WO2016108659A1 - 표면 개질된 양친매성 이방성 분체 및 이를 함유하는 유화 조성물과 이의 제조방법 - Google Patents

표면 개질된 양친매성 이방성 분체 및 이를 함유하는 유화 조성물과 이의 제조방법 Download PDF

Info

Publication number
WO2016108659A1
WO2016108659A1 PCT/KR2015/014553 KR2015014553W WO2016108659A1 WO 2016108659 A1 WO2016108659 A1 WO 2016108659A1 KR 2015014553 W KR2015014553 W KR 2015014553W WO 2016108659 A1 WO2016108659 A1 WO 2016108659A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic powder
spheroid
polymer
powder
monomer
Prior art date
Application number
PCT/KR2015/014553
Other languages
English (en)
French (fr)
Inventor
김영선
남진
유재원
안순애
강병영
한상훈
Original Assignee
(주)아모레퍼시픽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150187736A external-priority patent/KR101873887B1/ko
Application filed by (주)아모레퍼시픽 filed Critical (주)아모레퍼시픽
Priority to CN201580077181.0A priority Critical patent/CN107405270B/zh
Publication of WO2016108659A1 publication Critical patent/WO2016108659A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • Disclosed herein are surface modified amphiphilic anisotropic powders, emulsion compositions containing the same, and methods for their preparation.
  • fine particles nano, micro size
  • spherical fine particles made of polymers have been expanded as their size and shape are adjusted according to their preparation methods.
  • One of the applications is a pickling emulsion that can form stabilized large emulsified particles using fine spherical particles.
  • Pickering emulsions using spherical solid powders form w / o or o / w emulsions depending on the degree of wetting at the surface of the solid powder, ie lipophilic or hydrophilic.
  • the contact angle is a factor that determines the directionality of the membrane. If the contact angle is smaller than 90 degrees, a large part of the surface of the particle exists as an aqueous phase to generate o / w. If the contact angle is larger than 90 degrees, it is present on the oil side to generate w / o. Create
  • pickling emulsions are capable of producing larger emulsion particles compared to conventional surfactant systems, and the resulting emulsion particles form stabilized emulsion particles by preventing coalescence due to physical stabilization.
  • pickering solid particles retain a hydrophilic or lipophilic surface but do not retain amphoteric like surfactants.
  • the present specification aims to provide an amphiphilic anisotropic powder which is chemically surface-modified on one surface of the anisotropic powder, thereby increasing hydrophilicity and controlling emulsification properties.
  • the present specification includes the surface-modified amphiphilic anisotropic powder, dispersibility of the emulsified particles that can minimize the emulsion stability with polar oils, compatibility with anionic materials such as thickeners or the use of thickeners It is an object to provide this improved emulsion composition.
  • the present specification is to provide a method for producing an amphiphilic anisotropic powder is simple and the yield is maximized to enable mass production.
  • the technology disclosed herein includes a hydrophilic first polymeric spheroid and a hydrophobic second polymeric spheroid, wherein the first polymeric spheroid and the second polymeric spheroid at least partially form a relative polymeric spheroid. Coupling in a penetrating structure, the first polymer spheroid has a core-shell structure and the cell provides an amphiphilic anisotropic powder comprising a functional group containing a sugar.
  • the core of the first polymer spheroid and the second polymer spheroid comprises a vinyl polymer
  • the shell of the first polymer spheroid is a copolymer of a monomer containing a vinyl monomer and a functional group It may include.
  • the vinyl polymer may include polystyrene.
  • the monomer containing a functional group may be a siloxane-containing (meth) acrylate.
  • the sugar-containing functional group is N- ⁇ N- (3-triethoxysilylpropyl) aminoethyl ⁇ gluconamide, N- (3-triethoxysilylpropyl) gluconamide And N- ⁇ N- (3-triethoxysilylpropyl) aminoethyl ⁇ -oligo-hyaluronamide.
  • the amphiphilic anisotropic powder may have a symmetrical shape, an asymmetrical snowman shape, or an asymmetric inverse snowman shape based on the bonding portion where the first polymer particles and the second polymer particles are combined. .
  • the amphiphilic anisotropic powder may have a particle size of 100 to 1500 nm.
  • the techniques disclosed herein provide an emulsion composition containing the amphipathic anisotropic powder.
  • the amphiphilic anisotropic powder may form large emulsified particles of 2 to 200 ⁇ m.
  • the amphiphilic anisotropic powder may be contained in an amount of 0.1 to 15% by weight based on the total weight of the emulsion composition.
  • the emulsified composition may contain a polar oil.
  • the polar oil may be at least one selected from the group consisting of liquid fatty alcohols, liquid unsaturated fatty acids, ester oils and triglycerides.
  • the present disclosure is a method for producing an amphipathic anisotropic powder, the method comprising the steps of (1) preparing a core of the first polymer spheroid by stirring the first monomer and the polymerization initiator; (2) stirring the core of the prepared first polymeric spheroid with a compound including a first monomer, a polymerization initiator, and a functional group to prepare a coated first polymer spheroid having a core-shell structure; (3) stirring the prepared first polymer spheroid having a core-shell structure with a second monomer and a polymerization initiator to prepare an anisotropic powder having a second polymer spheroid formed thereon; And (4) introducing a functional group containing a sugar into the prepared anisotropic powder.
  • the hydrophilic functional group may be introduced using a silane coupling agent and a reaction regulator.
  • the silane coupling agent is N- ⁇ N- (3-triethoxysilylpropyl) aminoethyl ⁇ gluconamide, N- (3-triethoxysilylpropyl) gluconamide and N Or at least one selected from the group consisting of- ⁇ N- (3-triethoxysilylpropyl) aminoethyl ⁇ -oligo-hyaluronamide.
  • the reaction modifier may be ammonium hydroxide.
  • the technique disclosed herein has the effect of chemically surface modification of one surface of the anisotropic powder, thereby increasing the hydrophilicity and adjusting the amphipathic to provide an amphiphilic anisotropic powder capable of controlling the emulsifying properties.
  • the techniques disclosed herein include surface modified amphiphilic anisotropic powders, thereby emulsifying particles that can minimize emulsion stability with polar oils, compatibility with anionic materials such as thickeners, or use of thickeners. There is an effect of providing an emulsion composition with improved dispersibility of.
  • the technology disclosed herein has the effect of providing a variety of cosmetic compositions exhibiting different emulsifying properties by including amphiphilic anisotropic powder that can control the amphiphilic properties to control the emulsifying properties.
  • the technology disclosed herein is aimed to provide a method for producing amphiphilic anisotropic powder that is simple and maximized yield to mass production.
  • the emulsion composition contains 1% by weight amphipathic anisotropic powder, 20% by weight diisostearylmaleate and 79% by weight water based on the total weight of the emulsion composition, (a) is anisotropic powder before hydrophilic modification, (b ), (c) and (d) are anisotropic powder photographs after hydrophilic modification with N- (3-triethoxysilylpropyl) gluconamide, (b) at room temperature and (c) at 60 ° C. , (d) is a photograph during freezing storage.
  • FIG. 2 is a photograph comparing the dispersion state of the emulsion particles of the emulsion composition according to the present embodiment, (a) is a powder hydrophilized with an amine compound, (b) is a powder photo hydrophilized with a functional group containing a sugar .
  • FIG. 3 is a photograph comparing the compatibility with the anionic thickener of the emulsion composition according to the present embodiment, (a) is an amine-based hydrophilized powder, (b) is a sugar hydrophilized powder photo.
  • (meth) acryl may mean acryl and / or methacryl.
  • the particle size of the amphipathic anisotropic powder herein is a measure of the maximum length, which is the longest length of the powder particles.
  • the particle size range of the amphipathic powder herein means that at least 95% of the amphipathic anisotropic powder present in the composition falls within this range.
  • the average particle diameter of the emulsified particles means an average value of the diameters of the single particles.
  • the average particle diameter range of the emulsified particles means that at least 95% of the emulsified particles present in the composition fall within the range.
  • the technology disclosed herein includes a hydrophilic first polymeric spheroid and a hydrophobic second polymeric spheroid, wherein the first polymeric spheroid and the second polymeric spheroid at least partially form a relative polymeric spheroid. Coupling in a penetrating structure, the first polymer spheroid has a core-shell structure and the cell provides an amphiphilic anisotropic powder comprising a functional group containing a sugar.
  • the spheroid is a body composed of a polymer, for example, may be a spherical body or an ellipsoid, and may have a long axis length of micro units or nano units based on the longest length in the body cross section.
  • the core of the first polymer spheroid and the second polymer spheroid comprises a vinyl polymer
  • the shell of the first polymer spheroid is a copolymer of a monomer containing a vinyl monomer and a functional group It may include.
  • the vinyl polymer may be a vinyl aromatic polymer, specifically, may be polystyrene.
  • the monomer containing a functional group may be a compound containing siloxane.
  • it may be a siloxane-containing (meth) acrylate, 3- (trimethoxysilyl) propyl acrylate, 3- (trimethoxysilyl) propyl methacrylate, vinyltriethoxysilane and vinyltrimethoxysilane It may be one or more selected from the group consisting of.
  • Amphiphilic anisotropic powder disclosed herein has the effect of maximizing hydrophilicity by the introduction of sugar compounds to increase the amphiphilic property of the anisotropic powder, greatly increasing the dispersion stability due to emulsifying power, compatibility with anionic materials, repulsion between ions have. That is, the amphiphilic anisotropic powder surface-modified by sugar adhesion exhibits an emulsifying power capable of stably emulsifying polar oils, and prevents compatibility problems with anionic raw materials that may occur when hydrophilized with an amine group.
  • the emulsion particle dispersibility is maximized due to the electrostatic repulsion between the particles, thereby enabling the preparation of a stable emulsion composition with a minimum amount of thickener.
  • Chemical surface modification of anisotropic powders can be achieved by sol-gel reaction of silicon.
  • the sugar compound is N- ⁇ N- (3-triethoxysilylpropyl) aminoethyl ⁇ gluconamide, N- (3-triethoxysilylpropyl) gluconamide and N- It may be at least one selected from the group consisting of ⁇ N- (3-triethoxysilylpropyl) aminoethyl ⁇ -oligo-hyaluronamide.
  • the amphiphilic anisotropic powder may have a symmetrical shape, an asymmetrical snowman shape, or an asymmetric inverse snowman shape based on the bonding portion where the first polymer particles and the second polymer particles are combined. .
  • the amphiphilic anisotropic powder may have a particle size of 100 to 1500 nm.
  • the amphipathic powder may have a particle size of 100 to 500 nm, or 200 to 300 nm.
  • the particle size means the length of the longest portion of the amphipathic powder.
  • the amphiphilic powder has a particle size of 100 nm or more, 200 nm or more, 300 nm or more, 400 nm or more, 500 nm or more, 600 nm or more, 700 nm or more, 800 nm or more, 900 nm or more, or 1000 nm or more.
  • the techniques disclosed herein provide an emulsion composition containing the amphipathic anisotropic powder.
  • the emulsion composition may be a cosmetic composition.
  • the cosmetic composition may be one of oil-in-water type (O / W), water-in-oil type (W / O), W / O / W or O / W / O.
  • the cosmetic composition may be an oil-in-water (O / W) formulation having an amphipathic anisotropic powder, oil phase and water phase content ratio of 0.1 to 15: 5 to 60: 10 to 80 by weight.
  • the cosmetic composition may be an oil-in-water (O / W) formulation having an amphipathic anisotropic powder, oil phase and water phase content ratio of 0.1 to 5: 15 to 40: 50 to 80 by weight.
  • the cosmetic composition may be a water-in-oil (W / O) formulation having an amphipathic anisotropic powder, oil phase and water phase content ratio of 1 to 15: 50 to 80: 10 to 30 by weight.
  • the oil phase portion may include one or more selected from the group consisting of liquid fats, solid fats, waxes, hydrocarbon oils, higher fatty acids, higher alcohols, synthetic ester oils and silicone oils.
  • the amphipathic anisotropic powder may be added together with the aqueous phase to prepare an emulsion cosmetic composition.
  • the amphiphilic anisotropic powder may form large emulsified particles of 2 to 200 ⁇ m.
  • the amphipathic powder may be to form large emulsified particles of 10 to 100 ⁇ m, 10 to 50 ⁇ m, or 25 ⁇ m.
  • the amphipathic powder is 2 ⁇ m or more, 5 ⁇ m or more, 10 ⁇ m or more, 15 ⁇ m or more, 20 ⁇ m or more, 25 ⁇ m or more, 30 ⁇ m or more, 40 ⁇ m or more, 50 ⁇ m or more, 80 ⁇ m or more, 100 ⁇ m 130 ⁇ m or more, 150 ⁇ m or more and 180 ⁇ m or more, 200 ⁇ m or less, 180 ⁇ m or less, 150 ⁇ m or less, 130 ⁇ m or less, 100 ⁇ m or less, 80 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less , Emulsified particles of 25 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less, or 5 ⁇ m or less can be formed.
  • the hydrophobic and hydrophilic portions of the amphiphilic anisotropic powder have different orientations with respect to the interface, it is possible to form a large emulsified particle and implement a formulation having excellent usability.
  • Conventional molecular-level surfactants have made it difficult to produce stabilized large emulsion particles having a particle diameter of several tens of micrometers, and the surface thickness of the surfactant was about several nm, whereas the surface thickness of the amphiphilic anisotropic powder disclosed herein Is increased to about several hundred nm and the emulsion stability can be greatly improved as the stabilized interfacial film is formed due to the strong bonding between the powders.
  • the amphiphilic anisotropic powder may be contained in an amount of 0.1 to 15% by weight based on the total weight of the emulsion composition. In another aspect, the amphiphilic anisotropic powder may be contained 0.5 to 5% by weight based on the total weight of the emulsion composition.
  • the amphiphilic anisotropic powder is at least 0.1 wt%, at least 0.5 wt%, at least 1 wt%, at least 2 wt%, at least 4 wt%, at least 6 wt%, at least 8 wt%, based on the total weight of the emulsion composition, 10 wt% or more or 12 wt% or more, but 15 wt% or less, 12 wt% or less, 10 wt% or less, 8 wt% or less, 6 wt% or less, 4 wt% or less, 2 wt% or less, 1 wt% or less Or 0.5 wt% or less.
  • the emulsified particle size can be adjusted from several ⁇ m to several tens or hundreds of ⁇ m.
  • the hydrophobic and hydrophilic portions of the amphiphilic powder have different orientations with respect to the interface, it is possible to form a large emulsified particle and implement a formulation having excellent usability. It was difficult to make stabilized large emulsion particles having a particle diameter of several tens of micrometers with conventional molecular-level surfactants, and the surfactant film thickness was about several nm, whereas the amphiphilic powder had an interface film thickness of several hundred nm. As the interfacial film thickness increases and the interfacial powder bonds form a stabilized interfacial film, the emulsion stability is rapidly improved.
  • the emulsified composition may contain a polar oil.
  • the polar oil may be at least one selected from the group consisting of liquid fatty alcohols, liquid unsaturated fatty acids, ester oils and triglycerides.
  • the polar oils include oleyl alcohol, oleic acid, linolenic acid, myristyllactate, triethyl citrate, diisostearyl maleate, C 12-15 alkyl benzoate, polyglyceryl-2 triisostearate, ethyl hex Silmethoxycinnamate, caprylic / capryltriglyceride, and the like.
  • the technique disclosed herein comprises the steps of (1) stirring a first monomer and a polymerization initiator to prepare a core of a first polymeric spheroid; (2) stirring the core of the prepared first polymeric spheroid with a compound including a first monomer, a polymerization initiator, and a functional group to prepare a coated first polymer spheroid having a core-shell structure; (3) stirring the prepared first polymer spheroid having a core-shell structure with a second monomer and a polymerization initiator to prepare an anisotropic powder having a second polymer spheroid formed thereon; And (4) introducing a functional group containing a sugar into the prepared anisotropic powder.
  • the stirring may be rotary stirring. Rotational agitation is preferred because uniform mechanical mixing is required along with chemical modification to produce uniform particles.
  • the rotary stirring may be rotary stirring in the cylindrical reactor, but the rotary stirring method is not limited thereto.
  • the size and location of the baffles in the cylindrical reactor and the degree of spacing with the impeller greatly affect the uniformity of the particles produced. It is desirable to minimize the blade gap between the inner wing and the impeller to equalize the convective flow and its strength, and to supply the powder reaction liquid below the wing length and maintain the impeller rotation speed at a high speed. It may be rotated at a highway of 200 rpm or more, and the ratio of the length of the diameter and the height of the reactor may be 1 to 3: 1 to 5, more specifically, 10 to 30 cm in diameter and 10 to 50 cm in height.
  • the reactor size can vary in proportion to the reaction capacity.
  • the material of the cylindrical reactor may be ceramic, glass, etc., the temperature at the time of stirring is preferably 50 to 90 °C.
  • the simple rotary method enables the production of uniform particles and is a low energy method that requires less energy, and has a characteristic of enabling mass production by maximizing reaction efficiency.
  • the tumbling method in which the reactor itself rotates in the related art requires high energy and rotates the reactor at a predetermined angle, thus requiring high energy and restricting the size of the reactor. Due to the limitations of the reactor size, the amount produced is also limited to small amounts of about several hundred mg to several g, making it unsuitable for mass production.
  • the first monomer and the second monomer may be the same or different, specifically, may be a vinyl monomer.
  • the first monomer added in step (2) is the same as the first monomer used in step (1), the initiator used in each step may be the same or different.
  • the vinyl monomer may be a vinyl aromatic monomer.
  • the vinyl aromatic monomer may be substituted or unsubstituted styrene, and may be, for example, one or more selected from the group consisting of styrene, alphamethylstyrene, alphaethylstyrene, and paramethylstyrene.
  • the polymerization initiator may be a radical polymerization initiator, specifically, at least one of a peroxide-based and azo-based. Moreover, ammonium persulfate, sodium persulfate, potassium persulfate can also be used.
  • the peroxide radical polymerization initiator is benzoyl peroxide, lauryl peroxide, cumene hydroperoxide, methyl ethyl ketone peroxide, t- butyl hydroperoxide, o-chlorobenzoyl peroxide, o- methoxy benzoyl peroxide, t-butylperoxy-2-ethylhexanoate and t-butylperoxyisobutyrate may be one or more selected from the group consisting of, the azo radical polymerization initiator is 2,2'- azobisisobutyronitrile, 2,2'-azobis (2-methylisobutyronitrile) and 2,2'-zobis (2,4-dimethylvaleronitrile).
  • the first monomer and the polymerization initiator may be mixed in a weight ratio of 100 to 250: 1.
  • the first monomer, the polymerization initiator and the stabilizer may be added together to mix the first monomer, the polymerization initiator, and the stabilizer in a weight ratio of 100 to 250: 1: 1: 0.001 to 5.
  • the powder size and shape are determined according to the first polymer spheroid size control in the initial step (1), and the first polymer spheroid size can be adjusted according to the reaction ratio of the first monomer, initiator and stabilizer.
  • the weight ratio of the said range there exists an effect which can raise the uniformity of anisotropic powder.
  • the stabilizer may be an ionic vinyl monomer, specifically, sodium 4-vinylbenzenesulfonate may be used.
  • Stabilizers prevent swelling of the resulting particles and impart positive or negative charges to the surface of the powder to electrostatically prevent mutual coalescence (bonding) during particle generation.
  • the ratio of the first monomer, the initiator and the stabilizer is 110 to 130: 1: 2 to 4, specifically 115 to 125: 1: 2 to 4, more specifically 120 It can be prepared from a first polymer spheroid of 1: 3.
  • the ratio of the first monomer, the initiator and the stabilizer is 225 to 240: 1: 1 to 3, specifically 230 to 235: 1: 1 to 3, more specifically 235: 1: 2 can be prepared from the first polymer spheroid.
  • the ratio of the first monomer, the initiator and the stabilizer is 110 to 130: 1: 0, specifically 115 to 125: 1: 0, more specifically 120: 1 : Can be prepared from a first polymer spheroid that is zero.
  • the asymmetric snowman-like amphiphilic powder has a ratio of the first monomer, the initiator, and the stabilizer 100 to 140: 1: 8 to 12, specifically 110 to 130: 1: 9 to 11, more specifically 120: 1: It may be prepared from the first polymer spheroid prepared at a reaction ratio of 10.
  • the asymmetric inverse snowman-like amphiphilic powder has a ratio of the first monomer, the initiator, and the stabilizer 100 to 140: 1: 1 to 5, specifically 110 to 130: 1: 1 to 4, more specifically 120: 1. It can be prepared from the first polymer spheroid prepared at a reaction ratio of 3 :.
  • the compound including the first monomer, the polymerization initiator and the functional group in the step (2) may be mixed in a weight ratio of 80 to 98: 0.2 to 0.8: 2 to 20.
  • the compound including the first monomer, the polymerization initiator and the functional group may be mixed in a weight ratio of 160 to 200: 1: 6 to 40.
  • the degree of coating can be adjusted according to the reaction ratio, and the amphipathic anisotropic powder is formed after the degree of coating. When the reaction ratio is reacted, the coating thickness increases to about 10 to 30%, specifically 20%, relative to the initial thickness. The coating is too thick so that the powdering does not proceed or is too thin so that the powdering proceeds well without the problem of powdering in multiple directions. Moreover, by mixing in the weight ratio of the said range, there exists an effect which can raise the uniformity of anisotropic powder.
  • the second monomer and the polymerization initiator may be mixed in a weight ratio of 200 to 250: 1.
  • the stabilizer in step (3), may be added together with the second monomer and the polymerization initiator to mix the second monomer, the polymerization initiator and the stabilizer in a weight ratio of 200 to 250: 1: 1: 0.001 to 5.
  • the specific kind of stabilizer is as above-mentioned.
  • the second monomer content in the step (3) may be mixed to 40 to 300 parts by weight when the weight of the first polymer spheroid of the core-shell structure is 100 parts by weight.
  • the second monomer content is 40 to 100% by weight of the weight of the first polymer spheroid of the core-shell structure, an asymmetrical snowman type powder is obtained, and when it is 100 to 150%, or 110 to 150%, a symmetrical shape
  • the powder of is obtained, and when it is 150 to 300% or 160 to 300%, an asymmetric inverse snowman type powder is obtained.
  • by mixing in the weight ratio of the said range there exists an effect which can raise the uniformity of anisotropic powder.
  • the functional group containing a sugar in step (4) is not limited thereto, but may be introduced using a silane coupling agent and a reaction regulator.
  • the silane coupling agent is N- ⁇ N- (3-triethoxysilylpropyl) aminoethyl ⁇ gluconamide, N- (3-triethoxysilylpropyl) gluconamide and N Or at least one selected from the group consisting of- ⁇ N- (3-triethoxysilylpropyl) aminoethyl ⁇ -oligo-hyaluronamide.
  • the reaction modifier may be ammonium hydroxide.
  • Styrene as a monomer, sodium 4-vinylbenzenesulfonate as a stabilizer, and azobisisobutyronitrile (AIBN) as an initiator were mixed and reacted at 75 ° C. for 8 hours. .
  • the reaction was stirred in a cylindrical reactor, which was 11 cm in diameter, 17 cm in height, glass, and was rotated at a speed of 200 rpm.
  • Styrene as a monomer, sodium 4-vinylbenzenesulfonate as a stabilizer, and azobisisobutyronitrile as an initiator in a polystyrene-coreshell (PS-CS) aqueous dispersion solution obtained as a result of the reaction.
  • PS-CS polystyrene-coreshell
  • AIBN Azobisisobutyronitrile
  • An oil-in-water emulsified composition was prepared using the amphipathic anisotropic powder prepared as described above in Table 2.
  • the anisotropic powder the hydrophilized anisotropic powders of Comparative Examples 1 to 6 and Examples 1 to 3 respectively prepared in Production Example 4 were used.
  • Ingredient Name Content (% by weight) Hydrophilized Anisotropic Powder 3 Oil (Di-C12-13 Alkyl Malate) 30 DI water To 100
  • the amphiphilic anisotropic powder hydrophilized with an amine compound, the powder is agglomerated together with the emulsified particles when forming the emulsified particles during emulsification of the polar organic oil, or the cream is partially emulsified.
  • the amphiphilic anisotropic powder surface-modified by the adhesion of sugars was found to form stable emulsion particles even in a highly polar organic oil and to maintain them stably. Therefore, it can be seen that the amphipathic anisotropic powder disclosed herein has a more powerful emulsification capacity for various oils ranging from nonpolar to polar oils and has an effect of stably maintaining the formed emulsion particles.
  • the particle dispersion state of the emulsion composition prepared as in Test Example 1 was placed in a sealed container and maintained at 20 ° C. for 4 hours, and then evaluated by observing the dispersion state. 2 shows a photograph of the observed composition.
  • (a) is a composition using Comparative Example 3 which is an anisotropic powder hydrophilized with an amine compound
  • amphiphilic anisotropic powders surface-modified by sugar adhesion such as N- (3-triethoxysilylpropyl) gluconamide, have negative charges, resulting in electrostatic repulsion between particles, thus using minimal thickeners. It was confirmed that only a stable dispersion state could be maintained.
  • the particle dispersion state of the emulsion composition prepared as in Test Example 1 was 0.6g less than the surface of the composition on a glass (material) plate and kept at an angle of 45 ° to observe the aggregation phenomenon between the powders and the results are shown in FIG. 3. It was. (a) is a composition using Comparative Example 3 which is an anisotropic powder hydrophilized with an amine compound, and (b) is a composition using Example 2 which is an anisotropic powder hydrophilized with a sugar-containing functional group.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

본 명세서에는 표면 개질된 양친매성 이방성 분체 및 이를 함유하는 유화 조성물과 이의 제조방법이 개시된다. 상기 양친매성 이방성 분체는 표면 개질되어 친수성이 증대되고 양친매성을 조절하여 유화 특성 조절이 가능하다. 또한, 상기 유화 조성물은 표면 개질된 양친매성 이방성 분체를 함유함으로써, 극성오일과의 유화 안정성, 점증제와 같은 음이온성 물질과의 상용성 또는 점증제 사용량을 최소화할 수 있는 유화 입자의 분산성이 개선되는 효과가 있다.

Description

표면 개질된 양친매성 이방성 분체 및 이를 함유하는 유화 조성물과 이의 제조방법
본 명세서에는 표면 개질된 양친매성 이방성 분체 및 이를 함유하는 유화 조성물과 이의 제조방법이 개시된다.
다양한 형태 및 크기를 갖는 미세 입자(나노, 마이크로 사이즈)들의 다양한 제조방법들이 보고되어 왔으며, 특히 고분자로 이루어진 구형 미세 입자는 그 제조방법에 따라 사이즈와 형태가 조절됨에 따라 응용 가능성이 확대되고 있다. 응용 예들 중 하나로 미세 구형 입자를 이용하여 안정화된 거대 유화 입자를 형성할 수 있는 피커링 에멀젼이 있다.
구형 고체 분체를 이용한 피커링 에멸젼은 고체 분체 표면 계면에서의 젖음성 정도에 따라, 즉 친유성 또는 친수성 정도에 따라 w/o 또는 o/w 에멀젼을 형성한다. 면막의 방향성을 결정하는 인자로서 접촉각이 있고, 접촉각이 90도 보다 작으면 입자 표면의 많은 부분이 수상으로 존재하여 o/w를 생성하고, 접촉각이 90도 보다 크면 오일쪽에 존재하여 w/o를 생성한다.
일반적으로 피커링 에멀젼은 기존 계면활성제 시스템에 비하여 거대한 유화 입자 생성이 가능하고 생성된 유화 입자들은 물리적 안정화에 따른 합일(coalescence)을 방지하여 안정화된 유화 입자를 형성한다. 그러나, 피커링 고체 입자는 친수성 또는 친유성 표면을 보유하기는 하지만 계면활성제처럼 양쪽성을 보유하지는 않는다.
이에 피커링에 사용되는 구형 분체 입자들에 양친성 계면활성력을 부여하여 그 계면활성력을 증가시키려는 시도들이 이루어져 왔고 그 예로 야누스 구형 입자를 들 수 있다. 하지만 이러한 구형의 형태학적 제한 때문에 화학적인 이방성에는 한계가 있다. 즉, 형태학적 이방성일지라도 전체적으로 소수성이거나 친수성이어서 화학적 이방성에는 한계가 있다. 이에 기하학적인 형태 조절과 함께 화학적인 이방성을 부여함으로써 계면활성력을 가지는 이방성 분체의 제조가 시도되어 왔으나, 기하학적인 한계성 및 균일한 대량 생산이 어렵다는 문제점이 있어 실질적인 응용이 이루어지지 않았다.
일 측면에서, 본 명세서는 이방성 분체의 한쪽 구면을 화학적으로 표면 개질함으로써, 친수성이 증대되고 유화 특성 조절이 가능한 양친매성 이방성 분체를 제공하는 것을 목적으로 한다.
다른 측면에서, 본 명세서는 표면 개질된 양친매성 이방성 분체를 포함함으로써, 극성오일과의 유화 안정성, 점증제와 같은 음이온성 물질과의 상용성 또는 점증제 사용량을 최소화할 수 있는 유화 입자의 분산성이 개선된 유화 조성물을 제공하는 것을 목적으로 한다.
또 다른 측면에서, 본 명세서는 간단하고 수율이 극대화되어 대량 생산이 가능한 양친매성 이방성 분체의 제조방법을 제공하는 것을 목적으로 한다.
일 측면에서, 본 명세서에 개시된 기술은 친수성인 제1 고분자 스페로이드 및 소수성인 제2 고분자 스페로이드를 포함하며, 상기 제1 고분자 스페로이드 및 제2 고분자 스페로이드는 적어도 부분적으로 상대 고분자 스페로이드를 침투하는 구조로 결합하며, 상기 제1 고분자 스페로이드는 코어-쉘 구조를 갖고 상기 셀은 당을 함유하는 관능기를 포함하는, 양친매성 이방성 분체 를 제공한다.
예시적인 일 구현예에 따르면, 상기 제1 고분자 스페로이드의 코어와 제2 고분자 스페로이드는 비닐 고분자를 포함하며, 상기 제1 고분자 스페로이드의 쉘은 비닐 모노머와 관능기를 함유하는 모노머의 공중합체를 포함할 수 있다.
예시적인 일 구현예에 따르면, 상기 비닐 고분자는 폴리스티렌을 포함할 수 있다.
예시적인 일 구현예에 따르면, 상기 관능기를 함유하는 모노머는 실록산 함유 (메트)아크릴레이트일 수 있다.
예시적인 일 구현예에 따르면, 상기 당을 함유하는 관능기는 N-{N-(3-트리에톡시실릴프로필)아미노에틸}글루콘아미드, N-(3-트리에톡시실릴프로필)글루콘아미드 및 N-{N-(3-트리에톡시실릴프로필)아미노에틸}-올리고-히아루론아미드로 이루어진 군에서 선택되는 1 이상의 화합물로부터 유래한 것일 수 있다.
예시적인 일 구현예에 따르면, 상기 양친매성 이방성 분체는 제1 고분자 입자 및 제2 고분자 입자가 결합된 결합부를 기준으로 대칭 형상, 비대칭 스노우맨(snowman) 형상 또는 비대칭 역스노우맨 형상을 가질 수 있다.
예시적인 일 구현예에 따르면, 상기 양친매성 이방성 분체는 입자 크기가 100 내지 1500 nm일 수 있다.
다른 측면에서, 본 명세서에 개시된 기술은 상기 양친매성 이방성 분체를 함유하는 유화 조성물을 제공한다.
예시적인 일 구현예에 따르면, 상기 양친매성 이방성 분체는 2 내지 200 ㎛의 거대 유화 입자를 형성할 수 있다.
예시적인 일 구현예에 따르면, 상기 양친매성 이방성 분체는 유화 조성물 전체 중량을 기준으로 0.1 내지 15 중량% 함유될 수 있다.
예시적인 일 구현예에 따르면, 상기 유화 조성물은 극성 오일을 함유할 수 있다.
예시적인 일 구현예에 따르면, 상기 극성 오일은 액상 지방 알코올, 액상 불포화 지방산, 에스테르계 오일 및 트리글리세라이드로 이루어진 군에서 선택되는 1 이상일 수 있다.
다른 측면에서, 본 명세서는 양친매성 이방성 분체의 제조방법으로서, 상기 방법은 (1) 제1 모노머 및 중합 개시제를 교반하여 제1 고분자 스페로이드의 코어를 제조하는 단계; (2) 상기 제조된 제1 고분자 스페로이드의 코어를, 제1 모노머, 중합 개시제 및 관능기를 포함하는 화합물과 교반하여 코팅된 코어-쉘 구조의 제1 고분자 스페로이드를 제조하는 단계; (3) 상기 제조된 코어-쉘 구조의 제1 고분자 스페로이드를, 제2 모노머 및 중합 개시제와 교반하여 제2 고분자 스페로이드가 형성된 이방성 분체를 제조하는 단계; 및 (4) 상기 제조된 이방성 분체에 당을 함유하는 관능기를 도입하는 단계;를 포함하는 양친매성 이방성 분체의 제조방법을 제공한다.
예시적인 일 구현예에 따르면, 상기 (4)단계에서 친수성 관능기는 실란 커플링제와 반응 조절제를 이용하여 도입할 수 있다.
예시적인 일 구현예에 따르면, 상기 실란 커플링제는 N-{N-(3-트리에톡시실릴프로필)아미노에틸}글루콘아미드, N-(3-트리에톡시실릴프로필)글루콘아미드 및 N-{N-(3-트리에톡시실릴프로필)아미노에틸}-올리고-히아루론아미드로 이루어진 군에서 선택되는 1 이상일 수 있다.
예시적인 일 구현예에 따르면, 상기 반응 조절제는 암모늄 하이드록사이드일 수 있다.
일 측면에서, 본 명세서에 개시된 기술은 이방성 분체의 한쪽 구면을 화학적으로 표면 개질함으로써, 친수성이 증대되고 양친매성을 조절하여 유화 특성 조절이 가능한 양친매성 이방성 분체를 제공하는 효과가 있다.
다른 측면에서, 본 명세서에 개시된 기술은 표면 개질된 양친매성 이방성 분체를 포함함으로써, 극성오일과의 유화 안정성, 점증제와 같은 음이온성 물질과의 상용성 또는 점증제 사용량을 최소화할 수 있는 유화 입자의 분산성이 개선된 유화 조성물을 제공하는 효과가 있다.
다른 측면에서, 본 명세서에 개시된 기술은 양친매성을 조절하여 유화 특성 조절이 가능한 양친매성 이방성 분체를 포함함으로써, 서로 다른 유화 특성을 나타내는 다양한 화장료 조성물을 제공하는 효과가 있다.
다른 측면에서, 본 명세서에 개시된 기술은 간단하고 수율이 극대화되어 대량 생산이 가능한 양친매성 이방성 분체의 제조방법을 제공하는 것을 목적으로 한다.
도 1은 본 실시예에 따른 극성 오일이 함유된 유화 조성물의 유화 입자 현미경 사진이다. 상기 유화 조성물은 유화 조성물 전체 중량을 기준으로 양친매성 이방성 분체 1 중량%, 디이소스테아릴말레이트 20 중량% 및 물 79 중량%를 함유하며, (a)는 친수화 개질 전의 이방성 분체, (b), (c) 및 (d)는 N-(3-트리에톡시실릴프로필)글루콘아미드로 친수화 개질 후의 이방성 분체 사진으로, (b)는 실온 보관 시, (c)는 60도 보관 시, (d)는 냉동 보관 시의 사진이다.
도 2는 본 실시예에 따른 유화 조성물의 유화 입자 분산 상태를 비교한 사진으로, (a)는 아민계 화합물로 친수화된 분체, (b)는 당을 포함하는 관능기로 친수화된 분체 사진이다.
도 3은 본 실시예에 따른 유화 조성물의 음이온성 점증제와의 상용성을 비교한 사진으로, (a)는 아민계 친수화된 분체, (b)는 당 친수화된 분체 사진이다.
이하, 첨부한 도면들을 참조하여, 본 출원의 실시예들을 보다 상세하게 설명하고자 한다. 그러나 본 출원에 개시된 기술은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 출원의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면에서 각 구성요소를 명확하게 표현하기 위하여 구성요소의 폭이나 두께 등의 크기를 다소 확대하여 나타내었다. 또한, 설명의 편의를 위하여 구성요소의 일부만을 도시하기도 하였으나, 당업자라면 구성요소의 나머지 부분에 대하여도 용이하게 파악할 수 있을 것이다. 또한, 해당 분야에서 통상의 지식을 가진 자라면 본 출원의 기술적 사상을 벗어나지 않는 범위 내에서 본 출원의 사상을 다양한 다른 형태로 구현할 수 있을 것이다.
본 명세서에서 “치환된”은 별도의 정의가 없는 한, 본 발명의 작용기 중 하나 이상의 수소 원자가 할로겐 (F, Cl, Br 또는 I), 히드록시기, 니트로기, 이미노기(=NH, =NR, R은 탄소수 1-10의 알킬기이다), 아미디노기, 히드라진 또는 히드라존기, 카르복시기, 치환 또는 비치환된 탄소수 1-20의 알킬기, 치환 또는 비치환된 탄소수 3-30의 헤테로아릴기, 치환 또는 비치환된 탄소수 2-30의 헤테로시클로알킬기로 치환되는 것을 의미할 수 있다.
본 명세서에서 본 명세서에서 "(메트)아크릴"은 아크릴(acryl) 및/또는 메타크릴(methacryl)을 의미할 수 있다.
본 명세서에서 양친매성 이방성 분체의 입자 크기는 분체 입자의 가장 긴 길이인 최장경(maximum length)을 측정한 것이다. 본 명세서에서 양친매성 분체의 입자 크기 범위는 조성물 내에 존재하는 양친매성 이방성 분체의 95% 이상이 상기 범위 내에 속함을 의미한다.
본 명세서에서 유화 입자의 평균 입경이란 단일 입자의 지름의 평균값을 의미한다. 본 명세서에서 유화 입자의 평균 입경 범위는 조성물 내에 존재하는 유화 입자의 95% 이상이 상기 범위 내에 속함을 의미한다.
일 측면에서, 본 명세서에 개시된 기술은 친수성인 제1 고분자 스페로이드 및 소수성인 제2 고분자 스페로이드를 포함하며, 상기 제1 고분자 스페로이드 및 제2 고분자 스페로이드는 적어도 부분적으로 상대 고분자 스페로이드를 침투하는 구조로 결합하며, 상기 제1 고분자 스페로이드는 코어-쉘 구조를 갖고 상기 셀은 당을 함유하는 관능기를 포함하는, 양친매성 이방성 분체 를 제공한다.
본 명세서에서 스페로이드는 고분자로 구성된 하나의 몸체로서, 예를 들어 구형체 또는 타원형체일 수 있으며, 몸체 단면에서 가장 긴 길이를 기준으로 마이크로 단위 또는 나노 단위의 장축 길이를 가질 수 있다.
예시적인 일 구현예에 따르면, 상기 제1 고분자 스페로이드의 코어와 제2 고분자 스페로이드는 비닐 고분자를 포함하며, 상기 제1 고분자 스페로이드의 쉘은 비닐 모노머와 관능기를 함유하는 모노머의 공중합체를 포함할 수 있다.
예시적인 일 구현예에 따르면, 상기 비닐 고분자는 비닐 방향족계 고분자일 수 있으며, 구체적으로, 폴리스티렌일 수 있다.
예시적인 일 구현예에 따르면, 상기 관능기를 함유하는 모노머는 실록산을 함유하는 화합물일 수 있다. 구체적으로, 실록산 함유 (메트)아크릴레이트일 수 있으며, 3-(트리메톡시실릴)프로필 아크릴레이트, 3-(트리메톡시실릴)프로필 메타크릴레이트, 비닐트리에톡시실란 및 비닐트리메톡시실란로 이루어진 군에서 선택되는 1 이상일 수 있다.
본 명세서에 개시된 양친매성 이방성 분체는 당 화합물이 도입됨으로써 친수성이 극대화되어 이방성 분체의 양친매성이 증가되며, 유화력, 음이온성 물질과의 상용성, 이온 간의 반발력에 따른 분산 안정성이 크게 증대되는 효과가 있다. 즉, 당 부착으로 표면 개질된 양친매성 이방성 분체는 극성 오일도 안정하게 유화할 수 있는 유화력을 나타내며, 아민기로 친수화하는 경우 나타날 수 있는 음이온성 원료와의 상용성 문제를 예방하고, 분체 표면의 전하로 인해 입자 상호 간의 정전기적 반발력에 따른 유화 입자 분산성이 극대화되어 최소한의 점증제만으로도 안정된 유화 조성물의 제조가 가능하다. 이방성 분체의 화학적 표면 개질은 실리콘의 졸-겔 반응으로 이루어질 수 있다.
예시적인 일 구현예에 따르면, 상기 당 화합물은 N-{N-(3-트리에톡시실릴프로필)아미노에틸}글루콘아미드, N-(3-트리에톡시실릴프로필)글루콘아미드 및 N-{N-(3-트리에톡시실릴프로필)아미노에틸}-올리고-히아루론아미드로 이루어진 군에서 선택되는 1 이상일 수 있다.
예시적인 일 구현예에 따르면, 상기 양친매성 이방성 분체는 제1 고분자 입자 및 제2 고분자 입자가 결합된 결합부를 기준으로 대칭 형상, 비대칭 스노우맨(snowman) 형상 또는 비대칭 역스노우맨 형상을 가질 수 있다.
예시적인 일 구현예에 따르면, 상기 양친매성 이방성 분체는 입자 크기가 100 내지 1500 nm일 수 있다. 다른 측면에서, 상기 양친매성 분체는 입자 크기가 100 내지 500 nm, 또는 200 내지 300 nm일 수 있다. 이때, 입자 크기는 양친매성 분체의 가장 긴 부분을 측정한 길이를 의미한다. 구체적으로, 상기 양친매성 분체는 입자 크기가 100 nm 이상, 200 nm 이상, 300 nm 이상, 400 nm 이상, 500 nm 이상, 600 nm 이상, 700 nm 이상, 800 nm 이상, 900 nm 이상, 1000 nm 이상, 1100 nm 이상, 1200 nm 이상, 1300 nm 이상 또는 1400 nm 이상이면서, 1500 nm 이하, 1400 nm 이하, 1300 nm 이하, 1200 nm 이하, 1100 nm 이하, 1000 nm 이하, 900 nm 이하, 800 nm 이하, 700 nm 이하, 600 nm 이하, 500 nm 이하, 400 nm 이하, 300 nm 이하 또는 200 nm 이하일 수 있다.
다른 측면에서, 본 명세서에 개시된 기술은 상기 양친매성 이방성 분체를 함유하는 유화 조성물을 제공한다.
예시적인 일 구현예에 따르면, 상기 유화 조성물은 화장료 조성물일 수 있다. 구체적으로 상기 화장료 조성물은 수중유형(O/W), 유중수형(W/O), W/O/W 또는 O/W/O의 제형 중 하나일 수 있다.
상기 화장료 조성물은 양친매성 이방성 분체, 유상부 및 수상부 함량비가 중량 기준 0.1 내지 15 : 5 내지 60 : 10 내지 80인 수중유형(O/W) 제형인 것일 수 있다. 다른 측면에서, 상기 화장료 조성물은 양친매성 이방성 분체, 유상부 및 수상부 함량비가 중량 기준 0.1 내지 5 : 15 내지 40 : 50 내지 80인 수중유형(O/W) 제형인 것일 수 있다. 또한, 상기 화장료 조성물은 양친매성 이방성 분체, 유상부 및 수상부 함량비가 중량 기준 1 내지 15 : 50 내지 80 : 10 내지 30인 유중수형(W/O) 제형인 것일 수 있다. 상기 유상부는 액체 유지, 고체 유지, 왁스류, 탄화 수소유, 고급 지방산, 고급 알콜, 합성 에스테르유 및 실리콘유로 구성된 군에서 선택되는 1 이상을 포함할 수 있다.
예시적인 구현예에 따르면, 상기 양친매성 이방성 분체는 수상부와 함께 첨가되어 에멀젼 화장료 조성물을 제조할 수 있다.
예시적인 일 구현예에 따르면, 상기 양친매성 이방성 분체는 2 내지 200 ㎛의 거대 유화 입자를 형성할 수 있다. 다른 측면에서, 상기 양친매성 분체는 10 내지 100 ㎛, 10 내지 50 ㎛, 또는 25 ㎛의 거대 유화 입자를 형성하는 것일 수 있다. 구체적으로, 상기 양친매성 분체는 2 ㎛ 이상, 5 ㎛ 이상, 10 ㎛ 이상, 15 ㎛ 이상, 20 ㎛ 이상, 25 ㎛ 이상, 30 ㎛ 이상, 40 ㎛ 이상, 50 ㎛ 이상, 80 ㎛ 이상, 100 ㎛ 이상, 130 ㎛ 이상, 150 ㎛ 이상 또는 180 ㎛ 이상이면서, 200 ㎛ 이하, 180 ㎛ 이하, 150 ㎛ 이하, 130 ㎛ 이하, 100 ㎛ 이하, 80 ㎛ 이하, 50 ㎛ 이하, 40 ㎛ 이하, 30 ㎛ 이하, 25 ㎛ 이하, 20 ㎛ 이하, 15 ㎛ 이하, 10 ㎛ 이하 또는 5 ㎛ 이하의 유화 입자를 형성할 수 있다.
상기 양친매성 이방성 분체의 소수성 부분 및 친수성 부분이 계면에 대한 상이한 방향성을 가짐으로써 거대 유화 입자를 형성하고 사용감이 우수한 제형의 구현이 가능하다. 종래 분자 수준의 계면활성제로는 수십 ㎛의 입경을 갖는 안정화된 거대 유화 입자를 만들기가 어려웠고, 계면활성제의 계면막 두께가 약 수 nm였던 반면, 본 명세서에 개시된 양친매성 이방성 분체의 경우 계면막 두께가 약 수백 nm로 증가하고 분체간 강한 결합으로 인해 안정화된 계면막을 형성함에 따라 유화 안정도가 크게 향상될 수 있다.
예시적인 일 구현예에 따르면, 상기 양친매성 이방성 분체는 유화 조성물 전체 중량을 기준으로 0.1 내지 15 중량% 함유될 수 있다. 다른 측면에서, 상기 양친매성 이방성 분체는 유화 조성물 전체 중량을 기준으로 0.5 내지 5 중량% 함유된 것일 수 있다. 구체적으로, 상기 양친매성 이방성 분체는 유화 조성물 전체 중량을 기준으로 0.1 중량% 이상, 0.5 중량% 이상, 1 중량% 이상, 2 중량% 이상 4 중량% 이상, 6 중량% 이상, 8 중량% 이상, 10 중량% 이상 또는 12 중량% 이상이면서, 15 중량% 이하, 12 중량% 이하, 10 중량% 이하, 8 중량% 이하, 6 중량% 이하, 4 중량% 이하, 2 중량% 이하, 1 중량% 이하 또는 0.5 중량% 이하일 수 있다. 상기 양친매성 이방성 분체 함량을 조절함으로써, 유화 입자 크기를 수 ㎛에서 수십, 수백 ㎛까지 조절 가능하다.
상기 양친매성 분체의 소수성 부분 및 친수성 부분이 계면에 대한 상이한 방향성을 가짐으로써 거대 유화 입자를 형성하고 사용감이 우수한 제형의 구현이 가능하다. 종래 분자 수준의 계면활성제로는 수십 ㎛의 입경을 갖는 안정화된 거대 유화 입자를 만들기가 어려웠고, 계면활성제의 계면막 두께가 약 수 nm였던 반면 상기 양친매성 분체의 경우 계면막 두께가 약 수백 nm로 계면막 두께가 증가하고 분체간 강한 결합으로 인해 안정화된 계면막을 형성함에 따라 유화 안정도가 급격히 향상되는 효과가 있다.
예시적인 일 구현예에 따르면, 상기 유화 조성물은 극성 오일을 함유할 수 있다.
예시적인 일 구현예에 따르면, 상기 극성 오일은 액상 지방 알코올, 액상 불포화 지방산, 에스테르계 오일 및 트리글리세라이드로 이루어진 군에서 선택되는 1 이상일 수 있다.
상기 극성 오일로는 올레일 알코올, 올레인산, 리놀렌산, 미리스틸락테이트, 트리에틸시트레이트, 디이소스테아릴말레이트, C12-15 알킬 벤조에이트, 폴리글리세릴-2트리이소스테아레이트, 에칠헥실메톡시신나메이트, 카프릴릭/카프릴트리글리세라이드 등을 예로 들 수 있다.
다른 측면에서, 본 명세서에 개시된 기술은 (1) 제1 모노머 및 중합 개시제를 교반하여 제1 고분자 스페로이드의 코어를 제조하는 단계; (2) 상기 제조된 제1 고분자 스페로이드의 코어를, 제1 모노머, 중합 개시제 및 관능기를 포함하는 화합물과 교반하여 코팅된 코어-쉘 구조의 제1 고분자 스페로이드를 제조하는 단계; (3) 상기 제조된 코어-쉘 구조의 제1 고분자 스페로이드를, 제2 모노머 및 중합 개시제와 교반하여 제2 고분자 스페로이드가 형성된 이방성 분체를 제조하는 단계; 및 (4) 상기 제조된 이방성 분체에 당을 함유하는 관능기를 도입하는 단계;를 포함하는 양친매성 이방성 분체의 제조방법을 제공한다.
상기 (1), (2) 및 (3)단계에서 교반은 회전 교반일 수 있다. 균일한 입자 생성을 위하여 화학적인 개질과 더불어 균일한 기계적 혼합이 필요하기 때문에 회전 교반하는 것이 바람직하다. 상기 회전 교반은 원통형 반응기에서 회전 교반할 수 있으나, 회전 교반 방법을 이에 한정하는 것은 아니다.
이때, 반응기 내부 디자인은 분체 형성에 큰 영향을 미친다. 원통형 반응기 내 날개(baffles)의 크기와 위치, 및 임펠러(impeller)와의 간격 정도는 생성되는 입자의 균일성에 큰 영향을 미친다. 내부 날개와 임펠러의 블레이드(blade) 간격을 최소화하여 대류 흐름과 그 세기를 균일화하고, 분체 반응액은 날개 길이 이하로 투입되며 임펠러 회전속도는 고속을 유지하는 것이 바람직하다. 200 rpm 이상의 고속도로 회전될 수 있고, 반응기의 지름과 높이의 길이 비율은 1 내지 3 : 1 내지 5, 더욱 구체적으로 지름 10 내지 30 cm 및 높이 10 내지 50 cm일 수 있다. 반응기 크기는 반응 용량에 비례하여 변화가 가능하다. 또한, 원통형 반응기의 재질은 세라믹, 유리 등일 수 있고, 교반시 온도는 50 내지 90 ℃인 것이 바람직하다.
원통형 회전 반응기에서 단순 회전법은 균일한 입자의 생성을 가능하게 하고 에너지가 적게 소요되는 저에너지 방법이면서 반응 효율이 극대화되어 대량 생산을 가능하게 하는 특징이 있다. 종래 사용되었던 반응기 자체가 회전하는 텀블링 방식은 반응기 전체를 일정한 각도로 기울여서 고속으로 회전시켜야 하므로 고에너지가 필요하고 반응기의 크기가 제한적이었다. 반응기 크기의 한계 때문에 생성되는 양 또한 약 수백 mg 내지 수 g 정도의 소량으로 제한적이어서 대량 생산에 부적합하였다.
예시적인 일 구현예에 따르면, 상기 제1 모노머와 제2 모노머는 동일 또는 상이할 수 있으며, 구체적으로 비닐 모노머일 수 있다. 또한, 상기 (2)단계에서 첨가되는 제1 모노머는 상기 (1)단계에서 사용된 제1 모노머와 동일하며, 각 단계에서 사용되는 개시제는 동일 또는 상이할 수 있다.
예시적인 일 구현예에 따르면, 상기 비닐 모노머는 비닐 방향족계 모노머일 수 있다. 상기 비닐 방향족계 모노머는 치환 또는 비치환된 스티렌일 수 있고, 예를 들어 스티렌, 알파메틸스티렌, 알파에틸스티렌 및 파라메틸스티렌으로 이루어진 군에서 선택되는 1 이상일 수 있다.
예시적인 일 구현예에 따르면, 상기 중합 개시제는 라디칼 중합 개시제일 수 있으며, 구체적으로, 퍼옥사이드계 및 아조계 중 1 이상일 수 있다. 또한, 과황산암모늄, 과황산나트륨, 과황산칼륨도 사용 가능하다. 상기 퍼옥사이드계 라디칼 중합 개시제는 벤조일퍼옥사이드, 라우릴퍼옥사이드, 큐멘하이드로퍼옥사이드, 메틸에틸케톤퍼옥사이드, t-부틸하이드로퍼옥사이드, o-클로로벤조일퍼옥사이드, o-메톡시벤조일퍼옥사이드, t-부틸퍼옥시-2-에틸헥사노에이트 및 t-부틸퍼옥시이소부티레이트로 이루어진 군에서 선택되는 1 이상일 수 있으며, 상기 아조계 라디칼 중합 개시제는 2,2'-아조비스이소부티로니트릴, 2,2'-아조비스(2-메틸이소부티로니트릴) 및 2,2'--조비스(2,4-디메틸발레로니트릴)로 이루어진 군에서 선택되는 1 이상일 수 있다.
예시적인 일 구현예에 따르면, 상기 (1)단계에서 제1 모노머 및 중합 개시제는 100 내지 250 : 1의 중량비로 혼합할 수 있다.
다른 측면에서, 상기 (1)단계에서 제1 모노머, 중합 개시제와 함께 안정화제를 첨가하여 제1 모노머, 중합 개시제 및 안정화제를 100 내지 250 : 1 : 0.001 내지 5의 중량비로 혼합할 수 있다. 분체 사이즈 및 형태는 초기 (1)단계의 제1 고분자 스페로이드 사이즈 조절에 따라 결정되고, 제1 고분자 스페로이드 사이즈는 제1 모노머, 개시제 및 안정화제의 반응비에 따라 조절될 수 있다. 또한, 상기 범위의 중량비로 혼합함으로써, 이방성 분체의 균일도를 높일 수 있는 효과가 있다.
예시적인 일 구현예에 따르면, 상기 안정화제는 이온성 비닐 모노머일 수 있으며, 구체적으로 소듐 4-비닐벤젠설포네이트를 이용할 수 있다. 안정화제는 생성되는 입자의 팽윤을 막아주고 분체 표면에 양 또는 음 전하를 부여함으로써 입자 생성 중에 상호 합일(결합)을 정전기적으로 방지한다.
양친매성 분체가 200 내지 250 nm의 크기를 가질 경우, 제 1모노머, 개시제 및 안정화제의 비가 110 내지 130 : 1 : 2 내지 4, 구체적으로 115 내지 125 : 1 : 2 내지 4, 보다 구체적으로 120 : 1 : 3인 제1 고분자 스페로이드로부터 제조될 수 있다.
또한, 양친매성 분체가 400 내지 450 nm의 크기를 가질 경우, 제 1모노머, 개시제 및 안정화제의 비가 225 내지 240 : 1 : 1 내지 3, 구체적으로 230 내지 235 : 1 : 1 내지 3, 보다 구체적으로 235 : 1 : 2인 제1 고분자 스페로이드로부터 제조될 수 있다.
또한, 양친매성 분체가 1100 내지 1500 nm의 크기를 가질 경우, 제 1모노머, 개시제 및 안정화제의 비가 110 내지 130 : 1 : 0, 구체적으로 115 내지 125 : 1 : 0, 보다 구체적으로 120 : 1 : 0인 제1 고분자 스페로이드로부터 제조될 수 있다.
또한, 비대칭 스노우맨 형상의 양친매성 분체는 제1 모노머, 개시제 및 안정화제의 비가 100 내지 140 : 1 : 8 내지 12, 구체적으로 110 내지 130 : 1 : 9 내지 11, 보다 구체적으로 120 : 1 : 10의 반응비로 제조된 제1 고분자 스페로이드로부터 제조될 수 있다.
또한, 비대칭 역스노우맨 형상의 양친매성 분체는 제1 모노머, 개시제 및 안정화제의 비가 100 내지 140 : 1 : 1 내지 5, 구체적으로 110 내지 130 : 1 : 2 내지 4, 보다 구체적으로 120 : 1 : 3의 반응비로 제조된 제1 고분자 스페로이드로부터 제조될 수 있다.
예시적인 일 구현예에 따르면, 상기 (2)단계에서 제1 모노머, 중합 개시제 및 관능기를 포함하는 화합물은 80 내지 98 : 0.2 내지 0.8 : 2 내지 20의 중량비로 혼합할 수 있다. 다른 측면에서, 상기 제1 모노머, 중합 개시제 및 관능기를 포함하는 화합물은 160 내지 200 : 1 : 6 내지 40 중량비로 혼합할 수 있다. 반응비에 따라 코팅 정도를 조절할 수 있고 코팅 정도에 따라서 이후 양친매성 이방성 분체의 형상이 이루어지며, 상기 반응비로 반응시킬 경우 처음 두께 대비 약 10 내지 30%, 구체적으로 20% 내외로 코팅 두께가 증가하게 되며, 코팅이 너무 두꺼워 분체화가 진행되지 않거나 너무 얇아 다방향으로 분체화되는 문제 없이 분체화가 잘 진행하게 된다. 또한, 상기 범위의 중량비로 혼합함으로써, 이방성 분체의 균일도를 높일 수 있는 효과가 있다.
예시적인 일 구현예에 따르면, 상기 (3)단계에서 제2 모노머 및 중합 개시제는 200 내지 250 : 1의 중량비로 혼합할 수 있다.
다른 측면에서, 상기 (3)단계에서 제2 모노머, 중합 개시제와 함께 안정화제를 첨가하여 제2 모노머, 중합 개시제 및 안정화제를 200 내지 250 : 1 : 0.001 내지 5의 중량비로 혼합할 수 있다. 안정화제의 구체적인 종류는 상술한 바와 같다. 상기 범위의 중량비로 혼합함으로써, 이방성 분체의 균일도를 높일 수 있는 효과가 있다.
예시적인 일 구현예에 따르면, 상기 (3)단계에서 제2 모노머 함량은 코어-쉘 구조의 제1 고분자 스페로이드 중량이 100 중량부일 때 40 내지 300 중량부로 혼합할 수 있다. 구체적으로, 제2 모노머 함량이 코어-쉘 구조의 제1 고분자 스페로이드 중량 대비 40 내지 100%일 경우 비대칭 스노우맨 타입의 분체가 얻어지고, 100 내지 150%, 또는 110 내지 150%일 경우 대칭 형상의 분체가 얻어지고, 150 내지 300%, 또는 160 내지 300%일 경우 비대칭 역스노우맨 타입의 분체가 얻어진다. 또한, 상기 범위의 중량비로 혼합함으로써, 이방성 분체의 균일도를 높일 수 있는 효과가 있다.
예시적인 일 구현예에 따르면, 상기 (4)단계에서 당을 포함하는 관능기는 이에 제한하는 것은 아니나, 실란 커플링제와 반응 조절제를 이용하여 도입할 수 있다.
예시적인 일 구현예에 따르면, 상기 실란 커플링제는 N-{N-(3-트리에톡시실릴프로필)아미노에틸}글루콘아미드, N-(3-트리에톡시실릴프로필)글루콘아미드 및 N-{N-(3-트리에톡시실릴프로필)아미노에틸}-올리고-히아루론아미드로 이루어진 군에서 선택되는 1 이상일 수 있다.
예시적인 일 구현예에 따르면, 상기 반응 조절제는 암모늄 하이드록사이드일 수 있다.
종래 피커링에 사용되는 구형 분체 입자들에 양친성 계면활성력을 부여하여 그 계면활성력을 증가시키려는 시도들이 이루어져 왔고 그 예로 야누스 구형 입자가 있으나, 기하학적인 한계성 및 균일한 대량 생산이 어려운 문제점이 있어 실질적인 응용이 이루어지지 않았다. 반면, 본 명세서에 개시된 상기 양친매성 분체의 제조방법은 가교제를 사용하지 않아 제조상 엉김이 없어 수율이 높고 균일하며, 단순 교반 방법을 이용하여 텀블링 방법에 비해 대량 생산이 용이하다. 특히, 300 nm 이하 크기의 나노 사이즈를 수십 g 내지 수십 kg 단위로 대량 생산할 수 있는 이점이 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
제조예 1. 폴리스티렌(Polystyrene, PS) 제1 고분자 스페로이드 제조
수상에 모노머로서 스티렌(Styrene), 안정화제로서 소듐 4-비닐벤젠설포네이트(Sodium 4-vinylbenzenesulfonate), 개시제로서 아조비스이소부티로니트릴(Azobisisobutyronitrile, AIBN)를 혼합하여 75℃에서 8시간 동안 반응시켰다. 반응은 원통형 반응기에서 교반하였으며, 원통형 반응기는 지름 11cm, 높이 17cm, 유리재질이고, 200 rpm의 속도로 회전시켰다.
제조예 2. 코어-쉘(Core-Shell, CS) 구조의 코팅된 제1 고분자 스페로이드 제조
상기 얻어진 폴리스티렌(Polystyrene, PS) 제1 고분자 구형 입자에, 모노머로서 스티렌(Styrene), TMSPA(3-(trimethoxysilyl) propylacrylate), 개시제로서 아조비스이소부티로니트릴(Azobisisobutyronitrile, AIBN)을 혼합하여 반응시켰다. 반응은 원통형 반응기에서 교반하였다.
제조예 3. 이방성 분체 제조
상기 반응 결과 얻어진 폴리스티렌-코어쉘(PS-CS) 수분산 용액에, 모노머로서 스티렌(Styrene), 안정화제로서 소듐 4-비닐벤젠설포네이트(Sodium 4-vinylbenzenesulfonate), 개시제로서 아조비스이소부티로니트릴(Azobisisobutyronitrile, AIBN)을 혼합하고 75℃로 가열하여 반응을 진행하였다. 반응은 원통형 반응기에서 교반하였다. 그 결과 이방성 분체를 얻었다.
제조예 4. 이방성 분체의 친수화 표면 개질
상기 제조예 3에서 제조된 수분산된 덤벨(dumbbell) 형상의 이방성 분체(약 7~10%) 500 mL를 원심분리하여 상층액을 제거하였다. 이후, 에탄올에 넣어 초음파로 분산시키고 교반하면서 하기 표 1의 친수화 시약과 암모늄 하이드록사이드 30 mL를 첨가하고 하루동안 반응시켰다. 반응 후, 원심분리하여 상층액을 제거하고, 에탄올과 증류수(또는 탈이온수)로 각각 2회씩 원심분리법으로 미반응물을 세척한 다음 최종적으로 반응액을 초음파 분산시켰다. 비교예 1~6은 아민계 화합물로 친수화를 수행한 이방성 분체이고, 실시예 1~3은 당 함유 관능기로 친수화를 수행한 이방성 분체이다.
Figure PCTKR2015014553-appb-T000001
시험예 1. 친수화에 따른 양친매성 이방성 분체의 유화능 평가
상기에서 제조된 양친매성 이방성 분체를 이용하여 하기 표 2의 조성으로 수중유형 유화 조성물을 제조하였다. 이방성 분체로는 각각 상기 제조예 4에서 제조한 비교예 1~6, 실시예 1~3의 친수화 이방성 분체를 사용하였다.
성분명 함량 (중량%)
친수화 이방성 분체 3
오일 (Di-C12-13 Alkyl Malate) 30
DI water To 100
제조된 유화 조성물에 대하여 양친매성 이방성 분체의 유화능은 20℃에서 4시간동안 조성물을 유지하고 조성물을 육안으로 관찰)하여 유화상태가 지속적으로 유지되는 경우 ◎, 크리밍이 일어나지만 상부에 오일층이 분리되지 않은 경우 ○, 크리밍이 일어나고 상부에 띠형태의 미량의 오일층이 관찰될 경우 △, 크리밍과 동시에 상부에 오일층이 관찰되는 경우 X로 평가하였으며, 결과를 하기 표 3에 나타내었다.
Figure PCTKR2015014553-appb-T000002
상기 표 3의 결과에서, 아민계 화합물로 친수화한 양친매성 이방성 분체는 분체는 극성 유기 오일 유화 시 유화 입자 형성 시 유화입자끼리 뭉쳐 뭉글거리거나 크리밍이 일어나며 부분적으로 유화가 이루어지지 않아 오일이 상층부에 잔존하는 문제가 있었으나, 도 1에서 보는 바와 같이 당 부착으로 표면 개질된 양친매성 이방성 분체는 극성이 높은 유기 오일에서도 안정된 유화 입자를 형성하고 이를 안정하게 유지함을 알 수 있었다. 따라서, 본 명세서에 개시된 양친매성 이방성 분체는 무극성에서 극성 오일에 이르는 다양한 오일들에 대한 보다 강력한 유화능을 갖고 형성된 유화 입자를 안정하게 유지시키는 효과가 있음을 알 수 있다.
시험예 2. 유화 조성물의 유화 입자 분산 상태 평가
상기 시험예 1에서와 같이 제조한 유화 조성물의 입자 분산 상태를 조성물을 밀폐 용기에 담아 20℃에서 4시간동안 유지한 후, 분산 상태를 관찰하여 평가하였다. 도 2는 관찰된 조성물의 사진을 나타낸다. (a)는 아민계 화합물로 친수화된 이방성 분체인 비교예 3을 사용한 조성물이고, (b)는 당 함유 관능기로 친수화된 이방성 분체인 실시예 2를 사용한 조성물이다.
도 2의 결과에서, N-(3-트리에톡시실릴프로필)글루콘아미드와 같은 당 부착으로 표면 개질된 양친매성 이방성 분체는 음전하를 가지고 있어 입자 간의 정전기적 반발력이 발생하여 최소한의 점증제 사용만으로도 안정된 분산 상태를 유지할 수 있음을 확인하였다.
시험예 3. 유화 조성물의 점증제와의 상용성 비교 평가
상기 시험예 1에서와 같이 제조한 유화 조성물의 입자 분산 상태를 조성물을 유리(재질)판에 0.6g 덜어 지면과 45° 각도로 유지하고 분체간 응집 현상 발생 여부를 관찰하였으며 결과를 도 3에 나타내었다. (a)는 아민계 화합물로 친수화된 이방성 분체인 비교예 3을 사용한 조성물이고, (b)는 당 함유 관능기로 친수화된 이방성 분체인 실시예 2를 사용한 조성물이다.
도 3의 결과에서 아민계 화합물로 친수화된 표면이 가지고 있던 양전하에 의하여 점증제와 같은 음이온성 물질과 혼합 사용으로 인해 분체간 응집 현상이 일어나는 반면, N-(3-트리에톡시실릴프로필)글루콘아미드와 같은 당 부착으로 표면 개질된 양친매성 이방성 분체는 이와 같은 문제가 발생하지 않고 음이온성 점증제와의 상용성이 우수한 것을 확인할 수 있다.
이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.

Claims (16)

  1. 친수성인 제1 고분자 스페로이드 및 소수성인 제2 고분자 스페로이드를 포함하며,
    상기 제1 고분자 스페로이드 및 제2 고분자 스페로이드는 적어도 부분적으로 상대 고분자 스페로이드를 침투하는 구조로 결합하며,
    상기 제1 고분자 스페로이드는 코어-쉘 구조를 갖고 상기 셀은 당을 함유하는 관능기를 포함하는, 양친매성 이방성 분체.
  2. 제 1항에 있어서,
    상기 제1 고분자 스페로이드의 코어와 제2 고분자 스페로이드는 비닐 고분자를 포함하며,
    상기 제1 고분자 스페로이드의 쉘은 비닐 모노머와 관능기를 함유하는 모노머의 공중합체를 포함하는 것을 특징으로 하는 양친매성 이방성 분체.
  3. 제 2항에 있어서,
    상기 비닐 고분자는 폴리스티렌을 포함하는 것을 특징으로 하는 양친매성 이방성 분체.
  4. 제 2항에 있어서,
    상기 관능기를 함유하는 모노머는 실록산 함유 (메트)아크릴레이트인 것을 특징으로 하는 양친매성 이방성 분체.
  5. 제 1항에 있어서,
    상기 당 화합물은 N-{N-(3-트리에톡시실릴프로필)아미노에틸}글루콘아미드, N-(3-트리에톡시실릴프로필)글루콘아미드 및 N-{N-(3-트리에톡시실릴프로필)아미노에틸}-올리고-히아루론아미드로 이루어진 군에서 선택되는 1 이상인 것을 특징으로 하는 양친매성 이방성 분체.
  6. 제 1항에 있어서,
    상기 양친매성 이방성 분체는 제1 고분자 입자 및 제2 고분자 입자가 결합된 결합부를 기준으로 대칭 형상, 비대칭 스노우맨(snowman) 형상 또는 비대칭 역스노우맨 형상을 갖는 것을 특징으로 하는 양친매성 이방성 분체.
  7. 제 1항에 있어서,
    상기 양친매성 이방성 분체는 입자 크기가 100 내지 1500 nm인 것을 특징으로 하는 양친매성 이방성 분체.
  8. 제 1항 내지 제 7항 중 어느 한 항에 따른 양친매성 이방성 분체를 함유하는 유화 조성물.
  9. 제 8항에 있어서,
    상기 양친매성 이방성 분체는 2 내지 200 ㎛의 거대 유화 입자를 형성하는 것을 특징으로 하는 유화 조성물.
  10. 제 8항에 있어서,
    상기 양친매성 이방성 분체는 유화 조성물 전체 중량을 기준으로 0.1 내지 15 중량% 함유된 것을 특징으로 하는 유화 조성물.
  11. 제 8항에 있어서,
    상기 유화 조성물은 극성 오일을 함유하는 것을 특징으로 하는 유화 조성물.
  12. 제 11항에 있어서,
    상기 극성 오일은 액상 지방 알코올, 액상 불포화 지방산, 에스테르계 오일 및 트리글리세라이드로 이루어진 군에서 선택되는 1 이상인 것을 특징으로 하는 유화 조성물.
  13. 제 1항 내지 제 7항 중 어느 한 항에 따른 양친매성 이방성 분체의 제조방법으로서, 상기 방법은
    (1) 제1 모노머 및 중합 개시제를 교반하여 제1 고분자 스페로이드의 코어를 제조하는 단계;
    (2) 상기 제조된 제1 고분자 스페로이드의 코어를, 제1 모노머, 중합 개시제 및 관능기를 포함하는 화합물과 교반하여 코팅된 코어-쉘 구조의 제1 고분자 스페로이드를 제조하는 단계;
    (3) 상기 제조된 코어-쉘 구조의 제1 고분자 스페로이드를, 제2 모노머 및 중합 개시제와 교반하여 제2 고분자 스페로이드가 형성된 이방성 분체를 제조하는 단계; 및
    (4) 상기 제조된 이방성 분체에 당을 함유하는 관능기를 도입하는 단계;를 포함하는 양친매성 이방성 분체의 제조방법.
  14. 제 13항에 있어서,
    상기 (4)단계에서 친수성 관능기는 실란 커플링제와 반응 조절제를 이용하여 도입하는 것을 특징으로 하는 양친매성 이방성 분체의 제조방법.
  15. 제 14항에 있어서,
    상기 실란 커플링제는 N-{N-(3-트리에톡시실릴프로필)아미노에틸}글루콘아미드, N-(3-트리에톡시실릴프로필)글루콘아미드 및 N-{N-(3-트리에톡시실릴프로필)아미노에틸}-올리고-히아루론아미드로 이루어진 군에서 선택되는 1 이상인 것을 특징으로 하는 양친매성 이방성 분체의 제조방법.
  16. 제 14항에 있어서,
    상기 반응 조절제는 암모늄 하이드록사이드인 것을 특징으로 하는 양친매성 이방성 분체의 제조방법.
PCT/KR2015/014553 2014-12-31 2015-12-31 표면 개질된 양친매성 이방성 분체 및 이를 함유하는 유화 조성물과 이의 제조방법 WO2016108659A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580077181.0A CN107405270B (zh) 2014-12-31 2015-12-31 表面改性的两亲性各向异性粉末、含有该粉末的乳液组合物及其制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140194548 2014-12-31
KR10-2014-0194548 2014-12-31
KR1020150187736A KR101873887B1 (ko) 2014-12-31 2015-12-28 표면 개질된 양친매성 이방성 분체 및 이를 함유하는 유화 조성물과 이의 제조방법
KR10-2015-0187736 2015-12-28

Publications (1)

Publication Number Publication Date
WO2016108659A1 true WO2016108659A1 (ko) 2016-07-07

Family

ID=56284705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014553 WO2016108659A1 (ko) 2014-12-31 2015-12-31 표면 개질된 양친매성 이방성 분체 및 이를 함유하는 유화 조성물과 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2016108659A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090073368A (ko) * 2007-12-31 2009-07-03 (주)아모레퍼시픽 안정하고 균일한 입도분포를 가지는 나노에멀젼
KR101299148B1 (ko) * 2010-07-21 2013-08-22 (주)바이오제닉스 Egcg를 함유하는 마이크로에멀젼의 제조방법
KR20140073211A (ko) * 2012-12-06 2014-06-16 삼성정밀화학 주식회사 왁스 분산액
KR20140091556A (ko) * 2011-11-16 2014-07-21 모멘티브 퍼포먼스 머티리얼즈 인크. 아미노 관능 소수성 폴리머와 산기 함유 친수성 폴리머의 연합 생성물, 이의 제조방법 및 이를 이용한 용품
WO2015183042A1 (ko) * 2014-05-30 2015-12-03 (주)아모레퍼시픽 양친매성 이방성 분체를 포함하는 화장료 조성물 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090073368A (ko) * 2007-12-31 2009-07-03 (주)아모레퍼시픽 안정하고 균일한 입도분포를 가지는 나노에멀젼
KR101299148B1 (ko) * 2010-07-21 2013-08-22 (주)바이오제닉스 Egcg를 함유하는 마이크로에멀젼의 제조방법
KR20140091556A (ko) * 2011-11-16 2014-07-21 모멘티브 퍼포먼스 머티리얼즈 인크. 아미노 관능 소수성 폴리머와 산기 함유 친수성 폴리머의 연합 생성물, 이의 제조방법 및 이를 이용한 용품
KR20140073211A (ko) * 2012-12-06 2014-06-16 삼성정밀화학 주식회사 왁스 분산액
WO2015183042A1 (ko) * 2014-05-30 2015-12-03 (주)아모레퍼시픽 양친매성 이방성 분체를 포함하는 화장료 조성물 및 이의 제조방법

Similar Documents

Publication Publication Date Title
WO2015183042A1 (ko) 양친매성 이방성 분체를 포함하는 화장료 조성물 및 이의 제조방법
KR950005305B1 (ko) 전착 표시입자 및 그의 제조방법
US7741378B2 (en) Porous monodispersed particles and method for production thereof, and use thereof
KR20150138096A (ko) 양친매성 이방성 분체를 포함하는 화장료 조성물 및 이의 제조방법
WO2017090998A1 (ko) 양친매성 이방성 분체를 포함하는 이중 연속상 유화 조성물
JPS62213839A (ja) 均一に被覆された複合体粒子の製造方法
JPS61215602A (ja) 重合体粒子の製造方法
KR101889327B1 (ko) 다양한 유화 입자 사이즈를 함유하는 혼성 유화 조성물 및 그 제조방법
WO2016108659A1 (ko) 표면 개질된 양친매성 이방성 분체 및 이를 함유하는 유화 조성물과 이의 제조방법
CN109180844B (zh) 一种表面粗糙的聚苯乙烯微球及其制备方法和应用
KR20020081472A (ko) 수지입자 및 그 제조방법
WO2015183040A1 (ko) 양친매성 이방성 분체 및 그 제조방법
CN115322509A (zh) 复合Janus颗粒及其制造方法、涂层和层叠体
WO2016108579A1 (ko) 화학적 이방성 분체 및 이를 함유하는 화장료 조성물
JP2581120B2 (ja) マイクロカプセル化微粒子の製造方法
CN101225127A (zh) 一种粒径单分散的核壳结构导电聚合物微球的制备方法
KR101873887B1 (ko) 표면 개질된 양친매성 이방성 분체 및 이를 함유하는 유화 조성물과 이의 제조방법
WO2017204372A1 (ko) 자기회합형 야누스 마이크로 입자 및 이의 제조방법
WO2016108583A1 (ko) 화학적 비대칭 이방성 분체 및 이를 함유하는 유중수화(w/o) 유화 조성물
WO2016108567A1 (ko) 다양한 유화 입자 사이즈를 함유하는 혼성 유화 조성물 및 그 제조방법
KR20150138095A (ko) 양친매성 이방성 분체 및 그 제조방법
WO2017091038A1 (ko) (메트)아크릴계 양친매성 이방성 분체 및 이를 포함하는 화장료 조성물
KR101908347B1 (ko) 화학적 비대칭 이방성 분체 및 이를 함유하는 유중수화(w/o) 유화 조성물
WO2016108661A1 (ko) 화학적 이방성 분체 및 이를 함유하는 효능 원료가 안정화된 화장료 조성물
KR100399817B1 (ko) 무기분체의 캡슐화 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15875753

Country of ref document: EP

Kind code of ref document: A1