WO2016103716A1 - 多層構造体、それを用いた包装材および製品、ならびに電子デバイスの保護シート - Google Patents
多層構造体、それを用いた包装材および製品、ならびに電子デバイスの保護シート Download PDFInfo
- Publication number
- WO2016103716A1 WO2016103716A1 PCT/JP2015/006455 JP2015006455W WO2016103716A1 WO 2016103716 A1 WO2016103716 A1 WO 2016103716A1 JP 2015006455 W JP2015006455 W JP 2015006455W WO 2016103716 A1 WO2016103716 A1 WO 2016103716A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- group
- multilayer structure
- compound
- polymer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/10—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/26—Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/327—Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
- B65D65/40—Applications of laminates for particular packaging purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/12—Coating on the layer surface on paper layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/28—Multiple coating on one surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7244—Oxygen barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7246—Water vapor barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/748—Releasability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
Definitions
- the present invention relates to a multilayer structure, a packaging material and a product using the same, and a protective sheet for an electronic device.
- a multilayer structure in which a gas barrier layer containing aluminum or aluminum oxide as a constituent component is formed on a plastic film is well known. Many of these gas barrier layers are formed on a plastic film by a dry process such as physical vapor deposition (PVD) or chemical vapor deposition (CVD). Such a multilayer structure is used as a packaging material for protecting an article (for example, food) that is easily deteriorated by oxygen. Moreover, such a multilayer structure is also used as a constituent member of a protective sheet of an electronic device that requires gas barrier properties and water vapor barrier properties for the purpose of protecting the features of the electronic device.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- aluminum vapor deposition film has light shielding properties in addition to gas barrier properties, and is mainly used as a packaging material for dry foods.
- the aluminum oxide vapor-deposited film having transparency has a feature that the contents can be visually confirmed, and foreign matter inspection and microwave heating can be performed by a metal detector. Therefore, the film is used as a packaging material in a wide range of applications including retort food packaging.
- Patent Document 1 discloses a method in which a coating liquid containing aluminum oxide particles and a phosphorus compound is applied on a plastic film, followed by drying and heat treatment.
- the conventional multilayer structure having a gas barrier layer has excellent initial gas barrier properties, but when subjected to physical stress such as deformation or impact, the gas barrier layer has defects such as cracks or pinholes, resulting in gas barrier properties. May be reduced.
- Patent Document 2 has proposed a multilayer structure that not only has excellent gas barrier properties but also can maintain the gas barrier properties at a high level even when subjected to physical stress such as deformation and impact.
- An object of the present invention is to provide a novel multilayer structure excellent in gas barrier property and water vapor barrier property and excellent in retort resistance, and a packaging material using the same.
- Another object of the present invention is to provide a protective sheet for an electronic device using a novel multilayer structure having excellent gas barrier properties and water vapor barrier properties and high interlayer adhesion even under high temperature and high humidity. It is in.
- the present inventors have found that the above object can be achieved by a multilayer structure including a specific layer, and have reached the present invention.
- the present invention is a multilayer structure including a base material (X) and a layer (Y) laminated on the base material (X), wherein the layer (Y) contains an aluminum-containing compound (A) and an organic material.
- a multilayer structure comprising a phosphorus compound (BO) and a polymer (F) having an ether bond and no glycosidic bond is provided.
- the compound (A) containing aluminum is a compound (Ab) containing a reaction product (D) of a metal oxide (Aa) containing aluminum and an inorganic phosphorus compound (BI). May be.
- the mass ratio of the organophosphorus compound (BO) and the polymer (F) may be in the range of 30:70 to 99: 1.
- the layer ratio W of the mass W BO inorganic phosphorus compound in the (Y) Weight W BI and the organic phosphorus compound (BI) (BO) BO / W BI 0.01 / 99.99 ⁇ W BO / W BI ⁇ 6.00 / 94.00 is preferably satisfied.
- the organophosphorus compound (BO) is selected from the group consisting of a phosphoric acid group, a phosphorous acid group, a phosphonic acid group, a phosphonous acid group, a phosphinic acid group, and a phosphinic acid group. It may be a polymer having at least one functional group.
- the polymer (F) may be polyethylene glycol or polyethylene oxide.
- the substrate (X) may include at least one layer selected from the group consisting of a thermoplastic resin film and paper.
- the present invention also provides a packaging material including any of the multilayer structures described above.
- the packaging material may further have a layer formed by extrusion coating lamination.
- the packaging material may be a vertical bag-filling sealing bag, a vacuum packaging bag, a pouch, a laminated tube container, an infusion bag, a paper container, a strip tape, a container lid, or an in-mold label container.
- the present invention provides a product using at least part of any of the packaging materials described above.
- the product may include a content, the content is a core material, the inside of the product is decompressed, and the product may function as a vacuum heat insulator.
- the present invention also provides an electronic device protective sheet comprising any of the multilayer structures described above.
- the protective sheet for the electronic device may be a protective sheet for protecting the surface of the photoelectric conversion device, the information display device, or the lighting device.
- the present invention also provides an electronic device including any of the protective sheets described above.
- a novel multilayer structure excellent in gas barrier property and water vapor barrier property and excellent in retort resistance and a packaging material using the same can be obtained. That is, according to the present invention, not only the gas barrier property and the water vapor barrier property are excellent, but also excellent gas barrier property and water vapor barrier property can be maintained after the retort treatment, and appearance defects such as delamination do not occur after the retort treatment.
- a novel multilayer structure having a high interlayer adhesion (peel strength) and a packaging material using the same are obtained.
- a protective sheet for an electronic device using a novel multilayer structure having excellent gas barrier properties and water vapor barrier properties and having high interlayer adhesion even under high temperature and high humidity can be obtained. That is, according to the present invention, not only the gas barrier property and the water vapor barrier property are excellent, but also excellent gas barrier property and water vapor barrier property can be maintained even after the dump heat test, and appearance defects such as delamination after the dump heat test can be maintained.
- the electronic device which has a protective sheet containing the novel multilayer structure which does not arise and has high interlayer adhesive strength (peeling strength) is obtained.
- the meaning of “lamination of a specific layer on a specific member (base material, layer, etc.)” means that the specific layer is in contact with the member.
- the case where the specific layer is laminated above the member with another layer interposed therebetween is included.
- a specific layer is formed on a specific member (base material, layer, etc.)” and “a specific layer is arranged on a specific member (base material, layer, etc.)”.
- the meaning of “application of a liquid (coating liquid, etc.) on a specific member (base material, layer, etc.)” means that the liquid is applied directly to the member.
- the case where the liquid is applied to another layer formed on the member is included.
- a layer (Y) may be distinguished from other layers by attaching a symbol (Y), such as “layer (Y)”.
- Y Unless otherwise noted, the symbol (Y) has no technical meaning.
- the case where it is clear to show a specific element like a hydrogen atom (H) is excluded.
- the multilayer structure of the present invention includes a substrate (X) and a layer (Y) containing aluminum.
- the layer (Y) is a polymer (F) containing an aluminum-containing compound (A) (hereinafter also simply referred to as “compound (A)”), an organophosphorus compound (BO) and an ether bond, and no glycosidic bond. (Hereinafter, also simply referred to as “polymer (F)”).
- compound (A) aluminum-containing compound
- BO organophosphorus compound
- ether bond an ether bond
- no glycosidic bond hereinafter, also simply referred to as “polymer (F)”.
- multilayer structure means a multilayer structure including a substrate (X) and a layer (Y).
- the layer (Y) at least a part of the compound (A) and at least a part of the organophosphorus compound (BO) may be reacted.
- the layer (Y) contains an inorganic phosphorus compound (BI)
- at least a part of the compound (A) reacts with at least a part of the organic phosphorus compound (BO) and / or the inorganic phosphorus compound (BI). May be.
- the compound (A) is reacted in the layer (Y)
- the part of the compound (A) constituting the reaction product is regarded as the compound (A).
- the mass of the compound (A) used for forming the reaction product is included in the mass of the compound (A) in the layer (Y).
- the inorganic phosphorus compound (BI) and / or the organic phosphorus compound (BO) constituting the reaction product.
- the mass of the inorganic phosphorus compound (BI) and / or the organic phosphorus compound (BO) used for forming the reaction product (the mass of the inorganic phosphorus compound (BI) and / or the organic phosphorus compound (BO) before the reaction).
- the material of the base material (X) is not particularly limited, and base materials made of various materials can be used.
- Examples of the material of the substrate (X) include resins such as thermoplastic resins and thermosetting resins; fiber aggregates such as fabrics and papers; wood; glass and the like. Among these, a thermoplastic resin and a fiber assembly are preferable, and a thermoplastic resin is more preferable.
- the form of the substrate (X) is not particularly limited, and may be a layered form such as a film or a sheet.
- the substrate (X) preferably includes at least one selected from the group consisting of a thermoplastic resin film and paper, more preferably includes a thermoplastic resin film, and more preferably is a thermoplastic resin film. .
- thermoplastic resin used for the substrate (X) examples include polyolefin resins such as polyethylene and polypropylene; polyethylene terephthalate (PET), polyethylene-2,6-naphthalate, polybutylene terephthalate, and copolymers thereof.
- Polyester resins such as nylon-6, nylon-66, nylon-12, etc .; hydroxyl group-containing polymers such as polyvinyl alcohol and ethylene-vinyl alcohol copolymers; polystyrene; poly (meth) acrylic acid esters; polyacrylonitrile; Polyvinyl acetate; Polycarbonate; Polyarylate; Regenerated cellulose; Polyimide; Polyetherimide; Polysulfone; Polyethersulfone; Polyetheretherketone; Ionomer resin
- the material of the substrate (X) is preferably at least one thermoplastic resin selected from the group consisting of polyethylene, polypropylene, polyethylene terephthalate, nylon-6, and nylon-66. .
- the substrate (X) may be a stretched film or an unstretched film.
- a stretched film, particularly a biaxially stretched film is preferred because the processability (printing, laminating, etc.) of the resulting multilayer structure is excellent.
- the biaxially stretched film may be a biaxially stretched film produced by any one of a simultaneous biaxial stretching method, a sequential biaxial stretching method, and a tubular stretching method.
- Examples of the paper used for the substrate (X) include craft paper, fine paper, imitation paper, glassine paper, parchment paper, synthetic paper, white paperboard, Manila ball, milk carton base paper, cup base paper, ivory paper and the like. It is done. By using paper for the substrate (X), a multilayer structure for paper containers can be obtained.
- the thickness is preferably 1 to 1,000 ⁇ m, more preferably 5 to 500 ⁇ m from the viewpoint of improving the mechanical strength and workability of the resulting multilayer structure. 9 to 200 ⁇ m is more preferable.
- the layer (Y) contains a compound (A) and an organophosphorus compound (BO).
- the compound (A) is a compound containing aluminum.
- the layer (Y) preferably further contains an inorganic phosphorus compound (BI).
- the inorganic phosphorus compound (BI) and the organic phosphorus compound (BO) have a functional group containing a phosphorus atom.
- the compound (A), inorganic phosphorus compound (BI), and organic phosphorus compound (BO) will be described below.
- the compound (A) may be a metal oxide (Aa) containing aluminum, or a metal oxide (Aa) containing aluminum (hereinafter also simply referred to as “metal oxide (Aa)”) and an inorganic phosphorus compound. It may be a compound (Ab) containing a reaction product (D) formed by a reaction with (BI) (hereinafter also simply referred to as “compound (Ab)”).
- Metal oxide containing aluminum (Aa) The metal oxide (Aa) containing aluminum is usually reacted with an inorganic phosphorus compound (BI) in the form of particles.
- the metal atoms constituting the metal oxide (Aa) containing aluminum are at least one selected from metal atoms belonging to Groups 2 to 14 of the periodic table. It is a seed metal atom, but it contains at least aluminum.
- the metal atom (M) may be aluminum alone or may contain aluminum and other metal atoms. Two or more metal oxides (Aa) may be used in combination as the metal oxide (Aa).
- the proportion of aluminum in the metal atom (M) is usually 50 mol% or more, 60 to 100 mol%, or 80 to 100 mol%.
- the metal oxide (Aa) include a metal oxide produced by a method such as a liquid phase synthesis method, a gas phase synthesis method, or a solid pulverization method.
- the metal oxide (Aa) may be a hydrolysis condensate of the compound (E) containing a metal atom (M) to which a hydrolyzable characteristic group is bonded.
- Examples of the characteristic group include R 1 of the general formula [I] described later.
- the hydrolysis condensate of compound (E) can be substantially regarded as a metal oxide. Therefore, in this specification, the hydrolysis condensate of compound (E) may be referred to as “metal oxide (Aa)”. That is, in the present specification, “metal oxide (Aa)” can be read as “hydrolysis condensate of compound (E)”, and “hydrolysis condensate of compound (E)” is “metal oxidation condensate”. It can be read as “object (Aa)”.
- the compound (E) is a compound (Ea) represented by the following general formula [I]. It is preferable to include at least one. Al (R 1 ) k (R 2 ) 3-k [I] In the formula, R 1 has a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), NO 3 , an optionally substituted alkoxy group having 1 to 9 carbon atoms, or a substituent.
- R 1 has a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), NO 3 , an optionally substituted alkoxy group having 1 to 9 carbon atoms, or a substituent.
- R 2 represents an optionally substituted alkyl group having 1 to 9 carbon atoms, an optionally substituted aralkyl group having 7 to 10 carbon atoms, and an optionally substituted carbon.
- k is an integer of 1 to 3.
- Compound (E) may contain at least one compound (Eb) represented by the following general formula [II] in addition to compound (Ea).
- M 1 is a metal atom other than an aluminum atom, and is at least one metal atom selected from metal atoms belonging to Groups 2 to 14 of the periodic table.
- R 3 may have a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), NO 3 , an optionally substituted alkoxy group having 1 to 9 carbon atoms, or a substituent.
- R 4 represents an optionally substituted alkyl group having 1 to 9 carbon atoms, an optionally substituted aralkyl group having 7 to 10 carbon atoms, and an optionally substituted carbon.
- m is an integer of 1 to n.
- n is equal to the valence of M 1 .
- alkoxy group of R 1 and R 3 examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, benzyloxy group, diphenyl Methoxy group, trityloxy group, 4-methoxybenzyloxy group, methoxymethoxy group, 1-ethoxyethoxy group, benzyloxymethoxy group, 2-trimethylsilylethoxy group, 2-trimethylsilylethoxymethoxy group, phenoxy group, 4-methoxyphenoxy group Etc.
- Examples of the acyloxy group for R 1 and R 3 include an acetoxy group, an ethylcarbonyloxy group, an n-propylcarbonyloxy group, an isopropylcarbonyloxy group, an n-butylcarbonyloxy group, an isobutylcarbonyloxy group, and a sec-butylcarbonyloxy group. Group, tert-butylcarbonyloxy group, n-octylcarbonyloxy group and the like.
- alkenyloxy group for R 1 and R 3 examples include allyloxy group, 2-propenyloxy group, 2-butenyloxy group, 1-methyl-2-propenyloxy group, 3-butenyloxy group, 2-methyl-2-propenyl Oxy group, 2-pentenyloxy group, 3-pentenyloxy group, 4-pentenyloxy group, 1-methyl-3-butenyloxy group, 1,2-dimethyl-2-propenyloxy group, 1,1-dimethyl-2- Propenyloxy group, 2-methyl-2-butenyloxy group, 3-methyl-2-butenyloxy group, 2-methyl-3-butenyloxy group, 3-methyl-3-butenyloxy group, 1-vinyl-2-propenyloxy group, And 5-hexenyloxy group.
- Examples of the ⁇ -diketonato group for R 1 and R 3 include 2,4-pentandionato group, 1,1,1-trifluoro-2,4-pentandionato group, 1,1,1,5, 5,5-hexafluoro-2,4-pentanedionate group, 2,2,6,6-tetramethyl-3,5-heptanedionate group, 1,3-butanedionate group, 2-methyl-1,3-butanedionate Group, 2-methyl-1,3-butanedionato group, benzoylacetonato group and the like.
- Examples of the acyl group of the diacylmethyl group of R 1 and R 3 include carbon numbers such as formyl group, acetyl group, propionyl group (propanoyl group), butyryl group (butanoyl group), valeryl group (pentanoyl group), hexanoyl group and the like. 1-6 aliphatic acyl groups; aromatic acyl groups (aroyl groups) such as benzoyl groups and toluoyl groups.
- Examples of the alkyl group for R 2 and R 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, Examples include isopentyl group, n-hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 1,2-dimethylbutyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like.
- Examples of the aralkyl group of R 2 and R 4 include a benzyl group and a phenylethyl group (phenethyl group).
- alkenyl group for R 2 and R 4 examples include a vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 3-butenyl group, 2-butenyl group, 1-butenyl group, 1-methyl-2 -Propenyl group, 1-methyl-1-propenyl group, 1-ethyl-1-ethenyl group, 2-methyl-2-propenyl group, 2-methyl-1-propenyl group, 3-methyl-2-butenyl group, 4 -Pentenyl group and the like.
- Examples of the aryl group for R 2 and R 4 include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
- Examples of the substituent in R 1 , R 2 , R 3 and R 4 include alkyl groups having 1 to 6 carbon atoms; methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group , Sec-butoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy group, n-hexyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, etc.
- R 1 and R 3 include a halogen atom, NO 3 , an optionally substituted alkoxy group having 1 to 6 carbon atoms, an optionally substituted acyloxy group having 2 to 6 carbon atoms, A ⁇ -diketonato group having 5 to 10 carbon atoms which may have a substituent or a diacylmethyl group having an acyl group having 1 to 6 carbon atoms which may have a substituent is preferable.
- An optionally substituted alkoxy group having 1 to 6 carbon atoms is more preferable.
- R 2 and R 4 are preferably an alkyl group having 1 to 6 carbon atoms which may have a substituent.
- K in the formula [I] is preferably 3.
- M 1 is preferably a metal atom belonging to Group 4 of the periodic table, more preferably titanium or zirconium.
- m in Formula [II] is preferably 4.
- boron and silicon may be classified as semi-metals, but in this specification, these are included in the metal.
- Examples of the compound (Ea) include aluminum chloride, aluminum nitrate, aluminum acetate, tris (2,4-pentanedionato) aluminum, trimethoxyaluminum, triethoxyaluminum, tri-n-propoxyaluminum, triisopropoxyaluminum, Tri-n-butoxyaluminum, tri-sec-butoxyaluminum, tri-tert-butoxyaluminum and the like can be mentioned, among which triisopropoxyaluminum and tri-sec-butoxyaluminum are preferable.
- the compound (E) two or more kinds of compounds (Ea) may be used in combination.
- Examples of the compound (Eb) include tetrakis (2,4-pentanedionato) titanium, tetramethoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, tetra-n-butoxytitanium, tetrakis (2-ethylhexoxy) titanium and the like. Titanium compounds; zirconium compounds such as tetrakis (2,4-pentanedionato) zirconium, tetra-n-propoxyzirconium, tetra-n-butoxyzirconium, and the like. These may be used alone or in combination of two or more compounds (Eb).
- the ratio of the compound (Ea) in the compound (E) is not particularly limited as long as the effect of the present invention is obtained.
- the proportion of the compound other than the compound (Ea) (for example, the compound (Eb)) in the compound (E) is, for example, preferably 20 mol% or less, more preferably 10 mol% or less, further preferably 5 mol% or less, It may be 0 mol%.
- the hydrolyzate condenses to form a compound in which the metal atom (M) is bonded through the oxygen atom (O).
- a compound that can be substantially regarded as a metal oxide is formed.
- a hydroxyl group usually exists on the surface of the metal oxide (Aa) thus formed.
- a compound having a ratio of [number of moles of oxygen atom (O) bonded only to metal atom (M)] / [number of moles of metal atom (M)] of 0.8 or more is metal It shall be included in oxide (Aa).
- the oxygen atom (O) bonded only to the metal atom (M) is the oxygen atom (O) in the structure represented by MOM, and the structure represented by MOH.
- Oxygen atoms bonded to metal atoms (M) and hydrogen atoms (H) such as oxygen atoms (O) in are excluded.
- the ratio in the metal oxide (Aa) is preferably 0.9 or more, more preferably 1.0 or more, and further preferably 1.1 or more. Although the upper limit of this ratio is not particularly limited, it is usually represented by n / 2, where n is the valence of the metal atom (M).
- the compound (E) In order for the hydrolysis condensation to occur, it is important that the compound (E) has a hydrolyzable characteristic group. When these groups are not bonded, the hydrolysis condensation reaction does not occur or becomes extremely slow, making it difficult to prepare the target metal oxide (Aa).
- the hydrolyzed condensate of compound (E) may be produced from a specific raw material by, for example, a method adopted in a known sol-gel method.
- the raw materials include compound (E), partial hydrolyzate of compound (E), complete hydrolyzate of compound (E), compound obtained by partially hydrolytic condensation of compound (E), and compound (E ) Can be used at least one selected from the group consisting of compounds obtained by condensing a part of the complete hydrolyzate.
- the metal oxide (Aa) provided for mixing with an inorganic phosphorus compound (BI) -containing material substantially contains a phosphorus atom. It is preferable not to contain.
- the reaction product (D) contained in the compound (Ab) is obtained by reacting the metal oxide (Aa) with the inorganic phosphorus compound (BI).
- the compound produced by the reaction of the metal oxide (Aa), the inorganic phosphorus compound (BI), and another compound is also included in the reaction product (D).
- the compound (Ab) may partially contain a metal oxide (Aa) and / or an inorganic phosphorus compound (BI) that are not involved in the reaction.
- the molar ratio between the metal atom constituting the metal oxide (Aa) and the phosphorus atom derived from the inorganic phosphorus compound (BI) is [metal atom constituting the metal oxide (Aa)]: [ The phosphorus atom derived from the inorganic phosphorus compound (BI)] is preferably in the range of 1.0: 1.0 to 3.6: 1.0, and 1.1: 1.0 to 3.0: 1. More preferably, it is in the range of 0. Outside this range, the gas barrier performance decreases.
- the molar ratio in the compound (Ab) can be adjusted by the mixing ratio of the metal oxide (Aa) and the inorganic phosphorus compound (BI) in the coating liquid for forming the compound (Ab). The molar ratio in the compound (Ab) is usually the same as that in the coating solution.
- the maximum absorption wave number in the region of 800 to 1,400 cm ⁇ 1 is preferably in the range of 1,080 to 1,130 cm ⁇ 1 .
- the metal atom (M) derived from the metal oxide (Aa) and the inorganic phosphorus compound (BI) And a phosphorus atom (P) derived from the above form a bond represented by MOP via an oxygen atom (O).
- a characteristic absorption band derived from the bond is generated in the infrared absorption spectrum of the reaction product (D).
- the obtained multilayer structure has an excellent gas barrier. It was found to express sex. In particular, when the characteristic absorption band is the strongest absorption in the region of 800 to 1,400 cm ⁇ 1 in which absorption derived from bonds between various atoms and oxygen atoms is generally observed, the obtained multilayer structure was found to exhibit even better gas barrier properties.
- the layer (Y) In the infrared absorption spectrum of the layer (Y), 800 half-value width of the maximum absorption band in the region of ⁇ 1,400cm -1, from the gas barrier properties of the viewpoint of the resulting multilayer structure, 200 cm -1 or less is preferable, 150 cm -1 The following is more preferable, 100 cm ⁇ 1 or less is further preferable, and 50 cm ⁇ 1 or less is particularly preferable.
- the infrared absorption spectrum of the layer (Y) can be measured by the method described in Examples. However, when measurement by the method described in Examples is not possible, reflection measurement such as reflection absorption method, external reflection method, attenuated total reflection method, etc., scraping the layer (Y) from the multilayer structure, Nujol method, tablet method, etc. Although it may measure by the method of transmission measurement, it is not limited to these.
- the compound (Ab) may have a structure in which the metal oxide (Aa) particles are bonded to each other via a phosphorus atom derived from the inorganic phosphorus compound (BI).
- the shape or size of the metal oxide (Aa) particles used as the raw material for the compound (Ab) may change during the process of forming the compound (Ab).
- the inorganic phosphorus compound (BI) contains a site capable of reacting with the metal oxide (Aa), and typically contains a plurality of such sites.
- the inorganic phosphorus compound (BI) is preferably a compound containing 2 to 20 such sites (atomic groups or functional groups). Examples of such a part include a part capable of performing a condensation reaction with a functional group (for example, a hydroxyl group) present on the surface of the metal oxide (Aa). Examples of such a site include a halogen atom directly bonded to a phosphorus atom, an oxygen atom directly bonded to a phosphorus atom, and the like.
- the functional group (for example, hydroxyl group) present on the surface of the metal oxide (Aa) is usually bonded to the metal atom (M) constituting the metal oxide (Aa).
- Examples of the inorganic phosphorus compound (BI) include phosphoric acid, diphosphoric acid, triphosphoric acid, polyphosphoric acid condensed with 4 or more molecules of phosphoric acid, phosphorous acid, phosphonic acid, phosphonous acid, phosphinic acid, and phosphine.
- Phosphorus oxoacids such as acids, and salts thereof (eg, sodium phosphate), and derivatives thereof (eg, halides (eg, phosphoryl chloride), dehydrates (eg, diphosphorus pentoxide)), and the like It is done.
- inorganic phosphorus compounds (BI) may be used alone or in combination of two or more.
- inorganic phosphorus compounds (BI) it is preferable to use phosphoric acid alone or to use phosphoric acid and other inorganic phosphorus compounds (BI) in combination.
- phosphoric acid By using phosphoric acid, the stability of the coating liquid (S) described later and the gas barrier properties of the resulting multilayer structure are improved.
- the multilayer structure may further include an inorganic vapor deposition layer.
- An inorganic vapor deposition layer can be formed by vapor-depositing an inorganic substance.
- the inorganic substance for example, metal (for example, aluminum), metal oxide (for example, silicon oxide, aluminum oxide), metal nitride (for example, silicon nitride), metal nitride oxide (for example, silicon oxynitride), or metal Examples thereof include carbonitrides (for example, silicon carbonitride).
- the layer (Y) in the multilayer structure of the present invention may include an inorganic vapor deposition layer containing aluminum.
- the layer (Y) may include an aluminum deposition layer (Ac) and / or an aluminum oxide deposition layer (Ad).
- the method for forming the inorganic vapor deposition layer is not particularly limited, and physical vapor deposition methods such as vacuum vapor deposition methods (for example, resistance heating vapor deposition, electron beam vapor deposition, molecular beam epitaxy method, etc.), sputtering methods, ion plating methods, heat Chemical vapor deposition (for example, catalytic chemical vapor deposition), photochemical vapor deposition, plasma chemical vapor deposition (for example, capacitively coupled plasma, inductively coupled plasma, surface wave plasma, electron cyclotron resonance, dual magnetron, Chemical vapor deposition methods such as atomic layer deposition and the like, and metal organic chemical vapor deposition.
- vacuum vapor deposition methods for example, resistance heating vapor deposition, electron beam vapor deposition, molecular beam epitaxy method, etc.
- sputtering methods ion plating methods
- heat Chemical vapor deposition for example, catalytic chemical vapor deposition
- photochemical vapor deposition for example, plasma chemical vapor deposition
- the thickness of the inorganic vapor deposition layer varies depending on the types of components constituting the inorganic vapor deposition layer, but is preferably 0.002 to 0.5 ⁇ m, more preferably 0.005 to 0.2 ⁇ m, and 0.01 to 0.1 ⁇ m. Further preferred. Within this range, a thickness that improves the barrier properties or mechanical properties of the multilayer structure may be selected.
- the thickness of the inorganic vapor deposition layer is less than 0.002 ⁇ m, the reproducibility of the barrier property expression of the inorganic vapor deposition layer against oxygen or water vapor tends to decrease, and the inorganic vapor deposition layer does not exhibit sufficient barrier properties There is also.
- the thickness of the inorganic vapor deposition layer exceeds 0.5 ⁇ m, the barrier property of the inorganic vapor deposition layer tends to be lowered when the multilayer structure is pulled or bent.
- Organic phosphorus compound (BO) examples include a phosphoric acid group, a phosphorous acid group, a phosphonic acid group, a phosphonous acid group, a phosphinic acid group, and a phosphinic acid group.
- Functional groups for example, salts, (partial) ester compounds, halides (for example, chloride), dehydrates) and the like, among which a phosphoric acid group and a phosphonic acid group are preferable, and a phosphonic acid group is more preferable.
- the organic phosphorus compound (BO) is preferably a polymer (BOa) having a functional group containing the phosphorus atom.
- the polymer (BOa) include 6-[(2-phosphonoacetyl) oxy] hexyl acrylate, 2-phosphonooxyethyl methacrylate, phosphonomethyl methacrylate, 11-phosphonoundecyl methacrylate, and methacrylic acid.
- the polymer (BOa) may be a homopolymer of a monomer having a functional group containing at least one phosphorus atom, or may be a copolymer of two or more monomers.
- a polymer (BOa) which consist of a single monomer as a polymer (BOa).
- a polymer of phosphono (meth) acrylic acid esters and a polymer of vinylphosphonic acids are preferable, and a polymer of vinylphosphonic acids is more preferable. That is, as the polymer (BOa), poly (vinyl phosphonic acid) is preferable.
- the polymer (BOa) can also be obtained by hydrolyzing a vinylphosphonic acid derivative such as vinylphosphonic acid halide or vinylphosphonic acid ester alone or copolymerized.
- the polymer (BOa) may be a copolymer of a monomer having a functional group containing at least one phosphorus atom and another vinyl monomer.
- the proportion of the structural unit derived from the monomer having a functional group containing a phosphorus atom in the total structural unit of the polymer (BOa) is 10 mol%.
- the above is preferable, 20 mol% or more is more preferable, 40 mol% or more is more preferable, 70 mol% or more is particularly preferable, and 100 mol% may be sufficient.
- the molecular weight of the polymer (BOa) is not particularly limited, but the number average molecular weight is preferably in the range of 1,000 to 100,000. When the number average molecular weight is within this range, it is possible to achieve both a high level of improvement in the bending resistance by laminating the layer (Y) and the viscosity stability of the coating liquid (T) described later.
- the mass W BO ratio W BO layer inorganic phosphorus compound in the (Y) Weight W BI and the organic phosphorus compound (BI) (BO) / W BI preferably has a satisfies the relationship 0.01 / 99.99 ⁇ W BO / W BI ⁇ 6.00 / 94.00, from the viewpoint of the resulting peel strength is high, 0.10 / 99.90 ⁇ W BO / W BI ⁇ 4.50 / 95.50 is more preferable, and 0.20 / 99.80 ⁇ W BO / W BI ⁇ 4.00 / 96.00 is satisfied More preferably, those satisfying the relationship of 0.50 / 99.50 ⁇ W BO / W BI ⁇ 3.50 / 96.50 are particularly preferable. That is, W BO is a trace amount of 0.01 or more and less than 6.00, whereas W BI is preferably used in a large amount of 94.00 or more
- the layer (Y) included in the multilayer structure of the present invention may be composed only of a compound (A) containing aluminum, an organic phosphorus compound (BO), and a polymer (F); a compound containing aluminum ( A), inorganic phosphorus compound (BI), organic phosphorus compound (BO), and polymer (F) may be used alone; metal oxide (Aa) containing aluminum, inorganic phosphorus compound (BI), organic It may be constituted only by the phosphorus compound (BO) and the polymer (F); a compound (Ab) containing a reaction product (D) of a metal oxide (Aa) containing aluminum and an inorganic phosphorus compound (BI) ), Inorganic phosphorus compound (BI), organic phosphorus compound (BO), and polymer (F) only; metal oxide (Aa) containing aluminum, aluminum Compound (Ab) containing reaction product (D) of metal oxide (Aa) containing um and inorganic phosphorus compound (BI), inorganic phosphorus compound (BI), organic phosphorus compound
- the layer (Y) can further contain other components.
- other components contained in the layer (Y) include inorganic acid metal salts such as carbonates, hydrochlorides, nitrates, hydrogen carbonates, sulfates, hydrogen sulfates and borates; oxalates and acetates.
- Organic acid metal salts such as tartrate and stearate; metal complexes such as cyclopentadienyl metal complexes (for example, titanocene) and cyano metal complexes (for example, Prussian blue); layered clay compounds; cross-linking agents; Polymer compounds other than (BO) and polymer (F); plasticizers; antioxidants; ultraviolet absorbers; flame retardants and the like.
- the content of the other component in the layer (Y) in the multilayer structure is preferably 50% by mass or less, more preferably 20% by mass or less, further preferably 10% by mass or less, and particularly preferably 5% by mass or less. , 0% by mass (excluding other components).
- the layer (Y) preferably does not contain a polymer compound other than the organic phosphorus compound (BO) and the polymer (F), and particularly preferably does not contain a polyvinyl alcohol-based polymer.
- optical characteristics means total light transmittance and haze.
- the multilayer structure of the present invention has a high interlayer adhesion (peel strength) after retorting by including the polymer (F) in the layer (Y). Moreover, the multilayer structure of this invention can suppress the coloring of a multilayer structure by including a polymer (F), can also improve transparency, and can also maintain the external appearance of a multilayer structure favorable.
- the polymer (F) has an ether bond having high affinity with other members (for example, the adhesive layer (I) and other layers (J) (for example, the ink layer), the polymer (F) and the layer (Y)
- the adhesion with other layers is improved, and the interlayer adhesion can be maintained even after the retort treatment, so that it is possible to suppress appearance defects such as delamination.
- the polymer is not particularly limited as long as it is a polymer having an ether bond and not having a glycoside bond, which is between a hemiacetal of a monosaccharide (or a monosaccharide derivative) and a hydroxyl group of an organic compound such as alcohol.
- polymer (F) for example, a polyoxyalkylene polymer is preferably exemplified, and the polyoxyalkylene polymer is represented by the following general formula [III]. —R 5 —O— [III] (Wherein R 5 is a linear or branched alkylene group having 1 to 14 carbon atoms which may have a substituent.)
- the polymer (Fa) which has a repeating unit represented by these is preferable.
- an alkylene group having 1 to 9 carbon atoms is preferable, an alkylene group having 2 to 6 carbon atoms is more preferable, and an alkylene group having 2 to 4 carbon atoms is preferable.
- An alkylene group is more preferable, and an alkylene group having 2 to 3 carbon atoms is particularly preferable.
- Examples of the alkylene group include methylene, ethylene, propylene, trimethylene, tetramethylene, 2,2-dimethyltrimethylene, hexamethylene, octamethylene and the like.
- the substituent for the alkylene group is preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
- repeating unit of the general formula [III] examples include the following.
- polyoxyalkylene polymers (Fa) polyalkylene glycol polymers (Fb) having a repeating unit represented by the general formula [III] are more preferred.
- the alkylene group of the polyalkylene glycol polymer (Fb) is the same as that described in the general formula [III] of the polyoxyalkylene polymer (Fa).
- the polymer (F) has a structural unit having a functional group of any one of a hydroxyl group, a carboxyl group, a carboxylic acid anhydride group, or a salt of a carboxyl group in addition to the repeating unit represented by the general formula [III].
- the ratio is preferably less than 10 mol%, more preferably less than 5 mol%, and less than 1 mol%. More preferably it is.
- polymer (F) examples include polyoxymethylene, polyethylene glycol, polyethylene oxide, polypropylene glycol, polypropylene oxide, polyoxyethylene polyoxypropylene glycol, polytetramethylene ether glycol and the like.
- polyethylene glycol, polyethylene A polyalkylene glycol polymer having an alkylene group having 2 to 4 carbon atoms such as oxide, polypropylene glycol, polypropylene oxide, polyoxyethylene polyoxypropylene glycol and the like is preferable, and polyethylene glycol, polyethylene oxide, polypropylene glycol, and polypropylene oxide are more preferable.
- polyethylene glycol and polyethylene oxide are further used. Preferred.
- the polymer (F) may be a homopolymer of a monomer (for example, ethylene glycol or tetrahydrofuran), or may be a copolymer of two or more monomers. In addition, you may use together 2 or more types of polymers (F) as a polymer (F). Moreover, you may use the polymer (F) which sealed the terminal hydroxyl group.
- the functional group to seal is not specifically limited, A desired thing can be used.
- the molecular weight of the polymer (F) is not particularly limited as long as the effects of the present invention are not impaired, but the weight average molecular weight (Mw) of the polymer (F) is 1, from the viewpoint of elution during retort treatment. 000 or more, more preferably 5,000 or more, and even more preferably 10,000 or more. From the viewpoint of solubility, the weight average molecular weight (Mw) is preferably 10,000,000 or less, more preferably 7,500,000 or less, and 7,000,000 or less. More preferably, it is particularly preferably 1,000,000 or less.
- the mass ratio of the organophosphorus compound (BO) and the polymer (F) is preferably in the range of 30:70 to 99: 1, and is in the range of 40:60 to 95: 5 More preferably, it is more preferably within the range, and more preferably within the range of 50:50 to 91: 9, from the viewpoint that the deterioration of the gas barrier property and water vapor barrier property after the retort treatment can be further suppressed. : 10 is particularly preferable. As a minimum of this mass ratio, it is preferred that it is 30:70 or more, it is more preferred that it is 40:60 or more, and it is still more preferred that it is 50:50 or more. In addition, the upper limit of the mass ratio is preferably 99: 1 or less, more preferably 95: 5 or less, and further preferably 90:10 or less.
- the thickness of the layer (Y) (when the multilayer structure has two or more layers (Y), the total thickness of each layer (Y)) may be in the range of 0.05 to 4.0 ⁇ m. Preferably, it is in the range of 0.1 to 2.0 ⁇ m.
- the thickness per layer (Y) is preferably 0.05 ⁇ m or more from the viewpoint of gas barrier properties.
- the thickness of the layer (Y) can be controlled by the concentration of a coating liquid (S) described later used for forming the layer (Y) or the coating method thereof.
- the thickness of the layer (Y) can be measured by observing the cross section of the multilayer structure with a scanning electron microscope or a transmission electron microscope.
- a precursor layer forming step (i) a coating step of a coating liquid (T) containing a polymer (F) and an organophosphorus compound (BO) (ii) ) And a gas barrier layer (Y) forming step (iii).
- a precursor layer forming step (i) a coating step of a coating liquid (T) containing a polymer (F) and an organophosphorus compound (BO) (ii) )
- the compound (A), the inorganic phosphorus compound (BI), the organic phosphorus compound (BO), and the mass ratio thereof have been described above, redundant descriptions are omitted in the manufacturing method.
- Step (i) In the step (i), a precursor layer of the layer (Y) is formed on the base material (X) by applying the coating liquid (S) containing the compound (A) containing aluminum onto the base material (X). To do.
- a structure including the base material (X) and the precursor layer of the layer (Y) is obtained.
- the layer (Y) includes an aluminum vapor deposition layer (Ac) or an aluminum oxide vapor deposition layer (Ad)
- these layers can be formed by the general vapor deposition method described above. Therefore, below, the formation method of the precursor layer of the layer (Y1) containing a compound (Ab) is demonstrated in detail.
- the coating liquid (S) (first coating liquid) can be prepared by mixing and reacting a metal oxide (Aa) and an inorganic phosphorus compound (BI) in a solvent.
- the coating liquid (S) is a method of mixing a dispersion of a metal oxide (Aa) and a solution containing an inorganic phosphorus compound (BI); an inorganic phosphorus compound in a dispersion of a metal oxide (Aa) It can be prepared by adding (BI) and mixing.
- the temperature at the time of mixing is preferably 50 ° C. or less, more preferably 30 ° C. or less, and further preferably 20 ° C. or less.
- the coating liquid (S) may contain another compound (for example, the polymer (F)), and is selected from the group consisting of acetic acid, hydrochloric acid, nitric acid, trifluoroacetic acid, and trichloroacetic acid as necessary. At least one acid compound (Q) may be contained.
- another compound for example, the polymer (F)
- At least one acid compound (Q) may be contained.
- the dispersion of the metal oxide (Aa) is prepared, for example, by mixing a compound (E), water, and an acid catalyst or an organic solvent as necessary in accordance with a method adopted in a known sol-gel method.
- E) can be prepared by condensation or hydrolysis condensation.
- a dispersion of the metal oxide (Aa) is obtained by condensing or hydrolytically condensing the compound (E)
- a specific treatment is applied to the obtained dispersion as necessary.
- the solvent to be used is not particularly limited, but alcohols such as methanol, ethanol and isopropanol; water; or a mixed solvent thereof is preferable.
- the solution containing the inorganic phosphorus compound (BI) can be prepared by dissolving the inorganic phosphorus compound (BI) in a solvent.
- the solvent may be appropriately selected according to the type of inorganic phosphorus compound (BI), but preferably contains water.
- the solvent may contain an organic solvent (for example, alcohols such as methanol) as long as it does not hinder the dissolution of the inorganic phosphorus compound (BI).
- the solid content concentration of the coating liquid (S) is preferably 1 to 20% by mass, more preferably 2 to 15% by mass, from the viewpoint of storage stability of the coating liquid and coating properties with respect to the substrate (X). More preferred is 10% by mass.
- the solid content concentration can be calculated, for example, by dividing the mass of the solid content remaining after the solvent of the coating liquid (S) is distilled off by the mass of the coating liquid (S) subjected to the treatment.
- the coating solution (S) has a viscosity measured with a Brookfield rotational viscometer (SB type viscometer: rotor No. 3, rotation speed 60 rpm) of 3,000 mPa ⁇ s or less at the coating temperature. Is preferably 2,500 mPa ⁇ s or less, and more preferably 2,000 mPa ⁇ s or less. When the viscosity is 3,000 mPa ⁇ s or less, the leveling property of the coating liquid (S) is improved, and a multilayer structure having a better appearance can be obtained. Further, the viscosity of the coating liquid (S) is preferably 50 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more, and further preferably 200 mPa ⁇ s or more.
- the molar ratio of aluminum atoms to phosphorus atoms can be calculated by performing a fluorescent X-ray analysis of the dried solid of the coating liquid (S).
- the coating liquid (S) may be applied directly on at least one surface of the substrate (X), or may be applied on the substrate (X) through another layer (J). Good. Further, before coating the coating liquid (S), the surface of the substrate (X) is treated with a known anchor coating agent, or a known adhesive is applied to the surface of the substrate (X). By doing so, the adhesive layer (I) may be formed on the surface of the substrate (X).
- Coating of the coating liquid (S) is not particularly limited, and a known method can be adopted. Coating methods include, for example, casting method, dipping method, roll coating method, gravure coating method, screen printing method, reverse coating method, spray coating method, kiss coating method, die coating method, metalling bar coating method, chamber doctor combined coating Method, curtain coating method, bar coating method and the like.
- the precursor layer of the layer (Y1) is formed by removing the solvent in the coating liquid (S).
- a well-known drying method is applicable. Examples of the drying method include a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method. It is preferable that a drying temperature is below the flow start temperature of a base material (X).
- the drying temperature after application of the coating liquid (S) may be, for example, about 80 to 180 ° C. or about 90 to 150 ° C.
- the drying time is not particularly limited, but for example, 0.1 second to 1 hour is preferable, 1 second to 15 minutes is more preferable, and 5 to 300 seconds is more preferable. Moreover, it is preferable to perform a heat treatment after the drying treatment.
- the heat treatment temperature may be, for example, about 100 to 200 ° C. or about 120 to 180 ° C., but is preferably higher than the drying temperature.
- the heat treatment time is not particularly limited. For example, the heat treatment time is preferably 1 second to 1 hour, more preferably 1 second to 15 minutes, and further preferably 5 to 300 seconds. As described above, it is preferable to perform a heat treatment before applying the coating liquid (T) containing the organophosphorus compound (BO) from the viewpoint of obtaining a multilayer structure having good characteristics.
- a coating solution (T) (second coating solution) containing a polymer (F) and an organophosphorus compound (BO) on the precursor layer of the layer (Y) obtained in step (i).
- the coating liquid (T) can be prepared by mixing the polymer (F) and the organic phosphorus compound (BO) in a solvent.
- the solvent used in the coating liquid (T) may be appropriately selected according to the type of the organic phosphorus compound (BO), and is not particularly limited; however, alcohols such as methanol, ethanol and isopropanol; water; or a mixed solvent thereof Is preferred.
- the concentration of the solid content in the coating liquid (T) is preferably 0.01 to 60% by mass, more preferably 0.1 to 50% by mass, more preferably 0.2 to More preferred is 40% by mass.
- the solid content concentration can be determined by a method similar to the method described for the coating liquid (S).
- coating liquid (T) may also contain the other component (For example, organophosphorus compound (BO) and polymer (F)) contained in the layer (Y) mentioned above. .
- the precursor layer of the layer (Y) is formed by removing the solvent after coating the coating liquid (T).
- the method for applying the coating liquid (T) is not particularly limited, and a known method can be employed.
- the coating amount of the coating liquid (T), the mass W ratio W BO / W BI of BO inorganic phosphorus compound mass W BI and the organic phosphorus compound (BI) (BO) is An amount satisfying the above-described specific relationship is particularly preferable from the viewpoint of excellent barrier performance.
- the method for removing the solvent of the coating liquid (T) is not particularly limited, and a known drying method can be applied.
- the drying method include a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method. It is preferable that a drying temperature is below the flow start temperature of a base material (X).
- the drying temperature after coating of the coating liquid (T) may be, for example, about 90 to 240 ° C., and preferably 100 to 200 ° C.
- step (iii) the layer (Y1) is formed by heat-treating the precursor layer of the layer (Y1) formed in steps (i) and (ii) at a temperature of 140 ° C. or higher.
- This heat treatment temperature is preferably higher than the drying temperature after coating of the coating liquid (T).
- step (iii) a reaction in which the metal oxide (Aa) particles are bonded to each other via a phosphorus atom (a phosphorus atom derived from an inorganic phosphorus compound (BI)) proceeds.
- a reaction for generating the reaction product (D) proceeds.
- the temperature of the heat treatment is 140 ° C. or higher, preferably 170 ° C. or higher, more preferably 180 ° C. or higher, and further preferably 190 ° C. or higher. If the heat treatment temperature is low, it takes a long time to obtain a sufficient degree of reactivity, which causes a decrease in productivity.
- the preferable upper limit of the temperature of heat processing changes with kinds etc. of base material (X).
- the heat treatment temperature is preferably 270 ° C. or lower.
- the temperature of heat processing is 240 degrees C or less.
- the heat treatment may be performed in an air atmosphere, a nitrogen atmosphere, an argon atmosphere, or the like.
- the heat treatment time is preferably 0.1 second to 1 hour, more preferably 1 second to 15 minutes, and even more preferably 5 to 300 seconds.
- a drying process (first drying process) is performed, followed by a heat treatment (first heat treatment) to form a precursor layer.
- first drying process first heat treatment
- second drying process a drying process
- second heat treatment second heat treatment
- the temperature of the first heat treatment is higher than the temperature of the first drying treatment
- the temperature of the second heat treatment is higher than the temperature of the second drying treatment
- the temperature of the second heat treatment is higher than the temperature of the first heat treatment. High is preferred.
- the layer (Y) may be laminated so as to be in direct contact with the substrate (X), and the layer (Y) may be another member (for example, an adhesive layer (I). ) Or another layer (J)) and may be laminated on the substrate (X).
- extruded coat laminate In the multilayer structure of the present invention, for example, after the layer (Y) is laminated on the substrate (X) directly or via the adhesive layer (I), another layer (J) is directly or directly adhered to the adhesive layer (I). ) Through an extrusion coat laminating method, it can further have a layer formed by extrusion coat lamination.
- the extrusion coat laminating method There is no particular limitation on the extrusion coat laminating method that can be used in the present invention, and a known method may be used.
- a typical extrusion coat laminating method a laminated film is produced by sending a molten thermoplastic resin to a T-die and cooling the thermoplastic resin taken out from the flat slit of the T-die.
- FIG. 5 is a diagram schematically showing only the main part of the apparatus, which is different from the actual apparatus.
- the apparatus 50 of FIG. 5 includes an extruder 51, a T die 52, a cooling roll 53, and a rubber roll 54.
- the cooling roll 53 and the rubber roll 54 are disposed with their roll surfaces in contact with each other.
- thermoplastic resin is heated and melted in an extruder and is extruded from the flat slit of the T-die 52 to become a resin film 502.
- a laminated body 501 is fed from a sheet feeding device (not shown) and is sandwiched between the cooling roll 53 and the rubber roll 54 together with the resin film 502.
- a laminated film (multilayer structure) in which the laminated body 501 and the resin film 502 are integrated by sandwiching the laminated body 501 and the resin film 502 between the cooling roll 53 and the rubber roll 54. 503 is manufactured.
- Extrusion coat lamination methods other than the single lamination method include sandwich lamination method and tandem lamination method.
- the sandwich lamination method is a method of producing a laminate by extruding a molten thermoplastic resin onto one base material, supplying a second base material from another unwinder (unwinding machine), and bonding them together.
- the tandem laminating method is a method in which two single laminating machines are connected to produce a laminate having a five-layer structure at a time.
- a multilayer structure can be obtained that maintains high barrier performance even after extrusion coating lamination and has a small decrease in light transmission.
- the adhesion between the substrate (X) and the layer (Y) may be improved by using the adhesive layer (I).
- the adhesive layer (I) may be made of an adhesive resin.
- the adhesive layer (I) composed of an adhesive resin is obtained by treating the surface of the base material (X) with a known anchor coating agent or by applying a known adhesive to the surface of the base material (X). Can be formed.
- the adhesive is preferably a two-component reactive polyurethane adhesive in which a polyisocyanate component and a polyol component are mixed and reacted.
- the adhesion may be further improved by adding a small amount of an additive such as a known silane coupling agent to the anchor coating agent or adhesive.
- an additive such as a known silane coupling agent
- the silane coupling agent include, but are not limited to, a silane coupling agent having a reactive group such as an isocyanate group, an epoxy group, an amino group, a ureido group, or a mercapto group.
- the multilayer structure of the present invention may include other layers (J) in order to improve various properties (for example, heat sealability, barrier properties, and mechanical properties).
- Such a multilayer structure of the present invention is obtained by, for example, laminating the layer (Y) directly on the substrate (X) or via the adhesive layer (I), and then directly or directly deposit the other layer (J). It can be produced by bonding or forming via the adhesive layer (I).
- the other layer (J) include, but are not limited to, an ink layer; a thermoplastic resin layer such as a polyolefin layer and an ethylene-vinyl alcohol copolymer resin layer.
- the multilayer structure of the present invention may include an ink layer for printing a trade name or a pattern.
- Such a multilayer structure of the present invention is produced, for example, by directly forming the ink layer after laminating the layer (Y) directly on the substrate (X) or via the adhesive layer (I). it can.
- the ink layer for example, a film obtained by drying a liquid in which a polyurethane resin containing a pigment (for example, titanium dioxide) in a solvent is dispersed may be used.
- a film obtained by drying a resist for forming an electronic circuit wiring may be used.
- Examples of the coating method of the ink layer on the layer (Y) include various coating methods such as a wire bar, a spin coater, and a die coater in addition to the gravure printing method.
- the thickness of the ink layer is preferably 0.5 to 10.0 ⁇ m, more preferably 1.0 to 4.0 ⁇ m.
- the layer (Y) contains the polymer (F) and has an ether bond having high affinity with the adhesive layer (I) or other layer (J) (for example, ink layer). Therefore, the adhesion between the layer (Y) and other layers is improved. For this reason, it is possible to maintain the interlayer adhesive force even after the retorting process, and it is possible to suppress appearance defects such as delamination.
- the polyolefin layer is preferably polypropylene or polyethylene from the viewpoint of improving heat sealability and mechanical properties.
- the polyolefin is preferably polypropylene or polyethylene from the viewpoint of improving heat sealability and mechanical properties.
- the polyester is preferably polyethylene terephthalate
- the polyamide is preferably nylon-6.
- the hydroxyl group-containing polymer is preferably an ethylene-vinyl alcohol copolymer.
- the multilayer structure may have a member other than the substrate (X) and the layer (Y) (for example, the adhesive layer (I) and the other layer (J)). The description of other members is omitted.
- a plurality of specific examples may be laminated or combined.
- any one of the structures (1) to (8), (11) to (33), and (49) to (54) is preferable.
- the multilayer structure of the present invention has an oxygen permeability of 2.0 mL / (m 2 ⁇ day ⁇ atm) or less at 20 ° C. and 85% RH before and after the retort treatment. What is 5 mL / (m 2 ⁇ day ⁇ atm) or less is preferable, and one that is 0.3 mL / (m 2 ⁇ day ⁇ atm) or less is more preferable.
- the conditions for the retort treatment, the method for measuring oxygen permeability, and the measurement conditions are as described in the examples described later.
- the multilayer structure of the present invention preferably has a water vapor transmission rate of 0.5 g / (m 2 ⁇ day) or less at 40 ° C. and 90% RH before and after the retort treatment. What is 3 g / (m 2 ⁇ day) or less is more preferable.
- the conditions for the retort treatment, the method for measuring moisture permeability, and the measurement conditions are as described in the examples described later.
- the multilayer structure of the present invention has a peel strength between the layer (Y) after retort treatment and the adhesive layer (I) or other layer (J) (for example, ink layer) exceeding 100 g / 15 mm.
- the adhesive layer (I) or other layer (J) for example, ink layer
- 110 g / 15 mm or more is more preferable.
- the conditions for the retort treatment, the method for measuring the peel strength, and the measurement conditions are as described in Examples described later.
- the multilayer structure and protective sheet of the present invention have an oxygen permeability of 2.0 mL / (m 2 ⁇ day ⁇ atm) or less at 20 ° C. and 85% RH before and after the dump heat test. And preferably 0.5 mL / (m 2 ⁇ day ⁇ atm) or less, more preferably 0.3 mL / (m 2 ⁇ day ⁇ atm) or less.
- the conditions of the dump heat test, the measurement method of oxygen permeability, and the measurement conditions are as described in the examples described later.
- the multilayer structure and protective sheet of the present invention have a moisture permeability of 0.5 g / (m 2 ⁇ day) or less before and after the dump heat test under the conditions of 40 ° C. and 90% RH. Is preferable, and what is 0.3 g / (m 2 ⁇ day) or less is more preferable.
- the conditions for the dump heat test, the method for measuring moisture permeability, and the measurement conditions are as described in the examples described later.
- the multilayer structure and protective sheet of the present invention have a peel strength of 120 g / 15 mm between the layer (Y) after the dump heat test and the adhesive layer (I) or other layer (J) (for example, an ink layer). Is more preferable, 230 g / 15 mm or more is more preferable, and 300 g / 15 mm or more is more preferable.
- the conditions of the dump heat test, the measurement method of peel strength, and the measurement conditions are as described in the examples described later.
- the multilayer structure of the present invention and a packaging material using the multilayer structure are excellent in gas barrier properties and water vapor barrier properties, and are excellent in gas barrier properties and water vapor barrier properties even after retorting, and do not cause appearance defects such as delamination and are high. Interlayer adhesion (peel strength). Therefore, the multilayer structure of the present invention and the packaging material using the same can be applied to various uses.
- the packaging material of the present invention includes a multilayer structure including a base material (X) and a layer (Y) laminated on the base material (X).
- the packaging material may be constituted only by a multilayer structure. That is, in the following description, “packaging material” may be read as “multilayer structure”. Typically, “packaging material” can be read as “packaging”.
- the packaging material may be composed of a multilayer structure and other members.
- the packaging material includes an inorganic gas (eg, hydrogen, helium, nitrogen, oxygen, carbon dioxide), natural gas, water vapor, and an organic compound that is liquid at normal temperature and pressure (eg, ethanol, gasoline vapor). It has a barrier property against.
- an inorganic gas eg, hydrogen, helium, nitrogen, oxygen, carbon dioxide
- natural gas e.g., hydrogen, helium, nitrogen, oxygen, carbon dioxide
- water vapor e.g, ethanol, gasoline vapor
- a multilayer structure may be used for all of the packaging bags, or a multilayer structure may be used for a part of the packaging bag.
- 50% to 100% of the area of the packaging bag may be constituted by a multilayer structure.
- the packaging material is other than a packaging bag (for example, a container or a lid).
- the packaging material of the present invention can be produced by various methods.
- a container is produced by joining a sheet-like multilayer structure or a film material containing the multilayer structure (hereinafter simply referred to as “film material”) and forming it into a predetermined container shape. May be.
- the molding method include thermoforming, injection molding, and extrusion blow molding.
- the container produced as described above may be referred to as a “packaging container” in the present specification.
- the packaging material according to the present invention is preferably used as a packaging material for food.
- the packaging material according to the present invention is preferably used as a packaging material for packaging chemicals such as agricultural chemicals and pharmaceuticals; medical equipment; industrial materials such as machine parts and precision materials; Can do.
- the packaging material containing the multilayer structure of the present invention can be used after being secondarily processed into various molded products.
- molded products include vertical bag-filled sealing bags, vacuum packaging bags, pouches, laminated tube containers, infusion bags, paper containers, strip tapes, container lids, in-mold label containers, vacuum insulators, or electronic devices. It may be. In these molded articles, heat sealing may be performed.
- the packaging material including the multilayer structure of the present invention may be a vertical bag-filling seal bag.
- An example is shown in FIG.
- a vertical bag-filling-seal bag 10 shown in FIG. 1 is formed by sealing a multilayer structure 11 of the present invention on three sides of two end portions 11a and a body portion 11b.
- the vertical bag filling and sealing bag 10 can be manufactured by a vertical bag making and filling machine. Various methods are applied to bag making by a vertical bag making and filling machine. In either method, the contents are supplied from the upper opening of the bag to the inside, and then the opening is sealed. A vertical bag filling and sealing bag is manufactured.
- the vertical bag-filling-seal bag is made of, for example, a single film material that is heat-sealed on the three sides of the upper end, the lower end, and the side.
- the vertical bag-filling sealing bag as a packaging container according to the present invention is excellent in gas barrier properties and water vapor barrier properties and maintains barrier performance even after retorting. Quality deterioration can be suppressed over a long period of time.
- the packaging material including the multilayer structure of the present invention may be a pouch.
- An example is shown in FIG.
- the flat pouch 20 in FIG. 2 is formed by joining two multilayer structures 11 to each other at the peripheral edge portion 11c.
- the phrase “pouch” means a container having a film material as a wall member mainly containing food, daily necessities or pharmaceuticals.
- Examples of the pouch include a pouch with a spout, a pouch with a chuck seal, a flat pouch, a stand-up pouch, a horizontal bag-filling seal pouch, and a retort pouch depending on the shape and use.
- the pouch may be formed by laminating a multilayer structure and at least one other layer (J).
- the pouch as a packaging container according to the present invention is excellent in gas barrier properties and water vapor barrier properties, and the barrier performance is maintained even after retorting. Therefore, by using the pouch, it is possible to prevent the contents from being altered even after transportation or long-term storage. In addition, since an example of the pouch can maintain good transparency, it is easy to check the contents and confirm the deterioration of the contents due to deterioration.
- the packaging material including the multilayer structure of the present invention may be an infusion bag.
- the infusion bag is a container having an infusion preparation as its contents, and includes a film material as a partition that separates the inside and the outside for containing the infusion preparation.
- An example is shown in FIG.
- the infusion bag may include a plug member 432 at the peripheral edge 412 of the bag main body 431 in addition to the bag main body 431 that stores the contents.
- the plug member 432 functions as a path for taking out the infusion contained in the bag body 431.
- the infusion bag may be provided with the suspension hole 433 in the peripheral part 411 on the opposite side of the peripheral part 412 to which the plug member 432 is attached.
- the bag body 431 is formed by joining two film materials 410a and 410b to each other at the peripheral edge portions 411, 412, 413, and 414.
- the film materials 410 a and 410 b function as a partition wall 420 that separates the inside of the bag from the outside of the bag at the center portion surrounded by the peripheral edge portions 411, 412, 413, and 414 of the bag body 431.
- the infusion bag as a packaging container according to the present invention has excellent gas barrier properties, and the gas barrier properties are maintained even after heat treatment such as hot water treatment. Therefore, according to the infusion bag, it is possible to prevent the filled liquid medicine from being deteriorated before the heat sterilization treatment, during the heat sterilization treatment, after the heat sterilization treatment, after transportation, and after storage.
- the packaging material including the multilayer structure of the present invention may be an in-mold label container.
- the in-mold label container includes a container body and the multilayer label (multilayer structure) of the present invention disposed on the surface of the container body.
- the container body is formed by injecting molten resin into the mold.
- the shape of the container body is not particularly limited, and may be a cup shape, a bottle shape, or the like.
- An example of the method of the present invention for manufacturing a container includes a first step of placing a multilayer label of the present invention in a cavity between a female mold part and a male mold part, and injecting molten resin into the cavity
- a second step of simultaneously forming the container body and applying the multilayer label of the present invention to the container body is included. Except for using the multilayer label of the present invention, each step can be performed in a known manner.
- FIG. 4 shows a cross-sectional view of an example of the container of the present invention.
- the container 360 includes a cup-shaped container main body 370 and multilayer labels 361 to 363 attached to the surface of the container main body 370.
- the multilayer labels 361 to 363 are multilayer labels of the present invention.
- the container body 370 includes a flange portion 371, a body portion 372, and a bottom portion 373.
- the flange portion 371 has a convex portion 371a projecting up and down at the tip thereof.
- the multilayer label 361 is disposed so as to cover the outer surface of the bottom 373. In the center of the multilayer label 361, a through hole 361a for injecting resin at the time of in-mold label molding is formed.
- the multilayer label 362 is disposed so as to cover the outer surface of the body portion 372 and the lower surface of the flange portion 371.
- the multilayer label 363 is disposed so as to cover a part of the inner surface of the body portion 372 and the upper surface of the flange portion 371.
- the multilayer labels 361 to 363 are fused to the container main body 370 by an in-mold label molding method, and are integrated with the container main body 360. As shown in FIG. 4, the end surface of the multilayer label 363 is fused to the container body 360 and is not exposed to the outside.
- the product of the present invention using at least a part of the packaging material described above may be a vacuum heat insulator.
- a vacuum heat insulating body is a heat insulating body provided with a coating material and a core material disposed inside the coating material, and the inside where the core material is disposed is decompressed.
- the vacuum insulator makes it possible to achieve a heat insulation characteristic equivalent to that of a heat insulator made of urethane foam with a thinner and lighter heat insulator.
- the vacuum heat insulating material of the present invention is a heat insulating material for household appliances such as a refrigerator, a hot water supply facility, and a rice cooker; a heat insulating material for a house, a vehicle roofing material used for a wall, a ceiling, an attic, a floor, etc., vending It can be used for heat transfer panels such as heat storage panels and heat pump applied equipment.
- the multilayer structure of the present invention used as a coating material preferably includes an ethylene-vinyl alcohol copolymer resin layer and an inorganic vapor deposition layer.
- polyester layer / layer (Y) / polyester layer / layer (Y) / You may have the structure of an inorganic vapor deposition layer / ethylene-vinyl alcohol copolymer layer / polyolefin layer.
- FIG. 6 An example of the vacuum heat insulator of the present invention is shown in FIG.
- a vacuum heat insulating body 601 in FIG. 6 includes a particulate core material 651 and two multilayer structures 631 and 632 of the present invention as covering materials covering the core material 651.
- the two multilayer structures 631 and 632 are joined to each other at the peripheral edge 611.
- An internal space formed by the two multilayer structures 631 and 632 is filled with a core material 651, and the internal space is decompressed.
- the multilayer structures 631 and 632 function as a partition that separates the inside and the outside in which the core material 651 is accommodated, and are in close contact with the core material 651 due to a pressure difference between the inside and the outside of the vacuum heat insulating body 601.
- the inside where the core member 652 is disposed is depressurized.
- FIG. 7 shows another example of the vacuum insulator according to the present invention.
- the vacuum heat insulator 602 has the same configuration as the vacuum heat insulator 601 except that the vacuum heat insulator 602 includes a core material 652 that is integrally formed instead of the core material 651.
- the core material 652 that is a molded body is typically a resin foam.
- the material and shape of the core material are not particularly limited as long as it is suitable for heat insulation.
- the core material include pearlite powder, silica powder, precipitated silica powder, diatomaceous earth, calcium silicate, glass wool, rock wool, artificial (synthetic) wool, resin foam (eg, styrene foam, urethane foam), and the like. Is mentioned.
- a hollow container, a honeycomb structure or the like molded into a predetermined shape can also be used.
- FIG. 8 shows a partial cross-sectional view of an example of the electronic device of the present invention.
- An electronic device 40 in FIG. 8 includes an electronic device main body 41, a sealing material 42 for sealing the electronic device main body 41, and a protective sheet (multilayer structure) 43 for protecting the surface of the electronic device main body 41. .
- the sealing material 42 covers the entire surface of the electronic device body 41.
- the protective sheet 43 is disposed on one surface of the electronic device main body 41 via a sealing material 42.
- the protective sheet 43 may also be disposed on the surface opposite to the surface on which the protective sheet 43 is disposed.
- the protective sheet disposed on the opposite surface may be the same as or different from the protective sheet 43.
- the protective sheet 43 may be disposed on the electronic device main body 41 via another member such as the sealing material 42, or may be directly disposed on the surface of the electronic device main body 41.
- the electronic device body 41 is not particularly limited, and examples thereof include a photoelectric conversion device such as a solar cell; an information display device such as an organic EL display, a liquid crystal display, and electronic paper; and an illumination device such as an organic EL light emitting element.
- the sealing material 42 is an arbitrary member that is appropriately added according to the type and application of the electronic device body 41. Examples of the sealing material 42 include an ethylene-vinyl acetate copolymer and polyvinyl butyral.
- a preferred example of the electronic device body 41 is a solar cell.
- the solar battery include a silicon solar battery, a compound semiconductor solar battery, and an organic thin film solar battery.
- the silicon-based solar cell include a single crystal silicon solar cell, a polycrystalline silicon solar cell, and an amorphous silicon solar cell.
- compound semiconductor solar cells include III-V compound semiconductor solar cells, II-VI group compound semiconductor solar cells, and I-III-VI group compound semiconductor solar cells.
- the solar cell may be an integrated solar cell in which a plurality of unit cells are connected in series, or may not be an integrated solar cell.
- the multilayer structure of the present invention and a packaging material including the same include a display member such as an LCD substrate film, an organic EL substrate film, an electronic paper substrate film, an electronic device sealing film, and a PDP film; IC tag film It is suitably used as a solar cell member such as a solar cell module, a solar cell backsheet, and a solar cell protective film.
- a display member such as an LCD substrate film, an organic EL substrate film, an electronic paper substrate film, an electronic device sealing film, and a PDP film
- IC tag film It is suitably used as a solar cell member such as a solar cell module, a solar cell backsheet, and a solar cell protective film.
- the multilayer structure is used, for example, as a low reflective film.
- the translucent layer (Y) is used as the layer (Y).
- the electronic device main body 41 can be manufactured by a so-called roll-to-roll method depending on the type.
- a flexible substrate for example, a stainless steel substrate, a resin substrate, etc.
- an electronic device body 41 is produced by forming elements on this substrate.
- the electronic device body 41 is taken up by a take-up roll.
- the protective sheet 43 may be prepared in the form of a long sheet having flexibility, more specifically in the form of a wound body of a long sheet.
- the protective sheet 43 delivered from the delivery roll is stacked on the electronic device main body 41 before being taken up by the take-up roll, and taken up together with the electronic device main body 41.
- the electronic device main body 41 wound around the winding roll may be sent out from the roll again and laminated with the protective sheet 43.
- the electronic device itself is flexible.
- the protective sheet 43 includes the multilayer structure of the present invention.
- the protective sheet 43 may be composed of only a multilayer structure.
- the protective sheet 43 may include a multilayer structure and other members (for example, other layers (J)) laminated on the multilayer structure.
- the thickness and material of the protective sheet 43 are not particularly limited as long as the protective sheet 43 is a layered laminate suitable for protecting the surface of the electronic device and includes the multilayer structure.
- the protective sheet may include, for example, a surface protective layer disposed on one surface or both surfaces of the multilayer structure.
- the surface protective layer is preferably a layer made of a resin that is not easily damaged.
- the surface protective layer of the device which may be utilized outdoors like a solar cell consists of resin with high weather resistance (for example, light resistance).
- a surface protective layer with high translucency is preferable.
- Examples of the material for the surface protective layer include poly (meth) acrylate, polycarbonate, polyethylene terephthalate, polyethylene-2,6-naphthalate, polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), Polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), ethylene-tetrafluoroethylene copolymer (ETFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether Examples thereof include a copolymer (PFA) and a tetrafluoroethylene-hexafluoropropylene copolymer (FEP).
- An example of the protective sheet includes a poly (meth) acrylate layer disposed on one surface.
- various additives for example, ultraviolet absorbers
- a preferable example of the surface protective layer having high weather resistance is an acrylic resin layer to which an ultraviolet absorber is added.
- the ultraviolet absorber include, but are not limited to, benzotriazole-based, benzophenone-based, salicylate-based, cyanoacrylate-based, nickel-based, and triazine-based ultraviolet absorbers.
- other stabilizers, light stabilizers, antioxidants and the like may be used in combination.
- the multilayer structure was cut using the focused ion beam (FIB), and the slice for cross-sectional observation was produced.
- the prepared section was fixed to the sample base with carbon tape, and platinum ion sputtering was performed at an acceleration voltage of 30 kV for 30 seconds.
- the cross section of the multilayer structure was observed using a field emission type transmission electron microscope, and the thickness of each layer was calculated.
- the measurement conditions were as follows. Apparatus: JEM-2100F manufactured by JEOL Ltd. Accelerating voltage: 200kV Magnification: 250,000 times
- Adhesiveness was evaluated by T-type peel strength measurement (adhesive strength per 15 mm width). The measurement was performed 5 times and the average value was adopted. The measurement conditions were as follows. Equipment: Autograph AGS-H manufactured by Shimadzu Corporation Peeling speed: 250 mm / min Temperature: 23 ° C Humidity: 50% RH
- a dispersion was obtained by adding 54.29 parts by mass of distilled water and 18.80 parts by mass of methanol to 22.50 parts by mass of the solution thus obtained and stirring the mixture uniformly. Subsequently, 4.41 parts by mass of an 85% by mass phosphoric acid aqueous solution was added dropwise while stirring the dispersion while maintaining the liquid temperature at 15 ° C., and the viscosity was maintained at 15 ° C. until the viscosity reached 1,500 mPa ⁇ s. Stirring was continued to obtain the desired coating solution (S-1).
- coating liquid (T-1)> 67% by mass of the organophosphorus compound (BO-1) obtained in the above synthesis example, polyethylene oxide as a polymer (F) (“Alcox (registered trademark) L-6” manufactured by Meisei Chemical Co., Ltd.); weight average molecular weight 60 , 000) was prepared. This mixture was dissolved in a mixed solvent of water and methanol (water: methanol 7: 3 by mass ratio) to obtain a coating liquid (T-1) having a solid content concentration of 1% by mass.
- a coating liquid (T-3) having a solid content concentration of 1% by mass was obtained.
- a coating liquid (T-4) having a solid content concentration of 1% by mass was obtained.
- a coating liquid (T-5) having a solid content concentration of 1% by mass was obtained.
- PET12 Stretched polyethylene terephthalate film; manufactured by Toray Industries, Inc., “Lumirror P60” (trade name), thickness 12 ⁇ m 2)
- PET50 Polyethylene terephthalate film with improved adhesion to ethylene-vinyl acetate copolymer; “Shinebeam Q1A15” (trade name), 50 ⁇ m thickness, manufactured by Toyobo Co., Ltd.
- ONY stretched nylon film; manufactured by Unitika Ltd., “Emblem ONBC” (trade name), thickness 15 ⁇ m 4)
- CPP60 unstretched polypropylene film; “RXC-21” (trade name), thickness 60 ⁇ m, manufactured by Mitsui Chemicals, Inc. 5)
- CPP70 unstretched polypropylene film; “RXC-21” (trade name), 70 ⁇ m thickness, manufactured by Mitsui Chemicals, Inc. 6)
- CPP100 unstretched polypropylene film; “RXC-21” (trade name), 100 ⁇ m thickness, manufactured by Mitsui Chemicals, Inc.
- BI inorganic phosphorus compound
- BO organic phosphorus compound
- a layer (Y-1-1) was formed by heat treatment at 220 ° C. for 1 minute. In this way, a multilayer structure (1-1-1) having a structure of base material (X-1) / layer (Y-1-1) was obtained.
- the maximum absorption wave number in the region of 800 to 1,400 cm ⁇ 1 is 1,108 cm ⁇ 1
- the half width of the maximum absorption band is 37 cm. -1 .
- An ink layer was formed on the obtained multilayer structure (1-1-1) and allowed to stand at 40 ° C. for 1 day for aging. Thereafter, an adhesive layer was formed, and ONY was laminated on the adhesive layer to obtain a laminate. Next, an adhesive layer was formed on the ONY of the laminate, and then CPP70 was laminated on the adhesive layer and left to stand at 40 ° C. for 5 days for aging. In this way, a multilayer structure (1-1-2) having a structure of substrate (X-1) / layer (Y-1-1) / ink layer / adhesive layer / ONY / adhesive layer / CPP is obtained. It was.
- Each of the two adhesive layers was formed by applying a two-component adhesive using a bar coater so that the thickness after drying would be 3 ⁇ m and drying.
- Two-component adhesives include “Takelac” (registered trademark) “A-520” (brand name) manufactured by Mitsui Chemicals, Inc. and “Takenate” (registered trademark) “A-50” manufactured by Mitsui Chemicals, Inc.
- a two-component reactive polyurethane adhesive composed of (brand) was used.
- the ink layer was formed by coating using a bar coater such that the thickness after drying was 2 ⁇ m and drying.
- the ink used was “Fine Star” (registered trademark) “R641AT White” (brand) manufactured by Toyo Ink Co., Ltd. and “LP Super Curing Agent” (brand) manufactured by Toyo Ink Co., Ltd.
- the oxygen permeability and moisture permeability of the multilayer structure (1-1-2) were measured. The results are shown in Table 1.
- a pouch was produced by heat-sealing the multilayer structure (1-1-2), and 100 g of water was filled in the pouch. Subsequently, the obtained pouch was subjected to a retort treatment (hot water storage type) under the following conditions.
- Retort treatment equipment Flavor Ace RSC-60 manufactured by Nisaka Manufacturing Co., Ltd. Temperature: 130 ° C Time: 30 minutes Pressure: 0.21 MPaG
- Examples 1-2 and 1-3> According to Table 1, the same as the multilayer structure (1-1-2) of Example 1-1 except that the mass ratio W BO / W BI of the organic phosphorus compound (BO) and the inorganic phosphorus compound (BI) was changed Multilayer structures (1-2-2) and (1-3-2) were prepared and evaluated by the above method. The results are shown in Table 1. As in Example 1-1, the multilayer structures (1-2-2) and (1-3-2) showed no appearance defects such as delamination.
- Examples 1-4 to 1-9 and Comparative Examples 1-1 to 1-3 The coating liquids (T-2) to (T-10) are used in place of the coating liquid (T-1), and the mass ratio W BO / W between the organic phosphorus compound (BO) and the inorganic phosphorus compound (BI) according to Table 1. Except for changing BI , the multilayer structures (1-4-2) to (1-9-2) and (C1) were prepared in the same manner as the multilayer structure (1-1-2) of Example 1-1. -1-2) to (C1-3-2) were prepared and evaluated. The results are shown in Table 1. As in Example 1-1, the multilayer structures (1-4-2) to (1-9-2) showed no appearance defects such as delamination. Delamination was partially observed in the multilayer structures (C1-1-2) to (C1-3-2).
- Table 1 shows the manufacturing conditions for the multilayer structures of the examples and comparative examples.
- Example 2 Vertical bag filling and sealing bag ⁇ Example 2-1> The multilayer structure (1-1-2) produced in Example 1-1 is cut into a width of 400 mm, and a vertical bag making and filling machine (manufactured by ORIHIRO Co., Ltd.) so that the CPP layers are in contact with each other and heat sealed. ).
- a vertical bag-filling and sealing bag (2-1-3) (width 160 mm, length 470 mm) as shown in FIG. 1 was produced by a vertical bag-filling and packaging machine. The oxygen permeability and moisture permeability before retorting of the vertical bag-filled seal bag (2-1-3) were measured. The results are shown in Table 2.
- a pouch was prepared by heat-sealing the vertical bag filling and sealing bag (2-1-3), and 300 mL of water was filled in the pouch. Subsequently, the obtained pouch was subjected to a retort process (hot water storage type) under the same conditions as in Example 1-1. Immediately after the hot water treatment, a measurement sample was cut out from the pouch, and the oxygen permeability, moisture permeability, and T-type peel strength of the sample were measured by the above methods. The results are shown in Table 2. In addition, no appearance defect such as delamination was observed in the sample after the hot water treatment.
- Examples 2-2 to 2-9 and Comparative Examples 2-1 to 2-3> instead of the multilayer structure (1-1-2), the multilayer structures (1-2-2) to (1-) manufactured in Examples 1-2 to 1-9 and Comparative Examples 1-1 to 1-3 were used. 9-2) and (C1-1-2) to (C1-3-2) were used in the same manner as in the production of the vertical bag-filled seal bag (2-1-3) in Example 2-1. Thus, vertical bag filling and sealing bags (2-2-3) to (2-9-3) and (C2-1-3) to (C2-3-3) were produced. The obtained vertical bag-filled sealing bags (2-2-3) to (2-9-3) and (C2-1-3) to (C2-3-3) Similarly, each item was measured. The results are shown in Table 2.
- Example 3 Flat pouch ⁇ Example 3-1> The multilayer structure (1-1-2) produced in Example 1-1 was cut into a width of 200 mm ⁇ 130 mm, and the two multilayer structures were overlaid so that the CPP layer was on the inside. The outer periphery was heat-sealed with a width of 5 mm. Next, a Teflon (trademark) sheet having a width of 30 mm was inserted into the end of the opening, and heat sealing was performed in that state. After heat sealing, a flat pouch (3-1-3) was prepared by extracting a Teflon sheet. The oxygen permeability and moisture permeability of the flat pouch (3-1-3) before the retort treatment were measured. The results are shown in Table 3.
- Example 1-1 100 mL of water was filled in the flat pouch (3-1-3), and retort treatment (hot water storage type) was performed under the same conditions as in Example 1-1. Immediately after the hot water treatment, a measurement sample was cut from the flat pouch, and the oxygen permeability, moisture permeability, and T-type peel strength of the sample were measured by the above methods. The results are shown in Table 3. At this time, no appearance defects such as delamination were observed.
- Examples 3-2 to 3-9 and Comparative Examples 3-1 to 3-3> instead of the multilayer structure (1-1-2), the multilayer structures (1-2-2) to (1-) manufactured in Examples 1-2 to 1-9 and Comparative Examples 1-1 to 1-3 were used. 9-2) and (C1-1-2) to (C1-3-2) were used in the same manner as in the production of the flat pouch (3-1-3) of Example 3-1, except that a flat pouch was used. (3-2-3) to (3-9-3) and (C3-1-3) to (C3-3-3) were produced. About each obtained flat pouch, each item was measured like Example 3-1. The results are shown in Table 3.
- Example 4 Infusion bag ⁇ Example 4-1> Two 120 mm ⁇ 100 mm multilayer structures were cut out from the multilayer structure (1-1-2) produced in Example 1-1. Subsequently, the two multilayer structures cut out were overlapped so that the CPP layer was inside, and the periphery was heat sealed, and a polypropylene spout (plug member) was attached by heat sealing. In this way, an infusion bag (4-1-3) having the same structure as that shown in FIG. 3 was produced. The oxygen permeability and moisture permeability of the infusion bag (4-1-3) before retorting were measured. The results are shown in Table 4.
- the infusion bag (4-1-3) was filled with 100 mL of water, and retort treatment (hot water storage type) was performed under the same conditions as in Example 1-1. Immediately after the hot water treatment, a measurement sample was cut out from the infusion bag, and the oxygen permeability, moisture permeability, and T-type peel strength of the sample were measured by the above methods. The results are shown in Table 4. At this time, no appearance defects such as delamination were observed.
- Examples 4-2 to 4-9 and Comparative Examples 4-1 to 4-3> instead of the multilayer structure (1-1-2), the multilayer structures (1-2-2) to (1-) manufactured in Examples 1-2 to 1-9 and Comparative Examples 1-1 to 1-3 were used. 9-2) and an infusion bag in the same manner as the preparation of the infusion bag (4-1-3) of Example 4-1, except that (C1-1-2) to (C1-3-2) were used. (4-2-3) to (4-9-3) and (C4-1-3) to (C4-3-3) were produced. For each infusion bag obtained, each item was measured in the same manner as in Example 4-1. The results are shown in Table 4.
- Example 5 Container lid ⁇ Example 5-1> A circular multilayer structure having a diameter of 100 mm was cut out from the multilayer structure (1-1-2) produced in Example 1-1, and used as a container lid.
- a flanged container manufactured by Toyo Seikan Co., Ltd., “High Reflex” (registered trademark), “HR78-84” (trade name)
- This container has a cup shape with an upper surface diameter of 78 mm and a height of 30 mm.
- the upper surface of the container is open, and the width of the flange portion formed on the periphery thereof is 6.5 mm.
- the container is constituted by a laminate of three layers of olefin layer / steel layer / olefin layer.
- the container body was filled with water almost completely, and the lid material was heat-sealed to the flange portion to obtain a lidded container (5-1-3).
- the lid material was heat sealed by placing the lid so that the CPP layer of the lid material was in contact with the flange portion.
- a square measurement sample having a side length of 4.5 cm was cut out from the lid of the lidded container (5-1-3) and opened into a 10 cm square aluminum foil (thickness 30 ⁇ m). The sample was placed on top and sealed between the sample and the aluminum foil with a two-component curable epoxy adhesive. The sample was used to measure oxygen permeability and moisture permeability before retorting. The results are shown in Table 5.
- a retort treatment (hot water storage type) was performed on the container with a lid (5-1-3) under the same conditions as in Example 1-1.
- a measurement sample was cut out from the lid, and the oxygen permeability and moisture permeability of the sample were measured in the same manner as before the retort treatment. Further, the T-type peel strength was measured by the above method. The results are shown in Table 5. At this time, no appearance defects such as delamination were observed.
- Examples 5-2 to 5-9 and Comparative Examples 5-1 to 5-3> instead of the multilayer structure (1-1-2), the multilayer structures (1-2-2) to (1-) manufactured in Examples 1-2 to 1-9 and Comparative Examples 1-1 to 1-3 were used. 9-2) and (C1-1-2) to (C1-3-2) were used except that a lidded container (5-1-3) of Example 5-1 was used. The attached containers (5-2-3) to (5-9-3) and (C5-1-3) to (C5-3-3) were prepared. For each obtained container with a lid, each item was measured in the same manner as in Example 5-1. The results are shown in Table 5.
- Example 6 In-mold label container ⁇ Example 6-1> A two-component adhesive was applied to each of the two CPPs 100 using a bar coater so that the thickness after drying was 3 ⁇ m and dried.
- the two-component adhesive consists of “Takelac” (registered trademark) “A-525S” manufactured by Mitsui Chemicals, Inc. and “Takenate” (registered trademark) “A-50” manufactured by Mitsui Chemicals, Inc.
- a two-component reactive polyurethane adhesive was used.
- two CPPs and the multilayer structure (1-1-1) of Example 1-1 were laminated and aged by standing at 40 ° C. for 5 days.
- the multilayer label (6-1-2) was cut in accordance with the shape of the inner wall surface of the female mold part of the container mold and attached to the inner wall surface of the female mold part.
- the male part was pushed into the female part.
- melted polypropylene (“EA7A” of “NOVATEC” (registered trademark) manufactured by Nippon Polypro Co., Ltd.) was injected into the cavity between the male part and the female part at 220 ° C. In this way, injection molding was performed, and the target container (6-1-3) was molded.
- the container body had a thickness of 700 ⁇ m and a surface area of 83 cm 2 .
- the whole outside of the container is covered with the multilayer label (6-1-2), the joint is overlapped with the multilayer label (6-1-2), and the part where the multilayer label (6-1-2) does not cover the outside of the container is There wasn't. At this time, no delamination of the multilayer label was observed, and the appearance of the container (6-1-3) was good.
- Examples 6-2 to 6-9 and Comparative Examples 6-1 to 6-3> instead of the multilayer structure (1-1-1), the multilayer structures (1-2-1) to (1-) manufactured in Examples 1-2 to 1-9 and Comparative Examples 1-1 to 1-3 were used. 9-1) and (C1-1-1) to (C1-3-1) were used except that the multilayer label (6-1-2) of Example 6-1 was used. (6-2-2) to (6-9-2) and (C6-1-2) to (6-3-2) were produced.
- Example 7 Extrusion coat laminate ⁇ Example 7-1>
- an adhesive layer was formed on the layer (Y) on the multilayer structure (1-1-1), and then a polyethylene resin (density: 0.917 g / cm 3 , melt flow rate: 8 g / 10 Min) was extruded and laminated at 295 ° C. on the adhesive layer so as to have a thickness of 20 ⁇ m.
- a laminate (7-1-2) having a structure of base material (X-1) / layer (Y-1-1) / adhesive layer (I-1) / polyethylene was obtained.
- the adhesive layer (I-1) was formed by applying a two-part adhesive using a bar coater so that the thickness after drying was 0.3 ⁇ m and drying.
- This two-part adhesive includes “Takelac” (registered trademark) “A-3210” manufactured by Mitsui Chemicals, Inc. and “Takenate” (registered trademark) “A-3070” manufactured by Mitsui Chemicals, Inc. A two-component reactive polyurethane adhesive was used.
- Examples 7-2 to 7-9 and Comparative Examples 7-1 to 7-3> instead of the multilayer structure (1-1-1), the multilayer structures (1-2-1) to (1-9-) of Examples 1-2 to 1-9 and Comparative Examples 1-1 to 1-3 1) and laminates (7-2-2) to (7-9-2) in the same manner as in Example 7-1 except that (C1-1-1) to (C1-3-1) were used. ) And (C7-1-2) to (C7-3-2). The laminates (C7-1-2) to (C7-3-2) were partially delaminated during winding. For each obtained laminate, each item was measured in the same manner as in Example 7-1. The results are shown in Table 7.
- Example 8 Effect of packing ⁇ Example 8-1>
- the flat pouch (3-1-3) produced in Example 3-1 was filled with 500 mL of a 1.5% aqueous ethanol solution, and a retort treatment apparatus (manufactured by Nisaka Seisakusho, Flavor Ace RCS-60) was used.
- a retort treatment was performed in hot water at 0.15 MPaG for 30 minutes.
- a sample for measurement was cut out from the flat pouch after the retort treatment, and the oxygen permeability of the sample was measured.
- the oxygen permeability of the sample was 0.2 mL / (m 2 ⁇ day ⁇ atm).
- Examples 8-2 to 8-9 A retort treatment was performed in the same manner as in Example 8-1 except that another 500 mL of filling material was filled in the flat pouch (3-1-3) instead of 500 mL of the 1.5% ethanol aqueous solution. And the sample for a measurement was cut out from the flat pouch after a retort process, and the oxygen permeability of this sample was measured.
- Other fillings include 1.0% aqueous ethanol (Example 8-2), vinegar (Example 8-3), pH 2 aqueous citric acid (Example 8-4), edible oil (Example 8-5). ), Ketchup (Example 8-6), soy sauce (Example 8-7), and ginger paste (Example 8-8).
- the oxygen permeability of the sample after the retort treatment was 0.2 mL / (m 2 ⁇ day ⁇ atm).
- the lidded container (5-1-3) produced in Example 5-1 was almost completely filled with mandarin syrup, and the retort treatment was performed in the same manner as in Example 8-1 (Example 8-9).
- a sample for measurement was cut out from the lid material of the lidded container after the retort treatment, and the oxygen permeability of the sample was measured.
- the oxygen permeability was 0.2 mL / (m 2 ⁇ day ⁇ atm).
- the packaging material of the present invention showed good barrier performance even after retorting with various foods filled.
- Example 9 Vacuum insulator ⁇ Example 9-1> On the CPP 60, the two-component adhesive used in Example 6-1 was applied to a thickness of 3 ⁇ m after drying, and dried to form an adhesive layer. A laminate (9-1-1) was obtained by laminating this CPP and the PET layer of the multilayer structure (1-1-2) produced in Example 1-1. Subsequently, the adhesive layer was formed by applying the two-component reactive polyurethane adhesive on the ONY so that the thickness after drying was 3 ⁇ m and drying. Then, by laminating this ONY and the laminate (9-1-1), a multilayer structure (9-1-2) having a structure of CPP / adhesive layer / multilayer structure / adhesive layer / ONY is obtained. Obtained.
- the multilayer structure (9-1-2) was cut to obtain two laminates having a size of 70 cm ⁇ 30 cm.
- the two laminates were overlapped so that the CPP layers were the inner surfaces, and the three sides were heat-sealed with a width of 10 mm to produce a three-sided bag.
- the heat insulating core material was filled from the opening of the three-sided bag, and the three-sided bag was sealed at 20 ° C. and an internal pressure of 10 Pa using a vacuum packaging machine.
- a vacuum heat insulator (9-1-3) was obtained.
- Silica fine powder was used for the heat insulating core material.
- the vacuum insulator (9-1-3) was allowed to stand for 360 days under conditions of 40 ° C. and 15% RH, and then the pressure inside the vacuum insulator was measured using a Pirani vacuum gauge. As a result, it was 37.0 Pa. It was.
- Examples 9-2 to 9-9 and Comparative Examples 9-1 to 9-3> instead of the multilayer structure (1-1-2), the multilayer structures (1-2-2) to (1-9-) of Examples 1-2 to 1-9 and Comparative Examples 1-1 to 1-3 2) and (C1-1-2) to (C1-3-2) were used in the same manner as in the preparation of the vacuum heat insulator (9-1-3) of Example 9-1 except that the vacuum heat insulator was used. (9-2-3) to (9-9-3) and (C9-1-3) to (C9-3-3) were produced. About each obtained vacuum heat insulating body, each item was measured similarly to Example 9-1. The results are shown in Table 8.
- Example 10 Protective sheet ⁇ Example 10-1> An adhesive layer was formed on the multilayer structure (1-1-1) produced in Example 1-1, and an acrylic resin film (thickness 50 ⁇ m) was laminated on the adhesive layer to obtain a laminate. Subsequently, an adhesive layer was formed on the multilayer structure (1-1-1) of the laminate, and then the laminate and PET 50 were laminated. In this way, a protective sheet (10-1-2) having a configuration of PET / adhesive layer / base material (X-1) / layer (Y-1-1) / adhesive layer / acrylic resin film was obtained. . Each of the two adhesive layers was formed by applying a two-component adhesive so that the thickness after drying was 3 ⁇ m and drying.
- the two-component adhesive consists of “Takelac” (registered trademark) “A-1102” manufactured by Mitsui Chemicals, Inc. and “Takenate” (registered trademark) “A-3070” manufactured by Mitsui Chemicals, Inc.
- a two-component reactive polyurethane adhesive was used.
- the obtained protective sheet (10-1-2) was measured for oxygen permeability and moisture permeability. The results are shown in Table 9.
- Example 10-2 to 10-9 and Comparative Examples 10-1 to 10-3> instead of the multilayer structure (1-1-1), the multilayer structures (1-2-1) to (1-9-) of Examples 1-2 to 1-9 and Comparative Examples 1-1 to 1-3 1) and (C1-1-1) to (C1-3-1) except that the protective sheet (10-1-1) was produced in the same manner as in the production of the protective sheet (10-1-1) of Example 10-1. 10-2-2) to (10-9-2) and (C10-1-2) to (C10-3-2) were prepared, and the obtained protective sheets were evaluated. The results are shown in Table 9. As in Example 10-1, the protective sheets (10-2-2) to (10-9-2) had no appearance defects such as delamination after the dump heat test. On the other hand, as a result of the dump heat test, the protective sheets (C10-1-2) to (C10-3-2) were partially peeled from each other and had poor appearance.
- the present invention it is possible to obtain a multilayer structure that is not colored, has excellent interlayer adhesion, and does not cause appearance defects such as delamination even after retorting. Further, by using the multilayer structure of the present invention, an excellent packaging material can be obtained. Furthermore, this invention can be utilized for a protective sheet provided with a multilayer structure and an electronic device using the same. ADVANTAGE OF THE INVENTION According to this invention, it is possible to obtain the electronic device using the protective sheet provided with the multilayer structure which is excellent in gas barrier property and water vapor
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Wrappers (AREA)
- Laminated Bodies (AREA)
- Packages (AREA)
Abstract
Description
本発明の多層構造体は、基材(X)とアルミニウムを含む層(Y)とを含む。層(Y)は、アルミニウムを含む化合物(A)(以下、単に「化合物(A)」ともいう)と有機リン化合物(BO)とエーテル結合を有し、かつグリコシド結合を有しない重合体(F)(以下、単に「重合体(F)」ともいう)とを含む。以下の説明において、特に注釈がない限り、「多層構造体」という語句は基材(X)と層(Y)とを含む多層構造体を意味する。
基材(X)の材質は、特に制限されず、様々な材質からなる基材を用いることができる。基材(X)の材質としては、例えば、熱可塑性樹脂、熱硬化性樹脂等の樹脂;布帛、紙類等の繊維集合体;木材;ガラス等が挙げられる。これらの中でも、熱可塑性樹脂および繊維集合体が好ましく、熱可塑性樹脂がより好ましい。基材(X)の形態は、特に制限されず、フィルムまたはシート等の層状であってもよい。基材(X)としては、熱可塑性樹脂フィルムおよび紙からなる群より選ばれる少なくとも1種を含むものが好ましく、熱可塑性樹脂フィルムを含むものがより好ましく、熱可塑性樹脂フィルムであることがさらに好ましい。
層(Y)は、化合物(A)と有機リン化合物(BO)とを含む。化合物(A)はアルミニウムを含む化合物である。また、層(Y)は、さらに無機リン化合物(BI)を含むことが好ましい。無機リン化合物(BI)および有機リン化合物(BO)は、リン原子を含有する官能基を有する。化合物(A)、無機リン化合物(BI)、および有機リン化合物(BO)について以下に説明する。
化合物(A)は、アルミニウムを含む金属酸化物(Aa)であってもよいし、アルミニウムを含む金属酸化物(Aa)(以下、単に「金属酸化物(Aa)」ともいう)と無機リン化合物(BI)とが反応してなる反応生成物(D)を含む化合物(Ab)(以下、単に「化合物(Ab)」ともいう)であってもよい。
アルミニウムを含む金属酸化物(Aa)は、通常、粒子の形態で無機リン化合物(BI)と反応させる。
無機リン化合物(BI)との反応の制御が容易になり、得られる多層構造体のガスバリア性が優れることから、化合物(E)は、下記一般式〔I〕で表される化合物(Ea)を少なくとも1種含むことが好ましい。
Al(R1)k(R2)3-k 〔I〕
式中、R1は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、NO3、置換基を有していてもよい炭素数1~9のアルコキシ基、置換基を有していてもよい炭素数2~9のアシロキシ基、置換基を有していてもよい炭素数3~9のアルケニルオキシ基、置換基を有していてもよい炭素数5~15のβ-ジケトナト基、または置換基を有していてもよい炭素数1~9のアシル基を有するジアシルメチル基である。R2は、置換基を有していてもよい炭素数1~9のアルキル基、置換基を有していてもよい炭素数7~10のアラルキル基、置換基を有していてもよい炭素数2~9のアルケニル基、または置換基を有していてもよい炭素数6~10のアリール基である。kは1~3の整数である。R1が複数存在する場合、R1は互いに同一であってもよいし異なっていてもよい。R2が複数存在する場合、R2は互いに同一であってもよいし異なっていてもよい。
M1(R3)m(R4)n-m 〔II〕
式中、M1は、アルミニウム原子以外の金属原子であって周期表の2~14族に属する金属原子から選ばれる少なくとも1種の金属原子である。R3は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、NO3、置換基を有していてもよい炭素数1~9のアルコキシ基、置換基を有していてもよい炭素数2~9のアシロキシ基、置換基を有していてもよい炭素数3~9のアルケニルオキシ基、置換基を有していてもよい炭素数5~15のβ-ジケトナト基、または置換基を有していてもよい炭素数1~9のアシル基を有するジアシルメチル基である。R4は、置換基を有していてもよい炭素数1~9のアルキル基、置換基を有していてもよい炭素数7~10のアラルキル基、置換基を有していてもよい炭素数2~9のアルケニル基、または置換基を有していてもよい炭素数6~10のアリール基である。mは1~nの整数である。nはM1の原子価に等しい。R3が複数存在する場合、R3は互いに同一であってもよいし異なっていてもよい。R4が複数存在する場合、R4は互いに同一であってもよいし異なっていてもよい。
化合物(Ab)に含まれる反応生成物(D)は、金属酸化物(Aa)と無機リン化合物(BI)との反応で得られる。ここで、金属酸化物(Aa)と無機リン化合物(BI)とさらに他の化合物とが反応することで生成する化合物も反応生成物(D)に含まれる。また、化合物(Ab)は、反応に関与していない金属酸化物(Aa)および/または無機リン化合物(BI)を部分的に含んでいてもよい。
無機リン化合物(BI)は、金属酸化物(Aa)と反応可能な部位を含有し、典型的には、そのような部位を複数含有する。無機リン化合物(BI)としては、そのような部位(原子団または官能基)を2~20個含有する化合物が好ましい。そのような部位の例には、金属酸化物(Aa)の表面に存在する官能基(例えば、水酸基)と縮合反応可能な部位が含まれる。そのような部位としては、例えば、リン原子に直接結合したハロゲン原子、リン原子に直接結合した酸素原子等が挙げられる。金属酸化物(Aa)の表面に存在する官能基(例えば、水酸基)は、通常、金属酸化物(Aa)を構成する金属原子(M)に結合している。
多層構造体は、さらに無機蒸着層を含んでもよい。無機蒸着層は、無機物を蒸着することによって形成することができる。無機物としては、例えば、金属(例えば、アルミニウム)、金属酸化物(例えば、酸化ケイ素、酸化アルミニウム)、金属窒化物(例えば、窒化ケイ素)、金属窒化酸化物(例えば、酸窒化ケイ素)、または金属炭化窒化物(例えば、炭窒化ケイ素)等が挙げられる。これらの中でも、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、または窒化ケイ素で形成される無機蒸着層は、酸素あるいは水蒸気に対するバリア性が優れる観点から好ましい。本発明の多層構造体中の層(Y)は、アルミニウムを含有する無機蒸着層を含んでいてもよい。例えば、層(Y)は、アルミニウムの蒸着層(Ac)および/または酸化アルミニウムの蒸着層(Ad)を含んでいてもよい。
有機リン化合物(BO)が有するリン原子を含む官能基としては、例えば、リン酸基、亜リン酸基、ホスホン酸基、亜ホスホン酸基、ホスフィン酸基、亜ホスフィン酸基、およびこれらから誘導される官能基(例えば、塩、(部分)エステル化合物、ハロゲン化物(例えば、塩化物)、脱水物)等が挙げられ、中でもリン酸基およびホスホン酸基が好ましく、ホスホン酸基がより好ましい。
本発明の多層構造体は、層(Y)に重合体(F)を含めることによってレトルト処理後において高い層間接着力(剥離強度)を有する。また、本発明の多層構造体は、重合体(F)を含めることによって多層構造体の着色を抑えて透明性を高めることもでき、多層構造体の外観を良好に保つこともできる。さらに、重合体(F)は、他の部材(例えば、接着層(I)、他の層(J)(例えば、インク層)との親和性が高いエーテル結合を有するため、層(Y)とそれ以外の層との密着性が向上し、レトルト処理後も層間接着力を維持することができる点から、デラミネーション等の外観不良を抑制することが可能となる。重合体(F)としては、エーテル結合を有し、かつグリコシド結合を有しない重合体であれば、特に限定されない。グリコシド結合とは、単糖(または単糖誘導体)のヘミアセタールとアルコール等の有機化合物の水酸基との間の結合を意味する。重合体(F)としては、例えば、ポリオキシアルキレン系重合体が好適に挙げられる。ポリオキシアルキレン系重合体としては、下記一般式〔III〕
-R5-O- 〔III〕
(式中、R5は置換基を有していてもよい炭素数1~14の直鎖状もしくは分岐状のアルキレン基である。)
で表される繰り返し単位を有する重合体(Fa)が好ましい。
本発明の多層構造体について説明した事項は本発明の製造方法に適用できるため、重複する説明を省略する場合がある。また、本発明の製造方法について説明した事項は、本発明の多層構造体に適用できる。
工程(i)では、アルミニウムを含む化合物(A)を含むコーティング液(S)を基材(X)上に塗工することによって基材(X)上に層(Y)の前駆体層を形成する。工程(i)によって、基材(X)と層(Y)の前駆体層とを含む構造体が得られる。層(Y)が、アルミニウムの蒸着層(Ac)、または酸化アルミニウムの蒸着層(Ad)を含む場合には、それらの層は上述した一般的な蒸着法によって形成できる。そのため、以下では、化合物(Ab)を含む層(Y1)の前駆体層の形成方法について詳細に説明する。
工程(ii)では、工程(i)で得た層(Y)の前駆体層上に、重合体(F)と有機リン化合物(BO)とを含むコーティング液(T)(第2コーティング液)を塗工する。コーティング液(T)は、重合体(F)と有機リン化合物(BO)とを溶媒中で混合することによって調製できる。コーティング液(T)に使用する溶媒は、有機リン化合物(BO)の種類に応じて適宜選択すればよく、特に限定されないが、メタノール、エタノール、イソプロパノール等のアルコール類;水;またはこれらの混合溶媒が好ましい。
工程(iii)では、工程(i)および(ii)で形成された層(Y1)の前駆体層を、140℃以上の温度で熱処理することによって層(Y1)を形成する。この熱処理温度は、コーティング液(T)の塗工後の乾燥温度よりも高いことが好ましい。
本発明の多層構造体は、例えば、基材(X)に直接または接着層(I)を介して層(Y)を積層させた後に、さらに他の層(J)を直接または接着層(I)を介して押出しコートラミネート法により形成することによって、押出しコートラミネートにより形成された層をさらに有することができる。本発明で用いることができる押出しコートラミネート法に特に限定はなく、公知の方法を用いてもよい。典型的な押出しコートラミネート法では、溶融した熱可塑性樹脂をTダイに送り、Tダイのフラットスリットから取り出した熱可塑性樹脂を冷却することによって、ラミネートフィルムが製造される。
本発明の多層構造体において、接着層(I)を用いて、基材(X)と層(Y)との接着性を高めることができる場合がある。接着層(I)は、接着性樹脂から構成されていてもよい。接着性樹脂から構成される接着層(I)は、基材(X)の表面を公知のアンカーコーティング剤で処理するか、基材(X)の表面に公知の接着剤を塗工することによって形成できる。該接着剤としては、ポリイソシアネート成分とポリオール成分とを混合し反応させる2液反応型ポリウレタン系接着剤が好ましい。また、アンカーコーティング剤または接着剤に、公知のシランカップリング剤等の少量の添加剤を加えることによって、さらに接着性を高めることができる場合がある。シランカップリング剤としては、例えば、イソシアネート基、エポキシ基、アミノ基、ウレイド基、メルカプト基等の反応性基を有するシランカップリング剤が挙げられるが、これらに限定されるものではない。基材(X)と層(Y)とを接着層(I)を介して強く接着することによって、本発明の多層構造体に対して印刷あるいはラミネート等の加工を施す際に、ガスバリア性または外観の悪化をより効果的に抑制することができ、さらに、本発明の多層構造体を用いた包装材の落下強度を高めることができる。接着層(I)の厚さは0.01~10.0μmが好ましく、0.03~5.0μmがより好ましい。
本発明の多層構造体は、様々な特性(例えば、ヒートシール性、バリア性、力学物性)を向上させるために、他の層(J)を含んでもよい。このような本発明の多層構造体は、例えば、基材(X)に直接または接着層(I)を介して層(Y)を積層させた後に、さらに該他の層(J)を直接または接着層(I)を介して接着または形成することによって製造できる。他の層(J)としては、例えば、インク層;ポリオレフィン層、エチレン-ビニルアルコール共重合体樹脂層等の熱可塑性樹脂層等が挙げられるが、これらに限定されない。
本発明の多層構造体の構成の具体例を以下に示す。多層構造体は、基材(X)、層(Y)以外の他の部材(例えば、接着層(I)、他の層(J))を有していてもよいが、以下の具体例において、他の部材の記載は省略している。また、以下具体例を複数層積層したり組み合わせたりしてもよい。
(1)層(Y)/ポリエステル層、
(2)層(Y)/ポリエステル層/層(Y)、
(3)層(Y)/ポリアミド層、
(4)層(Y)/ポリアミド層/層(Y)、
(5)層(Y)/ポリオレフィン層、
(6)層(Y)/ポリオレフィン層/層(Y)、
(7)層(Y)/水酸基含有ポリマー層、
(8)層(Y)/水酸基含有ポリマー層/層(Y)、
(9)層(Y)/紙層、
(10)層(Y)/紙層/層(Y)、
(11)層(Y)/無機蒸着層/ポリエステル層、
(12)層(Y)/無機蒸着層/ポリアミド層、
(13)層(Y)/無機蒸着層/ポリオレフィン層、
(14)層(Y)/無機蒸着層/水酸基含有ポリマー層、
(15)層(Y)/ポリエステル層/ポリアミド層/ポリオレフィン層、
(16)層(Y)/ポリエステル層/層(Y)/ポリアミド層/ポリオレフィン層、
(17)ポリエステル層/層(Y)/ポリエステル層/層(Y)/無機蒸着層/水酸基含有ポリマー層/ポリオレフィン層、
(18)ポリエステル層/層(Y)/ポリアミド層/ポリオレフィン層、
(19)層(Y)/ポリアミド層/ポリエステル層/ポリオレフィン層、
(20)層(Y)/ポリアミド層/層(Y)/ポリエステル層/ポリオレフィン層、
(21)ポリアミド層/層(Y)/ポリエステル層/ポリオレフィン層、
(22)層(Y)/ポリオレフィン層/ポリアミド層/ポリオレフィン層、
(23)層(Y)/ポリオレフィン層/層(Y)/ポリアミド層/ポリオレフィン層、
(24)ポリオレフィン層/層(Y)/ポリアミド層/ポリオレフィン層、
(25)層(Y)/ポリオレフィン層/ポリオレフィン層、
(26)層(Y)/ポリオレフィン層/層(Y)/ポリオレフィン層、
(27)ポリオレフィン層/層(Y)/ポリオレフィン層、
(28)層(Y)/ポリエステル層/ポリオレフィン層、
(29)層(Y)/ポリエステル層/層(Y)/ポリオレフィン層、
(30)ポリエステル層/層(Y)/ポリオレフィン層、
(31)層(Y)/ポリアミド層/ポリオレフィン層、
(32)層(Y)/ポリアミド層/層(Y)/ポリオレフィン層、
(33)ポリアミド層/層(Y)/ポリオレフィン層、
(34)層(Y)/ポリエステル層/紙層、
(35)層(Y)/ポリアミド層/紙層、
(36)層(Y)/ポリオレフィン層/紙層、
(37)ポリオレフィン層/紙層/ポリオレフィン層/層(Y)/ポリエステル層/ポリオレフィン層、
(38)ポリオレフィン層/紙層/ポリオレフィン層/層(Y)/ポリアミド層/ポリオレフィン層、
(39)ポリオレフィン層/紙層/ポリオレフィン層/層(Y)/ポリオレフィン層、
(40)紙層/ポリオレフィン層/層(Y)/ポリエステル層/ポリオレフィン層、
(41)ポリオレフィン層/紙層/層(Y)/ポリオレフィン層、
(42)紙層/層(Y)/ポリエステル層/ポリオレフィン層、
(43)紙層/層(Y)/ポリオレフィン層、
(44)層(Y)/紙層/ポリオレフィン層、
(45)層(Y)/ポリエステル層/紙層/ポリオレフィン層、
(46)ポリオレフィン層/紙層/ポリオレフィン層/層(Y)/ポリオレフィン層/水酸基含有ポリマー層、
(47)ポリオレフィン層/紙層/ポリオレフィン層/層(Y)/ポリオレフィン層/ポリアミド層、
(48)ポリオレフィン層/紙層/ポリオレフィン層/層(Y)/ポリオレフィン層/ポリエステル層、
(49)無機蒸着層/層(Y)/ポリエステル層、
(50)無機蒸着層/層(Y)/ポリエステル層/層(Y)/無機蒸着層、
(51)無機蒸着層/層(Y)/ポリアミド層、
(52)無機蒸着層/層(Y)/ポリアミド層/層(Y)/無機蒸着層、
(53)無機蒸着層/層(Y)/ポリオレフィン層、
(54)無機蒸着層/層(Y)/ポリオレフィン層/層(Y)/無機蒸着層
本発明の多層構造体およびこれを用いた包装材は、ガスバリア性および水蒸気バリア性に優れるとともに、レトルト処理後においてもガスバリア性および水蒸気バリア性に優れ、デラミネーション等の外観不良を生じず、高い層間接着力(剥離強度)を有する。そのため、本発明の多層構造体およびこれを用いた包装材は、様々な用途に適用できる。
本発明の包装材は、基材(X)と、基材(X)上に積層された層(Y)とを含む多層構造体を含む。包装材は、多層構造体のみによって構成されてもよい。すなわち、以下の説明において、「包装材」を「多層構造体」に読み替えてもよい。また、典型的には、「包装材」を「包装」と読み替えることが可能である。包装材は、多層構造体と他の部材とによって構成されてもよい。
本発明の多層構造体を含む包装材は、縦製袋充填シール袋であってもよい。一例を図1に示す。図1に示す縦製袋充填シール袋10は、本発明の多層構造体11が、2つの端部11aと胴体部11bとの三方でシールされることによって形成されている。縦製袋充填シール袋10は、縦型製袋充填機により製造できる。縦型製袋充填機による製袋には様々な方法が適用されるが、いずれの方法においても、内容物は袋の上方の開口からその内部へと供給され、その後にその開口がシールされて縦製袋充填シール袋が製造される。縦製袋充填シール袋は、例えば、上端、下端、および側部の三方においてヒートシールされた1枚のフィルム材により構成される。本発明による包装容器としての縦製袋充填シール袋は、ガスバリア性および水蒸気バリア性に優れ、レトルト処理後にもバリア性能が維持されるため、該縦製袋充填シール袋によれば、内容物の品質劣化を長期間にわたって抑制できる。
本発明の多層構造体を含む包装材はパウチであってもよい。一例を図2に示す。図2の平パウチ20は、2枚の多層構造体11が、その周縁部11cで互いに接合されることによって形成されている。本明細書において、「パウチ」という語句は、主として食品、日用品または医薬品を内容物とする、フィルム材を壁部材として備えた容器を意味する。パウチは、例えば、その形状および用途から、スパウト付きパウチ、チャックシール付きパウチ、平パウチ、スタンドアップパウチ、横製袋充填シールパウチ、レトルトパウチ等が挙げられる。パウチは、多層構造体と、少なくとも1層の他の層(J)とを積層することによって形成してもよい。本発明による包装容器としてのパウチは、ガスバリア性および水蒸気バリア性に優れ、レトルト処理後においてもそのバリア性能が維持される。そのため該パウチを用いることによって、輸送後あるいは長期保存後においても、内容物の変質を防ぐことが可能である。また、該パウチの一例では、透明性を良好に保持できるため、内容物の確認、劣化による内容物の変質の確認が容易である。
本発明の多層構造体を含む包装材は、輸液バッグであってもよい。輸液バッグは、輸液製剤をその内容物とする容器であり、輸液製剤を収容するための内部と外部とを隔てる隔壁としてフィルム材を備える。一例を図3に示す。図3に示されるように、輸液バッグは、内容物を収容するバッグ本体431に加え、バッグ本体431の周縁部412に口栓部材432を備えていてもよい。口栓部材432は、バッグ本体431の内部に収容された輸液類を取り出す経路として機能する。また、輸液バッグは、バッグを吊り下げるために、口栓部材432が取り付けられた周縁部412の反対側の周縁部411に吊り下げ孔433を備えていてもよい。バッグ本体431は、2枚のフィルム材410a、410bがその周縁部411、412、413、414において互いに接合されることによって形成されている。フィルム材410a、410bは、バッグ本体431の周縁部411、412、413、414に囲まれた中央部において、バッグ内部とバッグ外部とを隔てる隔壁420として機能する。本発明による包装容器としての輸液バッグは、ガスバリア性に優れ、熱水処理等の加熱処理後にもそのガスバリア性が維持される。そのため、該輸液バッグによれば、加熱殺菌処理前、加熱殺菌処理中、加熱殺菌処理後、輸送後、保存後においても、充填されている液状医薬品が変質することを防止できる。
本発明の多層構造体を含む包装材は、インモールドラベル容器であってもよい。インモールドラベル容器は、容器本体と、容器本体の表面に配置された本発明の多層ラベル(多層構造体)とを含む。容器本体は、型の内部に溶融樹脂を注入することによって形成される。容器本体の形状に特に限定はなく、カップ状、ボトル状等であってもよい。
前記した包装材を少なくとも一部に用いる本発明の製品は、真空断熱体であってもよい。真空断熱体は、被覆材と、被覆材により囲まれた内部に配置された芯材とを備える断熱体であり、芯材が配置された内部は減圧されている。真空断熱体は、ウレタンフォームからなる断熱体による断熱特性と同等の断熱特性を、より薄くより軽い断熱体で達成することを可能にする。本発明の真空断熱体は、冷蔵庫、給湯設備および炊飯器等の家電製品用の断熱材;壁部、天井部、屋根裏部および床部等に用いられる住宅用断熱材、車両屋根材、自動販売機等の断熱パネル;蓄熱機器、ヒートポンプ応用機器等の熱移動機器等に利用できる。被覆材として用いられる本発明の多層構造体は、エチレン-ビニルアルコール共重合体樹脂層および無機蒸着層を含むことも好ましく、例えば、ポリエステル層/層(Y)/ポリエステル層/層(Y)/無機蒸着層/エチレン-ビニルアルコール共重合体層/ポリオレフィン層の構成を有していてもよい。
本発明の多層構造体を含む包装材は、電子デバイスにも使用できる。本発明の電子デバイスの一例について、一部断面図を図8に示す。図8の電子デバイス40は、電子デバイス本体41と、電子デバイス本体41を封止するための封止材42と、電子デバイス本体41の表面を保護するための保護シート(多層構造体)43と、を備える。封止材42は、電子デバイス本体41の表面全体を覆う。保護シート43は、電子デバイス本体41の一方の表面上に、封止材42を介して配置されている。保護シート43が配置された表面とは反対側の表面にも、保護シート43が配置されてもよい。その場合、その反対側の表面に配置される保護シートは、保護シート43と同じものであってもよいし異なっていてもよい。保護シート43は、封止材42等の他の部材を介して電子デバイス本体41上に配置されていてもよく、電子デバイス本体41の表面に直接配置されていてもよい。
フーリエ変換赤外分光光度計を用い、減衰全反射法で測定した。測定条件は以下の通りとした。
装置:パーキンエルマー株式会社製Spectrum One
測定モード:減衰全反射法
測定領域:800~1,400cm-1
収束イオンビーム(FIB)を用いて多層構造体を切削し、断面観察用の切片を作製した。作製した切片を試料台座にカーボンテープで固定し、加速電圧30kVで30秒間白金イオンスパッタを行った。電界放出形透過型電子顕微鏡を用いて多層構造体の断面を観察し、各層の厚さを算出した。測定条件は以下の通りとした。
装置:日本電子株式会社製JEM-2100F
加速電圧:200kV
倍率:250,000倍
酸素透過量測定装置にキャリアガス側に基材の層が向くようにサンプルを取り付け、等圧法により酸素透過度を測定した。測定条件は以下の通りとした。
装置:モダンコントロールズ社製MOCON OX-TRAN2/20
温度:20℃
酸素供給側の湿度:85%RH
キャリアガス側の湿度:85%RH
酸素圧:1.0atm
キャリアガス圧力:1.0atm
水蒸気透過量測定装置にキャリアガス側に基材の層が向くようにサンプルを取り付け、等圧法により透湿度(水蒸気透過度)を測定した。測定条件は以下の通りとした。
装置:モダンコントロールズ社製MOCON PERMATRAN W3/33
温度:40℃
水蒸気供給側の湿度:90%RH
キャリアガス側の湿度:0%RH
T型剥離強度測定(幅15mmあたりの接着力)によって密着性を評価した。測定は5回行い、平均値を採用した。測定条件は以下の通りとした。
装置:株式会社島津製作所製オートグラフAGS-H
剥離速度:250mm/分
温度:23℃
湿度:50%RH
蒸留水230質量部を撹拌しながら70℃に昇温した。その蒸留水に、トリイソプロポキシアルミニウム88質量部を1時間かけて滴下し、液温を徐々に95℃まで上昇させ、発生するイソプロパノールを留出させることによって加水分解縮合を行った。得られた液体に、60質量%の硝酸水溶液4.0質量部を添加し、95℃で3時間撹拌することによって加水分解縮合物の粒子の凝集体を解膠させた。その後、その液体を、固形分濃度が酸化アルミニウム換算で10質量%になるように濃縮し、溶液を得た。こうして得られた溶液22.50質量部に対して、蒸留水54.29質量部およびメタノール18.80質量部を加え、均一になるように撹拌することによって、分散液を得た。続いて、液温を15℃に維持した状態で分散液を攪拌しながら85質量%のリン酸水溶液4.41質量部を滴下して加え、粘度が1,500mPa・sになるまで15℃で攪拌を続け、目的のコーティング液(S-1)を得た。該コーティング液(S-1)における、アルミニウム原子とリン原子とのモル比は、アルミニウム原子:リン原子=1.15:1.00であった。
窒素雰囲気下、ビニルホスホン酸10gおよび2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.025gを水5gに溶解させ、80℃で3時間攪拌した。冷却後、重合溶液に水15gを加えて希釈し、セルロース膜であるスペクトラムラボラトリーズ社製の「Spectra/Por」(登録商標)を用いてろ過した。ろ液中の水を留去した後、50℃で24時間真空乾燥することによって、重合体(BO-1)を得た。重合体(BO-1)は、ポリ(ビニルホスホン酸)である。GPC分析の結果、該重合体の数平均分子量はポリエチレングリコール換算で10,000であった。
前記合成例で得た有機リン化合物(BO-1)を67質量%、重合体(F)としてポリエチレンオキサイド(明成化学工業株式会社製「アルコックス(登録商標) L-6」;重量平均分子量60,000)を33質量%含む混合物を準備した。この混合物を、水とメタノールの混合溶媒(質量比で水:メタノール=7:3)に溶解させ、固形分濃度が1質量%のコーティング液(T-1)を得た。
前記合成例で得た有機リン化合物(BO-1)を67質量%、重合体(F)としてポリエチレンオキサイド(明成化学工業株式会社製「アルコックス(登録商標) L-100」;重量平均分子量1,000,000)を33質量%含む混合物を準備した。この混合物を、水とメタノールの混合溶媒(質量比で水:メタノール=7:3)に溶解させ、固形分濃度が1質量%のコーティング液(T-2)を得た。
コーティング液中、有機リン化合物(BO-1):重合体(F)=77:23となるようにする有機リン化合物(BO-1)および重合体(F)の量を変更する以外は、コーティング液(T-1)の製造例と同様にして、固形分濃度が1質量%のコーティング液(T-3)を得た。
コーティング液中、有機リン化合物(BO-1):重合体(F)=40:60となるようにする有機リン化合物(BO-1)および重合体(F)の量を変更する以外は、コーティング液(T-1)の製造例と同様にして、固形分濃度が1質量%のコーティング液(T-4)を得た。
コーティング液中、有機リン化合物(BO-1):重合体(F)=91:9となるようにする有機リン化合物(BO-1)および重合体(F)の量を変更する以外は、コーティング液(T-1)の製造例と同様にして、固形分濃度が1質量%のコーティング液(T-5)を得た。
前記合成例で得た有機リン化合物(BO-1)を67質量%、ポリエチレングリコール(三洋化成工業株式会社製「PEG-20000」;重量平均分子量23,000)を33質量%含む混合物を準備した。この混合物を、水とメタノールの混合溶媒(質量比で水:メタノール=7:3)に溶解させ、固形分濃度が1質量%のコーティング液(T-6)を得た。
前記合成例で得た有機リン化合物(BO-1)を67質量%、エチレンオキサイド・プロピレンオキサイドランダム共重合体(明成化学工業株式会社製「アルコックス(登録商標) EP-N;重量平均分子量100,000)を33質量%含む混合物を準備した。この混合物を、水とメタノールの混合溶媒(質量比で水:メタノール=7:3)に溶解させ、固形分濃度が1質量%のコーティング液(T-7)を得た。
前記合成例で得た有機リン化合物(BO-1)を、水とメタノールの混合溶媒(質量比で水:メタノール=7:3)に溶解させ、固形分濃度が1質量%のコーティング液(T-8)を得た。
前記合成例で得た有機リン化合物(BO-1)を67質量%および、α-シクロデキストリン(和光純薬工業株式会社製、純度:和光一級)を33質量%含む混合物を準備した。この混合物を、水とメタノールの混合溶媒(質量比で水:メタノール=7:3)に溶解させ、固形分濃度が1質量%のコーティング液(T-9)を得た。
前記合成例で得た有機リン化合物(BO-1)を67質量%および、デンプン(和光純薬工業株式会社製、溶性、純度:和光一級)を33質量%含む混合物を準備した。この混合物を、水とメタノールの混合溶媒(質量比で水:メタノール=7:3)に溶解させ、固形分濃度が1質量%のコーティング液(T-10)を得た。
1)PET12:延伸ポリエチレンレテフタレートフィルム;東レ株式会社製、「ルミラー P60」(商品名)、厚さ12μm
2)PET50:エチレン-酢酸ビニル共重合体との接着性を向上させたポリエチレンテレフタレートフィルム;東洋紡株式会社製、「シャインビーム Q1A15」(商品名)、厚さ50μm
3)ONY:延伸ナイロンフィルム;ユニチカ株式会社製、「エンブレム ONBC」(商品名)、厚さ15μm
4)CPP60:無延伸ポリプロピレンフィルム;三井化学東セロ株式会社製、「RXC-21」(商品名)、厚さ60μm
5)CPP70:無延伸ポリプロピレンフィルム;三井化学東セロ株式会社製、「RXC-21」(商品名)、厚さ70μm
6)CPP100:無延伸ポリプロピレンフィルム;三井化学東セロ株式会社製、「RXC-21」(商品名)、厚さ100μm
<実施例1-1>
まず、基材(X)として、PET12(以下、「X-1」と略称することがある)を準備した。この基材上に、乾燥後の厚さが0.3μmとなるようにバーコーターを用いてコーティング液(S-1)を塗工した。塗工後のフィルムを、110℃で5分間乾燥させた後、160℃で1分間熱処理することによって、基材上に層(Y-1-1)の前駆体層を形成した。次いで、無機リン化合物(BI)の質量WBIと有機リン化合物(BO)の質量WBOの比WBO/WBI=1.10/98.90となるようにバーコーターを用いてコーティング液(T-1)を塗工し、110℃で3分間乾燥させた。続いて、220℃で1分間熱処理することによって層(Y-1-1)を形成した。このようにして、基材(X-1)/層(Y-1-1)という構造を有する多層構造体(1-1-1)を得た。
多層構造体(1-1-2)をヒートシールすることによってパウチを作製し、水100gをパウチ内に充填した。続いて、得られたパウチに対して以下の条件でレトルト処理(熱水貯湯式)を行った。
レトルト処理装置:株式会社日阪製作所製 フレーバーエースRSC-60
温度:130℃
時間:30分間
圧力:0.21MPaG
表1に従い、有機リン化合物(BO)と無機リン化合物(BI)の質量比WBO/WBIを変更したこと以外は、実施例1-1の多層構造体(1-1-2)と同様の方法により多層構造体(1-2-2)、(1-3-2)を作製し、評価した。結果を表1に示す。実施例1-1と同様に、多層構造体(1-2-2)および(1-3-2)には、デラミネーション等の外観不良は見られなかった。
コーティング液(T-1)に代えて、コーティング液(T-2)~(T-10)を用い、表1に従って有機リン化合物(BO)と無機リン化合物(BI)の質量比WBO/WBIを変更したこと以外は、実施例1-1の多層構造体(1-1-2)と同様の方法により多層構造体(1-4-2)~(1-9-2)および(C1-1-2)~(C1-3-2)を作製し、評価した。結果を表1に示す。実施例1-1と同様に、多層構造体(1-4-2)~(1-9-2)には、デラミネーション等の外観不良は見られなかった。多層構造体(C1-1-2)~(C1-3-2)には、部分的に層間剥離が認められた。
<実施例2-1>
実施例1-1で作製した多層構造体(1-1-2)を幅400mmに裁断し、CPP層が互いに接触してヒートシールされるように縦型製袋充填包装機(オリヒロ株式会社製)に供給した。縦型製袋充填包装機によって、図1に示したような合掌貼りタイプの縦製袋充填シール袋(2-1-3)(幅160mm、長さ470mm)を作製した。縦製袋充填シール袋(2-1-3)のレトルト処理前の酸素透過度および透湿度を測定した。結果を表2に示す。縦製袋充填シール袋(2-1-3)をヒートシールすることによってパウチを作製し、水300mLをパウチ内に充填した。続いて、得られたパウチに対して、実施例1-1と同一の条件でレトルト処理(熱水貯湯式)を行った。
熱水処理後すぐに、パウチから測定用サンプルを切り出し、該サンプルの酸素透過度、透湿度、およびT型剥離強度を上記の方法で測定した。結果を表2に示す。また、該熱水処理後のサンプルにデラミネーション等の外観不良は見られなかった。
多層構造体(1-1-2)に代えて、実施例1-2~1-9および比較例1-1~1-3で作製した多層構造体(1-2-2)~(1-9-2)および(C1-1-2)~(C1-3-2)を使用したこと以外は実施例2-1の縦製袋充填シール袋(2-1-3)の作製と同様にして、縦製袋充填シール袋(2-2-3)~(2-9-3)および(C2-1-3)~(C2-3-3)を作製した。そして、得られた縦製袋充填シール袋(2-2-3)~(2-9-3)および(C2-1-3)~(C2-3-3)について、実施例2-1と同様に各項目を測定した。結果を表2に示す。
<実施例3-1>
実施例1-1で作製した多層構造体(1-1-2)を幅200mm×130mmに裁断し、CPP層が内側になるように2枚の多層構造体を重ね合わせ、長方形の3辺の外周を5mmの幅でヒートシールした。次に、幅30mmのテフロン(商標)のシートを開口部の端部に挿入し、その状態でヒートシールを行った。ヒートシール後、テフロンのシートを抜き取ることによって平パウチ(3-1-3)を作製した。平パウチ(3-1-3)のレトルト処理前の酸素透過度および透湿度を測定した。結果を表3に示す。
多層構造体(1-1-2)に代えて、実施例1-2~1-9および比較例1-1~1-3で作製した多層構造体(1-2-2)~(1-9-2)および(C1-1-2)~(C1-3-2)を使用したこと以外は実施例3-1の平パウチ(3-1-3)の作製と同様にして、平パウチ(3-2-3)~(3-9-3)および(C3-1-3)~(C3-3-3)を作製した。得られた各平パウチについて、実施例3-1と同様に各項目を測定した。結果を表3に示す。
<実施例4-1>
実施例1-1で作製した多層構造体(1-1-2)から、120mm×100mmの多層構造体を2枚切り出した。続いて、切り出した2枚の多層構造体を、CPP層が内側になるように重ね合わせ、周縁をヒートシールするとともに、ポリプロピレン製のスパウト(口栓部材)をヒートシールによって取り付けた。このようにして、図3と同様の構造を備えた輸液バッグ(4-1-3)を作製した。輸液バッグ(4-1-3)のレトルト処理前の酸素透過度および透湿度を測定した。結果を表4に示す。
多層構造体(1-1-2)に代えて、実施例1-2~1-9および比較例1-1~1-3で作製した多層構造体(1-2-2)~(1-9-2)および(C1-1-2)~(C1-3-2)を使用したこと以外は実施例4-1の輸液バック(4-1-3)の作製と同様にして、輸液バッグ(4-2-3)~(4-9-3)および(C4-1-3)~(C4-3-3)を作製した。得られた各輸液バッグについて、実施例4-1と同様に各項目を測定した。結果を表4に示す。
<実施例5-1>
実施例1-1で作製した多層構造体(1-1-2)から、直径100mmの円形の多層構造体を切り取り、容器用の蓋材とした。また、容器本体として、フランジ付きの容器(東洋製罐株式会社製、「ハイレトフレックス」(登録商標)、「HR78-84」(商品名))を準備した。この容器は、上面の直径が78mmで高さが30mmのカップ形状を有する。容器の上面は解放されており、その周縁に形成されたフランジ部の幅は6.5mmである。容器は、オレフィン層/スチール層/オレフィン層の3層の積層体によって構成されている。次に、上記容器本体に水をほぼ満杯に充填し、蓋材をフランジ部にヒートシールすることによって、蓋付き容器(5-1-3)を得た。このとき、蓋材のCPP層がフランジ部に接触するように配置して蓋材をヒートシールした。蓋付き容器(5-1-3)の蓋材から一辺の長さが4.5cmの正方形の測定用サンプルを切り出し10cm四方のアルミ箔(厚さ30μm)に開けた直径2.0cmの円の上に置き、試料とアルミ箔との間を2液硬化型エポキシ系接着剤で封止した。該サンプルを使用して、レトルト処理前の酸素透過度および透湿度を測定した。結果を表5に示す。
多層構造体(1-1-2)に代えて、実施例1-2~1-9および比較例1-1~1-3で作製した多層構造体(1-2-2)~(1-9-2)および(C1-1-2)~(C1-3-2)を使用したこと以外は実施例5-1の蓋付き容器(5-1-3)の作製と同様にして、蓋付き容器(5-2-3)~(5-9-3)および(C5-1-3)~(C5-3-3)を作製した。得られた各蓋付き容器について、実施例5-1と同様に各項目を測定した。結果を表5に示す。
<実施例6-1>
2枚のCPP100のそれぞれに、乾燥後の厚さが3μmとなるようにバーコーターを用いて2液型接着剤を塗工して乾燥させた。2液型接着剤には、三井化学株式会社製の「タケラック」(登録商標)の「A-525S」と三井化学株式会社製の「タケネート」(登録商標)の「A-50」とからなる2液反応型ポリウレタン系接着剤を用いた。次に、2枚のCPPと実施例1-1の多層構造体(1-1-1)とをラミネートし、40℃で5日間静置してエージングした。このようにして、CPP/接着層/基材(X-1)/層(Y-1-1)/接着層/CPPという構造を有する多層ラベル(6-1-2)を得た。得られた多層ラベル(6-1-2)の酸素透過度および透湿度を上述した方法によって測定した。結果を表6に示す。
多層構造体(1-1-1)に代えて、実施例1-2~1-9および比較例1-1~1-3で作製した多層構造体(1-2-1)~(1-9-1)および(C1-1-1)~(C1-3-1)を用いたこと以外は実施例6-1の多層ラベル(6-1-2)の作製と同様にして、多層ラベル(6-2-2)~(6-9-2)および(C6-1-2)~(6-3-2)を作製した。次に、実施例6-1の多層ラベル(6-1-2)に代えて(6-2-2)~(6-9-2)および(C6-1-2)~(6-3-2)を用いたこと以外は容器(6-1-3)の作製と同様にして、容器(6-2-3)~(6-9-3)および(C6-1-3)~(C6-3-3)を作製した。インモールドラベル容器(6-2-3)~(6-9-3)の外観は良好であった。一方、得られたインモールドラベル容器(C6-1-3)~(C6-3-3)には層間剥離が認められた。得られた各多層ラベルについて、実施例6-1と同様に各項目を測定した。結果を表6に示す。実施例6-2~6-7の各容器の外観は良好であった。
<実施例7-1>
実施例1-1において多層構造体(1-1-1)上の層(Y)上に接着層を形成した後、ポリエチレン樹脂(密度;0.917g/cm3、メルトフローレート;8g/10分)を厚さが20μmになるように該接着層上に295℃で押出しコートラミネートした。このようにして、基材(X―1)/層(Y-1-1)/接着層(I-1)/ポリエチレンという構造を有するラミネート体(7-1-2)を得た。上記の接着層(I-1)は、乾燥後の厚さが0.3μmとなるようにバーコーターを用いて2液型接着剤を塗工し、乾燥させることによって形成した。この2液型接着剤には、三井化学株式会社製の「タケラック」(登録商標)の「A-3210」と三井化学株式会社製の「タケネート」(登録商標)の「A-3070」とからなる2液反応型ポリウレタン系接着剤を用いた。
多層構造体(1-1-1)に代えて、実施例1-2~1-9および比較例1-1~1-3の多層構造体(1-2-1)~(1-9-1)および(C1-1-1)~(C1-3-1)を用いたこと以外は実施例7-1と同様にして、ラミネート体(7-2-2)~(7-9-2)および(C7-1-2)~(C7-3-2)を作製した。ラミネート体(C7-1-2)~(C7-3-2)には巻取時に部分的に層間剥離が認められた。得られた各ラミネート体について、実施例7-1と同様に各項目を測定した。結果を表7に示す。
<実施例8-1>
実施例3-1で作製した平パウチ(3-1-3)に1.5%エタノール水溶液500mLを充填し、レトルト処理装置(日阪製作所製、フレーバーエースRCS-60)を使用して、120℃、0.15MPaGで30分間熱水中においてレトルト処理を行った。レトルト処理後の平パウチから測定用サンプルを切り出し、該サンプルの酸素透過度を測定した。該サンプルの酸素透過度は、0.2mL/(m2・day・atm)であった。
1.5%エタノール水溶液500mLの代わりに他の充填物500mLを平パウチ(3-1-3)に充填したことを除き、実施例8-1と同様にレトルト処理を行った。そして、レトルト処理後の平パウチから測定用サンプルを切り出し、該サンプルの酸素透過度を測定した。他の充填物として、1.0%エタノール水溶液(実施例8-2)、食酢(実施例8-3)、pH2のクエン酸水溶液(実施例8-4)、食用油(実施例8-5)、ケチャップ(実施例8-6)、醤油(実施例8-7)、および、しょうがペースト(実施例8-8)を用いた。いずれの場合も、レトルト処理後のサンプルの酸素透過度は、0.2mL/(m2・day・atm)であった。さらに、実施例5-1で作製した蓋付き容器(5-1-3)にみかんシロップをほぼ満杯に充填し、実施例8-1と同様にレトルト処理を行った(実施例8-9)。レトルト処理後の蓋付き容器の蓋材から測定用のサンプルを切り出し、該サンプルの酸素透過度を測定したところ、酸素透過度は0.2mL/(m2・day・atm)であった。
<実施例9-1>
CPP60上に、実施例6-1で用いた2液型接着剤を乾燥後の厚さが3μmとなるように塗工し、乾燥させることによって接着層を形成した。このCPPと実施例1-1で作製した多層構造体(1-1-2)のPET層とを貼り合せることによって積層体(9-1-1)を得た。続いて、ONYの上に、前記の2液反応型ポリウレタン系接着剤を乾燥後の厚さが3μmとなるように塗工し、乾燥させることによって接着層を形成した。そして、このONYと積層体(9-1-1)とを貼り合わせることによって、CPP/接着層/多層構造体/接着層/ONY、という構造を有する多層構造体(9-1-2)を得た。
多層構造体(1-1-2)に代えて、実施例1-2~1-9および比較例1-1~1-3の多層構造体(1-2-2)~(1-9-2)および(C1-1-2)~(C1-3-2)を用いたこと以外は実施例9-1の真空断熱体(9-1-3)の作製と同様にして、真空断熱体(9-2-3)~(9-9-3)および(C9-1-3)~(C9-3-3)を作製した。得られた各真空断熱体について、実施例9-1と同様に各項目を測定した。結果を表8に示す。
<実施例10-1>
実施例1-1で作製した多層構造体(1-1-1)上に接着層を形成し、該接着層上にアクリル樹脂フィルム(厚さ50μm)をラミネートすることによって積層体を得た。続いて、該積層体の多層構造体(1-1-1)上に接着層を形成した後、該積層体とPET50とをラミネートした。このようにして、PET/接着層/基材(X-1)/層(Y-1-1)/接着層/アクリル樹脂フィルム、という構成を有する保護シート(10-1-2)を得た。上記2つの接着層はそれぞれ、2液型接着剤を乾燥後の厚さが3μmとなるように塗工し、乾燥させることによって形成した。2液型接着剤には、三井化学株式会社製の「タケラック」(登録商標)の「A-1102」と三井化学株式会社製の「タケネート」(登録商標)の「A-3070」とからなる2液反応型ポリウレタン系接着剤を用いた。得られた保護シート(10-1-2)の酸素透過度および透湿度を測定した。結果を表9に示す。
多層構造体(1-1-1)に代えて、実施例1-2~1-9および比較例1-1~1-3の多層構造体(1-2-1)~(1-9-1)および(C1-1-1)~(C1-3-1)を用いたこと以外は、実施例10-1の保護シート(10-1-1)の作製と同様にして、保護シート(10-2-2)~(10-9-2)および(C10-1-2)~(C10-3-2)を作製し、得られた各保護シートについて評価した。結果を表9に示す。実施例10-1と同様に、保護シート(10-2-2)~(10-9-2)には、ダンプヒート試験後もデラミネーション等の外観不良は見られなかった。一方、保護シート(C10-1-2)~(C10-3-2)は、ダンプヒート試験の結果、層間が一部剥離し、外観不良が見られた。
Claims (15)
- 基材(X)と、前記基材(X)に積層された層(Y)とを含む多層構造体であって、
前記層(Y)がアルミニウムを含む化合物(A)と有機リン化合物(BO)とエーテル結合を有し、かつグリコシド結合を有しない重合体(F)とを含む、多層構造体。 - 前記アルミニウムを含む化合物(A)が、アルミニウムを含む金属酸化物(Aa)と無機リン化合物(BI)との反応生成物(D)を含む化合物(Ab)である、請求項1に記載の多層構造体。
- 前記有機リン化合物(BO)と前記重合体(F)との質量比が30:70~99:1の範囲内である、請求項1または2に記載の多層構造体。
- 無機リン化合物(BI)の質量WBIと有機リン化合物(BO)の質量WBOの比WBO/WBIが0.01/99.99≦WBO/WBI<6.00/94.00の関係を満たす、請求項1~3のいずれか1項に記載の多層構造体。
- 前記有機リン化合物(BO)が、リン酸基、亜リン酸基、ホスホン酸基、亜ホスホン酸基、ホスフィン酸基、および亜ホスフィン酸基からなる群から選ばれる少なくとも1種の官能基を有する重合体である、請求項1~4のいずれか1項に記載の多層構造体。
- 前記重合体(F)がポリエチレングリコールまたはポリエチレンオキサイドである、請求項1~5のいずれか1項に記載の多層構造体。
- 前記基材(X)が、熱可塑性樹脂フィルムおよび紙からなる群より選ばれる少なくとも1種の層を含む、請求項1~6のいずれか1項に記載の多層構造体。
- 請求項1~7のいずれか1項に記載の多層構造体を含む、包装材。
- 押出しコートラミネートにより形成された層をさらに有する、請求項8に記載の包装材。
- 縦製袋充填シール袋、真空包装袋、パウチ、ラミネートチューブ容器、輸液バッグ、紙容器、ストリップテープ、容器用蓋材、またはインモールドラベル容器である、請求項8または9に記載の包装材。
- 請求項8~10のいずれか1項に記載の包装材が少なくとも一部に用いられている、製品。
-
製品が内容物を含み、前記内容物が芯材であり、前記製品の内部が減圧されており、真空断熱体として機能する、請求項11に記載の製品。 - 請求項1~7のいずれか1項に記載の多層構造体を含む、電子デバイスの保護シート。
- 光電変換装置、情報表示装置、または照明装置の表面を保護する保護シートである、請求項13に記載の電子デバイスの保護シート。
- 請求項13または14に記載の保護シートを有する、電子デバイス。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15872287.6A EP3238935B1 (en) | 2014-12-24 | 2015-12-24 | Multi-layer structure, packaging material and product that use same, and protective sheet for electronic devices |
CN201580070657.8A CN107000401B (zh) | 2014-12-24 | 2015-12-24 | 多层结构体、使用其得到的包装材料和制品、以及电子设备的保护片材 |
US15/538,985 US10479055B2 (en) | 2014-12-24 | 2015-12-24 | Multilayer structure, packaging material and product including same, and protective sheet for electronic device |
JP2016532009A JP6010262B1 (ja) | 2014-12-24 | 2015-12-24 | 多層構造体、それを用いた包装材および製品、ならびに電子デバイスの保護シート |
KR1020177020648A KR101962602B1 (ko) | 2014-12-24 | 2015-12-24 | 다층 구조체, 이를 사용한 포장재 및 제품, 및 전자 디바이스의 보호 시트 |
AU2015369396A AU2015369396B2 (en) | 2014-12-24 | 2015-12-24 | Multilayer structure, packaging material and product including same, and protective sheet for electronic device |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014261115 | 2014-12-24 | ||
JP2014-261115 | 2014-12-24 | ||
JP2015-024780 | 2015-02-10 | ||
JP2015024781 | 2015-02-10 | ||
JP2015-024781 | 2015-02-10 | ||
JP2015024780 | 2015-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016103716A1 true WO2016103716A1 (ja) | 2016-06-30 |
Family
ID=56149774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/006455 WO2016103716A1 (ja) | 2014-12-24 | 2015-12-24 | 多層構造体、それを用いた包装材および製品、ならびに電子デバイスの保護シート |
Country Status (8)
Country | Link |
---|---|
US (1) | US10479055B2 (ja) |
EP (1) | EP3238935B1 (ja) |
JP (1) | JP6010262B1 (ja) |
KR (1) | KR101962602B1 (ja) |
CN (1) | CN107000401B (ja) |
AU (1) | AU2015369396B2 (ja) |
TW (1) | TWI687310B (ja) |
WO (1) | WO2016103716A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018001574A (ja) * | 2016-06-30 | 2018-01-11 | 株式会社クラレ | 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイスの保護シート |
EP3351378A4 (en) * | 2015-09-17 | 2019-03-06 | Kuraray Co., Ltd. | MULTILAYER STRUCTURE, PROCESS FOR PRODUCTION THEREOF, PACKAGING MATERIAL USING THE SAME, PRODUCT AND PROTECTIVE SHEET FOR ELECTRONIC DEVICES |
JP2019170368A (ja) * | 2018-03-28 | 2019-10-10 | アイム株式会社 | 鮮度維持材の組成物、この組成物を有する鮮度維持材、梱包等資材、塗工材、この塗工材の塗工装置及びこの梱包等資材の製造方法。 |
KR20220110832A (ko) | 2019-12-10 | 2022-08-09 | 주식회사 쿠라레 | 다층 구조체 및 이의 제조방법, 이를 사용한 포장재, 진공 단열체 및 전자 디바이스의 보호 시트 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10378695B2 (en) * | 2016-05-25 | 2019-08-13 | Savsu Technologies Llc | Cryogenic storage container |
IT201600115345A1 (it) * | 2016-11-15 | 2018-05-15 | Policrom Screens S P A | Sistema di trasferimento per stampa di tecnologia elettronica su tessuto |
US11596148B2 (en) | 2017-11-17 | 2023-03-07 | Savsu Technologies, Inc. | Dry vapor cryogenic container with absorbent core |
WO2019136142A1 (en) * | 2018-01-08 | 2019-07-11 | Sigma Technologies Int'l., Llc | Recyclable paper-containing packaging with radiant barrier insulation |
DE112020006003T5 (de) * | 2019-12-06 | 2022-11-03 | Kuraray Co., Ltd. | Mehrschichtstruktur, verfahren zu deren herstellung, verpackungsmaterial und produkt, welche diese umfassen, sowie schutzfolie für eine elektronische vorrichtung |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011122036A1 (ja) * | 2010-03-30 | 2011-10-06 | 株式会社クラレ | 複合構造体、それを用いた包装材料および成形品、複合構造体の製造方法、ならびにコーティング液 |
WO2013051287A1 (ja) * | 2011-10-05 | 2013-04-11 | 株式会社クラレ | 複合構造体およびそれを用いた製品、ならびに複合構造体の製造方法 |
JP2013208793A (ja) * | 2012-03-30 | 2013-10-10 | Kuraray Co Ltd | 多層構造体およびそれを用いた製品、ならびに多層構造体の製造方法 |
-
2015
- 2015-12-24 JP JP2016532009A patent/JP6010262B1/ja active Active
- 2015-12-24 KR KR1020177020648A patent/KR101962602B1/ko active IP Right Grant
- 2015-12-24 WO PCT/JP2015/006455 patent/WO2016103716A1/ja active Application Filing
- 2015-12-24 US US15/538,985 patent/US10479055B2/en active Active
- 2015-12-24 CN CN201580070657.8A patent/CN107000401B/zh active Active
- 2015-12-24 TW TW104143611A patent/TWI687310B/zh active
- 2015-12-24 EP EP15872287.6A patent/EP3238935B1/en active Active
- 2015-12-24 AU AU2015369396A patent/AU2015369396B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011122036A1 (ja) * | 2010-03-30 | 2011-10-06 | 株式会社クラレ | 複合構造体、それを用いた包装材料および成形品、複合構造体の製造方法、ならびにコーティング液 |
WO2013051287A1 (ja) * | 2011-10-05 | 2013-04-11 | 株式会社クラレ | 複合構造体およびそれを用いた製品、ならびに複合構造体の製造方法 |
JP2013208793A (ja) * | 2012-03-30 | 2013-10-10 | Kuraray Co Ltd | 多層構造体およびそれを用いた製品、ならびに多層構造体の製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3351378A4 (en) * | 2015-09-17 | 2019-03-06 | Kuraray Co., Ltd. | MULTILAYER STRUCTURE, PROCESS FOR PRODUCTION THEREOF, PACKAGING MATERIAL USING THE SAME, PRODUCT AND PROTECTIVE SHEET FOR ELECTRONIC DEVICES |
US10647487B2 (en) | 2015-09-17 | 2020-05-12 | Kurray Co., Ltd. | Multilayer structure, method for producing same, packaging material and product including same, and protective sheet for electronic device |
JP2018001574A (ja) * | 2016-06-30 | 2018-01-11 | 株式会社クラレ | 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイスの保護シート |
JP2019170368A (ja) * | 2018-03-28 | 2019-10-10 | アイム株式会社 | 鮮度維持材の組成物、この組成物を有する鮮度維持材、梱包等資材、塗工材、この塗工材の塗工装置及びこの梱包等資材の製造方法。 |
KR20220110832A (ko) | 2019-12-10 | 2022-08-09 | 주식회사 쿠라레 | 다층 구조체 및 이의 제조방법, 이를 사용한 포장재, 진공 단열체 및 전자 디바이스의 보호 시트 |
DE112020005336T5 (de) | 2019-12-10 | 2022-08-11 | Kuraray Co., Ltd. | Mehrschichtstruktur und verfahren zu deren herstellung, verpackungsmaterial und vakuumisolator, die diese umfassen, sowie schutzfolie für elektronische vorrichtungen |
Also Published As
Publication number | Publication date |
---|---|
EP3238935A4 (en) | 2018-08-22 |
AU2015369396B2 (en) | 2019-08-15 |
JP6010262B1 (ja) | 2016-10-19 |
KR20170101274A (ko) | 2017-09-05 |
TW201630736A (zh) | 2016-09-01 |
AU2015369396A1 (en) | 2017-07-13 |
CN107000401B (zh) | 2020-06-16 |
CN107000401A (zh) | 2017-08-01 |
US20180022073A1 (en) | 2018-01-25 |
TWI687310B (zh) | 2020-03-11 |
KR101962602B1 (ko) | 2019-03-28 |
EP3238935A1 (en) | 2017-11-01 |
EP3238935B1 (en) | 2020-04-15 |
JPWO2016103716A1 (ja) | 2017-04-27 |
US10479055B2 (en) | 2019-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6010262B1 (ja) | 多層構造体、それを用いた包装材および製品、ならびに電子デバイスの保護シート | |
JP6533585B2 (ja) | 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイスの保護シート | |
JP6014790B1 (ja) | 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイスの保護シート | |
JP5957154B2 (ja) | 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイス | |
JP6735818B2 (ja) | 多層構造体およびその製造方法ならびにコーティング液、包装材、電子デバイスの保護シート | |
WO2016024381A1 (ja) | 多層構造体、それを含む包装材および該多層構造体の製造方法 | |
JP6010263B1 (ja) | 多層構造体およびそれを用いた包装材 | |
JP6630637B2 (ja) | 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイスの保護シート | |
JP2016155255A (ja) | 多層構造体およびそれを用いた包装材 | |
JP6564788B2 (ja) | 多層構造体、それを用いた包装材および製品、ならびに電子デバイスの保護シート | |
JP5993109B1 (ja) | 多層構造体、それを用いた包装材および製品、ならびに電子デバイスの保護シート | |
JP6899733B2 (ja) | 多層構造体およびその製造方法、それを用いた包装材および製品、ならびに電子デバイスの保護シート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016532009 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15872287 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15538985 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015872287 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015369396 Country of ref document: AU Date of ref document: 20151224 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177020648 Country of ref document: KR Kind code of ref document: A |