WO2016105050A1 - 유기 전계 발광 소자 - Google Patents

유기 전계 발광 소자 Download PDF

Info

Publication number
WO2016105050A1
WO2016105050A1 PCT/KR2015/014021 KR2015014021W WO2016105050A1 WO 2016105050 A1 WO2016105050 A1 WO 2016105050A1 KR 2015014021 W KR2015014021 W KR 2015014021W WO 2016105050 A1 WO2016105050 A1 WO 2016105050A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aryl
formula
layer
alkyl
Prior art date
Application number
PCT/KR2015/014021
Other languages
English (en)
French (fr)
Inventor
엄민식
박호철
이창준
김태형
김지이
백영미
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150176096A external-priority patent/KR102587500B1/ko
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Priority to US15/538,781 priority Critical patent/US9960363B2/en
Priority to EP15873577.9A priority patent/EP3239271B1/en
Priority to EP20152476.6A priority patent/EP3660006B1/en
Priority to JP2017534328A priority patent/JP6633637B2/ja
Priority to EP20200773.8A priority patent/EP3798210A1/en
Priority to EP20200771.2A priority patent/EP3789381B1/en
Priority to CN201580069279.1A priority patent/CN107108529B/zh
Publication of WO2016105050A1 publication Critical patent/WO2016105050A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to an organic electroluminescent device comprising an organic material layer.
  • the organic electroluminescent device when current or voltage is applied to two electrodes, holes are injected into the organic material layer at the anode, and electrons are injected into the organic material layer at the cathode. When the injected holes and electrons meet, an exciton is formed, and the exciton falls to the ground and shines.
  • the organic EL device may be classified into a fluorescent EL device in which singlet excitons contribute to light emission and a phosphorescent EL device in which triplet excitons contribute to light emission according to the electron spin type of the formed exciton.
  • the electron spin of excitons formed by the recombination of electrons and holes, produces 25% and 75% of singlet excitons and triplet excitons.
  • the internal quantum efficiency can theoretically not exceed 25% according to the production rate, and the external quantum efficiency is accepted as a limit of 5%.
  • the phosphorescent electroluminescent device in which light emission is performed by triplet excitons can improve luminous efficiency up to four times as compared to fluorescent electroluminescent devices.
  • the phosphorescent electroluminescent device exhibits higher efficiency than the fluorescent electroluminescent device in terms of luminous efficiency based on the theoretical fact, but the development of a host satisfying the deep blue color purity and high efficiency is insufficient in the blue phosphorescent electroluminescent device.
  • blue fluorescent electroluminescent devices are mainly used in products rather than blue phosphorescent electroluminescent devices.
  • an object of the present invention is to provide an organic electroluminescent device excellent in driving voltage, luminous efficiency and lifetime.
  • the present invention is an anode; cathode; And an organic material layer interposed between the anode and the cathode, wherein the organic material layer includes a compound represented by Formula 1 below.
  • R a and R b are the same as or different from each other, and are each independently selected from the group consisting of an alkyl group of C 1 to C 40 and an aryl group of C 6 to C 60 , or combine with each other to form a condensed ring,
  • R 1 to R 3 are the same or different, each independently represent hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ alkenyl group of the C 40 alkyl group, C 2 ⁇ C 40 of, C 2 ⁇ C 40 alkynyl group, C 3 to C 40 cycloalkyl group, nuclear atom 3 to 40 heterocycloalkyl group, C 6 to C 60 aryl group, nuclear atom 5 to 60 heteroaryl group, C 1 to C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C group of 60 arylboronic, C 1 ⁇ C 40 of a phosphine group, and groups bonded C 1 ⁇ C 40 phosphine oxide group, and a C 6 ⁇ , or selected from the group consisting of an
  • L is a single bond or is selected from the group consisting of a C 6 ⁇ C 18 arylene group and a heteroarylene group having 5 to 18 nuclear atoms,
  • Z 1 to Z 5 are the same or different, and are each independently N or C (R 4), wherein each at least one is N, wherein the C (R 4) with a plurality of C (R 4) If the plurality Same or different,
  • c and e are each an integer of 0 to 4,
  • d is an integer of 0 to 3
  • n are each an integer of 1 to 3
  • R 4 is hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 Of cycloalkyl group, heterocycloalkyl group of 3 to 40 nuclear atoms, aryl group of C 6 to C 60 , heteroaryl group of 5 to 60 nuclear atoms, alkyloxy group of C 1 to C 40 , C 6 to C 60 Aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 1 ⁇ C 40 A phosphine group, a C 1 to C 40 phosphine oxide group and a C 6 to C 60 arylamine group, or combine with an adjacent group to form a condensed ring
  • Alkyl group and aryl group of R a and R b Alkyl group, alkynyl group, cycloalkyl group, heterocycloalkyl group, aryl group, heteroaryl group, alkyloxy group, aryloxy group, alkyl of R 1 to R 4
  • the silyl group, arylsilyl group, alkyl boron group, aryl boron group, phosphine group, phosphine oxide group, arylamine group, the arylene group, heteroarylene group of L are each independently deuterium, halogen group, cyano group, nitro group , Amino group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, nuclear atom 3 to 40 heterocycloalkyl group, C Aryl group of 6 to C 60 , heteroaryl group of 5 to 60 nuclear atoms, alky
  • the compound represented by Formula 1 may be included in the life improvement layer of the organic material layer.
  • the present invention can provide an organic EL device having excellent driving voltage, luminous efficiency, and lifespan by introducing a lifetime improving layer, an electron transporting layer, or an electron injection layer formed of a compound having specific physical properties into the organic EL device.
  • the organic electroluminescent device of the present invention is applied to a display panel, a display panel having improved performance and lifespan can be provided.
  • FIG. 1 is a cross-sectional view illustrating an organic EL device according to an embodiment of the present invention.
  • One example of the present invention is an anode; cathode; And an organic material layer interposed between the anode and the cathode, wherein the organic material layer includes a compound represented by Formula 1 below.
  • R a and R b are the same as or different from each other, and are each independently selected from the group consisting of an alkyl group of C 1 to C 40 and an aryl group of C 6 to C 60 , or combine with each other to form a condensed ring,
  • R 1 to R 3 are the same or different, each independently represent hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ alkenyl group of the C 40 alkyl group, C 2 ⁇ C 40 of, C 2 ⁇ C 40 alkynyl group, C 3 to C 40 cycloalkyl group, nuclear atom 3 to 40 heterocycloalkyl group, C 6 to C 60 aryl group, nuclear atom 5 to 60 heteroaryl group, C 1 to C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C group of 60 arylboronic, C 1 ⁇ C 40 of the phosphine group, C 1 ⁇ C 40 phosphine oxide group, and a C 6 ⁇ selected from the group consisting of an aryl amine of the
  • L is a single bond or is selected from the group consisting of a C 6 ⁇ C 18 arylene group and a heteroarylene group having 5 to 18 nuclear atoms,
  • Z 1 to Z 5 are the same or different, and are each independently N or C (R 4), wherein each at least one is N, wherein the C (R 4) with a plurality of C (R 4) If the plurality Same or different,
  • c and e are each an integer of 0 to 4,
  • d is an integer of 0 to 3
  • n are each an integer of 1 to 3
  • R 4 is hydrogen, deuterium, halogen group, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 Of cycloalkyl group, heterocycloalkyl group of 3 to 40 nuclear atoms, aryl group of C 6 to C 60 , heteroaryl group of 5 to 60 nuclear atoms, alkyloxy group of C 1 to C 40 , C 6 to C 60 Aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 1 ⁇ C 40 A phosphine group, a C 1 to C 40 phosphine oxide group and a C 6 to C 60 arylamine group, or combine with an adjacent group (specifically, adjacent R 4 bonds)
  • Alkyl group and aryl group of R a and R b Alkyl group, alkynyl group, cycloalkyl group, heterocycloalkyl group, aryl group, heteroaryl group, alkyloxy group, aryloxy group, alkyl of R 1 to R 4
  • the silyl group, arylsilyl group, alkyl boron group, aryl boron group, phosphine group, phosphine oxide group, arylamine group, the arylene group, heteroarylene group of L are each independently deuterium, halogen group, cyano group, nitro group , Amino group, C 1 to C 40 alkyl group, C 2 to C 40 alkenyl group, C 2 to C 40 alkynyl group, C 3 to C 40 cycloalkyl group, nuclear atom 3 to 40 heterocycloalkyl group, C Aryl group of 6 to C 60 , heteroaryl group of 5 to 60 nuclear atoms, alky
  • the organic electroluminescent device is an anode (100); Cathode 200; And an organic material layer 300 interposed between the anode and the cathode.
  • the anode 100 injects holes into the organic material layer 300.
  • the material constituting the anode 100 is not particularly limited, and examples thereof include metals such as vanadium, chromium, copper, zinc, and gold; Alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO and Al, SnO 2 and Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline; And carbon black.
  • the method for manufacturing the anode 100 is not particularly limited, and non-limiting examples include a method of coating the anode material on a substrate made of a silicon wafer, quartz, glass plate, metal plate, or plastic film.
  • the cathode 200 injects electrons into the organic material layer 300.
  • the material constituting the cathode 200 is not particularly limited, and examples thereof include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead; Alloys thereof; And multilayer structure materials such as LiF / Al and LiO 2 / Al.
  • the method for manufacturing the cathode 200 is not particularly limited as long as it is known in the art.
  • the organic layer 300 is preferably a hole injection layer 301, a hole transport layer 302, a light emitting layer 303, a life improvement layer 304, an electron transport layer 305 and an electron injection layer ( 306) one or more selected from the group consisting of.
  • the organic material layer 300 more preferably includes all of the above layers.
  • the hole injection layer 301 and the hole transport layer 302 serve to move the holes injected from the anode 100 to the light emitting layer 303.
  • the material constituting the hole injection layer 301 and the hole transport layer 302 is not particularly limited as long as the material has a low hole injection barrier and a high hole mobility, and examples thereof include an arylamine derivative.
  • the emission layer 303 is a layer in which holes and electrons meet to form excitons.
  • the color of light emitted from the organic EL device may vary depending on the material of the emission layer 303.
  • the light emitting layer 303 may include a host and a dopant.
  • the light emitting layer 303 may include 70 to 99.9 wt% of the host and 0.1 to 30 wt% of the dopant.
  • the light emitting layer 303 is blue fluorescence, green fluorescence, or red fluorescence, it is preferable to include 70 to 99.9 wt% of the host and 0.1 to 30 wt% of the dopant, and include 80 to 99 wt% of the host. More preferably, 1 to 20% by weight of the dopant is included.
  • the host included in the light emitting layer 303 is not particularly limited as long as it is known in the art, non-limiting examples, alkali metal complex; Alkaline earth metal complexes; Or condensed aromatic ring derivatives.
  • alkali metal complex Alkaline earth metal complexes
  • condensed aromatic ring derivatives aluminum complexes, beryllium complexes, anthracene derivatives, pyrene derivatives, triphenylene derivatives, carbazole derivatives, dibenzofuran derivatives, dibenzothiophene derivatives which can improve the luminous efficiency and lifetime of organic electroluminescent devices Preference is given to using.
  • the dopant included in the emission layer 303 is not particularly limited as long as it is known in the art, and includes, but is not limited to, an anthracene derivative, a pyrene derivative, an arylamine derivative, iridium (Ir) or platinum (Pt). Complex compounds may be mentioned.
  • the light emitting layer 303 may be formed of one layer (single layer) or may be formed of a plurality of layers (multilayer).
  • the organic EL device may emit light of various colors.
  • a plurality of light emitting layers may be provided between the hole transport layer 302 and the life improvement layer 304 to provide an organic EL device having a mixed color.
  • the light emitting layer may be made of different materials.
  • the driving voltage increases, but the current value in the organic EL device is constant, thereby providing an organic EL device having improved light emission efficiency by the number of light emitting layers.
  • the life improvement layer 304 is to improve the life of the organic EL device and is provided between the light emitting layer 303 and the electron transport layer 305.
  • the material constituting the life improvement layer 304 is not particularly limited, and is preferably a compound that exhibits bipolar having both electron attraction (EWG) and electron donor (EDG) with high electron donating properties. Do.
  • the material forming the life improvement layer 304 is more preferably a compound represented by Chemical Formula 1.
  • the bipolar compound preferably has an ionization potential of 5.5 eV or more, more preferably 5.5 to 7.0 eV, and most preferably 5.6 to 6.6 eV.
  • the bipolar compound preferably has a difference between the HOMO value and the LUMO value (E HOMO -E LUMO ) of more than 3.0 eV, more preferably 2.8 to 3.8 eV.
  • the bipolar compound preferably has a triplet energy of 2.3 eV or more, more preferably 2.3 to 3.5 eV, and most preferably 2.3 to 3.0 eV.
  • the bipolar compound preferably has a singlet energy and triplet energy difference of less than 0.7 eV, and more preferably 0.01 to 0.7 eV.
  • a compound having an ionization potential of 5.5 eV or more is used for the life improvement layer 304, holes can be prevented from diffusing or moving to the electron transport layer 305, thereby improving the life of the organic EL device.
  • holes move in the organic electroluminescent device according to the ionization potential level.
  • an irreversible decomposition reaction by oxidation occurs to cause organic electroluminescence.
  • the lifetime of the device is reduced.
  • the life improvement layer 304 made of a bipolar compound having an ionization potential of 5.5 eV or more is prevented from diffusing or moving holes to the electron transport layer 305, the life of the organic EL device may be improved. Can be. That is, the holes are blocked by the high energy barrier of the life improvement layer 304, and thus do not diffuse or move to the electron transport layer 305, but remain in the light emitting layer 303.
  • the ionization potential of the bipolar compound included in the life improvement layer 304 may be 5.5 eV or more.
  • the bipolar compound is ionized. It is preferable that potential is 6.0 eV or more.
  • the bipolar compound is the difference between the HOMO value and LUMO value (E HOMO -E LUMO ) is more than 3.0eV, triplet energy is 2.3eV or more, singlet energy and triplet energy difference is preferably less than 0.7eV.
  • E HOMO -E LUMO the exciton formed in the light emitting layer 303 can be prevented from diffusing into the electron transporting layer 305, and light emission is generated at the interface between the light emitting layer 303 and the electron transporting layer 305. This is because it can also prevent the phenomenon that occurs. As a result, it is possible to prevent spectral mixing of the organic EL device and to improve stability, thereby improving the life of the organic EL device.
  • the bipolar compound has both electron attracting electrons (EWG) and electron donors (EDG), which have high electron donating characteristics, so that the electron clouds of HOMO and LUMO are separated. Therefore, since the difference between the triplet energy and the singlet energy of the compound ( ⁇ Est) is less than 0.7 eV, even if the difference between the HOMO value and the LUMO value (E HOMO -E LUMO ) exceeds 3.0 eV, the triplet energy ( T1).
  • EWG electron attracting electrons
  • EDG electron donors
  • the triplet energy of the bipolar compound included in the life improvement layer 304 may be 2.3 eV or more, but when it is made of green phosphor, it is 2.5 eV or more, and a blue phosphor. In the case of consisting of 2.7eV or more is preferable.
  • the bipolar compound preferably has a hole mobility and electron mobility of 1 ⁇ 10 -6 cm 2 / V ⁇ s or more at room temperature. This is because when the compound is used in the life improvement layer 304, the injection of electrons can be prevented from being delayed relative to the number of holes injected from the anode 100, thereby improving the life of the organic EL device.
  • Electrons or holes accumulated in the light emitting layer 303 may prevent oxidation and reduction from occurring smoothly in the light emitting layer 303 or may affect adjacent layers to reduce the lifetime of the organic EL device.
  • the bipolar compound included in the life improvement layer 304 of the present invention exhibits hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 / V ⁇ s or more at room temperature by an electron donor (EDG), (EWG) shows electron mobility at 1 ⁇ 10 ⁇ 6 cm 2 / V ⁇ s or more at room temperature.
  • EDG electron donor
  • EWG electron donor
  • electrons may be effectively injected into the light emitting layer 303.
  • the formation efficiency of excitons in the light emitting layer 303 may be increased, thereby improving the lifespan of the organic EL device.
  • the bipolar compound has a fluorene moiety, which is an electron donor (EDG), and a six-membered heterocycle, which is an electron withdrawal group (EWG), by a linker group (phenylene, biphenylene, or terphenylene) to form a basic skeleton. It is preferable.
  • the bipolar compound may be, for example, a compound represented by Chemical Formula 1.
  • At least one of the life improvement layer 304, the electron transport layer 305, and the electron injection layer 306 includes the compound represented by Chemical Formula 1 above.
  • the compound represented by Formula 1 may be any one of the compounds represented by Formulas 2 to 4.
  • R a , R b , R 1 to R 3 , Z 1 to Z 5 , c, d and e are the same as defined in Chemical Formula 1, respectively.
  • the structure (substituent) represented by (* is a site where a bond is formed with L) may be any one of the structures represented by the following C-1 to C-15.
  • R 4 is as defined in Formula 1, and a plurality of R 4 are the same as or different from each other,
  • R 5 is hydrogen, deuterium, halogen, cyano group, nitro group, C 1 -C 40 alkyl group, C 2 -C 40 alkenyl group, C 2 -C 40 alkynyl group, C 3 -C 40 cycloalkyl group, aryloxy nuclear atoms 3 to 40 of the heterocycloalkyl of the alkyl group, C 6 ⁇ C 60 aryl group, the number of nuclear atoms of 5 to 60 heteroaryl group, C 6 ⁇ C 60, alkyloxy group of C 1 ⁇ C 40 , C 6 ⁇ C 60 arylamine group, C 1 ⁇ C 40 alkylsilyl group, C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 aryl phosphine group , C 6 ⁇ C 60 aryl phosphine oxide group and C 6 ⁇ C 60 arylsilyl group, or in combination with an adjacent
  • p is an integer from 1 to 4,
  • the arylphosphine group, arylphosphine oxide group and arylsilyl group are each independently deuterium, halogen group, cyano group, nitro group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 Alkynyl group, C 6 ⁇ C 60 Aryl group, Nuclear 5 to 60 heteroaryl group, C 6 ⁇ C 60 Aryloxy group, C 1 ⁇ C 40 Alkyloxy group, C 6 ⁇ C 60 Aryl Amine group, C 3 -C 40 cycloalky
  • the structure represented by is more preferably a structure represented by the above C-9.
  • the compound represented by Formula 1 of the present invention may be a compound represented by the following Formula 5.
  • R a , R b , R 1 to R 4 , L, c, d, e, m and n are the same as defined in Chemical Formula 1, respectively.
  • the R 4 are the same as each other. That is, it is preferable that R ⁇ 4> is the same and has a symmetrical structure.
  • R a and R b are the same as or different from each other, each independently, a methyl group or a phenyl group, It is preferable to form a condensed ring represented by (* is a site
  • R 1 to R 3 are each independently hydrogen, deuterium, C 1 ⁇ C 40 alkyl group, C 6 ⁇ C 60 aryl group, nuclear atoms 5 to 60 It is preferably selected from the group consisting of a heteroaryl group and a C 6 ⁇ C 60 arylamine group.
  • m and n are each an integer of 1 to 3, m is preferably 1, and n is preferably 1 or 2.
  • L is preferably a single bond, phenylene, biphenylene or terphenylene.
  • L which is a linker group, is preferably selected from the group consisting of structures represented by L-1 to L-9 (* is a bond site).
  • Such a compound represented by the formula (1) of the present invention can be more specific to the compound represented by the formula (LE-01 to LE-12).
  • alkyl means a monovalent substituent derived from a straight or branched chain saturated hydrocarbon having 1 to 40 carbon atoms.
  • alkyl include, but are not limited to, methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl, hexyl and the like.
  • alkenyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon double bond.
  • alkenyl include, but are not limited to, vinyl, allyl, isopropenyl, 2-butenyl, and the like.
  • alkynyl refers to a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon triple bond.
  • alkynyl include, but are not limited to, ethynyl, 2-propynyl, and the like.
  • aryl refers to a monovalent substituent derived from an aromatic hydrocarbon having 6 to 60 carbon atoms combined with a single ring or two or more rings.
  • a form in which two or more rings are attached to each other (pendant) or condensed may be included. Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, anthryl, and the like.
  • heteroaryl means a monovalent substituent derived from monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 60 nuclear atoms. At least one carbon in the ring, preferably 1 to 3 carbons, is substituted with a heteroatom such as N, O, S or Se.
  • a form in which two or more rings are pendant or condensed with each other may be included, and in addition, a form may be included with a aryl group.
  • heteroaryl examples include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl; Polycyclics such as phenoxathienyl, indolinzinyl, indolyl, purinyl, quinolyl, benzothiazole, carbazolyl ring; And 2-furanyl; N-imidazolyl; 2-isoxazolyl; 2-pyridinyl; 2-pyrimidinyl and the like, but are not limited thereto.
  • aryloxy is a monovalent substituent represented by RO-, wherein R means aryl having 6 to 60 carbon atoms.
  • R means aryl having 6 to 60 carbon atoms. Examples of such aryloxy include, but are not limited to, phenyloxy, naphthyloxy, diphenyloxy, and the like.
  • alkyloxy is a monovalent substituent represented by R'O-, wherein R 'means alkyl having 1 to 40 carbon atoms.
  • alkyloxy may include linear, branched or cyclic structures, such as methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n -Butoxy, pentoxy, and the like, but are not limited thereto.
  • arylamine refers to an amine substituted with aryl having 6 to 60 carbon atoms.
  • cycloalkyl means a monovalent substituent derived from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms.
  • examples of such cycloalkyl include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.
  • Heterocycloalkyl as used herein means a monovalent substituent derived from a non-aromatic hydrocarbon having 3 to 40 nuclear atoms, wherein at least one carbon in the ring, preferably 1 to 3 carbons, is N, O, S Or a hetero atom such as Se.
  • heterocycloalkyl include, but are not limited to, morpholine, piperazine, and the like.
  • alkylsilyl means silyl substituted with alkyl having 1 to 40 carbon atoms
  • arylsilyl means silyl substituted with aryl having 5 to 40 carbon atoms
  • condensed ring means a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring, or a combination thereof.
  • Such a compound represented by Formula 1 of the present invention can be synthesized in various ways with reference to the synthesis process of the following examples.
  • the electron transport layer 305 and the electron injection layer 306 serve to move the electrons injected from the cathode 200 to the emission layer 303.
  • the material forming the electron transport layer 305 and the electron injection layer 306 is not particularly limited as long as it is easy to inject electrons and has a high electron mobility, and the non-limiting examples include the compound represented by Formula 1, anthracene derivative, and hetero An aromatic compound and an alkali metal complex compound are mentioned.
  • the electron transport layer 305 and / or the electron injection layer 306 is preferably made of the same material as the life improvement layer 304, that is, the compound represented by the formula (1).
  • the electron transport layer 305 and / or the electron injection layer 306 may be a co-deposited alkali metal complex compound to facilitate the injection of electrons from the cathode.
  • the alkali metal complex compound may be an alkali metal, an alkaline earth metal or a rare earth metal.
  • the organic layer 300 may further include an organic layer (not shown) for blocking electrons and excitons between the hole transport layer 302 and the light emitting layer 303.
  • the organic layer has a high LUMO value to prevent electrons from moving to the hole transport layer 302 and a high triplet energy to prevent the excitons of the light emitting layer 303 from diffusing into the hole transport layer 302.
  • the material constituting the organic film layer is not particularly limited, and examples thereof include carbazole derivatives or arylamine derivatives.
  • the method of manufacturing the organic material layer 300 according to an embodiment of the present invention is not particularly limited, and examples thereof include, but are not limited to, vacuum deposition and solution coating.
  • Examples of the solution coating method may be spin coating, dip coating, doctor blading, inkjet printing, thermal transfer method and the like.
  • the organic electroluminescent device has a structure in which the anode 100, the organic layer 300, and the cathode 200 are sequentially stacked, between the anode 100 and the organic layer 300, or the cathode ( An insulating layer or an adhesive layer may be further included between the 200 and the organic material layer 300.
  • the organic electroluminescent device may have excellent life characteristics because the half-life time of the initial brightness is increased while maintaining the maximum luminous efficiency when voltage and current are applied.
  • the glass substrate coated with ITO Indium tin oxide
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol
  • UV OZONE cleaner Power sonic 405, Hwasin Tech
  • a device was manufactured by sequentially depositing a hole injection layer, a hole transport layer, a light emitting layer, a life improvement layer, an electron transport layer, an electron injection layer, and a cathode on an ITO transparent electrode (substrate) prepared as described above.
  • the structure of the manufactured device is shown in Table 2 below.
  • Electron injection layer cathode compound DS-205 (Doosan Corporation) NPB AND + 5% DS-405 (Doosan Corporation) LE-01 to LE-12 Alq 3 LiF Al thickness 80 nm 15 nm 30 nm 5 nm 25 nm 1nm 200 nm
  • the device was manufactured in the same manner as in Example 1, except that the electron transport layer was deposited at 30 nm without using the life improving layer.
  • a device was manufactured in the same manner as in Example 1, except that BCP having the following structure instead of LE-01 was used.
  • the organic EL device of Examples 1 to 12 including the life improvement layer of the present invention is superior in current efficiency, driving voltage and lifetime than the organic EL device of Comparative Examples 1 and 2 .
  • the glass substrate coated with ITO Indium tin oxide
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol
  • UV OZONE cleaner Power sonic 405, Hwasin Tech
  • a device was manufactured by sequentially depositing a hole injection layer, a hole transport layer, a light emitting layer, a life improvement layer, an electron transport layer, an electron injection layer, and a cathode on an ITO transparent electrode (substrate) prepared as described above.
  • the structure of the manufactured device is shown in Table 4 below.
  • Electron injection layer cathode compound m-MTDATA TCTA CBP + 10% Ir (ppy) 3 See Table 5 below Alq 3 LiF Al thickness 60 nm 80 nm 30 nm 5 nm 25 nm 1nm 200 nm
  • the device was manufactured in the same manner as in Example 1, except that the electron transport layer was deposited at 30 nm without using the life improving layer.
  • a device was manufactured in the same manner as in Example 13, except that BCP having the following structure instead of LE-01 was used.
  • the organic EL device of Examples 1 to 12 including the life improvement layer of the present invention is superior in current efficiency, driving voltage and lifetime than the organic EL device of Comparative Examples 1 and 2. .

Abstract

본 발명은 양극; 음극; 및 상기 양극과 음극 사이에 개재(介在)된 유기물층을 포함하며, 상기 유기물층이 정공 주입층, 정공 수송층, 발광층, 수명 개선층, 전자 수송층 및 전자 주입층으로 이루어진 군에서 1종 이상을 포함하는 유기 전계 발광 소자를 제공한다.

Description

유기 전계 발광 소자
본 발명은 유기물층을 포함하는 유기 전계 발광 소자에 관한 것이다.
1965년 안트라센 단결정을 이용한 청색 전기발광으로 이어진 유기 전계 발광(electroluminescent, EL) 소자에 대한 연구가 이어져 오다가, 1987년 탕(Tang)에 의하여 정공층(NPB)과 발광층(Alq3)으로 구성된 2층 구조의 유기 전계 발광 소자가 제안되었다. 이후 유기 전계 발광 소자는 고효율, 장수명 특성을 구현하기 위해 소자 내에 정공 주입 또는 정공 수송을 담당하는 유기층과 전자 주입 또는 전자 수송을 담당하는 유기층, 정공과 전자의 결합에 의해 전계 발광이 일어나도록 유도하는 유기층 등과 같은 다층구조의 형태가 제안되었다. 다층구조의 도입은 유기 전계 발광 소자의 성능을 상용화 특성까지 향상시켜, 1997년 차량용 라디오 디스플레이 제품을 시작으로 휴대용 정보표시기기 및 TV용 디스플레이까지 그 적용 범위가 확대되고 있다.
디스플레이의 대형화, 고해상도화의 요구는 유기 전계 발광 소자의 고효율화, 장수명화의 과제를 부여하고 있다. 특히, 같은 면적에서 더 많은 화소 형성을 통해 구현되는 고해상도화의 경우에는 유기 전계 발광 소자의 발광면적을 감소시키는 결과를 초래하여 수명을 감소시킬 수 밖에 없으며, 유기 전계 발광 소자가 극복해야 할 가장 중요한 기술적 과제가 되었다.
유기 전계 발광 소자는 두 전극에 전류, 또는 전압을 인가해 주면 양극에서는 정공이 유기물층으로 주입되고, 음극에서는 전자가 유기물층으로 주입된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어져 빛을 내게 된다. 이때, 유기 전계 발광 소자는 형성된 엑시톤의 전자 스핀 종류에 따라 일중항 엑시톤이 발광에 기여하는 형광 전계 발광 소자와 삼중항 엑시톤이 발광에 기여하는 인광 전계 발광 소자로 구분할 수 있다.
전자와 정공의 재결합에 의해 형성되는 엑시톤의 전자 스핀은 일중항 엑시톤과 삼중항 엑시톤이 25%, 75%의 비율로 생성된다. 일중항 엑시톤에 의해 발광이 이루어지는 형광 전계 발광 소자는 생성비율에 따라 이론적으로 내부 양자 효율이 25%를 넘을 수 없으며, 외부 양자 효율은 5%가 한계로 받아들여지고 있다. 삼중항 엑시톤에 의해 발광이 이루어지는 인광 전계 발광 소자는 형광 전계 발광 소자보다 최대 4배까지 발광 효율을 향상시킬 수 있다.
상기와 같이 인광 전계 발광 소자는 이론적인 사실을 근거로 발광효율 면에서 형광 전계 발광 소자보다 높은 효율을 나타내지만 청색 인광 전계 발광 소자에 있어서는 진청색의 색순도 및 고효율을 만족시키는 호스트에 대한 개발이 미비하여 아직까지 청색 인광 전계 발광 소자보다 청색 형광 전계 발광 소자가 제품에 주로 사용되고 있다.
한편, 유기 전계 발광 소자의 특성을 향상시키기 위해 정공이 전자 전달층으로 확산되는 것을 방지하여 소자의 안정성을 향상시키기 위한 연구 결과가 보고 되어 왔다. 발광층과 전자 전달층 사이에 BCP나 BPhen 등의 재료를 사용함으로 정공이 전자 전달층으로 확산되는 것을 막고, 발광층 안에 제한시켜 정공과 전자의 재결합율을 높이는 기술이 제시되었다. 그러나, BCP나 BPhen 등의 유도체들은 정공에 대한 산화 안정성이 떨어지고, 열에 대한 내구성이 취약하여 결과적으로 유기 전계 발광 소자의 수명을 감소시켜 상업화되지 못했다. 또한, 이러한 재료들은 전자의 이동을 저해시켜 유기 전계 발광 소자의 구동전압을 상승시킨다.
상기한 문제점을 해결하기 위해, 본 발명은 구동전압, 발광효율 및 수명이 우수한 유기 전계 발광 소자를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위해, 본 발명은 양극; 음극; 및 상기 양극과 음극 사이에 개재(介在)된 유기물층을 포함하며, 상기 유기물층은 하기 화학식 1로 표시되는 화합물을 포함하는 것인 유기 전계 발광 소자를 제공한다.
[화학식 1]
Figure PCTKR2015014021-appb-I000001
상기 화학식 1에서,
Ra 및 Rb는 서로 동일하거나 상이하며, 각각 독립적으로 C1~C40의 알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되거나, 또는 서로 결합하여 축합 고리를 형성하고,
R1 내지 R3는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C1~C40의 포스핀기, C1~C40의 포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 고리를 형성하고,
L은 단일결합이거나, 또는 C6~C18의 아릴렌기 및 핵원자수 5 내지 18의 헤테로아릴렌기로 이루어진 군에서 선택되고,
Z1 내지 Z5는 서로 동일하거나 상이하며, 각각 독립적으로 N 또는 C(R4)이고, 이때 적어도 하나는 N이며, 상기 C(R4)가 복수인 경우 복수의 C(R4)는 서로 동일하거나 상이하고,
c 및 e는 각각 0 내지 4의 정수이고,
d는 0 내지 3의 정수이고,
m 및 n은 각각 1 내지 3의 정수이고,
상기 R4는 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C1~C40의 포스핀기, C1~C40의 포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 고리를 형성하고,
상기 Ra, Rb의 알킬기, 아릴기와, 상기 R1 내지 R4의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 포스핀기, 포스핀옥사이드기, 아릴아민기와, 상기 L의 아릴렌기, 헤테로아릴렌기는 각각 독립적으로 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C1~C40의 포스핀기, C1~C40의 포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되고, 상기 치환기가 복수일 경우 복수의 치환기는 서로 동일하거나 상이하다.
이러한 화학식 1로 표시되는 화합물은 상기 유기물층 중 수명 개선층에 포함될 수 있다.
본 발명은 특정 물성을 가지는 화합물로 이루어진 수명 개선층, 전자 수송층 또는 전자 주입층을 유기 전계 발광 소자에 도입함에 따라 구동전압, 발광효율 및 수명이 우수한 유기 전계 발광 소자를 제공할 수 있다.
또한, 본 발명의 유기 전계 발광 소자를 디스플레이 패널에 적용함에 따라 성능 및 수명이 향상된 디스플레이 패널을 제공할 수 있다.
도 1은 본 발명의 일 예에 따른 유기 전계 발광 소자를 나타내는 단면도이다.
이하, 본 발명을 설명한다.
본 발명의 일 예는 양극; 음극; 및 상기 양극과 음극 사이에 개재(介在)된 유기물층을 포함하며, 상기 유기물층은 하기 화학식 1로 표시되는 화합물을 포함하는 것인 유기 전계 발광 소자를 제공한다.
Figure PCTKR2015014021-appb-C000001
상기 화학식 1에서,
Ra 및 Rb는 서로 동일하거나 상이하며, 각각 독립적으로 C1~C40의 알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되거나, 또는 서로 결합하여 축합 고리를 형성하고,
R1 내지 R3는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C1~C40의 포스핀기, C1~C40의 포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여(구체적으로, 인접하는 R1끼리 결합, 인접하는 R2끼리 결합, 인접하는 R3끼리 결합, 또는 R1과 R2의 결합) 축합 고리를 형성하고,
L은 단일결합이거나, 또는 C6~C18의 아릴렌기 및 핵원자수 5 내지 18의 헤테로아릴렌기로 이루어진 군에서 선택되고,
Z1 내지 Z5는 서로 동일하거나 상이하며, 각각 독립적으로 N 또는 C(R4)이고, 이때 적어도 하나는 N이며, 상기 C(R4)가 복수인 경우 복수의 C(R4)는 서로 동일하거나 상이하고,
c 및 e는 각각 0 내지 4의 정수이고,
d는 0 내지 3의 정수이고,
m 및 n은 각각 1 내지 3의 정수이고,
상기 R4는 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C1~C40의 포스핀기, C1~C40의 포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여(구체적으로, 인접하는 R4끼리 결합) 축합 고리를 형성하고,
상기 Ra, Rb의 알킬기, 아릴기와, 상기 R1 내지 R4의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 포스핀기, 포스핀옥사이드기, 아릴아민기와, 상기 L의 아릴렌기, 헤테로아릴렌기는 각각 독립적으로 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C1~C40의 포스핀기, C1~C40의 포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되고, 상기 치환기가 복수일 경우 복수의 치환기는 서로 동일하거나 상이하다.
도 1에는 본 발명의 일 예에 따른 유기 전계 발광 소자가 도시되어 있다. 본 발명의 일 예에 따르면, 유기 전계 발광 소자는 양극(100); 음극(200); 및 상기 양극과 음극 사이에 개재된 유기물층(300)을 포함한다.
양극(100)은 정공을 유기물층(300)으로 주입하는 역할을 한다. 양극(100)을 이루는 물질은 특별히 한정되지 않으며, 비제한적인 예로, 바나듐, 크롬, 구리, 아연, 금 등의 금속; 이들의 합금; 아연 산화물, 인듐 산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO) 등의 금속 산화물; ZnO와 Al, SnO2와 Sb 등의 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤, 폴리아닐린 등의 전도성 고분자; 및 카본블랙을 들 수 있다. 양극(100)을 제조하는 방법도 특별히 한정되지 않으며, 비제한적인 예로, 실리콘 웨이퍼, 석영, 유리판, 금속판 또는 플라스틱 필름으로 이루어진 기판 상에 양극 물질을 코팅하는 방법을 들 수 있다.
음극(200)은 전자를 유기물층(300)으로 주입하는 역할을 한다. 음극(200)을 이루는 물질은 특별히 한정되지 않으며, 비제한적인 예로, 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 납 등의 금속; 이들의 합금; 및 LiF/Al, LiO2/Al 등의 다층 구조 물질을 들 수 있다. 음극(200)을 제조하는 방법도 당업계에 공지된 방법이라면 특별히 한정되지 않는다.
도 1에 도시된 바와 같이, 유기물층(300)은 바람직하게 정공 주입층(301), 정공 수송층(302), 발광층(303), 수명 개선층(304), 전자 수송층(305) 및 전자 주입층(306)으로 이루어진 군에서 선택된 1종 이상을 포함한다. 유기 전계 발광 소자의 특성을 고려할 때, 유기물층(300)은 상기 층들을 모두 포함하는 것이 더욱 바람직하다.
정공 주입층(301)과 정공 수송층(302)은 양극(100)에서 주입된 정공을 발광층(303)으로 이동시키는 역할을 한다. 정공 주입층(301)과 정공 수송층(302)을 이루는 물질은 정공 주입 장벽이 낮고 정공 이동도가 큰 물질이라면 특별히 한정되지 않으며, 비제한적인 예로, 아릴아민 유도체를 들 수 있다.
발광층(303)은 정공과 전자가 만나 엑시톤(exciton)이 형성되는 층이다. 발광층(303)을 이루는 물질에 따라 유기 전계 발광 소자가 내는 빛의 색이 달라질 수 있다. 발광층(303)은 호스트와 도펀트를 포함할 수 있는데, 호스트를 70 내지 99.9중량%로 포함하고 도펀트를 0.1 내지 30중량%로 포함하는 것이 바람직하다. 발광층(303)이 청색 형광, 녹색 형광 또는 적색 형광일 경우에는 호스트를 70 내지 99.9중량%로 포함하고 도펀트를 0.1 내지 30중량%로 포함하는 것이 바람직하며, 호스트를 80 내지 99중량%로 포함하고 도펀트를 1 내지 20중량%로 포함하는 것이 더욱 바람직하다.
상기 발광층(303)에 포함되는 호스트는 당업계에 공지된 것이라면 특별히 한정되지 않으며, 비제한적인 예로, 알칼리 금속 착화합물; 알칼리토금속 착화합물; 또는 축합 방향족환 유도체를 들 수 있다. 특히, 호스트로는 유기 전계 발광 소자의 발광효율 및 수명을 높일 수 있는 알루미늄 착화합물, 베릴륨 착화합물, 안트라센 유도체, 파이렌 유도체, 트리페닐렌 유도체, 카바졸 유도체, 디벤조퓨란 유도체, 디벤조싸이오펜 유도체를 사용하는 것이 바람직하다.
상기 발광층(303)에 포함되는 도펀트는 당업계에 공지된 것이라면 특별히 한정되지 않으며, 비제한적인 예로, 안트라센 유도체, 파이렌 유도체, 아릴아민 유도체, 이리듐(Ir) 또는 백금(Pt)을 포함하는 금속 착제 화합물을 들 수 있다.
발광층(303)은 하나의 층(단일층)으로 이루어질 수 있고, 혹은 복수의 층(다층)으로 이루어질 수도 있다. 발광층(303)이 복수의 층으로 이루어진 경우, 유기 전계 발광 소자는 다양한 색의 빛을 낼 수 있다. 예를 들면, 정공 수송층(302)과 수명 개선층(304) 사이에 복수개의 발광층을 구비하여 혼합색을 띠는 유기 전계 발광 소자를 제공할 수 있다. 이때, 발광층은 이종 재료로 이루어질 수도 있다. 또한, 발광층(303)이 복수의 층으로 이루어진 경우, 구동전압은 커지나 유기 전계 발광 소자 내의 전류 값이 일정하게 되어 발광층의 수만큼 발광 효율이 향상된 유기 전계 발광 소자를 제공할 수 있다.
수명 개선층(304)은 유기 전계 발광 소자의 수명을 향상시키기 위한 것으로, 발광층(303)과 전자 수송층(305) 사이에 구비된다. 수명 개선층(304)을 이루는 물질은 특별히 한정되지 않으며, 전자 흡수성이 큰 전자끌게기(EWG)와 전자 공여성이 큰 전자주게기(EDG)를 모두 가지는 양극성(bipolar)을 나타내는 화합물인 것이 바람직하다. 특히, 수명 개선층(304)을 이루는 물질은 상기 화학식 1로 표시되는 화합물인 것이 더욱 바람직하다.
구체적으로, 상기 양극성 화합물은 이온화 포텐셜(ionization potenitial)이 5.5eV 이상인 것이 바람직하고, 5.5 내지 7.0eV인 것이 더욱 바람직하고, 5.6 내지 6.6eV인 것이 가장 바람직하다. 또한, 상기 양극성 화합물은 HOMO값과 LUMO값의 차이(EHOMO-ELUMO)가 3.0eV 초과인 것이 바람직하고, 2.8 내지 3.8eV인 것이 더욱 바람직하다. 또한, 상기 양극성 화합물은 삼중항 에너지가 2.3eV 이상인 것이 바람직하고, 2.3 내지 3.5eV인 것이 더욱 바람직하고, 2.3 내지 3.0eV인 것이 가장 바람직하다. 상기 양극성 화합물은 일중항 에너지와 삼중항 에너지 차이가 0.7eV 미만인 것이 바람직하고, 0.01 내지 0.7eV인 것이 더욱 바람직하다. 이온화 포텐셜 5.5eV 이상인 화합물을 수명 개선층(304)에 사용할 경우, 정공이 전자 수송층(305)으로 확산하거나 이동하는 것을 방지할 수 있어 유기 전계 발광 소자의 수명을 향상시킬 수 있다.
일반적으로, 정공은 유기 전계 발광 소자 내에서 이온화 포텐셜 레벨에 따라 이동하는데, 정공이 발광층(303)을 넘어 전자 수송층(305)으로 확산하거나 이동할 경우, 산화에 의한 비가역적 분해반응이 일어나 유기 전계 발광 소자의 수명이 떨어지게 된다. 그러나, 본 발명의 일 예에서는 이온화 포텐셜 5.5eV 이상인 양극성 화합물로 이루어진 수명 개선층(304)으로 인해 정공이 전자 수송층(305)으로 확산 또는 이동하는 것이 방지되기 때문에 유기 전계 발광 소자의 수명을 개선할 수 있다. 즉, 정공은 수명 개선층(304)의 높은 에너지 장벽에 막혀 전자 수송층(305)으로 확산 또는 이동하지 못하고 발광층(303)에 머무르게 된다.
발광층(303)이 적색 인광 물질로 이루어질 경우에는 상기 수명 개선층(304)에 포함되는 양극성 화합물의 이온화 포텐셜이 5.5eV 이상이면 무방하나, 녹색 인광 물질 또는 청색 인광 물질로 이루어질 경우에는 양극성 화합물의 이온화 포텐셜이 6.0eV 이상인 것이 바람직하다.
한편, 상기 양극성 화합물은 HOMO값과 LUMO값의 차이(EHOMO-ELUMO)가 3.0eV를 초과하고, 삼중항 에너지가 2.3eV 이상이며, 일중항 에너지와 삼중항 에너지 차이가 0.7eV 미만인 것이 바람직하다. 이러한 화합물을 수명 개선층(304)에 사용할 경우에는 발광층(303)에서 형성된 엑시톤이 전자 수송층(305)으로 확산되는 것을 방지할 수 있고, 발광층(303)과 전자 수송층(305)의 계면에서 발광이 일어나는 현상도 저지할 수 있기 때문이다. 결과적으로 이를 통하여 유기 전계 발광 소자의 스펙트럼 혼색을 방지하며 안정성을 향상시켜 유기 전계 발광 소자의 수명을 향상시킬 수 있다.
본 발명의 일 예에서, 양극성 화합물은 전자 흡수성이 큰 전자끌게기(EWG)와 전자 공여성이 큰 전자주게기(EDG)를 모두 가져 HOMO와 LUMO의 전자 구름이 분리된 특징을 가진다. 이로 인해, 화합물의 삼중항 에너지와 일중항 에너지의 차이(ΔEst)가 0.7eV 미만으로 적으므로, HOMO값과 LUMO값의 차이(EHOMO-ELUMO)가 3.0eV를 초과하더라도 높은 삼중항 에너지(T1)를 가질 수 있다.
발광층(303)이 적색 인광 물질로 이루어질 경우에는 상기 수명 개선층(304)에 포함되는 양극성 화합물의 삼중항 에너지가 2.3eV 이상이면 무방하나, 녹색 인광 물질로 이루어질 경우에는 2.5eV 이상, 청색 인광 물질로 이루어질 경우에는 2.7eV 이상인 것이 바람직하다.
한편, 상기 양극성 화합물은 정공 이동도 및 전자 이동도가 상온에서 1×10-6cm2/V·s 이상인 것이 바람직하다. 이러한 화합물을 수명 개선층(304)에 사용할 경우에는 양극(100)으로부터 주입된 정공의 수에 비해 전자의 주입이 늦어지는 것을 방지하여 유기 전계 발광 소자의 수명을 향상시킬 수 있기 때문이다.
양극(100)에서 주입된 정공의 수와 음극(200)에서 주입된 전자의 수의 차이로 인해 전자와 정공의 균형이 맞지 않을 경우에는 재결합에 의해 엑시톤을 형성하지 못한 전자 또는 정공이 발광층(303)에 쌓이게 된다. 상기 발광층(303)에 쌓인 전자 또는 정공은 발광층(303)에서 산화와 환원이 원활히 일어나지 못하게 하거나, 인접하는 층에 영향을 끼쳐 유기 전계 발광 소자의 수명을 감소시키게 된다.
그러나, 본 발명의 수명 개선층(304)에 포함되는 양극성 화합물은 전자주게기(EDG)에 의해 정공의 이동도가 상온에서 1×10-6cm2/V·s 이상을 나타내고, 전자끌게기(EWG)에 의해 전자 이동도가 상온에서 1×10-6cm2/V·s 이상을 나타낸다. 이러한 화합물을 수명 개선층(304)에 사용할 경우에는 발광층(303)으로 전자를 효과적으로 주입시킬 수 있다. 이와 같이 발광층(303)으로 전자 주입이 원활할 경우에는 발광층(303)에서 엑시톤의 형성효율이 높아져 유기 전계 발광 소자의 수명을 개선할 수 있다.
상기 양극성 화합물은 전자주게기(EDG)인 플루오렌 모이어티와 전자끌게기(EWG)인 6원 헤테로고리가 링커기(페닐렌, 바이페닐렌 또는 터페닐렌)에 의해 결합되어 기본 골격을 이루는 것이 바람직하다. 이때, 상기 양극성 화합물로는 예를 들어, 상기 화학식 1로 표시되는 화합물일 수 있다.
본 발명의 일 예에서는 수명 개선층(304), 전자 수송층(305) 및 전자 주입층(306) 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 4로 표시되는 화합물 중 어느 하나일 수 있다.
Figure PCTKR2015014021-appb-C000002
Figure PCTKR2015014021-appb-C000003
Figure PCTKR2015014021-appb-C000004
상기 화학식 2 내지 4에서,
Ra, Rb, R1 내지 R3, Z1 내지 Z5, c, d 및 e는 각각 상기 화학식 1에서 정의한 바와 같다.
또한, 본 발명의 화학식 1로 표시되는 화합물에서
Figure PCTKR2015014021-appb-I000002
(*는 L과 결합이 이루어지는 부위)로 표시되는 구조(치환체)는 하기 C-1 내지 C-15로 표시되는 구조 중 어느 하나일 수 있다.
Figure PCTKR2015014021-appb-I000003
상기 C-1 내지 C-15에서,
R4는 상기 화학식 1에서 정의한 바와 같고, 복수의 R4는 서로 동일하거나 상이하고,
R5는 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택되거나, 또는 인접하는 기와 결합하여(구체적으로, 인접하는 R5끼리 결합, 또는 R4와 R5의 결합) 축합 고리를 형성하고,
p는 1 내지 4의 정수이고,
상기 R5의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐기, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되고, 이때 상기 치환기가 복수일 경우, 복수의 치환기는 서로 동일하거나 상이하다.
여기서,
Figure PCTKR2015014021-appb-I000004
로 표시되는 구조는 상기 C-9로 표시되는 구조인 것이 더욱 바람직하다. 구체적으로, 본 발명의 화학식 1로 표시되는 화합물은 하기 화학식 5로 표시되는 화합물일 수 있다.
Figure PCTKR2015014021-appb-C000005
상기 화학식 5에서,
Ra, Rb, R1 내지 R4, L, c, d, e, m 및 n은 각각 상기 화학식 1에서 정의한 바와 같다. 여기서, 유기 전계 발광 소자의 특성을 고려할 때, 상기 화학식 5로 표시되는 화합물에서, 상기 R4는 서로 동일한 것이 바람직하다. 즉, R4가 동일하여 대칭 구조를 이루고 있는 것이 바람직하다.
또한, 유기 전계 발광 소자의 특성을 고려할 때, 본 발명의 화학식 1로 표시되는 화합물에서, Ra 및 Rb는 서로 동일하거나 상이하며, 각각 독립적으로, 메틸기 또는 페닐기이거나, 또는 서로 결합하여
Figure PCTKR2015014021-appb-I000005
(*는 결합이 이루어지는 부위)로 표시되는 축합 고리를 형성하는 것이 바람직하다.
더불어, 본 발명의 화학식 1로 표시되는 화합물에서, R1 내지 R3는 각각 독립적으로, 수소, 중수소, C1~C40의 알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되는 것이 바람직하다. 또한, m 및 n은 각각 1 내지 3의 정수인데, m은 1인 것이 바람직하고, n은 1 또는 2인 것이 바람직하다.
또한, 본 발명의 화학식 1로 표시되는 화합물에서, 상기 L은 단일결합, 페닐렌, 바이페닐렌 또는 터페닐렌인 것이 바람직하다. 구체적으로, 링커기인 L은 하기 L-1 내지 L-9로 표시되는 구조(*는 결합이 이루어지는 부위)로 이루어진 군에서 선택되는 것이 바람직하다.
Figure PCTKR2015014021-appb-I000006
이러한 본 발명의 화학식 1로 표시되는 화합물은 하기 화학식 LE-01 내지 LE-12으로 표시되는 화합물들로 보다 구체화될 수 있다.
Figure PCTKR2015014021-appb-I000007
본 발명에서 “알킬”은 탄소수 1 내지 40의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알킬의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 “알케닐(alkenyl)”은 탄소-탄소 이중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알케닐의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서“알키닐(alkynyl)”은 탄소-탄소 삼중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알키닐의 예로는 에티닐(ethynyl), 2-프로파닐(2-propynyl) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 “아릴”은 단독 고리 또는 2 이상의 고리가 조합된 탄소수 6 내지 60의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있다. 이러한 아릴의 예로는 페닐, 나프틸, 페난트릴, 안트릴 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 “헤테로아릴”은 핵원자수 5 내지 60의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이때, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 또한, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된 형태도 포함될 수 있고, 나아가 아릴기와의 축합된 형태도 포함될 수 있다. 이러한 헤테로아릴의 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6-원 모노사이클릭 고리; 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리; 및 2-퓨라닐; N-이미다졸릴; 2-이속사졸릴; 2-피리디닐; 2-피리미디닐 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 “아릴옥시”는 RO-로 표시되는 1가의 치환기로, 상기 R은 탄소수 6 내지 60의 아릴을 의미한다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 “알킬옥시”는 R'O-로 표시되는 1가의 치환기로, 상기 R'는 탄소수 1 내지 40의 알킬을 의미한다. 이러한 알킬옥시는 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함할 수 있고, 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 “아릴아민”은 탄소수 6 내지 60의 아릴로 치환된 아민을 의미한다.
본 발명에서 “시클로알킬”은 탄소수 3 내지 40의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 노르보닐(norbornyl), 아다만틴(adamantine) 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 “헤테로시클로알킬”은 핵원자수 3 내지 40의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등을 들 수 있으나, 이에 한정되지는 않는다.
본 발명에서 “알킬실릴”은 탄소수 1 내지 40의 알킬로 치환된 실릴이고, “아릴실릴”은 탄소수 5 내지 40의 아릴로 치환된 실릴을 의미한다.
본 발명에서 “축합고리”는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.
이와 같은 본 발명의 화학식 1로 표시되는 화합물은 하기 실시예의 합성과정을 참고하여 다양하게 합성할 수 있다.
전자 수송층(305)과 전자 주입층(306)은 음극(200)에서 주입된 전자를 발광층(303)으로 이동시키는 역할을 한다. 전자 수송층(305)과 전자 주입층(306)을 이루는 물질은 전자 주입이 용이하고 전자 이동도가 큰 물질이라면 특별히 한정되지 않으며, 비제한적인 예로, 상기 화학식 1로 표시되는 화합물, 안트라센 유도체, 헤테로방향족 화합물, 알칼리 금속 착화합물을 들 수 있다.
구체적으로, 상기 전자 수송층(305) 및/또는 전자 주입층(306)은 상기 수명 개선층(304)과 동일한 물질, 즉 상기 화학식 1로 표시되는 화합물로 이루어지는 것이 바람직하다. 또한, 전자 수송층(305) 및/또는 전자 주입층(306)은 음극으로부터 전자의 주입이 용이하도록 알칼리 금속 착화합물이 공증착된 것을 사용할 수도 있다. 상기 알칼리 금속 착화합물로는 알칼리 금속, 알칼리 토금속 또는 희토류 금속을 들 수 있다.
이와 같은 본 발명의 일 예에 따른 유기물층(300)은 정공 수송층(302)과 발광층(303) 사이에 전자와 엑시톤을 블로킹하는 유기막층(미도시)이 더 포함될 수 있다. 유기막층은 높은 LUMO 값을 가져 전자가 정공 수송층(302)으로 이동하는 것을 막고, 높은 삼중항 에너지를 가져 발광층(303)의 엑시톤이 정공 수송층(302)으로 확산되는 것을 방지한다. 유기막층을 이루는 물질은 특별히 한정되지 않으며, 비제한적인 예로 카바졸 유도체 또는 아릴아민 유도체를 들 수 있다.
본 발명의 일 예에 따른 유기물층(300)을 제조하는 방법은 특별히 한정되지 않으며, 비제한적인 예로, 진공 증착법, 용액 도포법을 들 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 열 전사법 등을 들 수 있다.
이상의 본 발명의 일 예에 따른 유기 전계 발광 소자는 양극(100), 유기물층(300) 및 음극(200)이 순차적으로 적층된 구조를 가지되, 양극(100)과 유기물층(300) 사이 또는 음극(200)과 유기물층(300) 사이에 절연층 또는 접착층이 더 포함될 수도 있다. 이러한 유기 전계 발광 소자는 전압 및 전류 인가 시 최대발광효율을 유지하면서 초기 밝기의 반감시간(Life time)이 증가되기 때문에 수명 특성이 우수할 수 있다.
이하, 본 발명을 실시예를 통하여 상세히 설명하나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[ 준비예 1 내지 12] 화합물 LE-01 내지 LE-12 준비
본 발명의 양극성 화합물로 하기 LE-01 내지 LE-12로 표시되는 화합물을 준비하였으며, ΔEst, 삼중항 에너지, 이온화포텐셜, EHOMO-ELUMO, 전자이동도 및 정공 이동도를 당업계에 공지된 방법으로 각각 측정하여 하기 표 1에 나타내었다.
Figure PCTKR2015014021-appb-I000008
화합물 계산값(B3LYP/6-31G*) 실측값
ΔEst (S1-T1) 삼중항 에너지 이온화 포텐셜 EHOMO-ELUMO 전자이동도 정공이동도
LE-01 0.42 2.78 5.92 3.49 6.8×10-4 7.3×10-5
LE-02 0.52 2.68 5.88 3.45 7.3×10-4 5.9×10-5
LE-03 0.47 2.71 5.93 3.56 8.1×10-4 7.6×10-5
LE-04 0.57 2.73 6.12 3.44 6.6×10-4 5.8×10-5
LE-05 0.51 2.81 5.97 3.63 7.3×10-4 8.3×10-5
LE-06 0.48 2.83 6.16 3.64 6.8×10-4 7.6×10-5
LE-07 0.49 2.82 5.97 3.60 7.8×10-4 8.1×10-5
LE-08 0.55 2.80 5.96 3.58 7.9×10-3 7.8×10-5
LE-09 0.52 2.82 6.01 3.62 7.3×10-4 7.7×10-5
LE-10 0.47 2.72 5.89 3.45 8.5×10-4 7.4×10-5
LE-11 0.38 2.65 5.87 3.41 6.7×10-4 6.8×10-5
LE-12 0.41 2.71 6.01 3.51 7.7×10-4 7.6×10-5
*정공이동도 및 전자이동도는 양극성 화합물을 1㎛ 두께로 성막하여 캐리어의 이동시간(Transit time)을 측정함.
[ 실시예 1 내지 12] 청색 형광 유기 전계 발광 소자의 제조
ITO(Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수로 초음파 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척하고 건조시킨 후 UV OZONE 세정기(Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극(기판) 상에 정공 주입층, 정공 수송층, 발광층, 수명 개선층, 전자 수송층, 전자 주입층 및 음극을 순차적으로 증착하여 소자를 제조하였다. 제조된 소자의 구조는 하기 표 2와 같다.
정공 주입층 정공 수송층 발광층 수면 개선층 전자 수송층 전자 주입층 음극
화합물 DS-205 ((주)두산) NPB AND+5% DS-405((주)두산) LE-01 내지 LE-12 Alq3 LiF Al
두께 80nm 15nm 30nm 5nm 25nm 1nm 200nm
상기 표 2에서, NPB, AND 및 Alq3의 구조는 하기와 같다.
Figure PCTKR2015014021-appb-I000009
[ 비교예 1] 청색 형광 유기 전계 발광 소자의 제조
수명 개선층을 사용하지 않고 전자 수송층을 30㎚로 증착한 것을 제외하고는 실시예 1과 동일한 과정으로 소자를 제조하였다.
[ 비교예 2] 청색 형광 유기 전계 발광 소자의 제조
LE-01 대신 하기 구조의 BCP를 사용하는 것을 제외하고는 실시예 1과 동일한 과정으로 소자를 제조하였다.
Figure PCTKR2015014021-appb-I000010
[ 실험예 1]
상기 실시예 1 내지 12 및 비교예 1, 2에서 제조된 각각의 소자에 대하여 전류밀도 10mA/cm2에서의 구동전압, 전류효율, 발광파장 및 수명(T97)을 측정하였고, 그 결과를 하기 표 3에 나타내었다.
화합물 구동전압(V) 전류효율(cd/A) 발광피크(nm) 수명(hr, T97)
실시예 1 LE-01 4.3 7.1 458 63
실시예 2 LE-02 4.2 6.9 458 59
실시예 3 LE-03 4.6 7.0 457 62
실시예 4 LE-04 4.1 7.3 458 58
실시예 5 LE-05 4.0 8.0 458 41
실시예 6 LE-06 4.2 7.9 458 38
실시예 7 LE-07 3.8 8.2 458 42
실시예 8 LE-08 3.9 8.3 457 35
실시예 9 LE-09 4.1 7.8 458 39
실시예 10 LE-10 4.2 7.9 458 64
실시예 11 LE-11 4.5 7.0 458 75
실시예 12 LE-12 4.3 7.4 457 69
비교예 1 - 4.7 5.6 458 32
비교예 2 BCP 5.3 5.9 458 28
*수명은 수명측정기(맥사이언스社)를 통해 발광휘도가 97%되는 시간을 측정함.
상기 표 3을 살펴보면, 본 발명의 수명 개선층을 포함하는 실시예 1 내지 12의 유기 전계 발광 소자는 비교예 1 및 2의 유기 전계 발광 소자보다 전류효율, 구동전압 및 수명이 우수한 것을 확인할 수 있었다.
[ 실시예 13 내지 20] 녹색 인광 유기 전계 발광 소자의 제조
ITO(Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수로 초음파 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척하고 건조시킨 후 UV OZONE 세정기(Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.
상기와 같이 준비된 ITO 투명 전극(기판) 상에 정공 주입층, 정공 수송층, 발광층, 수명 개선층, 전자 수송층, 전자 주입층 및 음극을 순차적으로 증착하여 소자를 제조하였다. 제조된 소자의 구조는 하기 표 4와 같다.
정공 주입층 정공 수송층 발광층 수명 개선층 전자 수송층 전자주입층 음극
화합물 m-MTDATA TCTA CBP+10% Ir(ppy)3 하기 표 5 참조 Alq3 LiF Al
두께 60nm 80nm 30nm 5nm 25nm 1nm 200nm
상기 표 4에서, m-MTDATA, TCTA, Ir(ppy)3 및 CBP의 구조는 하기와 같다.
Figure PCTKR2015014021-appb-I000011
[ 비교예 3] 녹색 인광 유기 전계 발광 소자의 제조
수명 개선층을 사용하지 않고 전자 수송층을 30㎚로 증착한 것을 제외하고는 실시예 1과 동일한 과정으로 소자를 제조하였다.
[ 비교예 4] 녹색 인광 유기 전계 발광 소자의 제조
LE-01 대신 하기 구조의 BCP를 사용하는 것을 제외하고는 실시예 13과 동일한 과정으로 소자를 제조하였다.
Figure PCTKR2015014021-appb-I000012
[ 실험예 2]
상기 실시예 13 내지 20 및 비교예 3, 4에서 제조된 각각의 소자에 대하여 전류밀도 10mA/cm2에서의 구동전압, 전류효율, 발광파장 및 수명(T97)을 측정하였고, 그 결과를 하기 표 5에 나타내었다.
화합물 구동전압(V) 전류효율(cd/A) 발광피크(nm) 수명(hr, T97)
실시예 13 LE-01 6.4 37.0 516 51
실시예 14 LE-02 6.1 38.8 516 53
실시예 15 LE-04 6.2 38.0 516 57
실시예 16 LE-05 6.4 39.0 517 58
실시예 17 LE-06 6.1 36.6 516 69
실시예 18 LE-07 6.0 41.5 515 61
실시예 19 LE-08 6.4 40.6 516 63
실시예 20 LE-10 6.8 37.8 516 89
비교예 3 - 7.2 36.8 516 45
비교예 4 BCP 7.9 40.2 516 40
*수명은 수명측정기(맥사이언스社)를 통해 발광휘도가 97%되는 시간을 측정함
상기 표 5를 살펴보면, 본 발명의 수명개선층을 포함하는 실시예 1 내지 12의 유기 전계 발광 소자는 비교예 1 및 2의 유기 전계 발광 소자보다 전류효율, 구동전압 및 수명이 우수한 것을 확인할 수 있었다.

Claims (16)

  1. 양극; 음극; 및 상기 양극과 음극 사이에 개재(介在)된 유기물층을 포함하며,
    상기 유기물층은 하기 화학식 1로 표시되는 화합물을 포함하는 것인 유기 전계 발광 소자.
    [화학식 1]
    Figure PCTKR2015014021-appb-I000013
    상기 화학식 1에서,
    Ra 및 Rb는 서로 동일하거나 상이하며, 각각 독립적으로 C1~C40의 알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되거나, 또는 서로 결합하여 축합 고리를 형성하고,
    R1 내지 R3는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C1~C40의 포스핀기, C1~C40의 포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 고리를 형성하고,
    L은 단일결합이거나, 또는 C6~C18의 아릴렌기 및 핵원자수 5 내지 18의 헤테로아릴렌기로 이루어진 군에서 선택되고,
    Z1 내지 Z5는 서로 동일하거나 상이하며, 각각 독립적으로 N 또는 C(R4)이고, 이때 적어도 하나는 N이며, 상기 C(R4)가 복수인 경우 복수의 C(R4)는 서로 동일하거나 상이하고,
    c 및 e는 각각 0 내지 4의 정수이고,
    d는 0 내지 3의 정수이고,
    m 및 n은 각각 1 내지 3의 정수이고,
    상기 R4는 수소, 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C1~C40의 포스핀기, C1~C40의 포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되거나, 또는 인접한 기와 결합하여 축합 고리를 형성하며,
    상기 Ra, Rb의 알킬기, 아릴기와, 상기 R1 내지 R4의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 포스핀기, 포스핀옥사이드기, 아릴아민기와, 상기 L의 아릴렌기, 헤테로아릴렌기는 각각 독립적으로 중수소, 할로겐기, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C1~C40의 포스핀기, C1~C40의 포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되고, 상기 치환기가 복수일 경우 복수의 치환기는 서로 동일하거나 상이하다.
  2. 제1항에 있어서,
    상기 유기물층은 정공 주입층, 정공 수송층, 발광층, 수명 개선층, 전자 수송층 및 전자 주입층으로 이루어진 군에서 선택된 1종 이상을 포함하고,
    상기 수명 개선층, 전자 수송층 및 전자 주입층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함하는 것인 유기 전계 발광 소자.
  3. 제2항에 있어서,
    상기 수명 개선층은 상기 화학식 1로 표시되는 화합물을 포함하는 것인 유기 전계 발광 소자.
  4. 제3항에 있어서,
    상기 발광층이 녹색 인광 물질로 이루어지고, 상기 수명 개선층에 포함되는 상기 화학식 1로 표시되는 화합물은 이온화 포텐셜이 6.0eV 이상이고, 삼중항 에너지가 2.5eV 이상인 유기 전계 발광 소자.
  5. 제3항에 있어서,
    상기 발광층이 청색 인광 물질로 이루어지고, 상기 수명 개선층에 포함되는 상기 화학식 1로 표시되는 화합물은 이온화 포텐셜이 6.0eV 이상이고, 삼중항 에너지가 2.7eV 이상인 유기 전계 발광 소자.
  6. 제2항에 있어서,
    상기 전자 수송층이 상기 화학식 1로 표시되는 화합물을 포함하고, 상기 수명 개선층이 상기 화학식 1로 표시되는 화합물을 포함하며,
    상기 전자 수송층 및 수명 개선층의 화합물이 서로 동일한 화합물인 유기 전계 발광 소자.
  7. 제2항에 있어서,
    상기 전자 주입층이 상기 화학식 1로 표시되는 화합물을 포함하고, 상기 수명 개선층이 상기 화학식 1로 표시되는 화합물은 포함하며,
    상기 전자 주입층 및 수명 개선층의 화합물이 서로 동일한 화합물인 유기 전계 발광 소자.
  8. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 이온화 포텐셜이 5.5eV 이상이고, HOMO값과 LUMO값의 차이가 3.0eV를 초과하며, 삼중항 에너지가 2.3eV 이상이고, 일중항 에너지와 삼중항 에너지의 차이가 0.7eV 미만인 유기 전계 발광 소자.
  9. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 전자 이동도 및 정공 이동도가 상온에서 1×10-6cm2/V·s 이상인 유기 전계 발광 소자.
  10. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 4로 표시되는 화합물로 이루어진 군에서 선택되는 것인 유기 전계 발광 소자.
    [화학식 2]
    Figure PCTKR2015014021-appb-I000014
    [화학식 3]
    Figure PCTKR2015014021-appb-I000015
    [화학식 4]
    Figure PCTKR2015014021-appb-I000016
    상기 화학식 2 내지 4에서,
    Ra, Rb, R1 내지 R3, Z1 내지 Z5, c, d 및 e는 각각 제1항에서 정의한 바와 같다.
  11. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물의
    Figure PCTKR2015014021-appb-I000017
    (*는 L과 결합이 이루어지는 부위)로 표시되는 구조(치환체)가 하기 C-1 내지 C-15로 표시되는 구조로 이루어진 군에서 선택되는 것인 유기 전계 발광 소자.
    Figure PCTKR2015014021-appb-I000018
    상기 C-1 내지 C-15에서,
    R4는 제1항에서 정의한 바와 같고,
    R5는 수소, 중수소, 할로겐, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택되거나, 또는 인접하는 기와 결합하여 축합 고리를 형성하고,
    p는 1 내지 4의 정수이고,
    상기 R5의 알킬기, 알케닐기, 알키닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 아릴아민기, 알킬실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴실릴기는 각각 독립적으로 중수소, 할로겐기, 시아노기, 니트로기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C6~C60의 아릴옥시기, C1~C40의 알킬옥시기, C6~C60의 아릴아민기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환되고, 이때 상기 치환기가 복수일 경우, 복수의 치환기는 서로 동일하거나 상이하다.
  12. 제11항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 5로 표시되는 화합물인 유기 전계 발광 소자.
    [화학식 5]
    Figure PCTKR2015014021-appb-I000019
    상기 화학식 5에서,
    Ra, Rb, R1 내지 R4, L, c, d, e, m 및 n은 각각 제1항에서 정의한 바와 같다.
  13. 제12항에 있어서,
    상기 R4는 서로 동일한 것인 유기 전계 발광 소자.
  14. 제1항에 있어서,
    상기 Ra 및 Rb는 서로 동일하거나 상이하며, 각각 독립적으로 메틸기 또는 페닐기이거나, 또는 서로 결합하여
    Figure PCTKR2015014021-appb-I000020
    (*는 결합이 이루어지는 부위)로 표시되는 축합 고리를 형성하는 것인 유기 전계 발광 소자.
  15. 제1항에 있어서,
    상기 L은 하기 L-1 내지 L-9로 표시되는 구조(*는 결합이 이루어지는 부위)로 이루어진 군에서 선택되는 것인 유기 전계 발광 소자.
    Figure PCTKR2015014021-appb-I000021
  16. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 LE-01 내지 LE-12로 표시되는 화합물로 이루어진 군에서 선택되는 것인 유기 전계 발광 소자.
    Figure PCTKR2015014021-appb-I000022
PCT/KR2015/014021 2014-12-24 2015-12-21 유기 전계 발광 소자 WO2016105050A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/538,781 US9960363B2 (en) 2014-12-24 2015-12-21 Organic electroluminescent element
EP15873577.9A EP3239271B1 (en) 2014-12-24 2015-12-21 Organic electroluminescent element
EP20152476.6A EP3660006B1 (en) 2014-12-24 2015-12-21 Organic electroluminescent element
JP2017534328A JP6633637B2 (ja) 2014-12-24 2015-12-21 有機電界発光素子
EP20200773.8A EP3798210A1 (en) 2014-12-24 2015-12-21 Organic electroluminescent element
EP20200771.2A EP3789381B1 (en) 2014-12-24 2015-12-21 Organic electroluminescent element
CN201580069279.1A CN107108529B (zh) 2014-12-24 2015-12-21 有机电致发光元件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0188953 2014-12-24
KR20140188953 2014-12-24
KR1020150176096A KR102587500B1 (ko) 2014-12-24 2015-12-10 유기 전계 발광 소자
KR10-2015-0176096 2015-12-10

Publications (1)

Publication Number Publication Date
WO2016105050A1 true WO2016105050A1 (ko) 2016-06-30

Family

ID=56150997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014021 WO2016105050A1 (ko) 2014-12-24 2015-12-21 유기 전계 발광 소자

Country Status (1)

Country Link
WO (1) WO2016105050A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799658A (zh) * 2016-08-29 2018-03-13 株式会社半导体能源研究所 发光元件、发光装置、电子设备、照明装置及有机金属配合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110112186A (ko) * 2008-12-22 2011-10-12 메르크 파텐트 게엠베하 트리아진 유도체를 포함하는 유기 전계발광 소자
CN102372665A (zh) * 2010-08-20 2012-03-14 清华大学 一种芳基芴类化合物及应用
KR20130094903A (ko) * 2012-02-17 2013-08-27 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물
KR20140046541A (ko) * 2012-10-04 2014-04-21 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20140101661A (ko) * 2011-11-22 2014-08-20 이데미쓰 고산 가부시키가이샤 방향족 복소고리 유도체, 유기 일렉트로루미네선스 소자용 재료 및 유기 일렉트로루미네선스 소자
WO2015152650A1 (ko) * 2014-04-04 2015-10-08 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110112186A (ko) * 2008-12-22 2011-10-12 메르크 파텐트 게엠베하 트리아진 유도체를 포함하는 유기 전계발광 소자
CN102372665A (zh) * 2010-08-20 2012-03-14 清华大学 一种芳基芴类化合物及应用
KR20140101661A (ko) * 2011-11-22 2014-08-20 이데미쓰 고산 가부시키가이샤 방향족 복소고리 유도체, 유기 일렉트로루미네선스 소자용 재료 및 유기 일렉트로루미네선스 소자
KR20130094903A (ko) * 2012-02-17 2013-08-27 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물
KR20140046541A (ko) * 2012-10-04 2014-04-21 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2015152650A1 (ko) * 2014-04-04 2015-10-08 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799658A (zh) * 2016-08-29 2018-03-13 株式会社半导体能源研究所 发光元件、发光装置、电子设备、照明装置及有机金属配合物
CN107799658B (zh) * 2016-08-29 2021-05-28 株式会社半导体能源研究所 发光元件、发光装置、电子设备、照明装置及有机金属配合物
US11024809B2 (en) 2016-08-29 2021-06-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and organometallic complex

Similar Documents

Publication Publication Date Title
EP3604297B1 (en) Heterocyclic compound and organic light emitting element comprising same
KR102360681B1 (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
KR102587500B1 (ko) 유기 전계 발광 소자
KR101742359B1 (ko) 유기 전계 발광 소자
KR102076958B1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2015099481A1 (ko) 유기 전계 발광 소자
WO2016064102A1 (ko) 유기 전계 발광 소자
WO2011136484A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2016003053A1 (ko) 인광 호스트용 화합물 및 이를 포함한 유기 발광 소자
KR102110833B1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20190037925A (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20210050047A (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102140189B1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
KR102143585B1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2013100506A1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR102337571B1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20200079804A (ko) 화합물, 유기 광전자 소자 및 표시 장치
WO2016105050A1 (ko) 유기 전계 발광 소자
WO2021141370A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2014042322A1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR20140037621A (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR102580638B1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20210041833A (ko) 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
KR102177586B1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022203403A1 (ko) 신규한 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873577

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15538781

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017534328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015873577

Country of ref document: EP