WO2016104895A1 - 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지 - Google Patents

리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지 Download PDF

Info

Publication number
WO2016104895A1
WO2016104895A1 PCT/KR2015/006687 KR2015006687W WO2016104895A1 WO 2016104895 A1 WO2016104895 A1 WO 2016104895A1 KR 2015006687 W KR2015006687 W KR 2015006687W WO 2016104895 A1 WO2016104895 A1 WO 2016104895A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyanide
lithium secondary
secondary battery
electrolyte
carbonate
Prior art date
Application number
PCT/KR2015/006687
Other languages
English (en)
French (fr)
Inventor
전종호
고주환
서진아
김진희
조성님
유태환
조정주
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US15/538,945 priority Critical patent/US10559852B2/en
Priority to CN201580076756.7A priority patent/CN107251309B/zh
Priority to EP15873423.6A priority patent/EP3240091B1/en
Publication of WO2016104895A1 publication Critical patent/WO2016104895A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery electrolyte and a lithium secondary battery having the same, and more particularly, by including a solid salt having an ammonium cation and a cyanide anion (CN ⁇ ) as an electrolyte additive to reduce the stability of the negative electrode in a high temperature environment It relates to an electrolyte solution for a lithium secondary battery capable of suppressing and a lithium secondary battery having the same.
  • Such a lithium secondary battery has a structure in which an electrolyte solution containing lithium salt is impregnated in an electrode assembly having a porous separator interposed between a positive electrode and a negative electrode on which an active material is coated on an electrode current collector.
  • an electrolyte solution containing lithium salt is impregnated in an electrode assembly having a porous separator interposed between a positive electrode and a negative electrode on which an active material is coated on an electrode current collector.
  • the electrolyte solution generally contains an organic solvent and an electrolyte salt, for example, in a mixed solvent of a highly viscous linear carbonate such as propylene carbonate and ethylene carbonate and a low viscosity chain carbonate such as diethyl carbonate, ethyl methyl carbonate and dimethyl carbonate.
  • a highly viscous linear carbonate such as propylene carbonate and ethylene carbonate
  • a low viscosity chain carbonate such as diethyl carbonate, ethyl methyl carbonate and dimethyl carbonate.
  • lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 are commonly used.
  • the voltage of the negative electrode having a large irreversible capacity first rises, and the voltage of the negative electrode is about 3.6 V or more in which the copper foil is oxidized.
  • copper ions are released from the copper foil into the electrolyte solution.
  • the copper ions thus eluted are again precipitated as metal on the surface of the negative electrode during charging to reduce the stability of the negative electrode.
  • the precipitated copper may cause a short circuit at the surface of the cathode or reduce the charge / discharge capacity because it interferes with the intercalation of lithium ions.
  • Patent Document 1 Korean Patent Laid-Open Publication No. 2006-0063749
  • A is one selected from the group consisting of alkali metals and alkaline earth metals.
  • this method has an effect of slightly increasing the voltage at which the oxidation is initiated, but the problem of dissolution of copper ions generated when the lithium secondary battery is left at a high temperature has not been solved.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2005-063764 describes a method of preventing elution of copper during overdischarge by providing a copper foil for lithium ion secondary batteries having a chromium-based coating formed thereon.
  • this method is more complicated and cost-effective than the method of adding an additive to the electrolyte.
  • Patent Document 1 KR2006-0063749 A
  • Patent Document 2 JP2005-063764 A
  • the problem to be solved by the present invention is to provide a lithium secondary battery electrolyte that can solve the stability degradation of the cathode caused by copper ions (Cu + 2) which is eluted from a copper collector under a high-temperature environment.
  • Another object of the present invention is to provide a lithium secondary battery having excellent battery performance, such as battery capacity, charging and discharging efficiency and cycle characteristics, even in a high temperature environment by including the electrolyte.
  • the present invention provides a lithium secondary battery, the electrolyte comprising a lithium salt and an organic solvent, the electrolytic solution is an ammonium-based cations and cyanide (cyanide) anion (CN -) represented by the following general formula (1) having a It provides a lithium secondary battery electrolyte characterized in that it further comprises a solid salt.
  • R 1 to R 4 are each independently hydrogen, halogen or an alkyl group having 1 to 8 carbon atoms.
  • the content of the solid salt may be 0.01 to 5.0 parts by weight based on 100 parts by weight of the total of the lithium salt and the organic solvent.
  • Examples of the solid salt represented by Formula 1 according to the present invention include ammonium cyanide, tetramethylammonium cyanide, tetraethylammonium cyanide, tetrapropylammonium cyanide, and tetrapropylammonium cyanide.
  • Tetrabutylammonium cyanide Tetrahexyllammonium cyanide, Tetraheptylammonium cyanide, Ethyltrimethylammonium cyanide, Triethylmethyl ammonium cyanide ), Butyltrimethylammonium cyanide, at least one member selected from the group consisting of diethyldimethylammonium cyanide and dibutyldimethylammonium cyanide. It can be.
  • the present invention provides a lithium secondary battery including the electrolyte.
  • the ammonium cation and cyanide (cyanide) anion (CN -) due to copper ion eluted from copper collector under a high-temperature environment by providing that a lithium secondary battery electrolyte comprising a solid salt having as an additive cathode
  • a lithium secondary battery electrolyte comprising a solid salt having as an additive cathode
  • the stability of the negative electrode is ensured, thereby providing a lithium secondary battery having excellent battery performance such as battery capacity, charge and discharge efficiency, and cycle characteristics even under high temperature conditions.
  • the present invention relates to a lithium secondary battery, the electrolyte comprising a lithium salt and an organic solvent, the ammonium cation and cyanide (cyanide) anion (CN -) in which the electrolytic solution is represented by the following general formula (1) further comprising a solid salt having a It is related with the electrolyte solution for lithium secondary batteries characterized by the above-mentioned.
  • R 1 to R 4 are each independently hydrogen, halogen or an alkyl group having 1 to 8 carbon atoms.
  • the solid salt may be formed by a copper ion (Cu + 2) and the complex is eluted in the electrolyte preventing the precipitation of a metal back on the cathode plate surface of the copper ions during charging.
  • a method of adding a new material to the electrolyte solution is preferable because it is possible to improve the problems caused by copper ion dissolution simply and economically without changing all components such as a conventional battery electrode plate and a separator.
  • the content of the solid salt is preferably 0.01 to 5.0 parts by weight, more preferably 0.1 to 1.0 part by weight based on 100 parts by weight of the total of the lithium salt and the organic solvent.
  • the content is less than 0.01 parts by weight, the problem solving effect due to the copper ions eluted from the negative electrode current collector may be insignificant.
  • the content is more than 5.0 parts by weight, the high temperature life may be greatly deteriorated during the high temperature charge and discharge cycle.
  • Preferred examples of the solid salt according to the present invention include ammonium cyanide, tetramethylammonium cyanide, tetraethylammonium cyanide, tetrapropylammonium cyanide, tetrabutylammonium cyanide Tetrabutylammonium cyanide, Tetrahexyllammonium cyanide, Tetraheptylammonium cyanide, Ethyltrimethylammonium cyanide, Triethylmethylammonium cyanide, Triethylmethyl ammonium cyanide Cyanide (Butyltrimethylammonium cyanide), diethyldimethylammonium cyanide (Diethyldimethylammonium cyanide) and dibutyldimethylammonium cyanide (Dibutyldimethylammonium cyanide) may be one or more selected from the group consisting of In it not limited.
  • the lithium salt contained in the electrolyte of the present invention may be used in the concentration range of 0.6M to 2.0M, more preferably may be used in the range of 0.7M to 1.6M. If the concentration of the lithium salt is less than 0.6M, the conductivity of the electrolyte may be lowered and the performance of the electrolyte may decrease. On the other hand, when the concentration of the lithium salt exceeds 2.0M, the viscosity of the electrolyte may increase, thereby reducing the mobility of lithium ions.
  • the lithium salt those conventionally used in an electrolyte for a lithium secondary battery may be used without limitation.
  • the anion of the lithium salt may be F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , NO 3 ⁇ , N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, ( CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO - , (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N -It can be any one selected from
  • organic solvent included in the electrolyte solution those conventionally used in the lithium secondary battery electrolyte may be used without limitation, and for example, ethers, esters, amides, linear carbonates, and cyclic carbonates may be used alone or by mixing two or more kinds. Can be used.
  • carbonate compounds which are typically cyclic carbonates, linear carbonates, or mixtures thereof may be included.
  • cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, and any one selected from the group consisting of halides thereof or mixtures of two or more thereof.
  • linear carbonate compound examples include dimethyl carbonate (dimethyl carbonate, DMC), diethyl carbonate (diethyl carbonate, DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methyl propyl carbonate and ethyl propyl carbonate Any one selected or a mixture of two or more thereof may be representatively used, but is not limited thereto.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are highly viscous organic solvents, and thus may be preferably used because they dissociate lithium salts in the electrolyte well.
  • an electrolyte having high electrical conductivity can be made, and thus it can be used more preferably.
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, and ethylpropyl ether, or a mixture of two or more thereof may be used. It is not limited to this.
  • esters in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ Any one or a mixture of two or more selected from the group consisting of -valerolactone and ⁇ -caprolactone may be used, but is not limited thereto.
  • the electrolyte solution for a lithium secondary battery of the present invention may further include a conventionally known additive for forming an SEI film without departing from the object of the present invention.
  • a conventionally known additive for forming an SEI film for forming an SEI film
  • vinylene carbonate, vinylethylene carbonate, fluoroethylene carbonate, cyclic sulfite, saturated sultone, unsaturated sultone, acyclic sulfone, etc. may be used alone or in combination of two or more thereof. It may be, but is not limited thereto.
  • the cyclic sulfites include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethyl ethylene sulfite, 4,5-diethyl ethylene sulfite, propylene sulfite, 4,5-dimethyl propylene sulfide Pite, 4,5-diethyl propylene sulfite, 4,6-dimethyl propylene sulfite, 4,6-diethyl propylene sulfite, 1,3-butylene glycol sulfite, and the like.
  • 1,3-propane sultone, 1,4-butane sultone, and the like examples of the unsaturated sultone include ethene sultone, 1,3-propene sultone, 1,4-butene sultone, 1-methyl-1,3-prop Pen sulfone etc. are mentioned, As acyclic sulfone, divinyl sulfone, dimethyl sulfone, diethyl sulfone, methyl ethyl sulfone, methyl vinyl sulfone, etc. are mentioned.
  • the additive for forming the SEI film may be included in an appropriate amount according to the specific type of the additive, for example, 0.01 to 10 parts by weight based on 100 parts by weight of the electrolyte.
  • the present invention provides a lithium secondary battery comprising the electrolyte.
  • the lithium secondary battery is prepared by injecting an electrolyte prepared according to the present invention in an electrode structure consisting of a positive electrode, a negative electrode and a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode and the negative electrode may be prepared by mixing an active material, a binder, and a conductive agent with a solvent to prepare a slurry, applying the slurry to a current collector such as aluminum, and then drying and compressing the slurry.
  • a lithium-containing transition metal oxide may be preferably used as the cathode active material.
  • Li x Co 1 - y Mn y O 2 (0.5 ⁇ x ⁇ 1.3, 0 y ⁇ 1)
  • a carbon material lithium metal, silicon, tin, or the like, which can normally occlude and release lithium ions, may be used, and a metal oxide such as TiO 2 and SnO 2 having a potential of less than 2 V may be used.
  • a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low-crystalline carbon, and high crystalline carbon is natural graphite, artificial graphite, Kishgraphite, pyrolytic carbon, liquid crystal pitch system.
  • High-temperature calcined carbon such as mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes are typical.
  • the binder binds the active material and the conductive agent to fix the current collector, and polyvinylidene fluoride, polypropylene, carboxymethyl cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polyvinyl alcohol, styrene butadiene Those commonly used in lithium ion secondary batteries, such as rubber, can be used.
  • Examples of the conductive agent include artificial graphite, natural graphite, acetylene black, ketjen black, channel black, lamp black, thermal black, conductive fibers such as carbon fibers and metal fibers, conductive metal oxides such as titanium oxide, metal powders such as aluminum and nickel, and the like. This can be used.
  • a single olefin or a complex of olefins such as polyethylene (PE) and polypropylene (PP), polyamide (PA), polyacrylonitrile (PAN), polyethylene oxide (PEO), and polypropylene oxide (PPO) , Polyethylene glycol diacrylate (PEGA), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyvinyl chloride (PVC) and the like can be used.
  • PE polyethylene
  • PP polypropylene
  • PA polyamide
  • PAN polyacrylonitrile
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • PEGA Polyethylene glycol diacrylate
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • PVC polyvinyl chloride
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • Ethylene carbonate and ethylmethyl carbonate were mixed in a weight ratio of 3: 7 to prepare an organic solvent.
  • a lithium salt LiPF 6 in a concentration of 1M A mixed solution was prepared.
  • tetraethylammonium cyanide was added to the mixed solution at 0.1 part by weight based on 100 parts by weight of the mixed solution to prepare an electrolyte solution.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that tetraethylammonium cyanide was added in an amount of 0.25 parts by weight instead of 0.1 part by weight based on 100 parts by weight of the mixed solution.
  • Example 1 without adding tetraethylammonium cyanide (tetraethylammonium cyanide), the rest of the electrolyte was prepared in the same manner.
  • An electrolyte solution was prepared in the same manner as in Example 1, except that 0.25 parts by weight of succinonitrile was added instead of 0.1 parts by weight of tetraethylammonium cyanide.
  • LiNi 0 as the positive electrode active material . 5 Co 0 . 2 Mn 0 . 3 O 2, the carbon black, polyvinylidene fluoride (PVdF) as a binder and a conductive material 91.5: 4.4: 4.1 were dispersed in and mixed with a weight ratio of, N- methyl-2-pyrrolidone to prepare a positive electrode slurry
  • the slurry was coated on an aluminum current collector having a thickness of 15 ⁇ m, and then dried and rolled to prepare a positive electrode.
  • artificial graphite as a negative electrode active material styrene butadiene rubber as a binder, and carboxymethyl cellulose as a thickener were mixed in a weight ratio of 96: 2: 2, and then dispersed in water to prepare a negative electrode slurry.
  • the slurry was coated on a copper current collector having a thickness of 10 ⁇ m and then rolled to prepare a negative electrode.
  • a porous polyethylene membrane manufactured by Tonen was used as a separator together with the prepared anode and cathode, and the coin cell was prepared by pouring the prepared electrolyte solution.
  • the absorbance of the electrolyte was measured by a UV-Vis spectrometer. , Agilent 8453). Showed absorbance at 800nm indicates the absorption peak of the Cu + 2 and quantitatively in Table 1 below, in Examples 1 to 2 and Comparative Examples 1 to 2 are shown in the UV-VIS curve in Fig. The higher the absorbance, the greater the amount of copper ion elution in the electrolyte.
  • the formed cell is charged under constant current conditions up to 4.3 V at 0.5 C and constant voltage conditions under 0.05 C at end current, and discharges under constant current conditions up to 3.0 V at 0.5 C to charge capacity of the first cycle (CH, unit: mAh / g) and discharge capacity (DCH, unit: mAh / g) were measured, and charge and discharge tests under these conditions were repeated 50 times at 45 ° C.
  • Charge and discharge efficiency (EFF) and capacity retention in each cycle are shown in Table 2 calculated according to the following equation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지에 관한 것으로, 상기 전해액은 표시되는 암모늄계 양이온 및 시아나이드 음이온(CN-)을 갖는 고체염을 더 포함하는 것을 특징으로 한다. 본 발명에 따르면, 상기 고체염을 포함하는 전액액을 제공함으로써 고온 환경하에서 구리 집전체로부터 용출된 구리이온으로 인한 음극의 안정성 저하 문제를 해소할 수 있고, 이로 인해 고온 조건하에서도 전지용량, 충방전 효율 및 사이클 특성 등의 전지성능이 우수한 리튬이차전지를 제공할 수 있다.

Description

리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
본 발명은 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지에 관한 것으로, 더욱 상세하게는 암모늄계 양이온 및 시아나이드 음이온(CN-)을 갖는 고체염을 전해액 첨가제로 포함함으로써 고온 환경하에서의 음극의 안정성 저하를 억제할 수 있는 리튬 이차 전지용 전해액 및 이를 구비한 리튬 이차 전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
이러한, 리튬 이차전지는 전극 집전체 상에 각각 활물질이 도포되어 있는 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 전해액이 함침되어 있는 구조로 이루어져 있다. 충전 시에는 양극 활물질의 리튬 이온이 방출되어 음극의 활물질 층으로 삽입되고, 방전시에는 활물질 층의 리튬 이온이 방출되어 양극 활물질로 삽입되며, 전해액은 음극과 양극 사이에서 리튬 이온을 이동시키는 매질역할을 한다.
상기 전해액은 일반적으로 유기용매와 전해질염을 포함하는데, 예를 들면, 프로필렌카보네이트, 에틸렌카보네이트 등의 고유전성 환상 카보네이트와 디에틸카보네이트, 에틸메틸카보네이트, 디메틸카보네이트 등의 저점성 쇄상 카보네이트의 혼합 용매에, LiPF6, LiBF4, LiClO4 등의 리튬염을 첨가한 것이 범용되고 있다.
그러나, 음극 집전체로서 구리 포일(Copper foil)이 사용되었을 경우, 리튬 이차전지가 과방전 또는 고온 환경 조건하에 노출되면 구리 집전체로부터 구리 이온(Cu2+)이 전해액으로 용출되는 문제가 발생하였고, 이는 음극의 안정성을 저하시키는 원인이 되었다.
특히, 리튬이차전지가 과방전되어 전지의 전압이 0V까지 방전되는 경우, 비가역 용량이 큰 음극 쪽의 전압이 먼저 상승하게 되고, 음극 쪽의 전압이 구리 포일이 산화되는 약 3.6V이상의 특정 전압 영역에 이르게 되면, 구리 포일로부터 구리이온이 전해액 속으로 용출(dissolution)되어 나오는 현상이 발생한다.
이렇게 용출되어 나온 구리 이온은, 충전시 음극 표면에 금속으로 다시 석출되어 음극의 안정성을 저하시킨다. 예컨대, 석출된 구리는 음극표면에서 미세단락을 유발하거나, 리튬 이온의 인터칼레이션(intercalation)을 방해하기 때문에 충방전 용량을 떨어뜨릴 수 있다.
이러한 문제를 해결하기 위한 종래의 방법으로서, 특허문헌 1(국내 특허공개공개 제2006-0063749호)은 화학식 AxMyOz(단, A는 알칼리 금속 및 알칼리 토금속으로 구성된 군으로부터 선택된 1종 이상의 원소이며, M은 비금속, 준금속 및 전이금속으로 구성된 군으로부터 선택된 1종 이상의 원소이며, 1 ≤ x ≤ 6, 1 ≤ y ≤ 7, 2 ≤ z ≤ 24임)로 표시되는 다성분계 금속산화물 염, 예컨대 Li2MoO4, Li2WO4 등과 같은 금속산화물 염을 첨가제로 포함하는 리튬이차전지용 전해액에 대해 기재하고 있다. 그러나, 이 방법에 의하면 산화개시 전압을 약간 상승시키는 효과는 있으나, 리튬 이차전지가 고온에 방치되었을 경우 발생하는 구리이온의 용출문제는 해결하지 못했다.
이와 같이 전해액에 새로운 물질을 첨가하는 방법 이외에도, 전지 극판, 세퍼레이트 등의 구성요소를 변경하는 방법이 사용될 수 있다. 예컨대, 특허문헌 2(일본 특허출원공개 제2005-063764호)는 표면에 크롬계 피막이 형성된 리튬 이온 2차 전지용 구리박을 제공함으로써 과방전시 구리의 용출을 방지하는 방법에 대해 기재하고 있다. 그러나, 이 방법은 전해액에 첨가제를 첨가하는 방법에 비하여 공정이 복잡하고 비용 면에서도 비효율적이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR2006-0063749 A
(특허문헌 2) JP2005-063764 A
본 발명이 해결하고자 하는 과제는, 고온 환경하에서 구리 집전체로부터 용출되는 구리이온(Cu2 +)에 의한 음극의 안정성 저하 문제를 해소할 수 있는 리튬이차전지용 전해액을 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는, 상기 전해액을 포함함으로써 고온 환경하에서도 전지 용량, 충방전 효율 및 사이클 특성 등과 같은 전지성능이 우수한 리튬이차전지를 제공하는 것이다.
이러한 과제를 해결하기 위하여, 본 발명은 리튬염 및 유기용매를 포함하는 리튬 이차전지용 전해액에 있어서, 상기 전해액은 하기 화학식 1로 표시되는 암모늄계 양이온 및 시아나이드(cyanide) 음이온(CN-)을 갖는 고체염을 더 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액을 제공한다.
[화학식 1]
Figure PCTKR2015006687-appb-I000001
상기 화학식 1에서, R1 내지 R4는 각각 독립적으로 수소, 할로겐 또는 탄소수 1 내지 8의 알킬기이다.
바람직하게, 상기 고체염의 함량은 상기 리튬염 및 유기 용매의 총합 100 중량부 대비 0.01 내지 5.0 중량부일 수 있다.
본 발명에 따른 상기 화학식 1로 표시되는 고체염으로서는 암모늄 시아나이드(Ammonium cyanide), 테트라메틸암모늄 시아나이드(Tetramethylammonium cyanide), 테트라에틸암모늄 시아나이드(Tetraethylammonium cyanide), 테트라프로필암모늄 시아나이드 (Tetrapropylammonium cyanide), 테트라부틸암모늄 시아나이드(Tetrabutylammonium cyanide), 테트라헥실암모늄 시아나이드 (Tetrahexylammonium cyanide), 테트라헵틸암모늄 시아나이드 (Tetraheptylammonium cyanide), 에틸트리메틸암모늄 시아나이드(Ethyltrimethylammonium cyanide), 트리에틸메틸암모늄 시아나이드 (Triethylmethylammonium cyanide), 부틸트리메틸암모늄 시아나이드 (Butyltrimethylammonium cyanide), 디에틸디메틸암모늄 시아나이드(Diethyldimethylammonium cyanide) 및 디부틸디메틸암모늄 시아나이드 (Dibutyldimethylammonium cyanide)로 이루어진 군에서 선택된 1종 이상이 사용될 수 있다.
또한, 본 발명은 상기 전해액을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따르면, 암모늄계 양이온 및 시아나이드(cyanide) 음이온(CN-)을 갖는 고체염을 첨가제로 포함시킨 리튬 이차전지용 전해액을 제공함으로써 고온 환경하에서 구리 집전체로부터 용출되는 구리이온으로 인한 음극의 안정성 저하 문제를 해소할 수 있다.
이와 같이, 음극의 안정성이 확보되어 고온 조건하에서도 전지용량, 충방전 효율 및 사이클 특성 등의 전지성능이 우수한 리튬이차전지를 제공할 수 있다.
도 1은 실시예 1 내지 2 및 비교예 1 내지 비교예 2에 따라 제조된 전해액에 음극을 45℃에서 24시간 동안 방치한 후, 각 전해액의 UV-VIS curve를 비교하여 나타낸 그래프이다.
본 발명은 리튬염 및 유기용매를 포함하는 리튬 이차전지용 전해액에 있어서, 상기 전해액이 하기 화학식 1로 표시되는 암모늄계 양이온 및 시아나이드(cyanide) 음이온(CN-)을 갖는 고체염을 더 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액에 관한 것이다.
[화학식 1]
Figure PCTKR2015006687-appb-I000002
상기 화학식 1에서, R1 내지 R4는 각각 독립적으로 수소, 할로겐 또는 탄소수 1 내지 8의 알킬기이다.
상기 고체염은 전해액에 용출되어 있는 구리이온(Cu2 +)과 착물을 형성하여 충전시 상기 구리이온이 음극 극판 표면에 다시 금속으로 석출되는 것을 방지할 수 있다. 이와 같이 전해액에 새로운 물질을 첨가하는 방법은, 종래 전지 극판, 세퍼레이트 등 모든 구성요소를 변경할 필요 없이 간단하고 경제적으로 구리이온 용출로 인한 문제를 개선시킬 수 있어 바람직하다.
상기 고체염의 함량은 상기 리튬염 및 유기 용매의 총합 100 중량부 대비 0.01 내지 5.0중량부인 것이 바람직하며, 0.1 내지 1.0중량부인 것이 더욱 바람직하다. 상기 함량이 0.01중량부를 미만일 경우 음극 집전체로부터 용출된 구리이온으로 인한 문제 해소효과가 미미할 수 있고, 반면 5.0 중량부를 초과할 경우 고온 충방전 사이클 진행시 고온 수명이 크게 열화될 우려가 있다.
본 발명에 따른 고체염의 바람직한 예로서는 암모늄 시아나이드(Ammonium cyanide), 테트라메틸암모늄 시아나이드(Tetramethylammonium cyanide), 테트라에틸암모늄 시아나이드(Tetraethylammonium cyanide), 테트라프로필암모늄 시아나이드 (Tetrapropylammonium cyanide), 테트라부틸암모늄 시아나이드(Tetrabutylammonium cyanide), 테트라헥실암모늄 시아나이드 (Tetrahexylammonium cyanide), 테트라헵틸암모늄 시아나이드 (Tetraheptylammonium cyanide), 에틸트리메틸암모늄 시아나이드(Ethyltrimethylammonium cyanide), 트리에틸메틸암모늄 시아나이드 (Triethylmethylammonium cyanide), 부틸트리메틸암모늄 시아나이드 (Butyltrimethylammonium cyanide), 디에틸디메틸암모늄 시아나이드(Diethyldimethylammonium cyanide) 및 디부틸디메틸암모늄 시아나이드 (Dibutyldimethylammonium cyanide) 로 이루어진 군에서 선택된 1종 이상을 들 수 있으며, 이에 한정되는 것은 아니다.
한편, 본 발명의 전해액에 포함되는 리튬염은 0.6M 내지 2.0M의 농도 범위 내에서 사용될 수 있으며, 더욱 바람직하게는 0.7M 내지 1.6M 범위로 사용될 수 있다. 리튬염의 농도가 0.6M미만이면 전해액의 전도도가 낮아져 전해액 성능이 떨어질 수 있고, 반면 2.0M을 초과하는 경우에는 전해액의 점도가 증가하여 리튬 이온의 이동성이 감소되는 문제점이 발생할 수 있다. 상기 리튬염으로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온은 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
상기 전해액에 포함되는 유기용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
그 중에서 대표적으로는 환형 카보네이트, 선형 카보네이트, 또는 이들의 혼합물인 카보네이트 화합물을 포함할 수 있다. 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 또한 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
특히, 상기 카보네이트계 유기용매 중 환형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 환형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
또한, 상기 유기용매 중 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
그리고 상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지용 전해액은 종래 알려진 SEI막 형성용 첨가제를 본 발명의 목적을 벗어나지 않는 범위에서 더 포함할 수 있다. 본 발명에서 사용 가능한 SEI막 형성용 첨가제로는 비닐렌 카보네이트, 비닐에틸렌 카보네이트, 플루오로에틸렌 카보네이트, 환형 설파이트, 포화설톤, 불포화 설톤, 비환형 설폰 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 환형 설파이트로는 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 1,3-부틸렌 글리콜 설파이트 등을 들 수 있으며, 포화 설톤으로는 1,3-프로판 설톤, 1,4-부탄 설톤 등을 들 수 있으며, 불포화 설톤으로는 에텐설톤, 1,3-프로펜 설톤, 1,4-부텐 설톤, 1-메틸-1,3-프로펜 설톤 등을 들 수 있으며, 비환형 설폰으로는 디비닐설폰, 디메틸 설폰, 디에틸 설폰, 메틸에틸 설폰, 메틸비닐 설폰 등을 들 수 있다.
상기 SEI막 형성용 첨가제는 첨가제의 구체적인 종류에 따라 적절한 함량으로 포함될 수 있으며, 예를 들면 전해액 100 중량부 대비 0.01 중량부 내지 10 중량부로 포함될 수 있다.
한편, 본 발명은 상기 전해액을 포함하는 리튬이차전지를 제공한다.
상기 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 개재된 분리막으로 이루어진 전극 구조체에 본 발명에 따라 제조된 전해액을 주입하여 제조된다. 그리고, 상기 양극 및 음극은 활물질, 바인더 및 도전제를 용매와 혼합하여 슬러리를 제조하고, 슬러리를 알루미늄 등의 집전체에 도포한 후 건조 및 압착하여 제조될 수 있다.
상기 양극 활물질로는 리튬 함유 전이금속 산화물이 바람직하게 사용될 수 있으며, 예를 들면 LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1-yCoyO2(0.5<x<1.3, 0<y<1), LixCo1-yMnyO2(0.5<x<1.3, 0=y<1), LixNi1-yMnyO2(0.5<x<1.3, O=y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2-zNizO4(0.5<x<1.3, 0<z<2), LixMn2-zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으며, 상기 리튬함유 전이금속 산화물은 알루미늄(Al) 등의 금속이나 금속산화물로 코팅될 수도 있다. 또한, 상기 리튬함유 전이금속 산화물(oxide) 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.
음극 활물질로는 통상적으로 리튬이온이 흡장 및 방출될 수 있는 탄소재, 리튬금속, 규소 또는 주석 등을 사용할 수 있으며, 리튬에 대한 전위가 2V 미만인 TiO2, SnO2와 같은 금속 산화물도 가능하다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연흑연, 인조흑연, 키시흑연(Kishgraphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
바인더는 활물질과 도전제를 결착시켜서 집전체에 고정시키는 역할을 하며, 폴리비닐리덴플로라이드, 폴리프로필렌, 카르복시메틸셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리비닐알코올, 스티렌부타디엔 고무 등 리튬이온 이차전지에서 통상적으로 사용되는 것들을 사용할 수 있다.
도전제로는 인조 흑연, 천연 흑연, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 램프 블랙, 써멀 블랙, 탄소 섬유나 금속 섬유 등의 도전성 섬유, 산화 티탄 등의 도전성 금속산화물, 알루미늄, 니켈 등의 금속 분말 등이 사용될 수 있다.
또한, 분리막으로는 폴리에틸렌(PE)과 폴리프로필렌(PP)과 같은 단일 올레핀이나올레핀의 복합체, 폴리아미드(PA), 폴리아크릴로니트릴(PAN), 폴리에틸렌옥사이드(PEO), 폴리프로필렌옥사이드(PPO), 폴리에틸렌글리콜디아크릴레이트(PEGA), 폴리테트라플루오로에틸렌(PTFE), 폴리비닐리덴플루오라이드(PVdF), 폴리비닐클로라이드(PVC) 등을 사용할 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다.
<전해액의 제조>
실시예 1
에틸렌카보네이트(ethylene carbonate) 및 에틸메틸카보네이트(ethylmethyl carbonate)를 3:7의 중량비로 혼합하여 유기용매를 준비하였다. 다음으로, 상기 유기용매에 리튬염인 LiPF6을 용해시켜 리튬염 농도가 1M인 LiPF6 혼합용액을 제조하였다. 다음으로 상기 혼합용액에 테트라에틸암모늄 시아나이드 (tetraethylammonium cyanide)를 상기 혼합용액 100 중량부 대비 0.1 중량부로 첨가하여 전해액을 제조하였다.
실시예 2
상기 실시예 1에서 테트라에틸암모늄 시아나이드(tetraethylammonium cyanide)를 혼합용액 100 중량부 대비 0.1 중량부로 넣는 대신에 0.25 중량부로 첨가하는 것을 제외하고 동일한 방법으로 전해액을 제조하였다.
비교예 1
상기 실시예 1에서 테트라에틸암모늄 시아나이드(tetraethylammonium cyanide)를 첨가하지 않고 나머지는 동일한 방법으로 전해액을 제조하였다.
비교예 2
상기 실시예 1에서 테트라에틸암모늄 시아나이드(tetraethylammonium cyanide) 0.1 중량부 대신에 숙시노니트릴 (Succinonitrile)을 0.25 중량부 첨가하는 것을 제외하고 동일한 방법으로 전해액을 제조하였다.
<전지의 제조>
양극 활물질로 LiNi0 . 5Co0 . 2Mn0 . 3O2, 바인더로서 폴리비닐리덴 플루오라이드(PVdF) 및 도전재로 카본블랙을 91.5:4.4:4.1의 중량비로 혼합한 후, N-메틸-2-피롤리돈에 분산시켜 양극 슬러리를 제조하고, 상기 슬러리를 15㎛ 두께의 알루미늄 집전체에 코팅한 후 건조 및 압연하여 양극을 제조하였다.
또한, 음극 활물질로서 인조흑연, 바인더로서 스티렌 부타디엔 고무, 그리고 증점제로서 카르복시메틸 셀룰로오스를 96:2:2의 중량비로 혼합한 후, 물에 분산시켜 음극 슬러리를 제조하였다. 이 슬러리를 10㎛두께의 구리 집전체에 코팅한 후 건조 압연하여 음극을 제조하였다.
이후, 상기 제조된 양극 및 음극과 함께 분리막으로 다공성 폴리에틸렌막(Tonen사 제조)을 사용하고, 상기 제조된 전해액을 주액하여 코인셀을 제조하였다.
< 평가 방법 >
(1) 흡광도 측정
실시예 1 내지 2 및 비교예 1 내지 2에 따라 제조된 전해액에 지름 16mm의 동일한 면적의 음극 전극을 45℃에서 24시간 동안 방치한 후, 상기 전해액의 흡광도를 UV-Vis 분광계(ultraviolet-visible spectrometer, Agilent 8453)을 이용하여 측정하였다. Cu2 +의 흡수피크를 정량적으로 나타내는 800nm에서의 흡광도를 하기의 표 1에 나타내었고, 실시예 1 내지 2 및 비교예 1내지 2의 UV-VIS curve를 도 1에 나타내었다. 상기 흡광도가 높을수록 전해액 내의 구리이온 용출량이 많은 것을 나타낸다.
흡광도 (800nm)
실시예1 -0.009
실시예2 -0.009
비교예1 0.189
비교예2 0.137
상기 표 1을 살펴보면, 본 발명의 실시예 1 내지 2에 따라 제조된 전해액의 경우, 첨가제가 포함되지 않은 비교예 1에 비하여 구리 용출이 효과적으로 억제되었음을 알 수 있다. 특히, 본 발명에 따른 고체염 첨가제인 테트라에틸암모늄 시아나이드(tetraethylammonium cyanide)을 미량(0.1중량부 및 0.25중량부) 첨가하는 것만으로도 효과적으로 구리 용출을 억제할 수 있어 바람직하다. 반면, 숙시노니트릴 (Succinonitrile)이 0.25중량부 첨가된 비교예 2의 경우, 비교예 1에 비해 흡광도가 감소되긴 하였지만 원천적으로 구리 용출을 예방하지는 못하는 것을 알 수 있다.
(2) 셀 포매이션
실시예 1 및 비교예 2의 전해액을 사용하여 제조된 코인셀을 25℃ 항온에 12시간 방치한 후, 리튬 이차전지 충방전기(Toyo-System Co., LTD, TOSCAT-3600)를 사용하여, 0.1C로 4.3V까지 정전류로 하는 조건 및 0.05C를 종료전류로 한 정전압 조건으로 충전하고, 0.1C로 3.0V까지 정전류 조건으로 방전하여 셀 포매이션 과정을 완료하였다.
(3) 충방전 효율 및 고온 수명 특성 (%)
상기 포매이션 완료된 셀을 0.5C로 4.3V까지 정전류로 하는 조건 및 0.05C를 종료전류로 한 정전압 조건으로 충전하고, 0.5C로 3.0V까지 정전류 조건으로 방전하여 첫번째 사이클의 충전용량(CH, 단위:mAh/g) 및 방전 용량(DCH, 단위:mAh/g)을 측정하였으며, 이러한 조건의 충방전 테스트를 45℃ 조건에서 50회 반복 실시하였다. 각 사이클에서의 충방전 효율(EFF) 및 용량유지율(Capacity retention)은 하기의 식에 따라 계산하여 표 2에 나타내었다.
충방전 효율 (%) = 방전 용량/ 충전 용량
50th사이클에서의 용량유지율[%] =
(50st 사이클에서의 방전용량 / 1st 사이클에서의 방전용량) × 100
System 1st cycle 50th cycle Capacity retention(%)
CH DCH EFF(%) CH DCH EFF(%)
실시예 1 148.4 144.8 97.6 132 131.6 99.7 90.9
비교예 2 140.7 136 96.7 104.7 103.2 98.6 75.9
상기 표 2를 살펴보면, 실시예 1에 따라 제조된 전해액을 포함하는 코인셀의 경우, 비교예 2 에 따라 제조된 코인셀에 비하여 고온(45℃) 조건하에서의 방전 용량, 충방전 효율 및 사이클 특성이 개선되었음을 확인할 수 있다.
이상, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것으로서, 본 발명의 보호범위는 아래의 특허청구범위에 의하여 해석되어야 하며 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (7)

  1. 리튬염 및 유기용매를 포함하는 리튬 이차전지용 전해액에 있어서,
    상기 전해액은 하기 화학식 1로 표시되는 암모늄계 양이온 및 시아나이드(cyanide) 음이온(CN-)을 갖는 고체염을 더 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액:
    [화학식 1]
    Figure PCTKR2015006687-appb-I000003
    상기 화학식 1에서, R1 내지 R4는 각각 독립적으로 수소, 할로겐 또는 탄소수 1 내지 8의 알킬기이다.
  2. 제 1 항에 있어서,
    상기 고체염은 암모늄 시아나이드(Ammonium cyanide), 테트라메틸암모늄 시아나이드(Tetramethylammonium cyanide), 테트라에틸암모늄 시아나이드(Tetraethylammonium cyanide), 테트라프로필암모늄 시아나이드 (Tetrapropylammonium cyanide), 테트라부틸암모늄 시아나이드(Tetrabutylammonium cyanide), 테트라헥실암모늄 시아나이드 (Tetrahexylammonium cyanide), 테트라헵틸암모늄 시아나이드 (Tetraheptylammonium cyanide), 에틸트리메틸암모늄 시아나이드(Ethyltrimethylammonium cyanide), 트리에틸메틸암모늄 시아나이드 (Triethylmethylammonium cyanide), 부틸트리메틸암모늄 시아나이드 (Butyltrimethylammonium cyanide), 디에틸디메틸암모늄 시아나이드(Diethyldimethylammonium cyanide) 및 디부틸디메틸암모늄 시아나이드 (Dibutyldimethylammonium cyanide)로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 리튬 이차전지용 비수전해액.
  3. 제 1 항에 있어서,
    상기 고체염의 함량이 상기 리튬염 및 유기 용매의 총합 100 중량부 대비 0.01 내지 5.0 중량부인 것을 특징으로 하는 리튬 이차전지용 전해액.
  4. 제1항에 있어서,
    상기 리튬염의 음이온은 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 리튬 이차전지용 전해액.
  5. 제1항에 있어서,
    상기 유기 용매는 에테르, 에스테르, 아미드, 선형 카보네이트 및 환형 카보네이트로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 리튬 이차전지용 전해액.
  6. 제1항에 있어서,
    상기 전해액은 비닐렌 카보네이트, 비닐에틸렌 카보네이트, 플루오로에틸렌 카보네이트, 환형 설파이트, 포화 설톤, 불포화 설톤 및 비환형 설폰으로 이루어진 군에서 선택된 1종 이상을 더 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액.
  7. 제 1 항 내지 제 6 항 중 어느 한 항의 전해액을 포함하는 것을 특징으로 하는 리튬이차전지.
PCT/KR2015/006687 2014-12-22 2015-06-30 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지 WO2016104895A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/538,945 US10559852B2 (en) 2014-12-22 2015-06-30 Electrolyte solution for lithium secondary battery and lithium secondary battery having same
CN201580076756.7A CN107251309B (zh) 2014-12-22 2015-06-30 用于锂二次电池的电解质溶液及具有其的锂二次电池
EP15873423.6A EP3240091B1 (en) 2014-12-22 2015-06-30 Electrolyte solution for lithium secondary battery and lithium secondary battery having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140185905A KR102307905B1 (ko) 2014-12-22 2014-12-22 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
KR10-2014-0185905 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016104895A1 true WO2016104895A1 (ko) 2016-06-30

Family

ID=56150885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006687 WO2016104895A1 (ko) 2014-12-22 2015-06-30 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지

Country Status (5)

Country Link
US (1) US10559852B2 (ko)
EP (1) EP3240091B1 (ko)
KR (1) KR102307905B1 (ko)
CN (1) CN107251309B (ko)
WO (1) WO2016104895A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216766A (zh) * 2017-07-07 2019-01-15 通用汽车环球科技运作有限责任公司 抑制或最小化锂离子电池中金属污染物和枝晶形成的电解质体系
US10581117B2 (en) 2017-07-07 2020-03-03 GM Global Technology Operations LLC Iron ion trapping van der Waals gripper additives for electrolyte systems in lithium-ion batteries
US10581119B2 (en) 2017-07-07 2020-03-03 GM Global Technology Operations LLC Polymeric ion traps for suppressing or minimizing transition metal ions and dendrite formation or growth in lithium-ion batteries

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102250172B1 (ko) 2017-12-06 2021-05-10 주식회사 엘지화학 리튬 이온 이차 전지용 분리막 및 이를 포함하는 리튬 금속 전지
EP4024551A4 (en) * 2020-03-03 2023-05-24 Ningde Amperex Technology Limited ELECTROLYTE AND ELECTROCHEMICAL DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110025661A (ko) * 2008-05-29 2011-03-10 레이덴 에너지 인코오포레이티드 이온 용액 전해질을 포함하는 전기화학 전지
KR101225893B1 (ko) * 2006-07-24 2013-01-24 주식회사 엘지화학 높은 안전성을 가진 전기화학소자
KR101297786B1 (ko) * 2012-03-12 2013-08-20 서울대학교산학협력단 리튬 이차전지용 비수 전해액 및 그를 포함하는 리튬 이차전지
KR20130119431A (ko) * 2010-09-30 2013-10-31 바스프 에스이 전해질용 첨가제
KR20140000235A (ko) * 2010-09-30 2014-01-02 바스프 에스이 이온성 액체 중합체 젤을 갖는 리튬계 애노드

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1365463A3 (en) * 2002-04-02 2007-12-19 Nippon Shokubai Co., Ltd. Material for electrolytic solutions and use thereof
JP2005063764A (ja) 2003-08-08 2005-03-10 Hitachi Cable Ltd リチウムイオン二次電池用銅箔及びその製造方法
KR100705262B1 (ko) 2004-12-07 2007-04-09 주식회사 엘지화학 산소 음이온을 포함하는 비수계 전해액 및 이를 이용한리튬 이차 전지
EP2327707A4 (en) * 2008-08-22 2012-05-30 Nippon Catalytic Chem Ind IONIC CONNECTION, MANUFACTURING METHOD AND ION-LEADING MATERIAL THEREFOR
JP5898629B2 (ja) * 2010-01-18 2016-04-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 電解質配合物
JP2012216419A (ja) * 2011-03-31 2012-11-08 Nippon Shokubai Co Ltd 蓄電デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225893B1 (ko) * 2006-07-24 2013-01-24 주식회사 엘지화학 높은 안전성을 가진 전기화학소자
KR20110025661A (ko) * 2008-05-29 2011-03-10 레이덴 에너지 인코오포레이티드 이온 용액 전해질을 포함하는 전기화학 전지
KR20130119431A (ko) * 2010-09-30 2013-10-31 바스프 에스이 전해질용 첨가제
KR20140000235A (ko) * 2010-09-30 2014-01-02 바스프 에스이 이온성 액체 중합체 젤을 갖는 리튬계 애노드
KR101297786B1 (ko) * 2012-03-12 2013-08-20 서울대학교산학협력단 리튬 이차전지용 비수 전해액 및 그를 포함하는 리튬 이차전지

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216766A (zh) * 2017-07-07 2019-01-15 通用汽车环球科技运作有限责任公司 抑制或最小化锂离子电池中金属污染物和枝晶形成的电解质体系
US10418668B2 (en) * 2017-07-07 2019-09-17 GM Global Technology Operations LLC Electrolyte system including complexing agent to suppress or minimize metal contaminants and dendrite formation in lithium ion batteries
US10581117B2 (en) 2017-07-07 2020-03-03 GM Global Technology Operations LLC Iron ion trapping van der Waals gripper additives for electrolyte systems in lithium-ion batteries
US10581119B2 (en) 2017-07-07 2020-03-03 GM Global Technology Operations LLC Polymeric ion traps for suppressing or minimizing transition metal ions and dendrite formation or growth in lithium-ion batteries
CN109216766B (zh) * 2017-07-07 2021-11-02 通用汽车环球科技运作有限责任公司 抑制或最小化锂离子电池中金属污染物和枝晶形成的电解质体系

Also Published As

Publication number Publication date
EP3240091B1 (en) 2019-09-11
US20180026307A1 (en) 2018-01-25
US10559852B2 (en) 2020-02-11
CN107251309A (zh) 2017-10-13
EP3240091A1 (en) 2017-11-01
EP3240091A4 (en) 2018-07-11
CN107251309B (zh) 2019-12-06
KR102307905B1 (ko) 2021-10-05
KR20160077265A (ko) 2016-07-04

Similar Documents

Publication Publication Date Title
WO2015126082A1 (ko) 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
WO2015034257A1 (ko) 고용량 리튬 이차전지용 양극 첨가제
WO2016104894A1 (ko) 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
WO2013073901A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
WO2016104904A1 (ko) 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
KR20230077708A (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2016104895A1 (ko) 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
KR20160081109A (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR101195930B1 (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
US10211482B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery employing the same
KR20120079395A (ko) 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지
KR102343690B1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2016104901A1 (ko) 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
WO2016104902A1 (ko) 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
WO2016104903A1 (ko) 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
WO2016104896A1 (ko) 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지
KR102356937B1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR20170047657A (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2013180529A1 (ko) 리튬 이차전지
KR20170047658A (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15538945

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015873423

Country of ref document: EP