via the horn type radiator 17.
- the first dielectric plate 11 protrudes further forward from the opening of the horn type radiator 17. In other words, the ends of the first conductor film 12, the second conductor film 13, and the first post wall 15 are set back from the end face of the first dielectric plate 11.
- the cavity layer 20 includes a second dielectric plate 21 and a third conductor film 22.
- the second dielectric plate 21 is overlaid on the first dielectric plate 11.
- a second conductor film 13 is interposed between the first dielectric plate 11 and the second dielectric plate 21.
- the third conductor film 22 is disposed on the upper surface of the second dielectric plate 21.
- a plurality of second conductor posts 23 penetrating the second dielectric plate 21 in the thickness direction connect the second conductor film 13 and the third conductor film 22.
- a second post wall 24 is formed by the plurality of second conductor posts 23.
- a first cavity 25 is formed in the second dielectric plate 21.
- the second conductor film 13 and the third conductor film 22 act as upper and lower conductive walls of the first cavity 25, and the second post wall 24 is a conductive wall on the side and rear of the first cavity 25. Acts as The first cavity 25 has an opening that faces in the same direction as the opening of the horn radiator 17 and is electromagnetically coupled to the horn radiator 17.
- the opening of the horn-type radiator 17 and the opening of the first cavity 25 are arranged at the same position in the in-plane direction of the first dielectric plate 11.
- the ends of the first conductor film 12, the second conductor film 13, the third conductor film 22, the first post wall 15, and the second post wall 24 are connected to the central axis of the horn radiator 17. It is arranged at the same position with respect to the direction.
- FIG. 2A shows a plan sectional view of the cavity layer 20
- FIG. 2B shows a plan sectional view of the radiator layer 10.
- the first post wall 15 constituted by the first conductor post 14 acts as a conductive wall that defines the width of the post wall waveguide 16 and the horn radiator 17.
- the width of the post wall waveguide 16 is constant, and one end thereof is connected to the base of the horn radiator 17.
- the opening of the horn-type radiator 17 is defined by the end portions of the first conductor film 12, the second conductor film 13, and the first post wall 15.
- the width of the horn radiator 17 is gradually increased from the base toward the opening (to the right in FIG. 2B).
- the opening of the horn-type radiator 17 is slightly retracted from the end face of the first dielectric plate 11.
- a third conductor film 22 is disposed on the upper surface of the second dielectric plate 21.
- the planar shape of the third conductor film 22 is a rectangle. One side of this rectangle coincides with the opening of the horn radiator 17 (FIG. 2B).
- the second conductor post 23 is arranged along three sides other than the side that coincides with the opening of the horn-type radiator 17.
- FIG. 3A shows a cross-sectional view taken along one-dot chain line 3A-3A in FIGS. 2A and 2B
- FIG. 3B shows a cross-sectional view taken along one-dot chain line 3B-3B in FIGS. 2A and 2B.
- the second dielectric plate 21 is superimposed on the first dielectric plate 11.
- a first conductor film 12 is disposed on the lower surface of the first dielectric plate 11.
- a second conductor film 13 is disposed between the first dielectric plate 11 and the second dielectric plate 21.
- a third conductor film 22 is disposed on the second dielectric plate 21.
- the first conductor post 14 penetrates the first dielectric plate 11 in the thickness direction, and connects the first conductor film 12 and the second conductor film 13.
- the second conductor post 23 penetrates the second dielectric plate 21 in the thickness direction, and connects the second conductor film 13 and the third conductor film 22.
- a post wall waveguide 16 and a horn-type radiator 17 are defined between the first conductor film 12 and the second conductor film 13.
- a first cavity 25 is defined between the second conductor film 13 and the third conductor film 22.
- the opening of the horn-type radiator 17 and the opening of the first cavity 25 are located on the same virtual plane 30.
- FIG. 4 shows the simulation result of the return loss of the horn antenna according to Example 1 in comparison with the return loss of the horn antenna according to the comparative example.
- the horizontal axis of FIG. 4 represents the frequency in the unit “GHz”, and the vertical axis represents the return loss in the unit “dB”.
- the solid line in FIG. 4 indicates the return loss of the horn antenna according to the first embodiment, and the broken line indicates the return loss of the horn antenna according to the comparative example.
- FIG. 5A shows a planar shape and dimensions of a horn antenna according to Example 1 which is a simulation target.
- the width of the post wall waveguide 16 is 2.0 mm.
- the length of the horn-type radiator 17 is 2.2 mm, and the width of the opening is 3.4 mm.
- the amount of protrusion from the opening of the horn-type radiator 17 to the end face of the first dielectric plate 11 is 0.2 mm.
- the width of the first cavity 25 is 3.4 mm and the length is 0.6 mm.
- the reflection suppression conductor posts 18 and 19 penetrate the first dielectric plate 11 in the thickness direction and have a diameter of 0.1 mm. The distance from the end of the first dielectric plate 11 to the center of the reflection suppressing conductor post 18 is 0.4 mm.
- the two reflection suppression conductor posts 18 are arranged in a line-symmetrical position with respect to the central axis of the horn radiator 17, and the distance from the central axis to the center of the reflection suppression conductor post 18 is 1.2 mm.
- the reflection suppression conductor post 19 is disposed on the central axis of the horn radiator 17, and the distance from the end face of the first dielectric plate 11 to the center of the reflection suppression conductor post 19 is 2.0 mm.
- FIG. 5B shows a cross-sectional dimension of the horn antenna according to Example 1 which is a simulation target.
- the first dielectric plate 11 includes a dielectric plate having a relative dielectric constant of 3.5 and a thickness of 0.084 mm, and a dielectric plate having a relative dielectric constant of 3.8 and a thickness of 0.164 mm stacked thereon.
- the relative dielectric constant of the second dielectric plate 21 is 3.5 and the thickness thereof is 0.145 mm.
- the thickness of the first conductor film 12, the second conductor film 13, the third conductor film 22, the first post wall 15 (FIG. 2B), and the second post wall 24 was set to 0 mm.
- FIG. 5C shows a cross-sectional shape and dimensions of a horn antenna according to a comparative example.
- the cavity layer 20 (FIG. 1A) is not disposed.
- the planar shapes and dimensions of the post wall waveguide 16 and the horn radiator 17 in the radiator layer 10 are the planar shapes and dimensions of the post wall waveguide 16 and the horn radiator 17 (FIG. 5A) of the horn antenna according to the first embodiment. It is the same as the dimensions.
- the reflection suppression conductor posts 18 and 19 are arranged.
- the first dielectric plate 11 of the horn antenna according to the comparative example includes a dielectric plate having a relative dielectric constant of 3.5 and a thickness of 0.084 mm, a dielectric constant of a relative dielectric constant of 3.8 and a thickness of 0.164 mm in order from the bottom. It has a three-layer structure in which body plates and dielectric plates having a relative dielectric constant of 3.5 and a thickness of 0.145 mm are stacked.
- the return loss of the horn antenna according to Example 1 shows a minimum value at two points with frequencies of about 60.5 GHz and 63.5 GHz.
- the horn antenna according to the embodiment double resonates in the operating frequency band.
- the return loss of the horn antenna according to the comparative example shows a minimum value only at one point where the frequency is about 61.5 GHz.
- the bandwidth at which the return loss of the horn antenna according to the first embodiment is ⁇ 5 dB or less is about 5.5 GHz.
- the bandwidth of the horn antenna according to the comparative example where the return loss is ⁇ 5 dB or less is about 3 GHz.
- the horn-type radiator 17 and the first cavity 25 exhibit double resonance characteristics, so that the bandwidth can be increased as compared with the horn antenna according to the comparative example having no cavity. It is illustrated.
- the reflection suppression conductor posts 18 and 19 are arranged in the horn radiator 17, but the arrangement of the reflection suppression conductor posts 18 and 19 is not an essential requirement.
- the first dielectric plate 11 is composed of a plurality of layers having different relative dielectric constants. However, the relative dielectric constant may be uniform in the thickness direction.
- the planar shape of the first cavity 25 (FIG. 1A) is rectangular. However, other shapes such as a square, a semicircular shape, and a semielliptical shape may be used. Even when the planar shape of the first cavity 25 is a shape other than a rectangle, the first cavity 25 has an opening that faces in the same direction as the opening of the horn radiator 17 (FIG. 1B). Provided.
- the opening of the horn-type radiator 17 and the opening of the first cavity 25 are retracted from the end face of the first dielectric plate 11. You may make it correspond to the end surface of the body plate 11.
- a general manufacturing method of a multilayer substrate including a plurality of insulating layers and a plurality of conductive layers can be applied.
- a resin substrate such as glass epoxy can be used.
- a copper foil can be used for the first conductor film 12, the second conductor film 13, and the third conductor film 22, for example.
- the first conductor post 14 is formed, for example, by forming a via hole in the first dielectric plate 11 and then copper plating in the via hole.
- the second conductor post 23 is formed by forming a via hole in the second dielectric plate 21 and then plating the inside of the via hole with copper.
- Example 2 Next, a horn antenna according to the second embodiment will be described with reference to FIGS. 6A to 8. FIG. Hereinafter, differences from the horn antenna according to the first embodiment will be described, and description of common configurations will be omitted.
- the configuration of the radiator layer of the horn antenna according to the second embodiment is the same as the configuration of the radiator layer 10 (FIG. 1B) of the horn antenna according to the first embodiment.
- FIG. 6A is a perspective view of the cavity layer 20 of the horn antenna according to the second embodiment.
- a second cavity 35 is disposed behind the first cavity 25.
- the second cavity 35 includes a fourth conductor film 32 and a plurality of third conductor posts 33.
- the fourth conductor film 32 is formed on the upper surface of the second dielectric plate 21.
- the plurality of third conductor posts 33 penetrate the second dielectric plate 21 in the thickness direction, and connect the fourth conductor film 32 and the second conductor film 13 (FIG. 1B).
- a plurality of third conductor posts 33 define a third post wall 34.
- the second conductor film 13 (FIG. 1B) and the fourth conductor film 32 act as upper and lower conductive walls of the second cavity 35.
- the third post wall 34 acts as a conductive wall on the side and rear of the second cavity 35.
- FIG. 6B shows a plan sectional view of the cavity layer 20 of the horn antenna according to the second embodiment.
- a second cavity 35 is disposed behind the first cavity 25.
- the third post wall 34 forms conductive walls behind (on the left in FIG. 6B) and on the sides (upper and lower in FIG. 6B) the second cavity 35.
- the second cavity 35 acts as a reflector for the electromagnetic wave radiated from the horn type radiator 17 (FIG. 1B).
- FIG. 7 shows a simulation result of the directional characteristics of the horn antenna according to the second embodiment in comparison with the simulation results of the directional characteristics of the horn antenna according to the first embodiment.
- the horizontal axis represents the elevation angle ⁇ in the unit “degree”, and the vertical axis represents the gain in the unit “dBi”.
- a solid line and a broken line indicate directivity characteristics of the horn antenna according to the second embodiment and the first embodiment, respectively.
- FIG. 8 shows a planar structure and dimensions of a horn antenna according to Example 2 to be simulated.
- the planar shape, arrangement, and dimensions of the post wall waveguide 16, the horn-type radiator 17, the first cavity 25, and the reflection suppression conductor posts 18, 19 are the same as those of the horn antenna according to the first embodiment shown in FIG. 5A.
- the distance from the end face of the first dielectric plate 11 to the second cavity 35 is 1.15 mm.
- the length and width of the second cavity 35 are 0.6 mm and 2.9 mm, respectively.
- the center in the width direction of the second cavity 35 coincides with the central axis of the horn radiator 17.
- the gain in the direction of the elevation angle ⁇ of 0 ° is increased from about 4 dBi to about 5.5 dBi.
- the gain in the endfire direction can be increased.
- the surface wave propagating on the surface of the second dielectric plate 21 (FIG. 6A) can be suppressed.
- FIG. 9A shows a schematic plan view of a connection portion between the high-frequency integrated circuit 40 and the post wall waveguide 16, and FIG. 9B shows a cross-sectional view taken along one-dot chain line 9B-9B in FIG. 9A.
- a microstrip line 41 extends from the high-frequency integrated circuit 40 to the inside of the post wall waveguide 16 through the first conductor posts 14.
- the microstrip line 41 is disposed inside the first dielectric plate 11.
- the microstrip line 41 is connected to the first conductor film 12 through the fourth conductor post 42 at the tip thereof.
- the electromagnetic wave propagated through the microstrip line 41 is converted into an electromagnetic wave propagated through the post wall waveguide 16 at the tip of the microstrip line 41.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Abstract
第1の誘電体板、エンドファイア方向を向くホーン型放射器が形成されている。第1の誘電体板に重ねられた第2の誘電体板に第1のキャビティが形成されている。第1のキャビティは、ホーン型放射器と部分的に重なる位置に配置され、ホーン型放射器と同一の方向を向く開口部を持ち、ホーン型放射器と電磁的に結合する。ホーン型放射器は、第1の誘電体板の上面及び下面に配置された第1、第2の導体膜と、第1のポスト壁とを含む。第1の誘電体板と第2の誘電体板との間に第2の導体膜が介在する。第1のキャビティは、第2の誘電体板の上に配置された第3の導体膜と、第2のポスト壁とを含む。広帯域化に適した構造を有するホーンアンテナが提供される。
Description
本発明は、誘電体板に形成したホーンアンテナに関する。
下記の特許文献1に、ポスト壁導波路を用いたアンテナが開示されている。このアンテナは、誘電体ブロックに形成されたポスト壁導波路と、ポスト壁導波路に連続するスラブ導波路とを含む。ポスト壁導波路は、誘電体板の両面に形成された導体箔と、導体箔を電気的に接続する複数の導体ポストとを含む。複数の導体ポストにより、ポスト壁と呼ばれる導電壁が形成される。ポスト壁導波路を伝搬した電磁波がスラブ導波路を通して空間に放出される。
下記の特許文献2に、積層基板を用いたホーンアンテナ一体型MMICパッケージが開示されている。このホーンアンテナ一体型MMICパッケージは、放射電磁波の磁界面方向あるいは電界面方向のみに扇形にフレアするホーンアンテナと、MMICを収容するキャビティとを含む。積層基板を構成する複数の誘電体シートの一部分を切り取ることにより、ホーンアンテナの空洞部が形成される。キャビティは、ホーンアンテナの開口面積が小さい方の端部に配置され、ホーンアンテナの空洞部に連続する。ホーンアンテナの側壁部に複数の金属ビアが配置される。
誘電体板を用いたホーンアンテナの広帯域化が望まれている。ところが、従来のホーンアンテナでは、誘電体板の厚さで決定される周波数帯域幅よりも広帯域化することが困難である。本発明の目的は、広帯域化に適した構造を有するホーンアンテナを提供することである。
本発明の第1の観点によるホーンアンテナは、
第1の誘電体板に形成され、エンドファイア方向を向くホーン型放射器と、
前記第1の誘電体板に重ねられた第2の誘電体板に形成され、前記ホーン型放射器と部分的に重なる位置に配置され、前記ホーン型放射器と同一の方向を向く開口部を持ち、前記ホーン型放射器と電磁的に結合する第1のキャビティと
を有し、
前記ホーン型放射器は、
前記第1の誘電体板の上面及び下面に配置された第1の導体膜及び第2の導体膜と、
前記第1の導体膜と前記第2の導体膜とを接続する複数の第1の導体ポストからなる第1のポスト壁と
を含み、
前記第1の誘電体板と前記第2の誘電体板との間に前記第2の導体膜が介在し、
前記第1のキャビティは、
前記第2の誘電体板の上に配置された第3の導体膜と、
前記第2の導体膜と前記第3の導体膜とを接続する複数の第2の導体ポストからなる第2のポスト壁と
を含む。
第1の誘電体板に形成され、エンドファイア方向を向くホーン型放射器と、
前記第1の誘電体板に重ねられた第2の誘電体板に形成され、前記ホーン型放射器と部分的に重なる位置に配置され、前記ホーン型放射器と同一の方向を向く開口部を持ち、前記ホーン型放射器と電磁的に結合する第1のキャビティと
を有し、
前記ホーン型放射器は、
前記第1の誘電体板の上面及び下面に配置された第1の導体膜及び第2の導体膜と、
前記第1の導体膜と前記第2の導体膜とを接続する複数の第1の導体ポストからなる第1のポスト壁と
を含み、
前記第1の誘電体板と前記第2の誘電体板との間に前記第2の導体膜が介在し、
前記第1のキャビティは、
前記第2の誘電体板の上に配置された第3の導体膜と、
前記第2の導体膜と前記第3の導体膜とを接続する複数の第2の導体ポストからなる第2のポスト壁と
を含む。
本発明の第2の観点によるホーンアンテナでは、第1の観点によるホーンアンテナの構成に加えて、前記ホーン型放射器の動作周波数帯において、前記第1のキャビティと前記ホーン型放射器とが二重共振特性を示す。
本発明の第3の観点によるホーンアンテナでは、第1及び第2のホーンアンテナの構成に加えて、前記ホーン型放射器の開口部と、前記第1のキャビティの開口部とが、同一の仮想平面上に配置されている。
本発明の第4の観点によるホーンアンテナは、第1~第3のホーンアンテナの構成に加えて、さらに、前記第2の誘電体板に形成され、前記第1のキャビティの後方に配置され、反射器として動作する第2のキャビティを有する。
第1の観点によるホーンアンテナにおいて、ホーン型放射器と第1のキャビティとが電磁的に結合することにより、動作周波数帯域幅を広げることができる。
第2の観点によるホーンアンテナにおいて、第1のキャビティとホーン型放射器とが二重共振特性を示すことにより、広帯域化を図ることができる。
第3の観点によるホーンアンテナにおいて、ホーン型放射器の開口部と、第1のキャビティの開口部とを同一の仮想平面に配置することにより、両者の電磁的な結合度を高めることができる。
第4の観点によるホーンアンテナにおいて、第2のキャビティが反射器として動作することにより、ホーンアンテナの利得を高めることができる。
[実施例1]
図1A及び図1Bに、それぞれ実施例1によるホーンアンテナのキャビティ層20及び放射器層10の斜視図を示す。
図1A及び図1Bに、それぞれ実施例1によるホーンアンテナのキャビティ層20及び放射器層10の斜視図を示す。
図1Bに示すように、放射器層10は、第1の誘電体板11、第1の誘電体板11の下面に配置された第1の導体膜12、及び第1の誘電体板11の上面に配置された第2の導体膜13を含む。第1の誘電体板11を厚さ方向に貫通する複数の第1の導体ポスト14が、第1の導体膜12と第2の導体膜13とを接続する。複数の第1の導体ポスト14により、第1のポスト壁15が形成される。
第1の誘電体板11内に、ポスト壁導波路16及びホーン型放射器17が形成されている。第1の導体膜12及び第2の導体膜13が、ポスト壁導波路16及びホーン型放射器17の上下の導電壁として作用し、第1のポスト壁15が、ポスト壁導波路16及びホーン型放射器17の左右の導電壁として作用する。ポスト壁導波路16がホーン型放射器17に連続している。ホーン型放射器17の開口部は、第1の誘電体板11のエンドファイア方向(端面が向く方向)を向く。ポスト壁導波路16を伝搬した電磁波が、ホーン型放射器17を経由して空間に放射される。
第1の誘電体板11は、ホーン型放射器17の開口部から、さらに前方に突出している。言い換えると、第1の導体膜12、第2の導体膜13、及び第1のポスト壁15の端が、第1の誘電体板11の端面から後退している。
図1Aに示すように、キャビティ層20は、第2の誘電体板21及び第3の導体膜22を含む。第2の誘電体板21は第1の誘電体板11に重ねられている。第1の誘電体板11と第2の誘電体板21との間に第2の導体膜13が介在する。第3の導体膜22は、第2の誘電体板21の上面に配置されている。第2の誘電体板21を厚さ方向に貫通する複数の第2の導体ポスト23が、第2の導体膜13と第3の導体膜22とを接続する。複数の第2の導体ポスト23により、第2のポスト壁24が形成される。
第2の誘電体板21内に第1のキャビティ25が形成される。第2の導体膜13及び第3の導体膜22が、第1のキャビティ25の上下の導電壁として作用し、第2のポスト壁24が、第1のキャビティ25の側方及び後方の導電壁として作用する。第1のキャビティ25は、ホーン型放射器17の開口部と同一の方向を向く開口部を有し、ホーン型放射器17と電磁的に結合する。
ホーン型放射器17の開口部と、第1のキャビティ25の開口部とは、第1の誘電体板11の面内方向に関して同一の位置に配置されている。言い換えると、第1の導体膜12、第2の導体膜13、第3の導体膜22、第1のポスト壁15、及び第2のポスト壁24の端が、ホーン型放射器17の中心軸方向に関して同一の位置に配置されている。
図2Aに、キャビティ層20の平断面図を示し、図2Bに、放射器層10の平断面図を示す。
図2Bに示すように、第1の誘電体板11内に、複数の第1の導体ポスト14が配置されている。第1の導体ポスト14で構成される第1のポスト壁15が、ポスト壁導波路16及びホーン型放射器17の幅を規定する導電壁として作用する。ポスト壁導波路16の幅は一定であり、その一方の端部が、ホーン型放射器17の基部に接続される。第1の導体膜12、第2の導体膜13、及び第1のポスト壁15の端部によって、ホーン型放射器17の開口部が画定される。ホーン型放射器17の幅は、基部から開口部に向って(図2Bにおいて右に向って)徐々に広くなっている。ホーン型放射器17の開口部は、第1の誘電体板11の端面よりやや後退している。
図2Aに示すように、第2の誘電体板21の上面に、第3の導体膜22が配置されている。第3の導体膜22の平面形状は長方形である。この長方形の1つの辺が、ホーン型放射器17(図2B)の開口部に一致する。第3の導体膜22の4辺のうち、ホーン型放射器17の開口部に一致する辺以外の3辺に沿って、第2の導体ポスト23が配置されている。
図3Aに、図2A及び図2Bの一点鎖線3A-3Aにおける断面図を示し、図3Bに、図2A及び図2Bの一点鎖線3B-3Bにおける断面図を示す。
図3A及び図3Bに示すように、第1の誘電体板11の上に第2の誘電体板21が重ねられている。第1の誘電体板11の下面に第1の導体膜12が配置されている。第1の誘電体板11と第2の誘電体板21との間に、第2の導体膜13が配置されている。第2の誘電体板21の上に、第3の導体膜22が配置されている。第1の導体ポスト14が第1の誘電体板11を厚さ方向に貫通し、第1の導体膜12と第2の導体膜13とを接続する。第2の導体ポスト23が第2の誘電体板21を厚さ方向に貫通し、第2の導体膜13と第3の導体膜22とを接続する。
第1の導体膜12と第2の導体膜13との間に、ポスト壁導波路16及びホーン型放射器17が画定される。第2の導体膜13と第3の導体膜22との間に、第1のキャビティ25が画定される。ホーン型放射器17の開口部と、第1のキャビティ25の開口部とは、同一の仮想平面30上に位置する。ホーン型放射器17の開口部と、第1のキャビティ25の開口部とを、同一の仮想平面30上に配置することにより、ホーン型放射器17と第1のキャビティ25との電磁的な結合度を高めることができる。
図4、及び図5A~図5Cを参照して、上記実施例1によるホーンアンテナの優れた効果について説明する。
図4に、実施例1によるホーンアンテナのリターンロスのシミュレーション結果を、比較例によるホーンアンテナのリターンロスと対比して示す。図4の横軸は周波数を単位「GHz」で表し、縦軸はリターンロスを単位「dB」で表す。図4の実線が実施例1によるホーンアンテナのリターンロスを示し、破線が比較例によるホーンアンテナのリターンロスを示す。
図5Aに、シミュレーション対象である実施例1によるホーンアンテナの平面形状及び寸法を示す。ポスト壁導波路16の幅は2.0mmである。ホーン型放射器17の長さは2.2mmであり、開口部の幅は3.4mmである。ホーン型放射器17の開口部から第1の誘電体板11の端面までの張り出し量は0.2mmである。第1のキャビティ25の幅は3.4mmであり、長さは0.6mmである。
ホーン型放射器17内に、2個の反射抑圧導体ポスト18及び1個の反射抑圧導体ポスト19を配置した。反射抑圧導体ポスト18、19は、第1の誘電体板11を厚さ方向に貫通し、その直径は0.1mmである。第1の誘電体板11の端部から反射抑圧導体ポスト18の中心までの距離は0.4mmである。2個の反射抑圧導体ポスト18は、ホーン型放射器17の中心軸に関して線対称の位置に配置されており、中心軸から反射抑圧導体ポスト18の中心までの距離は1.2mmである。反射抑圧導体ポスト19は、ホーン型放射器17の中心軸上に配置されており、第1の誘電体板11の端面から反射抑圧導体ポスト19の中心までの距離は2.0mmである。
図5Bに、シミュレーション対象である実施例1によるホーンアンテナの断面寸法を示す。第1の誘電体板11は、比誘電率3.5、厚さ0.084mmの誘電体板と、その上に積み重ねられた比誘電率3.8、厚さ0.164mmの誘電体板とからなる2層構造を有する。第2の誘電体板21の比誘電率は3.5であり、その厚さは0.145mmである。シミュレーションにおいて、第1の導体膜12、第2の導体膜13、第3の導体膜22、第1のポスト壁15(図2B)、及び第2のポスト壁24の厚さは0mmとした。
図5Cに、比較例によるホーンアンテナの断面形状及び寸法を示す。比較例においては、キャビティ層20(図1A)が配置されていない。放射器層10内のポスト壁導波路16及びホーン型放射器17の平面形状及び寸法は、実施例1によるホーンアンテナのポスト壁導波路16及びホーン型放射器17(図5A)の平面形状及び寸法と同一である。比較例においても、反射抑圧導体ポスト18、19(図5A)が配置されている。
比較例によるホーンアンテナの第1の誘電体板11は、下から順番に比誘電率3.5、厚さ0.084mmの誘電体板、比誘電率3.8、厚さ0.164mmの誘電体板、及び比誘電率3.5、厚さ0.145mmの誘電体板が積み重ねられた3層構造を有する。
図4に示したように、実施例1によるホーンアンテナのリターンロスは、周波数が約60.5GHz及び63.5GHzの2点で極小値を示している。言い換えると、実施例によるホーンアンテナは、動作周波数帯において二重共振する。これに対し、比較例によるホーンアンテナのリターンロスは、周波数が約61.5GHzの1点でのみ極小値を示している。
実施例1によるホーンアンテナの、リターンロスが-5dB以下となる帯域幅は約5.5GHzである。これに対し、比較例によるホーンアンテナの、リターンロスが-5dB以下となる帯域幅は約3GHzである。このように、実施例1によるホーンアンテナにおいては、ホーン型放射器17及び第1のキャビティ25が二重共振特性を示すことにより、キャビティを有しない比較例によるホーンアンテナと比べて、広帯域化が図られている。
シミュレーション対象のホーンアンテナにおいては、ホーン型放射器17内に反射抑圧導体ポスト18、19を配置したが、反射抑圧導体ポスト18、19を配置することは必須の要件ではない。さらに、シミュレーション対象のホーンアンテナにおいては、第1の誘電体板11を、比誘電率の異なる複数の層で構成したが、厚さ方向に関して均一な比誘電率としてもよい。
上記実施例1では、第1のキャビティ25(図1A)の平面形状を長方形にしたが、その他の形状、例えば、正方形、半円形、半楕円形等にしてもよい。第1のキャビティ25の平面形状を長方形以外の形状にした場合でも、第1のキャビティ25には、ホーン型放射器17(図1B)の開口部が向く方向と同一の方向を向く開口部が設けられる。
上記実施例1では、ホーン型放射器17の開口部及び第1のキャビティ25の開口部を、第1の誘電体板11の端面から後退させたが、これらの開口部を、第1の誘電体板11の端面に一致させてもよい。
上記実施例1によるホーンアンテナの製造には、複数の絶縁層と複数の導電層とを含む多層基板の一般的な製造方法を適用することができる。第1の誘電体板11及び第2の誘電体板21には、例えばガラスエポキシ等の樹脂基板を用いることができる。第1の導体膜12、第2の導体膜13、第3の導体膜22には、例えば銅箔を用いることができる。第1の導体ポスト14は、例えば第1の誘電体板11にビアホールを形成した後、ビアホール内を銅めっきすることにより形成される。第2の導体ポスト23も、同様に、第2の誘電体板21にビアホールを形成した後、ビアホール内を銅めっきすることにより形成される。
[実施例2]
次に、図6A~図8を参照して、実施例2によるホーンアンテナについて説明する。以下、実施例1によるホーンアンテナとの相違点について説明し、共通の構成については説明を省略する。実施例2によるホーンアンテナの放射器層の構成は、実施例1によるホーンアンテナの放射器層10(図1B)の構成と同一である。
次に、図6A~図8を参照して、実施例2によるホーンアンテナについて説明する。以下、実施例1によるホーンアンテナとの相違点について説明し、共通の構成については説明を省略する。実施例2によるホーンアンテナの放射器層の構成は、実施例1によるホーンアンテナの放射器層10(図1B)の構成と同一である。
図6Aに、実施例2によるホーンアンテナのキャビティ層20の斜視図を示す。実施例2においては、第1のキャビティ25の後方に、第2のキャビティ35が配置されている。第2のキャビティ35は、第4の導体膜32及び複数の第3の導体ポスト33を含む。第4の導体膜32は、第2の誘電体板21の上面に形成されている。複数の第3の導体ポスト33は、第2の誘電体板21を厚さ方向に貫通し、第4の導体膜32と第2の導体膜13(図1B)とを接続する。複数の第3の導体ポスト33によって第3のポスト壁34が画定される。
第2の導体膜13(図1B)及び第4の導体膜32が、第2のキャビティ35の上下の導電壁として作用する。第3のポスト壁34が、第2のキャビティ35の側方及び後方の導電壁として作用する。
図6Bに、実施例2によるホーンアンテナのキャビティ層20の平断面図を示す。第1のキャビティ25の後方に第2のキャビティ35が配置されている。第3のポスト壁34が、第2のキャビティ35の後方(図6Bにおいて左側)及び側方(図6Bにおいて上側及び下側)の導電壁を形成する。第2のキャビティ35は、ホーン型放射器17(図1B)から放射される電磁波に対して反射器として作用する。
図7に、実施例2によるホーンアンテナの仰角方向の指向特性のシミュレーション結果を、実施例1によるホーンアンテナの指向特性のシミュレーション結果と対比して示す。横軸は、仰角θを単位「度」で表し、縦軸は、利得を単位「dBi」で表す。実線及び破線は、それぞれ実施例2及び実施例1によるホーンアンテナの指向特性を示す。
図8に、シミュレーション対象となる実施例2によるホーンアンテナの平面構造及び寸法を示す。ポスト壁導波路16、ホーン型放射器17、第1のキャビティ25、反射抑圧導体ポスト18、19の平面形状、配置及び寸法は、図5Aに示した実施例1によるホーンアンテナと同一である。第1の誘電体板11の端面から第2のキャビティ35までの距離は1.15mmである。第2のキャビティ35の長さ及び幅は、それぞれ0.6mm及び2.9mmである。第2のキャビティ35の幅方向の中心は、ホーン型放射器17の中心軸と一致する。
図7に示すように、第2のキャビティ35を設けることにより、仰角θが0°の方向(エンドファイア方向)の利得が、約4dBiから約5.5dBiに増加している。このように、反射器として動作する第2のキャビティ35を設けることにより、エンドファイア方向の利得を高めることができる。さらに、第2の誘電体板21(図6A)の表面を伝搬する表面波を抑制することができる。
次に、図9A及び図9Bを参照して、高周波集積回路40とポスト壁導波路16との接続構造について説明する。
図9Aに、高周波集積回路40とポスト壁導波路16との接続箇所の概略平面図を示し、図9Bに、図9Aの一点鎖線9B-9Bにおける断面図を示す。高周波集積回路40から、マイクロストリップ線路41が、第1の導体ポスト14の間を通ってポスト壁導波路16の内部まで延びている。マイクロストリップ線路41は、第1の誘電体板11の内部に配置されている。マイクロストリップ線路41は、その先端において、第4の導体ポスト42を介して第1の導体膜12に接続されている。マイクロストリップ線路41を伝搬した電磁波が、マイクロストリップ線路41の先端において、ポスト壁導波路16を伝搬する電磁波に変換される。
マイクロストリップ線路41を伝搬する伝送モードから、ポスト壁導波路16を伝搬する伝送モードに変換するために、マイクロストリップ線路とポスト壁導波路とを結合させる他の構造を採用することも可能である。
各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
10 放射器層
11 第1の誘電体板
12 第1の導体膜
13 第2の導体膜
14 第1の導体ポスト
15 第1のポスト壁
16 ポスト壁導波路
17 ホーン型放射器
18、19 反射抑圧導体ポスト
20 キャビティ層
21 第2の誘電体板
22 第3の導体膜
23 第2の導体ポスト
24 第2のポスト壁
25 第1のキャビティ
30 仮想平面
32 第4の導体膜
33 第3の導体ポスト
34 第3のポスト壁
35 第2のキャビティ
40 高周波集積回路
41 マイクロストリップ線路
42 第4の導体ポスト
11 第1の誘電体板
12 第1の導体膜
13 第2の導体膜
14 第1の導体ポスト
15 第1のポスト壁
16 ポスト壁導波路
17 ホーン型放射器
18、19 反射抑圧導体ポスト
20 キャビティ層
21 第2の誘電体板
22 第3の導体膜
23 第2の導体ポスト
24 第2のポスト壁
25 第1のキャビティ
30 仮想平面
32 第4の導体膜
33 第3の導体ポスト
34 第3のポスト壁
35 第2のキャビティ
40 高周波集積回路
41 マイクロストリップ線路
42 第4の導体ポスト
Claims (4)
- 第1の誘電体板に形成され、エンドファイア方向を向くホーン型放射器と、
前記第1の誘電体板に重ねられた第2の誘電体板に形成され、前記ホーン型放射器と部分的に重なる位置に配置され、前記ホーン型放射器と同一の方向を向く開口部を持ち、前記ホーン型放射器と電磁的に結合する第1のキャビティと
を有し、
前記ホーン型放射器は、
前記第1の誘電体板の上面及び下面に配置された第1の導体膜及び第2の導体膜と、
前記第1の導体膜と前記第2の導体膜とを接続する複数の第1の導体ポストからなる第1のポスト壁と
を含み、
前記第1の誘電体板と前記第2の誘電体板との間に前記第2の導体膜が介在し、
前記第1のキャビティは、
前記第2の誘電体板の上に配置された第3の導体膜と、
前記第2の導体膜と前記第3の導体膜とを接続する複数の第2の導体ポストからなる第2のポスト壁と
を含むホーンアンテナ。 - 前記ホーン型放射器の動作周波数帯において、前記第1のキャビティと前記ホーン型放射器とが二重共振特性を示す請求項1に記載のホーンアンテナ。
- 前記ホーン型放射器の開口部と、前記第1のキャビティの開口部とが、同一の仮想平面上に配置されている請求項1または2に記載のホーンアンテナ。
- さらに、前記第2の誘電体板に形成され、前記第1のキャビティの後方に配置され、反射器として動作する第2のキャビティを有する請求項1乃至3のいずれか1項に記載のホーンアンテナ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-000045 | 2015-01-05 | ||
JP2015000045 | 2015-01-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016111107A1 true WO2016111107A1 (ja) | 2016-07-14 |
Family
ID=56355809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/084238 WO2016111107A1 (ja) | 2015-01-05 | 2015-12-07 | ホーンアンテナ |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016111107A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020058002A (ja) * | 2018-10-04 | 2020-04-09 | 日本特殊陶業株式会社 | ホーンアンテナ |
JP2020529798A (ja) * | 2017-08-09 | 2020-10-08 | ソニー株式会社 | 導波管アンテナ磁気電気的適合変換器 |
WO2022097490A1 (ja) * | 2020-11-05 | 2022-05-12 | ソニーセミコンダクタソリューションズ株式会社 | ホーンアンテナ |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012175624A (ja) * | 2011-02-24 | 2012-09-10 | Amushisu:Kk | ポスト壁導波路アンテナ及びアンテナモジュール |
JP2013247491A (ja) * | 2012-05-25 | 2013-12-09 | Nippon Telegr & Teleph Corp <Ntt> | ホーンアンテナ一体型mmicパッケージ及びアレーアンテナ |
JP2014179935A (ja) * | 2013-03-15 | 2014-09-25 | Fujikura Ltd | モード変換器 |
-
2015
- 2015-12-07 WO PCT/JP2015/084238 patent/WO2016111107A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012175624A (ja) * | 2011-02-24 | 2012-09-10 | Amushisu:Kk | ポスト壁導波路アンテナ及びアンテナモジュール |
JP2013247491A (ja) * | 2012-05-25 | 2013-12-09 | Nippon Telegr & Teleph Corp <Ntt> | ホーンアンテナ一体型mmicパッケージ及びアレーアンテナ |
JP2014179935A (ja) * | 2013-03-15 | 2014-09-25 | Fujikura Ltd | モード変換器 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020529798A (ja) * | 2017-08-09 | 2020-10-08 | ソニー株式会社 | 導波管アンテナ磁気電気的適合変換器 |
US11444379B2 (en) | 2017-08-09 | 2022-09-13 | Sony Group Corporation | Waveguide antenna magnetoelectric matching transition |
JP2020058002A (ja) * | 2018-10-04 | 2020-04-09 | 日本特殊陶業株式会社 | ホーンアンテナ |
JP7220540B2 (ja) | 2018-10-04 | 2023-02-10 | 日本特殊陶業株式会社 | ホーンアンテナ |
WO2022097490A1 (ja) * | 2020-11-05 | 2022-05-12 | ソニーセミコンダクタソリューションズ株式会社 | ホーンアンテナ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11837787B2 (en) | High frequency filter and phased array antenna comprising such a high frequency filter | |
US11387568B2 (en) | Millimeter-wave antenna array element, array antenna, and communications product | |
JP5590504B2 (ja) | トリプレート線路層間接続器及び平面アレーアンテナ | |
US9673532B2 (en) | Antenna | |
JP5007281B2 (ja) | 誘電体導波管スロットアンテナ | |
JP6470930B2 (ja) | 分配器及び平面アンテナ | |
US20150207233A1 (en) | Dielectric resonator antenna | |
US9236664B2 (en) | Antenna | |
US20120229343A1 (en) | Horizontal radiation antenna | |
JP5388943B2 (ja) | 導波管・msl変換器及び平面アンテナ | |
JP5566169B2 (ja) | アンテナ装置 | |
JP5748413B2 (ja) | 平面アンテナ | |
CN113169459A (zh) | 天线阵列、雷达和可移动平台 | |
WO2019220536A1 (ja) | アレーアンテナ装置及び通信機器 | |
WO2016111107A1 (ja) | ホーンアンテナ | |
JP7220540B2 (ja) | ホーンアンテナ | |
JP5519328B2 (ja) | 高周波用伝送線路基板 | |
CN107394377B (zh) | 一种端射平面圆极化天线 | |
US10741924B1 (en) | Hybrid notch antenna | |
JP5840736B2 (ja) | 平面アンテナ | |
JP5429459B2 (ja) | ミリ波アンテナ | |
JP2011015044A (ja) | 導波管のチョークフランジ、及びその製造方法 | |
TWM584025U (zh) | 陣列天線(三) | |
JP2007228359A (ja) | 開口面アンテナ | |
JP2010199992A (ja) | 導波管装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15876980 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15876980 Country of ref document: EP Kind code of ref document: A1 |