WO2016103711A1 - 蓄熱式空気調和機 - Google Patents
蓄熱式空気調和機 Download PDFInfo
- Publication number
- WO2016103711A1 WO2016103711A1 PCT/JP2015/006449 JP2015006449W WO2016103711A1 WO 2016103711 A1 WO2016103711 A1 WO 2016103711A1 JP 2015006449 W JP2015006449 W JP 2015006449W WO 2016103711 A1 WO2016103711 A1 WO 2016103711A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat storage
- compressor
- refrigerant
- heat exchanger
- heat
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0007—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
- F24F5/001—Compression cycle type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0007—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
- F24F5/0017—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/24—Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/022—Compressor control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/006—Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/009—Compression machines, plants or systems with reversible cycle not otherwise provided for indoor unit in circulation with outdoor unit in first operation mode, indoor unit in circulation with an other heat exchanger in second operation mode or outdoor unit in circulation with an other heat exchanger in third operation mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0232—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0233—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02731—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one three-way valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/24—Storage receiver heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/025—Compressor control by controlling speed
- F25B2600/0253—Compressor control by controlling speed with variable speed
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Definitions
- the present invention relates to a heat storage type air conditioner.
- Patent Document 1 discloses a heat storage type air conditioner using a heat storage medium.
- This heat storage type air conditioner has a refrigerant circuit to which a compressor, an outdoor heat exchanger, and an indoor heat exchanger are connected, and a heat storage unit that exchanges heat between the refrigerant in the refrigerant circuit and the heat storage medium.
- This air conditioner uses normal cooling operation and heating operation in which air is conditioned in the room without using heat storage, cold storage operation in which the heat storage medium is cooled to store cold energy, and cold energy stored in the heat storage medium.
- the regenerative use cooling operation for cooling the heat storage, the heat storage operation for heating the heat storage medium to store the heat, and the heat storage use heating operation for heating the room using the heat stored in the heat storage medium are selectively performed. Further, during these operations, the compressor operates to circulate the refrigerant through the refrigerant circuit, so that a refrigeration cycle is performed.
- the air conditioning capability of an air conditioner is controlled by adjusting the rotational speed of the compressor. For this reason, when the indoor air conditioning load (cooling load or heating load) is reduced during the operation of the air conditioner, the rotation speed of the compressor is reduced in order to reduce the air conditioning capacity of the air conditioner according to the indoor air conditioning load. Be lowered. Also, if the air conditioning capacity is excessive with respect to the air conditioning load even if the compressor rotation speed is set to the minimum value, an on / off operation that repeats the stop and restart of the compressor is performed. It prevents the temperature from becoming too low or too high.
- the efficiency of the compressor is highest at a specific rotation speed, and gradually decreases as the rotation speed becomes lower. For this reason, if the compressor is operated at a relatively low rotational speed, the operating efficiency of the air conditioner may be reduced. Further, if the compressor is turned on / off when the air conditioning load is small, the fluctuation range of the temperature of the indoor air becomes large, which may impair indoor comfort.
- the present invention has been made in view of such a point, and an object thereof is to suppress a decrease in efficiency of an air conditioner and a decrease in indoor comfort when the air conditioning load is small.
- a first aspect of the present disclosure includes a refrigerant circuit (11) that includes a compressor (22), an outdoor heat exchanger (23), and an indoor heat exchanger (72) to perform a refrigeration cycle, and a heat storage medium. And a heat storage section (60) for exchanging heat between the heat storage medium and the refrigerant in the refrigerant circuit (11).
- the refrigerant is condensed in the outdoor heat exchanger (23), and the indoor Simple cooling operation in which the refrigerant evaporates in the heat exchanger (72), and in the refrigerant circuit (11), the refrigerant condenses in the outdoor heat exchanger (23) and evaporates in the indoor heat exchanger (72).
- the heat storage air conditioner capable of performing a cooling / storage operation in which the heat storage medium of the heat storage unit (60) is cooled by the refrigerant is targeted, and the compressor (22) is rotated during the simple cooling operation.
- the speed falls to the predetermined lower reference value
- the operation of the regenerative air conditioner is changed from the simple cooling operation.
- An operation control unit (100) is provided that switches to the cooling and regenerative operation and increases the rotational speed of the compressor (22).
- the cooling speed of the compressor (22) decreases during the simple cooling operation and the compressor efficiency decreases
- the cooling speed is switched to the cooling storage operation and the rotation speed of the compressor (22) is increased.
- the compressor efficiency can be improved.
- the load becomes so small that on / off operation is required in simple cooling operation
- a part of the cold heat obtained by the refrigeration cycle is stored in the heat storage section (60) to turn on / off the compressor. Without performing the off operation, the cooling heat used for cooling the air in the indoor heat exchanger (72) can be reduced to a value corresponding to the cooling load in the room.
- the operation control unit (100) when the rotation speed of the compressor (22) is increased to a predetermined upper reference value during the cooling and regenerating operation, the operation control unit (100) The operation of the regenerative air conditioner is switched from the cooling regenerative operation to the simple cooling operation, and the rotational speed of the compressor (22) is reduced.
- the compressor efficiency decreases even when the rotational speed is too high, when the rotational speed of the compressor (22) reaches a predetermined upper reference value during the cooling and regenerating operation, the simple cooling operation is performed.
- a compressor can be operated at the rotational speed used as high efficiency, and the efficiency of an air conditioner can be kept high.
- the operation control unit (100) performs the compression when switching the operation of the regenerative air conditioner from the simple cooling operation to the cooling regenerator operation.
- the amount of increase in the rotational speed of the machine (22) is the same value as the minimum rotational speed of the compressor (22).
- the rotation speed of the compressor is increased by the same value as the minimum rotation speed.
- the fourth aspect of the present disclosure includes a refrigerant circuit (11) that includes a compressor (22), an outdoor heat exchanger (23), and an indoor heat exchanger (72) to perform a refrigeration cycle, and a heat storage medium. And a heat storage section (60) for exchanging heat between the heat storage medium and the refrigerant in the refrigerant circuit (11).
- the refrigerant is condensed in the indoor heat exchanger (72), and the outdoor Simple heating operation in which the refrigerant evaporates in the heat exchanger (23), and in the refrigerant circuit (11), the refrigerant condenses in the indoor heat exchanger (72) and evaporates in the outdoor heat exchanger (23).
- the heat storage type air conditioner capable of performing a heating and heat storage operation in which the heat storage medium of the heat storage unit (60) is heated by the refrigerant is targeted, and the compressor (22) is rotated during the simple heating operation.
- the speed drops to the predetermined lower reference value, the operation of the regenerative air conditioner is changed from the simple heating operation.
- An operation control unit (100) for switching to the heating and heat storage operation and increasing the rotational speed of the compressor (22) is provided.
- the operation control unit (100) when the rotation speed of the compressor (22) is increased to a predetermined upper reference value during the heating heat storage operation, the operation control unit (100) The operation of the heat storage type air conditioner is switched from the heating heat storage operation to the simple heating operation, and the rotational speed of the compressor (22) is reduced.
- the compressor efficiency decreases even when the rotational speed is too high, when the rotational speed of the compressor (22) reaches a predetermined upper reference value during the heating heat storage operation, the simple heating operation is performed. To reduce the rotational speed of the compressor (22). Thereby, a compressor can be operated at the rotational speed used as high efficiency, and the efficiency of an air conditioner can be kept high.
- the compression when the operation control unit (100) switches the operation of the regenerative air conditioner from the simple heating operation to the heating heat storage operation is the same value as the minimum rotational speed of the compressor (22).
- the rotation speed of the compressor is increased by the same value as the minimum rotation speed.
- the compressor (22) when the rotational speed of the compressor (22) decreases, the compressor (22) is switched from the simple cooling operation to the cooling / storage operation to increase the rotational speed of the compressor (22). A decrease in efficiency can be suppressed, and further, the efficiency of the entire heat storage type air conditioner can be improved.
- the compressor (22) on / off operation since the compressor (22) on / off operation is unnecessary, it is possible to ensure comfort by suppressing temperature changes in the room air, and to reduce power consumption by suppressing the power required to start the compressor (22). You can plan.
- the compressor (22) when the rotational speed of the compressor (22) is increased, the compressor (22) is switched from the cooling storage operation to the simple cooling operation to lower the rotational speed of the compressor (22). ) Can be suppressed.
- the compressor (22) when the rotational speed of the compressor (22) decreases, the compressor (22) is switched by switching from simple heating operation to heating heat storage operation to increase the rotational speed of the compressor (22). A decrease in efficiency can be suppressed.
- the compressor (22) on / off operation since the compressor (22) on / off operation is unnecessary, it is possible to ensure comfort by suppressing temperature changes in the room air, and to reduce power consumption by suppressing the power required to start the compressor (22). You can plan.
- the compressor (22) when the rotational speed of the compressor (22) increases, the compressor (22) is switched from the heating heat storage operation to the simple heating operation to lower the rotational speed of the compressor (22). ) Can be suppressed.
- FIG. 1 is a piping diagram illustrating an overall configuration of a regenerative air conditioner according to an embodiment of the present disclosure.
- FIG. 2 is a view corresponding to FIG. 1 for explaining the operation of the simple cooling operation.
- FIG. 3 is a view corresponding to FIG. 1 for explaining the operation of the cold storage operation.
- FIG. 4 is a view corresponding to FIG. 1 for explaining the operation of the use cooling operation.
- FIG. 5 is a diagram corresponding to FIG. 1 for explaining the operation of the cooling and accumulating operation.
- FIG. 6 is a diagram corresponding to FIG. 1 for explaining the operation of the simple heating operation.
- FIG. 7 is a view corresponding to FIG. 1 for explaining the operation of the heat storage operation.
- FIG. 8 is a view corresponding to FIG.
- FIG. 9 is a view corresponding to FIG. 1 for explaining the heating and heat storage operation (2).
- FIG. 10 is a view corresponding to FIG. 1 for explaining the use heating operation (1).
- FIG. 11 is a view corresponding to FIG. 1 for explaining the use heating operation (2).
- FIG. 12 is a diagram illustrating an example of the relationship between the rotational speed of the compressor and the compressor efficiency.
- FIG. 13 is a diagram for explaining the other embodiments 1 and 2, and graphs the power consumption, the efficiency of the regenerative air conditioner, and the operation time with respect to the transition of the load factor with respect to the rated capacity.
- the regenerative air conditioner (10) switches between indoor cooling and heating.
- the heat storage type air conditioner (10) stores the cold heat of the refrigerant in a heat storage medium, and uses this cold heat for cooling.
- the heat storage type air conditioner (10) stores the heat of the refrigerant in a heat storage medium and uses the heat for heating.
- the heat storage type air conditioner (10) includes an outdoor unit (20), a heat storage unit (40), and a plurality of indoor units (70).
- the outdoor unit (20) and the heat storage unit (40) are installed outdoors.
- the plurality of indoor units (70) are installed indoors. In FIG. 1, only one indoor unit (70) is shown for convenience.
- the outdoor unit (20) is provided with an outdoor circuit (21), the heat storage unit (40) is provided with an intermediate circuit (41), and the indoor unit (70) is provided with an indoor circuit (71).
- the outdoor circuit (21) and the intermediate circuit (41) are connected to each other via three connecting pipes (12, 13, 14), and the intermediate circuit (41)
- the indoor circuit (71) is connected to each other via two connecting pipes (15, 16).
- the refrigerant circuit (11) in which the filled refrigerant circulates and the refrigeration cycle is performed is configured.
- the heat storage type air conditioner (10) includes a controller (100) (operation control unit) that controls each device described later.
- the outdoor unit (20) is provided with an outdoor circuit (21) that forms part of the refrigerant circuit (11).
- a compressor (22), an outdoor heat exchanger (23), an outdoor expansion valve (24), and a four-way switching valve (25) are connected to the outdoor circuit (21).
- a first subcooling circuit (30) and an intermediate suction pipe (35) are connected to the outdoor circuit (21).
- the compressor (22) of the present embodiment is a single-stage compressor, and constitutes a compression unit that compresses and discharges refrigerant.
- a motor and a compression mechanism (not shown) are accommodated in the casing (22a).
- the compression mechanism of the present embodiment is composed of a scroll type compression mechanism.
- the compression mechanism can employ various types such as a swing piston type, a rolling piston type, a screw type, and a turbo type.
- a compression chamber is formed between the spiral fixed scroll and the movable scroll, and the refrigerant is compressed by gradually reducing the volume of the compression chamber.
- the motor of the compressor (22) is configured such that the operation frequency is variable by the inverter unit. That is, the compressor (22) is an inverter type compressor having a variable rotation speed (capacity).
- the outdoor heat exchanger (23) is composed of, for example, a cross fin and tube heat exchanger.
- An outdoor fan (26) is provided in the vicinity of the outdoor heat exchanger (23).
- the air conveyed by the outdoor fan (26) and the refrigerant flowing through the outdoor heat exchanger (23) exchange heat.
- an outdoor air temperature sensor (S1) for detecting the temperature of the outdoor air is provided. Note that the outside temperature sensor (S1) is shown only in FIG. 1 for the sake of convenience, and illustration of the other drawings is omitted.
- the outdoor expansion valve (24) is disposed between the liquid side end of the outdoor heat exchanger (23) and the connection end of the communication pipe (12).
- the outdoor expansion valve (24) is composed of, for example, an electronic expansion valve, and adjusts the flow rate of the refrigerant by changing the opening degree.
- the four-way selector valve (25) has first to fourth ports.
- the first port of the four-way switching valve (25) is connected to the discharge pipe (27) of the compressor (22), and the second port of the four-way switching valve (25) is the suction pipe (28) of the compressor (22). It is connected to (low pressure suction part).
- the third port of the four-way selector valve (25) is connected to the gas side end of the outdoor heat exchanger (23), and the fourth port of the four-way selector valve (25) is connected to the connection end of the communication pipe (14). Yes.
- the four-way switching valve (25) includes a state in which the first port and the third port communicate with each other and a state in which the second port and the fourth port communicate with each other (first state indicated by a solid line in FIG. 1), the first port and the fourth port. It is configured to be able to switch between a state in which the ports are in communication and a state in which the second port and the third port are in communication (second state indicated by a broken line in FIG. 1).
- the first subcooling circuit (30) includes a first introduction pipe (31) and a first subcooling heat exchanger (32).
- One end of the first introduction pipe (31) is connected between the outdoor expansion valve (24) and the connection end of the communication pipe (12).
- the other end of the first introduction pipe (31) is connected to the suction pipe (28) of the compressor (22). That is, the first introduction pipe (31) forms a low-pressure introduction pipe that connects the liquid line (L1) and the suction pipe (28) on the low-pressure side of the compressor (22).
- the liquid line (L1) is a flow path extending from the liquid side end of the outdoor heat exchanger (23) to the liquid side end of the indoor heat exchanger (72).
- a first pressure reducing valve (EV1) and a first heat transfer channel (33) are connected to the first introduction pipe (31) in order from one end to the other end.
- the first pressure reducing valve (EV1) is constituted by, for example, an electronic expansion valve, and adjusts the degree of supercooling of the refrigerant at the outlet of the second heat transfer channel (34) by changing the opening thereof.
- the first subcooling heat exchanger (32) constitutes a first heat exchanger that exchanges heat between the refrigerant flowing through the second heat transfer channel (34) and the refrigerant flowing through the first heat transfer channel (33).
- the second heat transfer channel (34) is provided between the outdoor expansion valve (24) and the connection end of the communication pipe (12) in the liquid line (L1) of the refrigerant circuit (11).
- the intermediate suction pipe (35) constitutes an intermediate suction portion for introducing intermediate-pressure refrigerant in the middle of compression of the compression chamber of the compressor (22).
- the start end of the intermediate suction pipe (35) is connected to the connection end of the communication pipe (13), and the end of the intermediate suction pipe (35) is connected to the compression chamber of the compression mechanism of the compressor (22).
- the intermediate suction pipe (35) has an inner pipe part (36) located inside the casing (22a) of the compressor (22).
- the internal pressure of the intermediate suction pipe (35) basically corresponds to an intermediate pressure between the high pressure and the low pressure of the refrigerant circuit (11).
- a first solenoid valve (SV1) and a check valve (CV1) are connected to the intermediate suction pipe (35) in order from the upstream side to the downstream side.
- the first solenoid valve (SV1) is an on-off valve that opens and closes the flow path.
- the check valve (CV1) allows the refrigerant to flow in the direction (arrow direction in FIG. 1) from the main heat storage channel (44) (details will be described later) to the compressor (22). ) To the main heat storage flow path (44).
- the heat storage unit (40) constitutes a relay unit interposed between the outdoor unit (20) and the indoor unit (70).
- the heat storage unit (40) is provided with an intermediate circuit (41) that forms part of the refrigerant circuit (11).
- a main liquid pipe (42), a main gas pipe (43), and a main heat storage flow path (44) are connected to the intermediate circuit (41).
- the second subcooling circuit (50) is connected to the intermediate circuit (41).
- the heat storage unit (40) is provided with a heat storage device (60).
- the main liquid pipe (42) constitutes a part of the liquid line (L1).
- the main liquid pipe (42) connects the connecting end of the connecting pipe (12) and the connecting end of the connecting pipe (15).
- a second solenoid valve (SV2) is connected to the main liquid pipe (42).
- the second solenoid valve (SV2) is an open / close valve that opens and closes the flow path.
- the main gas pipe (43) constitutes a part of the gas line (L2).
- the gas line (L2) is a flow path from the fourth port of the four-way switching valve (25) to the gas side end of the indoor heat exchanger (72).
- the main gas pipe (43) connects the connecting end of the connecting pipe (14) and the connecting end of the connecting pipe (16).
- the main heat storage channel (44) is connected between the main liquid pipe (42) and the main gas pipe (43).
- One end of the main heat storage channel (44) is connected between the connection end of the communication pipe (12) and the second solenoid valve (SV2).
- the expansion valve (45), the heat storage side refrigerant flow path (63b), and the fourth electromagnetic valve (SV4) are connected.
- the third solenoid valve (SV3) and the fourth solenoid valve (SV4) are open / close valves that open and close the flow path.
- the heat storage expansion valve (45) is composed of, for example, an electronic expansion valve, and adjusts the pressure of the refrigerant by changing its opening.
- a first bypass pipe (44a) that bypasses the heat storage expansion valve (45) is connected to the main heat storage flow path (44).
- a fifth electromagnetic valve (SV5) is connected to the first bypass pipe (44a) in parallel with the heat storage expansion valve (45).
- the fifth solenoid valve (SV5) is an open / close valve that opens and closes the flow path.
- a pressure relief valve (RV) is connected to the main heat storage flow path (44) in parallel with the heat storage expansion valve (45).
- the second subcooling circuit (50) has a second introduction pipe (51) and a second subcooling heat exchanger (52).
- One end of the second introduction pipe (51) is connected between the second solenoid valve (SV2) and the connection end of the communication pipe (15).
- the other end of the second introduction pipe (51) is connected to the main gas pipe (43).
- the connection part of the second introduction pipe (51) is located between the connection part of the main heat storage channel (44) and the connection end of the communication pipe (16).
- a second pressure reducing valve (EV2) and a third heat transfer channel (53) are connected to the second introduction pipe (51) in order from one end to the other end.
- the second pressure reducing valve (EV2) is constituted by, for example, an electronic expansion valve, and adjusts the degree of supercooling of the refrigerant at the outlet of the fourth heat transfer channel (54) by changing the opening thereof.
- the second subcooling heat exchanger (52) exchanges heat between the refrigerant flowing through the fourth heat transfer channel (54) and the refrigerant flowing through the third heat transfer channel (53).
- a 4th heat-transfer channel (54) is provided between the connection ends of a 2nd solenoid valve (SV2) and connecting piping (15) among main liquid pipes (42).
- the second subcooling circuit (50) constitutes a supercooler for preventing the refrigerant flowing through the communication pipe (15) from being vaporized and flushed in the use cooling operation and the use cold storage operation, which will be described in detail later.
- An intermediate relay pipe (46), a first branch pipe (47), a second branch pipe (48), and a third branch pipe (49) are connected to the intermediate circuit (41).
- One end of the intermediate relay pipe (46) is connected between the third solenoid valve (SV3) and the preheating side refrigerant flow path (64b) in the main heat storage flow path (44).
- the other end of the intermediate relay pipe (46) is connected to the intermediate suction pipe (35) via the connection pipe (13).
- One end of the first branch pipe (47) is connected between the heat storage side refrigerant flow path (63b) and the fourth electromagnetic valve (SV4) in the main heat storage flow path (44).
- the other end of the first branch pipe (47) is connected between the connection portion of the main heat storage flow path (44) in the main gas pipe (43) and the connection portion of the second introduction pipe (51).
- a third pressure reducing valve (EV3) is connected to the first branch pipe (47).
- the third pressure reducing valve (EV3) is composed of, for example, an electronic expansion valve, and adjusts the pressure of the refrigerant by changing its opening degree.
- the third pressure reducing valve (EV3) is a head that depends on the pressure loss of the communication pipe (16) and the installation conditions of the indoor unit (70) and the outdoor unit (20) when the indoor heat exchanger (72) is an evaporator. Due to the difference, the opening degree is adjusted so that the pressure in the heat storage heat exchanger (63) does not become excessively low due to the difference in evaporation pressure between the indoor heat exchanger (72) and the gas pipe (41). Is done.
- the second branch pipe (48) and the third branch pipe (49) are connected in parallel between the main liquid pipe (42) and the main heat storage flow path (44).
- One ends of the second branch pipe (48) and the third branch pipe (49) are connected between the heat storage side refrigerant flow path (63b) and the fourth solenoid valve (SV4) in the main heat storage flow path (44).
- the other ends of the second branch pipe (48) and the third branch pipe (49) are connected between the second solenoid valve (SV2) in the main liquid pipe (42) and the connection portion of the second introduction pipe (51). Is done.
- a fourth pressure reducing valve (EV4) is connected to the second branch pipe (48).
- the fourth pressure reducing valve (EV4) is constituted by, for example, an electronic expansion valve, and adjusts the pressure of the refrigerant by changing its opening degree.
- a sixth solenoid valve (SV6) is connected to the third branch pipe (49).
- the sixth solenoid valve (SV6) is an open / close valve that opens and closes the flow path.
- the heat storage device (60) constitutes a heat storage unit that exchanges heat between the refrigerant of the refrigerant circuit (11) and the heat storage medium.
- the heat storage device (60) includes a heat storage circuit (61) and a heat storage tank (62) connected to the heat storage circuit (61).
- the heat storage device (60) includes a heat storage heat exchanger (63) and a preheating heat exchanger (64).
- the heat storage circuit (61) is a closed circuit in which the filled heat storage medium circulates.
- the heat storage tank (62) is a hollow cylindrical container.
- the heat storage tank (62) may be an open container.
- a heat storage medium is stored in the heat storage tank (62).
- An outflow pipe (65) (outflow portion) through which the heat storage medium in the heat storage tank (62) flows out is connected to the upper part of the heat storage tank (62).
- An inflow pipe (66) (inflow part) for allowing a heat storage medium outside the heat storage tank (62) to flow into the heat storage tank (62) is connected to the lower part of the heat storage tank (62). That is, in the heat storage tank (62), the connection part of the outflow pipe (65) is located higher than the connection part of the W inflow pipe (66).
- the preheat side heat storage channel (64a), the pump (67), and the heat storage side heat storage channel (63a) are connected to the heat storage circuit (61) in order from the outflow pipe (65) to the inflow pipe (66). Yes.
- the preheating heat exchanger (64) exchanges heat between the heat storage medium flowing through the preheating side heat storage channel (64a) and the refrigerant flowing through the preheating side refrigerant channel (64b).
- the heat storage heat exchanger (63) exchanges heat between the heat storage medium flowing through the heat storage side heat storage flow path (63a) and the refrigerant flowing through the heat storage side refrigerant flow path (63b).
- the pump (67) circulates the heat storage medium of the heat storage circuit (61).
- a heat storage medium temperature sensor (S2) heat storage medium temperature detection unit
- the heat storage medium temperature sensor (S2) is provided at a position for detecting the temperature of the heat storage medium in the inflow pipe (66).
- the heat storage medium temperature sensor (S2) also serves as an accumulation detection unit that detects the start of accumulation of clathrate hydrate crystals in the heat storage circuit (61).
- the position of the heat storage medium temperature sensor (S2) is not limited to this, and may be provided at another position of the heat storage circuit (61). Note that the heat storage medium temperature sensor (S2) is shown only in FIG. 1 for the sake of convenience, and the other figures are omitted.
- Heat storage medium The heat storage medium filled in the heat storage circuit (61) will be described in detail.
- a heat storage material in which clathrate hydrate is generated by cooling that is, a fluid heat storage material is employed.
- Specific examples of the heat storage medium include tetra nbutylammonium bromide (TBAB) aqueous solution, tetramethylolethane (TME) aqueous solution, paraffinic slurry and the like containing tetra nbutylammonium bromide. .
- an aqueous solution of tetra-n-butylammonium bromide maintains the state of the aqueous solution even in a supercooled state in which the temperature of the aqueous solution is lower than the hydrate formation temperature after being stably cooled.
- the supercooled solution transitions to a solution containing clathrate hydrate (ie, slurry). That is, the aqueous solution of tetra-n-butylammonium bromide eliminates the supercooled state, and clathrate hydrate (hydrate crystal) composed of tetra-n-butylammonium bromide and water molecules is generated, and the viscosity is relatively low. It becomes a high slurry state.
- the supercooled state refers to a state where the clathrate hydrate is not generated and the state of the solution is maintained even when the heat storage medium becomes a temperature lower than the hydrate generation temperature.
- the aqueous solution of tetra-n-butylammonium bromide in a slurry state is heated, the temperature of the aqueous solution becomes higher than the hydrate formation temperature, the clathrate hydrate melts and the fluidity is relatively high. It becomes a liquid state (solution).
- a tetra nbutylammonium bromide aqueous solution containing tetra nbutylammonium bromide is employed as the heat storage medium.
- the heat storage medium is preferably a medium having a concentration near the harmonic concentration.
- the harmonic concentration is about 40%.
- the hydrate formation temperature of the aqueous solution of tetra-n-butylammonium bromide is about 12 ° C.
- the indoor units (70) are each provided with an indoor circuit (71) that forms part of the refrigerant circuit (11).
- the plurality of indoor circuits (71) are connected in parallel between the communication pipe (15) (liquid pipe) and the communication pipe (16) (gas pipe).
- the plurality of indoor circuits (71) and the main heat storage flow path (44) described above are connected in parallel between the liquid line (L1) and the gas line (L2).
- An indoor heat exchanger (72) and an indoor expansion valve (73) are connected to each indoor circuit (71) in order from the gas side end to the liquid side end.
- the indoor heat exchanger (72) is composed of, for example, a cross fin and tube heat exchanger.
- An indoor fan (74) is provided in the vicinity of the indoor heat exchanger (72). In the indoor heat exchanger (72), the air conveyed by the indoor fan (74) and the refrigerant flowing through the outdoor heat exchanger (23) exchange heat.
- the indoor circuit (71) is provided with a refrigerant temperature sensor (S3) at the liquid side end of the indoor heat exchanger (72).
- the refrigerant temperature sensor (S3) satisfies a condition indicating that the temperature of the refrigerant condensed in the indoor heat exchanger (72) is high or a condition indicating that the temperature of the refrigerant is low in the simple heating operation described later in detail. Used to determine whether or not to do.
- an air temperature detection sensor that detects the temperature of the blown air that has exchanged heat with the refrigerant in the indoor heat exchanger (72) may be used. Note that the refrigerant temperature sensor (S3) is shown only in FIG. 1 for convenience, and illustration of other drawings is omitted.
- the indoor expansion valve (73) is disposed between the liquid side end of the indoor heat exchanger (72) and the connection end of the communication pipe (15).
- the indoor expansion valve (73) is composed of, for example, an electronic expansion valve, and adjusts the flow rate of the refrigerant by changing the opening thereof.
- the controller (100) constitutes an operation control unit that controls each device. Specifically, the controller (100) switches ON / OFF of the compressor (22), switches the state of the four-way switching valve (25), switches opening / closing of each solenoid valve (SV1-6), and each expansion valve ( 24, 45, 73) and opening of the pressure reducing valve (EV1-4), ON / OFF switching of each fan (26, 74), ON / OFF switching of the pump (67), and the like.
- the regenerative air conditioner (10) is provided with various sensors (not shown). The controller (100) controls each device described above based on these detection values.
- the operation of the regenerative air conditioner (10) according to this embodiment will be described.
- the heat storage type air conditioner (10) performs simple cooling operation, cold storage operation, use cooling operation, cooling cooling storage operation, simple heating operation, heat storage operation, heating heat storage operation, and use heating operation.
- the controller (100) controls each device so as to switch each of these operations.
- the compressor (22), the outdoor fan (26), and the indoor fan (74) operate.
- the heat storage device (60) does not operate because the pump (67) is stopped.
- the outdoor heat exchanger (23) serves as a condenser
- the first subcooling heat exchanger (32) serves as a supercooler
- the indoor heat exchanger (72) serves as an evaporator.
- a refrigeration cycle is performed.
- the low pressure side gas line (L2) communicates with the main heat storage flow path (44). Thereby, the liquid pool in the main heat storage flow path (44) can be avoided.
- the refrigerant discharged from the compressor (22) is condensed in the outdoor heat exchanger (23). Most of the condensed refrigerant flows through the second heat transfer channel (34), and the rest flows through the first heat transfer channel (33) after being depressurized by the first pressure reducing valve (EV1).
- the refrigerant in the second heat transfer channel (34) is cooled by the refrigerant in the first heat transfer channel (33).
- the refrigerant flowing into the liquid line (L1) is depressurized by the indoor expansion valve (73) and then evaporated by the indoor heat exchanger (72).
- the refrigerant flowing through the gas line (L2) joins with the refrigerant flowing into the first introduction pipe (31) and is sucked into the compressor (22).
- the heat storage device (60) In the cold storage operation, the heat storage device (60) is operated, and cold heat is stored in the heat storage medium of the heat storage tank (62).
- the four-way switching valve (25) is in the first state, and the second solenoid valve (SV2), the third solenoid valve (SV6) of the first solenoid valve (SV1) to the sixth solenoid valve (SV6) SV3) and 4th solenoid valve (SV4) are opened, and the rest are closed.
- the first pressure reducing valve (EV1), the second pressure reducing valve (EV2), the third pressure reducing valve (EV3), and the fourth pressure reducing valve (EV4) are fully closed, and the outdoor expansion valve (24) is fully opened to store heat.
- the opening degree of the expansion valve (45) is appropriately adjusted.
- the compressor (22) and the outdoor fan (26) operate, and the indoor fan (74) stops.
- the heat storage device (60) operates when the pump (67) is in operation.
- the outdoor heat exchanger (23) serves as a condenser
- the preheating heat exchanger (64) serves as a radiator (refrigerant cooler)
- the heat storage heat exchanger (63) evaporates.
- a refrigeration cycle is performed.
- surplus refrigerant can be held in the flow path extending from the high-pressure liquid line (L1) to the indoor unit (70).
- the refrigerant discharged from the compressor (22) is condensed in the outdoor heat exchanger (23).
- the condensed refrigerant flows through the preheating side refrigerant flow path (64b) of the main heat storage flow path (44).
- the preheating heat exchanger (64) the heat storage medium is heated by the refrigerant.
- the clathrate hydrate core (fine crystals) flowing out of the heat storage tank (62) is melted.
- the refrigerant cooled in the preheating side refrigerant flow path (64b) is depressurized by the preheating heat exchanger (64) and then flows through the heat storage side refrigerant flow path (63b).
- the heat storage medium is cooled by the refrigerant and evaporated.
- the refrigerant flowing into the gas line (L2) from the main heat storage channel (44) is sucked into the compressor (22).
- the heat storage tank (62) stores the heat storage medium cooled by the heat storage heat exchanger (63).
- the heat storage device (60) is operated, and the cold energy of the heat storage medium stored in the heat storage tank (62) is used for indoor cooling.
- the four-way switching valve (25) is set to the first state among the first solenoid valve (SV1) to the sixth solenoid valve (SV6), the third solenoid valve (SV3), the fifth solenoid valve ( SV5) and the sixth solenoid valve (SV6) are opened, and the rest are closed.
- the first pressure reducing valve (EV1) and the fourth pressure reducing valve (EV4) are fully closed, the outdoor expansion valve (24) is fully opened, and the opening degrees of the second pressure reducing valve (EV2) and the indoor expansion valve (73) are Adjust as appropriate.
- the compressor (22), the outdoor fan (26), and the indoor fan (74) operate.
- the heat storage device (60) operates when the pump (67) is in operation.
- the outdoor heat exchanger (23) is a condenser, and the preheating heat exchanger (64), the heat storage heat exchanger (63), and the second subcooling heat exchanger ( A refrigeration cycle is performed in which 52) becomes a radiator (refrigerant cooler) and the indoor heat exchanger (72) becomes an evaporator.
- the refrigerant discharged from the compressor (22) is condensed in the outdoor heat exchanger (23).
- the condensed refrigerant is cooled by the preheat heat exchanger (64) of the main heat storage flow path (44), passes through the first bypass pipe (44a), and further cooled by the heat storage heat exchanger (63).
- the Most of the refrigerant flowing through the main heat storage flow path (44) and the third branch pipe (49) and flowing into the liquid line (L1) flows through the fourth heat transfer flow path (54), and the rest flows through the second pressure reducing valve ( After being depressurized by EV2), it flows through the third heat transfer channel (53).
- the refrigerant flowing through the fourth heat transfer channel (54) is cooled by the refrigerant in the third heat transfer channel (53).
- the refrigerant cooled by the second subcooling heat exchanger (52) is depressurized by the indoor expansion valve (73) and then evaporated by the indoor heat exchanger (72).
- the refrigerant flowing through the gas line (L2) merges with the refrigerant that has flowed out of the second introduction pipe (51), and is sucked into the compressor (22).
- the heat storage device (60) operates to store the cold energy in the heat storage medium, and the indoor unit (70) cools the room.
- the four-way switching valve (25) is in the first state, and the second solenoid valve (SV2) and the third solenoid valve among the first solenoid valve (SV1) to the sixth solenoid valve (SV6). (SV3) and the fourth solenoid valve (SV4) are opened, and the rest are closed.
- the first pressure reducing valve (EV1), the third pressure reducing valve (EV3), and the fourth pressure reducing valve (EV4) are fully closed, the outdoor expansion valve (24) is fully open, the second pressure reducing valve (EV2), and heat storage
- the opening degrees of the expansion valve (45) and the indoor expansion valve (73) are appropriately adjusted.
- the compressor (22), the outdoor fan (26) and the indoor fan (74) operate.
- the heat storage device (60) operates when the pump (67) is in operation.
- the outdoor heat exchanger (23) serves as a condenser
- the preheating heat exchanger (64) and the second subcooling heat exchanger (52) serve as a radiator (refrigerant cooler).
- the heat storage heat exchanger (63) and the indoor heat exchanger (72) serve as an evaporator.
- the refrigerant discharged from the compressor (22) is condensed in the outdoor heat exchanger (23).
- the condensed refrigerant flows through the second heat transfer channel (34) and is divided into the main heat storage channel (44) and the main liquid pipe (42).
- the refrigerant in the main heat storage flow path (44) is cooled by the heat storage medium of the preheating heat exchanger (64) and depressurized by the heat storage expansion valve (45).
- Most of the refrigerant in the main liquid pipe (42) flows through the fourth heat transfer channel (54), and the rest flows through the third heat transfer channel (53) after being depressurized by the second pressure reducing valve (EV2).
- the refrigerant flowing through the fourth heat transfer channel (54) is cooled by the refrigerant in the third heat transfer channel (53).
- the refrigerant cooled by the second subcooling heat exchanger (52) is depressurized by the indoor expansion valve (73) and then evaporated by the indoor heat exchanger (72).
- the refrigerant flowing through the gas line (L2) merges with the refrigerant that has flowed out of the second introduction pipe (51), and is sucked into the compressor (22).
- the compressor (22), the outdoor fan (26), and the indoor fan (74) operate.
- the heat storage device (60) does not operate because the pump (67) is stopped.
- a refrigeration cycle is performed in which the indoor heat exchanger (72) serves as a condenser and the outdoor heat exchanger (23) serves as an evaporator.
- the indoor expansion valve (73) controls the degree of supercooling of the outlet refrigerant of the indoor heat exchanger (72).
- the refrigerant discharged from the compressor (22) flows through the gas line (L2) and condenses in the indoor heat exchanger (72).
- the refrigerant flowing out to the liquid line (L1) is decompressed by the outdoor expansion valve (24), evaporated by the outdoor heat exchanger (23), and sucked into the compressor (22).
- the heat storage medium storing the heat is stored in the heat storage tank (62).
- the four-way switching valve (25) is in the second state, and the third solenoid valve (SV3), the fourth solenoid valve (SV6) among the first solenoid valve (SV1) to the sixth solenoid valve (SV6) SV4) and the fifth solenoid valve (SV5) are opened, and the rest are closed.
- the first pressure reducing valve (EV1), the second pressure reducing valve (EV2), the third pressure reducing valve (EV3), the fourth pressure reducing valve (EV4), and the indoor expansion valve (73) are fully closed, and the outdoor expansion valve (24 ) Is adjusted as appropriate.
- the compressor (22) and the outdoor fan (26) operate, and the indoor fan (74) stops.
- the heat storage device (60) operates when the pump (67) is in operation.
- a refrigeration cycle is performed in which the heat storage heat exchanger (63) and the preheating heat exchanger (64) serve as a condenser and the outdoor heat exchanger (23) serves as an evaporator.
- the refrigerant discharged from the compressor (22) flows through the gas line (L2), dissipates heat in the heat storage heat exchanger (63), passes through the second bypass pipe (44a), and then passes through the second heat exchanger (44a). 64) further dissipate heat.
- the refrigerant flowing out of the main heat storage flow path (44) is decompressed by the outdoor expansion valve (24), evaporated by the outdoor heat exchanger (23), and sucked into the compressor (22).
- the heat storage tank (62) stores the heat storage medium heated by the heat storage heat exchanger (63) and the preheating heat exchanger (64).
- Heating heat storage operation In the heating and heat storage operation, the heat storage device (60) operates to store the heat in the heat storage tank (62), and the indoor unit (70) heats the room.
- the heating heat storage operation is roughly classified into a first heating heat storage operation (hereinafter referred to as heating heat storage operation (1)) and a second heating heat storage operation (hereinafter referred to as heating heat storage operation (2)).
- the four-way switching valve (25) is set to the second state, and the third solenoid valve (SV3) of the first solenoid valve (SV1) to the sixth solenoid valve (SV6), 5 solenoid valve (SV5) and 6th solenoid valve (SV6) are opened, and the rest are closed.
- the first pressure reducing valve (EV1), the second pressure reducing valve (EV2), the third pressure reducing valve (EV3), the fourth pressure reducing valve (EV4), and the heat storage expansion valve (45) are fully closed, and the indoor expansion valve ( 73) and the opening degree of the outdoor expansion valve (24) are appropriately adjusted.
- the compressor (22), the outdoor fan (26), and the indoor fan (74) operate.
- the heat storage device (60) operates when the pump (67) is in operation.
- the indoor heat exchanger (72) serves as a condenser
- the heat storage heat exchanger (63) and the preheating heat exchanger (64) serve as a radiator
- the outdoor heat exchanger (23 ) Is used as an evaporator.
- the refrigerant discharged from the compressor (22) flows through the gas line (L2), and the entire amount flows through the indoor heat exchanger (72).
- the indoor heat exchanger (72) the refrigerant dissipates heat to the indoor air and condenses.
- the entire amount of the refrigerant condensed in the indoor heat exchanger (72) flows through the third branch pipe (49), and then flows through the heat storage heat exchanger (63).
- the heat storage heat exchanger (63) the refrigerant dissipates heat to the heat storage medium, and the heat storage medium is heated.
- the refrigerant that has flowed through the heat storage heat exchanger (63) further dissipates heat to the heat storage medium in the preheating heat exchanger (64), and flows through the liquid line (L1). This refrigerant evaporates in the outdoor heat exchanger (23) and is sucked into the compressor (22).
- the four-way switching valve (25) is set to the second state, and the second solenoid valve (SV2), the second solenoid valve (SV2) among the first solenoid valve (SV1) to the sixth solenoid valve (SV6) 3 solenoid valve (SV3), 4th solenoid valve (SV4), 5th solenoid valve (SV5) are opened, and the rest are closed.
- the first pressure reducing valve (EV1), the second pressure reducing valve (EV2), the third pressure reducing valve (EV3), and the fourth pressure reducing valve (EV4) are fully closed, and the indoor expansion valve (73) and the outdoor expansion valve (24 ) Is adjusted as appropriate.
- the compressor (22), the outdoor fan (26), and the indoor fan (74) operate.
- the heat storage device (60) operates when the pump (67) is in operation.
- a refrigeration cycle is performed in which the indoor heat exchanger (72) and the heat storage heat exchanger (63) serve as a condenser and the outdoor heat exchanger (23) serves as an evaporator.
- the refrigerant discharged from the compressor (22) flows through the gas line (L2), a part flows through the indoor heat exchanger (72), and the rest flows through the main heat storage channel (44).
- the indoor heat exchanger (72) the refrigerant dissipates heat to the indoor air and condenses.
- the refrigerant condensed in the indoor heat exchanger (72) flows through the main liquid pipe (42).
- the refrigerant in the main heat storage flow path (44) dissipates heat to the heat storage medium and condenses in the heat storage heat exchanger (63). Since this refrigerant is a high-temperature and high-pressure gas refrigerant, the temperature difference between the refrigerant and the heat storage medium becomes large, and heat can be reliably imparted to the heat storage medium.
- the refrigerant condensed in the heat storage heat exchanger (63) merges with the refrigerant flowing through the main liquid pipe (42) and is decompressed by the outdoor expansion valve (24). The decompressed refrigerant evaporates in the outdoor heat exchanger (23) and is sucked into the compressor (22).
- the high-temperature and high-pressure gas refrigerant discharged from the compressor (22) is parallel to both the indoor heat exchanger (72) and the heat storage heat exchanger (63). To condense on each. As a result, it is possible to reliably impart warm heat to the heat storage medium while continuing indoor heating.
- Utilization heating operation In the utilization heating operation, the heat storage device (60) is operated, and the heat of the heat storage medium stored in the heat storage tank (62) is used as the evaporation heat of the low-pressure refrigerant. Thereby, reduction of heating load is achieved.
- the utilization heating operation is roughly classified into a first utilization heating operation (hereinafter referred to as utilization heating operation (1)) and a second utilization heating operation (hereinafter referred to as utilization heating operation (2)).
- the utilization heating operation (1) is a difference (MP ⁇ LP) between the pressure (MP) of the refrigerant evaporating in the heat storage heat exchanger (63) and the pressure (LP) of the refrigerant evaporating in the outdoor heat exchanger (23). ) Is executed under such a condition that becomes relatively small. For example, this condition corresponds to a case in which the temperature of the heat storage medium of the heat storage circuit (61) of the heat storage device (60) is relatively low while the outside air temperature is relatively high in winter.
- the four-way switching valve (25) is in the second state, and the third solenoid valve (SV3) and the sixth solenoid valve (SV6) out of the first solenoid valve (SV1) to the sixth solenoid valve (SV6).
- 5 Solenoid valve (SV5) is opened and the rest is closed.
- the first pressure reducing valve (EV1) and the outdoor expansion valve (24) are fully opened, the second pressure reducing valve (EV2) and the third pressure reducing valve (EV3) are fully closed, the fourth pressure reducing valve (EV4) and the indoor expansion valve
- the opening degree of the valve (73) is adjusted as appropriate.
- the compressor (22) and the indoor fan (74) operate, and the outdoor fan (26) stops.
- the heat storage device (60) operates when the pump (67) is in operation.
- a refrigeration cycle is performed in which the indoor heat exchanger (72) serves as a condenser and the heat storage heat exchanger (63) serves as an evaporator.
- the refrigerant discharged from the compressor (22) flows through the gas line (L2) and condenses in the indoor heat exchanger (72).
- the entire amount of the refrigerant that has flowed out to the liquid line (L1) flows into the second branch pipe (48).
- the refrigerant is decompressed to a low pressure by the fourth pressure reducing valve (EV4).
- the decompressed refrigerant flows through the heat storage side refrigerant flow path (63b) of the heat storage heat exchanger (63), absorbs heat from the heat storage medium, and evaporates.
- the refrigerant evaporated in the heat storage heat exchanger (63) passes through the first bypass pipe (44a), flows through the preheating side refrigerant flow path (64b) of the preheating heat exchanger (64), and absorbs heat from the heat storage medium. Evaporate further.
- This refrigerant flows through the main heat storage channel (44) and is divided into the first introduction pipe (31) and the outdoor heat exchanger (23). These refrigerants merge through the suction pipe (28) and are sucked into the compressor (22). For this reason, the pressure loss of a refrigerant
- coolant can be reduced and the motive power of a compressor (22) can be reduced.
- the refrigerant flowing through the first introduction pipe (31) flows through the first subcooling heat exchanger (32).
- the first subcooling heat exchanger (32) is not an air heat exchanger, heat loss is also reduced. Few. Moreover, since the outdoor fan (26) is in a stopped state, even if the refrigerant flows through the outdoor heat exchanger (23), there is little heat loss. Thus, in use heating operation (1), the pressure loss and heat loss of the low-pressure gas refrigerant can be reduced. Further, since the first introduction pipe (31) also serves as a low-pressure injection pipe for supercooling the refrigerant, the number of pipes can be reduced.
- the outdoor expansion valve (24) of the first pressure reducing valve (EV1) and the outdoor expansion valve (24) is fully closed, and the low pressure gas refrigerant is supplied to the first introduction pipe (31). You can only flush it.
- the first pressure reducing valve (EV1) of the first pressure reducing valve (EV1) and the outdoor expansion valve (24) may be fully closed, and the low pressure gas refrigerant may flow only to the outdoor heat exchanger (23).
- the utilization heating operation (2) is the difference between the pressure (MP) of the refrigerant evaporating in the heat storage heat exchanger (63) and the pressure (LP) of the refrigerant evaporating in the outdoor heat exchanger (23) (MP-LP ) Is performed under conditions that are relatively large. For example, in the winter season, the outside air temperature is relatively low, while the temperature of the heat storage medium in the heat storage circuit (61) of the heat storage device (60) is relatively high.
- the four-way switching valve (25) is in the second state, and the first solenoid valve (SV1) to the sixth solenoid valve (SV6) are switched from the first solenoid valve (SV1) to the sixth solenoid valve (SV6).
- 2 solenoid valve (SV2) and 5th solenoid valve (SV5) are opened, and the rest are closed.
- the first pressure reducing valve (EV1), the second pressure reducing valve (EV2), and the third pressure reducing valve (EV3) are fully closed, and the fourth pressure reducing valve (EV4), the indoor expansion valve (73), and the outdoor expansion valve ( The opening degree of 24) is adjusted as appropriate.
- the compressor (22), the outdoor fan (26), and the indoor fan (74) operate.
- the heat storage device (60) operates when the pump (67) is in operation.
- the indoor heat exchanger (72) becomes a condenser, and the heat storage heat exchanger (63), the preheating heat exchanger (64), and the outdoor heat exchanger (23) A refrigeration cycle that serves as an evaporator is performed.
- the refrigerant discharged from the compressor (22) flows through the gas line (L2) and condenses in the indoor heat exchanger (72).
- the refrigerant flowing out to the liquid line (L1) is divided into the second branch pipe (48) and the main liquid pipe (42).
- the refrigerant in the second branch pipe (48) is reduced to an intermediate pressure (intermediate pressure between the high pressure and low pressure of the refrigerant circuit (11)) by the fourth pressure reducing valve (EV4), and the main heat storage flow path.
- the refrigerant in the main heat storage flow path (44) is heated and evaporated by the heat storage heat exchanger (63) and the preheating heat exchanger (64).
- the evaporated refrigerant flows through the intermediate relay pipe (46), the communication pipe (13), and the intermediate suction pipe (35) in this order, and is sucked into the compression chamber in the middle of compression of the compressor (22).
- the refrigerant in the main liquid pipe (42) is depressurized by the outdoor expansion valve (24), evaporated by the outdoor heat exchanger (23), and sucked into the suction pipe (28) of the compressor (22).
- the low-pressure refrigerant sucked from the suction pipe (28) is compressed to the intermediate pressure, and then mixed with the intermediate-pressure refrigerant sucked from the intermediate suction pipe (35) to reach the high pressure. Compressed.
- the heat storage heat exchanger (63) The pressure difference (MP-LP) between the refrigerant evaporation pressure MP and the refrigerant evaporation pressure LP in the outdoor heat exchanger (23) becomes relatively large. For this reason, during the compression of the compression chamber of the compressor (22), it is possible to suppress the internal pressure of the compression chamber from becoming larger than the pressure of the refrigerant introduced from the intermediate suction pipe (35), and the refrigerant in the intermediate suction pipe (35) Can be reliably introduced into the compression chamber.
- the intermediate suction pipe (35) is provided with a check valve (CV1) that prohibits backflow from the compressor (22) to the main heat storage flow path (44). For this reason, even if the pressure MP of the refrigerant flowing out of the intermediate suction pipe (35) becomes lower than the internal pressure of the compression chamber in the middle of compression, the refrigerant in the compression chamber flows back through the intermediate suction pipe (35). There is no.
- the check valve (CV1) may be provided in the inner pipe portion (36) located in the casing (22a) of the compressor (22) in the intermediate suction pipe (35).
- the refrigerant when the refrigerant is compressed under a condition where the MP-LP is relatively large, the total work required to compress the refrigerant to a high pressure by the compressor (22) is reduced. As a result, in the use heating operation (2), it is possible to perform heating with high energy saving performance while collecting the heat of the heat storage medium in the refrigerant.
- the controller (100) calculates the outside temperature To detected by the outside temperature sensor (S1) (see FIG. 1) and the predetermined temperature Ta. Compare. When the detected outside temperature To is equal to or higher than the predetermined temperature Ta, it is determined that the first condition is satisfied, and the first operation is executed.
- the first operation is that when the temperature of the heat storage medium is higher than the hydrate generation temperature in the use heating operation (1) or the use heating operation (2), the heat storage medium operates the heat storage heat exchanger (63). It is the driving
- the sensible heat of the heat storage medium having a relatively high temperature is applied to the refrigerant through the heat storage heat exchanger (63) and the preheating heat exchanger (64). Therefore, even if the heat storage medium and the refrigerant exchange heat, the evaporation pressure can be maintained relatively high, and the heating efficiency can be improved.
- the outdoor temperature To is high and the evaporation pressure of the low-pressure refrigerant in the outdoor heat exchanger (23) is also high, so the first operation is continued and the heat storage medium of the heat storage circuit (61)
- the evaporation pressure in the heat storage circuit (61) also decreases, and the heating efficiency does not improve even if the first operation is continued.
- the controller (100) controls each device to end the first operation and execute the simple heating operation.
- the reference temperature Tb is a predetermined temperature equal to or higher than the hydrate formation temperature (for example, 12 ° C.) of the heat storage medium.
- the pump (67) stops and the refrigerant does not flow through the heat storage heat exchanger (63). Therefore, the heat storage medium is not further cooled by the refrigerant, and the temperature of the heat storage medium does not become lower than the hydrate formation temperature.
- the heat storage circuit (61) the clathrate hydrate can be prevented from crystallizing and accumulating in the pipe, and the heat storage circuit (61) can be reliably prevented from being blocked. Moreover, since the indoor heating is continued by shifting to the simple heating operation, the comfort in the room is not impaired.
- the second operation is an operation in which the heat storage medium continues to heat the refrigerant through the heat storage heat exchanger (63) even when the temperature of the heat storage medium becomes lower than the hydrate formation temperature. That is, in the second operation, it can be said that both sensible heat and latent heat stored in the heat storage medium are used for heating.
- the latent heat of the heat storage medium having a relatively low temperature is applied to the refrigerant through the heat storage heat exchanger (63) and the preheating heat exchanger (68).
- the outside air temperature To is low and the evaporation pressure of the low-pressure refrigerant in the outdoor heat exchanger (23) is also low. Therefore, by exchanging heat between the heat storage medium and the refrigerant, the evaporation pressure can be increased and the heating efficiency can be improved.
- the temperature of the heat storage medium of the heat storage circuit (61) gradually decreases and becomes lower than the hydrate generation temperature.
- the heat storage circuit (61) clathrate hydrate may be generated and hydrate crystals may accumulate in the pipe. Therefore, in the heat storage device (60), the start of accumulation of such clathrate hydrate crystals is detected by the heat storage medium temperature sensor (S2).
- the controller (100) determines that accumulation of clathrate hydrate crystals starts when the temperature of the heat storage medium detected by the heat storage medium temperature sensor (S2) rises and changes.
- a flow rate detection unit that detects the circulation amount of the heat storage medium of the heat storage circuit (61) may be employed as the accumulation detection unit that detects the start of accumulation of clathrate hydrate crystals. That is, when the circulation amount of the heat storage medium of the heat storage circuit (61) detected by the flow rate detection unit becomes lower than a predetermined value, it may be detected that the accumulation of clathrate hydrate crystals starts.
- the controller (100) stops the second operation and executes the heating and heat storage operation. Specifically, when the start of accumulation of clathrate hydrate crystals is detected, the controller (100) satisfies the condition indicating that the temperature of the refrigerant condensed in the indoor heat exchanger (72) is high. Determine whether or not.
- the controller (100) causes the first heating / heat storage operation (heating / heat storage operation (1)) to be executed.
- the heating and heat storage operation (1) in which the entire amount of the refrigerant compressed by the compressor (22) flows through the indoor heat exchanger (72) and the heat storage heat exchanger (63) in sequence is executed.
- the heat storage medium can be sufficiently heated by this refrigerant, and indoor heating can be performed. It can be done continuously.
- the determination unit of the controller (100) determines that the condition indicating that the temperature of the refrigerant condensed in the indoor heat exchanger (72) is high is not satisfied. Then, as shown in FIG. 9, the controller (100) executes the second heating heat storage operation (heating heat storage operation (2)). As a result, the refrigerant compressed by the compressor (22) is divided into both the indoor heat exchanger (72) and the heat storage heat exchanger (63), and evaporates in each. As a result, the temperature of the heat storage medium can be reliably raised while continuing indoor heating.
- FIG. 12 shows an example of the relationship between the rotational speed (rps) of the compressor and the compressor efficiency (%).
- the compressor efficiency is highest when the rotational speed is around R.
- the compressor efficiency gradually decreases, and becomes the lowest at the rotational speed Rmin.
- the compressor efficiency is lowered, and the rotational speed Rmax is lower than the case of R.
- the air conditioning capacity of the regenerative air conditioner (10) is controlled by adjusting the rotational speed of the compressor (22). For this reason, if the indoor air conditioning load (cooling load or heating load) is reduced during operation of the regenerative air conditioner (10), the air conditioning capacity of the regenerative air conditioner (10) is reduced according to the indoor air conditioning load. Therefore, the rotational speed of the compressor (22) is reduced.
- the compressor (22) is conventionally stopped.
- the compressor (22) is conventionally stopped.
- the indoor temperature is prevented from becoming too low or too high.
- it is desirable to avoid the on / off operation because it causes an increase in power consumption and a decrease in comfort due to the air conditioning being turned on / off.
- the lower reference value R1 is set to a value larger than Rmin and smaller than R. Further, it is desirable that the lower reference value R1 is set to a value slightly larger than Rmin.
- the controller (100) rotates the compressor (22) so that the low pressure of the refrigeration cycle (that is, the pressure of the refrigerant sucked into the compressor) becomes a predetermined target value. Adjust the speed. For this reason, when the simple cooling operation is switched to the cooling storage operation, it is necessary to increase the rotational speed of the compressor (22) in order to reduce the low pressure of the refrigeration cycle to the target value.
- the controller (100) of this embodiment reduces the rotational speed of the compressor (22) to the lower reference value R1 during the simple cooling operation, and the compressor (22) operates at an inefficient rotational speed.
- the operation of the regenerative air conditioner (10) is switched from the simple cooling operation to the cooling storage operation, and the rotational speed of the compressor (22) is increased.
- the rotational speed of the compressor (22) becomes higher than the lower reference value R1, and the efficiency of the compressor (22) is improved.
- the controller (100) of the present embodiment simplifies the operation of the regenerative air conditioner (10) when the rotational speed of the compressor (22) decreases to the lower reference value R1 during the simple cooling operation. Switch from cooling operation to cooling storage operation. In this way, it becomes possible to cool the room using only a part of the cold heat obtained by the refrigeration cycle, and the indoor air in the indoor heat exchanger (72) while the compressor (22) continues to operate. It is possible to reduce the cooling heat used for cooling the air to an amount commensurate with the indoor cooling load. Therefore, according to the present embodiment, the indoor comfort is kept high by avoiding the on / off operation of the compressor (22) even when the indoor cooling load is very small.
- the lower reference value R1 for switching from the simple cooling operation to the cooling / storage operation is determined from the relationship between the rotational speed and the compressor efficiency as shown in FIG. 12, the rotational speed of the compressor (22) for performing cold storage, and the like Is done.
- the amount of cold stored in the heat storage section (60) may be an element that determines the lower reference value.
- the rotation speed of the compressor (22) reaches the upper reference value R2 during the cooling / storage operation, the rotation speed of the compressor (22) is decreased by switching from the cooling / storage operation to the simple cooling operation.
- the upper reference value R2 is set to a value larger than R and smaller than Rmax.
- the compressor efficiency decreases.
- the compressor efficiency can be increased by switching from the cooling / storage operation to the simple cooling operation.
- the power consumption increases as the rotational speed of the compressor (22) increases. Also from this point, when the rotational speed exceeds a predetermined value, it is desirable to switch from the cooling / storage operation to the simple cooling operation.
- the upper reference value R2 is determined from the relationship between the rotational speed and the compressor efficiency, the rotational speed of the compressor (22) for performing cold storage, and the like.
- At least a certain amount of cooling is required to store the heat in the heat storage section (60), and the amount of increase in rotational speed when switching from the simple cooling operation to the cooling storage operation generates at least the above-mentioned certain amount of cooling. It must be the value of the rotation speed that can be made to.
- the heat storage section (60) may be designed so that cold storage can be performed using cold heat that can be generated at the minimum rotational speed of the compressor (22).
- the heat storage section (60) may be designed so that cold storage can be performed using cold heat that can be generated at the minimum rotational speed of the compressor (22).
- the controller (100) rotates the compressor (22) so that the high pressure of the refrigeration cycle (that is, the pressure of the refrigerant discharged from the compressor) becomes a predetermined target value. Adjust the speed. For this reason, when the simple heating operation is switched to the heating and heat storage operation, it is necessary to increase the rotational speed of the compressor (22) in order to increase the high pressure of the refrigeration cycle to the target value.
- the controller (100) of this embodiment reduces the rotational speed of the compressor (22) to the lower reference value R1 during the simple heating operation, and the compressor (22) operates at an inefficient rotational speed.
- the operation of the heat storage type air conditioner (10) is switched from the simple heating operation to the heating heat storage operation, and the rotational speed of the compressor (22) is increased.
- the rotational speed of the compressor (22) becomes higher than the lower reference value R1, and the efficiency of the compressor (22) is improved.
- the conventional compressor It was necessary to prevent the room temperature from becoming too high by performing on / off operation that repeats the stop and restart of 22).
- the controller (100) of the present embodiment simplifies the operation of the regenerative air conditioner (10) when the rotational speed of the compressor (22) decreases to the lower reference value R1 during the simple heating operation. Switch from heating operation to heating storage operation. In this way, it becomes possible to heat the room using only a part of the heat obtained by the refrigeration cycle, and the indoor air in the indoor heat exchanger (72) while continuing to operate the compressor (22). It is possible to reduce the heat used for heating to an amount commensurate with the indoor heating load. Therefore, according to the present embodiment, indoor comfort can be kept high by avoiding the on / off operation of the compressor (22) even when the indoor heating load is very small.
- the amount of increase in the rotational speed generates at least the above-mentioned certain amount of heat. It must be the value of the rotation speed that can be made to.
- the heat storage section (60) may be designed so that heat storage is performed using the heat that can be generated at the minimum rotation speed of the compressor (22).
- the simple heating operation can be switched to the heating and heat storage operation by increasing the rotation speed of the compressor (22) by the value of the minimum rotation speed of the compressor (22).
- the check valve (CV1) is provided outside the casing (22a) of the compressor (22) in the intermediate suction pipe (35). This facilitates connection work and maintenance of the check valve (CV1).
- a check valve (CV1) may be provided in the inner piping part (36) inside the casing (22a) of the intermediate suction pipe (35). As a result, the flow path length from the compression chamber in the middle of compression of the compression mechanism to the check valve (CV1) can be minimized, and the dead volume that does not contribute to refrigerant compression can be minimized. . As a result, it is possible to prevent a reduction in compression efficiency of the compressor (22).
- Embodiment 1 it is preferable that the cold energy stored in the heat storage section (60) by the cooling and storing operation and the heating and storing operation is used when the indoor cooling load or heating load becomes high. That is, the regenerative air conditioner (10) may perform the use cooling operation or the use heating operation (1) (2) when the indoor cooling load or heating load is a high load higher than a predetermined value.
- FIG. 13A shows the transition of power consumption of the regenerative air conditioner according to the other embodiment 1
- the solid line graph shows transition of power consumption of the conventional air conditioner.
- the heat storage type air conditioner according to the other embodiment 1 increases the power consumption at the time of low load and the consumption at the time of high load as compared with the conventional air conditioner. Electricity is decreasing.
- the operation when the room is cooled at the time of low load, the operation is switched from the simple cooling operation to the cooling / storage operation, and when the room is heated at the time of the low load, the heating is performed from the simple heating operation to the heating / cooling operation.
- the operation is performed by switching to the heat storage operation.
- conventionally when the room is cooled with a low load, the simple cooling operation is continuously performed, and when the room is heated with a low load, the simple heating operation is continuously performed. Therefore, in FIG. 13A, the power consumption at the time of low load increases in the case of the other embodiment 1 in which the cooling regenerative operation or the heating regenerative operation is performed rather than the simple cooling operation or the simple heating operation. -ing
- the cooling regenerative operation or the heating regenerative operation is performed rather than the simple cooling operation or the simple heating operation.
- the use cooling operation is performed at the time of high load and when the room is cooled, and the use heating operation is performed at the time of high load and when the room is heated.
- the simple cooling operation is continuously performed at the time of high load and the room is cooled, and the simple heating operation is continuously performed at the time of the high load and when the room is heated. Therefore, in FIG. 13A, the power consumption at the time of high load is lower in the case of the other embodiment 1 in which the use cooling operation or the use heating operation is performed than in the case of the simple cooling operation or the simple heating operation.
- the other embodiment 1 can level the power consumption as compared with the prior art.
- Such a regenerative air conditioner (10) according to the other embodiment 1 can ensure comfort by suppressing the temperature change of the room air and can reduce power consumption of the air conditioner (10). it can.
- the indoor cooling load or heating load described above is determined by the controller (100) using the predicted daily temperature transition data, the peak temperature value of the transition data, the annual data of the temperature transition, and the like. It is preferable.
- the maximum load factor with respect to the rated capacity is 100% in the cooling operation, but 70% in the heating operation. Furthermore, it can be seen from the bar graph of FIG. 13B that about 90% of the annual operation time is concentrated in the portion where the load factor is 50% or less in both the cooling operation and the heating operation.
- the selection of the regenerative air conditioner (10) is performed in accordance with the maximum load factor (that is, 100%) during the cooling operation.
- the cooling operation time at which the load factor is maximum (100%) even in the cooling operation is only a few hours per year.
- the regenerative air conditioner (10) according to the other embodiment 1 described above can perform a use cooling operation if the indoor cooling load is high, and if the indoor heating load is high load. Use heating operation can be performed. That is, in the case of the regenerative air conditioner (10) according to the other embodiment 1, when the load factor is high, it is possible to cope with the use cooling (or use heating) operation. Therefore, in the case of the regenerative air conditioner (10) according to the other embodiment 1 described above, when selecting the air conditioner (10), select one having a smaller size (horsepower) than the case of normal selection. be able to. For example, in the case of the other embodiment 1, when a heat storage air conditioner of 10 HP is originally selected, an 8 HP heat storage air conditioner having a smaller size (horsepower) can be selected.
- the efficiency at the time of low load with a high appearance rate is higher than the machine, so the annual efficiency can be improved.
- the heat storage unit of each of the above embodiments is a so-called dynamic heat storage device including a heat storage circuit in which a heat storage medium circulates.
- the heat storage unit may be, for example, a so-called static heat storage device that exchanges heat with water or other heat storage medium retained in the tank.
- the present invention is useful for a saving air conditioner.
- Thermal storage air conditioner 11 Refrigerant circuit 22 Compressor (compression unit) 23 Outdoor heat exchanger 28 Suction pipe (low pressure suction part) 31 1st introduction pipe (low pressure introduction pipe) 32 1st supercooling heat exchanger (1st heat exchanger) 35 Intermediate suction pipe (intermediate suction part) 36 Inner piping 44 Main heat storage channel 60 Heat storage unit (heat storage device) 61 Thermal storage circuit 62 Thermal storage tank 63 Heat exchanger for heat storage 65 Outflow pipe (outflow section) 72 Indoor heat exchanger 100 Controller (Operation control unit) EV1 First pressure reducing valve (pressure reducing valve)
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Air Conditioning Control Device (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
蓄熱式空気調和機において、低負荷時の圧縮機効率の低下を避ける。蓄熱式空気調和機は、圧縮機(22)と室外熱交換器(23)と室内熱交換器(72)とを有して冷凍サイクルを行う冷媒回路(11)と、蓄熱媒体を有して該蓄熱媒体を冷媒回路(11)の冷媒と熱交換させる蓄熱部(60)とを備える。冷媒回路(11)にて室外熱交換器(23)で冷媒が凝縮し且つ室内熱交換器(72)で冷媒が蒸発する単純冷房運転と、冷媒回路(11)にて室外熱交換器(23)で冷媒が凝縮し且つ室内熱交換器(72)で冷媒が蒸発すると共に、蓄熱部(60)の蓄熱媒体が冷媒により冷却される冷房蓄冷運転とを実行可能である。単純冷房運転中に圧縮機(22)の回転速度が所定の下側基準値にまで下がると、蓄熱式空気調和機の運転を単純冷房運転から冷房蓄冷運転に切り換え、圧縮機(22)の回転速度を増加させる運転制御部(100)を備える。
Description
本発明は、蓄熱式空気調和機に関するものである。
従来、室内の冷房や暖房を行う空気調和機が知られている。特許文献1には、蓄熱媒体を用いた蓄熱式空気調和機が開示されている。この蓄熱式空気調和機は、圧縮機、室外熱交換器、及び室内熱交換器が接続された冷媒回路と、冷媒回路の冷媒と蓄熱媒体とを熱交換させる蓄熱部とを有している。
この空気調和機は、蓄熱を利用せずに室内を空気調和する通常の冷房運転及び暖房運転と、蓄熱媒体を冷却して冷熱を蓄える蓄冷運転と、蓄熱媒体に蓄えた冷熱を利用して室内を冷房する蓄冷利用冷房運転と、蓄熱媒体を加熱して温熱を蓄える蓄熱運転と、蓄熱媒体に蓄えた温熱を利用して室内を暖房する蓄熱利用暖房運転とを選択的に行う。また、これらの運転中は、圧縮機が動作して冷媒回路を冷媒が循環することによって、冷凍サイクルが行われる。
一般に、空気調和機の空気調和能力は、圧縮機の回転速度を調節することによって制御される。このため、空気調和機の運転中に室内の空調負荷(冷房負荷又は暖房負荷)が小さくなると、室内の空調負荷に応じて空気調和機の空調能力を低下させるために、圧縮機の回転速度が引き下げられる。また、圧縮機の回転速度を最小値に設定しても空調能力が空調負荷に対して過剰である場合には、圧縮機の停止と再起動とを繰り返すオン・オフ運転を行うことで、室内温度が低くなり過ぎたり高くなり過ぎたりするのを防いでいる。
ここで、一般に、圧縮機の効率は、特定の回転速度において最高となり、それよりも回転速度が低くなるにつれて次第に低下する。このため、圧縮機を比較的低い回転速度で運転すると、空気調和機の運転効率が低下するおそれがある。また、空調負荷が小さい場合に圧縮機のオン・オフ運転を行うと、室内空気の温度の変動幅が大きくなり、室内の快適性を損なうおそれがある。
本発明は、かかる点に鑑みてなされたものであり、その目的は、空調負荷が小さい場合における空気調和機の効率低下及び室内の快適性の低下を抑えることにある。
本開示の第1の態様は、圧縮機(22)と室外熱交換器(23)と室内熱交換器(72)とを有して冷凍サイクルを行う冷媒回路(11)と、蓄熱媒体を有して該蓄熱媒体を上記冷媒回路(11)の冷媒と熱交換させる蓄熱部(60)とを備え、上記冷媒回路(11)において上記室外熱交換器(23)で冷媒が凝縮し且つ上記室内熱交換器(72)で冷媒が蒸発する単純冷房運転と、上記冷媒回路(11)において上記室外熱交換器(23)で冷媒が凝縮し且つ上記室内熱交換器(72)で冷媒が蒸発すると共に、上記蓄熱部(60)の上記蓄熱媒体が上記冷媒により冷却される冷房蓄冷運転とを実行可能な蓄熱式空気調和機を対象とし、上記単純冷房運転中に上記圧縮機(22)の回転速度が所定の下側基準値にまで下がると、蓄熱式空気調和機の運転を上記単純冷房運転から上記冷房蓄冷運転に切り換え、上記圧縮機(22)の回転速度を増加させる運転制御部(100)を備えていることを特徴とする。
第1の態様では、単純冷房運転中に圧縮機(22)の回転速度が低下して圧縮機効率が低くなった際に、冷房蓄冷運転に切り換えて圧縮機(22)の回転速度を増加させることにより、圧縮機効率を向上できる。また、単純冷房運転ではオン・オフ運転が必要になるほど負荷が小さくなった場合にも、冷凍サイクルによって得られた冷熱の一部を蓄熱部(60)に蓄冷することによって、圧縮機のオン・オフ運転行わずに、室内熱交換器(72)で空気の冷却に用いられる冷熱を、室内の冷房負荷に応じた値にまで引き下げることができる。
本開示の第2の態様は、第1の態様において、上記運転制御部(100)は、上記冷房蓄冷運転中に上記圧縮機(22)の回転速度が所定の上側基準値にまで上がると、蓄熱式空気調和機の運転を上記冷房蓄冷運転から上記単純冷房運転に切り換え、上記圧縮機(22)の回転速度を低下させることを特徴とする。
第2の態様では、圧縮機効率は回転速度が高すぎる場合にも低下することから、冷房蓄冷運転中に圧縮機(22)の回転速度が所定の上側基準値に達した場合、単純冷房運転に切り換えて圧縮機(22)の回転速度を低下させる。これにより、圧縮機を高効率となる回転速度で作動させることができ、空気調和機の効率を高く保つことができる。
本開示の第3の態様は、第1又は第2の態様において、上記運転制御部(100)において、蓄熱式空気調和機の運転を上記単純冷房運転から上記冷房蓄冷運転に切り換える際の上記圧縮機(22)の回転速度の増加量が、上記圧縮機(22)の最低回転速度と同じ値となっていることを特徴とする。
第3の態様では、蓄熱式空気調和機の運転が単純冷房運転から冷房蓄冷運転に切り替わる際に、圧縮機の回転速度が、その最低回転速度と同じ値だけ引き上げられる。
本開示の第4の態様は、圧縮機(22)と室外熱交換器(23)と室内熱交換器(72)とを有して冷凍サイクルを行う冷媒回路(11)と、蓄熱媒体を有して該蓄熱媒体を上記冷媒回路(11)の冷媒と熱交換させる蓄熱部(60)とを備え、上記冷媒回路(11)において上記室内熱交換器(72)で冷媒が凝縮し且つ上記室外熱交換器(23)で冷媒が蒸発する単純暖房運転と、上記冷媒回路(11)において上記室内熱交換器(72)で冷媒が凝縮し且つ上記室外熱交換器(23)で冷媒が蒸発すると共に、上記蓄熱部(60)の上記蓄熱媒体が上記冷媒により加熱される暖房蓄熱運転とを実行可能な蓄熱式空気調和機を対象とし、上記単純暖房運転中に上記圧縮機(22)の回転速度が所定の下側基準値にまで下がると、蓄熱式空気調和機の運転を上記単純暖房運転から上記暖房蓄熱運転に切り換え、上記圧縮機(22)の回転速度を増加させる運転制御部(100)を備えていることを特徴とする。
第4の態様では、単純暖房運転中に圧縮機(22)の回転速度が低下して圧縮機効率が低くなった際に、暖房蓄熱運転に切り換えて圧縮機(22)の回転速度を増加させることにより、圧縮機効率を向上できる。また、単純暖房運転ではオン・オフ運転が必要になるほど負荷が小さくなった場合にも、冷凍サイクルによって得られた温熱の一部を蓄熱部(60)に蓄熱することによって、圧縮機のオン・オフ運転行わずに、室内熱交換器(72)で空気の加熱に用いられる温熱を、室内の暖房負荷に応じた値にまで引き下げることができる。
本開示の第5の態様は、第4の態様において、上記運転制御部(100)は、上記暖房蓄熱運転中に上記圧縮機(22)の回転速度が所定の上側基準値にまで上がると、蓄熱式空気調和機の運転を上記暖房蓄熱運転から上記単純暖房運転に切り換え、上記圧縮機(22)の回転速度を低下させることを特徴とする。
第5の態様では、圧縮機効率は回転速度が高すぎる場合にも低下することから、暖房蓄熱運転中に圧縮機(22)の回転速度が所定の上側基準値に達した場合、単純暖房運転に切り換えて圧縮機(22)の回転速度を低下させる。これにより、圧縮機を高効率となる回転速度で作動させることができ、空気調和機の効率を高く保つことができる。
本開示の第6の態様は、第4又は第5の態様において、上記運転制御部(100)において、蓄熱式空気調和機の運転を上記単純暖房運転から上記暖房蓄熱運転に切り換える際の上記圧縮機(22)の回転速度の増加量が、上記圧縮機(22)の最低回転速度と同じ値となっていることを特徴とする。
第6の態様では、蓄熱式空気調和機の運転が単純暖房運転から暖房蓄熱運転に切り替わる際に、圧縮機の回転速度が、その最低回転速度と同じ値だけ引き上げられる。
第1の態様によれば、圧縮機(22)の回転速度が低下した際、単純冷房運転から冷房蓄冷運転に切り換えて圧縮機(22)の回転速度を引き上げることにより、圧縮機(22)の効率の低下を抑えることができ、更には、蓄熱式空気調和機全体の効率を向上させることができる。また、圧縮機(22)オン・オフ運転が不要になるので、室内空気の温度変化を抑えて快適性を確保できると共に、圧縮機(22)の起動に要する電力を抑えて消費電力の低減を図ることができる。
第2の態様によれば、圧縮機(22)の回転速度が高くなった際、冷房蓄冷運転中から単純冷房運転に切り換えて圧縮機(22)の回転速度を引き下げることにより、圧縮機(22)の効率低下を抑えることができる。
第4の態様によれば、圧縮機(22)の回転速度が低下した際、単純暖房運転から暖房蓄熱運転に切り換えて圧縮機(22)の回転速度を引き上げることにより、圧縮機(22)の効率の低下を抑えることができる。また、圧縮機(22)オン・オフ運転が不要になるので、室内空気の温度変化を抑えて快適性を確保できると共に、圧縮機(22)の起動に要する電力を抑えて消費電力の低減を図ることができる。
第5の態様によれば、圧縮機(22)の回転速度が高くなった際、暖房蓄熱運転中から単純暖房運転に切り換えて圧縮機(22)の回転速度を引き下げることにより、圧縮機(22)の効率低下を抑えることができる。
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
本発明の一実施形態に係る蓄熱式空気調和機(10)は、室内の冷房と暖房とを切り換えて行う。蓄熱式空気調和機(10)は、冷媒の冷熱を蓄熱媒体に蓄え、この冷熱を冷房に利用する。蓄熱式空気調和機(10)は、冷媒の温熱を蓄熱媒体に蓄え、この温熱を暖房に利用する。
〈全体構成〉
図1に示すように、蓄熱式空気調和機(10)は、室外ユニット(20)と、蓄熱ユニット(40)と、複数の室内ユニット(70)とを備えている。室外ユニット(20)及び蓄熱ユニット(40)は、室外に設置される。複数の室内ユニット(70)は、室内に設置される。なお、図1では便宜上、1台の室内ユニット(70)のみを図示している。
図1に示すように、蓄熱式空気調和機(10)は、室外ユニット(20)と、蓄熱ユニット(40)と、複数の室内ユニット(70)とを備えている。室外ユニット(20)及び蓄熱ユニット(40)は、室外に設置される。複数の室内ユニット(70)は、室内に設置される。なお、図1では便宜上、1台の室内ユニット(70)のみを図示している。
室外ユニット(20)には室外回路(21)が、蓄熱ユニット(40)には中間回路(41)が、室内ユニット(70)には室内回路(71)がそれぞれ設けられる。蓄熱式空気調和機(10)では、室外回路(21)と中間回路(41)とが3本の連絡配管(12,13,14)を介して互いに接続され、中間回路(41)と複数の室内回路(71)とが2本の連絡配管(15,16)を介して互いに接続される。これにより、蓄熱式空気調和機(10)では、充填された冷媒が循環して冷凍サイクルが行われる冷媒回路(11)が構成される。蓄熱式空気調和機(10)は、後述する各機器を制御するコントローラ(100)(運転制御部)を有している。
〈室外ユニット〉
室外ユニット(20)には、冷媒回路(11)の一部を成す室外回路(21)が設けられる。室外回路(21)には、圧縮機(22)、室外熱交換器(23)、室外膨張弁(24)、及び四方切換弁(25)が接続される。室外回路(21)には、第1過冷却回路(30)と、中間吸入管(35)とが接続されている。
室外ユニット(20)には、冷媒回路(11)の一部を成す室外回路(21)が設けられる。室外回路(21)には、圧縮機(22)、室外熱交換器(23)、室外膨張弁(24)、及び四方切換弁(25)が接続される。室外回路(21)には、第1過冷却回路(30)と、中間吸入管(35)とが接続されている。
〔圧縮機〕
本実施形態の圧縮機(22)は、単段式の1台の圧縮機であり、冷媒を圧縮して吐出する圧縮部を構成している。圧縮機(22)では、ケーシング(22a)の内部にモータ及び圧縮機構(図示省略)が収容されている。本実施形態の圧縮機構は、スクロール式の圧縮機構で構成されている。しかし、圧縮機構は、揺動ピストン式、ローリングピストン式、スクリュー式、ターボ式等の種々の方式を採用できる。圧縮機構では、渦巻き状の固定スクロールと可動スクロールの間に圧縮室が形成され、この圧縮室の容積が徐々に小さくなることで冷媒が圧縮される。圧縮機(22)のモータは、インバータ部によって運転周波数が可変に構成されている。つまり、圧縮機(22)は、回転数(容量)が可変なインバータ式の圧縮機である。
本実施形態の圧縮機(22)は、単段式の1台の圧縮機であり、冷媒を圧縮して吐出する圧縮部を構成している。圧縮機(22)では、ケーシング(22a)の内部にモータ及び圧縮機構(図示省略)が収容されている。本実施形態の圧縮機構は、スクロール式の圧縮機構で構成されている。しかし、圧縮機構は、揺動ピストン式、ローリングピストン式、スクリュー式、ターボ式等の種々の方式を採用できる。圧縮機構では、渦巻き状の固定スクロールと可動スクロールの間に圧縮室が形成され、この圧縮室の容積が徐々に小さくなることで冷媒が圧縮される。圧縮機(22)のモータは、インバータ部によって運転周波数が可変に構成されている。つまり、圧縮機(22)は、回転数(容量)が可変なインバータ式の圧縮機である。
〔室外熱交換器〕
室外熱交換器(23)は、例えばクロスフィン・アンド・チューブ式の熱交換器で構成されている。室外熱交換器(23)の近傍には、室外ファン(26)が設けられている。室外熱交換器(23)では、室外ファン(26)が搬送する空気と、室外熱交換器(23)を流れる冷媒とが熱交換する。室外熱交換器(23)の近傍には、室外空気の温度を検出する外気温度センサ(S1)が設けられる。なお、外気温度センサ(S1)は、便宜上、図1のみに図示し、他の図の図示は省略している。
室外熱交換器(23)は、例えばクロスフィン・アンド・チューブ式の熱交換器で構成されている。室外熱交換器(23)の近傍には、室外ファン(26)が設けられている。室外熱交換器(23)では、室外ファン(26)が搬送する空気と、室外熱交換器(23)を流れる冷媒とが熱交換する。室外熱交換器(23)の近傍には、室外空気の温度を検出する外気温度センサ(S1)が設けられる。なお、外気温度センサ(S1)は、便宜上、図1のみに図示し、他の図の図示は省略している。
〔室外膨張弁〕
室外膨張弁(24)は、室外熱交換器(23)の液側端部と連絡配管(12)の接続端の間に配置されている。室外膨張弁(24)は、例えば電子膨張弁で構成され、その開度を変更することで冷媒の流量を調節する。
室外膨張弁(24)は、室外熱交換器(23)の液側端部と連絡配管(12)の接続端の間に配置されている。室外膨張弁(24)は、例えば電子膨張弁で構成され、その開度を変更することで冷媒の流量を調節する。
〔四方切換弁〕
四方切換弁(25)は、第1から第4までのポートを有している。四方切換弁(25)の第1ポートは、圧縮機(22)の吐出管(27)に接続され、四方切換弁(25)の第2ポートは、圧縮機(22)の吸入管(28)(低圧吸入部)に接続されている。四方切換弁(25)の第3ポートは、室外熱交換器(23)のガス側端部に繋がり、四方切換弁(25)の第4ポートは、連絡配管(14)の接続端に繋がっている。
四方切換弁(25)は、第1から第4までのポートを有している。四方切換弁(25)の第1ポートは、圧縮機(22)の吐出管(27)に接続され、四方切換弁(25)の第2ポートは、圧縮機(22)の吸入管(28)(低圧吸入部)に接続されている。四方切換弁(25)の第3ポートは、室外熱交換器(23)のガス側端部に繋がり、四方切換弁(25)の第4ポートは、連絡配管(14)の接続端に繋がっている。
四方切換弁(25)は、第1ポートと第3ポートが連通し且つ第2ポートと第4ポートが連通する状態(図1の実線で示す第1の状態)と、第1ポートと第4ポートが連通し且つ第2ポートと第3ポートが連通する状態(図1の破線で示す第2の状態)とに切換可能に構成されている。
〔第1過冷却回路〕
第1過冷却回路(30)は、第1導入管(31)と第1過冷却熱交換器(32)とを有している。第1導入管(31)の一端は、室外膨張弁(24)と連絡配管(12)の接続端との間に接続される。第1導入管(31)の他端は、圧縮機(22)の吸入管(28)に接続される。つまり、第1導入管(31)は、液ライン(L1)と圧縮機(22)の低圧側の吸入管(28)とを繋ぐ低圧導入管を構成している。ここで、液ライン(L1)は、室外熱交換器(23)の液側端部と室内熱交換器(72)の液側端部に亘るまでの流路である。第1導入管(31)には、その一端から他端に向かって順に、第1減圧弁(EV1)、第1伝熱流路(33)が接続されている。第1減圧弁(EV1)は、例えば電子膨張弁で構成され、その開度を変更することで第2伝熱流路(34)の出口の冷媒の過冷却度を調節する。第1過冷却熱交換器(32)は、第2伝熱流路(34)を流れる冷媒と、第1伝熱流路(33)を流れる冷媒とを熱交換させる第1熱交換器を構成する。第2伝熱流路(34)は、冷媒回路(11)の液ライン(L1)のうち、室外膨張弁(24)と連絡配管(12)の接続端との間に設けられる。
第1過冷却回路(30)は、第1導入管(31)と第1過冷却熱交換器(32)とを有している。第1導入管(31)の一端は、室外膨張弁(24)と連絡配管(12)の接続端との間に接続される。第1導入管(31)の他端は、圧縮機(22)の吸入管(28)に接続される。つまり、第1導入管(31)は、液ライン(L1)と圧縮機(22)の低圧側の吸入管(28)とを繋ぐ低圧導入管を構成している。ここで、液ライン(L1)は、室外熱交換器(23)の液側端部と室内熱交換器(72)の液側端部に亘るまでの流路である。第1導入管(31)には、その一端から他端に向かって順に、第1減圧弁(EV1)、第1伝熱流路(33)が接続されている。第1減圧弁(EV1)は、例えば電子膨張弁で構成され、その開度を変更することで第2伝熱流路(34)の出口の冷媒の過冷却度を調節する。第1過冷却熱交換器(32)は、第2伝熱流路(34)を流れる冷媒と、第1伝熱流路(33)を流れる冷媒とを熱交換させる第1熱交換器を構成する。第2伝熱流路(34)は、冷媒回路(11)の液ライン(L1)のうち、室外膨張弁(24)と連絡配管(12)の接続端との間に設けられる。
〔中間吸入管〕
中間吸入管(35)は、中間圧の冷媒を圧縮機(22)の圧縮室の圧縮途中に導入する中間吸入部を構成している。中間吸入管(35)の始端は、連絡配管(13)の接続端に接続され、中間吸入管(35)の終端は、圧縮機(22)の圧縮機構の圧縮室に接続されている。中間吸入管(35)は、圧縮機(22)のケーシング(22a)の内部に位置する内側配管部(36)を有している。中間吸入管(35)の内圧は、基本的に、冷媒回路(11)の高圧と低圧の間の中間圧力に相当する。中間吸入管(35)には、上流側から下流側に向かって順に、第1電磁弁(SV1)、逆止弁(CV1)が接続される。第1電磁弁(SV1)は、流路を開閉する開閉弁である。逆止弁(CV1)は、主蓄熱用流路(44)(詳細は後述する)から圧縮機(22)へ向かう方向(図1の矢印方向)の冷媒の流れを許容し、圧縮機(22)から主蓄熱用流路(44)へ向かう方向の冷媒の流れを禁止する。
中間吸入管(35)は、中間圧の冷媒を圧縮機(22)の圧縮室の圧縮途中に導入する中間吸入部を構成している。中間吸入管(35)の始端は、連絡配管(13)の接続端に接続され、中間吸入管(35)の終端は、圧縮機(22)の圧縮機構の圧縮室に接続されている。中間吸入管(35)は、圧縮機(22)のケーシング(22a)の内部に位置する内側配管部(36)を有している。中間吸入管(35)の内圧は、基本的に、冷媒回路(11)の高圧と低圧の間の中間圧力に相当する。中間吸入管(35)には、上流側から下流側に向かって順に、第1電磁弁(SV1)、逆止弁(CV1)が接続される。第1電磁弁(SV1)は、流路を開閉する開閉弁である。逆止弁(CV1)は、主蓄熱用流路(44)(詳細は後述する)から圧縮機(22)へ向かう方向(図1の矢印方向)の冷媒の流れを許容し、圧縮機(22)から主蓄熱用流路(44)へ向かう方向の冷媒の流れを禁止する。
〈蓄熱ユニット〉
蓄熱ユニット(40)は、室外ユニット(20)と室内ユニット(70)に介在する中継ユニットを構成している。蓄熱ユニット(40)には、冷媒回路(11)の一部を成す中間回路(41)が設けられる。中間回路(41)には、主液管(42)、主ガス管(43)、及び主蓄熱用流路(44)が接続されている。中間回路(41)には、第2過冷却回路(50)が接続されている。蓄熱ユニット(40)には、蓄熱装置(60)が設けられる。
蓄熱ユニット(40)は、室外ユニット(20)と室内ユニット(70)に介在する中継ユニットを構成している。蓄熱ユニット(40)には、冷媒回路(11)の一部を成す中間回路(41)が設けられる。中間回路(41)には、主液管(42)、主ガス管(43)、及び主蓄熱用流路(44)が接続されている。中間回路(41)には、第2過冷却回路(50)が接続されている。蓄熱ユニット(40)には、蓄熱装置(60)が設けられる。
〔主液管〕
主液管(42)は、液ライン(L1)の一部を構成している。主液管(42)は、連絡配管(12)の接続端と連絡配管(15)の接続端とを接続している。主液管(42)には、第2電磁弁(SV2)が接続される。第2電磁弁(SV2)は、流路を開閉する開閉弁である。
主液管(42)は、液ライン(L1)の一部を構成している。主液管(42)は、連絡配管(12)の接続端と連絡配管(15)の接続端とを接続している。主液管(42)には、第2電磁弁(SV2)が接続される。第2電磁弁(SV2)は、流路を開閉する開閉弁である。
〔主ガス管〕
主ガス管(43)は、ガスライン(L2)の一部を構成している。ここで、ガスライン(L2)は、四方切換弁(25)の第4ポートから室内熱交換器(72)のガス側端部に亘るまでの流路である。主ガス管(43)は、連絡配管(14)の接続端と連絡配管(16)の接続端とを連結している。
主ガス管(43)は、ガスライン(L2)の一部を構成している。ここで、ガスライン(L2)は、四方切換弁(25)の第4ポートから室内熱交換器(72)のガス側端部に亘るまでの流路である。主ガス管(43)は、連絡配管(14)の接続端と連絡配管(16)の接続端とを連結している。
〔主蓄熱用流路〕
主蓄熱用流路(44)は、主液管(42)と主ガス管(43)との間に接続されている。主蓄熱用流路(44)の一端は、連絡配管(12)の接続端と第2電磁弁(SV2)の間に接続されている。主蓄熱用流路(44)には、主液管(42)側から主ガス管(43)側に向かって順に、第3電磁弁(SV3)、予熱側冷媒流路(64b)、蓄熱用膨張弁(45)、蓄熱側冷媒流路(63b)、第4電磁弁(SV4)が接続されている。第3電磁弁(SV3)及び第4電磁弁(SV4)は、流路を開閉する開閉弁である。蓄熱用膨張弁(45)は、例えば電子膨張弁で構成され、その開度を変更することで冷媒の圧力を調節する。
主蓄熱用流路(44)は、主液管(42)と主ガス管(43)との間に接続されている。主蓄熱用流路(44)の一端は、連絡配管(12)の接続端と第2電磁弁(SV2)の間に接続されている。主蓄熱用流路(44)には、主液管(42)側から主ガス管(43)側に向かって順に、第3電磁弁(SV3)、予熱側冷媒流路(64b)、蓄熱用膨張弁(45)、蓄熱側冷媒流路(63b)、第4電磁弁(SV4)が接続されている。第3電磁弁(SV3)及び第4電磁弁(SV4)は、流路を開閉する開閉弁である。蓄熱用膨張弁(45)は、例えば電子膨張弁で構成され、その開度を変更することで冷媒の圧力を調節する。
主蓄熱用流路(44)には、蓄熱用膨張弁(45)をバイパスする第1バイパス管(44a)が接続されている。第1バイパス管(44a)には、蓄熱用膨張弁(45)と並列に第5電磁弁(SV5)が接続されている。第5電磁弁(SV5)は、流路を開閉する開閉弁である。また、主蓄熱用流路(44)には、蓄熱用膨張弁(45)と並列に圧力逃がし弁(RV)が接続されている。
〔第2過冷却回路〕
第2過冷却回路(50)は、第2導入管(51)と第2過冷却熱交換器(52)とを有している。第2導入管(51)の一端は、第2電磁弁(SV2)と連絡配管(15)の接続端との間に接続される。第2導入管(51)の他端は、主ガス管(43)に接続される。主ガス管(43)において、第2導入管(51)の接続部は、主蓄熱用流路(44)の接続部と連絡配管(16)の接続端の間に位置している。第2導入管(51)には、その一端から他端に向かって順に、第2減圧弁(EV2)、第3伝熱流路(53)が接続されている。第2減圧弁(EV2)は、例えば電子膨張弁で構成され、その開度を変更することで第4伝熱流路(54)の出口の冷媒の過冷却度を調節する。第2過冷却熱交換器(52)は、第4伝熱流路(54)を流れる冷媒と、第3伝熱流路(53)を流れる冷媒とを熱交換させる。第4伝熱流路(54)は、主液管(42)のうち第2電磁弁(SV2)と連絡配管(15)の接続端の間に設けられる。第2過冷却回路(50)は、詳細は後述する利用冷房運転や利用蓄冷運転において、連絡配管(15)を流れる冷媒が気化してフラッシュするのを防止するための過冷却器を構成する。
第2過冷却回路(50)は、第2導入管(51)と第2過冷却熱交換器(52)とを有している。第2導入管(51)の一端は、第2電磁弁(SV2)と連絡配管(15)の接続端との間に接続される。第2導入管(51)の他端は、主ガス管(43)に接続される。主ガス管(43)において、第2導入管(51)の接続部は、主蓄熱用流路(44)の接続部と連絡配管(16)の接続端の間に位置している。第2導入管(51)には、その一端から他端に向かって順に、第2減圧弁(EV2)、第3伝熱流路(53)が接続されている。第2減圧弁(EV2)は、例えば電子膨張弁で構成され、その開度を変更することで第4伝熱流路(54)の出口の冷媒の過冷却度を調節する。第2過冷却熱交換器(52)は、第4伝熱流路(54)を流れる冷媒と、第3伝熱流路(53)を流れる冷媒とを熱交換させる。第4伝熱流路(54)は、主液管(42)のうち第2電磁弁(SV2)と連絡配管(15)の接続端の間に設けられる。第2過冷却回路(50)は、詳細は後述する利用冷房運転や利用蓄冷運転において、連絡配管(15)を流れる冷媒が気化してフラッシュするのを防止するための過冷却器を構成する。
〔その他の配管〕
中間回路(41)には、中間中継管(46)と、第1分岐管(47)と、第2分岐管(48)と、第3分岐管(49)とが接続される。中間中継管(46)の一端は、主蓄熱用流路(44)における第3電磁弁(SV3)と予熱側冷媒流路(64b)との間に接続される。中間中継管(46)の他端は、連絡配管(13)を介して中間吸入管(35)と接続している。第1分岐管(47)の一端は、主蓄熱用流路(44)における蓄熱側冷媒流路(63b)と第4電磁弁(SV4)との間に接続される。
中間回路(41)には、中間中継管(46)と、第1分岐管(47)と、第2分岐管(48)と、第3分岐管(49)とが接続される。中間中継管(46)の一端は、主蓄熱用流路(44)における第3電磁弁(SV3)と予熱側冷媒流路(64b)との間に接続される。中間中継管(46)の他端は、連絡配管(13)を介して中間吸入管(35)と接続している。第1分岐管(47)の一端は、主蓄熱用流路(44)における蓄熱側冷媒流路(63b)と第4電磁弁(SV4)との間に接続される。
第1分岐管(47)の他端は、主ガス管(43)における主蓄熱用流路(44)の接続部と第2導入管(51)の接続部との間に接続される。第1分岐管(47)には、第3減圧弁(EV3)が接続される。第3減圧弁(EV3)は、例えば電子膨張弁で構成され、その開度を変更することで冷媒の圧力を調節する。第3減圧弁(EV3)は、室内熱交換器(72)が蒸発器となる運転時において、連絡配管(16)の圧力損失や室内ユニット(70)と室外ユニット(20)の設置条件によるヘッド差に起因して、室内熱交換器(72)の蒸発圧力とガス管(41)の圧力差により、蓄熱用熱交換器(63)の圧力が過剰に低くならないように、その開度が調節される。
第2分岐管(48)と第3分岐管(49)とは、主液管(42)と主蓄熱用流路(44)との間に並列に接続されている。第2分岐管(48)及び第3分岐管(49)の一端は、主蓄熱用流路(44)における蓄熱側冷媒流路(63b)と第4電磁弁(SV4)との間に接続される。第2分岐管(48)及び第3分岐管(49)の他端は、主液管(42)における第2電磁弁(SV2)と第2導入管(51)の接続部との間に接続される。第2分岐管(48)には、第4減圧弁(EV4)が接続される。第4減圧弁(EV4)は、例えば電子膨張弁で構成され、その開度を変更することで冷媒の圧力を調節する。第3分岐管(49)には、第6電磁弁(SV6)が接続されている。第6電磁弁(SV6)は、流路を開閉する開閉弁である。
[蓄熱装置]
蓄熱装置(60)は、冷媒回路(11)の冷媒と蓄熱媒体とを熱交換させる蓄熱部を構成している。蓄熱装置(60)は、蓄熱回路(61)と、該蓄熱回路(61)に接続される蓄熱タンク(62)とを有している。蓄熱装置(60)は、蓄熱用熱交換器(63)及び予熱用熱交換器(64)を有している。
蓄熱装置(60)は、冷媒回路(11)の冷媒と蓄熱媒体とを熱交換させる蓄熱部を構成している。蓄熱装置(60)は、蓄熱回路(61)と、該蓄熱回路(61)に接続される蓄熱タンク(62)とを有している。蓄熱装置(60)は、蓄熱用熱交換器(63)及び予熱用熱交換器(64)を有している。
蓄熱回路(61)は、充填された蓄熱媒体が循環する閉回路である。蓄熱タンク(62)は、中空筒状の容器である。蓄熱タンク(62)は開放容器であってもよい。蓄熱タンク(62)には、蓄熱媒体が貯留される。蓄熱タンク(62)の上部には、蓄熱タンク(62)内の蓄熱媒体を流出させる流出管(65)(流出部)が接続される。蓄熱タンク(62)の下部には、蓄熱タンク(62)の外部の蓄熱媒体を蓄熱タンク(62)内に流入させる流入管(66)(流入部)が接続される。つまり、蓄熱タンク(62)では、流出管(65)の接続部がW流入管(66)の接続部よりも高い位置にある。蓄熱回路(61)には、流出管(65)から流入管(66)に向かって順に、予熱側蓄熱流路(64a)、ポンプ(67)、蓄熱側蓄熱流路(63a)が接続されている。
予熱用熱交換器(64)は、予熱側蓄熱流路(64a)を流れる蓄熱媒体と、予熱側冷媒流路(64b)を流れる冷媒とを熱交換させる。蓄熱用熱交換器(63)は、蓄熱側蓄熱流路(63a)を流れる蓄熱媒体と、蓄熱側冷媒流路(63b)を流れる冷媒とを熱交換させる。ポンプ(67)は、蓄熱回路(61)の蓄熱媒体を循環させる。
蓄熱回路(61)では、蓄熱用熱交換器(63)と蓄熱タンク(62)の間の流路に蓄熱媒体温度センサ(S2)(蓄熱媒体温度検出部)が設けられる。具体的に、蓄熱媒体温度センサ(S2)は流入管(66)内の蓄熱媒体の温度を検出する位置に設けられる。蓄熱媒体温度センサ(S2)は、蓄熱回路(61)での包接水和物の結晶の蓄積の開始を検知する蓄積検知部を兼ねている。蓄熱媒体温度センサ(S2)の位置は、これに限らず蓄熱回路(61)の他の位置に設けてもよい。なお、蓄熱媒体温度センサ(S2)は、便宜上、図1のみに図示し、他の図の図示は省略している。
[蓄熱媒体]
蓄熱回路(61)に充填される蓄熱媒体について詳細に説明する。蓄熱媒体には、冷却によって包接水和物が生成される蓄熱材、即ち流動性を有する蓄熱材が採用される。蓄熱媒体の具体例としては、臭化テトラnブチルアンモニウムを含有する臭化テトラnブチルアンモニウム(TBAB:Tetra Butyl Ammonium Bromide)水溶液、トリメチロールエタン(TME:Trimethylolethane)水溶液、パラフィン系スラリーなどが挙げられる。例えば、臭化テトラnブチルアンモニウム水溶液は、安定的に冷却されて当該水溶液の温度が水和物生成温度よりも低くなった過冷却状態でもその水溶液の状態を維持するが、この過冷却状態にて何らかのきっかけが与えられると、過冷却の溶液が包接水和物を含んだ溶液(即ちスラリー)へと遷移する。即ち、臭化テトラnブチルアンモニウム水溶液は、過冷却状態を解消して、臭化テトラnブチルアンモニウムと水分子とからなる包接水和物(水和物結晶)が生成されて粘性の比較的高いスラリー状となる。ここで、過冷却状態とは、蓄熱媒体が水和物生成温度以下の温度となっても包接水和物が生成されずに溶液の状態を保っている状態を言う。逆に、スラリー状となっている臭化テトラnブチルアンモニウム水溶液は、加熱により当該水溶液の温度が水和物生成温度よりも高くなると、包接水和物が融解して流動性の比較的高い液状態(溶液)となる。
蓄熱回路(61)に充填される蓄熱媒体について詳細に説明する。蓄熱媒体には、冷却によって包接水和物が生成される蓄熱材、即ち流動性を有する蓄熱材が採用される。蓄熱媒体の具体例としては、臭化テトラnブチルアンモニウムを含有する臭化テトラnブチルアンモニウム(TBAB:Tetra Butyl Ammonium Bromide)水溶液、トリメチロールエタン(TME:Trimethylolethane)水溶液、パラフィン系スラリーなどが挙げられる。例えば、臭化テトラnブチルアンモニウム水溶液は、安定的に冷却されて当該水溶液の温度が水和物生成温度よりも低くなった過冷却状態でもその水溶液の状態を維持するが、この過冷却状態にて何らかのきっかけが与えられると、過冷却の溶液が包接水和物を含んだ溶液(即ちスラリー)へと遷移する。即ち、臭化テトラnブチルアンモニウム水溶液は、過冷却状態を解消して、臭化テトラnブチルアンモニウムと水分子とからなる包接水和物(水和物結晶)が生成されて粘性の比較的高いスラリー状となる。ここで、過冷却状態とは、蓄熱媒体が水和物生成温度以下の温度となっても包接水和物が生成されずに溶液の状態を保っている状態を言う。逆に、スラリー状となっている臭化テトラnブチルアンモニウム水溶液は、加熱により当該水溶液の温度が水和物生成温度よりも高くなると、包接水和物が融解して流動性の比較的高い液状態(溶液)となる。
本実施形態では、上記蓄熱媒体として、臭化テトラnブチルアンモニウムを含有する臭化テトラnブチルアンモニウム水溶液を採用している。特に、上記蓄熱媒体は、調和濃度の近傍の濃度を有する媒体であることが好ましい。本実施形態では、調和濃度を約40%とする。この場合の臭化テトラnブチルアンモニウム水溶液の水和物生成温度は、約12℃である。
〈室内ユニット〉
複数の室内ユニット(70)には、冷媒回路(11)の一部を成す室内回路(71)がそれぞれ設けられる。複数の室内回路(71)は、連絡配管(15)(液管)と連絡配管(16)(ガス管)との間に並列に接続されている。複数の室内回路(71)と上述した主蓄熱用流路(44)とは、液ライン(L1)とガスライン(L2)の間に並列に接続されている。各室内回路(71)には、ガス側端部から液側端部に向かって順に、室内熱交換器(72)と室内膨張弁(73)とがそれぞれ接続されている。
複数の室内ユニット(70)には、冷媒回路(11)の一部を成す室内回路(71)がそれぞれ設けられる。複数の室内回路(71)は、連絡配管(15)(液管)と連絡配管(16)(ガス管)との間に並列に接続されている。複数の室内回路(71)と上述した主蓄熱用流路(44)とは、液ライン(L1)とガスライン(L2)の間に並列に接続されている。各室内回路(71)には、ガス側端部から液側端部に向かって順に、室内熱交換器(72)と室内膨張弁(73)とがそれぞれ接続されている。
〔室内熱交換器〕
室内熱交換器(72)は、例えばクロスフィン・アンド・チューブ式の熱交換器で構成されている。室内熱交換器(72)の近傍には、室内ファン(74)が設けられている。室内熱交換器(72)では、室内ファン(74)が搬送する空気と、室外熱交換器(23)を流れる冷媒とが熱交換する。
室内熱交換器(72)は、例えばクロスフィン・アンド・チューブ式の熱交換器で構成されている。室内熱交換器(72)の近傍には、室内ファン(74)が設けられている。室内熱交換器(72)では、室内ファン(74)が搬送する空気と、室外熱交換器(23)を流れる冷媒とが熱交換する。
室内回路(71)には、室内熱交換器(72)の液側端部に冷媒温度センサ(S3)が設けられる。冷媒温度センサ(S3)は、詳細は後述する単純暖房運転において、室内熱交換器(72)で凝縮した冷媒の温度が高いことを示す条件、ないし該冷媒の温度が低いことを示す条件が成立するか否かの判定に用いられる。この判定に用いるセンサとして、室内熱交換器(72)で冷媒と熱交換した吹出空気の温度を検出する空気温度検出センサを用いてもよい。なお、冷媒温度センサ(S3)は、便宜上、図1のみに図示し、他の図の図示は省略している。
〔室内膨張弁〕
室内膨張弁(73)は、室内熱交換器(72)の液側端部と連絡配管(15)の接続端の間に配置されている。室内膨張弁(73)は、例えば電子膨張弁で構成され、その開度を変更することで冷媒の流量を調節する。
室内膨張弁(73)は、室内熱交換器(72)の液側端部と連絡配管(15)の接続端の間に配置されている。室内膨張弁(73)は、例えば電子膨張弁で構成され、その開度を変更することで冷媒の流量を調節する。
〈コントローラ〉
コントローラ(100)は、各機器を制御する運転制御部を構成している。具体的に、コントローラ(100)は、圧縮機(22)のON/OFFの切換、四方切換弁(25)の状態の切換、各電磁弁(SV1-6)の開閉の切換、各膨張弁(24,45,73)や減圧弁(EV1-4)の開度の調節、各ファン(26,74)のON/OFFの切換、ポンプ(67)のON/OFFの切換等を行う。また、蓄熱式空気調和機(10)には、図示を省略した各種のセンサが設けられている。コントローラ(100)は、これらの検出値に基づいて、上述した各機器を制御する。
コントローラ(100)は、各機器を制御する運転制御部を構成している。具体的に、コントローラ(100)は、圧縮機(22)のON/OFFの切換、四方切換弁(25)の状態の切換、各電磁弁(SV1-6)の開閉の切換、各膨張弁(24,45,73)や減圧弁(EV1-4)の開度の調節、各ファン(26,74)のON/OFFの切換、ポンプ(67)のON/OFFの切換等を行う。また、蓄熱式空気調和機(10)には、図示を省略した各種のセンサが設けられている。コントローラ(100)は、これらの検出値に基づいて、上述した各機器を制御する。
〈蓄熱式空気調和機の運転動作〉
本実施形態に係る蓄熱式空気調和機(10)の運転動作について説明する。蓄熱式空気調和機(10)は、単純冷房運転、蓄冷運転、利用冷房運転、冷房蓄冷運転、単純暖房運転、蓄熱運転、暖房蓄熱運転、及び利用暖房運転を切り換えて行う。コントローラ(100)は、これらの各運転を切り換えるように、各機器を制御する。
本実施形態に係る蓄熱式空気調和機(10)の運転動作について説明する。蓄熱式空気調和機(10)は、単純冷房運転、蓄冷運転、利用冷房運転、冷房蓄冷運転、単純暖房運転、蓄熱運転、暖房蓄熱運転、及び利用暖房運転を切り換えて行う。コントローラ(100)は、これらの各運転を切り換えるように、各機器を制御する。
〔単純冷房運転〕
単純冷房運転では、蓄熱装置(60)が停止し、室内ユニット(70)で室内の冷房が行われる。図2に示す単純冷房運転では、四方切換弁(25)が第1状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第2電磁弁(SV2)、第4電磁弁(SV4)、及び第5電磁弁(SV5)が開状態になり、残りは閉状態になる。第2減圧弁(EV2)及び第4減圧弁(EV4)が全閉状態に、室外膨張弁(24)が全開状態に、第1減圧弁(EV1)及び室内膨張弁(73)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が停止状態となり作動しない。単純冷房運転の冷媒回路(11)では、室外熱交換器(23)が凝縮器となり、第1過冷却熱交換器(32)が過冷却器となり、室内熱交換器(72)が蒸発器となる冷凍サイクルが行われる。単純冷房運転では、低圧側のガスライン(L2)と主蓄熱用流路(44)とが連通する。これにより、主蓄熱用流路(44)の内部での液溜まりを回避できる。
単純冷房運転では、蓄熱装置(60)が停止し、室内ユニット(70)で室内の冷房が行われる。図2に示す単純冷房運転では、四方切換弁(25)が第1状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第2電磁弁(SV2)、第4電磁弁(SV4)、及び第5電磁弁(SV5)が開状態になり、残りは閉状態になる。第2減圧弁(EV2)及び第4減圧弁(EV4)が全閉状態に、室外膨張弁(24)が全開状態に、第1減圧弁(EV1)及び室内膨張弁(73)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が停止状態となり作動しない。単純冷房運転の冷媒回路(11)では、室外熱交換器(23)が凝縮器となり、第1過冷却熱交換器(32)が過冷却器となり、室内熱交換器(72)が蒸発器となる冷凍サイクルが行われる。単純冷房運転では、低圧側のガスライン(L2)と主蓄熱用流路(44)とが連通する。これにより、主蓄熱用流路(44)の内部での液溜まりを回避できる。
圧縮機(22)から吐出された冷媒は、室外熱交換器(23)で凝縮する。凝縮した冷媒の多くは、第2伝熱流路(34)を流れ、残りは第1減圧弁(EV1)で減圧された後、第1伝熱流路(33)を流れる。第1過冷却熱交換器(32)では、第2伝熱流路(34)の冷媒が第1伝熱流路(33)の冷媒によって冷却される。液ライン(L1)に流入した冷媒は、室内膨張弁(73)で減圧された後、室内熱交換器(72)で蒸発する。ガスライン(L2)を流れる冷媒は、第1導入管(31)を流入した冷媒と合流し、圧縮機(22)に吸入される。
〔蓄冷運転〕
蓄冷運転では、蓄熱装置(60)が作動し、蓄熱タンク(62)の蓄熱媒体に冷熱が蓄えられる。図3に示す蓄冷運転では、四方切換弁(25)が第1状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第2電磁弁(SV2)、第3電磁弁(SV3)、及び第4電磁弁(SV4)が開状態になり、残りは閉状態になる。第1減圧弁(EV1)、第2減圧弁(EV2)、第3減圧弁(EV3)、及び第4減圧弁(EV4)が全閉状態に、室外膨張弁(24)が全開状態に、蓄熱用膨張弁(45)の開度が適宜調節される。圧縮機(22)、室外ファン(26)は作動し、室内ファン(74)は停止する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。蓄冷運転の冷媒回路(11)では、室外熱交換器(23)が凝縮器となり、予熱用熱交換器(64)が放熱器(冷媒冷却器)となり、蓄熱用熱交換器(63)が蒸発器となる冷凍サイクルが行われる。蓄冷運転では、高圧の液ライン(L1)から室内ユニット(70)までに亘る流路に余剰の冷媒を保持することができる。
蓄冷運転では、蓄熱装置(60)が作動し、蓄熱タンク(62)の蓄熱媒体に冷熱が蓄えられる。図3に示す蓄冷運転では、四方切換弁(25)が第1状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第2電磁弁(SV2)、第3電磁弁(SV3)、及び第4電磁弁(SV4)が開状態になり、残りは閉状態になる。第1減圧弁(EV1)、第2減圧弁(EV2)、第3減圧弁(EV3)、及び第4減圧弁(EV4)が全閉状態に、室外膨張弁(24)が全開状態に、蓄熱用膨張弁(45)の開度が適宜調節される。圧縮機(22)、室外ファン(26)は作動し、室内ファン(74)は停止する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。蓄冷運転の冷媒回路(11)では、室外熱交換器(23)が凝縮器となり、予熱用熱交換器(64)が放熱器(冷媒冷却器)となり、蓄熱用熱交換器(63)が蒸発器となる冷凍サイクルが行われる。蓄冷運転では、高圧の液ライン(L1)から室内ユニット(70)までに亘る流路に余剰の冷媒を保持することができる。
圧縮機(22)から吐出された冷媒は、室外熱交換器(23)で凝縮する。凝縮した冷媒は、主蓄熱用流路(44)の予熱側冷媒流路(64b)を流れる。予熱用熱交換器(64)では、蓄熱媒体が冷媒によって加熱される。これにより、蓄熱タンク(62)から流出した包接水和物の核(微小な結晶)が融解する。予熱側冷媒流路(64b)で冷却された冷媒は、予熱用熱交換器(64)で減圧された後、蓄熱側冷媒流路(63b)を流れる。蓄熱用熱交換器(63)では、蓄熱媒体が冷媒によって冷却され、蒸発する。主蓄熱用流路(44)からガスライン(L2)に流入した冷媒は、圧縮機(22)に吸入される。蓄熱タンク(62)には、蓄熱用熱交換器(63)で冷却された蓄熱媒体が貯留される。
〔利用冷房運転〕
利用冷房運転では、蓄熱装置(60)が作動し、蓄熱タンク(62)に蓄えられた蓄熱媒体の冷熱が、室内の冷房に利用される。図4に示す利用冷房運転では、四方切換弁(25)が第1状態に第1電磁弁(SV1)から第6電磁弁(SV6)のうち第3電磁弁(SV3)、第5電磁弁(SV5)、及び第6電磁弁(SV6)が開状態になり、残りは閉状態となる。第1減圧弁(EV1)、第4減圧弁(EV4)が全閉状態に、室外膨張弁(24)が全開状態に、第2減圧弁(EV2)及び室内膨張弁(73)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。利用冷房運転の冷媒回路(11)では、室外熱交換器(23)が凝縮器となり、予熱用熱交換器(64)、蓄熱用熱交換器(63)、及び第2過冷却熱交換器(52)が放熱器(冷媒冷却器)となり、室内熱交換器(72)が蒸発器となる冷凍サイクルが行われる。
利用冷房運転では、蓄熱装置(60)が作動し、蓄熱タンク(62)に蓄えられた蓄熱媒体の冷熱が、室内の冷房に利用される。図4に示す利用冷房運転では、四方切換弁(25)が第1状態に第1電磁弁(SV1)から第6電磁弁(SV6)のうち第3電磁弁(SV3)、第5電磁弁(SV5)、及び第6電磁弁(SV6)が開状態になり、残りは閉状態となる。第1減圧弁(EV1)、第4減圧弁(EV4)が全閉状態に、室外膨張弁(24)が全開状態に、第2減圧弁(EV2)及び室内膨張弁(73)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。利用冷房運転の冷媒回路(11)では、室外熱交換器(23)が凝縮器となり、予熱用熱交換器(64)、蓄熱用熱交換器(63)、及び第2過冷却熱交換器(52)が放熱器(冷媒冷却器)となり、室内熱交換器(72)が蒸発器となる冷凍サイクルが行われる。
圧縮機(22)から吐出された冷媒は、室外熱交換器(23)で凝縮する。凝縮した冷媒は、主蓄熱用流路(44)の予熱用熱交換器(64)で冷却され、第1バイパス管(44a)を通過した後、蓄熱用熱交換器(63)で更に冷却される。主蓄熱用流路(44)、第3分岐管(49)を流れて液ライン(L1)に流入した冷媒の多くは、第4伝熱流路(54)を流れ、残りは第2減圧弁(EV2)で減圧された後、第3伝熱流路(53)を流れる。第2過冷却熱交換器(52)では、第4伝熱流路(54)を流れる冷媒が第3伝熱流路(53)の冷媒によって冷却される。第2過冷却熱交換器(52)で冷却された冷媒は、室内膨張弁(73)で減圧された後、室内熱交換器(72)で蒸発する。ガスライン(L2)を流れる冷媒は、第2導入管(51)を流出した冷媒と合流し、圧縮機(22)に吸入される。
〔冷房蓄冷運転〕
冷房蓄冷運転では、蓄熱装置(60)が作動し、蓄熱媒体に冷熱が蓄えられるとともに、室内ユニット(70)で室内の冷房が行われる。図5に示す冷房蓄冷運転では、四方切換弁(25)が第1状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第2電磁弁(SV2)、第3電磁弁(SV3)、及び第4電磁弁(SV4)が開状態になり、残りは閉状態となる。第1減圧弁(EV1)、第3減圧弁(EV3)、及び第4減圧弁(EV4)が全閉状態に、室外膨張弁(24)が全開状態に、第2減圧弁(EV2)、蓄熱用膨張弁(45)、及び室内膨張弁(73)の開度が適宜調節される。圧縮機(22)、室外ファン(26)及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。冷房蓄冷運転の冷媒回路(11)では、室外熱交換器(23)が凝縮器となり、予熱用熱交換器(64)及び第2過冷却熱交換器(52)が放熱器(冷媒冷却器)となり、蓄熱用熱交換器(63)及び室内熱交換器(72)が蒸発器となる。
冷房蓄冷運転では、蓄熱装置(60)が作動し、蓄熱媒体に冷熱が蓄えられるとともに、室内ユニット(70)で室内の冷房が行われる。図5に示す冷房蓄冷運転では、四方切換弁(25)が第1状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第2電磁弁(SV2)、第3電磁弁(SV3)、及び第4電磁弁(SV4)が開状態になり、残りは閉状態となる。第1減圧弁(EV1)、第3減圧弁(EV3)、及び第4減圧弁(EV4)が全閉状態に、室外膨張弁(24)が全開状態に、第2減圧弁(EV2)、蓄熱用膨張弁(45)、及び室内膨張弁(73)の開度が適宜調節される。圧縮機(22)、室外ファン(26)及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。冷房蓄冷運転の冷媒回路(11)では、室外熱交換器(23)が凝縮器となり、予熱用熱交換器(64)及び第2過冷却熱交換器(52)が放熱器(冷媒冷却器)となり、蓄熱用熱交換器(63)及び室内熱交換器(72)が蒸発器となる。
圧縮機(22)から吐出された冷媒は、室外熱交換器(23)で凝縮する。凝縮した冷媒は、第2伝熱流路(34)を流れ、主蓄熱用流路(44)と主液管(42)とに分流する。主蓄熱用流路(44)の冷媒は、予熱用熱交換器(64)の蓄熱媒体によって冷却され、蓄熱用膨張弁(45)で減圧される。主液管(42)の冷媒の多くは、第4伝熱流路(54)を流れ、残りは第2減圧弁(EV2)で減圧された後、第3伝熱流路(53)を流れる。第2過冷却熱交換器(52)では、第4伝熱流路(54)を流れる冷媒が第3伝熱流路(53)の冷媒によって冷却される。第2過冷却熱交換器(52)で冷却された冷媒は、室内膨張弁(73)で減圧された後、室内熱交換器(72)で蒸発する。ガスライン(L2)を流れる冷媒は、第2導入管(51)を流出した冷媒と合流し、圧縮機(22)に吸入される。
〔単純暖房運転〕
単純暖房運転では、蓄熱装置(60)が停止し、室内ユニット(70)で室内の暖房が行われる。図6に示す単純暖房運転では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第2電磁弁(SV2)が開状態となり、残りは全て閉状態なる。第1減圧弁(EV1)、第2減圧弁(EV2)、第3減圧弁(EV3)、第4減圧弁(EV4)、及び蓄熱用膨張弁(45)が全閉状態に、室内膨張弁(73)及び室外膨張弁(24)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が停止状態となり作動しない。単純暖房運転の冷媒回路(11)では、室内熱交換器(72)が凝縮器となり、室外熱交換器(23)が蒸発器となる冷凍サイクルが行われる。室内膨張弁(73)は、室内熱交換器(72)の出口冷媒の過冷却度を制御する。
単純暖房運転では、蓄熱装置(60)が停止し、室内ユニット(70)で室内の暖房が行われる。図6に示す単純暖房運転では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第2電磁弁(SV2)が開状態となり、残りは全て閉状態なる。第1減圧弁(EV1)、第2減圧弁(EV2)、第3減圧弁(EV3)、第4減圧弁(EV4)、及び蓄熱用膨張弁(45)が全閉状態に、室内膨張弁(73)及び室外膨張弁(24)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が停止状態となり作動しない。単純暖房運転の冷媒回路(11)では、室内熱交換器(72)が凝縮器となり、室外熱交換器(23)が蒸発器となる冷凍サイクルが行われる。室内膨張弁(73)は、室内熱交換器(72)の出口冷媒の過冷却度を制御する。
圧縮機(22)から吐出された冷媒は、ガスライン(L2)を流れ、室内熱交換器(72)で凝縮する。液ライン(L1)に流出した冷媒は、室外膨張弁(24)で減圧された後、室外熱交換器(23)で蒸発し、圧縮機(22)に吸入される。
〔蓄熱運転〕
蓄熱運転では、蓄熱タンク(62)に温熱を蓄えた蓄熱媒体が貯留される。図7に示す蓄熱運転では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第3電磁弁(SV3)、第4電磁弁(SV4)、及び第5電磁弁(SV5)が開状態になり、残りは閉状態となる。第1減圧弁(EV1)、第2減圧弁(EV2)、第3減圧弁(EV3)、第4減圧弁(EV4)、及び室内膨張弁(73)が全閉状態に、室外膨張弁(24)の開度が適宜調節される。圧縮機(22)、室外ファン(26)は作動し、室内ファン(74)は停止する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。蓄熱運転の冷媒回路(11)では、蓄熱用熱交換器(63)及び予熱用熱交換器(64)が凝縮器となり、室外熱交換器(23)が蒸発器となる冷凍サイクルが行われる。
蓄熱運転では、蓄熱タンク(62)に温熱を蓄えた蓄熱媒体が貯留される。図7に示す蓄熱運転では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第3電磁弁(SV3)、第4電磁弁(SV4)、及び第5電磁弁(SV5)が開状態になり、残りは閉状態となる。第1減圧弁(EV1)、第2減圧弁(EV2)、第3減圧弁(EV3)、第4減圧弁(EV4)、及び室内膨張弁(73)が全閉状態に、室外膨張弁(24)の開度が適宜調節される。圧縮機(22)、室外ファン(26)は作動し、室内ファン(74)は停止する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。蓄熱運転の冷媒回路(11)では、蓄熱用熱交換器(63)及び予熱用熱交換器(64)が凝縮器となり、室外熱交換器(23)が蒸発器となる冷凍サイクルが行われる。
圧縮機(22)から吐出された冷媒は、ガスライン(L2)を流れ、蓄熱用熱交換器(63)で放熱し、第2バイパス管(44a)を通過した後、予熱用熱交換器(64)で更に放熱する。主蓄熱用流路(44)を流出した冷媒は、室外膨張弁(24)で減圧された後、室外熱交換器(23)で蒸発し、圧縮機(22)に吸入される。蓄熱タンク(62)には、蓄熱用熱交換器(63)及び予熱用熱交換器(64)で加熱された蓄熱媒体が貯留される。
〔暖房蓄熱運転〕
暖房蓄熱運転では、蓄熱装置(60)が作動し、蓄熱タンク(62)に温熱が蓄えられるとともに、室内ユニット(70)で室内の暖房が行われる。暖房蓄熱運転は、第1暖房蓄熱運転(以下、暖房蓄熱運転(1)という)と、第2暖房蓄熱運転(以下、暖房蓄熱運転(2)という)とに大別される。
暖房蓄熱運転では、蓄熱装置(60)が作動し、蓄熱タンク(62)に温熱が蓄えられるとともに、室内ユニット(70)で室内の暖房が行われる。暖房蓄熱運転は、第1暖房蓄熱運転(以下、暖房蓄熱運転(1)という)と、第2暖房蓄熱運転(以下、暖房蓄熱運転(2)という)とに大別される。
[暖房蓄熱運転(1)]
図8に示す暖房蓄熱運転(1)では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第3電磁弁(SV3)、第5電磁弁(SV5)、及び第6電磁弁(SV6)が開状態となり、残りが閉状態となる。第1減圧弁(EV1)、第2減圧弁(EV2)、第3減圧弁(EV3)、第4減圧弁(EV4)、及び蓄熱用膨張弁(45)が全閉状態に、室内膨張弁(73)及び室外膨張弁(24)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。蓄熱運転の冷媒回路(11)では、室内熱交換器(72)が凝縮器となり、蓄熱用熱交換器(63)及び予熱用熱交換器(64)が放熱器となり、室外熱交換器(23)が蒸発器となる冷凍サイクルが行われる。
図8に示す暖房蓄熱運転(1)では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第3電磁弁(SV3)、第5電磁弁(SV5)、及び第6電磁弁(SV6)が開状態となり、残りが閉状態となる。第1減圧弁(EV1)、第2減圧弁(EV2)、第3減圧弁(EV3)、第4減圧弁(EV4)、及び蓄熱用膨張弁(45)が全閉状態に、室内膨張弁(73)及び室外膨張弁(24)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。蓄熱運転の冷媒回路(11)では、室内熱交換器(72)が凝縮器となり、蓄熱用熱交換器(63)及び予熱用熱交換器(64)が放熱器となり、室外熱交換器(23)が蒸発器となる冷凍サイクルが行われる。
圧縮機(22)から吐出された冷媒は、ガスライン(L2)を流れ、その全量が室内熱交換器(72)を流れる。室内熱交換器(72)では、冷媒が室内空気へ放熱して凝縮する。室内熱交換器(72)で凝縮した冷媒は、その全量が第3分岐管(49)を流れ、蓄熱用熱交換器(63)を流れる。蓄熱用熱交換器(63)では、冷媒が蓄熱媒体へ放熱し、蓄熱媒体が加熱される。蓄熱用熱交換器(63)を流れた冷媒は、予熱用熱交換器(64)で更に蓄熱媒体へ放熱し、液ライン(L1)を流れる。この冷媒は、室外熱交換器(23)で蒸発し、圧縮機(22)に吸入される。
以上のように、暖房蓄熱運転(1)では、室内熱交換器(72)で凝縮した冷媒の全量が、蓄熱用熱交換器(63)を流れる。この結果、暖房に利用されなかった余剰の冷媒の熱を蓄熱媒体の温蓄熱に利用できる。
[暖房蓄熱運転(2)]
図9に示す暖房蓄熱運転(2)では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第2電磁弁(SV2)、第3電磁弁(SV3)、第4電磁弁(SV4)、第5電磁弁(SV5)が開状態となり、残りが閉状態となる。第1減圧弁(EV1)、第2減圧弁(EV2)、第3減圧弁(EV3)、及び第4減圧弁(EV4)が全閉状態に、室内膨張弁(73)及び室外膨張弁(24)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。蓄熱運転の冷媒回路(11)では、室内熱交換器(72)及び蓄熱用熱交換器(63)が凝縮器となり、室外熱交換器(23)が蒸発器となる冷凍サイクルが行われる。
図9に示す暖房蓄熱運転(2)では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第2電磁弁(SV2)、第3電磁弁(SV3)、第4電磁弁(SV4)、第5電磁弁(SV5)が開状態となり、残りが閉状態となる。第1減圧弁(EV1)、第2減圧弁(EV2)、第3減圧弁(EV3)、及び第4減圧弁(EV4)が全閉状態に、室内膨張弁(73)及び室外膨張弁(24)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。蓄熱運転の冷媒回路(11)では、室内熱交換器(72)及び蓄熱用熱交換器(63)が凝縮器となり、室外熱交換器(23)が蒸発器となる冷凍サイクルが行われる。
圧縮機(22)から吐出された冷媒は、ガスライン(L2)を流れ、一部が室内熱交換器(72)を流れ、残りが主蓄熱用流路(44)を流れる。室内熱交換器(72)では、冷媒が室内空気へ放熱して凝縮する。室内熱交換器(72)で凝縮した冷媒は、主液管(42)を流れる。
主蓄熱用流路(44)の冷媒は、蓄熱用熱交換器(63)で蓄熱媒体へ放熱して凝縮する。この冷媒は、高温高圧のガス冷媒であるため、冷媒と蓄熱媒体との温度差が大きくなり、蓄熱媒体に確実に温熱を付与することができる。蓄熱用熱交換器(63)で凝縮した冷媒は、主液管(42)を流れる冷媒と合流し、室外膨張弁(24)で減圧される。減圧後の冷媒は、室外熱交換器(23)で蒸発し、圧縮機(22)に吸入される。
以上のように、暖房蓄熱運転(2)では、圧縮機(22)から吐出された高温高圧のガス冷媒が、室内熱交換器(72)と蓄熱用熱交換器(63)との双方へ並列に流れ、各々で凝縮する。この結果、室内の暖房を継続しつつ、蓄熱媒体に温熱を確実に付与させることができる。
〔利用暖房運転〕
利用暖房運転では、蓄熱装置(60)が作動し、蓄熱タンク(62)に蓄えられた蓄熱媒体の温熱が低圧冷媒の蒸発熱として利用される。これにより、暖房負荷の軽減が図られる。利用暖房運転は、第1利用暖房運転(以下、利用暖房運転(1)という)と、第2利用暖房運転(以下、利用暖房運転(2)という)とに大別される。
利用暖房運転では、蓄熱装置(60)が作動し、蓄熱タンク(62)に蓄えられた蓄熱媒体の温熱が低圧冷媒の蒸発熱として利用される。これにより、暖房負荷の軽減が図られる。利用暖房運転は、第1利用暖房運転(以下、利用暖房運転(1)という)と、第2利用暖房運転(以下、利用暖房運転(2)という)とに大別される。
[利用暖房運転(1)]
利用暖房運転(1)は、蓄熱用熱交換器(63)で蒸発する冷媒の圧力(MP)と、室外熱交換器(23)で蒸発する冷媒の圧力(LP)との差(MP-LP)が比較的小さくなるような条件下で実行される。例えば冬季において、外気温度が比較的高い一方、蓄熱装置(60)の蓄熱回路(61)の蓄熱媒体の温度が比較的低いような場合が、この条件に相当する。
利用暖房運転(1)は、蓄熱用熱交換器(63)で蒸発する冷媒の圧力(MP)と、室外熱交換器(23)で蒸発する冷媒の圧力(LP)との差(MP-LP)が比較的小さくなるような条件下で実行される。例えば冬季において、外気温度が比較的高い一方、蓄熱装置(60)の蓄熱回路(61)の蓄熱媒体の温度が比較的低いような場合が、この条件に相当する。
図10に示す利用暖房運転(1)では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第3電磁弁(SV3)及び第5電磁弁(SV5)が開状態になり、残りが閉状態となる。第1減圧弁(EV1)及び室外膨張弁(24)が全開状態に、第2減圧弁(EV2)、第3減圧弁(EV3)が全閉状態に、第4減圧弁(EV4)及び室内膨張弁(73)の開度が適宜調節される。圧縮機(22)及び室内ファン(74)は作動し、室外ファン(26)は停止する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。利用暖房運転(1)の冷媒回路(11)では、室内熱交換器(72)が凝縮器となり、蓄熱用熱交換器(63)が蒸発器となる冷凍サイクルが行われる。
圧縮機(22)から吐出された冷媒は、ガスライン(L2)を流れ、室内熱交換器(72)で凝縮する。液ライン(L1)に流出した冷媒は、その全量が第2分岐管(48)に流入する。第2分岐管(48)では、第4減圧弁(EV4)によって冷媒が低圧まで減圧される。減圧された冷媒は、蓄熱用熱交換器(63)の蓄熱側冷媒流路(63b)を流れ、蓄熱媒体から吸熱して蒸発する。蓄熱用熱交換器(63)で蒸発した冷媒は、第1バイパス管(44a)と通過し、予熱用熱交換器(64)の予熱側冷媒流路(64b)を流れ、蓄熱媒体から吸熱して更に蒸発する。この冷媒は、主蓄熱用流路(44)を流れ、第1導入管(31)と室外熱交換器(23)とに分流する。これらの冷媒は、吸入管(28)で合流し、圧縮機(22)に吸入される。このため、冷媒の圧力損失を低減でき、圧縮機(22)の動力を軽減できる。この際、第1導入管(31)を流れる冷媒は、第1過冷却熱交換器(32)を流れるが、第1過冷却熱交換器(32)は空気熱交換器でないため、熱ロスも少ない。また、室外ファン(26)は停止状態であるため、冷媒が室外熱交換器(23)を流れても、熱ロスが少ない。このように、利用暖房運転(1)では、低圧ガス冷媒の圧力損失や熱ロスの低減を図ることができる。また、第1導入管(31)は、冷媒を過冷却するための低圧インジェクション管を兼用するので、配管の本数を削減できる。
なお、利用暖房運転(1)において、第1減圧弁(EV1)と室外膨張弁(24)のうち室外膨張弁(24)だけを全閉状態とし、低圧ガス冷媒を第1導入管(31)だけに流してもよい。また、第1減圧弁(EV1)と室外膨張弁(24)のうち第1減圧弁(EV1)だけを全閉状態とし、低圧ガス冷媒を室外熱交換器(23)だけに流してもよい。
[利用暖房運転(2)]
利用暖房運転(2)は、蓄熱用熱交換器(63)で蒸発する冷媒の圧力(MP)と、室外熱交換器(23)で蒸発する冷媒の圧力(LP)との差(MP-LP)が比較的大きくなるような条件下で実行される。例えば冬季において、外気温度が比較的低い一方、蓄熱装置(60)の蓄熱回路(61)の蓄熱媒体の温度が比較的高いような場合が、この条件に相当する。
利用暖房運転(2)は、蓄熱用熱交換器(63)で蒸発する冷媒の圧力(MP)と、室外熱交換器(23)で蒸発する冷媒の圧力(LP)との差(MP-LP)が比較的大きくなるような条件下で実行される。例えば冬季において、外気温度が比較的低い一方、蓄熱装置(60)の蓄熱回路(61)の蓄熱媒体の温度が比較的高いような場合が、この条件に相当する。
図11に示す利用暖房運転(2)では、四方切換弁(25)が第2状態に、第1電磁弁(SV1)から第6電磁弁(SV6)のうち第1電磁弁(SV1)、第2電磁弁(SV2)、及び第5電磁弁(SV5)が開状態になり、残りは閉状態となる。第1減圧弁(EV1)、第2減圧弁(EV2)、及び第3減圧弁(EV3)が全閉状態に、第4減圧弁(EV4)、室内膨張弁(73)、及び室外膨張弁(24)の開度が適宜調節される。圧縮機(22)、室外ファン(26)、及び室内ファン(74)は作動する。蓄熱装置(60)は、ポンプ(67)が運転状態となり作動する。利用暖房運転の冷媒回路(11)では、室内熱交換器(72)が凝縮器となり、蓄熱用熱交換器(63)、予熱用熱交換器(64)、及び室外熱交換器(23)が蒸発器となる冷凍サイクルが行われる。
圧縮機(22)から吐出された冷媒は、ガスライン(L2)を流れ、室内熱交換器(72)で凝縮する。液ライン(L1)に流出した冷媒は、第2分岐管(48)と主液管(42)とに分流する。第2分岐管(48)の冷媒は、第4減圧弁(EV4)で中間圧(冷媒回路(11)の高圧圧力と低圧圧力との間の中間圧力)にまで減圧され、主蓄熱用流路(44)に流出する。主蓄熱用流路(44)の冷媒は、蓄熱用熱交換器(63)及び予熱用熱交換器(64)で加熱され、蒸発する。蒸発した冷媒は、中間中継管(46)、連絡配管(13)、及び中間吸入管(35)を順に流れ、圧縮機(22)の圧縮途中の圧縮室に吸入される。
主液管(42)の冷媒は、室外膨張弁(24)で減圧された後、室外熱交換器(23)で蒸発し、圧縮機(22)の吸入管(28)に吸入される。圧縮機(22)の圧縮室では、吸入管(28)から吸入された低圧冷媒が中間圧まで圧縮された後、中間吸入管(35)から吸入された中間圧冷媒と混合し、高圧圧力まで圧縮される。
利用暖房運転(2)では、外気温度が低く、蓄熱装置(60)の蓄熱回路(61)の蓄熱媒体の温度が比較的高い条件下で実行されるため、蓄熱用熱交換器(63)の冷媒の蒸発圧力MPと、室外熱交換器(23)の冷媒の蒸発圧力LPとの圧力差(MP-LP)とが比較的大きくなる。このため、圧縮機(22)の圧縮室の圧縮途中では、圧縮室の内圧が中間吸入管(35)より導入される冷媒の圧力より大きくなることを抑制でき、中間吸入管(35)の冷媒を圧縮室に確実に導入できる。
しかも、中間吸入管(35)には、圧縮機(22)から主蓄熱用流路(44)へ向かう逆流を禁止する逆止弁(CV1)が設けられている。このため、仮に中間吸入管(35)を流出する冷媒の圧力MPが、圧縮途中の圧縮室の内圧より低くなったとしても、圧縮室の冷媒が中間吸入管(35)を逆流してしまうことがない。なお、逆止弁(CV1)は、中間吸入管(35)のうち圧縮機(22)のケーシング(22a)内に位置する内側配管部(36)に設けてもよい。これにより、圧縮機構の圧縮途中の圧縮室から逆止弁(CV1)までの流路長さを最小限に抑えることができ、ひいては冷媒の圧縮に寄与しない死容積を最小限に抑えることができる。この結果、圧縮機(22)の圧縮効率の低下を防止できる。
また、MP-LPが比較的大きい条件下で冷媒が圧縮されると、圧縮機(22)で冷媒を高圧まで圧縮させるために要する総仕事量が軽減される。この結果、利用暖房運転(2)では、蓄熱媒体の温熱を冷媒に回収させつつ、省エネ性の高い暖房を行うことができる。
[利用暖房運転の第1動作]
上述した利用暖房運転(1)や利用暖房運転(2)では、コントローラ(100)が、外気温度センサ(S1)(図1を参照)で検出された外気温度Toと、所定の温度Taとを比較する。検出された外気温度Toが、所定温度Ta以上である場合、第1条件が成立したと判定し、第1動作が実行される。
上述した利用暖房運転(1)や利用暖房運転(2)では、コントローラ(100)が、外気温度センサ(S1)(図1を参照)で検出された外気温度Toと、所定の温度Taとを比較する。検出された外気温度Toが、所定温度Ta以上である場合、第1条件が成立したと判定し、第1動作が実行される。
第1動作は、利用暖房運転(1)や利用暖房運転(2)において、蓄熱媒体の温度が水和物生成温度より高い状態にあるときのみ、蓄熱媒体が蓄熱用熱交換器(63)を介して冷媒を加熱する運転である。つまり、第1動作では、蓄熱媒体に蓄えられた顕熱及び潜熱のうち顕熱のみが暖房に利用されるということができる。
第1動作では、比較的高温の蓄熱媒体の顕熱が、蓄熱用熱交換器(63)や予熱用熱交換器(64)を介して冷媒に付与される。従って、蓄熱媒体と冷媒とを熱交換させても、蒸発圧力を比較的高く維持でき、暖房効率を向上できる。ただし、第1動作中では、外気温度Toが高く、室外熱交換器(23)の低圧冷媒の蒸発圧力も高いため、第1動作が継続して行われ、蓄熱回路(61)の蓄熱媒体の温度が徐々に低下していくと、蓄熱回路(61)での蒸発圧力も低下していき、第1動作を継続しても、暖房効率が向上しなくなる。そこで、蓄熱媒体温度センサ(S2)で検出した蓄熱媒体の温度が基準温度Tbより低くなると、コントローラ(100)は、第1動作を終了させ、単純暖房運転を実行させるように各機器を制御する。ここで、基準温度Tbは、蓄熱媒体の水和物生成温度(例えば12℃)以上の所定温度である。
単純暖房運転(図6)に移行すると、ポンプ(67)が停止し、冷媒が蓄熱用熱交換器(63)を流れない。従って、冷媒によって蓄熱媒体がこれ以上冷却されることがなく、蓄熱媒体の温度が水和物生成温度以下になることもない。この結果、蓄熱回路(61)では、包接水和物が結晶化して配管内に蓄積してしまうことを未然に回避でき、蓄熱回路(61)の閉塞を確実に防止できる。しかも、単純暖房運転へ移行することで、室内の暖房が継続されるため、室内の快適性が損なわれてしまうこともない。
[利用暖房運転の第2動作]
上述した利用暖房運転(1)や利用暖房運転(2)において、検出された外気温度Toが、所定温度Taより小さい場合、第1条件が成立しないと判定し、第2動作が実行される。
上述した利用暖房運転(1)や利用暖房運転(2)において、検出された外気温度Toが、所定温度Taより小さい場合、第1条件が成立しないと判定し、第2動作が実行される。
第2動作は、蓄熱媒体の温度が水和物生成温度より低くなっても、蓄熱媒体が蓄熱用熱交換器(63)を介して冷媒を加熱する動作を継続させる運転である。つまり、第2動作では、蓄熱媒体に蓄えられた顕熱と潜熱の双方が暖房に利用されるということができる。
第2動作では、比較的低温の蓄熱媒体の潜熱が、蓄熱用熱交換器(63)及び予熱用熱交換器(68)を介して冷媒に付与される。第2動作中では、外気温度Toが低く、室外熱交換器(23)の低圧冷媒の蒸発圧力も低い。従って、蓄熱媒体と冷媒とを熱交換させることで、蒸発圧力を高くすることができ、暖房効率を向上できる。
第2動作が継続して行われると、蓄熱回路(61)の蓄熱媒体の温度が徐々に低下し、水和物生成温度よりも低くなる。これにより、蓄熱回路(61)では、包接水和物が生成し水和物の結晶が配管内に蓄積してしまう可能性がある。そこで、蓄熱装置(60)では、このような包接水和物の結晶の蓄積の開始を蓄熱媒体温度センサ(S2)で検出するようにしている。
具体的に、蓄熱回路(61)の蓄熱媒体は、水和物生成温度より温度が低くなったとしても、過冷却状態となり、水和物の結晶は生成しない。しかし、この過冷却状態の蓄熱媒体に衝撃等の何らかのきっかけが与えられると、過冷却状態が解消され、水和物結晶が生成される。このように過冷却状態が解消されると、蓄熱媒体の温度が水和物生成温度の近くまで上昇する。そこで、コントローラ(100)は、蓄熱媒体温度センサ(S2)で検出された蓄熱媒体の温度が上昇変化すると、包接水和物の結晶の蓄積が開始すると判定する。なお、包接水和物の結晶の蓄積の開始を検出する蓄積検出部として、例えば蓄熱回路(61)の蓄熱媒体の循環量を検知する流量検知部を採用してもよい。つまり、流量検知部で検知する蓄熱回路(61)の蓄熱媒体の循環量が所定値より低くなると、包接水和物の結晶の蓄積が開始すると検知してもよい。
このようにして包接水和物の結晶の蓄積の開始が検出されると、コントローラ(100)は、第2動作を停止させ、暖房蓄熱運転を実行させる。具体的に、包接水和物の結晶の蓄積の開始が検出されると、コントローラ(100)は、室内熱交換器(72)で凝縮した冷媒の温度が高いことを示す条件が成立するか否かの判定を行う。
具体的に、コントローラ(100)の判定部は、第2動作から暖房蓄熱運転に移行する際、室内熱交換器(72)で凝縮した冷媒の温度Tbと、予め設定された冷媒基準温度Tsとを比較する。ここで、冷媒の温度Tbが冷媒基準温度Tsより高いと、上記条件が成立したと判定する。この場合、図8に示すように、コントローラ(100)は、第1暖房蓄熱運転(暖房蓄熱運転(1))を実行させる。この結果、圧縮機(22)で圧縮された冷媒の全量が室内熱交換器(72)、蓄熱用熱交換器(63)を順に流れる暖房蓄熱運転(1)が実行される。この条件下の暖房蓄熱運転(1)では、室内熱交換器(72)を流れた冷媒の温度が十分に高いため、この冷媒により蓄熱媒体を十分に加熱することができ、且つ室内の暖房を継続して行うことができる。
一方、第2動作から暖房蓄熱運転へ移行する際、室内熱交換器(72)で凝縮した冷媒の温度Tbが冷媒基準温度Ts以下であったとする。この場合、コントローラ(100)の判定部は、室内熱交換器(72)で凝縮した冷媒の温度が高いことを示す条件が成立しないと判定する。すると、図9に示すように、コントローラ(100)は、第2暖房蓄熱運転(暖房蓄熱運転(2))を実行させる。この結果、圧縮機(22)で圧縮された冷媒が室内熱交換器(72)と蓄熱用熱交換器(63)の双方に分流し、各々で蒸発する。この結果、室内の暖房を継続しつつ、蓄熱媒体を確実に昇温させることができる。
〈圧縮機効率と運転の切り替え〉
以下に、圧縮機(22)の回転速度及び圧縮機効率と、これに関係して蓄熱式空気調和機(10)の運転を切り換えることについて説明する。
以下に、圧縮機(22)の回転速度及び圧縮機効率と、これに関係して蓄熱式空気調和機(10)の運転を切り換えることについて説明する。
〔圧縮機効率〕
圧縮機(22)の説明において述べた通り、圧縮機(22)のモータは、インバータ部によって運転周波数が可変に構成され、回転速度が可変である。ここで、圧縮機(22)の圧縮機効率は、その回転速度に依存する。図12に圧縮機の回転速度(rps)と圧縮機効率(%)との関係の一例を示す。
圧縮機(22)の説明において述べた通り、圧縮機(22)のモータは、インバータ部によって運転周波数が可変に構成され、回転速度が可変である。ここで、圧縮機(22)の圧縮機効率は、その回転速度に依存する。図12に圧縮機の回転速度(rps)と圧縮機効率(%)との関係の一例を示す。
図12に示される例では、回転速度がR付近において圧縮機効率が最高である。回転速度がRよりも低くなると圧縮機効率は次第に低下し、回転速度Rminでは最低となる。回転速度が高すぎる場合にも圧縮機効率は低下し、回転速度RmaxではRの場合を下回っている。
このようなことから、圧縮機効率の高い回転速度において圧縮機(22)を動作させることが望ましい。特に、回転速度が小さくなると圧縮機効率は急速に低下するので、回転速度が極端に低くなることは避けるのが望ましい。
蓄熱式空気調和機(10)の空気調和能力は、圧縮機(22)の回転速度を調節することによって制御される。このため、蓄熱式空気調和機(10)の運転中に室内の空調負荷(冷房負荷又は暖房負荷)が小さくなると、室内の空調負荷に応じて蓄熱式空気調和機(10)の空調能力を低下させるために、圧縮機(22)の回転速度が引き下げられる。
また、圧縮機(22)の回転速度を最小値(最低回転速度)に設定しても空調能力が空調負荷に対して過剰である場合には、従来ならば、圧縮機(22)の停止と再起動とを繰り返すオン・オフ運転を行うことで、室内温度が低くなり過ぎたり高くなり過ぎたりするのを防ぐことが行われていた。しかしながら、オン・オフ運転は、消費電力の増加、空調がオン・オフされることによる快適性の低下等の原因となるので、避けることが望ましい。
そこで、以下に説明するように、単純冷房運転と冷房蓄冷運転との切り換え(及び、単純暖房運転と暖房蓄熱運転との切り換え)を行う。
〔単純冷房運転と冷房蓄冷運転との切り換え〕
単純冷房運転中、室内の冷房負荷が小さくなり、圧縮機(22)の回転速度が所定の下側基準値R1にまで下がると、コントローラ(100)が蓄熱式空気調和機(10)の運転を単純冷房運転から冷房蓄冷運転に切り換える。
単純冷房運転中、室内の冷房負荷が小さくなり、圧縮機(22)の回転速度が所定の下側基準値R1にまで下がると、コントローラ(100)が蓄熱式空気調和機(10)の運転を単純冷房運転から冷房蓄冷運転に切り換える。
ここで、下側基準値R1は、Rminよりも大きくRよりも小さい値に設定される。また、下側基準値R1は、Rminよりも少しだけ大きな値に設定されるのが望ましい。
単純冷房運転では、室内熱交換器(72)における室内空気の冷却だけが行われるのに対し、冷房蓄熱運転では、室内熱交換器(72)における室内空気の冷却と、蓄熱用熱交換器(63)における蓄熱媒体の冷却とが行われる。従って、単純冷房運転から冷房蓄冷運転に切り替わると、冷凍サイクルの低圧が一時的に上昇する。
一方、単純冷房運転及び冷房蓄冷運転では、冷凍サイクルの低圧(つまり、圧縮機へ吸入される冷媒の圧力)が所定の目標値となるように、コントローラ(100)が圧縮機(22)の回転速度を調節する。このため、単純冷房運転から冷房蓄冷運転に切り替わると、冷凍サイクルの低圧を目標値にまで引き下げるために、圧縮機(22)の回転速度を引き上げる必要がある。
そこで、本実施形態のコントローラ(100)は、単純冷房運転中に圧縮機(22)の回転速度が下側基準値R1にまで低下し、圧縮機(22)が効率の悪い回転速度にて作動する状態になると、蓄熱式空気調和機(10)の運転を単純冷房運転から冷房蓄冷運転へ切り換え、圧縮機(22)の回転速度を増加させる。その結果、圧縮機(22)の回転速度が下側基準値R1よりも高くなり、圧縮機(22)の効率が改善される。
また、圧縮機(22)の回転速度を最小値Rminに設定しても蓄熱式空気調和機(10)の冷房能力が室内の冷房負荷に対して過剰である場合は、従来なら、圧縮機(22)の停止と再起動とを繰り返すオン・オフ運転を行うことにより、室内温度が低くなり過ぎるのを防ぐ必要があった。
これに対し、本実施形態のコントローラ(100)は、単純冷房運転中に圧縮機(22)の回転速度が下側基準値R1にまで低下すると、蓄熱式空気調和機(10)の運転を単純冷房運転から冷房蓄冷運転へ切り換える。このようにすると、冷凍サイクルによって得られる冷熱の一部だけを利用して室内を冷房することが可能となり、圧縮機(22)を作動させ続けながら、室内熱交換器(72)での室内空気の冷却に用いられる冷熱を、室内の冷房負荷に見合った量にまで引き下げることが可能となる。従って、本実施形態によれば、室内の冷房負荷が非常に小さい状態でも、圧縮機(22)のオン・オフ運転を回避することによって室内の快適性が高く保たれる。
単純冷房運転から冷房蓄冷運転への切り替えを行う下側基準値R1は、図12のような回転速度と圧縮機効率との関係、蓄冷を行うための圧縮機(22)の回転速度等から決定される。また、蓄熱部(60)に蓄冷されている冷熱の量を、下側基準値を決める要素としても良い。
次に、冷房蓄冷運転中に圧縮機(22)の回転速度が上側基準値R2に達した場合には、冷房蓄冷運転中から単純冷房運転に切り換えて圧縮機(22)の回転速度を低下させる。ここで、上側基準値R2は、Rよりも大きくRmaxよりも小さい値に設定される。
例えば、図12において、回転数がRを越えてRmaxに近づくと圧縮機効率は低下する。このような場合には、冷房蓄冷運転から単純冷房運転に切り換えた方が圧縮機効率を高くすることができる。
また、圧縮機(22)の回転速度が高くなると消費電力が大きくなる。この点からも、回転速度が所定の値を超えた場合には、冷房蓄冷運転から単純冷房運転に切り換えることが望ましい。
上側基準値R2については、下側基準値R1と同様に、回転速度と圧縮機効率との関係、蓄冷を行うための圧縮機(22)の回転速度等から決定される。
尚、蓄熱部(60)に蓄冷するためには少なくとも一定量の冷熱が必要であり、単純冷房運転を冷房蓄冷運転に切り換える際の回転速度の増加量は、少なくとも、上記一定量の冷熱を発生させることができる回転速度の値でなければならない。
これに関して、蓄熱部(60)を、圧縮機(22)の最低回転速度で発生可能な冷熱を利用して蓄冷が行えるように設計しても良い。この場合、圧縮機(22)の回転速度を、当該圧縮機(22)の最低回転速度の値だけ増加させることにより、単純冷房運転から冷房蓄冷運転に切り換えることができる。
〔単純暖房運転と暖房蓄熱運転との切り換え〕
単純暖房運転と暖房蓄熱運転との切り替えについても、上記に説明した単純冷房運転と冷房蓄冷運転との切り替えと同様に行う。
単純暖房運転と暖房蓄熱運転との切り替えについても、上記に説明した単純冷房運転と冷房蓄冷運転との切り替えと同様に行う。
単純暖房運転では、室内熱交換器(72)における室内空気の加熱だけが行われるのに対し、暖房蓄熱運転では、室内熱交換器(72)における室内空気の加熱と、蓄熱用熱交換器(63)における蓄熱媒体の加熱とが行われる。従って、単純暖房運転から暖房蓄熱運転に切り替わると、冷凍サイクルの高圧が一時的に低下する。
一方、単純暖房運転及び暖房蓄熱運転では、冷凍サイクルの高圧(つまり、圧縮機から吐出される冷媒の圧力)が所定の目標値となるように、コントローラ(100)が圧縮機(22)の回転速度を調節する。このため、単純暖房運転から暖房蓄熱運転に切り替わると、冷凍サイクルの高圧を目標値にまで引き上げるために、圧縮機(22)の回転速度を引き上げる必要がある。
そこで、本実施形態のコントローラ(100)は、単純暖房運転中に圧縮機(22)の回転速度が下側基準値R1にまで低下し、圧縮機(22)が効率の悪い回転速度にて作動する状態になると、蓄熱式空気調和機(10)の運転を単純暖房運転から暖房蓄熱運転へ切り換え、圧縮機(22)の回転速度を増加させる。その結果、圧縮機(22)の回転速度が下側基準値R1よりも高くなり、圧縮機(22)の効率が改善される。
また、圧縮機(22)の回転速度を最小値Rminに設定しても蓄熱式空気調和機(10)の暖房能力が室内の暖房負荷に対して過剰である場合は、従来なら、圧縮機(22)の停止と再起動とを繰り返すオン・オフ運転を行うことにより、室内温度が高くなり過ぎるのを防ぐ必要があった。
これに対し、本実施形態のコントローラ(100)は、単純暖房運転中に圧縮機(22)の回転速度が下側基準値R1にまで低下すると、蓄熱式空気調和機(10)の運転を単純暖房運転から暖房蓄熱運転へ切り換える。このようにすると、冷凍サイクルによって得られる温熱の一部だけを利用して室内を暖房することが可能となり、圧縮機(22)を作動させ続けながら、室内熱交換器(72)での室内空気の加熱に用いられる温熱を、室内の暖房負荷に見合った量にまで引き下げることが可能となる。従って、本実施形態によれば、室内の暖房負荷が非常に小さい状態でも、圧縮機(22)のオン・オフ運転を回避することによって室内の快適性が高く保たれる。
次に、暖房蓄熱運転中に圧縮機(22)の回転速度が上側基準値R2に達した場合には、蓄熱式空気調和機(10)の運転を暖房蓄熱運転から単純暖房運転に切り換えて圧縮機(22)の回転速度を低下させる。
図12において、回転数がRを超えてRmaxに近づくと圧縮機効率は低下する。このような場合には、暖房蓄熱運転から単純暖房運転に切り換えた方が圧縮機効率を高くすることができる。また、圧縮機(22)の回転速度が高くなると消費電力が大きくなる。この点からも、回転速度が所定の値を超えた場合には、暖房蓄熱運転から単純暖房運転に切り換えることが望ましい。
下側基準値R1及び上側基準値R2についても、冷房の場合と同様に、図12のような回転速度と圧縮機効率との関係、蓄冷を行うための圧縮機(22)の回転速度等に基づいて決定することができる。
尚、蓄熱部(60)に蓄熱するためには少なくとも一定量の温熱が必要であり、単純暖房運転を暖房蓄熱運転に切り換える際の回転速度の増加量は、少なくとも、上記一定量の温熱を発生させることができる回転速度の値でなければならない。
これに関して、蓄熱部(60)を、圧縮機(22)の最低回転速度で発生可能な温熱を利用して蓄熱が行われるように設計してもよい。この場合、圧縮機(22)の回転速度を、当該圧縮機(22)の最低回転速度の値だけ増加させることにより、単純暖房運転から暖房蓄熱運転に切り換えることができる。
《実施形態の変形例》
以上に説明した実施形態では、中間吸入管(35)のうち圧縮機(22)のケーシング(22a)の外部に逆止弁(CV1)を設けている。これにより、逆止弁(CV1)の接続作業やメンテナンスが容易となる。しかし、中間吸入管(35)のうちケーシング(22a)の内部の内側配管部(36)に逆止弁(CV1)を設けてもよい。これにより、圧縮機構の圧縮途中の圧縮室から逆止弁(CV1)までの流路長さを最小限に抑えることができ、ひいては冷媒の圧縮に寄与しない死容積を最小限に抑えることができる。この結果、圧縮機(22)の圧縮効率の低下を防止できる。
以上に説明した実施形態では、中間吸入管(35)のうち圧縮機(22)のケーシング(22a)の外部に逆止弁(CV1)を設けている。これにより、逆止弁(CV1)の接続作業やメンテナンスが容易となる。しかし、中間吸入管(35)のうちケーシング(22a)の内部の内側配管部(36)に逆止弁(CV1)を設けてもよい。これにより、圧縮機構の圧縮途中の圧縮室から逆止弁(CV1)までの流路長さを最小限に抑えることができ、ひいては冷媒の圧縮に寄与しない死容積を最小限に抑えることができる。この結果、圧縮機(22)の圧縮効率の低下を防止できる。
《その他の実施形態1》
上記実施形態において冷房蓄冷運転及び暖房蓄熱運転によって蓄熱部(60)に蓄えた冷熱は、室内の冷房負荷または暖房負荷が高くなる時に利用されることが好ましい。即ち、蓄熱式空気調和機(10)は、室内の冷房負荷または暖房負荷が所定値よりも高い高負荷である場合、利用冷房運転や利用暖房運転(1)(2)を行うと良い。
上記実施形態において冷房蓄冷運転及び暖房蓄熱運転によって蓄熱部(60)に蓄えた冷熱は、室内の冷房負荷または暖房負荷が高くなる時に利用されることが好ましい。即ち、蓄熱式空気調和機(10)は、室内の冷房負荷または暖房負荷が所定値よりも高い高負荷である場合、利用冷房運転や利用暖房運転(1)(2)を行うと良い。
図13(a)における破線のグラフは、その他の実施形態1に係る蓄熱式空気調和機の消費電力の推移を表し、実線のグラフは、従来の空気調和機の消費電力の推移を表す。図13(a)から明らかなように、その他の実施形態1に係る蓄熱式空気調和機は、従来の空気調和機に比して、低負荷時の消費電力は上昇し、高負荷時の消費電力は減少している。
その他の実施形態1では、低負荷時且つ室内を冷房する際には、単純冷房運転から冷房蓄冷運転に切り換えて運転を行い、低負荷時且つ室内を暖房する際には、単純暖房運転から暖房蓄熱運転に切り換えて運転が行われる。これに対し、従来では、低負荷時且つ室内を冷房する際は単純冷房運転が続けて行われ、低負荷時且つ室内を暖房する際には、単純暖房運転が続けて行われる。そのため、図13(a)では、単純冷房運転または単純暖房運転の場合よりも、冷房蓄冷運転または暖房蓄熱運転を行うその他の実施形態1の場合の方が、低負荷時の消費電力が上昇しているのである。このように、その他の実施形態1では、従来に比して電力は上昇するものの、効率良く蓄冷または蓄熱を行うことができている。
また、その他の実施形態1では、高負荷時且つ室内を冷房する際には、利用冷房運転が行われ、高負荷時且つ室内を暖房する際には、利用暖房運転が行われる。これに対し、従来では、高負荷時且つ室内を冷房する際は単純冷房運転が続けて行われ、高負荷時且つ室内を暖房する際には単純暖房運転が続けて行われる。そのため、図13(a)では、単純冷房運転または単純暖房運転の場合よりも、利用冷房運転または利用暖房運転を行うその他の実施形態1の場合の方が、高負荷時の消費電力が低下しているのである。
低負荷時及び高負荷時の消費電力からすると、その他の実施形態1は、従来に比して消費電力を平準化できていると言える。
このようなその他の実施形態1に係る蓄熱式空気調和機(10)は、室内空気の温度変化を抑えて快適性を確保できると共に、該空気調和機(10)消費電力の低減を図ることができる。
ここで、上述した室内の冷房負荷または暖房負荷は、予測される日々の気温の推移データ、該推移データにおける気温のピーク値、気温推移の年間データ等を用いて、コントローラ(100)により判断されることが好ましい。
《その他の実施形態2》
図13(b)では、定格能力に対する負荷率の推移に対する蓄熱式空気調和機(10)の効率を曲線のグラフで表し、定格能力に対する負荷率の推移に対する蓄熱式空気調和機(10)の運転時間を、暖房運転と冷房運転とに分けて棒グラフにて表している。
図13(b)では、定格能力に対する負荷率の推移に対する蓄熱式空気調和機(10)の効率を曲線のグラフで表し、定格能力に対する負荷率の推移に対する蓄熱式空気調和機(10)の運転時間を、暖房運転と冷房運転とに分けて棒グラフにて表している。
図13(b)の棒グラフから、定格能力に対する負荷率の最大は、冷房運転の場合は100%であるが、暖房運転の場合は70%であることが分かる。更に、図13(b)の棒グラフから、冷房運転及び暖房運転共に、年間運転時間の約9割は、負荷率が50%以下の部分に集中していることが分かる。
このような場合、通常は、蓄熱式空気調和機(10)の選定は、冷房運転の際の最大の負荷率(即ち100%)に合わせて行われる。しかし、図13(b)の棒グラフから明らかなように、冷房運転においても負荷率が最大(100%)となる冷房運転時間は、年に数時間程度と僅かである。
一方、上述したその他の実施形態1に係る蓄熱式空気調和機(10)は、室内の冷房負荷が高負荷であれば利用冷房運転を行うことができ、室内の暖房負荷が高負荷であれば利用暖房運転を行うことができる。即ち、その他の実施形態1に係る蓄熱式空気調和機(10)であれば、負荷率が高い場合には、利用冷房(または利用暖房)運転にて対応することできる。それ故、上記その他の実施形態1に係る蓄熱式空気調和機(10)の場合、当該空気調和機(10)の選定時には、通常選定される場合よりもサイズ(馬力)の小さいものを選定することができる。例えば、上記その他の実施形態1であれば、本来10HPの蓄熱式空気調和機を選定する場合、それよりもサイズ(馬力)が小さい8HPの蓄熱式空気調和機を選定することができる。
図13(b)では、10HPの蓄熱式空気調和機の負荷率に対する効率の推移を実線からなる曲線のグラフで表し、8HPの蓄熱式空気調和機の負荷率に対する効率の推移を破線からなる曲線のグラフで表している。この2つのグラフの比較から、サイズ(馬力)の小さい蓄熱式空気調和機は、サイズ(馬力)の大きい蓄熱式空気調和機よりも、低負荷での効率が上昇していることが分かる。
つまり、上記その他の実施形態1に係る蓄熱式空気調和機(10)において、サイズ(馬力)の小さい蓄熱式空気調和機を選定することで、通常選定されるサイズ(馬力)の蓄熱式空気調和機よりも、出現率の高い低負荷時の効率が高まるため、年間効率を向上させることができる。
《その他の実施形態3》
上記各実施形態の蓄熱部は、蓄熱媒体が循環する蓄熱回路を備えた、いわゆるダイナミック式の蓄熱装置である。しかし、蓄熱部は、例えばタンク内に停留した水や他の蓄熱媒体を冷媒と熱交換させる、いわゆるスタティック式の蓄熱装置であってもよい。
上記各実施形態の蓄熱部は、蓄熱媒体が循環する蓄熱回路を備えた、いわゆるダイナミック式の蓄熱装置である。しかし、蓄熱部は、例えばタンク内に停留した水や他の蓄熱媒体を冷媒と熱交換させる、いわゆるスタティック式の蓄熱装置であってもよい。
以上説明したように、本発明は、貯蓄式空気調和機について有用である。
10 蓄熱式空気調和機
11 冷媒回路
22 圧縮機(圧縮部)
23 室外熱交換器
28 吸入管(低圧吸入部)
31 第1導入管(低圧導入管)
32 第1過冷却熱交換器(第1熱交換器)
35 中間吸入管(中間吸入部)
36 内側配管部
44 主蓄熱用流路
60 蓄熱部(蓄熱装置)
61 蓄熱回路
62 蓄熱タンク
63 蓄熱用熱交換器
65 流出管(流出部)
72 室内熱交換器
100 コントローラ(運転制御部)
EV1 第1減圧弁(減圧弁)
11 冷媒回路
22 圧縮機(圧縮部)
23 室外熱交換器
28 吸入管(低圧吸入部)
31 第1導入管(低圧導入管)
32 第1過冷却熱交換器(第1熱交換器)
35 中間吸入管(中間吸入部)
36 内側配管部
44 主蓄熱用流路
60 蓄熱部(蓄熱装置)
61 蓄熱回路
62 蓄熱タンク
63 蓄熱用熱交換器
65 流出管(流出部)
72 室内熱交換器
100 コントローラ(運転制御部)
EV1 第1減圧弁(減圧弁)
Claims (6)
- 圧縮機(22)と室外熱交換器(23)と室内熱交換器(72)とを有して冷凍サイクルを行う冷媒回路(11)と、蓄熱媒体を有して該蓄熱媒体を上記冷媒回路(11)の冷媒と熱交換させる蓄熱部(60)とを備え、
上記冷媒回路(11)において上記室外熱交換器(23)で冷媒が凝縮し且つ上記室内熱交換器(72)で冷媒が蒸発する単純冷房運転と、上記冷媒回路(11)において上記室外熱交換器(23)で冷媒が凝縮し且つ上記室内熱交換器(72)で冷媒が蒸発すると共に、上記蓄熱部(60)の上記蓄熱媒体が上記冷媒により冷却される冷房蓄冷運転とを実行可能な蓄熱式空気調和機であって、
上記単純冷房運転中に上記圧縮機(22)の回転速度が所定の下側基準値にまで下がると、蓄熱式空気調和機の運転を上記単純冷房運転から上記冷房蓄冷運転に切り換え、上記圧縮機(22)の回転速度を増加させる運転制御部(100)を備えている
ことを特徴とする蓄熱式空気調和機。 - 請求項1において、
上記運転制御部(100)は、上記冷房蓄冷運転中に上記圧縮機(22)の回転速度が所定の上側基準値にまで上がると、蓄熱式空気調和機の運転を上記冷房蓄冷運転から上記単純冷房運転に切り換え、上記圧縮機(22)の回転速度を低下させる
ことを特徴とする蓄熱式空気調和機。 - 請求項1又は2において、
上記運転制御部(100)において、蓄熱式空気調和機の運転を上記単純冷房運転から上記冷房蓄冷運転に切り換える際の上記圧縮機(22)の回転速度の増加量が、上記圧縮機(22)の最低回転速度と同じ値となっている
ことを特徴とする蓄熱式空気調和機。 - 圧縮機(22)と室外熱交換器(23)と室内熱交換器(72)とを有して冷凍サイクルを行う冷媒回路(11)と、蓄熱媒体を有して該蓄熱媒体を上記冷媒回路(11)の冷媒と熱交換させる蓄熱部(60)とを備え、
上記冷媒回路(11)において上記室内熱交換器(72)で冷媒が凝縮し且つ上記室外熱交換器(23)で冷媒が蒸発する単純暖房運転と、上記冷媒回路(11)において上記室内熱交換器(72)で冷媒が凝縮し且つ上記室外熱交換器(23)で冷媒が蒸発すると共に、上記蓄熱部(60)の上記蓄熱媒体が上記冷媒により加熱される暖房蓄熱運転とを実行可能な蓄熱式空気調和機であって、
上記単純暖房運転中に上記圧縮機(22)の回転速度が所定の下側基準値にまで下がると、蓄熱式空気調和機の運転を上記単純暖房運転から上記暖房蓄熱運転に切り換え、上記圧縮機(22)の回転速度を増加させる運転制御部(100)を備えている
ことを特徴とする蓄熱式空気調和機。 - 請求項4において、
上記運転制御部(100)は、上記暖房蓄熱運転中に上記圧縮機(22)の回転速度が所定の上側基準値にまで上がると、蓄熱式空気調和機の運転を上記暖房蓄熱運転から上記単純暖房運転に切り換え、上記圧縮機(22)の回転速度を低下させる
ことを特徴とする蓄熱式空気調和機。 - 請求項4又は5において、
上記運転制御部(100)において、蓄熱式空気調和機の運転を上記単純暖房運転から上記暖房蓄熱運転に切り換える際の上記圧縮機(22)の回転速度の増加量が、上記圧縮機(22)の最低回転速度と同じ値となっている
ことを特徴とする蓄熱式空気調和機。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES15872282T ES2746562T3 (es) | 2014-12-26 | 2015-12-24 | Acondicionador de aire regenerativo |
SG11201704999UA SG11201704999UA (en) | 2014-12-26 | 2015-12-24 | Regenerative air conditioner |
CN201580070637.0A CN107110570B (zh) | 2014-12-26 | 2015-12-24 | 蓄热式空调机 |
EP19151844.8A EP3492841A1 (en) | 2014-12-26 | 2015-12-24 | Regenerative air conditioner |
EP15872282.7A EP3222934B1 (en) | 2014-12-26 | 2015-12-24 | Regenerative air conditioner |
US15/535,529 US10539335B2 (en) | 2014-12-26 | 2015-12-24 | Regenerative air conditioner |
PH12017501194A PH12017501194A1 (en) | 2014-12-26 | 2017-06-23 | Regenerative air conditioner |
US16/256,548 US10563872B2 (en) | 2014-12-26 | 2019-01-24 | Regenerative air conditioner |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-265594 | 2014-12-26 | ||
JP2014265594 | 2014-12-26 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/535,529 A-371-Of-International US10539335B2 (en) | 2014-12-26 | 2015-12-24 | Regenerative air conditioner |
US16/256,548 Division US10563872B2 (en) | 2014-12-26 | 2019-01-24 | Regenerative air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016103711A1 true WO2016103711A1 (ja) | 2016-06-30 |
Family
ID=56149769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/006449 WO2016103711A1 (ja) | 2014-12-26 | 2015-12-24 | 蓄熱式空気調和機 |
Country Status (8)
Country | Link |
---|---|
US (2) | US10539335B2 (ja) |
EP (2) | EP3222934B1 (ja) |
JP (1) | JP6052380B2 (ja) |
CN (1) | CN107110570B (ja) |
ES (1) | ES2746562T3 (ja) |
PH (1) | PH12017501194A1 (ja) |
SG (1) | SG11201704999UA (ja) |
WO (1) | WO2016103711A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI665412B (zh) * | 2017-08-30 | 2019-07-11 | 潤弘精密工程事業股份有限公司 | 住宅熱平衡系統及使用住宅熱平衡系統之節能空調系統 |
US11365335B2 (en) | 2017-12-18 | 2022-06-21 | Daikin Industries, Ltd. | Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine |
US11435118B2 (en) | 2017-12-18 | 2022-09-06 | Daikin Industries, Ltd. | Heat source unit and refrigeration cycle apparatus |
US11441802B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Air conditioning apparatus |
US11441819B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11492527B2 (en) | 2017-12-18 | 2022-11-08 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
US11493244B2 (en) | 2017-12-18 | 2022-11-08 | Daikin Industries, Ltd. | Air-conditioning unit |
US11506425B2 (en) | 2017-12-18 | 2022-11-22 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11535781B2 (en) | 2017-12-18 | 2022-12-27 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11549695B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Heat exchange unit |
US11549041B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
US11820933B2 (en) | 2017-12-18 | 2023-11-21 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11906207B2 (en) | 2017-12-18 | 2024-02-20 | Daikin Industries, Ltd. | Refrigeration apparatus |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6657613B2 (ja) * | 2015-06-18 | 2020-03-04 | ダイキン工業株式会社 | 空気調和装置 |
GB2559114A (en) * | 2016-12-20 | 2018-08-01 | Encora Tech Limited | A dynamically adaptive combined heat and power system and method thereof |
KR102372489B1 (ko) * | 2017-07-10 | 2022-03-08 | 엘지전자 주식회사 | 증기 분사 사이클을 이용한 공기조화장치 및 그 제어방법 |
WO2019124145A1 (ja) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | 空気調和機 |
US11073311B2 (en) * | 2018-05-17 | 2021-07-27 | Emerson Climate Technologies, Inc. | Climate-control system having pump |
AU2019436796B2 (en) * | 2019-03-25 | 2022-12-08 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
EP3967948B1 (en) * | 2019-05-10 | 2023-08-30 | Mitsubishi Electric Corporation | Thermal storage system |
CN110243101A (zh) * | 2019-06-28 | 2019-09-17 | 中原工学院 | 一种蓄能型高效风冷热泵机组 |
CN111486568A (zh) * | 2020-04-29 | 2020-08-04 | 广东美的暖通设备有限公司 | 空调系统及其的控制方法 |
EP3995761A1 (en) * | 2020-11-05 | 2022-05-11 | Daikin Industries, Ltd. | Refrigerant circuit for a refrigeration apparatus with a thermal storage and method forcontrolling a refrigerant circuit |
JP2023546495A (ja) * | 2020-11-05 | 2023-11-02 | ダイキン工業株式会社 | 蓄熱器を有する冷却装置のための冷媒回路および冷媒回路を制御する方法 |
CN115420028B (zh) * | 2021-06-01 | 2024-02-06 | 广东美的暖通设备有限公司 | 多联机系统及其控制方法 |
CN113418255A (zh) * | 2021-07-12 | 2021-09-21 | 中国科学院广州能源研究所 | 用于数据中心的可再生能源及余热综合利用系统及方法 |
JP7444189B2 (ja) * | 2022-03-29 | 2024-03-06 | 株式会社富士通ゼネラル | 空気調和機 |
JP7315059B1 (ja) | 2022-03-29 | 2023-07-26 | 株式会社富士通ゼネラル | 空気調和機 |
JP2024145985A (ja) * | 2023-03-31 | 2024-10-15 | 株式会社富士通ゼネラル | 冷凍サイクル装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007017089A (ja) * | 2005-07-08 | 2007-01-25 | Jfe Engineering Kk | 蓄熱式空気調和装置、該蓄熱式空気調和装置の運転方法 |
JP2013130357A (ja) * | 2011-12-22 | 2013-07-04 | Mitsubishi Electric Corp | 二元冷凍装置 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4616484A (en) * | 1984-11-30 | 1986-10-14 | Kysor Industrial Corporation | Vehicle refrigerant heating and cooling system |
US5062276A (en) * | 1990-09-20 | 1991-11-05 | Electric Power Research Institute, Inc. | Humidity control for variable speed air conditioner |
JP3538845B2 (ja) | 1991-04-26 | 2004-06-14 | 株式会社デンソー | 自動車用空調装置 |
US5735133A (en) * | 1996-04-12 | 1998-04-07 | Modine Manufacturing Co. | Vehicular cooling system with thermal storage |
US6327871B1 (en) * | 2000-04-14 | 2001-12-11 | Alexander P. Rafalovich | Refrigerator with thermal storage |
JP3903342B2 (ja) * | 2003-03-13 | 2007-04-11 | 株式会社日立製作所 | 空気調和機 |
TWI309290B (en) * | 2003-05-30 | 2009-05-01 | Sanyo Electric Co | Cooling apparatus |
DE10343225B3 (de) * | 2003-09-18 | 2005-04-14 | Webasto Ag | System zum Heizen und Kühlen eines Innenraums eines Fahrzeugs |
US20050172660A1 (en) * | 2004-02-05 | 2005-08-11 | Anderson R. D. | Thermal energy storage device and method |
EP1577548A1 (en) * | 2004-03-16 | 2005-09-21 | Abb Research Ltd. | Apparatus and method for storing thermal energy and generating electricity |
CN101498494B (zh) * | 2008-01-31 | 2010-06-09 | 上海南区节电科技开发有限公司 | 一种集中空调系统的经济运行方法 |
DE102008020351A1 (de) * | 2008-04-23 | 2009-10-29 | Valeo Klimasysteme Gmbh | Verfahren zum Betreiben einer Klimatisierungsanlage für ein Kraftfahrzeug |
WO2011035213A2 (en) * | 2009-09-17 | 2011-03-24 | Xiaodong Xiang | Systems and methods of thermal transfer and/or storage |
US20120031119A1 (en) * | 2010-08-03 | 2012-02-09 | Nadeem Ahmad | Atmospheric lapse rate cooling system |
KR101218546B1 (ko) * | 2011-05-23 | 2013-01-09 | 진주환 | 히트 펌프 시스템 |
DE102012100525A1 (de) * | 2011-07-28 | 2013-01-31 | Visteon Global Technologies Inc. | Kraftfahrzeugkältemittelkreislauf mit einer Kälteanlagen- und einer Wärmepumpenschaltung |
WO2013136368A1 (ja) * | 2012-03-15 | 2013-09-19 | 三菱電機株式会社 | 冷凍サイクル装置 |
JP2014016057A (ja) * | 2012-07-06 | 2014-01-30 | Hitachi Appliances Inc | 空気調和機 |
CN104736951B (zh) * | 2012-10-18 | 2017-03-08 | 大金工业株式会社 | 空调装置 |
KR101456007B1 (ko) | 2012-11-01 | 2014-11-03 | 엘지전자 주식회사 | 전기자동차용 공기조화장치 |
JP2014129902A (ja) * | 2012-12-28 | 2014-07-10 | Daikin Ind Ltd | 冷凍装置 |
JP6115134B2 (ja) * | 2012-12-28 | 2017-04-19 | ダイキン工業株式会社 | 空気調和装置 |
WO2015065998A1 (en) * | 2013-10-29 | 2015-05-07 | Arizona Board Of Regents On Behalf Of Arizona State University | Peak load shifting via thermal energy storage using a thermosyphon |
-
2015
- 2015-12-24 SG SG11201704999UA patent/SG11201704999UA/en unknown
- 2015-12-24 EP EP15872282.7A patent/EP3222934B1/en active Active
- 2015-12-24 ES ES15872282T patent/ES2746562T3/es active Active
- 2015-12-24 EP EP19151844.8A patent/EP3492841A1/en active Pending
- 2015-12-24 JP JP2015251468A patent/JP6052380B2/ja active Active
- 2015-12-24 CN CN201580070637.0A patent/CN107110570B/zh active Active
- 2015-12-24 US US15/535,529 patent/US10539335B2/en active Active
- 2015-12-24 WO PCT/JP2015/006449 patent/WO2016103711A1/ja active Application Filing
-
2017
- 2017-06-23 PH PH12017501194A patent/PH12017501194A1/en unknown
-
2019
- 2019-01-24 US US16/256,548 patent/US10563872B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007017089A (ja) * | 2005-07-08 | 2007-01-25 | Jfe Engineering Kk | 蓄熱式空気調和装置、該蓄熱式空気調和装置の運転方法 |
JP2013130357A (ja) * | 2011-12-22 | 2013-07-04 | Mitsubishi Electric Corp | 二元冷凍装置 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI665412B (zh) * | 2017-08-30 | 2019-07-11 | 潤弘精密工程事業股份有限公司 | 住宅熱平衡系統及使用住宅熱平衡系統之節能空調系統 |
US11365335B2 (en) | 2017-12-18 | 2022-06-21 | Daikin Industries, Ltd. | Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine |
US11435118B2 (en) | 2017-12-18 | 2022-09-06 | Daikin Industries, Ltd. | Heat source unit and refrigeration cycle apparatus |
US11441802B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Air conditioning apparatus |
US11441819B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11492527B2 (en) | 2017-12-18 | 2022-11-08 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
US11493244B2 (en) | 2017-12-18 | 2022-11-08 | Daikin Industries, Ltd. | Air-conditioning unit |
US11506425B2 (en) | 2017-12-18 | 2022-11-22 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11535781B2 (en) | 2017-12-18 | 2022-12-27 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11549695B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Heat exchange unit |
US11549041B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
US11820933B2 (en) | 2017-12-18 | 2023-11-21 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11906207B2 (en) | 2017-12-18 | 2024-02-20 | Daikin Industries, Ltd. | Refrigeration apparatus |
Also Published As
Publication number | Publication date |
---|---|
US20190170378A1 (en) | 2019-06-06 |
JP2016125808A (ja) | 2016-07-11 |
JP6052380B2 (ja) | 2016-12-27 |
US10563872B2 (en) | 2020-02-18 |
EP3222934A1 (en) | 2017-09-27 |
US20170336085A1 (en) | 2017-11-23 |
SG11201704999UA (en) | 2017-07-28 |
PH12017501194A1 (en) | 2017-10-18 |
EP3492841A1 (en) | 2019-06-05 |
EP3222934B1 (en) | 2019-06-26 |
CN107110570B (zh) | 2019-12-31 |
US10539335B2 (en) | 2020-01-21 |
EP3222934A4 (en) | 2018-08-01 |
ES2746562T3 (es) | 2020-03-06 |
CN107110570A (zh) | 2017-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6052380B2 (ja) | 蓄熱式空気調和機 | |
JP5327308B2 (ja) | 給湯空調システム | |
JP6020549B2 (ja) | 蓄熱式空気調和機 | |
WO2018097154A1 (ja) | 冷凍装置 | |
JP6020550B2 (ja) | 蓄熱式空気調和機 | |
JP2016125725A (ja) | 蓄熱式空気調和機 | |
JP6020548B2 (ja) | 蓄熱式空気調和機 | |
JP2016125724A (ja) | 蓄熱式空気調和機 | |
AU2020360865B2 (en) | A heat pump | |
WO2016103726A1 (ja) | 蓄熱式空気調和機 | |
JP6507635B2 (ja) | 蓄熱式空気調和機 | |
JP6679840B2 (ja) | 蓄熱式空気調和機 | |
JP2016211802A5 (ja) | ||
JP2016125722A (ja) | 蓄熱式空気調和機 | |
JP2016125729A (ja) | 蓄熱式空気調和機 | |
JP2017141981A5 (ja) | ||
JP2016125727A (ja) | 蓄熱式空気調和機 | |
JP2016125717A (ja) | 蓄熱式空気調和機 | |
JP2017141981A (ja) | 蓄熱式空気調和機 | |
JP2016125716A (ja) | 蓄熱式空気調和機 | |
JP2016125713A (ja) | 蓄熱式空気調和機 | |
JP6052275B2 (ja) | 蓄熱式空気調和機 | |
JP2016125719A (ja) | 蓄熱式空気調和機 | |
JP2016217691A (ja) | 蓄熱式空気調和機 | |
JP2017141980A (ja) | 蓄熱式空気調和機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15872282 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201704999U Country of ref document: SG |
|
REEP | Request for entry into the european phase |
Ref document number: 2015872282 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12017501194 Country of ref document: PH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |