WO2016110079A1 - 一种绿色尼龙聚丁内酰胺的制备方法 - Google Patents

一种绿色尼龙聚丁内酰胺的制备方法 Download PDF

Info

Publication number
WO2016110079A1
WO2016110079A1 PCT/CN2015/083914 CN2015083914W WO2016110079A1 WO 2016110079 A1 WO2016110079 A1 WO 2016110079A1 CN 2015083914 W CN2015083914 W CN 2015083914W WO 2016110079 A1 WO2016110079 A1 WO 2016110079A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutyrolactam
nylon
butyrolactam
preparing
reaction
Prior art date
Application number
PCT/CN2015/083914
Other languages
English (en)
French (fr)
Inventor
赵黎明
魏杰
钱军
马娟
汤晓峰
邬迎阳
邱勇隽
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Priority to US15/542,602 priority Critical patent/US10308764B2/en
Publication of WO2016110079A1 publication Critical patent/WO2016110079A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • C08G69/16Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • C08G69/24Pyrrolidones or piperidones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/005Amino acids other than alpha- or beta amino acids, e.g. gamma amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01015Glutamate decarboxylase (4.1.1.15)

Definitions

  • the invention relates to the field of synthesis of polymer materials, in particular to a method for preparing green nylon polybutyrolactam by using bio-based material ⁇ -aminobutyric acid as raw material.
  • the artificial leather made of PA4 is elastic, porous and has no static electricity. It can also be processed into plastic products by injection molding and extrusion.
  • nylon 4 Since nylon 4 has hydrophilicity very similar to cotton and silk, and can be used as a drawn fiber, a film-forming agent or other molding compound, research on fiber products has been paid attention to for a long time.
  • Nylon 4 is closer to natural fibers than other synthetic fibers, and the moisture absorption curve of nylon 4 crosses the moisture absorption curve of cotton at a relative humidity of 45%. Below this humidity, the moisture absorption rate of cotton is higher than that of nylon. Above this, the moisture absorption rate of nylon 4 is higher than that of cotton, and the moisture absorption performance of both is close. Nylon 4 can replace cotton fiber to meet human related needs.
  • Nylon 4 is a polymer obtained by anion ring-opening polymerization of butyrolactam, and its structure mainly consists of an amide bond and a methine group.
  • the methine group is a hydrophobic group.
  • a polymer having a number of methine groups of 7 or more such as nylon 610, 1010, and 12 can almost completely obtain hydrophobicity, and the amount of the amide bond is relatively reduced, so that it cannot be sufficiently formed completely.
  • Fiber For example, nylon 3 and 2 polymers, although excellent in hygroscopicity, have poor processability, so the hygroscopicity and processability of the composite material, nylon 4 is the best choice among all nylon products.
  • nylon 4 has excellent biodegradability, and the melting point of nylon 4 is about 260 ° C, which gives it good.
  • nylon 4 The general production process of nylon 4 is: ring-opening polymerization of butyrolactam to form a linear high molecular polymer in the presence of a catalyst.
  • U.S. Patent 4,187,370 discloses a process for the preparation of nylon 4 from alpha-pyrrolidone (butyrolactam): the calculated purified 2-pyrrolidone is added to a reactor equipped with a vacuum distillation gas inlet, and 85.7% pure is added.
  • butyrolactam is mainly produced by chemical methods using fossil-based raw materials. It has multiple production processes: the tower fee was first used in the laboratory in 1907, using succinyl The reduction of amines produces 4-butyrolactam, which is due to high power consumption, low product yield and difficult raw materials.
  • the method does not realize industrialization; Reppe method uses acetylene and formaldehyde as raw materials, hydrogenates to produce 1,4-butanediol under high temperature and high pressure, dehydrocyclizes to form 4-butyrolactone, and then aminolysis produces butyrolactam.
  • the Reppe method is the earliest industrial production method.
  • the general aniline and film company in the United States and the BASF company in Germany have used this route to produce 4-butyrolactam.
  • the maleic anhydride method has one-step and two-step methods.
  • U.S. Petrochemical Company uses one-step method to obtain butyrolactam by using maleic anhydride (hereinafter referred to as maleic anhydride) and hydrogen and chlorine, and heating and pressurizing one step.
  • maleic anhydride maleic anhydride
  • hydrogen and chlorine hydrogen and chlorine
  • heating and pressurizing one step a two-step method to catalyze the addition of maleic anhydride.
  • Butyrolactam can be used not only as a single break for polymers, but also as an important industrial solvent and pharmaceutical and chemical raw materials.
  • the annual consumption of butyrolactam is about 1,500,000 tons.
  • the main producers are the United States General Anhydride and Silicone Company (GAF) BASF, Germany, and Mitsubishi Chemical Corporation of Japan. There are only two productions in China, and the annual output is less than 500 tons. Due to the development of raw materials, PA4, an excellent synthetic fiber product, has not been industrialized in China.
  • Chinese invention patent ZL201010522612.9 discloses a preparation method of bio-based nylon polybutyrolactam, which comprises the steps of: converting biomass raw material by fermentation to obtain glutamic acid, and then performing enzyme conversion by glutamic acid decarboxylase and Extraction and purification to obtain ⁇ -aminobutyric acid, and finally high pressure polymerization to obtain bio-based nylon polybutyrolactam.
  • the invention does not need ring-opening polymerization when using butyrolactam as raw material, solves the problem of raw material supply of large-scale production of PA4, and at the same time, replaces the chemical high-temperature and high-pressure process by using the bio-transformation process, thereby greatly reducing the production cost.
  • the object of the present invention is to provide a catalyst for synthesizing oxalate for CO coupling reaction with high activity, good stability and low cost, and a preparation method thereof, in order to overcome the defects of the prior art mentioned above.
  • the object of the present invention can be achieved by the following technical solution: a catalyst for synthesizing oxalate by CO coupling reaction, characterized in that the catalyst is based on a wire mesh, and the surface of the wire mesh is coated with a layer of carrier. The coating, the surface of the carrier coating is loaded with active ingredients and auxiliaries.
  • the material of the wire mesh is an alloy steel capable of withstanding a temperature exceeding 1000 ° C, and the wire mesh has a pore diameter ranging from 5 mesh to 100 mesh.
  • the carrier coating is composed of one or more of alumina, silica, titania, and the carrier coating may be a layer or the purpose of the present invention is to overcome the defects of the prior art described above.
  • a method for preparing green nylon polybutyrolactam is provided.
  • the object of the present invention can be achieved by the following technical solution: a method for preparing green nylon polybutyrolactam, which is characterized in that the bio-based raw material ⁇ -aminobutyric acid is melt-decomposed and purified under reduced pressure and high temperature conditions. The butyrolactam was obtained and then polymerized under reduced pressure to give green nylon polybutyrolactam.
  • the method specifically includes the following steps:
  • the ⁇ -aminobutyric acid is obtained by fermentation of biomass raw materials by fermentation, enzymatic conversion by glutamic acid decarboxylase, and extraction and purification.
  • ⁇ -aminobutyric acid can be obtained by the method disclosed in the patent ZL201010522612.9.
  • the entire reaction was carried out at a nitrogen rate of 3-5 ml/min.
  • the mass ratio of butyrolactam, catalyst and initiator is 1: (0.25-0.375): (0.5-0.75).
  • the catalyst is sodium, sodium hydroxide or potassium hydroxide.
  • the initiator is benzoyl chloride or sebacic acid chloride.
  • formic acid After the end of the polymerization reaction, formic acid can also be added.
  • the purity of the intermediate product butyrolamide obtained in the step (2) is higher than 99.6%.
  • the white solid product obtained in the step (3) has a molecular weight of 10,000 or more.
  • the synthetic raw material of the invention is synthesized by a biological method, has a wide range of sources, reduces the reaction cost, and has simple conditions for the whole reaction process, simplified synthesis steps, and is easy to realize mass production from laboratory to industrial scale. Conversion.
  • the invention adopts ⁇ -aminobutyric acid as a raw material, and obtains butyrolactam intermediate product by high-temperature melting method, since ⁇ -aminobutyric acid is lobular crystal (methanol-ether), needle crystal (water-ethanol), melting point 202°C. (decomposes under rapid heating).
  • Figure 1 is an infrared spectrum of ⁇ -aminobutyric acid
  • Example 3 is a nuclear magnetic resonance spectrum of butyrolactam obtained in Example 1;
  • Figure 5 is an X-ray diffraction spectrum of the nylon 4 obtained in Example 2;
  • Example 6 is a nuclear magnetic resonance spectrum of nylon 4 obtained in Example 2;
  • Fig. 7 is a nuclear magnetic resonance spectrum of the nylon 4 obtained in Example 5.
  • Example 2 30 g of butyrolactam obtained in the vacuum purification process of Example 2 was placed in a 500 ml three-necked flask, 10 g of potassium hydroxide was added, and placed in a magnetic stirring oil bath at a temperature of 50 ° C. The three-necked flask was connected to a condensing device and kept constant.
  • the pressure funnel and the vacuum distillation device were adjusted to a nitrogen gas rate of 5 ml/min, and the reaction was continued under stirring until the reaction of potassium hydroxide with butyrolactam was completed, and then 22 g of benzoyl chloride was added to protect After maintaining the polymerization conditions for 15 hours, the heating power was turned off, and after natural cooling, the reaction product was washed twice with a mixture of water and methanol in a volume ratio of 1:1, and then washed twice with a large amount of acetone, and washed away. The monomer after the reaction was finally dried to obtain a white solid product, nylon 4, weighing about 15 g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Polyamides (AREA)

Abstract

本发明涉及一种绿色尼龙聚丁内酰胺的制备方法,该方法是将生物基原料γ-氨基丁酸在减压高温条件下熔融分解并纯化得到丁内酰胺,然后再经减压聚合得到绿色尼龙聚丁内酰胺。与现有技术相比,本发明的合成原料是通过生物方法合成的,来源广泛,解决了PA4大规模生产的原材料供应问题,降低了反应成本,而且整个反应过程的条件简单,合成步骤简化,易于实现从实验室向工业化大规模生产的转化。

Description

一种绿色尼龙聚丁内酰胺的制备方法 技术领域
本发明涉及高分子材料合成领域,特别涉及一种以生物基材料γ-氨基丁酸为原料制备绿色尼龙聚丁内酰胺的方法。
背景技术
PA4又称聚丁内酰胺(polybutyrolactam),聚酰胺4(polyamide 4),是一种半透明或乳白色热塑性树脂,相对密度d=1.22~1.24,熔点260~265℃。室温下溶于氯化锌或其他无机盐溶液,也能溶于过热水中,在0.1mol/dm3(0.1mol/L)的氢氧化钠、盐酸中于100℃发生水解,比其他尼龙有更好的热稳定性。主要用于合成纤维、人造革、合成纸等,用PA4制得的人造革有弹性、多孔性、并无静电产生,亦可用注塑、挤塑的方法加工成塑料制品。
由于尼龙4具有与棉、丝极为相似的亲水性,且可作为拉丝纤维,成膜剂或其它成型化合物,其纤维商品的研究长期来受到重视。尼龙4比其它合成纤维更接近天然纤维,尼龙4的吸湿率曲线与棉的吸湿率曲线于相对湿度45%时交叉。在此湿度以下棉的吸湿率比尼龙高,在此以上则尼龙4的吸湿率比棉高,两者的吸湿率性能接近,尼龙4可以替代棉纤维满足人类的相关需求。
尼龙4是由丁内酰胺经过阴离子开环聚合得到的聚合物,其结构主要由酰胺键和次甲基组成。次甲基为疏水性基团,如尼龙610、1010、12这些次甲基数目在7以上的聚合物,几乎能得到完全的疏水性,而且酰胺键的量也相对减少,所以不能充分形成完全的纤维。又如尼龙3、2类聚合物,虽然吸湿性优异,但加工性能变差,所以综合材料的吸湿性和加工性能,在所有尼龙产品中,尼龙4是最好的选择。
一般情况下,聚酰胺类产品,如尼龙6、尼龙66,在自然环境下是不能降解的,但是尼龙4却有优异的生物降解性,而且尼龙4的熔点为260℃左右,又赋予其良好的热性能和力学性能,再者,相比于其它的尼龙材料来说,尼龙4具有优异的生物降解性和生物相容性,在组织工程方面具有广阔的应用前景,为生物医学材料开拓了一条广阔的途径。
尼龙4一般的生产工艺为:在催化剂存在下,丁内酰胺开环聚合生成线性高分子聚合物。在美国专利US4187370公开了一种由α-吡咯烷酮(丁内酰胺)制备尼龙4的工艺:将计算好的纯化的2-吡咯烷酮加入一个装有真空蒸馏气体进口的反应器中,加入85.7%纯无水氢氧化钾,用氮气洗涤反应器,然后在减压的情况下蒸馏2-吡咯烷酮以除去吡咯烷酮和氢氧化钾反应生成的水,反应溶液冷却至30摄氏度,在真空条件下通入计算好的二氧化碳至溶液中,通过添加氮气使反应器达到常压。在搅拌的情况下将混合物加热,并在维持在50摄氏度下12小时,然后转移至另外一个容器中,在搅拌的情况下2%的硫酸水溶液计量加入产品反应混合物中直至PH为7,将反应物离心即可得到高分子量的尼龙4固体。该方法是属于典型的阴离子开环聚合方法。
尼龙4工业化生产的关键仍是丁内酰胺的来源,目前丁内酰胺主要利用化学法以化石基原料生产,具有多条生产工艺:塔费首先在1907年于实验室中,用丁二酰亚胺电解还原制得4-丁内酰胺,由于电耗大,产品收率低和原料不易得等原因。该法没有实现工业化;Reppe法以乙炔和甲醛为原料,在高温高压下加氢生成1,4-丁二醇,脱氢环化生成4-丁内酯,然后氨解反应生成丁内酰胺,Reppe法是最早实现工业化的生产方法,美国通用苯胺和胶片公司,德国的BASF公司均曾采用此路线生产4-丁内酰胺;顺丁烯二酸酐法,此法又有一步法和两步法,美国石油化学公司用一步法,用顺丁烯二酸酐(以下简称顺酐)与氢气、氯,加温加压一步得到丁内酰胺,日本三菱化学公司采用两步法,由顺酐催化加氢生成4-丁内酯,然后再氨化生成4-丁内酰胺;丙烯酸甲酯或乙酯与氢氰酸反应得到氰基丙陵甲酯或乙酯,然后再加氢得到丁内酰胺;另外从丙烯腈或丁二烯为原料都可以制备得到丁内酰胺。这些方法都须使用不可再生资源作为原料,经过高温高压反应生产得到丁内酰胺,这样使得丁内酰胺的生产成本居高不下,导致PA4的成本居高不下,大大限制了PA4的应用。
丁内酰胺不仅可做聚合物的单休,而且又是一种重要的工业溶剂和医药、化工原料。丁内酰胺全世界年消耗量约l5万吨,主要生产商有美国通用苯胺和孜片公司(GAF)德国巴斯夫公司(BASF)、日本的三菱化学公司等。国内只有两家生产,年产量不足500吨。由于原材料的研制使得PA4这一优良的合成纤维产品在我国尚未工业化生产。
中国发明专利ZL201010522612.9公开了一种生物基尼龙聚丁内酰胺的制备方法,该方法包括以下步骤:将生物质原料通过发酵转化得到谷氨酸,再经谷氨酸脱羧酶进行酶转化并提取纯化得到γ-氨基丁酸,最后经高压聚合得到生物基尼龙聚丁内酰胺。与现有技术相比,本发明无需以丁内酰胺为原料时的开环聚合,解决PA4大规模生产的原材料供应问题,同时,利用生物转化工艺取代化学高温高压过程,大大降低了生产成本,使得PA4的大规模应用成为可能。但是,该方法还存心以下问题:第一,高压聚合得到的聚丁内酰胺条件苛刻,难以在工业化中大规模生产;第二,这种一步法合成的聚丁内酰胺分子量较低,有待改进。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种活性高、稳定性好、成本低的用于CO偶联反应合成草酸酯的催化剂及其制备方法。
本发明的目的可以通过以下技术方案来实现:一种用于CO偶联反应合成草酸酯的催化剂,其特征在于,该催化剂以金属丝网为骨架,该金属丝网表面涂覆一层载体涂层,载体涂层表面负载活性组分和助剂。
所述的金属丝网的材料为能耐受超过1000℃温度的合金钢,金属丝网的孔径范围为5目~100目。
所述的载体涂层由氧化铝、氧化硅、氧化钛中的一种或几种物质组成,载体涂层可以是一层也可以是本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种绿色尼龙聚丁内酰胺的制备方法。
本发明的目的可以通过以下技术方案来实现:一种绿色尼龙聚丁内酰胺的制备方法,其特征在于,该方法是将生物基原料γ-氨基丁酸在减压高温条件下熔融分解并纯化得到丁内酰胺,然后再经减压聚合得到绿色尼龙聚丁内酰胺。
所述的方法具体包括以下步骤:
(1)高温熔融:γ-氨基丁酸在氮气氛围,搅拌,然后在200-225℃的高温条件下充分熔融,得到含少量水分的微黄色油状液体丁内酰胺;
(2)真空纯化:将制备好的含少量水分的微黄色油状液体丁内酰胺置于70℃的真空干燥箱中,使水分蒸发后得到纯化的微黄色油状液体丁内酰胺;
(3)减压聚合:将催化剂加入到纯化后的丁内酰胺中,通氮气除去反应器中的空气,油浴加热至50℃,搅拌连续反应,直至催化剂与丁内酰胺反应完全,然后再加入引发剂,保持聚合条件不变,继续反应8~15h,后加入甲酸,对聚合物进行封端,最后将反应产物经水和丙酮清洗后干燥,得白色固体产品尼龙4。
所述的γ-氨基丁酸是由生物质原料通过发酵转化,再经谷氨酸脱羧酶进行酶转化并提取纯化得到的。可参照专利ZL201010522612.9公开的方法制得γ-氨基丁酸。
整个反应过程都是在氮气速率为3-5ml/min的条件下进行的。
所述的减压聚合过程中,丁内酰胺、催化剂、引发剂的质量比为1:(0.25-0.375):(0.5-0.75)。
所述的催化剂为钠、氢氧化钠或氢氧化钾。
所述的引发剂为苯甲酰氯或癸二酰氯。
所述的聚合反应结束后还可以加入甲酸封端。
步骤(2)所得的中间产物丁内酰胺的纯度高于99.6%。
步骤(3)所得白色固体产品尼龙4的分子量在1万以上。
与现有技术相比,本发明的合成原料是通过生物方法合成的,来源广泛,降低了反应成本,而且整个反应过程的条件简单,合成步骤简化,易于实现从实验室向工业化大规模生产的转化。本发明采用γ-氨基丁酸为原料,通过高温熔融法制得丁内酰胺中间产物,由于γ-氨基丁酸为小叶状结晶(甲醇-乙醚)、针状结晶(水-乙醇),熔点202℃(在快速加热下分解)。在25℃时解离常数Ka3.7×10-11,Kb1.7×10-10。易溶于水,微溶于热乙醇,不溶于其他有机溶剂。在熔点温度以上分解形成吡咯烷酮和水。外观:白色结晶或结晶性粉末。采用熔融法能够省去后期处理溶剂以及催化剂的步骤。同专利ZL201010522612.9相比,该方法合成的高分子分子量大,合成条件易于实现。真空纯化的目的是为了避免与空气中氧气的接触得到纯度更高的丁内酰胺。该催化剂是以阳离子开环的方法打开聚合反应。
附图说明
图1为γ-氨基丁酸的红外谱图;
图2为实施例1中得到的丁内酰胺的红外谱图;
图3为实施例1中得到的丁内酰胺的核磁共振谱图;
图4为实施例2中得到的尼龙4的红外谱图;
图5为实施例2中得到的尼龙4的X射线衍射谱图;
图6为实施例2中得到的尼龙4的核磁共振谱图;
图7为实施例5中得到的尼龙4的核磁共振谱图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
(1)高温熔融:取80g的γ-氨基丁酸于500ml的三口烧瓶中,使γ-氨基丁酸尽可能的均匀铺展,紧挨烧瓶内壁,丢入磁力搅拌子后架入磁力搅拌油浴锅中。三口烧瓶分别连接氮气罐、分水管与冷凝设备和温度计,并调节氮气速率为3ml/min。首先设置加热温度为190℃,观察γ-氨基丁酸的熔融情况,升至190℃后保温二十分钟,然后每隔10分钟温度上调5℃,直至225℃后,再使反应进行1小时,关闭加热电源,待其自然冷却。将得到的液体置于玻璃仪器中,放置待用。
(2)真空纯化:将制备好的液体置于70℃的真空干燥箱中,使水分蒸发24小时后,得到纯化的微黄色油状液体约为50g,即丁内酰胺。γ-氨基丁酸的红外谱图如图1所示,制得的丁内酰胺的红外谱图和核磁共振谱图如图2-3所示,可以看出图1在750cm-1、1250cm-1和1500cm-1的特征峰说明了该物质为γ-氨基丁酸;图2在720cm-1、1280cm-1和1600cm-1的特征峰说明了该物质为γ-丁内酰胺;图3在2.2、2.35、3.4处的特征峰说明了该物质为γ-丁内酰胺。
(3)减压聚合:取20g的丁内酰胺和5g的钠置于500ml的四口烧瓶中,丢入磁力搅拌子后架入磁力搅拌油浴锅中,四口烧瓶分别连接氮气罐,冷凝设备、恒压漏斗和温度计,并调节氮气速率为3ml/min。设置油浴温度为50℃,在搅拌下反应3h后,再加入10g的苯甲酰氯,保持聚合条件不变,继续反应8h后加入120ml的甲酸,对聚合物进行封端,然后用体积比为1:1的水和丙 酮的混合物清洗反应产物3次,洗去未反应的单体,再经干燥后,得白色固体产品尼龙4,称重约10g。
实施例2
(1)高温熔融:取100g的γ-氨基丁酸于500ml的三口烧瓶中,使γ-氨基丁酸尽可能的均匀铺展,紧挨烧瓶内壁,丢入磁力搅拌子后架入磁力搅拌油浴锅中。三口烧瓶分别连接氮气罐、分水管与冷凝设备和温度计,并调节氮气速率为5ml/min。设置加热温度为220℃,使反应进行2-3小时,直至分水管中的水量不再增加,关闭加热电源,待其自然冷却。将得到的液体置于玻璃仪器中,放置待用。
(2)真空纯化:将制备好的液体置于70℃的真空干燥箱中,使水分蒸发36小时后,得到纯化的微黄色油状液体约65g,即丁内酰胺。
(3)减压聚合:取30g的丁内酰胺和7.5g的氢氧化钾置于500ml的三口烧瓶中,丢入磁力搅拌子后架入磁力搅拌油浴锅中,三口烧瓶分别连接冷凝设备、恒压漏斗和真空蒸馏装置,并调节氮气速率为5ml/min。设置油浴温度为50℃,在搅拌下反应5h后,再加入15g的癸二酰氯,保持聚合条件不变,继续反应10h后,关闭加热电源,自然冷却后,用体积比为1:1的水和丙酮的混合物清洗反应产物3次,洗去未反应的单体,再经干燥后,得白色固体产品尼龙4,称重约15g。
取聚合得到的尼龙4固体10g,在氮气氛围下进行二步固态缩聚提高分子量,由粘度法测得,尼龙4的分子量有显著性的提高。所得尼龙4的红外谱图、X射线衍射谱图和核磁共振谱图如图4-6所示,可以看出图4在730cm-1、1000cm-1和1580cm-1的特征峰说明了该物质为尼龙4;图3在13、17、27、29、31、42、44、52的特征峰说明了该物质为尼龙4;图6在2.2、2.35、3.4处的特征峰说明了该物质为尼龙4。
实施例3
取实施例2中真空纯化过程得到的丁内酰胺30g于500ml的三口烧瓶中,加入10g的氢氧化钾,架入温度为50℃的磁力搅拌油浴锅中,三口烧瓶分别连接冷凝设备、恒压漏斗和真空蒸馏装置,并调节氮气速率为5ml/min,搅拌下连续反应,直到氢氧化钾与丁内酰胺反应完全后,再加入22g的苯甲酰氯,保 持聚合条件不变,继续反应15h后,关闭加热电源,自然冷却后,用体积比为1:1的水和甲醇的混合物清洗反应产物2次,再用大量的丙酮清洗2次,洗去未反应的单体,最后经干燥后,得白色固体产品尼龙4,称重约15g。
实施例4
(1)取5.2g的γ-氨基丁酸溶于250ml的甲苯中,再加入15g的Al2O3,整个反应于500ml的三口烧瓶中,使用电磁炉加热至80℃,回流反应8h。反应结束后,将整个玻璃仪器冷却至室温,过滤催化剂等,将过滤得到的产物用体积比1:1的甲苯氯仿混合溶剂清洗,最后旋转蒸发除溶剂,得到黄色油状液体丁内酰胺。
(2)减压聚合:取20g的丁内酰胺和5g的钠置于500ml的四口烧瓶中,丢入磁力搅拌子后架入磁力搅拌油浴锅中,四口烧瓶分别连接氮气罐,冷凝设备、恒压漏斗和温度计,并调节氮气速率为3ml/min。设置油浴温度为70℃,在搅拌下反应6h后,再加入10g的苯甲酰氯,保持聚合条件不变,继续反应10h后加入120ml的甲酸,对聚合物进行封端,然后用体积比为1:1的水和丙酮的混合物清洗反应产物3次,洗去未反应的单体,再经干燥后,得白色固体产品尼龙4,称重约8g。
实施例5
取50g化学法制得的丁内酰胺和13g的钠,将其至于四口烧瓶中,丢入磁力搅拌子后架入磁力搅拌油浴锅中,四口烧瓶分别连接氮气罐,冷凝设备、恒压漏斗和温度计,并调节氮气速率为4ml/min。设置油浴温度为50℃,在搅拌下反应3h后,再加入26g的苯甲酰氯并将其溶于四氢呋喃,保持聚合条件不变,继续反应15h后加入120ml的甲酸,对聚合物进行封端,然后用体积比为1:1的水和丙酮的混合物清洗反应产物3次,洗去未反应的单体,再经干燥后,得白色固体产品尼龙4,称重约28g。所得尼龙4的核磁共振谱图如图7所示,可以看出图7在2.2、2.35、3.4处的特征峰说明了该物质为尼龙4。

Claims (10)

  1. 一种绿色尼龙聚丁内酰胺的制备方法,其特征在于,该方法是将生物基原料γ-氨基丁酸在减压高温条件下熔融分解并纯化得到丁内酰胺,然后再经减压聚合得到绿色尼龙聚丁内酰胺。
  2. 根据权利要求1所述的一种绿色尼龙聚丁内酰胺的制备方法,其特征在于,所述的方法具体包括以下步骤:
    (1)高温熔融:γ-氨基丁酸在氮气氛围,搅拌,然后在200-225℃的高温条件下充分熔融,得到含少量水分的微黄色油状液体丁内酰胺;
    (2)真空纯化:将制备好的含少量水分的微黄色油状液体丁内酰胺置于70℃的真空干燥箱中,使水分蒸发后得到纯化的微黄色油状液体丁内酰胺;
    (3)减压聚合:将催化剂加入到纯化后的丁内酰胺中,通氮气除去反应器中的空气,油浴加热至50℃,搅拌连续反应,直至催化剂与丁内酰胺反应完全,然后再加入引发剂,保持聚合条件不变,继续反应8~15h,最后将反应产物经水和丙酮清洗后干燥,得白色固体产品尼龙4。
  3. 根据权利要求2所述的一种绿色尼龙聚丁内酰胺的制备方法,其特征在于,所述的γ-氨基丁酸是由生物质原料通过发酵转化,再经谷氨酸脱羧酶进行酶转化并提取纯化得到的。
  4. 根据权利要求2所述的一种绿色尼龙聚丁内酰胺的制备方法,其特征在于,整个反应过程都是在氮气速率为3-5ml/min的条件下进行的。
  5. 根据权利要求2所述的一种绿色尼龙聚丁内酰胺的制备方法,其特征在于,所述的减压聚合过程中,丁内酰胺、催化剂、引发剂的质量比为1:(0.25-0.375):(0.5-0.75)。
  6. 根据权利要求2所述的一种绿色尼龙聚丁内酰胺的制备方法,其特征在于,所述的催化剂为钠、氢氧化钠或氢氧化钾。
  7. 根据权利要求2所述的一种绿色尼龙聚丁内酰胺的制备方法,其特征在于,所述的引发剂为苯甲酰氯或癸二酰氯。
  8. 根据权利要求2所述的一种绿色尼龙聚丁内酰胺的制备方法,其特征在 于,所述的聚合反应结束后加入甲酸封端。
  9. 根据权利要求2所述的一种绿色尼龙聚丁内酰胺的制备方法,其特征在于,步骤(2)所得的中间产物丁内酰胺的纯度高于99.6%。
  10. 根据权利要求2所述的一种绿色尼龙聚丁内酰胺的制备方法,其特征在于,步骤(3)所得白色固体产品尼龙4的分子量在1万以上。
PCT/CN2015/083914 2015-01-08 2015-07-13 一种绿色尼龙聚丁内酰胺的制备方法 WO2016110079A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/542,602 US10308764B2 (en) 2015-01-08 2015-07-13 Method for preparing biobased nylon: polylactam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510010169.X 2015-01-08
CN201510010169.XA CN104558589A (zh) 2015-01-08 2015-01-08 一种绿色尼龙聚丁内酰胺的制备方法

Publications (1)

Publication Number Publication Date
WO2016110079A1 true WO2016110079A1 (zh) 2016-07-14

Family

ID=53075724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083914 WO2016110079A1 (zh) 2015-01-08 2015-07-13 一种绿色尼龙聚丁内酰胺的制备方法

Country Status (3)

Country Link
US (1) US10308764B2 (zh)
CN (1) CN104558589A (zh)
WO (1) WO2016110079A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104558589A (zh) 2015-01-08 2015-04-29 华东理工大学 一种绿色尼龙聚丁内酰胺的制备方法
CN108047443A (zh) * 2017-12-25 2018-05-18 恒天生物基材料工程技术(宁波)有限公司 一种基于阴离子开环聚合的聚丁内酰胺的合成工艺
JP7149732B2 (ja) * 2018-05-18 2022-10-07 理想科学工業株式会社 インクジェット捺染用前処理液、捺染物の製造方法及びインクジェット捺染用インクセット
CN111234516B (zh) * 2020-01-19 2022-04-29 华东理工大学 一种改性聚丁内酰胺的制备方法
CN113174413A (zh) * 2021-04-01 2021-07-27 华东理工大学 一种酶催化合成聚丁内酰胺的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159840A (ja) * 2007-12-28 2009-07-23 National Institute Of Advanced Industrial & Technology バイオマスからの2−ピロリドン乃至ポリアミド4、n−メチル−2−ピロリドン、ポリビニルピロリドンの合成方法
KR20090128767A (ko) * 2008-06-11 2009-12-16 한국화학연구원 바이오매스로부터 효소반응 및 화학반응을 이용한 나일론4의 제조방법
CN101945997A (zh) * 2008-02-21 2011-01-12 巴斯夫欧洲公司 产生γ-氨基丁酸的方法
CN101974151A (zh) * 2010-10-27 2011-02-16 华东理工大学 一种生物基尼龙聚丁内酰胺的制备方法
JP2011211993A (ja) * 2010-04-02 2011-10-27 National Institute Of Advanced Industrial Science & Technology 微生物によるγ−アミノ酪酸(GABA)の生産方法
KR20110123136A (ko) * 2010-05-06 2011-11-14 현대자동차주식회사 바이오 매스로부터 나일론 4의 제조방법
JP2012214496A (ja) * 2012-07-20 2012-11-08 National Institute Of Advanced Industrial Science & Technology バイオマスからの2−ピロリドン乃至ポリアミド4、n−メチル−2−ピロリドン、ポリビニルピロリドンの合成方法
CN104558589A (zh) * 2015-01-08 2015-04-29 华东理工大学 一种绿色尼龙聚丁内酰胺的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187370A (en) 1977-04-29 1980-02-05 Chevron Research Company Polymerization and recovery of 2-pyrrolidone with acid treatment
US8728775B2 (en) * 2010-09-30 2014-05-20 Daesang Corporation Method for preparing 2-pyrrolidone using a microorganism containing glutamate decarboxylase

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009159840A (ja) * 2007-12-28 2009-07-23 National Institute Of Advanced Industrial & Technology バイオマスからの2−ピロリドン乃至ポリアミド4、n−メチル−2−ピロリドン、ポリビニルピロリドンの合成方法
CN101945997A (zh) * 2008-02-21 2011-01-12 巴斯夫欧洲公司 产生γ-氨基丁酸的方法
KR20090128767A (ko) * 2008-06-11 2009-12-16 한국화학연구원 바이오매스로부터 효소반응 및 화학반응을 이용한 나일론4의 제조방법
JP2011211993A (ja) * 2010-04-02 2011-10-27 National Institute Of Advanced Industrial Science & Technology 微生物によるγ−アミノ酪酸(GABA)の生産方法
KR20110123136A (ko) * 2010-05-06 2011-11-14 현대자동차주식회사 바이오 매스로부터 나일론 4의 제조방법
CN101974151A (zh) * 2010-10-27 2011-02-16 华东理工大学 一种生物基尼龙聚丁内酰胺的制备方法
JP2012214496A (ja) * 2012-07-20 2012-11-08 National Institute Of Advanced Industrial Science & Technology バイオマスからの2−ピロリドン乃至ポリアミド4、n−メチル−2−ピロリドン、ポリビニルピロリドンの合成方法
CN104558589A (zh) * 2015-01-08 2015-04-29 华东理工大学 一种绿色尼龙聚丁内酰胺的制备方法

Also Published As

Publication number Publication date
US10308764B2 (en) 2019-06-04
CN104558589A (zh) 2015-04-29
US20180223043A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2016110079A1 (zh) 一种绿色尼龙聚丁内酰胺的制备方法
CN106188507B (zh) 一种高分子量环状聚乳酸的合成方法
CN110028665B (zh) 一种高耐热性、低吸水率半芳香族聚酰胺及其制备方法
CN104804188B (zh) 一种聚酰亚胺薄膜的制备方法
CN113292719B (zh) 一种含酰亚胺结构的聚酰胺树脂及其制备方法
CN108047443A (zh) 一种基于阴离子开环聚合的聚丁内酰胺的合成工艺
CN113956230A (zh) 一种高纯度丙交酯的合成方法
CN109776347B (zh) 一种热固性植物油基丙烯酸酯衍生物及其制备方法和应用
CN110467726A (zh) 一种高熔点生物基聚酯酰胺及其制备方法
Bou et al. Synthesis and characterization of a polytartaramide based on l-lysine
CN109851778A (zh) 一种阴离子开环聚合制备聚丁内酰胺的方法
CN112300384A (zh) 生物基尼龙、其改性材料及制备方法、3d打印的应用
CN109651955B (zh) 一种基于乙酰乙酸酯改性蓖麻油固化涂层的制备方法
Mallakpour et al. Preparation and Characterization of New Optically Active Poly (amide imide) s Derived from N, N’-(4, 4’-Sulphonediphthaloyl)-bis-(s)-(+)-valine Diacid Chloride and Aromatic Diamines under Microwave Irradiation
CN113150254B (zh) 一种以乳酸水溶液调控制备无毒性聚乳酸的方法
CN107129572B (zh) 一种生物基聚酰胺及其制备方法
CN113999396A (zh) 环氧修饰的聚硅氧烷光敏聚合物的制备方法
US2894025A (en) Gamma-(3-aminocyclohexyl)butyric acid and esters
CN102702526B (zh) 松香基半脂环族聚酰胺酰亚胺共聚物及其合成方法
CN110105324A (zh) 异辛酸锌催化合成丙交酯的方法
JPH0586778B2 (zh)
CN114349941B (zh) 一种双胺基金属催化剂及其制备方法和用途
CN110746597B (zh) 一种钌基催化剂Ru-PPh2CO、制备方法及应用
CN110819301B (zh) 一种生物基光固化仿生粘合剂及其制备方法
CN113603659A (zh) 一种丙烯酸羟乙基邻苯二甲酸缩水甘油酯及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15542602

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876583

Country of ref document: EP

Kind code of ref document: A1