WO2016103839A1 - 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム - Google Patents

超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム Download PDF

Info

Publication number
WO2016103839A1
WO2016103839A1 PCT/JP2015/078247 JP2015078247W WO2016103839A1 WO 2016103839 A1 WO2016103839 A1 WO 2016103839A1 JP 2015078247 W JP2015078247 W JP 2015078247W WO 2016103839 A1 WO2016103839 A1 WO 2016103839A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
ultrasonic
unit
change rate
diagnostic apparatus
Prior art date
Application number
PCT/JP2015/078247
Other languages
English (en)
French (fr)
Inventor
川島 知直
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201580006715.0A priority Critical patent/CN105939674B/zh
Priority to EP15872408.8A priority patent/EP3238633A4/en
Priority to JP2016505642A priority patent/JP5932183B1/ja
Publication of WO2016103839A1 publication Critical patent/WO2016103839A1/ja
Priority to US15/223,167 priority patent/US10010306B2/en
Priority to US16/025,517 priority patent/US10299766B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8977Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using special techniques for image reconstruction, e.g. FFT, geometrical transformations, spatial deconvolution, time deconvolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus that generates an ultrasonic image based on an ultrasonic signal acquired by an ultrasonic probe that transmits ultrasonic waves to a subject and receives ultrasonic waves reflected by the subject.
  • the present invention relates to a method for operating a diagnostic apparatus and an operation program for an ultrasonic diagnostic apparatus.
  • Patent Document 1 only describes that the speed of sound v is obtained by another method, and details thereof are not disclosed.
  • an ultrasonic diagnostic apparatus that distinguishes a noise region as a low S / N region and displays information on the low S / N region together with an attenuation image that is an image based on an attenuation rate (for example, (See Patent Document 2).
  • transmission of ultrasonic waves is stopped under the same conditions as when an ultrasonic signal having a center frequency of 4 MHz is transmitted and received, and a noise image is generated based on noise signals received from each position of the subject.
  • the luminance of the noise image and the 4 MHz B-mode image are compared, and pixels having the same luminance are extracted as a low S / N region, and the pixel information in the low S / N region is generated separately.
  • the attenuation image is displayed on the monitor.
  • Patent Document 1 in the process of deriving Equation (1), the center value in the attention area of the tomographic plane is adopted, or the tomographic plane is divided into a speckle area and a non-speckle area. Therefore, it is described that the speckle component is excluded as a noise component.
  • the region in the image such as the attention region and the speckle region has to be manually specified each time, and the processing is complicated.
  • Patent Document 1 does not include detailed description of the configuration and operational effects excluding the speckle component by the secondary phase difference, and there are many unclear points even for those skilled in the art.
  • a center frequency of 4 MHz is given as a transmission / reception condition.
  • the transmission waveform of the ultrasonic diagnostic apparatus usually includes a peripheral component of the center frequency.
  • the S / N is not always sufficiently high for all frequency components in the transmission / reception band.
  • the use of a frequency component whose S / N is not sufficiently high may reduce the calculation accuracy of the attenuation rate, and may impair the reliability of the image based on the attenuation rate. .
  • the present invention has been made in view of the above, and it is possible to calculate an ultrasound attenuation rate accurately and easily, and to improve the reliability of an image based on the attenuation rate. It is an object to provide an apparatus, an operating method of an ultrasonic diagnostic apparatus, and an operating program of the ultrasonic diagnostic apparatus.
  • an ultrasonic diagnostic apparatus includes an ultrasonic transducer that transmits ultrasonic waves to a subject and receives ultrasonic waves reflected by the subject.
  • An ultrasonic diagnostic apparatus that generates an ultrasonic image based on an ultrasonic signal acquired by an ultrasonic probe provided, the frequency spectrum of each reception depth of the ultrasonic signal by analyzing the frequency of the ultrasonic signal
  • a frequency analysis unit that calculates the frequency spectrum calculated by the frequency analysis unit or a distance change rate and a frequency change rate in a function defined using the frequency spectrum in a predetermined order.
  • a change rate calculation unit that calculates a secondary change rate of the function, and a secondary change rate calculated by the change rate calculation unit
  • An attenuation rate estimator for estimating the attenuation rate per unit length and unit frequency of the ultrasonic signal in the constant region, characterized by comprising a.
  • a noise level data storage unit that stores noise level data according to a frequency and a reception depth, a noise level data stored in the noise level data storage unit, and the frequency
  • a band setting unit that sets a frequency band of the frequency spectrum to be calculated by the change rate calculation unit by comparing with spectrum data; and the change rate calculation unit includes: The frequency change rate in a set frequency band is calculated.
  • the ultrasonic diagnostic apparatus is the above-described invention, wherein the band setting unit compares the frequency spectrum data and the noise level data at the same frequency to compare the noise level data with a noise frequency that is a frequency band corresponding to noise.
  • the frequency band is set by extracting a band and excluding the noise frequency band.
  • the ultrasonic diagnostic apparatus is characterized in that, in the above invention, the band setting unit extracts a frequency band higher than a predetermined frequency as the noise frequency band.
  • the ultrasonic diagnostic apparatus is characterized in that, in the above invention, the band setting unit extracts, as the noise frequency band, a region where the frequency spectrum data value is a threshold value or less.
  • the ultrasonic diagnostic apparatus is characterized in that, in the above invention, the threshold is a value equal to or greater than the noise level data.
  • the change rate calculation unit calculates the secondary change rate for each sound ray of the ultrasonic wave
  • the attenuation rate estimation unit calculates the sound rate for each sound ray.
  • the attenuation rate for each sound ray is calculated using the secondary change rate, and the attenuation rate is estimated by calculating the statistics of the attenuation rate for all the sound rays in the scanning region. To do.
  • the ultrasonic diagnostic apparatus is the ultrasonic diagnostic apparatus according to the above aspect, wherein the change rate calculation unit calculates a frequency in the frequency band with respect to a function defined by a difference between the frequency spectrum and the frequency spectrum at a reference reception depth.
  • a regression line is calculated by performing a regression analysis using a variable, and a second regression analysis is performed by using a round trip distance between the ultrasonic transducer and the subject as a variable with respect to the slope of the regression line. 2 regression lines are calculated, and the slope of the second regression line is used as the secondary change rate.
  • the ultrasonic diagnostic apparatus is the ultrasonic diagnostic apparatus according to the above invention, wherein the rate-of-change calculation unit includes the ultrasonic transducer and the subject with respect to the frequency spectrum in a distance section determined for each frequency based on the frequency band.
  • a regression line is calculated by performing a regression analysis with the round-trip distance of as a variable, and a second regression line is calculated by performing a second regression analysis with the frequency as a variable with respect to the slope of the regression line, The slope of the second regression line is defined as the secondary change rate.
  • a B-mode image data generation unit that generates B-mode image data to be displayed by converting an amplitude of a signal into luminance as the ultrasonic image, and the attenuation rate estimation unit
  • a composite image data generation unit that generates composite image data using the information regarding the attenuation rate estimated by B and the B mode image data generated by the B mode image data generation unit.
  • the attenuation rate estimation unit calculates the attenuation rate obtained in each partial region for each of a plurality of partial regions obtained by dividing the scanning region.
  • An attenuation rate map data generation unit that estimates the attenuation rate of each partial region by calculating a statistic and generates attenuation rate map data by adding visual information corresponding to the value of the attenuation rate of each partial region It is characterized by having.
  • a B-mode image data generation unit that generates B-mode image data to be displayed by converting an amplitude of a signal into luminance as the ultrasonic image, and the attenuation rate map data
  • a composite image data generation unit that generates composite image data using the attenuation rate map data generated by the generation unit and the B mode image data generated by the B mode image data generation unit.
  • the noise level data storage unit stores noise level data corresponding to the ultrasonic transducer included in the ultrasonic probe connectable to the ultrasonic diagnostic apparatus. It is characterized by doing.
  • An operation method of an ultrasonic diagnostic apparatus includes an ultrasonic signal acquired by an ultrasonic probe including an ultrasonic transducer that transmits ultrasonic waves to a subject and receives ultrasonic waves reflected by the subject.
  • a method of operating an ultrasonic diagnostic apparatus that generates an ultrasonic image based on the frequency, wherein a frequency analyzer calculates a frequency spectrum for each reception depth of the ultrasonic signal by analyzing the frequency of the ultrasonic signal
  • An analysis step, and a change rate calculation unit calculates a distance change rate and a frequency change rate in the frequency spectrum or a function defined by using the frequency spectrum in a predetermined order, so that a secondary change of the frequency spectrum or the function
  • the operation program of the ultrasonic diagnostic apparatus includes an ultrasonic signal acquired by an ultrasonic probe including an ultrasonic transducer that transmits ultrasonic waves to a subject and receives ultrasonic waves reflected by the subject.
  • a frequency analysis step for calculating a frequency spectrum for each reception depth of the ultrasonic signal by analyzing a frequency of the ultrasonic signal by an ultrasonic diagnostic apparatus that generates an ultrasonic image based on A change in which the rate calculation unit calculates a second rate of change of the frequency spectrum or the function by calculating a distance change rate and a frequency change rate in the frequency spectrum or a function defined using the frequency spectrum in a predetermined order.
  • the ultrasonic attenuation rate can be calculated accurately and simply, and the reliability of the image based on the attenuation rate can be improved.
  • FIG. 1 is a block diagram showing a functional configuration of an ultrasound diagnostic system including the ultrasound diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram schematically illustrating noise level data stored in the noise level data storage unit included in the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing the relationship between the reception depth and the amplification factor in the amplification processing performed by the signal amplification unit provided in the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram schematically showing the scanning area of the ultrasonic transducer and the B-mode reception data.
  • FIG. 5 is a diagram illustrating a relationship between the reception depth and the amplification factor in the amplification correction process performed by the amplification correction unit included in the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram schematically showing a data array in one sound ray of an ultrasonic signal.
  • FIG. 7 is a diagram schematically illustrating a data string of a frequency spectrum.
  • FIG. 8 is a diagram illustrating a specific example of frequency spectrum data.
  • FIG. 9 is a diagram illustrating the relationship between frequency spectrum data and noise level data.
  • FIG. 10 is a diagram schematically illustrating frequency spectrum data that visually represents the frequency band of the regression analysis target set by the band setting unit included in the ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 11 is a diagram illustrating a typical distance function and a regression line of each function.
  • FIG. 12 is a diagram illustrating the relationship between the slope of the regression line and the distance.
  • FIG. 13 is a flowchart showing an outline of processing executed by the ultrasound diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 14 is a diagram illustrating a display example of a composite image displayed by the display device.
  • FIG. 15 is a flowchart showing an overview of frequency analysis processing performed by the ultrasound diagnostic apparatus according to Embodiment 1 of the present invention.
  • FIG. 16 is a diagram illustrating the relationship between the frequency spectrum data having a constant frequency and the distance.
  • FIG. 17 is a diagram showing the relationship between the slope of the regression line of the frequency spectrum data and the frequency.
  • FIG. 18 is a block diagram showing a functional configuration of the ultrasonic diagnostic system according to Embodiment 3 of the present invention.
  • FIG. 19 is a flowchart showing an outline of processing executed by the ultrasonic diagnostic apparatus according to Embodiment 3 of the present invention.
  • FIG. 20 is a diagram illustrating an example of setting a partial region in the scanning region of the ultrasonic transducer.
  • FIG. 21 is a diagram illustrating a display example of a composite image with attenuation rate map data displayed by the display device.
  • FIG. 1 is a block diagram showing a functional configuration of an ultrasound diagnostic system including the ultrasound diagnostic apparatus according to Embodiment 1 of the present invention.
  • the ultrasonic diagnostic system 1 shown in FIG. 1 transmits an ultrasonic wave to a subject and receives an ultrasonic wave reflected by the subject, and an ultrasonic wave acquired by the ultrasonic endoscope 2.
  • the ultrasonic diagnostic apparatus 3 which produces
  • the ultrasonic endoscope 2 converts an electrical pulse signal received from the ultrasonic diagnostic apparatus 3 into an ultrasonic pulse (acoustic pulse) and irradiates the subject at the tip thereof, and is reflected by the subject.
  • the ultrasonic transducer 21 converts the ultrasonic echo into an electrical echo signal expressed by a voltage change and outputs it.
  • the ultrasonic endoscope 2 may be one that mechanically scans the ultrasonic transducer 21, or a plurality of elements are provided in an array as the ultrasonic transducer 21, and the elements involved in transmission and reception are electronically arranged. Electronic scanning may be performed by switching or delaying transmission / reception of each element.
  • the ultrasonic endoscope 2 usually has an imaging optical system and an imaging device, and is inserted into the digestive tract (esophagus, stomach, duodenum, large intestine) or respiratory organ (trachea, bronchi) of the subject, and the digestive tract. It is possible to image the respiratory organ and surrounding organs (pancreas, gallbladder, bile duct, biliary tract, lymph node, mediastinal organ, blood vessel, etc.).
  • the ultrasonic endoscope 2 has a light guide that guides illumination light to be irradiated onto the subject during imaging.
  • the light guide has a distal end portion that reaches the distal end of the insertion portion of the ultrasonic endoscope 2 into the subject, and a proximal end portion that is connected to a light source device that generates illumination light.
  • the ultrasonic diagnostic apparatus 3 includes a control unit 31 that controls the entire ultrasonic diagnostic system 1, a storage unit 32 that stores various pieces of information necessary for the operation of the ultrasonic diagnostic apparatus 3, and the ultrasonic endoscope 2 and the electrical unit.
  • the transmission signal (pulse signal) composed of a high voltage pulse is transmitted to the ultrasonic transducer 21 based on a predetermined waveform and transmission timing, and an echo signal that is an electrical reception signal from the ultrasonic transducer 21 Is used to generate and output digital radio frequency (RF) data (hereinafter referred to as RF data), and a digital B mode based on the RF data received from the transmitter / receiver 33.
  • RF digital radio frequency
  • a signal processing unit 34 that generates reception data, a calculation unit 35 that performs a predetermined calculation on the RF data received from the transmission / reception unit 33, and an image processing unit 36 that generates various image data.
  • a keyboard, a mouse is implemented using a user interface such as a touch panel, an input unit 37 for accepting input of various information.
  • the control unit 31 includes a type specifying unit 311 that determines the type of the ultrasonic endoscope 2 connected to the ultrasonic diagnostic apparatus 3.
  • the type specifying unit 311 specifies the type of the ultrasonic transducer 21 by acquiring the ID stored in the memory in the ultrasonic endoscope 2 connected to the ultrasonic diagnostic apparatus 3. Information regarding the type of the ultrasonic transducer 21 specified by the type specifying unit 311 is stored in a type information storage unit 321 of the storage unit 32 described later.
  • the type specifying unit 311 may specify the type of the ultrasonic transducer 21 based on the type name of the ultrasonic endoscope 2 that the input unit 37 has received an input.
  • the control unit 31 is realized using a CPU (Central Processing Unit) having various calculation and control functions, various arithmetic circuits, and the like.
  • the control unit 31 reads various programs including information stored and stored in the storage unit 32 and the operation program of the ultrasonic diagnostic apparatus 3 from the storage unit 32 and executes various arithmetic processes related to the operation method of the ultrasonic diagnostic apparatus 3. By doing so, the ultrasonic diagnostic apparatus 3 is controlled in an integrated manner.
  • CPU Central Processing Unit
  • the storage unit 32 includes a type information storage unit 321 that stores the type information of the ultrasonic transducer 21 specified by the type specifying unit 311, and a noise level for each type of the ultrasonic transducer 21 that can be connected to the ultrasonic diagnostic apparatus 3.
  • Noise level data storage unit 322 that stores data and frequency band information that stores information on the frequency band to be subjected to regression analysis performed by the calculation unit 35 for each type of ultrasonic transducer 21 that can be connected to the ultrasonic diagnostic apparatus 3
  • FIG. 2 is a diagram schematically illustrating the noise level data stored in the noise level data storage unit 322.
  • a curved surface indicated by dots gives noise level data n (f, L).
  • the noise level data n (f, L) includes the frequency f of the ultrasonic echo and the round-trip distance L (a distance corresponding to twice the reception depth) between the surface of the ultrasonic transducer 21 and the subject (reflector). This function is a discrete variable.
  • Noise level data n (f, L) is a representation in decibels (dB) taking the amount of common logarithm divided for example a voltage V corresponding to the noise in the reference voltage V c, discrete digital data It is.
  • the reciprocating distance L between the surface of the ultrasonic transducer 21 and the subject may be simply referred to as a distance L.
  • the noise level data storage unit 322 stores noise level data for each type of the ultrasonic transducer 21 that can be connected to the ultrasonic diagnostic apparatus 3. These noise level data are measured and stored in advance for each type of ultrasonic transducer 21 at the time of factory shipment, for example. Note that the echo signal received when transmission of the transmission / reception unit 33 is stopped may be stored as noise level data. In this case, more accurate noise level data considering not only the type of the ultrasonic transducer 21 but also individual differences in the same type of ultrasonic transducer 21 and noise level differences due to aging of the same subject. Can be obtained.
  • the band information storage unit 323 includes information on the minimum value fmin and the maximum value fmax of the frequency band for each type of the ultrasonic transducer 21 that can be connected to the ultrasonic diagnostic apparatus 3 as the band information of the regression analysis target by the calculation unit 35. I remember it.
  • the band information is measured and stored in advance for each type of the ultrasonic transducer 21 at the time of factory shipment, like the noise level data.
  • the storage unit 32 stores information necessary for various processes performed by the transmission / reception unit 33, the signal processing unit 34, and the calculation unit 35, for example.
  • the storage unit 32 stores various programs including an operation program for executing the operation method of the ultrasonic diagnostic apparatus 3.
  • Various programs can be recorded on a computer-readable recording medium such as a hard disk, a flash memory, a CD-ROM, a DVD-ROM, or a flexible disk and widely distributed.
  • the various programs described above can also be obtained by downloading via a communication network.
  • the communication network here is realized by, for example, an existing public line network, LAN (Local Area Network), WAN (Wide Area Network), etc., and may be wired or wireless.
  • the storage unit 32 having the above configuration includes a ROM (Read Only Memory) in which various programs are preinstalled, a RAM (Random Access Memory) and an HDD (Hard Disk Drive) that store calculation parameters and data of each process Etc. are realized.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • the transmission / reception unit 33 includes a signal amplification unit 331 that amplifies the echo signal.
  • the signal amplifying unit 331 performs STC (Sensitivity Time Control) correction in which an echo signal having a larger reception depth is amplified with a higher amplification factor.
  • FIG. 3 is a diagram illustrating the relationship between the reception depth and the amplification factor in the amplification processing performed by the signal amplification unit 331.
  • the reception depth z shown in FIG. 3 is an amount calculated based on the elapsed time from the reception start time of the ultrasonic wave. As shown in FIG.
  • the amplification factor ⁇ (dB) increases linearly from ⁇ 0 to ⁇ th (> ⁇ 0 ) as the reception depth z increases.
  • the amplification factor ⁇ (dB) takes a constant value ⁇ th when the reception depth z is equal to or greater than the threshold value z th .
  • the value of the threshold value z th is such a value that the ultrasonic signal received from the subject is almost attenuated and the noise becomes dominant. More generally, when the reception depth z is smaller than the threshold value z th , the amplification factor ⁇ may increase monotonously as the reception depth z increases.
  • the relationship shown in FIG. 3 is stored in the storage unit 32 in advance.
  • the transmission / reception unit 33 performs processing such as filtering on the echo signal amplified by the signal amplification unit 331, and then performs A / D conversion to generate RF data in the time domain, and the signal processing unit 34 and the calculation unit To 35.
  • the transmission / reception unit 33 is configured to perform beam combining for a plurality of elements.
  • a channel circuit is included.
  • the frequency band of the pulse signal transmitted by the transmission / reception unit 33 may be a wide band that substantially covers the linear response frequency band of the electroacoustic conversion of the pulse signal to the ultrasonic pulse in the ultrasonic transducer 21. Thus, it is possible to perform accurate approximation in the frequency spectrum approximation process described later.
  • the transmission / reception unit 33 transmits various control signals output from the control unit 31 to the ultrasonic endoscope 2 and receives various types of information including an identification ID from the ultrasonic endoscope 2 to receive the control unit 31. It also has a function to transmit to.
  • the signal processing unit 34 performs known processing such as band-pass filter, envelope detection, and logarithmic conversion on the RF data to generate digital B-mode reception data.
  • logarithmic conversion the common logarithm of the amount obtained by dividing the RF data by the reference voltage V c is taken and expressed as a decibel value.
  • the reception data for B mode the amplitude or intensity of the received signal indicating the intensity of reflection of the ultrasonic pulse is arranged along the transmission / reception direction (depth direction) of the ultrasonic pulse.
  • FIG. 4 is a diagram schematically showing a scanning area of the ultrasonic transducer 21 (hereinafter sometimes simply referred to as a scanning area) and B-mode reception data.
  • the scanning area S shown in FIG. 4 has a fan shape.
  • the reception depth of the B-mode reception data is indicated as z.
  • the ultrasonic pulse irradiated from the surface of the ultrasonic transducer 21 is reflected by the reflector at the reception depth z and returns to the ultrasonic transducer 21 as an ultrasonic echo, the round-trip distance L and the reception depth z
  • z L / 2
  • the signal processing unit 34 outputs the generated B-mode reception data to the B-mode image data generation unit 361 of the image processing unit 36.
  • the signal processing unit 34 is realized using a CPU (Central Processing Unit), various arithmetic circuits, and the like.
  • the calculation unit 35 performs amplification correction on the RF data output from the transmission / reception unit 33 so as to make the amplification factor constant regardless of the reception depth, and fast Fourier transform on the RF data subjected to the amplification correction.
  • a frequency analysis unit 352 that calculates a frequency spectrum for each reception depth by performing a frequency analysis by performing a transform (FFT: Fast Fourier Transform), and comparing the noise level data with the data of the frequency spectrum is a calculation target.
  • a band setting unit 353 that sets a frequency band, and a change that calculates a secondary change rate by calculating a distance change rate and a frequency change rate of a function defined by the frequency spectrum calculated by the frequency analysis unit 352 in a predetermined order.
  • the rate calculation unit 354 and the secondary change rate calculated by the change rate calculation unit 354 an ultrasonic pulse in the scanning region is obtained. Having a damping rate estimator 355 for estimating a unit distance and the attenuation rate per unit frequency, the.
  • the calculation unit 35 is realized using a CPU, circuits for various calculations, and the like. Note that the arithmetic unit 35 may be configured using a CPU or the like common to the control unit 31 and the signal processing unit 34.
  • FIG. 5 is a diagram illustrating a relationship between the reception depth and the amplification factor in the amplification correction process performed by the amplification correction unit 351.
  • the amplification rate ⁇ (dB) in the amplification processing performed by the amplification correction unit 351 takes the maximum value ⁇ th ⁇ 0 when the reception depth z is zero, and the reception depth z is zero to the threshold value z th. Decreases linearly until reaching 0 and is zero when the reception depth z is greater than or equal to the threshold z th .
  • the relationship shown in FIG. 5 is stored in the storage unit 32 in advance.
  • the amplification correcting unit 351 can cancel the influence of the STC correction in the signal amplifying unit 331 and output a signal having a constant amplification factor ⁇ th .
  • the relationship between the reception depth z and the amplification factor ⁇ in the amplification correction processing performed by the amplification correction unit 351 differs depending on the relationship between the reception depth and the amplification factor in the amplification correction processing performed by the signal amplification unit 331.
  • STC correction is a correction that eliminates the influence of attenuation from the amplitude of the analog signal waveform by amplifying the amplitude of the analog signal waveform uniformly over the entire frequency band and with an amplification factor that monotonously increases with increasing reception depth. It is processing. For this reason, when generating a B-mode image to be displayed by converting the amplitude of the echo signal into luminance, and when scanning a uniform tissue, the luminance value is constant regardless of the depth by performing STC correction. become. That is, an effect of eliminating the influence of attenuation from the luminance value of the B-mode image can be obtained.
  • the STC correction cannot accurately eliminate the influence of attenuation associated with the propagation of the ultrasonic wave. This is because the amount of attenuation varies depending on the frequency, but the amplification factor of STC correction changes only with distance, and does not change with frequency and is constant.
  • the amplification correction unit 351 In order to eliminate the influence of the STC correction on the signal subjected to the STC correction for the B-mode image while maintaining the frame rate of the generated image data, the amplification correction unit 351 To correct the amplification factor.
  • the frequency analysis unit 352 samples the RF data (line data) of each sound ray amplified and corrected by the amplification correction unit 351 at predetermined time intervals to generate sample data. Then, the frequency analysis unit 352 calculates a frequency spectrum at a plurality of locations (data positions) on the RF data by performing FFT processing on the sample data group.
  • FIG. 6 is a diagram schematically showing a data array in one sound ray of an ultrasonic signal.
  • a white or black rectangle means data at one sample point.
  • the more data located on the right side which is the sample data from the deep portion of the case as measured along the ultrasonic transducer 21 to the sound ray SR k (see arrows in FIG. 6).
  • the sound ray SR k is discretized at a time interval corresponding to a sampling frequency (for example, 50 MHz) in A / D conversion performed by the transmission / reception unit 33.
  • FIG. 1 a sampling frequency
  • FIG. 6 shows the case where the eighth data position of the sound ray SR k of number k is set as the initial value Z (k) 0 in the direction of the reception depth z, but the position of the initial value is arbitrarily set. be able to.
  • the calculation result by the frequency analysis unit 352 is obtained as a complex number and stored in the storage unit 32.
  • a sample data group needs to have a power number of 2 data.
  • a process for generating a normal sample data group is performed by inserting zero data in an insufficient amount. This point will be described in detail when the processing of the frequency analysis unit 352 described later is described (see FIG. 15).
  • the frequency analysis unit 352 generates a frequency component V (f, L) of the voltage amplitude by performing an FFT process on each sample data group cut out from the RF data.
  • the frequency component V (f, L) of this voltage amplitude is the frequency density of the voltage.
  • the frequency analysis unit 352 performs a logarithmic conversion process of dividing the frequency component V (f, L) of the voltage amplitude by the reference voltage V c and taking the common logarithm (log) and expressing it in decibels.
  • frequency spectrum data hereinafter also referred to as spectrum data
  • F (f, L) A ⁇ log ⁇ V (f, L) / V c ⁇ (2)
  • log is a common logarithm (hereinafter the same).
  • the spectrum data F (f, L) is a component of the frequency f of the sample data group.
  • FIG. 7 is a diagram schematically illustrating a data string of spectrum data stored in the storage unit 32.
  • the vertical direction indicates the frequency f
  • the horizontal direction indicates the reciprocating distance L from the surface of the ultrasonic transducer 21.
  • the frequency f takes discrete values 0, ⁇ f, 2 ⁇ f,.
  • the cell in column 0 stores the spectrum data F (f, 0) obtained from Expression (2) based on the sample data group cut out in the distance section 0 ⁇ L ⁇ L.
  • the cells in the column ⁇ L store the spectrum data F (f, ⁇ L) obtained from the equation (2) based on the sample data group cut in the interval ⁇ L ⁇ L ⁇ 2 ⁇ L of the distance L.
  • the spectrum data F ( ⁇ f, ⁇ L) is described as an example only in the cell having the frequency ⁇ f and the distance ⁇ L. Needless to say, data is stored.
  • the length ⁇ L (corresponding to the step width D of the sample data group in FIG. 6) of the section in which the sample data group is cut out is, for example, about 1.0 cm.
  • the frequency change amount ⁇ f is, for example, 0.5 MHz.
  • FIG. 8 is a diagram showing a specific example of spectrum data.
  • FIG. 8 shows the relationship between the spectrum data F (f, L1), F (f, L2), F (f, L3), F (f, L4) and the frequency f at four different distances.
  • the four distances L1, L2, L3, and L4 are constants and satisfy 0 ⁇ L1 ⁇ L2 ⁇ L3 ⁇ L4.
  • FIG. 8 illustrates only representative four spectrum data.
  • the spectrum data F (f, L) decreases as the distance L increases.
  • the average frequency of the spectrum data F (f, L) shifts to the lower frequency side as the distance L increases. This is due to the attenuation effect depending on the frequency when the ultrasonic wave propagates in the subject.
  • the spectrum data F (f, L) shows different tendencies depending on the attribute of the tissue scanned with the ultrasonic waves. This is because the spectrum data F (f, L) has a correlation with the size, number density, acoustic impedance, etc. of the scatterers that scatter ultrasonic waves.
  • the “attribute” here refers to, for example, malignant tumor tissue, benign tumor tissue, endocrine tumor tissue, mucinous tumor tissue, normal tissue, cyst, vasculature and the like.
  • the band setting unit 353 includes a comparison unit 353a that compares the spectrum data F (f, L) and the noise level data n (f, L).
  • the frequencies fmin and fmax at both ends of fmin ⁇ f ⁇ fmax ⁇ are read from the band information storage unit 323.
  • the comparison unit 353a compares the spectrum data F (f, L) and the noise level data n (f, L) for each frequency f and distance L in the frequency band U read from the band information storage unit 323.
  • FIG. 9 is a diagram showing the relationship between the spectrum data F (f, L4) and the noise level data n (f, L4).
  • F (f, L4) ⁇ n (f, L4) is established in the two frequency bands f ⁇ fmin ′ and f ⁇ fmax ′, and the noise level data is dominant.
  • a frequency band in which noise level data is dominant such as these two frequency bands, is referred to as a noise frequency band.
  • the frequency band U includes fmax ′.
  • FIG. 10 is a diagram schematically showing a data string of spectrum data that visually represents the frequency band to be subjected to regression analysis set by the band setting unit 353. Also in FIG. 10, description of spectrum data F (f, L) of each cell is omitted. In FIG. 10, any one of three different patterns is given to each cell according to the type of spectrum data F (f, L).
  • the spectrum data F (f, L) stored in the white cell indicates that the frequency f is included in the frequency band U and has a value satisfying F (f, L)> n (f, L). Yes. Further, the spectrum data F (f, L) stored in the hatched cell has a frequency f outside the frequency band U and F (f, L)> n (f, L).
  • the spectrum data F (f, L) stored in the cell in which the dot is described is such that the frequency f is a frequency outside the frequency band U, and F (f, L) ⁇ n (f, L). It has a value that satisfies.
  • the attenuation rate estimation unit 355 estimates the attenuation rate per unit distance and unit frequency of the ultrasonic pulse in the scanning region, using the secondary change rate calculated by the change rate calculation unit 354.
  • the attenuation amount of the ultrasonic wave at the frequency f in the distance section L to L + ⁇ L Loss (f, L) [dB]
  • the constant A on the right side is the same as the constant A in Expression (2). Therefore, the attenuation rate ⁇ per unit distance and unit frequency is given by the following equation.
  • the unit of the attenuation rate ⁇ per unit distance and unit frequency is, for example, [dB / cm / MHz].
  • the attenuation rate per unit distance and unit frequency may be simply referred to as an attenuation rate.
  • V (f, L) ⁇ (f) ⁇ P (f, L) (7)
  • the function ⁇ (f, L) is expressed by the following equation (10).
  • ⁇ (f, L) ⁇ ⁇ fL (15) It is expressed.
  • the approximation by the regression line is an approximation by a linear function after all. Therefore, the closer the function to be approximated is to a linear function, the closer the regression line is to the function to be approximated, giving a better approximation.
  • the function ⁇ (f, L) is a linear function itself of the frequency f.
  • the spectrum data F (f, L) is not always close to a linear function of the frequency f.
  • the change rate calculation unit 354 uses the regression analysis to approximate the frequency f of the function ⁇ (f, L) as an approximate value of the partial derivative ⁇ ⁇ ⁇ (f, L) / ⁇ f with respect to the frequency f of the function ⁇ (f, L).
  • the rate of change (that is, the slope of the regression line) is calculated.
  • the change rate calculation unit 354 further performs a regression analysis (second regression analysis) on the change rate with respect to the frequency f of the function ⁇ (f, L), thereby changing the change rate with respect to the distance L (that is, the second rate).
  • the slope of the regression line is calculated, and this value is used as an approximate value of the second-order partial derivative ⁇ 2 ⁇ / ⁇ L ⁇ f.
  • the approximate value of this second-order partial derivative ⁇ 2 ⁇ / ⁇ L ⁇ f is referred to as a secondary change rate.
  • the change rate calculation unit 354 obtains the slope and intercept of the regression line with the frequency f of the function ⁇ (f, L) as a variable in the frequency band set by the band setting unit 353.
  • the regression lines J1, J2, and J3 are regression lines calculated by the change rate calculation unit 354 performing regression analysis in the frequency band U.
  • the regression line J4 ' is a regression line calculated by the change rate calculation unit 354 performing regression analysis in the frequency band U'.
  • the slope of the regression line Jp is defined as Sf (Lp).
  • the slope of the regression line J4 ' is Sf' (L4).
  • the slope Sf (L4) of the regression line J4 is larger than the slope Sf (L3) of the regression line J3 (Sf (L4)> Sf (L3)).
  • the change rate calculation unit 354 calculates a second regression line with respect to the distance L by performing the second regression analysis by regarding the slope Sf (L) as a function of the distance L.
  • FIG. 12 is a diagram showing the relationship between the slope Sf (L) and the distance L. As shown in FIG. As described above, the change rate calculation unit 354 calculates the gradients Sf (L1), Sf (L2), Sf (L3), Sf ′ (L4) and all other gradients as described above. Then, the change rate calculation unit 354 further calculates a second regression line Q 1 by performing a second regression analysis on the round trip distance L based on these slopes. This second regression line Q 1 is shown by a solid line in FIG.
  • the change rate calculation unit 354 calculates the gradients Sf (L1), Sf (L2), Sf (L3), Sf ′ (L4) and all other gradients in the frequency band U as described above.
  • a second regression line Q 2 calculated by performing a second regression analysis on the round trip distance L based on these slopes is shown by a broken line in FIG. Comparing the second regression lines Q 1 and Q 2 , it can be seen that the second regression line Q 1 is better fitted to the value of the slope Sf (L).
  • the function ⁇ (f, L) is a linear function of the frequency f, and in the first embodiment, the frequency bands U and U ′ are appropriately set to eliminate the influence of noise.
  • the slopes of the regression lines J1, J2, J3, and J4 ′ are functions ⁇ (f , L) first-order partial derivatives ⁇ (f, L1) / ⁇ f, ⁇ (f, L2) / ⁇ f, ⁇ (f, L3) / ⁇ f, ⁇ (f, L4) / A good approximation is given to each ⁇ f.
  • the function ⁇ (f, L) is not only the frequency f but also a linear function of the round trip distance L, so the slope of the second regression line Q 1 (that is, the secondary change rate) is The partial derivative of the first-order partial derivative ⁇ (f, L) / ⁇ f with respect to the round-trip distance L, that is, the second-order partial derivative ⁇ 2 ⁇ (f, L) / ⁇ L ⁇ on the left side of equation (13) Give a good approximation to f.
  • the attenuation rate estimation unit 355 calculates the attenuation rate ⁇ for each sound ray of ultrasonic waves by substituting the value of the secondary change rate calculated by the change rate calculation unit 354 into the equation (13). Subsequently, the attenuation rate estimation unit 355 calculates an average value of the calculated attenuation rates ⁇ of all the sound rays, and outputs the calculated result to the composite image data generation unit 362 included in the image processing unit 36 as the attenuation rate of the scanning region. To do. Note that the attenuation rate estimation unit 355 may use a statistic such as the mode value, median value, or maximum value of the attenuation rate ⁇ of all sound rays as the attenuation rate of the scanning region.
  • the image processing unit 36 includes a B-mode image data generation unit 361 that generates B-mode image data that is an ultrasonic image to be displayed by converting the amplitude of the echo signal into luminance, and an attenuation rate ⁇ estimated by the attenuation rate estimation unit 355. And a composite image data generation unit 362 that generates composite image data by combining the information and the B-mode image data.
  • a B-mode image data generation unit 361 that generates B-mode image data that is an ultrasonic image to be displayed by converting the amplitude of the echo signal into luminance, and an attenuation rate ⁇ estimated by the attenuation rate estimation unit 355.
  • a composite image data generation unit 362 that generates composite image data by combining the information and the B-mode image data.
  • the B-mode image data generation unit 361 performs signal processing using known techniques such as gain processing and contrast processing on the B-mode reception data from the signal processing unit 34, and displays an image display range on the display device 4.
  • B-mode image data is generated by thinning out data according to the data step width determined according to the above.
  • the B-mode image is a grayscale image in which values of R (red), G (green), and B (blue), which are variables when the RGB color system is adopted as a color space, are matched.
  • the B-mode image data generation unit 361 performs coordinate transformation for rearranging the B-mode reception data so that the scanning area can be spatially correctly represented, and further performs an interpolation process between the B-mode reception data to receive the B-mode reception data.
  • the gap between the data is filled, and B-mode image data that is digital data is generated.
  • the B-mode image data is digital data of a B-mode image that can represent the state of the organ in the scanning area shown in a fan shape in FIG.
  • the B-mode image data generation unit 361 outputs the generated B-mode image data to the composite image data generation unit 362.
  • the composite image data generation unit 362 generates character data indicating the value of the attenuation factor of the scanning region, and combines the B-mode image data and the character data so as to be displayed adjacent to the B-mode image, thereby combining the composite image data. Is generated.
  • the composite image data generation unit 362 outputs the generated composite image data to the display device 4.
  • the display device 4 is configured using a monitor made of liquid crystal or organic EL (Electro Luminescence).
  • the display device 4 displays various types of information including a composite image corresponding to the composite image data generated by the ultrasound diagnostic apparatus 3.
  • FIG. 13 is a flowchart showing an outline of processing executed by the ultrasonic diagnostic apparatus 3 having the above configuration. Specifically, it is a flowchart showing an outline of processing after the ultrasound diagnostic apparatus 3 receives an echo signal from the ultrasound endoscope 2.
  • the ultrasonic diagnostic apparatus 3 receives an echo signal as a measurement result by the ultrasonic transducer 21 from the ultrasonic endoscope 2 (step S1).
  • the signal amplification unit 331 that has received the echo signal from the ultrasonic transducer 21 performs amplification of the echo signal (step S2).
  • the signal amplifying unit 331 performs amplification (STC correction) of the echo signal based on, for example, the relationship between the amplification factor and the reception depth shown in FIG.
  • the various processing frequency bands of the echo signal in the signal amplifying unit 331 may be a wide band that substantially covers the linear response frequency band of the acoustoelectric conversion of the ultrasonic echo to the echo signal by the ultrasonic transducer 21. This is also because it is possible to perform accurate approximation in the frequency spectrum approximation processing described later.
  • the signal amplifying unit 331 amplifies the echo signal
  • the transmitting / receiving unit 33 performs filtering and A / D conversion on the amplified echo signal to generate RF data
  • the signal processing unit 34 converts the RF data into RF data.
  • Various processes were performed to generate B-mode reception data.
  • the B-mode image data generation unit 361 performs appropriate coordinate conversion and interpolation processing on the B-mode reception data input from the signal processing unit 34, generates B-mode image data, and outputs the B-mode image data to the display device 4. (Step S3).
  • the display device 4 that has received the B-mode image data displays a B-mode image corresponding to the B-mode image data.
  • the amplification correction unit 351 performs amplification correction on the RF data output from the transmission / reception unit 33 so that the amplification factor is constant regardless of the reception depth (step S4).
  • the amplification correction unit 351 performs amplification correction so that, for example, the relationship between the amplification factor and the reception depth illustrated in FIG. 5 is established.
  • the frequency analysis unit 352 calculates spectrum data by performing frequency analysis by FFT on the RF data of each sound ray after the amplification correction (step S5). Details of the processing in step S5 will be described later.
  • the band setting unit 353 sets a frequency band for regression analysis (step S6).
  • the change rate calculation unit 354 is an approximate value of the second-order partial derivative ⁇ ⁇ 2 ⁇ (f, L) / ⁇ L ⁇ f of the function ⁇ (f, L).
  • a certain secondary change rate is calculated by performing regression analysis twice (step S7). For example, the change rate calculation unit 354 calculates the slope of the regression line Q 1 shown in FIG. 12 as the secondary change rate.
  • the attenuation rate estimation unit 355 estimates the attenuation rate of the ultrasonic pulse in the scanning region (step S8).
  • the attenuation rate estimation unit 355 calculates the attenuation rate for each sound ray by substituting the value of the secondary change rate calculated by the change rate calculation unit 354 into the left side of Equation (13), and then calculates all the calculated sounds.
  • the average value of the line attenuation rate is calculated, and this average value is output to the composite image data generation unit 362 as the attenuation rate of the scanning region.
  • the composite image data generation unit 362 generates composite image data based on the B-mode image data and the scan area attenuation rate, and outputs the composite image data to the display device 4 (step S9).
  • the display device 4 that has received the composite image data displays a composite image corresponding to the composite image data.
  • FIG. 14 is a diagram illustrating a display example of a composite image displayed by the display device 4.
  • a composite image 101 shown in the figure includes a B-mode image display unit 102 and an attenuation rate display unit 103. In FIG. 14, a specific B-mode image display is omitted.
  • step S9 the ultrasonic diagnostic apparatus 3 ends a series of processes.
  • the ultrasonic diagnostic apparatus 3 periodically repeats the processes of steps S1 to S9.
  • the frequency analysis unit 352 sets a counter k for identifying a sound ray to be analyzed as k 0 (step S11).
  • the initial value k 0 is a value arbitrarily input by a user such as an operator through the input unit 37 or a value preset in the storage unit 32.
  • the frequency analysis unit 352 as described above, the initial value Z (k) 0 of the data position (corresponding to the reception depth) Z (k) representing the series of data groups (sample data group) generated for the FFT calculation. Is set (step S12).
  • FIG. 6 shows a case where the first data position of the sound ray SR k is set as the initial value Z (k) 0 as described above.
  • the frequency analysis unit 352 acquires a sample data group (step S13), and causes the window function stored in the storage unit 32 to act on the acquired sample data group (step S14).
  • the window function applied in step S14 is any one of Hamming, Hanning, Blackman, etc., and is stored in the storage unit 32 in advance.
  • the frequency analysis unit 352 determines whether or not the sample data group at the data position Z (k) is a normal data group (step S15).
  • the sample data group needs to have the number of powers of two.
  • the number of data in the sample data group is 2 n (n is a positive integer).
  • step S15 If the result of determination in step S15 is that the sample data group at the data position Z (k) is normal (step S15: Yes), the frequency analysis unit 352 proceeds to step S17 described later.
  • step S15 when the sample data group at the data position Z (k) is not normal (step S15: No), the frequency analysis unit 352 inserts the normal sample data group by inserting zero data for the shortage. Generate (step S16). A window function is applied to the sample data group determined to be not normal in step S15 (for example, the sample data group F K in FIG. 6) before adding zero data. For this reason, even if zero data is inserted into the sample data group, discontinuity of data does not occur. After step S16, the frequency analysis unit 352 proceeds to step S17 described later.
  • step S17 the frequency analysis unit 352 obtains spectral data that is a frequency distribution of amplitude by performing an FFT operation using the sample data group (step S17). As a result, for example, spectrum data as shown in each column of FIG. 7 is obtained.
  • the frequency analysis unit 352 changes the data position Z (k) by the step width D (step S18).
  • the step width D is stored in the storage unit 32 in advance.
  • the step width D is desirably matched with the data step width used when the B-mode image data generation unit 361 generates the B-mode image data. However, if the calculation amount in the frequency analysis unit 352 is to be reduced, the step width D A value larger than the data step width may be set as the width D.
  • the frequency analysis unit 352 determines whether or not the data position Z (k) is larger than the maximum value Z (k) max in the sound ray SR k (step S19).
  • the frequency analysis unit 352 increments the counter k by 1 (step S20). This means that the processing is shifted to the next sound ray.
  • the frequency analysis unit 352 returns to step S13.
  • the frequency analysis unit 352 determines whether the counter k is greater than the maximum value k max (step S21). When the counter k is larger than k max (step S21: Yes), the frequency analysis unit 352 ends a series of frequency analysis processing. On the other hand, when the counter k is equal to or less than k max (step S21: No), the frequency analysis unit 352 returns to step S12.
  • the maximum value k max is a value arbitrarily input by a user such as an operator through the input unit 37 or a value preset in the storage unit 32.
  • the frequency analysis unit 352 performs the FFT operation a plurality of times for each of (k max ⁇ k 0 +1) sound rays in the region of interest.
  • the attenuation rate of the ultrasonic wave can be calculated accurately and easily, and image reliability based on the attenuation rate can be calculated. Can be improved.
  • the secondary change rate of the first embodiment is a secondary change rate of a function of frequency and distance (or reception depth), and is completely different from the “secondary change rate of phase” in Patent Document 1 described above. Is. This also applies to Embodiments 2 and 3 described below.
  • the S / N is sufficiently high and only in the region effective for estimating the attenuation rate.
  • the attenuation rate can be calculated. Therefore, the attenuation rate can be calculated with high accuracy, and the reliability of the image based on the attenuation rate can be increased.
  • the attenuation factor can be easily calculated.
  • the frequency change rate and the distance change rate can be easily calculated.
  • the noise level data storage unit stores noise level data corresponding to the ultrasonic transducers for each of a plurality of types or airframes, so that all the ultrasonic vibrations that can be connected are stored.
  • the attenuation rate of the ultrasonic wave can be accurately calculated for the child.
  • the comparison unit 353a compares the spectrum data F (f, L) with 1 of the noise level data n (f, L), not the noise level data n (f, L) itself.
  • a margin may be provided instead of the next function a ⁇ n (f, L) + b (a ⁇ 1, b ⁇ 0; a and b are constants). In this case, the influence of noise on the secondary change rate calculated by the change rate calculation unit 354 and the attenuation rate estimated by the attenuation rate estimation unit 355 is further reduced, and the accuracy of calculating the attenuation rate is further improved.
  • the band setting unit 353 sets the frequency band to be subjected to regression analysis
  • the minimum frequency is set to the initial value fmin.
  • the maximum frequency value may be changed from the initial value fmax in the range of f> fmin.
  • the ultrasonic diagnostic apparatus 3 may estimate the attenuation rate of a part of the scanning region instead of estimating the attenuation rate of the scanning region. It is preferable that the area in this case can be set by the user via the input unit 37.
  • the second embodiment of the present invention differs from the first embodiment described above in the method of calculating the secondary change rate performed by the change rate calculation unit of the ultrasonic diagnostic apparatus.
  • the ultrasonic diagnostic apparatus according to the second embodiment has the same configuration as the ultrasonic diagnostic apparatus 3 described in the first embodiment.
  • the change rate calculation unit 354 first calculates the change rate with respect to the distance L of the spectrum data F (f, L) by regression analysis and calculates the partial derivative ⁇ (f, L) / ⁇ L. after an approximate value, a second regression analysis by partial derivatives ⁇ F (f, L) / ⁇ L 2 -order partial derivative by calculating the rate of change with respect to the frequency f of ⁇ 2 F (f, L) / An approximate value of ⁇ f ⁇ L, that is, a secondary change rate is calculated.
  • the change rate calculation unit 354 does not need to calculate the function ⁇ (f, L), and can calculate the secondary change rate from the spectrum data F (f, L).
  • the change rate calculation unit 354 extracts the regression analysis limit Lmax (f) for each frequency f.
  • the regression analysis limit Lmax (f) is the maximum value of the distance L at the frequency f.
  • the regression analysis limit Lmax (fp) corresponds to the value of the distance L of the rightmost cell in the white cell distribution range at the frequency fp.
  • the change rate calculation unit 354 performs a regression analysis on the distance L of the spectrum data F (f, L), and calculates the regression line slope SL (f) in the distance section 0 ⁇ L ⁇ Lmax (f).
  • FIG. 16 is a diagram showing the relationship between the spectrum data F (f, L) and the distance L when the frequency f is constant. Specifically, the relationship between the spectral data F (f, L1), F (f, L2), F (f, L3), F (f, L4) and the distance L at four different distances is shown. .
  • the frequency fp is a constant and satisfies 0 ⁇ f1 ⁇ f2 ⁇ f3 ⁇ f4. As shown in FIG.
  • the spectrum data F (f, L) attenuates more rapidly as the frequency L increases as the frequency f increases due to the effect of frequency-dependent attenuation when ultrasonic waves propagate in the subject.
  • more spectrum data F (f, L) is calculated, but FIG. 16 illustrates only representative four spectrum data as in FIG.
  • FIG. 16 shows a regression line Kp of the spectrum data F (fp, L) in the distance section 0 ⁇ L ⁇ Lmax (fp).
  • the slope of the regression line Kp becomes steeper as the frequency f increases due to the effect of frequency-dependent attenuation.
  • the slope of the regression line Kp is SL (fp)
  • SL (f1)> SL (f2)> SL (f3)> SL (f4) is established.
  • the change rate calculation unit 354 calculates a second regression line with respect to the frequency f by performing the second regression analysis with the slope SL (f) as a function of the frequency f.
  • FIG. 17 is a diagram illustrating the relationship between the slope SL (f) and the frequency f.
  • the black dots are the slope SL (fp) and the frequency fp calculated by the change rate calculation unit 354 performing regression analysis of the spectrum data F (fp, L) in the distance section 0 ⁇ L ⁇ Lmax (fp). Shows the relationship.
  • the white point is comparison data
  • the change rate calculation unit 354 performs a regression line calculated by performing regression analysis of the spectrum data F (fp, L) in the distance section 0 ⁇ L ⁇ Lmax (f1). The relationship between the slope SL ′ (fp) of Kp ′ and the frequency fp is shown.
  • the change rate calculation unit 354 includes the slopes SL (f1), SL (f2), SL (f3), SL (f4), and the like in the distance section 0 ⁇ L ⁇ Lmax (f) All slopes except for were calculated. Then, the change rate calculation unit 354 further calculates a second regression line Q 3 by performing a second regression analysis on the frequency f based on these slopes. This second regression line Q 3 is shown by a solid line in FIG. By the way, for the sake of comparison, the change rate calculation unit 354 assumes that the slopes SL ′ (f1), SL ′ (f2), SL ′ (f3), SL ′ (f4) in the distance section 0 ⁇ L ⁇ Lmax (f1).
  • a second regression line Q 4 when the second regression analysis is further performed with respect to the frequency f is shown by a broken line in FIG. Comparing the second regression lines Q 3 and Q 4 , it can be seen that the second regression line Q 3 is better fitted to the value of the slope SL (f).
  • the slope of the second regression line Q 3 gives an approximate value for the second-order partial derivative ⁇ 2 ⁇ (f, L) / ⁇ f ⁇ L on the left side of the equation (14), that is, a second-order change rate.
  • the secondary change rate obtained by calculating the frequency change rate and the distance change rate in the frequency spectrum in this order is used in the scanning region of the ultrasonic transducer. Since the attenuation rate per unit distance and unit frequency of the ultrasonic signal is estimated, the ultrasonic attenuation rate can be calculated accurately and simply as in the first embodiment, and the image reliability based on the attenuation rate can be calculated. Can be improved.
  • the spectrum data can be directly subjected to the regression analysis, and the amount of calculation can be reduced.
  • FIG. 18 is a block diagram showing a functional configuration of the ultrasonic diagnostic system according to Embodiment 3 of the present invention.
  • An ultrasonic diagnostic system 11 shown in FIG. 1 includes an ultrasonic endoscope 2, an ultrasonic diagnostic device 12, and a display device 4.
  • the ultrasonic diagnostic apparatus 12 is different in the configuration of the storage unit 121 and the image processing unit 122 from the storage unit 32 and the image processing unit 36 of the ultrasonic diagnostic apparatus 3 described above.
  • the storage unit 121 includes a visual information storage unit 324 that stores visual information to be added to the image according to the attenuation rate value.
  • the visual information here is, for example, any one of luminance, hue, brightness, saturation, and the like, and a value corresponding to the value of the attenuation rate is associated.
  • the visual information storage unit 324 may store a plurality of types of visual information in association with the attenuation rate. In this case, the user may select desired visual information through the input unit 37.
  • the image processing unit 122 includes an attenuation rate map data generation unit 363 in addition to the B-mode image data generation unit 361 and the composite image data generation unit 362.
  • the attenuation rate map data generation unit 363 generates attenuation rate map data by adding visual information corresponding to the attenuation rate value estimated by the attenuation rate estimation unit 355 to the image with reference to the visual information storage unit 324. .
  • FIG. 19 is a flowchart showing an outline of processing performed by the ultrasonic diagnostic apparatus 12 having the above configuration. Specifically, it is a flowchart showing an outline of processing after the ultrasonic diagnostic apparatus 12 receives an echo signal from the ultrasonic endoscope 2.
  • steps S31 to S36 sequentially correspond to steps S1 to S6 of FIG.
  • the process following step S36 will be described.
  • the change rate calculation unit 354 calculates the secondary change rate of the spectrum data (step S37). At this time, the change rate calculation unit 354 calculates a secondary change rate for each of a plurality of partial areas set in advance in the scanning area. In the third embodiment, the calculation order of the frequency change rate and the distance change rate when the change rate calculation unit 354 calculates the secondary change rate is not particularly limited.
  • FIG. 20 is a diagram schematically showing an example of setting a partial area.
  • the partial region R shown in the figure is a sector region having a depth direction length (depth width) w and including NR sound rays.
  • the transmission / reception direction is divided by the depth width w, and the scanning direction is divided for every NR sound rays.
  • the data in the partial region R out of the spectrum data calculated in one transmission / reception direction dr is indicated by a black circle, and is positioned at the boundary of the partial region R.
  • Spectral data to be displayed is indicated by white circles.
  • the change rate calculation unit 354 sets the distance reference position (position where the distance is zero) in the spectrum data in the partial region R as the closest position to the surface of the ultrasonic transducer 21 in the partial region R, and The calculation is performed using twice the depth difference z ′ (2z ′) as a new distance.
  • the spectrum data at the position of the white circle described above is expressed as F (f, Lmin).
  • the change rate calculation unit 354 may calculate the secondary change rate in the partial region R by using the spectrum data F (f, Lmin) as a substitute for the spectrum data F (f, 0) of the equation (10). .
  • the attenuation rate estimation unit 355 estimates the attenuation rate of the partial region for each of the plurality of partial regions included in the scanning region using the calculation result of the change rate calculation unit 354 (step S38).
  • the attenuation rate estimation unit 355 first calculates an attenuation rate for each sound ray using all the secondary change rates calculated in the partial region. Thereafter, the attenuation rate estimation unit 355 calculates an average value of attenuation rates of all sound rays calculated in the same partial region, and generates an attenuation rate map data using the average value as an estimated value of the attenuation rate of the partial region. Output to the unit 363.
  • the attenuation rate estimation unit 355 may use a statistic such as the mode value, median value, or maximum value of the attenuation rates of all sound rays calculated in the same partial region as the attenuation rate of the partial region.
  • the attenuation rate map data generation unit 363 refers to the visual information storage unit 324 and generates attenuation rate map data by assigning visual information corresponding to the attenuation rate of each partial region to each partial region. Then, it is output to the composite image data generation unit 362 (step S39). Note that the composite image data generation unit 362 may generate composite image data that further displays the estimated attenuation rate of each partial region as character information.
  • the composite image data generation unit 362 generates composite image data by superimposing the attenuation rate map data on the B-mode image data, and outputs the composite image data to the display device 4 (step S40).
  • the display device 4 that has received the composite image data displays a composite image corresponding to the composite image data.
  • FIG. 21 is a diagram illustrating a display example of a composite image with attenuation rate map data displayed by the display device 4. In the synthesized image 201 shown in FIG. 21, different visual information is assigned to each region. In FIG. 21, visual information is schematically illustrated as a pattern. In FIG. 21, the specific display of the B-mode image is omitted for simplicity.
  • the depth width w is preferably about 1 cm, for example.
  • the width ⁇ L of the section where the frequency analysis unit 352 cuts out the RF data when performing the FFT processing is about 2 mm.
  • the secondary change rate obtained by calculating the frequency change rate and the frequency change rate in the function defined using the frequency spectrum in a predetermined order.
  • the ultrasonic attenuation rate is accurately and easily calculated as in the first and second embodiments. It is possible to improve the reliability of the image based on the attenuation rate.
  • the attenuation rate statistic obtained in each partial area is calculated.
  • visual information according to the attenuation rate value of each partial area is given to generate attenuation rate map data, so the user visually grasps the attenuation rate distribution Information that is easy to do can be provided.
  • adjacent sector shapes may be set to overlap in the sector region which is the minimum unit of the attenuation rate map.
  • the third embodiment instead of sequentially calculating the attenuation rate of each sector region, it may be performed in parallel.
  • one sector region is set as a region of interest (ROI) based on a setting signal that the input unit 37 accepts input, and the attenuation rate value in the region of interest is further synthesized.
  • ROI region of interest
  • a circuit having each function may be configured to be connected by a bus, or a part of the function may be configured to be incorporated in a circuit structure having another function.
  • the function of the change rate calculation unit may be incorporated in a circuit having the function of the attenuation rate estimation unit.
  • Ultrasonic miniature probes are usually inserted into the biliary tract, bile duct, pancreatic duct, trachea, bronchi, urethra, ureter, and used to observe surrounding organs (pancreas, lung, prostate, bladder, lymph nodes, etc.).
  • an external ultrasonic probe that irradiates ultrasonic waves from the body surface of the subject may be applied.
  • the extracorporeal ultrasonic probe is usually used for observing an abdominal organ (liver, gallbladder, bladder), breast (particularly mammary gland), and thyroid gland.
  • the ultrasonic vibrator may be a linear vibrator, a radial vibrator, or a convex vibrator.
  • the scanning area is rectangular (rectangular, square), and when the ultrasonic transducer is a radial or convex transducer, the scanning area is fan-shaped or annular. Eggplant.
  • the ultrasonic diagnostic apparatus, the operation method of the ultrasonic diagnostic apparatus, and the operation program of the ultrasonic diagnostic apparatus according to the present invention calculate the ultrasonic attenuation rate accurately and simply, and are based on the attenuation rate. This is useful for improving the reliability of images.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Acoustics & Sound (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 本発明にかかる超音波診断装置は、超音波信号の周波数を解析することによって超音波信号の受信深度ごとの周波数スペクトルを算出する周波数解析部と、周波数解析部が算出した周波数スペクトルまたは該周波数スペクトルを用いて定義される関数における距離変化率および周波数変化率を所定の順序で算出することによって周波数スペクトルまたは関数の2次変化率を算出する変化率算出部と、変化率算出部が算出した2次変化率を用いて、超音波振動子の走査領域内の所定領域における超音波信号の単位距離および単位周波数あたりの減衰率を推定する減衰率推定部と、を備える。

Description

超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
 本発明は、被検体へ超音波を送信し、該被検体で反射された超音波を受信する超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラムに関する。
 従来、被検体へ超音波を送信し、該被検体で反射された超音波を受信する超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置において、被検体内での超音波の減衰率を算出する技術が知られている(例えば、特許文献1を参照)。この技術では、超音波探触子から被検体へ向けてガウシアンパルスを送信するとともに、超音波探触子から出力される受信信号を直交検波して、超音波エコーの位相を示す位相φ(t)を取得し、スペックル成分を取り除いた時間tの2次微分値d2φ/dt2を求める。特許文献1では、単位距離当たりの減衰(特許文献1における減衰率)α、2次微分値d2φ/dt2、音速v、および既知の帯域幅Δwが満たす関係式
  d2φ/dt2=-2πα×(Δw)2×v   ・・・(1)
を用いることによって減衰率αを算出する(πは円周率)。ここで、特許文献1では、音速vを別の方法で得る、とだけ記載されており、その詳細については開示されていない。
 また、ノイズ領域を低S/N領域とみなして区別し、この低S/N領域の情報を、減衰率に基づく画像である減衰画像とともに表示する超音波診断装置も知られている(例えば、特許文献2を参照)。この技術では、中心周波数が4MHzの超音波信号を送受信させた場合と同一の条件下で超音波の送信を停止させ、被検体の各位置から受信したノイズ信号に基づいてノイズ画像を生成する。検査中は、ノイズ画像と4MHzのBモード画像との輝度を比較し、輝度が同一であるピクセルを低S/N領域として抽出し、この低S/N領域におけるピクセルの情報と、別に生成した減衰画像とをモニタに表示させる。
特開2010-82230号公報 特開2013-5876号公報
 特許文献1に記載の技術では、音速を別の方法で得るという記載のみが開示されているものの、一般に超音波の経路に応じて異なる音速を正確に求めることは難しい。このため、式(1)を用いて減衰率を精度よく算出することは難しいといわざるを得なかった。
 また、式(1)では、送信波形がガウシアンパルスであることが前提となっているが、超音波振動子のダンパーなどに相当の工夫を施しても、送信波形には尾引きが生じるのが通例である。このため、送信波形がガウシアンパルスであることを前提とするのは不適切であり、式(1)から減衰率を算出しても、高精度の減衰率を算出できるとはいい難かった。なお、特許文献1では、送信波形がガウシアンパルス以外である超音波を被検体へ向けて送信してもよいことが記載されているが、その場合の減衰率の具体的な算出方法は一切開示されていない。
 また、特許文献1に記載の技術では、式(1)を導出する過程で、断層面の注目領域における中心値を採用したり、断層面をスペックル領域と非スペックル領域とに分けたりすることにより、ノイズ成分としてスペックル成分を除くことが記載されている。しかしながら、実際にこの技術を実施する場合、注目領域やスペックル領域等、画像内の領域をその都度マニュアルで指定しなければならず、処理が煩雑であった。また、特許文献1には、2次位相差にてスペックル成分を除く構成および作用効果について詳細な記載がなされているわけではなく、当業者から見ても不明な点が多かった。
 以上のように、特許文献1に記載の技術では、超音波の減衰率を精度よく、かつ簡便に、算出することは困難であった。
 次に、特許文献2に記載の技術が有する問題点を説明する。特許文献2に記載の技術では、送受信条件として中心周波数4MHzが与えられている。超音波診断装置の送信波形は、中心周波数の周囲成分を含むのが通例である。特に、距離分解能を向上させる場合、パルス幅を短くすべく、送受信帯域を広げる必要がある。この場合、送受信帯域内の全ての周波数成分でS/Nが十分高いとは限らない。そのため、特許文献2に記載の技術では、S/Nが十分高くない周波数成分を用いることで減衰率の算出精度が低下し、減衰率に基づく画像の信頼性が損なわれてしまうおそれがあった。
 本発明は、上記に鑑みてなされたものであって、超音波の減衰率を精度よくかつ簡便に算出することができるとともに、減衰率に基づく画像の信頼性を向上させることができる超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る超音波診断装置は、被検体へ超音波を送信し、該被検体で反射された超音波を受信する超音波振動子を備えた超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置であって、前記超音波信号の周波数を解析することによって前記超音波信号の受信深度ごとの周波数スペクトルを算出する周波数解析部と、前記周波数解析部が算出した周波数スペクトルまたは該周波数スペクトルを用いて定義される関数における距離変化率および周波数変化率を所定の順序で算出することによって前記周波数スペクトルまたは前記関数の2次変化率を算出する変化率算出部と、前記変化率算出部が算出した2次変化率を用いて、前記超音波振動子の走査領域内の所定領域における前記超音波信号の単位距離および単位周波数あたりの減衰率を推定する減衰率推定部と、を備えたことを特徴とする。
 本発明に係る超音波診断装置は、上記発明において、周波数および受信深度に応じたノイズレベルデータを記憶するノイズレベルデータ記憶部と、前記ノイズレベルデータ記憶部が記憶するノイズレベルデータと、前記周波数スペクトルのデータとを比較することにより、前記変化率算出部が算出対象とする前記周波数スペクトルの周波数帯域を設定する帯域設定部と、をさらに備え、前記変化率算出部は、前記帯域設定部が設定した周波数帯域における前記周波数変化率を算出することを特徴とする。
 本発明に係る超音波診断装置は、上記発明において、前記帯域設定部は、同一周波数における前記周波数スペクトルのデータと前記ノイズレベルデータとを比較することによってノイズに相当する周波数の帯域であるノイズ周波数帯域を抽出し、該ノイズ周波数帯域を除外することによって前記周波数帯域を設定することを特徴とする。
 本発明に係る超音波診断装置は、上記発明において、前記帯域設定部は、所定の周波数より高い周波数帯域を前記ノイズ周波数帯域として抽出することを特徴とする。
 本発明に係る超音波診断装置は、上記発明において、前記帯域設定部は、前記周波数スペクトルのデータの値が閾値以下の領域を前記ノイズ周波数帯域として抽出することを特徴とする。
 本発明に係る超音波診断装置は、上記発明において、前記閾値は、前記ノイズレベルデータ以上の値であることを特徴とする。
 本発明に係る超音波診断装置は、上記発明において、前記変化率算出部は、前記超音波の音線ごとに前記2次変化率を算出し、前記減衰率推定部は、前記音線ごとの前記2次変化率を用いて前記音線ごとの減衰率を算出し、前記走査領域における全ての前記音線ごとの減衰率の統計量を算出することによって前記減衰率を推定することを特徴とする。
 本発明に係る超音波診断装置は、上記発明において、前記変化率算出部は、前記周波数スペクトルと基準の受信深度における前記周波数スペクトルとの差によって定義される関数に対し、前記周波数帯域で周波数を変数とする回帰分析を行うことによって回帰直線を算出し、前記回帰直線の傾きに対して前記超音波振動子と前記被検体との往復距離を変数とする第2の回帰分析を行うことによって第2の回帰直線を算出し、該第2の回帰直線の傾きを前記2次変化率とすることを特徴とする。
 本発明に係る超音波診断装置は、上記発明において、前記変化率算出部は、前記周波数帯域に基づいて周波数ごとに定まる距離区間で前記周波数スペクトルに対して前記超音波振動子と前記被検体との往復距離を変数とする回帰分析を行うことによって回帰直線を算出し、該回帰直線の傾きに対して周波数を変数とする第2の回帰分析を行うことによって第2の回帰直線を算出し、該第2の回帰直線の傾きを前記2次変化率とすることを特徴とする。
 本発明に係る超音波診断装置は、上記発明において、前記超音波画像として信号の振幅を輝度に変換して表示するBモード画像データを生成するBモード画像データ生成部と、前記減衰率推定部が推定した減衰率に関する情報と前記Bモード画像データ生成部が生成したBモード画像データとを用いて合成画像データを生成する合成画像データ生成部と、をさらに備えたことを特徴とする。
 本発明に係る超音波診断装置は、上記発明において、前記減衰率推定部は、前記走査領域を分割することによって得られる複数の部分領域の各々に対し、各部分領域で得られた減衰率の統計量を算出することによって各部分領域の減衰率を推定し、各部分領域の減衰率の値に応じた視覚情報を付与することによって減衰率マップデータを生成する減衰率マップデータ生成部をさらに備えたことを特徴とする。
 本発明に係る超音波診断装置は、上記発明において、前記超音波画像として信号の振幅を輝度に変換して表示するBモード画像データを生成するBモード画像データ生成部と、前記減衰率マップデータ生成部が生成した減衰率マップデータと前記Bモード画像データ生成部が生成したBモード画像データとを用いて合成画像データを生成する合成画像データ生成部と、をさらに備えたことを特徴とする。
 本発明に係る超音波診断装置は、上記発明において、前記ノイズレベルデータ記憶部は、当該超音波診断装置に接続可能な前記超音波プローブが備える前記超音波振動子に応じたノイズレベルデータを記憶することを特徴とする。
 本発明に係る超音波診断装置の作動方法は、被検体へ超音波を送信し、該被検体で反射された超音波を受信する超音波振動子を備えた超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置の作動方法であって、周波数解析部が前記超音波信号の周波数を解析することによって前記超音波信号の受信深度ごとの周波数スペクトルを算出する周波数解析ステップと、変化率算出部が前記周波数スペクトルまたは該周波数スペクトルを用いて定義される関数における距離変化率および周波数変化率を所定の順序で算出することによって前記周波数スペクトルまたは前記関数の2次変化率を算出する変化率算出ステップと、減衰率推定部が前記2次変化率を用いて、前記超音波振動子の走査領域内の所定領域における前記超音波信号の単位距離および単位周波数あたりの減衰率を推定する減衰率推定ステップと、を有することを特徴とする。
 本発明に係る超音波診断装置の作動プログラムは、被検体へ超音波を送信し、該被検体で反射された超音波を受信する超音波振動子を備えた超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置に、周波数解析部が前記超音波信号の周波数を解析することによって前記超音波信号の受信深度ごとの周波数スペクトルを算出する周波数解析ステップと、変化率算出部が前記周波数スペクトルまたは該周波数スペクトルを用いて定義される関数における距離変化率および周波数変化率を所定の順序で算出することによって前記周波数スペクトルまたは前記関数の2次変化率を算出する変化率算出ステップと、減衰率推定部が前記2次変化率を用いて、前記超音波振動子の走査領域内の所定領域における前記超音波信号の単位距離および単位周波数あたりの減衰率を推定する減衰率推定ステップと、を実行させることを特徴とする。
 本発明によれば、超音波の減衰率を精度よくかつ簡便に算出することができるとともに、減衰率に基づく画像の信頼性を向上させることができる。
図1は、本発明の実施の形態1に係る超音波診断装置を備えた超音波診断システムの機能構成を示すブロック図である。 図2は、本発明の実施の形態1に係る超音波診断装置が備えるノイズレベルデータ記憶部が記憶するノイズレベルデータを模式的に示す図である。 図3は、本発明の実施の形態1に係る超音波診断装置が備える信号増幅部が行う増幅処理における受信深度と増幅率との関係を示す図である。 図4は、超音波振動子の走査領域とBモード用受信データとを模式的に示す図である。 図5は、本発明の実施の形態1に係る超音波診断装置が備える増幅補正部が行う増幅補正処理における受信深度と増幅率との関係を示す図である。 図6は、超音波信号の1つの音線におけるデータ配列を模式的に示す図である。 図7は、周波数スペクトルのデータ列を模式的に示す図である。 図8は、周波数スペクトルのデータの具体例を示す図である。 図9は、周波数スペクトルのデータとノイズレベルデータとの関係を示す図である。 図10は、本発明の実施の形態1に係る超音波診断装置が備える帯域設定部が設定した回帰分析対象の周波数帯域を視覚的に表現した周波数スペクトルのデータを模式的に示す図である。 図11は、代表的な距離の関数と、各関数の回帰直線を示す図である。 図12は、回帰直線の傾きと距離の関係を示す図である。 図13は、本発明の実施の形態1に係る超音波診断装置が実行する処理の概要を示すフローチャートである。 図14は、表示装置が表示する合成画像の表示例を示す図である。 図15は、本発明の実施の形態1に係る超音波診断装置が行う周波数解析処理の概要を示すフローチャートである。 図16は、周波数が一定の周波数スペクトルのデータと距離の関係を示す図である。 図17は、周波数スペクトルのデータの回帰直線の傾きと周波数との関係を示す図である。 図18は、本発明の実施の形態3に係る超音波診断システムの機能構成を示すブロック図である。 図19は、本発明の実施の形態3に係る超音波診断装置が実行する処理の概要を示すフローチャートである。 図20は、超音波振動子の走査領域における部分領域の設定例を示す図である。 図21は、表示装置が表示する減衰率マップデータ付きの合成画像の表示例を示す図である。
 以下、添付図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)を説明する。
(実施の形態1)
 図1は、本発明の実施の形態1に係る超音波診断装置を備えた超音波診断システムの機能構成を示すブロック図である。同図に示す超音波診断システム1は、被検体へ超音波を送信し、該被検体で反射された超音波を受信する超音波内視鏡2と、超音波内視鏡2が取得した超音波信号に基づいて超音波画像を生成する超音波診断装置3と、超音波診断装置3が生成した超音波画像を表示する表示装置4と、を備える。
 超音波内視鏡2は、その先端部に、超音波診断装置3から受信した電気的なパルス信号を超音波パルス(音響パルス)に変換して被検体へ照射するとともに、被検体で反射された超音波エコーを電圧変化で表現する電気的なエコー信号に変換して出力する超音波振動子21を有する。超音波内視鏡2は、超音波振動子21をメカ的に走査させるものであってもよいし、超音波振動子21として複数の素子をアレイ状に設け、送受信にかかわる素子を電子的に切り替えたり、各素子の送受信に遅延をかけたりすることで、電子的に走査させるものであってもよい。
 超音波内視鏡2は、通常は撮像光学系および撮像素子を有しており、被検体の消化管(食道、胃、十二指腸、大腸)または呼吸器(気管、気管支)へ挿入され、消化管、呼吸器やその周囲臓器(膵臓、胆嚢、胆管、胆道、リンパ節、縦隔臓器、血管等)を撮像することが可能である。また、超音波内視鏡2は、撮像時に被検体へ照射する照明光を導くライトガイドを有する。このライトガイドは、先端部が超音波内視鏡2の被検体への挿入部の先端まで達している一方、基端部が照明光を発生する光源装置に接続されている。
 超音波診断装置3は、超音波診断システム1全体を制御する制御部31と、超音波診断装置3の動作に必要な各種情報を記憶する記憶部32と、超音波内視鏡2と電気的に接続され、所定の波形および送信タイミングに基づいて高電圧パルスからなる送信信号(パルス信号)を超音波振動子21へ送信するとともに、超音波振動子21から電気的な受信信号であるエコー信号を受信してデジタルの高周波(RF:Radio Frequency)信号のデータ(以下、RFデータという)を生成、出力する送受信部33と、送受信部33から受信したRFデータをもとにデジタルのBモード用受信データを生成する信号処理部34と、送受信部33から受信したRFデータに対して所定の演算を施す演算部35と、各種画像データを生成する画像処理部36と、キーボード、マウス、タッチパネル等のユーザインタフェースを用いて実現され、各種情報の入力を受け付ける入力部37と、を備える。
 制御部31は、超音波診断装置3に接続される超音波内視鏡2の種別を判定する種別特定部311を有する。種別特定部311は、超音波診断装置3に接続された超音波内視鏡2内のメモリに格納されているIDを取得することによって超音波振動子21の種別を特定する。種別特定部311が特定した超音波振動子21の種別に関する情報は、後述する記憶部32の種別情報記憶部321に格納される。なお、種別特定部311は、入力部37が入力を受け付けた超音波内視鏡2の種別名に基づいて超音波振動子21の種別を特定するようにしてもよい。
 制御部31は、演算および制御機能を有するCPU(Central Processing Unit)や各種演算回路等を用いて実現される。制御部31は、記憶部32が記憶、格納する情報および超音波診断装置3の作動プログラムを含む各種プログラムを記憶部32から読み出し、超音波診断装置3の作動方法に関連した各種演算処理を実行することによって超音波診断装置3を統括して制御する。
 記憶部32は、種別特定部311が特定した超音波振動子21の種別情報を記憶する種別情報記憶部321と、超音波診断装置3に接続可能な超音波振動子21の種別ごとにノイズレベルデータを記憶するノイズレベルデータ記憶部322と、演算部35が行う回帰分析の対象となる周波数帯域の情報を超音波診断装置3に接続可能な超音波振動子21の種別ごとに記憶する帯域情報記憶部323とを有する。
 図2は、ノイズレベルデータ記憶部322が記憶するノイズレベルデータを模式的に示す図である。図2において、ドットで示す曲面がノイズレベルデータn(f,L)を与える。ノイズレベルデータn(f,L)は、超音波エコーの周波数f、および超音波振動子21の表面と被検体(反射体)との往復距離L(受信深度の2倍に相当する距離)を離散的な変数とする関数である。ノイズレベルデータn(f,L)は、例えばノイズに相当する電圧Vを基準電圧Vcで除した量の常用対数をとってデシベル値(dB)で表現したものであり、離散的なデジタルデータである。なお、以下では、超音波振動子21の表面と被検体との往復距離Lを、単に距離Lということもある。
 ノイズレベルデータ記憶部322は、超音波診断装置3に接続可能な超音波振動子21の種別ごとのノイズレベルデータを記憶している。これらのノイズレベルデータは、例えばあらかじめ工場出荷時に超音波振動子21の種別ごとに測定されて格納される。なお、送受信部33の送信を中止したときに受信したエコー信号をノイズレベルデータとして記憶するようにしてもよい。この場合には、超音波振動子21の種別だけでなく、同一種類の超音波振動子21における個体差や、同一被検体の経時変化によるノイズレベルの差異も考慮した、より正確なノイズレベルデータを取得することができる。
 帯域情報記憶部323は、演算部35による回帰分析対象の帯域情報として、超音波診断装置3に接続可能な超音波振動子21の種別ごとの周波数帯域の最小値fminおよび最大値fmaxに関する情報を記憶している。帯域情報は、ノイズレベルデータと同様、あらかじめ工場出荷時に超音波振動子21の種別ごとに測定されて格納される。
 記憶部32は、上記以外にも、例えば送受信部33、信号処理部34および演算部35が行う各種処理に必要な情報を記憶している。
 記憶部32は、超音波診断装置3の作動方法を実行するための作動プログラムを含む各種プログラムを記憶する。各種プログラムは、ハードディスク、フラッシュメモリ、CD-ROM、DVD-ROM、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に記録して広く流通させることも可能である。なお、上述した各種プログラムは、通信ネットワークを介してダウンロードすることによって取得することも可能である。ここでいう通信ネットワークは、例えば既存の公衆回線網、LAN(Local Area Network)、WAN(Wide Area Network)などによって実現されるものであり、有線、無線を問わない。
 以上の構成を有する記憶部32は、各種プログラム等が予めインストールされたROM(Read Only Memory)、および各処理の演算パラメータやデータ等を記憶するRAM(Random Access Memory)およびHDD(Hard Disk Drive)等を用いて実現される。
 送受信部33は、エコー信号を増幅する信号増幅部331を有する。信号増幅部331は、受信深度が大きいエコー信号ほど高い増幅率で増幅するSTC(Sensitivity Time Control)補正を行う。図3は、信号増幅部331が行う増幅処理における受信深度と増幅率との関係を示す図である。図3に示す受信深度zは、超音波の受信開始時点からの経過時間に基づいて算出される量である。図3に示すように、増幅率β(dB)は、受信深度zが閾値zthより小さい場合、受信深度zの増加に伴ってβからβth(>β0)へ線型に増加する。また、増幅率β(dB)は、受信深度zが閾値zth以上である場合、一定値βthをとる。閾値zthの値は、被検体から受信する超音波信号がほとんど減衰してしまい、ノイズが支配的になるような値である。より一般に、増幅率βは、受信深度zが閾値zthより小さい場合、受信深度zの増加に伴って単調増加すればよい。なお、図3に示す関係は、予め記憶部32に記憶されている。
 送受信部33は、信号増幅部331によって増幅されたエコー信号に対してフィルタリング等の処理を施した後、A/D変換することによって時間ドメインのRFデータを生成し、信号処理部34および演算部35へ出力する。なお、超音波内視鏡2が複数の素子をアレイ状に設けた超音波振動子21を電子的に走査させる構成を有する場合、送受信部33は、複数の素子に対応したビーム合成用の多チャンネル回路を有する。
 送受信部33が送信するパルス信号の周波数帯域は、超音波振動子21におけるパルス信号の超音波パルスへの電気音響変換の線型応答周波数帯域をほぼカバーする広帯域にするとよい。それにより、後述する周波数スペクトルの近似処理において、精度のよい近似を行うことが可能となる。
 送受信部33は、制御部31が出力する各種制御信号を超音波内視鏡2に対して送信するとともに、超音波内視鏡2から識別用のIDを含む各種情報を受信して制御部31へ送信する機能も有する。
 信号処理部34は、RFデータに対してバンドパスフィルタ、包絡線検波、対数変換など公知の処理を施し、デジタルのBモード用受信データを生成する。対数変換では、RFデータを基準電圧Vcで除した量の常用対数をとってデシベル値で表現する。このBモード用受信データでは、超音波パルスの反射の強さを示す受信信号の振幅または強度が、超音波パルスの送受信方向(深度方向)に沿って並んでいる。図4は、超音波振動子21の走査領域(以下、単に走査領域ということもある)とBモード用受信データとを模式的に示す図である。図4に示す走査領域Sは扇形をなしている。これは、超音波振動子21がコンベックス振動子である場合に相当している。また、図4では、Bモード用受信データの受信深度をzとして記載している。超音波振動子21の表面から照射された超音波パルスが受信深度zにある反射体で反射し、超音波エコーとして超音波振動子21へ戻ってきた場合、その往復距離Lと受信深度zとの間には、上述したようにz=L/2の関係がある。信号処理部34は、生成したBモード用受信データを、画像処理部36のBモード画像データ生成部361へ出力する。信号処理部34は、CPU(Central Processing Unit)や各種演算用の回路等を用いて実現される。
 一方、演算部35は、送受信部33が出力したRFデータに対して受信深度によらず増幅率を一定とするよう増幅補正を行う増幅補正部351と、増幅補正を行ったRFデータに高速フーリエ変換(FFT:Fast Fourier Transform)を施して周波数解析を行うことにより受信深度ごとの周波数スペクトルを算出する周波数解析部352と、ノイズレベルデータと周波数スペクトルのデータとを比較することにより演算対象とする周波数帯域を設定する帯域設定部353と、周波数解析部352が算出した周波数スペクトルにより定義される関数の距離変化率および周波数変化率を所定の順序で算出することによって2次変化率を算出する変化率算出部354と、変化率算出部354が算出した2次変化率を用いて走査領域における超音波パルスの単位距離および単位周波数あたりの減衰率を推定する減衰率推定部355と、を有する。演算部35は、CPUや各種演算用の回路等を用いて実現される。なお、演算部35を、制御部31および信号処理部34と共通のCPU等を用いて構成することも可能である。
 図5は、増幅補正部351が行う増幅補正処理における受信深度と増幅率との関係を示す図である。図5に示すように、増幅補正部351が行う増幅処理における増幅率β(dB)は、受信深度zがゼロのとき最大値βth-β0をとり、受信深度zがゼロから閾値zthに達するまで線型に減少し、受信深度zが閾値zth以上のときゼロである。なお、図5に示す関係は、予め記憶部32に記憶されている。増幅補正部351が図5に示す関係に基づいてRFデータを増幅補正することにより、信号増幅部331におけるSTC補正の影響を相殺し、一定の増幅率βthの信号を出力することができる。なお、増幅補正部351が行う増幅補正処理における受信深度zと増幅率βの関係は、信号増幅部331が行う増幅補正処理における受信深度と増幅率の関係に応じて異なることは勿論である。
 このような増幅補正を行う理由を説明する。STC補正は、アナログ信号波形の振幅を全周波数帯域にわたって均一に、かつ、受信深度の増加に対して単調増加する増幅率で増幅させることで、アナログ信号波形の振幅から減衰の影響を排除する補正処理である。このため、エコー信号の振幅を輝度に変換して表示するBモード画像を生成する場合、かつ、一様な組織を走査した場合には、STC補正を行うことによって深度によらず輝度値が一定になる。すなわち、Bモード画像の輝度値から減衰の影響を排除する効果を得ることができる。一方、本実施の形態1のように超音波の周波数スペクトルを算出して解析した結果を利用する場合、STC補正でも超音波の伝播に伴う減衰の影響を正確に排除できるわけではない。何故なら、減衰量は周波数によって異なるが、STC補正の増幅率は距離だけに対して変化し、周波数に対しては変化せず一定であるためである。
 上述した問題、すなわち超音波の周波数スペクトルを算出して解析した結果を利用する場合、STC補正でも超音波の伝播に伴う減衰の影響を正確に排除できるわけではない、という問題を解決するには、Bモード画像を生成する際にSTC補正を施した受信信号を出力する一方、周波数スペクトルに基づいた画像を生成する際に、Bモード画像を生成するための送信とは異なる新たな送信を行い、STC補正を施していない受信信号を出力することが考えられる。ところがこの場合には、受信信号に基づいて生成される画像データのフレームレートが低下してしまうという問題がある。
 そこで、本実施の形態1では、生成される画像データのフレームレートを維持しつつ、Bモード画像用にSTC補正を施した信号に対してSTC補正の影響を排除するために、増幅補正部351によって増幅率の補正を行う。
 周波数解析部352は、増幅補正部351が増幅補正した各音線のRFデータ(ラインデータ)を所定の時間間隔でサンプリングし、サンプルデータを生成する。そして、周波数解析部352は、サンプルデータ群にFFT処理を施すことにより、RFデータ上の複数の箇所(データ位置)における周波数スペクトルを算出する。
 図6は、超音波信号の1つの音線におけるデータ配列を模式的に示す図である。同図に示す音線SRkにおいて、白または黒の長方形は、1つのサンプル点におけるデータを意味している。また、音線SRkにおいて、右側に位置するデータほど、超音波振動子21から音線SRkに沿って計った場合の深い箇所からのサンプルデータである(図6の矢印を参照)。音線SRkは、送受信部33が行うA/D変換におけるサンプリング周波数(例えば50MHz)に対応した時間間隔で離散化されている。図6では、番号kの音線SRkの8番目のデータ位置を受信深度zの方向の初期値Z(k) 0として設定した場合を示しているが、初期値の位置は任意に設定することができる。周波数解析部352による算出結果は複素数で得られ、記憶部32に格納される。
 図6に示すデータ群Fj(j=1,2,・・・,K)は、FFT処理の対象となるサンプルデータ群である。一般に、FFT処理を行うためには、サンプルデータ群が2のべき乗のデータ数を有している必要がある。この意味で、サンプルデータ群Fj(j=1,2,・・・,K-1)はデータ数が16(=24)で正常なデータ群である一方、サンプルデータ群FKは、データ数が12であるため異常なデータ群である。異常なデータ群に対してFFT処理を行う際には、不足分だけゼロデータを挿入することにより、正常なサンプルデータ群を生成する処理を行う。この点については、後述する周波数解析部352の処理を説明する際に詳述する(図15を参照)。
 周波数解析部352は、RFデータから切り取ったサンプルデータ群の各々に対してFFT処理を施すことによって電圧振幅の周波数成分V(f,L)を生成する。この電圧振幅の周波数成分V(f,L)は電圧の周波数密度である。さらに、周波数解析部352は、電圧振幅の周波数成分V(f,L)を基準電圧Vcで除し、常用対数(log)をとってデシベル単位で表現する対数変換処理を施した後、適当な定数Aを乗ずることにより、次式(2)で与えられる周波数スペクトルのデータ(以下、スペクトルデータともいう)F(f,L)を生成し、帯域設定部353へ出力する。
  F(f,L)=A・log{V(f,L)/Vc}  ・・・(2)
ここで、logは常用対数である(以下、同じ)。
 スペクトルデータF(f,L)は、サンプルデータ群の周波数fの成分である。図7は、記憶部32が記憶するスペクトルデータのデータ列を模式的に示す図である。図7において、縦方向は周波数fを示し、横方向は超音波振動子21の表面からの往復距離Lを示している。周波数fは、離散的な値0、Δf、2Δf、・・・を取る。例えば、列0のセルには、距離区間0≦L<ΔLで切り取られたサンプルデータ群に基づいて式(2)から得られるスペクトルデータF(f,0)が格納される。また、列ΔLのセルには、距離Lの区間ΔL≦L<2ΔLで切り取られたサンプルデータ群に基づいて式(2)から得られるスペクトルデータF(f,ΔL)が格納される。図7では、周波数Δf、距離ΔLのセルのみにスペクトルデータF(Δf,ΔL)のみを例示的に記載しているが、実際には全てのセルに、各セルの周波数および距離に応じたスペクトルデータが格納されていることはいうまでもない。なお、サンプルデータ群を切り取る区間の長さΔL(図6のサンプルデータ群のステップ幅Dに相当)は、例えば1.0cm程度である。また、周波数の変化量Δfは、例えば0.5MHzである。
 図8は、スペクトルデータの具体例を示す図である。図8では、互いに異なる4つの距離におけるスペクトルデータF(f,L1)、F(f,L2)、F(f,L3)、F(f,L4)と周波数fとの関係を示している。ここで、4つの距離L1、L2、L3、L4は定数であり、0<L1<L2<L3<L4を満たしている。図7からも明らかなように、実際にはさらに多くのスペクトルデータF(f,L)が算出されるが、図8では、代表的な4つのスペクトルデータのみを例示している。図8に示すように、スペクトルデータF(f,L)は、距離Lが大きくなるにつれて減少していく。また、スペクトルデータF(f,L)の平均周波数は、距離Lが大きくなるにつれて低周波数側へシフトしていく。これは、被検体内での超音波が伝播する際の周波数に依存した減衰の効果によるものである。
 一般に、スペクトルデータF(f,L)は、超音波が走査された組織の属性によって異なる傾向を示す。これは、スペクトルデータF(f,L)が、超音波を散乱する散乱体の大きさ、数密度、音響インピーダンス等と相関を有しているためである。ここでいう「属性」とは、例えば悪性腫瘍組織、良性腫瘍組織、内分泌腫瘍組織、粘液性腫瘍組織、正常組織、嚢胞、脈管などのことである。
 帯域設定部353は、スペクトルデータF(f,L)とノイズレベルデータn(f,L)とを比較する比較部353aを有する。比較部353aは、上述した二つのデータを比較するために、超音波診断装置3に接続されている超音波振動子21に応じて、後述する回帰分析の対象とする周波数帯域U={f|fmin≦f≦fmax}の両端の周波数fmin、fmaxを帯域情報記憶部323から読み出す。周波数帯域Uは、超音波振動子21の表面(L=0)における超音波の送信波形上で比較的平坦な区間に相当し、最小値fminおよび最大値fmaxは、超音波振動子21の種別に応じて異なる。
 比較部353aは、帯域情報記憶部323から読み出した周波数帯域Uにおいて、スペクトルデータF(f,L)と、ノイズレベルデータn(f,L)とを周波数f,距離Lごとにそれぞれ比較する。図8に示す4つのスペクトルデータF(f,Lp)(p=1,2,3,4)を対応するノイズレベルデータn(f,Lp)と比較した場合、例えば、p=1,2,3のとき、周波数帯域Uに含まれる任意の周波数fでF(f,Lp)>n(f,Lp)が成立する一方、p=4のとき、周波数帯域Uでは以下の2つの不等式が成立したとする。
  F(f,L4)>n(f,L4) (fmin≦f<fmax’)
  F(f,L4)≦n(f,L4) (fmax’≦f≦fmax)
 図9は、スペクトルデータF(f,L4)とノイズレベルデータn(f,L4)との関係を示す図である。図9に示す場合、2つの周波数帯域f≦fmin’、f≧fmax’においてF(f,L4)≦n(f,L4)が成立し、ノイズレベルデータが支配的である。以下、この2つの周波数帯域のようにノイズレベルデータが支配的である周波数帯域を、ノイズ周波数帯域という。図9より、周波数fmin’、fmax’のうち、周波数帯域Uに含まれるのはfmax’である。
 帯域設定部353は、比較部353aの比較結果に基づいて回帰分析対象の周波数帯域を設定する。図8および図9に示す場合、帯域設定部353は、距離Lp(p=1、2、3)に対する回帰分析対象を初期の周波数帯域Uと設定する一方、距離L=L4の回帰分析対象の周波数帯域をU’={f|fmin≦f<fmax’}と設定し、これらの周波数帯域情報を減衰率推定部355へ出力する。
 図10は、帯域設定部353が設定した回帰分析対象の周波数帯域を視覚的に表現したスペクトルデータのデータ列を模式的に示す図である。図10においても、各セルのスペクトルデータF(f,L)の記載は省略している。図10では、スペクトルデータF(f,L)の種類に応じてセルごとに3種類の異なる模様のいずれかを付与している。白色のセルに格納されるスペクトルデータF(f,L)は、周波数fが周波数帯域Uに含まれるとともに、F(f,L)>n(f,L)を満たす値を有することを示している。また、斜線が記載されたセルに格納されるスペクトルデータF(f,L)は、周波数fが周波数帯域Uの外の周波数であるとともに、F(f,L)>n(f,L)を満たす値を有することを示している。さらに、ドットが記載されたセルに格納されるスペクトルデータF(f,L)は、周波数fが周波数帯域Uの外の周波数であるとともに、F(f,L)≦n(f,L)を満たす値を有することを示している。上述したように、距離L=Lp(p=1,2,3)における周波数帯域はUであり、距離L=L4における周波数帯域はU’である。なお、図10に記載されたLmax(fp)(p=1,2,3,4)については後述する。
 変化率算出部354は、スペクトルデータF(f,L)により定義される数であって周波数fの1次関数である関数ψ(f,L)=F(f,L)-F(f,0)に対して周波数fおよび距離Lに対する変化率を、周波数から距離の順で順次算出する。
 減衰率推定部355は、変化率算出部354が算出した2次変化率を用いて、走査領域における超音波パルスの単位距離および単位周波数あたりの減衰率を推定する。
 ここで、変化率算出部354および減衰率推定部355が行う処理をより詳細に説明する。まず、スペクトルデータF(f,L)の単位距離および単位周波数あたりの減衰率の推定方法を説明する。距離Lに存在する反射体からの超音波の周波数fにおける音圧振幅P(f,L)は、正の定数μを用いて、
 P(f,L)=P(f,0)・exp(-μfL)   ・・・(3)
で与えられることが知られている。μfL>0なので、式(3)は、音圧振幅P(f,L)が、周波数fおよび距離Lの増加に対して指数関数的に減衰することを意味している。
 一方、距離区間L~L+ΔLの周波数fにおける超音波の減衰量をLoss(f,L)[dB]とすると、この減衰量は、
  Loss(f,L)=A・log{P(f,L)/P(f,L+ΔL)}
    =A・logP(f,L)-A・logP(f,L+ΔL)  ・・・(4)
で定義される。ここで、右辺の定数Aは、式(2)の定数Aと同じである。したがって、単位距離および単位周波数あたりの減衰率ζは、次式で与えられる。
  ζ=(∂/∂f)Lim{Loss(f,L)/ΔL}
   =(∂/∂f){-A(∂/∂L)logP(f,L)}
   =-A(∂2/∂f∂L)logP(f,L)   ・・・(5)
ここで、Lim{Loss(f,L)/ΔL}は、関数Loss(f,L)/ΔLのΔL→0における極限を意味する。単位距離および単位周波数あたりの減衰率ζの単位は、例えば[dB/cm/MHz]である。以下、単位距離および単位周波数あたりの減衰率を単に減衰率ということもある。
 なお、上記定数μと減衰率ζとの関係は次の通りである。式(5)のP(f,L)に式(3)を代入すると、減衰率ζは、
  ζ=-A(∂2/∂f∂L)[log{P(f,0)・exp(-μfL)}]
   =-A(∂2/∂f∂L){logP(f,0)-μfLloge}
   =(loge)Aμ   ・・・(6)
ここで、eは自然対数の底である。
 さて、超音波振動子21の感度を周波数fの関数としてγ(f)とすると、RFデータにFFT処理を施した後の振幅成分V(f,L)は、次式(7)で与えられる。
  V(f,L)=γ(f)・P(f,L)   ・・・(7)
この式(7)のP(f,L)に式(3)を代入すると、
  V(f,L)=γ(f)・P(f,0)・exp(-μfL)
        =V(f,0)・exp(-μfL)   ・・・(8)
が得られる。
 式(8)を式(2)へ代入することにより、
  F(f,L)=A・log{V(f,0)・exp(-μfL)/Vc
  =Alog・exp(-μfL)+Alog{V(f,0)/Vc
  =-(loge)AμfL+F(f,0)   ・・・(9)
が得られる。さらに、式(9)の右辺に式(6)を代入することにより、
  F(f,L)-F(f,0)=-ζfL   ・・・(10)
が導出される。
 式(10)の両辺に2階偏微分演算子∂2/∂L∂f、および∂2/∂f∂Lをそれぞれ作用させると、次式が得られる。
 ζ=-∂2F(f,L)/∂L∂f=-∂2F(f,L)/∂f∂L  ・・・(11)
ここで、∂2/∂L∂fは周波数fの偏微分を先に行う一方、∂2/∂f∂Lは距離Lの偏微分を先に行うことを意味する。
 したがって、スペクトルデータF(f,L)の2次偏導関数∂2F(f,L)/∂f∂Lまたは∂2F(f,L)/∂L∂fを演算することにより、減衰率ζを推定することができる。
 以上説明した減衰率の推定方法において、スペクトルデータF(f,L)の偏微分を演算することは実際には困難である場合が多い。何故なら、偏微分の定義に従うと、偏微分の演算の際には、極限Δf→0、ΔL→0(Δf、ΔLはそれぞれf、Lの微小変位)を計算する必要があるが、実際のスペクトルデータF(f,L)は離散的に定義され、これらの極限を計算することは困難であるからである。この問題を回避するために、周波数fや距離Lの隣接する離散値の差分をとることによってスペクトルデータF(f,L)の偏微分の演算を近似する方法が知られている。ところがこの方法では、偏導関数がスペクトルデータF(f,L)のゆらぎに起因するノイズを多く含んでしまう可能性がある。
 本実施の形態1において、変化率算出部354は、スペクトルデータF(f,L)の関数ψ(f,L)=F(f,L)-F(f,0)に対して回帰分析を実施し、回帰直線による近似を実施する。この関数ψ(f,L)の2次偏導関数は、
  ∂2ψ(f,L)/∂L∂f=∂2F(f,L)/∂L∂f  ・・・(12)
となるので、式(12)の右辺に式(11)を代入すると、
  ∂2ψ(f,L)/∂L∂f=-ζ  ・・・(13)
が得られる。同様に、
  ∂2ψ(f,L)/∂f∂L=-ζ  ・・・(14)
も得られる。式(13)、(14)は、関数ψ(f,L)を用いて減衰率ζを算出できることを示している。
 ところで、関数ψ(f,L)は、式(10)により、
  ψ(f,L)=-ζfL  ・・・(15)
と表される。ところで、回帰直線による近似は、結局、一次関数での近似である。よって、近似する関数が一次関数に近いほど、回帰直線はその近似する関数に近づき、良い近似を与える。ここで、式(15)に示す通り、関数ψ(f,L)は周波数fの一次関数そのものである。一方、スペクトルデータF(f,L)は周波数fの一次関数に近いとは限らない。したがって、周波数fに対する関数の偏導関数を関数の回帰直線の傾き(すなわち変化率)で近似する場合、関数ψ(f,L)を用いる方が、スペクトルデータF(f,L)を用いるよりも、近似の精度が向上することとなる。
 変化率算出部354は、関数ψ(f,L)の周波数fに対する偏導関数∂ψ(f,L)/∂fの近似値として、回帰分析により関数ψ(f,L)の周波数fに対する変化率(すなわち、回帰直線の傾き)を算出する。続いて、変化率算出部354は、関数ψ(f,L)の周波数fに対する変化率に対し、さらに回帰分析(第2の回帰分析)を行うことによって距離Lに対する変化率(すなわち、第2の回帰直線の傾き)を算出し、この値を2次偏導関数∂2ψ/∂L∂fの近似値とする。以下、この2次偏導関数∂2ψ/∂L∂fの近似値を2次変化率という。
 変化率算出部354のさらに具体的な処理を説明する。まず、変化率算出部354は、帯域設定部353が設定した周波数帯域で、関数ψ(f,L)の周波数fを変数とする回帰直線の傾きおよび切片を得る。
 図11は、例として距離L=Lpにおける関数ψ(f,Lp)と周波数fの関係、および各関数の周波数fに対する回帰直線を示す図である(p=1,2,3,4)。回帰直線J1、J2、J3は、変化率算出部354が周波数帯域Uで回帰分析を行うことによって算出した回帰直線である。また、回帰直線J4’は、変化率算出部354が周波数帯域U’で回帰分析を行うことによって算出した回帰直線である。なお、図11では、比較のため、変化率算出部354が、距離L=L4において周波数帯域Uで回帰分析を行うことによって算出した回帰直線J4も記載している。以下、回帰直線Jpの傾きをSf(Lp)とする。また、回帰直線J4’の傾きをSf’(L4)とする。
 回帰直線Jpの傾きSf(Lp)は、p=1,2,3において、距離Lの増加とともに単調に減少する。これに対し、回帰直線J4の傾きSf(L4)は、回帰直線J3の傾きSf(L3)よりも大きい(Sf(L4)>Sf(L3))。一方、距離L=L4の周波数帯域U’における傾きSf’(L4)は、回帰直線J3の傾きSf(L3)よりも小さい(Sf’(L4)<Sf(L3))。これは、図8から明らかなように、関数ψ(f,L4)が周波数fmax’の近傍で極小値を取り、周波数fmaxでは極小値より大きい値を取るからである。
 続いて、変化率算出部354は、傾きSf(L)を距離Lの関数とみて第2の回帰分析を行うことにより、距離Lに対する第2の回帰直線を算出する。図12は、傾きSf(L)と距離Lの関係を示す図である。変化率算出部354は、上述の通り、例に挙げた傾きSf(L1)、Sf(L2)、Sf(L3)、Sf’(L4)とそれ以外の全ての傾きを算出した。そして、変化率算出部354は、これらの傾きに基づき、さらに往復距離Lに対する第2の回帰分析を行うことで、第2の回帰直線Q1を算出する。この第2の回帰直線Q1を図12に実線で示す。ところで、変化率算出部354は、上述の通り、周波数帯域Uにおいて、傾きSf(L1)、Sf(L2)、Sf(L3)、Sf’(L4)とそれ以外の全ての傾きを算出した。比較のために、これらの傾きに基づき、さらに往復距離Lに対する第2の回帰分析を行うことによって算出した第2の回帰直線Q2を図12に破線で示す。第2の回帰直線Q1、Q2を比較すると、第2の回帰直線Q1の方が、傾きSf(L)の値によくフィットしていることがわかる。式(15)に示した通り、関数ψ(f,L)は周波数fの一次関数であり、かつ、本実施の形態1では周波数帯域U、U’を適切に設定してノイズの影響を排除したため、回帰直線J1、J2、J3、J4’の傾き(すなわち1次変化率)Sf(L1)、Sf(L2)、Sf(L3)、Sf’(L4)は、周波数fに対する関数ψ(f,L)の1次偏導関数∂ψ(f,L1)/∂f、∂ψ(f,L2)/∂f、∂ψ(f,L3)/∂f、∂ψ(f,L4)/∂fにそれぞれ良い近似を与える。さらに、式(15)に示す通り、関数ψ(f,L)は周波数fだけでなく往復距離Lの一次関数でもあるため、第2の回帰直線Q1の傾き(すなわち2次変化率)は、1次偏導関数∂ψ(f,L)/∂fの往復距離Lに対する偏導関数、すなわち式(13)の左辺の2次偏導関数∂2ψ(f,L)/∂L∂fに良い近似を与える。
 減衰率推定部355は、変化率算出部354が算出した2次変化率の値を式(13)へ代入することにより、超音波の音線ごとの減衰率ζを算出する。続いて減衰率推定部355は、算出した全ての音線の減衰率ζの平均値を算出し、算出結果を走査領域の減衰率として、画像処理部36が有する合成画像データ生成部362へ出力する。なお、減衰率推定部355は、全ての音線の減衰率ζの最頻値、中央値または最大値等の統計量を走査領域の減衰率としてもよい。
 画像処理部36は、エコー信号の振幅を輝度に変換して表示する超音波画像であるBモード画像データを生成するBモード画像データ生成部361と、減衰率推定部355が推定した減衰率ζの情報とBモード画像データを合成して合成画像データを生成する合成画像データ生成部362と、を有する。
 Bモード画像データ生成部361は、信号処理部34からのBモード用受信データに対してゲイン処理、コントラスト処理等の公知の技術を用いた信号処理を行うとともに、表示装置4における画像の表示レンジに応じて定まるデータステップ幅に応じたデータの間引き等を行うことによってBモード画像データを生成する。Bモード画像は、色空間としてRGB表色系を採用した場合の変数であるR(赤)、G(緑)、B(青)の値を一致させたグレースケール画像である。
 Bモード画像データ生成部361は、Bモード用受信データに走査領域を空間的に正しく表現できるよう並べ直す座標変換を施し、さらにBモード用受信データ間の補間処理を施して、Bモード用受信データ間の空隙を埋め、デジタルデータであるBモード画像データを生成する。Bモード画像データは図4で扇型に示された走査領域内の器官の状況を表現できるBモード画像のデジタルデータである。Bモード画像データ生成部361は、生成したBモード画像データを合成画像データ生成部362へ出力する。
 合成画像データ生成部362は、走査領域の減衰率の値を示す文字データを生成し、Bモード画像に隣接して表示するようにBモード画像データと文字データとを合成することによって合成画像データを生成する。合成画像データ生成部362は、生成した合成画像データを表示装置4へ出力する。
 表示装置4は、液晶または有機EL(Electro Luminescence)等からなるモニタを用いて構成される。表示装置4は、超音波診断装置3が生成した合成画像データに対応する合成画像を含む各種情報を表示する。
 図13は、以上の構成を有する超音波診断装置3が実行する処理の概要を示すフローチャートである。具体的には、超音波診断装置3が超音波内視鏡2からエコー信号を受信する以降の処理の概要を示すフローチャートである。以下、図13を参照して、超音波診断装置3が行う処理を説明する。まず、超音波診断装置3は、超音波内視鏡2から超音波振動子21による測定結果としてのエコー信号を受信する(ステップS1)。
 超音波振動子21からエコー信号を受信した信号増幅部331は、そのエコー信号の増幅を行う(ステップS2)。ここで、信号増幅部331は、例えば図3に示す増幅率と受信深度との関係に基づいてエコー信号の増幅(STC補正)を行う。この際、信号増幅部331におけるエコー信号の各種処理周波数帯域は、超音波振動子21による超音波エコーのエコー信号への音響電気変換の線形応答周波数帯域をほぼカバーする広帯域にするとよい。これも、後述する周波数スペクトルの近似処理において精度のよい近似を行うことを可能とするためである。
 ところで、上述の通り、信号増幅部331はエコー信号を増幅し、送受信部33は増幅されたエコー信号にフィルタリング、A/D変換を施してRFデータを生成し、信号処理部34はRFデータに各種処理を施してBモード用受信データを生成した。ここで、Bモード画像データ生成部361は、信号処理部34から入力されるBモード用受信データに適切な座標変換、補間処理を施し、Bモード画像データを生成して、表示装置4へ出力する(ステップS3)。Bモード画像データを受信した表示装置4は、そのBモード画像データに対応するBモード画像を表示する。
 一方、増幅補正部351は、送受信部33から出力されたRFデータに対して受信深度によらず増幅率が一定となるように増幅補正を行う(ステップS4)。ここで、増幅補正部351は、例えば図5に示す増幅率と受信深度との関係が成立するように増幅補正を行う。
 この後、周波数解析部352は、増幅補正後の各音線のRFデータに対してFFTによる周波数解析を行うことによってスペクトルデータを算出する(ステップS5)。このステップS5の処理の詳細については後述する。
 続いて、帯域設定部353は、回帰分析対象の周波数帯域を設定する(ステップS6)。例えば、図8および図9に示す場合、L=L1,L2,L3に対して周波数帯域Uを設定する一方、L=L4に対して周波数帯域U’を設定する。
 変化率算出部354は、帯域設定部353が設定した周波数帯域に基づいて、関数ψ(f,L)の2次偏導関数∂2ψ(f,L)/∂L∂fの近似値である2次変化率を、2回の回帰分析を行うことによって算出する(ステップS7)。例えば、変化率算出部354は、2次変化率として、図12に示す回帰直線Q1の傾きを算出する。
 この後、減衰率推定部355は、走査領域における超音波パルスの減衰率を推定する(ステップS8)。減衰率推定部355は、変化率算出部354が算出した2次変化率の値を式(13)の左辺へ代入することにより、音線ごとの減衰率を算出した後、算出した全ての音線の減衰率の平均値を算出し、この平均値を走査領域の減衰率として合成画像データ生成部362へ出力する。
 合成画像データ生成部362は、Bモード画像データおよび走査領域の減衰率をもとに合成画像データを生成し、表示装置4へ出力する(ステップS9)。合成画像データを受信した表示装置4は、その合成画像データに対応する合成画像を表示する。図14は、表示装置4が表示する合成画像の表示例を示す図である。同図に示す合成画像101は、Bモード画像表示部102と減衰率表示部103とを有する。なお、図14では、具体的なBモード画像の表示を省略している。
 ステップS9の後、超音波診断装置3は一連の処理を終了する。なお、超音波診断装置3は、ステップS1~S9の処理を周期的に繰り返し実行する。
 次に、ステップS5の周波数解析処理について、図15のフローチャートを参照して説明する。まず、周波数解析部352は、解析対象の音線を識別するカウンタkをk0とする(ステップS11)。この初期値k0は、術者等のユーザが入力部37を通じて任意に指示入力した値、もしくは、記憶部32にあらかじめ設定された値とする。
 続いて、周波数解析部352は、上述の通りFFT演算用に生成した一連のデータ群(サンプルデータ群)を代表するデータ位置(受信深度に相当)Z(k)の初期値Z(k) 0を設定する(ステップS12)。例えば、図6では、上述したように、音線SRkの1番目のデータ位置を初期値Z(k) 0として設定した場合を示している。
 その後、周波数解析部352は、サンプルデータ群を取得し(ステップS13)、取得したサンプルデータ群に対し、記憶部32が記憶する窓関数を作用させる(ステップS14)。このようにサンプルデータ群に対して窓関数を作用させることにより、サンプルデータ群が境界で不連続になることを回避し、アーチファクトが発生するのを防止することができる。ステップS14で適用する窓関数は、例えばHamming、Hanning、Blackman等のいずれかであり、予め記憶部32に記憶されている。
 続いて、周波数解析部352は、データ位置Z(k)のサンプルデータ群が正常なデータ群であるか否かを判定する(ステップS15)。図6を参照した際に説明したように、サンプルデータ群は、2のべき乗のデータ数を有している必要がある。以下、サンプルデータ群のデータ数を2n(nは正の整数)とする。本実施の形態1では、データ位置Z(k)が、できるだけZ(k)が属するサンプルデータ群の中心になるよう設定される。具体的には、サンプルデータ群のデータ数は2nであるので、Z(k)はそのサンプルデータ群の中心に近い2n/2(=2n-1)番目の位置に設定される。この場合、サンプルデータ群が正常であるとは、データ位置Z(k)より浅部側に2n-1-1(=Nとする)個のデータがあり、データ位置Z(k)より深部側に2n-1(=Mとする)個のデータがあることを意味する。図6に示す場合、サンプルデータ群Fj(j=1,2,・・・,K-1)は正常である。なお、図6ではn=4(N=7,M=8)の場合を例示している。
 ステップS15における判定の結果、データ位置Z(k)のサンプルデータ群が正常である場合(ステップS15:Yes)、周波数解析部352は、後述するステップS17へ移行する。
 ステップS15における判定の結果、データ位置Z(k)のサンプルデータ群が正常でない場合(ステップS15:No)、周波数解析部352は、不足分だけゼロデータを挿入することによって正常なサンプルデータ群を生成する(ステップS16)。ステップS15において正常でないと判定されたサンプルデータ群(例えば図6のサンプルデータ群FK)は、ゼロデータを追加する前に窓関数が作用されている。このため、サンプルデータ群にゼロデータを挿入してもデータの不連続は生じない。ステップS16の後、周波数解析部352は、後述するステップS17へ移行する。
 ステップS17において、周波数解析部352は、サンプルデータ群を用いてFFT演算を行うことにより、振幅の周波数分布であるスペクトルデータを得る(ステップS17)。この結果、例えば図7の各列に示すようなスペクトルデータが得られる。
 続いて、周波数解析部352は、データ位置Z(k)をステップ幅Dで変化させる(ステップS18)。ステップ幅Dは、記憶部32が予め記憶しているものとする。図6では、D=15の場合を例示している。ここで、図7に示した往復距離Lの間隔ΔLは、このステップ幅Dを距離に換算したときの値(=サンプリング幅×D)の2倍で定義される。したがって、ステップ幅Dが定まると、間隔ΔLも一意に定まる。ステップ幅Dは、Bモード画像データ生成部361がBモード画像データを生成する際に利用するデータステップ幅と一致させることが望ましいが、周波数解析部352における演算量を削減したい場合には、ステップ幅Dとしてデータステップ幅より大きい値を設定してもよい。
 その後、周波数解析部352は、データ位置Z(k)が音線SRkにおける最大値Z(k) maxより大きいか否かを判定する(ステップS19)。データ位置Z(k)が最大値Z(k) maxより大きい場合(ステップS19:Yes)、周波数解析部352はカウンタkを1増加させる(ステップS20)。これは、処理をとなりの音線へ移すことを意味する。一方、データ位置Z(k)が最大値Z(k) max以下である場合(ステップS19:No)、周波数解析部352はステップS13へ戻る。
 ステップS20の後、周波数解析部352は、カウンタkが最大値kmaxより大きいか否かを判定する(ステップS21)。カウンタkがkmaxより大きい場合(ステップS21:Yes)、周波数解析部352は一連の周波数解析処理を終了する。一方、カウンタkがkmax以下である場合(ステップS21:No)、周波数解析部352はステップS12に戻る。この最大値kmaxは、術者等のユーザが入力部37を通じて任意に指示入力した値、もしくは、記憶部32にあらかじめ設定された値とする。
 このようにして、周波数解析部352は、関心領域内の(kmax-k0+1)本の音線の各々について複数回のFFT演算を行う。
 以上説明した本発明の実施の形態1によれば、周波数スペクトルを用いて定義される関数における距離変化率および周波数変化率をこの順序で算出することによって得られる2次変化率を用いて、超音波振動子の走査領域における超音波信号の単位距離および単位周波数あたりの減衰率を推定するため、超音波の減衰率を精度よくかつ簡便に算出することができるとともに、減衰率に基づく画像の信頼性を向上させることができる。
 また、本実施の形態1によれば、上述した引用文献1のように音速を得る必要はなく、送信波形がガウシアンであることを前提としていないため、減衰率を精度よく算出することができる。なお、本実施の形態1の2次変化率は、周波数と距離(または受信深度)の関数の2次変化率であり、上述した特許文献1における「位相の2次変化率」とは全く異なるものである。この点は、以下に説明する実施の形態2、3も同様である。
 また、本実施の形態1によれば、スペクトルデータに応じてノイズレベルデータとの比較により演算対象の周波数帯域を設定するため、S/Nが十分高く、減衰率の推定に有効な領域のみで減衰率を算出することができる。したがって、高精度で減衰率を算出することができ、減衰率に基づく画像の信頼性を高めることができる。
 また、本実施の形態1によれば、画像内の領域をマニュアルで指定するなどの煩雑な処理は不要であるため、減衰率を簡便に算出することができる。
 また、本実施の形態1によれば、線型の回帰分析を用いるため、周波数変化率および距離変化率を簡便に算出することができる。
 また、本実施の形態1によれば、周波数の1次関数であるスペクトルデータの関数ψ(f,L)を用いているため、回帰直線の傾きを用いた近似の精度を向上させることができる。
 また、本実施の形態1によれば、ノイズレベルデータ記憶部は複数の種別または機体ごとの超音波振動子にそれぞれ対応するノイズレベルデータを記憶しているため、接続可能な全ての超音波振動子に対して超音波の減衰率を精度よく算出することができる。
 なお、本実施の形態1において、比較部353aがスペクトルデータF(f,L)と比較する対象をノイズレベルデータn(f,L)そのものではなく、ノイズレベルデータn(f,L)の1次関数a・n(f,L)+b(a≧1、b≧0;a、bは定数)に代えてマージンを設けてもよい。この場合には、変化率算出部354が算出する2次変化率や、減衰率推定部355が推定する減衰率へのノイズの影響がさらに少なくなり、減衰率の算出精度が一層向上する。
 また、一般にS/Nが悪いのは、周波数に依存する減衰の激しい高周波数側であることに鑑み、帯域設定部353が回帰分析対象の周波数帯域を設定する際、最小の周波数を初期値fminで固定する一方、最大の周波数の値をf>fminの範囲で初期値fmaxから変更するようにしてもよい。この場合には、変化率算出部354および減衰率推定部355が演算する際、減衰の激しい高周波数側を除外して減衰率の推定精度を高めることができる。
 また、超音波診断装置3は、走査領域の減衰率を推定する代わりに、走査領域の一部の領域の減衰率を推定するようにしてもよい。この場合の領域は、入力部37を介してユーザが設定できるようしておけば好ましい。
(実施の形態2)
 本発明の実施の形態2は、超音波診断装置の変化率算出部が行う2次変化率の算出方法が、上述した実施の形態1と異なる。本実施の形態2に係る超音波診断装置は、実施の形態1で説明した超音波診断装置3と同様の構成を有する。
 本実施の形態2において、変化率算出部354は、回帰分析によりスペクトルデータF(f,L)の距離Lに対する変化率をまず算出して偏導関数∂ψ(f,L)/∂Lの近似値とした後、第2の回帰分析により偏導関数∂F(f,L)/∂Lの周波数fに対する変化率を算出することによって2次偏導関数∂2F(f,L)/∂f∂Lの近似値すなわち2次変化率を算出する。
 この場合、距離L=0のスペクトルデータF(f,0)は距離Lの関数ではないため、
  ∂F(f,L)/∂L=∂ψ(f,L)/∂L
が成り立つ。したがって、本実施の形態2において、変化率算出部354は関数ψ(f,L)を算出する必要はなく、スペクトルデータF(f,L)から2次変化率を算出することができる。
 変化率算出部354は、周波数fごとに回帰分析限界Lmax(f)を抽出する。回帰分析限界Lmax(f)は、周波数fにおける距離Lの最大値である。図10に示すスペクトルデータのデータ列では、周波数f=fp(p=1,2,3,4)に対する回帰分析限界Lmax(fp)を示している。図10に示す場合、回帰分析限界Lmax(fp)は、周波数fpにおける白色セルの分布範囲の右端のセルが有する距離Lの値に対応している。
 変化率算出部354は、スペクトルデータF(f,L)の距離Lに対する回帰分析を実行し、距離区間0≦L≦Lmax(f)における回帰直線の傾きSL(f)を算出する。図16は、周波数fを一定にしたときのスペクトルデータF(f,L)と距離Lの関係を示す図である。具体的には、互いに異なる4つの距離におけるスペクトルデータF(f,L1)、F(f,L2)、F(f,L3)、F(f,L4)と距離Lとの関係を示している。ここで、周波数fpは定数であり、0<f1<f2<f3<f4を満たす。図16に示すように、スペクトルデータF(f,L)は、被検体内で超音波が伝搬する際の周波数依存減衰の効果により、周波数fが大きいほど距離Lの増加に伴う減衰が激しい。なお、一般にこれより多くのスペクトルデータF(f,L)が算出されるが、図16では図8と同様に、代表的な4つのスペクトルデータのみを例示している。
 図16では、距離区間0≦L≦Lmax(fp)におけるスペクトルデータF(fp,L)の回帰直線Kpが示されている。スペクトルデータF(fp,L)は、L=0から回帰分析限界Lmax(fp)に達するまではほぼ線型であるが、回帰分析限界Lmax(fp)より大きくなると、ノイズの影響およびスペクトルデータF(fp,L)自体が0の近傍まで減衰することによる影響によって線型性が崩れている。
 回帰直線Kpの傾きは、周波数依存減衰の効果により、周波数fが大きくなるほど急峻になる。換言すると、回帰直線Kpの傾きをSL(fp)とすると、SL(f1)>SL(f2)>SL(f3)>SL(f4)が成立する。
 ここで比較のため、図16に示す4つのスペクトルデータF(fp,L)について、4つの周波数のうち最低の周波数f1の回帰分析限界Lmax(f1)を用いて回帰直線を算出する場合を考える。図16では、一例として、スペクトルデータF(f4,L)に対して回帰分析限界Lmax(f1)を適用した場合に算出される回帰直線K4’を例示している。この回帰直線K4’の傾きSL’(f4)は、スペクトルデータF(f4,L)がL=Lmax(f4)の近傍でノイズレベルまで落ち切ってしまうため、SL(f4)よりも大きい(SL’(f4)>SL(f4))。なお、図示はしないが、p=1,2,3の場合にも、同様の関係が成り立っている。
 変化率算出部354は、傾きSL(f)を周波数fの関数とみて第2の回帰分析を行うことにより、周波数fに対する第2の回帰直線を算出する。図17は、傾きSL(f)と周波数fとの関係を示す図である。図17において、黒点は、変化率算出部354が距離区間0≦L≦Lmax(fp)でスペクトルデータF(fp,L)の回帰分析を行うことによって算出した傾きSL(fp)と周波数fpとの関係を示している。これに対して白点は比較用のデータであり、変化率算出部354が距離区間0≦L≦Lmax(f1)でスペクトルデータF(fp,L)の回帰分析を行うことによって算出した回帰直線Kp’の傾きSL’(fp)と周波数fpとの関係を示している。
 変化率算出部354は、上述の通り、距離区間0≦L≦Lmax(f)において、例に挙げた傾きSL(f1)、SL(f2)、SL(f3)、SL(f4)と、それ以外の全ての傾きを算出した。そして、変化率算出部354は、これらの傾きに基づき、さらに周波数fに対する第2の回帰分析を行うことで、第2の回帰直線Q3を算出する。この第2の回帰直線Q3を図17に実線で示す。ところで、比較のために、変化率算出部354が、仮に距離区間0≦L≦Lmax(f1)において、傾きSL’(f1)、SL’(f2)、SL’(f3)、SL’(f4)とそれ以外をの全ての傾きを算出し、これらの傾きに基づき、さらに周波数fに対する第2の回帰分析を行った場合の第2の回帰直線Q4を図17に破線で示す。第2の回帰直線Q3、Q4を比較すると、第2の回帰直線Q3の方が、傾きSL(f)の値によくフィットしていることがわかる。第2の回帰直線Q3の傾きは、式(14)の左辺の2次偏導関数∂2ψ(f,L)/∂f∂Lに対する近似値、すなわち2次変化率を与える。
 以上説明した本発明の実施の形態2によれば、周波数スペクトルにおける周波数変化率および距離変化率をこの順序で算出することによって得られる2次変化率を用いて、超音波振動子の走査領域における超音波信号の単位距離および単位周波数あたりの減衰率を推定するため、実施の形態1と同様、超音波の減衰率を精度よくかつ簡便に算出することができるとともに、減衰率に基づく画像の信頼性を向上させることができる。
 また、本実施の形態2によれば、距離に対する回帰分析を周波数に対する回帰分析よりも先に実行するため、スペクトルデータをそのまま回帰分析することができ、計算量を少なくすることができる。
(実施の形態3)
 図18は、本発明の実施の形態3に係る超音波診断システムの機能構成を示すブロック図である。同図に示す超音波診断システム11は、超音波内視鏡2と、超音波診断装置12と、表示装置4とを備える。
 超音波診断装置12は、記憶部121および画像処理部122の構成が、上述した超音波診断装置3の記憶部32および画像処理部36とそれぞれ異なる。
 記憶部121は、種別情報記憶部321、ノイズレベルデータ記憶部322、帯域情報記憶部323に加えて、減衰率の値に応じて画像に付与する視覚情報を記憶する視覚情報記憶部324を有する。ここでいう視覚情報とは、例えば輝度、色相、明度または彩度等のいずれかであり、減衰率の値に応じた値が対応付けられている。なお、視覚情報記憶部324が複数種類の視覚情報を減衰率と対応づけて記憶しておいてもよい。この場合には、ユーザが入力部37を介して所望の視覚情報を選択できるようにしておけばよい。
 画像処理部122は、Bモード画像データ生成部361、合成画像データ生成部362に加えて、減衰率マップデータ生成部363を有する。減衰率マップデータ生成部363は、減衰率推定部355が推定した減衰率の値に応じた視覚情報を、視覚情報記憶部324を参照して画像に付与することによって減衰率マップデータを生成する。
 図19は、以上の構成を有する超音波診断装置12が行う処理の概要を示すフローチャートである。具体的には、超音波診断装置12が超音波内視鏡2からエコー信号を受信する以降の処理の概要を示すフローチャートである。図19において、ステップS31~ステップS36は、図13のステップS1~S6に順次対応している。以下、ステップS36に続く処理を説明する。
 ステップS36の後、変化率算出部354は、スペクトルデータの2次変化率を算出する(ステップS37)。この際、変化率算出部354は、走査領域内であらかじめ分割して設定された複数の部分領域の各々に対して2次変化率を算出する。なお、本実施の形態3において、変化率算出部354が2次変化率を算出する際の周波数変化率および距離変化率の算出順序は、特に限定されない。
 図20は、部分領域の設定例を模式的に示す図である。同図に示す部分領域Rは、深度方向の長さ(深度幅)がwで、NR本の音線を含む扇形領域である。走査領域Sでは、深度幅wで送受信方向を分割するとともに、NR本の音線ごとに走査方向が分割されている。図20では、走査領域S内に複数ある送受信方向のうち、1本の送受信方向dr上で算出されたスペクトルデータのうち部分領域R内のデータを黒丸で示す一方、部分領域Rの境界に位置するスペクトルデータを白丸で示している。
 変化率算出部354は、部分領域Rにおけるスペクトルデータにおける距離の基準位置(距離がゼロの位置)を、部分領域R内で超音波振動子21の表面に最も近い位置とし、この基準位置との深度の差z’の2倍(2z’)を新たな距離として演算を行う。なお、超音波振動子21の表面を距離の基準位置としたときの部分領域Rの基準位置がL=Lminである場合、上述した白丸の位置におけるスペクトルデータはF(f,Lmin)と表される。変化率算出部354は、このスペクトルデータF(f,Lmin)を式(10)のスペクトルデータF(f,0)の代わりとして、部分領域Rにおける2次変化率を算出するようにしてもよい。
 減衰率推定部355は、変化率算出部354の算出結果を用いて、走査領域に含まれる複数の部分領域の各々に対し、部分領域の減衰率を推定する(ステップS38)。減衰率推定部355は、まず部分領域で算出された全ての2次変化率を用いて音線ごとの減衰率を算出する。この後、減衰率推定部355は、同一の部分領域で算出した全ての音線の減衰率の平均値を算出し、この平均値を当該部分領域の減衰率の推定値として減衰率マップデータ生成部363へ出力する。なお、減衰率推定部355は、同一の部分領域で算出した全ての音線の減衰率の最頻値、中央値または最大値等の統計量を当該部分領域の減衰率としてもよい。
 この後、減衰率マップデータ生成部363は、視覚情報記憶部324を参照して、各部分領域の減衰率に応じた視覚情報を各部分領域に対して割り当てることによって減衰率マップデータを生成し、合成画像データ生成部362へ出力する(ステップS39)。なお、合成画像データ生成部362が、各部分領域の減衰率の推定値を文字情報としてさらに表示する合成画像データを生成するようにしてもよい。
 合成画像データ生成部362は、Bモード画像データに減衰率マップデータを重畳することによって合成画像データを生成し、この合成画像データを表示装置4へ出力する(ステップS40)。合成画像データを受信した表示装置4は、その合成画像データに対応する合成画像を表示する。図21は、表示装置4が表示する減衰率マップデータ付きの合成画像の表示例を示す図である。図21に示す合成画像201は、各領域ごとに異なる視覚情報が割り当てられている。なお、図21では、視覚情報を模様で模式的に記載している。また、図21では、簡単のためBモード画像の具体的な表示を省略している。
 本実施の形態3において、深度幅wは例えば1cm程度であるのが好ましい。深度幅wが1cm程度である場合、周波数解析部352がFFT処理を行う際のRFデータを切り取る区間の幅ΔLを2mm程度とするのが望ましい。このとき、間隔ΔLに対応する基準位置の深度z’の幅Δz’(=ΔL/2)は、1mm程度になる。
 以上説明した本発明の実施の形態3によれば、周波数スペクトルまたは周波数スペクトルを用いて定義される関数における距離変化率および周波数変化率を所定の順序で算出することによって得られる2次変化率を用いて、超音波振動子の走査領域における超音波信号の単位距離および単位周波数あたりの減衰率を推定するため、実施の形態1、2と同様、超音波の減衰率を精度よくかつ簡便に算出することができるとともに、減衰率に基づく画像の信頼性を向上させることができる。
 また、本実施の形態3によれば、超音波振動子の走査領域を分割することによって得られる複数の部分領域の各々に対し、各部分領域で得られた減衰率の統計量を算出することによって各部分領域の減衰率を推定した後、各部分領域の減衰率の値に応じた視覚情報を付与することによって減衰率マップデータを生成するため、ユーザが減衰率の分布を視覚的に把握しやすい情報を提供することができる。
 また、本実施の形態3において、減衰率マップの最小単位である扇形領域のうち隣接する扇形を重複させるように設定してもよい。
 また、本実施の形態3において、各扇形領域の減衰率の算出を順次行う代わりに、同時並行的に行ってもよい。
 また、本実施の形態3において、入力部37が入力を受け付ける設定信号に基づいて1つの扇形領域を関心領域(ROI:Region of Interest)として設定し、関心領域内の減衰率の値をさらに合成することによって合成画像データを生成してもよい。
(その他の実施の形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は、上述した実施の形態1~3によってのみ限定されるべきものではない。例えば、超音波診断装置において、各機能を有する回路同士をバスで接続することによって構成してもよいし、一部の機能が他の機能の回路構造に内蔵されるように構成してもよい。具体的には、例えば減衰率推定部の機能を有する回路に変化率算出部の機能を内蔵してもよい。
 また、超音波プローブとして、光学系のない細径の超音波ミニチュアプローブを適用してもよい。超音波ミニチュアプローブは、通常、胆道、胆管、膵管、気管、気管支、尿道、尿管へ挿入され、その周囲臓器(膵臓、肺、前立腺、膀胱、リンパ節等)を観察する際に用いられる。
 また、超音波プローブとして、被検体の体表から超音波を照射する体外式超音波プローブを適用してもよい。体外式超音波プローブは、通常、腹部臓器(肝臓、胆嚢、膀胱)、乳房(特に乳腺)、甲状腺を観察する際に用いられる。
 また、超音波振動子は、リニア振動子でもラジアル振動子でもコンベックス振動子でも構わない。超音波振動子がリニア振動子である場合、その走査領域は矩形(長方形、正方形)をなし、超音波振動子がラジアル振動子やコンベックス振動子である場合、その走査領域は扇形や円環状をなす。
 このように、本発明は、特許請求の範囲に記載した技術的思想を逸脱しない範囲内において、様々な実施の形態等を含み得るものである。
 以上のように、本発明にかかる超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラムは、超音波の減衰率を精度よくかつ簡便に算出するとともに、減衰率に基づく画像の信頼性を向上させるのに有用である。
 1、11 超音波診断システム
 2 超音波内視鏡
 3、12 超音波診断装置
 4 表示装置
 21 超音波振動子
 31 制御部
 32、121 記憶部
 33 送受信部
 34 信号処理部
 35 演算部
 36、122 画像処理部
 37 入力部
 101、201 合成画像
 102 Bモード画像表示部
 103 減衰率表示部
 311 種別特定部
 321 種別情報記憶部
 322 ノイズレベルデータ記憶部
 323 帯域情報記憶部
 324 視覚情報記憶部
 331 信号増幅部
 351 増幅補正部
 352 周波数解析部
 353 帯域設定部
 353a 比較部
 354 変化率算出部
 355 減衰率推定部
 361 Bモード画像データ生成部
 362 合成画像データ生成部
 363 減衰率マップデータ生成部

Claims (15)

  1.  被検体へ超音波を送信し、該被検体で反射された超音波を受信する超音波振動子を備えた超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置であって、
     前記超音波信号の周波数を解析することによって前記超音波信号の受信深度ごとの周波数スペクトルを算出する周波数解析部と、
     前記周波数解析部が算出した周波数スペクトルまたは該周波数スペクトルを用いて定義される関数における距離変化率および周波数変化率を所定の順序で算出することによって前記周波数スペクトルまたは前記関数の2次変化率を算出する変化率算出部と、
     前記変化率算出部が算出した2次変化率を用いて、前記超音波振動子の走査領域内の所定領域における前記超音波信号の単位距離および単位周波数あたりの減衰率を推定する減衰率推定部と、
     を備えたことを特徴とする超音波診断装置。
  2.  周波数および受信深度に応じたノイズレベルデータを記憶するノイズレベルデータ記憶部と、
     前記ノイズレベルデータ記憶部が記憶するノイズレベルデータと、前記周波数スペクトルのデータとを比較することにより、前記変化率算出部が算出対象とする前記周波数スペクトルの周波数帯域を設定する帯域設定部と、
     をさらに備え、
     前記変化率算出部は、前記帯域設定部が設定した周波数帯域における前記周波数変化率を算出することを特徴とする請求項1に記載の超音波診断装置。
  3.  前記帯域設定部は、同一周波数における前記周波数スペクトルのデータと前記ノイズレベルデータとを比較することによってノイズに相当する周波数の帯域であるノイズ周波数帯域を抽出し、該ノイズ周波数帯域を除外することによって前記周波数帯域を設定することを特徴とする請求項2に記載の超音波診断装置。
  4.  前記帯域設定部は、所定の周波数より高い周波数帯域を前記ノイズ周波数帯域として抽出することを特徴とする請求項3に記載の超音波診断装置。
  5.  前記帯域設定部は、前記周波数スペクトルのデータの値が閾値以下の領域を前記ノイズ周波数帯域として抽出することを特徴とする請求項3に記載の超音波診断装置。
  6.  前記閾値は、前記ノイズレベルデータ以上の値であることを特徴とする請求項5に記載の超音波診断装置。
  7.  前記変化率算出部は、前記超音波の音線ごとに前記2次変化率を算出し、
     前記減衰率推定部は、前記音線ごとの前記2次変化率を用いて前記音線ごとの減衰率を算出し、前記走査領域における全ての前記音線ごとの減衰率の統計量を算出することによって前記減衰率を推定することを特徴とする請求項1に記載の超音波診断装置。
  8.  前記変化率算出部は、
     前記周波数スペクトルと基準の受信深度における前記周波数スペクトルとの差によって定義される関数に対し、前記周波数帯域で周波数を変数とする回帰分析を行うことによって回帰直線を算出し、前記回帰直線の傾きに対して前記超音波振動子と前記被検体との往復距離を変数とする第2の回帰分析を行うことによって第2の回帰直線を算出し、該第2の回帰直線の傾きを前記2次変化率とすることを特徴とする請求項2に記載の超音波診断装置。
  9.  前記変化率算出部は、
     前記周波数帯域に基づいて周波数ごとに定まる距離区間で前記周波数スペクトルに対して前記超音波振動子と前記被検体との往復距離を変数とする回帰分析を行うことによって回帰直線を算出し、該回帰直線の傾きに対して周波数を変数とする第2の回帰分析を行うことによって第2の回帰直線を算出し、該第2の回帰直線の傾きを前記2次変化率とすることを特徴とする請求項2に記載の超音波診断装置。
  10.  前記超音波画像として信号の振幅を輝度に変換して表示するBモード画像データを生成するBモード画像データ生成部と、
     前記減衰率推定部が推定した減衰率に関する情報と前記Bモード画像データ生成部が生成したBモード画像データとを用いて合成画像データを生成する合成画像データ生成部と、
     をさらに備えたことを特徴とする請求項1に記載の超音波診断装置。
  11.  前記減衰率推定部は、前記走査領域を分割することによって得られる複数の部分領域の各々に対し、各部分領域で得られた減衰率の統計量を算出することによって各部分領域の減衰率を推定し、
     各部分領域の減衰率の値に応じた視覚情報を付与することによって減衰率マップデータを生成する減衰率マップデータ生成部をさらに備えたことを特徴とする請求項1に記載の超音波診断装置。
  12.  前記超音波画像として信号の振幅を輝度に変換して表示するBモード画像データを生成するBモード画像データ生成部と、
     前記減衰率マップデータ生成部が生成した減衰率マップデータと前記Bモード画像データ生成部が生成したBモード画像データとを用いて合成画像データを生成する合成画像データ生成部と、
     をさらに備えたことを特徴とする請求項11に記載の超音波診断装置。
  13.  前記ノイズレベルデータ記憶部は、当該超音波診断装置に接続可能な前記超音波プローブが備える前記超音波振動子に応じたノイズレベルデータを記憶することを特徴とする請求項2に記載の超音波診断装置。
  14.  被検体へ超音波を送信し、該被検体で反射された超音波を受信する超音波振動子を備えた超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置の作動方法であって、
     周波数解析部が前記超音波信号の周波数を解析することによって前記超音波信号の受信深度ごとの周波数スペクトルを算出する周波数解析ステップと、
     変化率算出部が前記周波数スペクトルまたは該周波数スペクトルを用いて定義される関数における距離変化率および周波数変化率を所定の順序で算出することによって前記周波数スペクトルまたは前記関数の2次変化率を算出する変化率算出ステップと、
     減衰率推定部が前記2次変化率を用いて、前記超音波振動子の走査領域内の所定領域における前記超音波信号の単位距離および単位周波数あたりの減衰率を推定する減衰率推定ステップと、
     を有することを特徴とする超音波診断装置の作動方法。
  15.  被検体へ超音波を送信し、該被検体で反射された超音波を受信する超音波振動子を備えた超音波プローブが取得した超音波信号に基づいて超音波画像を生成する超音波診断装置に、
     周波数解析部が前記超音波信号の周波数を解析することによって前記超音波信号の受信深度ごとの周波数スペクトルを算出する周波数解析ステップと、
     変化率算出部が前記周波数スペクトルまたは該周波数スペクトルを用いて定義される関数における距離変化率および周波数変化率を所定の順序で算出することによって前記周波数スペクトルまたは前記関数の2次変化率を算出する変化率算出ステップと、
     減衰率推定部が前記2次変化率を用いて、前記超音波振動子の走査領域内の所定領域における前記超音波信号の単位距離および単位周波数あたりの減衰率を推定する減衰率推定ステップと、
     を実行させることを特徴とする超音波診断装置の作動プログラム。
PCT/JP2015/078247 2014-12-22 2015-10-05 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム WO2016103839A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580006715.0A CN105939674B (zh) 2014-12-22 2015-10-05 超声波诊断装置以及超声波诊断装置的工作方法
EP15872408.8A EP3238633A4 (en) 2014-12-22 2015-10-05 Diagnostic ultrasound apparatus, diagnostic ultrasound apparatus operation method, and diagnostic ultrasound apparatus operation program
JP2016505642A JP5932183B1 (ja) 2014-12-22 2015-10-05 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
US15/223,167 US10010306B2 (en) 2014-12-22 2016-07-29 Ultrasound diagnosis apparatus, method for operating ultrasound diagnosis apparatus, and computer-readable recording medium
US16/025,517 US10299766B2 (en) 2014-12-22 2018-07-02 Ultrasound diagnosis apparatus, method for operating ultrasound diagnosis apparatus, and computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014259470 2014-12-22
JP2014-259470 2014-12-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/223,167 Continuation US10010306B2 (en) 2014-12-22 2016-07-29 Ultrasound diagnosis apparatus, method for operating ultrasound diagnosis apparatus, and computer-readable recording medium

Publications (1)

Publication Number Publication Date
WO2016103839A1 true WO2016103839A1 (ja) 2016-06-30

Family

ID=56149876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078247 WO2016103839A1 (ja) 2014-12-22 2015-10-05 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム

Country Status (4)

Country Link
US (2) US10010306B2 (ja)
EP (1) EP3238633A4 (ja)
CN (1) CN105939674B (ja)
WO (1) WO2016103839A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320679A1 (de) * 2003-04-30 2004-12-02 Infineon Technologies Ag Behandlung von Werkstücken mit überkritischem Wasser
DE102015206630B4 (de) * 2015-04-14 2022-05-05 Siemens Healthcare Gmbh Multispektrale CT-Bildgebung
CN106473777A (zh) * 2016-12-12 2017-03-08 广东技术师范学院 一种超声波诊断装置、工作方法以及工作程序
JP7280713B2 (ja) * 2019-02-27 2023-05-24 キヤノンメディカルシステムズ株式会社 超音波診断装置
JP7236312B2 (ja) * 2019-04-04 2023-03-09 富士フイルムヘルスケア株式会社 超音波診断装置、信号処理装置、および、プログラム
CN110231006B (zh) * 2019-06-10 2020-07-17 苏州博昇科技有限公司 空气耦合超声干涉法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082230A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 超音波信号処理装置及び方法
JP2013166059A (ja) * 2010-11-11 2013-08-29 Olympus Medical Systems Corp 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5659324B1 (ja) * 2013-05-29 2015-01-28 オリンパスメディカルシステムズ株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8372010B2 (en) * 2004-10-20 2013-02-12 Kabushiki Kaisha Toshiba Ultrasonic doppler diagnosis device
US20070043290A1 (en) * 2005-08-03 2007-02-22 Goepp Julius G Method and apparatus for the detection of a bone fracture
US9108064B2 (en) * 2008-11-28 2015-08-18 St. Jude Medical Ab Method, implantable medical device, and system for determining the condition of a heart valve
CN101766497B (zh) * 2008-12-31 2013-03-06 深圳迈瑞生物医疗电子股份有限公司 一种声谱图像的信号处理方法和系统
WO2010127429A1 (en) * 2009-05-08 2010-11-11 University Of Toronto Ultrasonic scanning system and ultrasound image enhancement method
CN101690671A (zh) * 2009-09-29 2010-04-07 深圳市蓝韵实业有限公司 一种多普勒超声成像系统动态解调装置
US8485975B2 (en) * 2010-06-07 2013-07-16 Atheropoint Llc Multi-resolution edge flow approach to vascular ultrasound for intima-media thickness (IMT) measurement
JPWO2012063930A1 (ja) * 2010-11-11 2014-05-12 オリンパスメディカルシステムズ株式会社 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
RU2013136486A (ru) * 2011-01-05 2015-02-10 Конинклейке Филипс Электроникс Н.В. Устройство и способ определения фактических границ слоев ткани тела
JP2012165893A (ja) * 2011-02-15 2012-09-06 Fujifilm Corp 超音波診断装置および超音波画像生成方法
JP5925438B2 (ja) 2011-06-23 2016-05-25 株式会社東芝 超音波診断装置
CN104207804A (zh) * 2014-09-26 2014-12-17 南京大学 通过声速与声衰减对生物组织的节间距离进行成像的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082230A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 超音波信号処理装置及び方法
JP2013166059A (ja) * 2010-11-11 2013-08-29 Olympus Medical Systems Corp 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5659324B1 (ja) * 2013-05-29 2015-01-28 オリンパスメディカルシステムズ株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3238633A4 *

Also Published As

Publication number Publication date
US10299766B2 (en) 2019-05-28
US20180303464A1 (en) 2018-10-25
US20160331352A1 (en) 2016-11-17
CN105939674A (zh) 2016-09-14
EP3238633A1 (en) 2017-11-01
EP3238633A4 (en) 2018-09-05
CN105939674B (zh) 2019-09-24
US10010306B2 (en) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2016103839A1 (ja) 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
JP5974210B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2016151951A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5948527B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2018142937A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP6892320B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5932183B1 (ja) 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
JP6253869B2 (ja) 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
JP2016202567A (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2016181869A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
US11207056B2 (en) Ultrasound diagnostic apparatus, method for operating ultrasound diagnostic apparatus, and computer-readable recording medium
WO2016103848A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP6138402B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5981072B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JPWO2015198712A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2016181856A1 (ja) 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
JP6253572B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5953457B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP2017217359A (ja) 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
JP6010274B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5927367B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5932184B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JPWO2020157931A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2016103849A1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016505642

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015872408

Country of ref document: EP