WO2016103434A1 - 半導体装置およびその製造方法、並びに半導体モジュール - Google Patents

半導体装置およびその製造方法、並びに半導体モジュール Download PDF

Info

Publication number
WO2016103434A1
WO2016103434A1 PCT/JP2014/084456 JP2014084456W WO2016103434A1 WO 2016103434 A1 WO2016103434 A1 WO 2016103434A1 JP 2014084456 W JP2014084456 W JP 2014084456W WO 2016103434 A1 WO2016103434 A1 WO 2016103434A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
chip
sealing material
semiconductor
high electric
Prior art date
Application number
PCT/JP2014/084456
Other languages
English (en)
French (fr)
Inventor
安井 感
和弘 鈴木
谷口 隆文
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/539,447 priority Critical patent/US10083948B2/en
Priority to PCT/JP2014/084456 priority patent/WO2016103434A1/ja
Priority to JP2016565789A priority patent/JP6416934B2/ja
Priority to DE112014007221.4T priority patent/DE112014007221B4/de
Publication of WO2016103434A1 publication Critical patent/WO2016103434A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/4917Crossed wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10252Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12036PN diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13062Junction field-effect transistor [JFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a power semiconductor device using silicon and silicon carbide as raw materials and a manufacturing method thereof.
  • SiC silicon carbide
  • SiC has an electric field strength that is an order of magnitude higher than that of silicon and is suitable for high-voltage applications. Its thermal conductivity is three times that of silicon, and its semiconductor properties are unlikely to be lost even at high temperatures. It is strong and suitable as a power semiconductor material because it can lower the resistance of the element.
  • SiC Schottky barrier diode S chottky B arrier D iode
  • Switching elements in addition to the rectifier element also has a full SiC module silicon IGBT (hereinafter Si-IGBT) was replaced by MOS (M etal O xide S emiconductor ) of SiC, loss reduction effect is further increased. This is because the switching loss can be reduced by replacing the Si-IGBT of the bipolar element with the SiC-MOS of the unipolar element by the same principle as when the silicon PN diode is replaced with the SBD of SiC.
  • the full SiC module there is also a method in which the SBD is omitted and the rectification function is handled on the MOS side.
  • SBD and MOS can be manufactured with silicon, but if the thickness of the body layer is increased in order to increase the withstand voltage, the resistance increases, which is not practical.
  • SiC low-resistance SiC, it is possible to apply SBDs and MOSs of unipolar elements to high breakdown voltage regions where conventional silicon SBDs and MOSs, such as withstand voltages of 600 V to 3.3 kV, could not be applied.
  • SiC has a high dielectric breakdown electric field strength
  • the SiC sealing material is required to have high dielectric breakdown strength.
  • the electric field strength exceeds the electric field strength (dielectric breakdown field strength) of silicone gel. Therefore, a method of inserting a high electric field sealing material between them is disclosed (Patent Document 1). According to this method, since the electric field strength in the silicone gel can be suppressed within the range of the electric field resistance in the vicinity of the termination region of the SiC chip, the reliability of the semiconductor device using SiC can be improved.
  • FIG. 2 is a top view of one of the SiC chips constituting the power semiconductor module using SiC
  • FIG. 3 is a cross-sectional view.
  • FIGS. 4a and 4b are formed by superposing the formation region 30 of the high electric field sealing material on this
  • FIG. 4a is a top view of the SiC chip
  • FIG. 4b is a cross-sectional view of the SiC chip.
  • 2, 3, 4 a, and 4 b are diodes, and there is a termination region 32 around the electrode 31.
  • a high electric field resistant seal A stop material 34 is arranged.
  • the formation of the high electric field sealing material is performed in a state where the chip is mounted on an insulating substrate.
  • the insulating base 22 is mounted using solder 35 and the wire 13 is mounted. Is shown in a partial cross-section in a state where they are joined and covered with a gel 36 as a sealing material.
  • the shape of the end portion 38 of the high electric field sealing material has a tapered shape with a skirt due to the forming method by the coating technique.
  • the film thickness is particularly thin in the vicinity of the outer periphery of the chip, and the electric field from SiC cannot be sufficiently relaxed.
  • the termination region width 39 is designed to be sufficiently wide, the electric field in this portion can be reduced, but in this case, the termination region that hardly contributes to electrical conduction on the expensive SiC chip is widened, resulting in an increase in cost. To do.
  • a method for increasing the film thickness of the chip end portion of the high electric field sealing material is necessary so that the electric field at the end portion can be relaxed even if the termination region is reduced. .
  • the second problem is caused by the TAT (turnaround time) of production and insufficient coating accuracy.
  • the application process flow of the high electric field sealing material in the prior art is shown in FIG.
  • the high electric field sealing material application step 40 is arranged after the step 41 for bonding the chip to the insulating substrate.
  • the state of the coating process 40 is shown in FIG.
  • the high electric field sealing material 34 is applied by a dispenser or the like so as to go around the termination region 32 of the SiC-SBD chip 12 soldered on the insulating substrate 22. It is necessary to repeatedly apply all the chips mounted on the insulating substrate while aligning the horizontal position and height of the coating nozzle 42 for each chip on the insulating substrate, and the production process takes time. After application, it is necessary to heat-treat the high electric field sealing material, and at this time, it is necessary to heat-treat each insulating substrate for several hours.
  • each chip is soldered to an insulating substrate, but the solder is liquefied during reflow, causing variations in thickness, horizontal movement, and rotation, so the alignment is slightly different for each chip.
  • the dispenser is equipped with a function of optically recognizing the chip position and correcting it, there is a problem that the application accuracy is likely to be lowered and a trade-off that increases the application time when the accuracy is improved.
  • the inventors have proposed a new structure and manufacturing method of a semiconductor device described below.
  • the semiconductor device of the present invention includes, for example, a semiconductor chip on which a wide gap semiconductor element is formed, and the cross-sectional shape of the high electric field sealing material formed on the periphery of the chip on the pattern surface side of the semiconductor chip is At least a part of the outer peripheral end side has a vertical or near end face shape, and the inner peripheral end side of the chip has a shape in which the film thickness decreases inward.
  • the semiconductor device manufacturing method of the present invention is, for example, a semiconductor device manufacturing method including a semiconductor chip on which a wide gap semiconductor element is formed, and is disposed in the peripheral portion of the chip on the pattern surface side of the semiconductor chip. Forming a high electric field sealing material to be formed in a semiconductor wafer state, performing a heat treatment on the semiconductor wafer, and performing a dicing on the heat-treated semiconductor wafer.
  • the semiconductor module of the present invention is, for example, a semiconductor module on which a semiconductor chip on which a wide gap semiconductor element is formed is mounted, and the semiconductor chip is formed in a peripheral portion of the chip on the pattern surface side of the semiconductor chip.
  • the cross-sectional shape of the high electric field sealant has a shape in which at least a part of the chip outer peripheral end side is perpendicular or close to the end face shape, and the film thickness decreases inward on the inner peripheral end side of the chip. It is characterized by.
  • the electric field strength is set so as not to exceed the dielectric breakdown electric field strength of a sealing material such as silicone gel for sealing the same.
  • a sealing material such as silicone gel
  • FIG. 1 It is sectional drawing which shows the semiconductor device which concerns on Example 1 which is one of typical embodiment of this invention. It is a top view of a SiC chip. It is sectional drawing of a SiC chip. It is a top view of the SiC chip which piled up the formation field of the high electric field sealing material. It is sectional drawing of the SiC chip which piled up the formation area of the high electric field sealing material. It is a figure which shows the mounting state by a prior art. It is a figure which shows the application
  • FIG. 9 is an enlarged view of an insulating substrate mounted on the semiconductor module of FIG. 8. It is a figure which shows the flow of the main processes including the formation process of the high electric field sealing material in the manufacturing method of the semiconductor device which concerns on Example 1 of this invention. It is a figure which shows the mode of the formation process of the high electric field sealing material in the manufacturing method of the semiconductor device which concerns on Example 1 of this invention. It is a figure which shows the formation process of the high electric field sealing material in the manufacturing method of the semiconductor device which concerns on Example 1 of this invention. It is a figure which shows the process of dicing the wafer in the manufacturing method of the semiconductor device which concerns on Example 1 of this invention.
  • FIG. 6 is an enlarged view of a SiC-MOS in which a gate electrode pad is centrally arranged in Example 2 of the present invention.
  • FIG. 6 is an enlarged view of a SiC-MOS in which the gate electrode pad according to the second embodiment of the present invention is arranged near the electrode end.
  • the cross section of the high electric field sealing material formed in the vicinity of the termination region around the chip has a shape that is at least partially perpendicular to the outer peripheral end of the chip, Is characterized by having a shape in which the film thickness decreases inward.
  • one or a plurality of configurations are used from among polyamideimide resin, polyetheramideimide resin, and polyetheramide resin.
  • a manufacturing method in which a chip is mounted after a high electric field sealing material to be disposed in the vicinity of a termination region around the chip is formed in the state of a semiconductor wafer, subjected to heat treatment, and diced.
  • the high temperature heat treatment in the chip mounting process is also applied to the high electric field sealing material.
  • the temperature is preferably increased from 200 ° C.
  • An additional heat treatment in the range of 360 ° C. is performed.
  • the high electric field sealing material can be formed in a thick shape at the outer peripheral edge of the chip, it is possible to cope with a termination structure designed to reduce the area efficiently so that a high electric field is reached to the chip edge. The cost can be reduced by reducing the area.
  • the TAT of the manufacturing process can be reduced.
  • each chip in the state of a semiconductor wafer having uniform inclinations at equal intervals it is possible to improve the accuracy of the process for forming a high electric field sealing material and the inspection process.
  • Supplementary information related to the inspection process is that the withstand voltage test on the wafer is facilitated by forming the high electric field sealing material in the wafer state.
  • a pressure resistance test is performed without a sealant, air discharge will occur in excess of the pressure resistance in the air when a high voltage is applied, so there is a special incident that prevents discharge by dropping Fluorinert or locally increasing the pressure. Equipment was needed.
  • the above-mentioned incidental facilities are unnecessary, and the inspection process can be simplified and speeded up.
  • a semiconductor module (SiC hybrid module) having a withstand voltage of 3.3 kV and a current capacity of 1200 A mounted with a Si-IGBT as a switching element group and a SiC-SBD as a diode element group is mounted.
  • SiC hybrid module SiC hybrid module having a withstand voltage of 3.3 kV and a current capacity of 1200 A mounted with a Si-IGBT as a switching element group and a SiC-SBD as a diode element group is mounted.
  • Si-IGBT Si-IGBT
  • SiC-SBD SiC-SBD
  • the external appearance and internal configuration of the semiconductor module are as shown in FIG. 8, and four insulating substrates 22 are mounted therein.
  • An enlarged view of the insulating substrate 22 is shown in FIG.
  • An enlarged view of the SiCD-SBD is as shown in FIG. 2, and a termination region 32 is arranged outside the electrode 31 of the anode.
  • the high electric field sealing material is formed so as to completely cover the termination region 32.
  • the chip and insulating substrate 22 including the termination region 32 are sealed with a silicone gel 36 inside the case as shown in FIG.
  • FIG. 11 schematically shows a process 40 for forming a high electric field sealing material.
  • a high electric field sealing material 34 is formed on the scribe line 45 in a wafer state.
  • the forming method is performed by applying a paste-like high electric field sealing material 34 in a lattice shape with a dispenser.
  • the nozzle In the conventional method, there is misalignment of the tip tilt, in-plane position, rotation and the like due to soldering variation for each chip, and a highly accurate position correction technique is required for the dispenser for coating. Since the application amount is sensitive to the distance between the nozzle and the object, in addition to the in-plane position correction of the nozzle by image recognition, the sensor has a function of detecting the distance to the chip and correcting the inclination for application. However, in the method described here, the alignment with respect to the entire wafer is performed only once, and then the in-plane position is recognized by the image, and the application with the same accuracy is performed without requiring the height adjustment function. Is possible. In addition to reducing the cost of the coating apparatus, the recognition time in the coating process and the time required to move the nozzle for each chip are reduced, so that an effect of shortening the manufacturing time can be obtained.
  • heat treatment for curing is performed.
  • Heat treatment conditions were as follows: (1) 100 ° C, 30 minutes, (2) 200 ° C, 1 hour of conventional curing, and (3) inert atmosphere, 300 ° C, 1 hour.
  • degassing can be suppressed even in a high-temperature heat treatment (maximum 355 ° C.) in the subsequent chip mounting process.
  • the relationship between heat treatment and degassing can be evaluated by, for example, a TDS apparatus (temperature-programmed desorption gas analyzer).
  • Outgassing is reduced by processing at a temperature of 200 ° C. or higher, which has not been conventionally used.
  • the maximum temperature should just be below the maximum temperature of a subsequent chip mounting process, and if it is 400 degrees C or less, it is in the tolerance range of a high electric field sealing material.
  • the application of the high electric field sealant is performed in a lattice pattern along the scribe line of the wafer, and as shown in FIG. 12, the surplus sealant spreads at the intersections 47 in the horizontal and vertical directions, thus terminating.
  • the corner portion 48 of the region can be effectively covered.
  • a characteristic inspection process 49 in the wafer state is performed.
  • the termination region where the electric field strength is strong is covered with the high electric field sealing material 34, so that the discharge in the atmosphere is suppressed, so that the high voltage application test is facilitated.
  • a process of dicing the cured wafer along the scribe line is schematically shown in FIG.
  • the process proceeds to the step of bonding the chip to the insulating substrate (41 in FIG. 10). Since high-temperature solder is used here for chip bonding, heat treatment is performed in a reducing atmosphere at a maximum of 355 ° C. A step 43 of performing wire bonding on the bonded chip electrodes follows.
  • the assembly process of the SiC hybrid power module of the present invention is completed after the step 51 of joining the insulating substrate to the base plate which is the bottom surface of the module connected to the heat sink, and the module assembly process set 52 such as case adhesion and gel encapsulation. To do.
  • FIG. 14 is an enlarged cross-sectional view of a process of forming a high electric field sealing material in a wafer state.
  • the high electric field sealing material 34 discharged from the application nozzle 42 of the dispenser is applied onto the termination region 32 on the wafer, the paste-like high electric field sealing material spreads slightly and both ends gradually become films.
  • a tapered shape 54 with a reduced thickness is formed, resulting in a shape indicated by 55 in FIG.
  • the merit of forming the tapered shape 54 toward the inner periphery of the chip is as follows. First, since the electrode 31 has an equipotential surface, the electric field from the termination region 32 spreads around the electrode end boundary 56 when viewed in cross section. Similarly, a tapered shape 54 in which a film of a high electric field sealing material is formed at a substantially constant distance from the electrode end boundary 56 is an ideal shape without waste. For example, a wire bonding junction (see FIG. 5). 57) is close to the end of the electrode due to misalignment, the rising portion of the heel 58 of the joint is unlikely to interfere with the high electric field sealing material.
  • the taper shape is determined by the application conditions and the boundary is automatically formed, there is a great merit that no additional patterning step is required inside the electrode end. Since the chip mounted on the insulating substrate is misaligned both in the in-plane direction and in the height direction, accurate patterning is difficult. In addition, since a high electric field sealing material has a film thickness as thick as typically 80 ⁇ m, it is also difficult to apply a general photolithography process applied to a film of up to about 10 ⁇ m at most.
  • the taper shape needs to overlap the electrode 31 so as to cover the electrode end 56 having high electric field strength, but if the overlap length 59 is too long, the area necessary for wire bonding is insufficient. Therefore, the application condition of the high electric field sealing material is set so as to be within this range on the basis of 1 mm at most.
  • the application conditions of the high electric field sealant are: dispenser nozzle diameter, discharge pressure, gap length (distance between the nozzle and application target), application speed (in-plane movement speed of the nozzle), and high electric field seal resistance as a coating material.
  • the temperature of the material as a parameter, it can be adjusted to a range where a desired coating film thickness and coating line width can be obtained.
  • the high-voltage product of the present embodiment having a withstand voltage of 3.3 kV or higher has a strong internal electric field, and the necessary high-voltage electric field sealing material is thicker than a general coating material. Depending on the case, the desired film thickness may be insufficient.
  • the thickness can be increased by a method of applying the high electric field sealing material a plurality of times. Specifically, after coating by the above-described method, temporary curing in the atmosphere is performed under a heat treatment condition lower than usual at 60 ° C., and then the second coating may be performed. This step may be repeated when applying three or more times. Thereby, although the man-hour increases, it becomes possible to apply a thick film that cannot be reached by a single process.
  • the high electric field sealing material 34 has a substantially vertical cross-sectional shape at the outer periphery of the chip, and the film thickness is maintained at the maximum level up to the outer periphery of the chip. This is important in designing the termination region 32.
  • the narrow termination region that can improve the area efficiency has a high electric field strength to the vicinity of the outer peripheral edge of the chip. Therefore, in the conventional structure as shown in FIG. In the sealing material such as silicone gel, the limit of the dielectric breakdown electric field strength allowed by the material is exceeded. In order to realize a narrow termination region that can make use of the excellent physical properties of wide band gap semiconductors such as SiC, it is necessary to increase the thickness of the high electric field sealing material in the shape shown in FIG. It is necessary to keep.
  • FIG. 17 shows a cross section at the stage where wire bonding is performed on the electrode of the chip bonded to the insulating substrate 22.
  • the cross-sectional shape of the high electric field sealing material is a case where a part of the upper part becomes a concave shape 60 as shown in FIG. 18 or a case where a convex shape is shown as shown by 61 in FIG.
  • the concave shape or convex shape in FIG. 18 or FIG. 19 is mainly determined by the relationship between the strength of the thermosetting condition of the high electric field sealing material and the dicing conditions (blade rotation speed and moving speed). It may be optimized in consideration of other factors such as adhesion between the electric field sealing material and the chip.
  • the chip formed with the high electric field sealing material may cause a problem depending on the subsequent bonding method to the insulating substrate.
  • high-temperature lead solder is used for bonding, so the solder is reflowed by heat treatment at a maximum of 355 ° C in a hydrogen reduction furnace, but the side of the carbon jig that fixes the chip in an appropriate position on the insulating substrate and the chip end
  • the high electric field sealing material of the part adheres. This is shown in FIGS. 20a and 20b.
  • 20a shows a state before the high electric field sealing material is fixed to the carbon jig
  • FIG. 20b shows a state where the high electric field sealing material is fixed to the carbon jig.
  • Adhesion occurs at the contact portion 62 of the high electric field sealing material between the carbon jig and the chip end face.
  • the cross section of the outer peripheral edge of the chip can be solved by using the structure shown in FIG.
  • the outer peripheral end face is recessed from the end of the chip by a small amount of 150 ⁇ m or less, preferably 30 ⁇ m, which is 1/3 or less of the width of the termination region, which is the electric field relaxation region, to the extent that the original purpose of relaxing the high electric field is not affected.
  • two kinds of dicers having different blade widths are used for chip dicing, and first, dicing is performed with a wide blade (100 ⁇ m) until reaching the wafer surface, and then a narrow blade. There is a method of cutting the center to the end with (50 ⁇ m).
  • the high electric field sealing material is lightly etched using a solvent such as NMP (N-methyl-2-pyrrolidone), or ashing with oxygen plasma or the like is performed, so that the high electric field sealing is achieved.
  • a desired shape can be formed by isotropic recessing of the surface of the material. In any method, the problem of sticking can be avoided by forming a gap that avoids contact between the tip end and the inner wall of the carbon jig.
  • solderless bonding that does not use solder and a high-temperature heat treatment furnace for bonding the chip and the insulating substrate, it is not necessary to form the recess.
  • solderless bonding requires pressurization of the chip and the insulating substrate both in the bonding method using sintered silver and in the method of cleaning the bonding surface with an ion beam or the like and bonding in a high vacuum.
  • the high electric field sealing material can be an obstacle to pressurization from the upper surface.
  • the pressurizing jig may be provided with the unevenness indicated by 63 in FIG. 22 so as not to contact the formation portion of the high electric field sealing material.
  • the high electric field sealant one or a plurality of configurations are used from among polyamideimide resin, polyetheramideimide resin, and polyetheramide resin, and here, a combination of polyetheramide resin and polyimide resin is adopted.
  • the dielectric breakdown electric field strength of the high electric field sealing material is 230 kV / mm, which is more than 10 times that of silicone gel.
  • the viscosity of the resin was adjusted to a range in which the resin was paste-like in order to apply it to a desired film thickness.
  • a SiC-SBD having a breakdown voltage of 3.3 kV is used.
  • the structure on the termination region of the chip has a SiO 2 film 65 on the SiC p-type impurity region 64, and a polyimide film 66 as a protective film on it is 4 to 8 ⁇ m. It is formed with the thickness.
  • a high electric field sealing material 34 is formed in a stacked manner thereon. In the case cross-sectional view shown in FIG. 24, in the silicone gel sealing the remaining space 67 in the case, the electric field from the SiC-SBD chip does not exceed the breakdown electric field strength (14 kV / mm) of the silicone gel.
  • the film thickness of the high electric field sealing material 34 on the termination region is required to be at least 50 ⁇ m or more, preferably 80 ⁇ m or more between the points AB in FIG. 23 covering the main region.
  • the thickness is preferably 500 ⁇ m or less.
  • a high voltage product with a withstand voltage of 3.3 kV is targeted.
  • the film thickness of the high electric field sealing material depends on the design of the termination region. The lower limit can be relaxed and at least 20 ⁇ m or more.
  • the relative dielectric constant of the laminated polyimide film 66 and the high electric field sealing material 34 is about 2.9 for the protective film polyimide and about 3.2 for the main component polyetheramide of the high electric field sealing material.
  • the relative dielectric constant of the underlying inorganic material layer SiO 2 film 65 is smaller than 3.8 to 4.1 and larger than the relative dielectric constant of the silicone gel 36 serving as the upper sealing material is approximately 2.7.
  • a structure and manufacturing method of a full SiC module having a breakdown voltage of 3.3 kV, a current capacity of 1200 A, a SiC-MOS as a switching element group, and a SiC-SBD as a diode element group are shown. .
  • the gate electrode pad 70 is different from the SiC-SBD.
  • the gate electrode pad 70 is arranged at the center in consideration of equalization of the gate wiring.
  • the gate electrode pad 71 may be disposed closer to the electrode end as the layout shown in FIG.
  • the present invention can also be applied to a configuration of a full SiC module made of only SiC-MOS using a built-in diode of SiC-MOS with the SiC-SBD omitted.
  • the essence of this invention is the structure which formed the high electric field sealing material used for the semiconductor chip using a wide band gap semiconductor with the required film thickness to the chip
  • SiC hybrid module which is a combination of the above-mentioned Si-IGBT and SiC-SBD, or a full SiC module in which SiC-MOS is used alone or in combination with SiC-SBD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Abstract

 ワイドバンドギャップ半導体装置において、縮小された電界強度の高いターミネーション領域に対応した端部膜厚の厚い耐高電界封止材を形成すると共に、製造工程の精度向上と短時間化をはかるため、半導体装置を以下のように構成する。すなわち、半導体チップ周辺のターミネーション領域近傍に形成する耐高電界封止材の断面が、チップ外周端部で少なくとも一部が垂直な形状を有し、チップ内部端側では内側に向けて膜厚が減少する形状とする。これを実現するための半導体装置の製造方法として、耐高電界封止材は半導体ウエハの状態で形成し、その後に熱処理を実施し、ダイシングした後にチップを実装する。

Description

半導体装置およびその製造方法、並びに半導体モジュール
 本発明は、半導体装置およびその製造方法に関し、特にシリコンおよびシリコンカーバイドを原材料に用いるパワー半導体装置およびその製造方法に関するものである。
 インバータに代表される電力変換機器の中で、パワー半導体は整流機能やスイッチング機能をもつ主要な構成部品として使われている。パワー半導体の材料として現在はシリコンが主流であるが、物性に優れるシリコンカーバイド(SiC)の採用に向けた開発が進んでいる。
 従来、SiCを用いた半導体装置の信頼性を向上させる技術として、シリコーンゲル封止材と半導体との間に耐高電界封止材を挿入して、SiCチップのターミネーション領域付近におけるシリコーンゲル中の電界強度を耐電界の範囲内に抑制するものがあった(例えば、特許文献1参照)。
特開2013-191716号公報
 SiCは、シリコンに対して絶縁破壊電界強度が一桁高く高電圧用途に適すること、熱伝導率もシリコンの3倍で、かつ高温でも半導体の性質を失いにくいことから原理的に温度上昇にも強く、素子の抵抗を下げられるためパワー半導体の材料として適している。
 特に、インバータを構成するパワーモジュールのスイッチング素子と整流素子の内、整流素子の還流ダイオード(フリーホイーリングダイオード)をシリコンからSiCに置き換えたSiCハイブリッドモジュールの開発が先行している。整流素子はスイッチング素子に比べて構造と動作が単純で素子開発を進めやすいこと、またスイッチング損失を大幅に低減できるメリットが明確なことが理由にある。近年では、スイッチング素子もSiCに置き換えたフルSiCモジュールの開発も進んでおり、さらなる損失低減も可能になりつつある。
 シリコンのPNダイオードをSiCのショットキーバリアダイオード(SBD=chottky arrier iode)に置き換えたSiCハイブリッドモジュールでは、リカバリ電流が無いためスイッチング損失が1/10に減るとの報告がある。これはバイポーラ素子のPNダイオードではスイッチング時に蓄積された少数キャリアがリカバリ電流として流れるが、ユニポーラ素子のSBDでは少数キャリアの蓄積が無いためである。
 整流素子に加えてスイッチング素子も、シリコンのIGBT(以下Si-IGBT)をSiCのMOS(etal xide emiconductor)に置き換えたフルSiCモジュールでは、損失低減効果はさらに大きくなる。バイポーラ素子のSi-IGBTをユニポーラ素子のSiC-MOSで置き換えることで、シリコンPNダイオードをSiCのSBDに置き換えた場合と同じ原理によってスイッチング損失を低減できるためである。フルSiCモジュールでは、さらにSBDを省略してMOS側で整流機能まで受け持つ方式も存在する。
 なお、シリコンでもSBDやMOSを製造可能だが、耐圧を高めるためにボディ層の厚みを増すと抵抗が高くなり実用的ではない。低抵抗なSiCを用いることで、耐圧600V~3.3kVといった従来シリコンのSBDやMOSを適用できなかった高耐圧領域までユニポーラ素子のSBDやMOSを適用することが可能になっている。
 SiCは前述のように絶縁破壊電界強度が高いため、チップ内部の電界強度を高めた設計が可能で、チップ周辺の電界緩和領域(ターミネーション領域)を縮小し面積コストを削減できる。このとき、SiCに接するパッケージの封止材にかかる電界強度も高くなるため、SiC用の封止材には絶縁破壊強度の高さが求められる。チップのターミネーション領域の直上では、例えばシリコンの場合には実装後にはシリコーンゲル等で封止がなされるが、SiCの場合には電界強度がシリコーンゲルの耐電界(絶縁破壊電界強度)を超えてしまうため、間に耐高電界封止材を挿入する方法が開示されている(特許文献1)。この方法によれば、SiCチップのターミネーション領域付近で、シリコーンゲル中の電界強度を耐電界の範囲内に抑制することができるため、SiCを用いた半導体装置の信頼性を向上できる。
 しかしながら、特許文献1記載の方法において、チップのターミネーション領域近傍の封止材中の電界強度を緩和する技術には以下の課題があった。
 1つめの課題は、チップ端部での耐高電界封止材の形状に起因している。図2と図3を用いて説明する。図2はSiCを用いたパワー半導体モジュールを構成するSiCチップの1つについての上面図で、図3が断面図を示す。ここに、耐高電界封止材の形成領域30を重ねたものが図4a、図4bであり、図4aはSiCチップの上面図、図4bはSiCチップの断面図である。図2、図3、図4a、および図4bのチップはダイオードの場合であり、電極31の周辺にターミネーション領域32があり、チップ上面に接するターミネーション領域の電界を緩和するために、耐高電界封止材34が配置されている。従来技術での耐高電界封止材の形成は、工程的にはチップを絶縁基板にマウントした状態で行っており、図5には、絶縁基22にハンダ35を用いて実装し、ワイヤ13を接合し封止材としてのゲル36で覆った状態の部分的な断面を示している。図5に示すチップ断面の拡大図で、耐高電界封止材の端部38の形状は塗布技術による形成方法に起因して裾を引いたテーパー形状となる。このため、特にチップ外周部の近傍で膜厚が薄く、SiCからの電界を十分に緩和できない問題がある。ターミネーション領域の幅39を十分に広く設計すればこの部分の電界は緩和されるが、その場合には高価なSiCチップ上で電気伝導に殆んど寄与しないターミネーション領域を広くとることとなりコストが増加する。SiCの優れた材料物性を活かすためには、ターミネーション領域を縮小しても端部での電界を緩和できるように、耐高電界封止材のチップ端部膜厚を高められる方法が必要となる。
 2つめの課題は、生産のTAT(ターンアラウンドタイム)と塗布精度の不足に起因するものである。従来技術における耐高電界封止材の塗布工程フローを図6に示した。耐高電界封止材の塗布工程40は、チップを絶縁基板に接合する工程41の後に配置される。塗布工程40の様子を図7に示す。耐高電界封止材34はディスペンサー等により、絶縁基板22上にハンダ付けされたSiC-SBDチップ12のターミネーション領域32を一周するように塗布される。絶縁基板上のチップ毎に塗布ノズル42の水平位置と高さをアライメントしつつ、絶縁基板上に搭載した全チップについて繰り返し塗布していく必要があり、生産工程に時間を要する。塗布後に耐高電界封止材の硬化熱処理も必要で、このときに各絶縁基板を数時間熱処理する必要があるため時間を要する工程の一つとなっている。
 また、各チップは絶縁基板にハンダ付けされているが、ハンダはリフロー時に液化して厚みバラツキや水平方向の移動、回転が生じるため、チップ毎に微妙にアライメントがずれている。ディスペンサーはチップ位置を光学的に認識して補正を行う機能が搭載されているものの、塗布精度が低下しやすく、精度向上を図ると塗布時間が増加するトレードオフに陥る問題がある。
 また、こうした問題点はSiCのみならず、絶縁破壊電界強度が高い、GaNやダイヤモンドといったワイドバンドギャップ半導体を用いた半導体装置に共通している。
 以上の問題点を鑑みて、発明者らは、以下に述べる新たな半導体装置の構造と製造方法を提案するに至った。
 本発明の半導体装置は、例えば、ワイドギャップ半導体素子が形成された半導体チップを備え、前記半導体チップのパタン面側のチップの周辺部に形成される耐高電界封止材の断面形状が、チップ外周端側の少なくとも一部が垂直またはそれに近い端面形状を有し、チップ内周端側では内側に向けて膜厚が減少する形状を有することを特徴とする。
 また、本発明の半導体装置の製造方法は、例えば、ワイドギャップ半導体素子が形成された半導体チップを備えた半導体装置の製造方法であって、前記半導体チップのパタン面側のチップの周辺部に配置する耐高電界封止材を半導体ウエハの状態で形成する工程と、前記半導体ウエハに対して熱処理を実施する工程と、熱処理された前記半導体ウエハに対してダイシングを実施する工程とを有することを特徴とする。
 また、本発明の半導体モジュールは、例えば、ワイドギャップ半導体素子が形成された半導体チップを搭載した半導体モジュールであって、前記半導体チップは、前記半導体チップのパタン面側のチップの周辺部に形成される耐高電界封止材の断面形状が、チップ外周端側の少なくとも一部が垂直またはそれに近い端面形状を有し、チップ内周端側では内側に向けて膜厚が減少する形状を有することを特徴とする。
 本発明によれば、絶縁破壊強度の高いワイドバンドギャップ半導体のチップ近傍の高電界領域においても、これを封止するシリコーンゲル等の封止材料の絶縁破壊電界強度を超えないように電界強度を緩和することが可能となり、ひいては半導体装置および半導体モジュールの信頼性を向上させることができる。
本発明の代表的な実施形態の1つである実施例1に係る半導体装置を示す断面図である。 SiCチップの上面図である。 SiCチップの断面図である。 耐高電界封止材の形成領域重ねたSiCチップの上面図である。 耐高電界封止材の形成領域重ねたSiCチップの断面図である。 従来技術による実装状態を示す図である。 従来技術における耐高電界封止材の塗布工程フローを示す図である。 従来技術による塗布工程を示す図である。 本発明の実施例1に係る半導体モジュールの外観および内部構成を示す斜視図である。 図8の半導体モジュールに搭載される絶縁基板の拡大図である。 本発明の実施例1に係る半導体装置の製造方法における耐高電界封止材の形成工程を含む主要工程のフローを示す図である。 本発明の実施例1に係る半導体装置の製造方法における耐高電界封止材の形成工程の様子を示す図である。 本発明の実施例1に係る半導体装置の製造方法における耐高電界封止材の形成工程を示す図である。 本発明の実施例1に係る半導体装置の製造方法におけるウエハをダイシングする工程を示す図である。 本発明の実施例1に係る半導体装置の製造方法におけるウエハ状態での耐高電界封止材の形成工程を示す断面拡大図である。 本発明の実施例1に係る半導体装置の製造方法におけるチップのダインシング工程を示す断面拡大図であって、ダイシング直前の様子を示す図である。 本発明の実施例1に係る半導体装置の製造方法におけるチップのダインシング工程を示す断面拡大図であって、ダイシング後の様子を示す図である。 本発明の実施例1に係る半導体装置の製造方法によりワイヤボンディングを実施した段階の半導体装置の断面図である。 本発明の実施例1における耐高電界封止材の一部が凹形状である場合の半導体装置の断面図である。 本発明の実施例1における耐高電界封止材の一部が凸形状である場合の半導体装置の断面図である。 本発明の実施例1における耐高電界封止材がカーボン治具と固着する前の状態を示す図である。 本発明の実施例1における耐高電界封止材がカーボン治具と固着した状態を示す図である。 本発明の実施例1における耐高電界封止材がカーボン治具と固着するのを回避する半導体装置構造を示す図である。 本発明の実施例1における耐高電界封止材がカーボン治具と固着するのを回避するカーボン治具構造を示す図である。 本発明の実施例1における半導体チップのターミネーション領域近傍の構造を示す拡大図である。 本発明の実施例1におけるケースおよびその内部を示す断面図である。 本発明の代表的な実施形態の1つである実施例2に係る半導体装置であるSiC-MOSを用いる半導体装置における絶縁基板の拡大図である。 本発明の実施例2におけるゲート電極パッドを中央配置したSiC-MOSの拡大図である。 本発明の実施例2におけるゲート電極パッドが電極端部寄り配置のSiC-MOS拡大図である。
 本発明は、ワイドバンドギャップ半導体装置において、チップ周辺のターミネーション領域近傍に形成する耐高電界封止材の断面が、チップ外周端部で少なくとも一部が垂直な形状を有し、チップ内部端側では内側に向けて膜厚が減少する形状を有することを特徴とする。
 耐高電界封止材としては、ポリアミドイミド樹脂、ポリエーテルアミドイミド樹脂、ポリエーテルアミド樹脂の中から一種あるいは複数の構成を用いる。
 また、前記構造を実現するため、チップ周辺のターミネーション領域近傍に配置する耐高電界封止材を、半導体ウエハの状態で形成し、熱処理を実施し、ダイシングした後にチップが実装される製造方法を特徴とする。
 ここで、チップ実装の前に耐高電界封止材を形成する本発明の製造方法では、チップマウント工程の高温熱処理が耐高電界封止材にも加わる。この高温熱処理中に発生する耐高電界封止材からの脱ガスによる問題を防止するため、耐高電界封止材の形成後に行う通常の硬化熱処理に加えて、より高温で望ましくは200℃から360℃の範囲の追加熱処理を行う。これにより、耐高電界封止材の形成工程とチップマウント工程を入れ替える特徴を有する本発明の製造方法が実現できる。
 本発明が提供するワイドバンドギャップ半導体装置においては、絶縁破壊強度の高いワイドバンドギャップ半導体のチップ近傍の高電界領域においても、これを封止するシリコーンゲル等の封止材料の絶縁破壊電界強度を超えないように電界強度を緩和することが可能で、信頼性を向上できる。
 特にチップ外周端部における耐高電界封止材の膜厚が厚い形状で形成できるため、チップ端部まで高電界となるような面積効率良く縮小された設計のターミネーション構造まで対応が可能で、チップ面積を縮小しコストを低減できる。
 また、本発明の製造方法においては、耐高電界封止材を実装後の個別チップではなく半導体ウエハの段階で一括して形成するため、製造工程のTATが削減できる。同時に、各チップが等間隔で傾きが揃った半導体ウエハの状態で形成することで、耐高電界封止材の形成工程や検査工程の精度も向上できる。これにより、形成不良による廃棄コストの低減、検査工程の簡略化、ディスペンサー等の形成装置の低価格化が可能となる。
 検査工程に関連して補足する。本発明の別の効果として、ウエハの状態で耐高電界封止材を形成することでウエハでの耐圧検査が容易になる。従来は封止材の無い状態で耐圧検査を行うと高電圧印加時に空気中の耐圧を超えて気中放電が発生するため、フロリナート滴下、もしくは局所的な高気圧化により放電を防止する特殊な付帯設備が必要であった。本発明によれば前記の付帯設備等は不要で、検査工程の簡略化と高速化が可能になる。
 以下、本発明の実施形態を、各実施例として図面を参照しながら詳細に説明する。
 本発明の第一の実施形態として、耐圧3.3kVで電流容量1200Aの、スイッチング素子群としてのSi-IGBTと、ダイオード素子群としてのSiC-SBDが搭載された半導体モジュール(SiCハイブリッドモジュール)の構造と製造方法を示す。
 半導体モジュールの外観および内部構成は図8に示す通りであり、その中に絶縁基板22が4枚搭載される。絶縁基板22の拡大図を図9に示す。1枚の絶縁基板22には、Si-IGBT11が4チップとSiC-SBD12が10チップ搭載されている。SiCD-SBDの拡大図は図2に示す通りで、アノードの電極31の外側にはターミネーション領域32が配置されている。耐高電界封止材はこのターミネーション領域32を完全に覆うように形成する。ターミネーション領域32を含めてチップおよび絶縁基板22は、図5に示したようにケース内側のシリコーンゲル36により封止される。
 耐高電界封止材の形成工程を含む主要な工程のフローを図10に示した。本発明の製造方法は、耐高電界封止材の形成工程を従来(図6)に示すチップの絶縁基板へのマウント工程41とワイヤボンディング工程43の間から、ウエハのダイシング工程44より前へ移動したことが特徴となる。耐高電界封止材の形成工程40を図11に模式的に示す。ウエハ状態でスクライブライン45上に耐高電界封止材34を形成する。形成方法は、ディスペンサーによってペースト状の耐高電界封止材34を格子状に塗布することで行う。従来方法では、チップ毎にハンダ付けのバラツキからチップの傾きや面内位置、回転などのアライメントのズレがあり、塗布を行うディスペンサーに高精度な位置補正技術が必要であった。塗布量はノズルと対象物の距離に敏感なため、画像認識によるノズルの面内位置補正に加えて、センサによってチップまでの距離を検出して傾きを補正して塗布する機能を備えていた。しかし、ここで述べる方法においては、ウエハ全体に対するアライメントを最初に一度行うだけで、あとは面内位置を画像により適切に認識するだけで、高さ調整機能を必要とせずに同精度での塗布が可能となる。塗布装置のコストが低減できる上に、塗布処理における認識時間やチップ毎のノズル移動にかかる時間が削減されるため、製造時間の短縮効果が得られる。
 耐高電界封止材の塗布後には、硬化のための熱処理を行う。熱処理条件は、(1)100℃、30分、(2)200℃、1時間、の従来同様の硬化を行った後、(3)不活性雰囲気、300℃、1時間、の条件で追加の高温熱処理を行う。この追加熱処理によって後続のチップマウント工程の高温熱処理(最大355℃)においても脱ガスを抑制することが可能になる。熱処理と脱ガスの関係は、例えばTDS装置(昇温脱離ガス分析装置)によって評価することができる。従来は用いられなかった200℃以上の温度で処理することで脱ガスを低減している。また、最高温度は後続のチップマウント工程の最高温度以下であれば良く、400℃以下であれば耐高電界封止材の耐性の範囲内である。
 耐高電界封止材の塗布は、ウエハのスクライブラインに沿って格子状に行うことで、図12に示すように横方向と縦方向の交差箇所47で余剰の封止材が広がって、ターミネーション領域のコーナ部分48を効果的に覆うことができる。
 熱硬化の後、ウエハ状態での特性検査工程49を行う。ここで、前述のように電界強度の強いターミネーション領域が耐高電界封止材34で覆われることで大気中放電が抑制されるため、高電圧の印加試験が容易になっている。硬化が終了したウエハをスクライブラインに沿ってダイシングする工程を図13に模式的に示した。
 続いて、チップ状態での特性テストを行い、絶縁基板にチップを接合する工程(図10の41)に進む。チップの接合はここでは高温ハンダを用いるため、最大355℃の還元性雰囲気中での熱処理を行う。接合したチップの電極上にワイヤボンディングを実施する工程43が続く。次に、絶縁基板をヒートシンクに接続されるモジュール底面となるベースプレートに接合する工程51と、ケース接着やゲル封入等のモジュールアセンブリ工程一式52を経ると本発明のSiCハイブリッドパワーモジュールの組立工程が完成する。
 ここで、本発明の特徴となる耐高電界封止材の形状をより詳細に説明するため、以下図14から図16を用いて説明する。
 図14は、ウエハ状態で耐高電界封止材を形成する工程の断面拡大図である。ディスペンサーの塗布ノズル42から吐出された耐高電界封止材34をウエハ上のターミネーション領域32の上に塗布していくと、ペースト状の耐高電界封止材は若干広がって両端は徐々に膜厚が薄くなるテーパー形状54を形成し、図14の55で示す形状となる。
 チップ内周に向かってテーパー形状54を形成するメリットは以下にある。まず、電極31は等電位面になるため、ターミネーション領域32からの電界は断面で見て電極端境界56を中心に拡がっていく。同じように電極端境界56からほぼ一定距離だけ耐高電界封止材の膜が形成されているテーパー形状54は無駄のない理想的な形であり、例えば、ワイヤボンディングの接合部(図5の57)が位置ズレにより電極端部に接近した場合でも、接合部のヒール58の立ち上がり部が耐高電界封止材に干渉しにくい。またテーパー形状は塗布条件で決まり、境界が自動的に形成されるため、電極端内側で付加的なパターニング工程が不要なメリットは大きい。絶縁基板にマウントした状態のチップは面内方向にも、高さ方向にもアライメントずれがあるため、正確なパターニングが難しい。加えて、耐高電界封止材は膜厚が典型的には80μmとかなり厚いため、せいぜい10μm程度までの膜に適用する一般的なホトリソグラフィプロセスが適用しにくいことも理由となる。
 テーパー形状は電界強度の高い電極端部56を覆うように裾部が電極31へオーバーラップしている必要があるが、そのオーバーラップ長59は、あまり長くとるとワイヤボンディングに必要な領域が不足するため、せいぜい1mm以内を基準として、この範囲に収めるように耐高電界封止材の塗布条件を設定する。
 耐高電界封止材の塗布条件は、ディスペンサーのノズル径、吐出圧、ギャップ長(ノズルと塗布対象の距離)、塗布速度(ノズルの面内移動速度)、塗布材料としての耐高電界封止材の温度、をパラメータとして所望の塗布膜厚と塗布線幅が得られる範囲に調整できる。なお、本実施例の耐圧3.3kVクラス以上のような高圧品においては内部電界が強く、必要な耐高電界封止材の膜厚が一般的な塗布材料より厚くなるため、これらの条件調整によっても所望の膜厚に不足する場合がある。その場合には、耐高電界封止材を複数回塗布する方法によって増厚できる。具体的には、前述の方法で塗布した後、60℃の通常より低温の熱処理条件で大気中の仮硬化を行い、続けて2回目の塗布を行えばよい。3回以上の塗布を行う場合もこのステップを繰り返せばよい。これにより、工数は増加するものの、単一工程では到達し得ない厚膜の塗布が可能になる。
 次に図15に示すようにダイシングブレード50によってチップのダインシングを行うと、図16に示すように耐高電界封止材34ごとチップが切断される。最終的なチップの断面形状を図1に示す。耐高電界封止材34はチップ外周部でほぼ垂直な断面形状となり、チップ外周端部まで膜厚がほぼ最大の状態が保たれる。このことがターミネーション領域32の設計上重要となる。面積効率を向上できる幅の狭いターミネーション領域は、チップの外周端近傍まで電界強度が高いため、外周端部で耐高電界封止材膜厚が薄い図5のような従来構造では上層に配置されるシリコーンゲル等の封止材中で材料が許す絶縁破壊電界強度の限界を超えてしまう。SiCなどのワイドバンドギャップ半導体の優れた物性を活かせる狭幅のターミネーション領域を実現するためには、図1に示す形状でチップ外周端部まで耐高電界封止材の膜厚が厚い状態を保つことが必要になる。
 絶縁基板22に接合したチップの電極上にワイヤボンディングを実施した段階の断面を図17に示した。
 耐高電界封止材の形成に際しては、チップ外周端部でその断面の少なくとも一部が垂直ないしそれに近い端面形状を有することで、チップ外周端部近傍まで高電界に対応した封止が可能になる。その観点で、耐高電界封止材の断面形状は、図18に示すように上部の一部が凹形状60になる場合や、図19の61に示すように凸形状を示す場合であっても同様の効果が得られる。図18あるいは図19の凹形状や凸形状は、主に耐高電界封止材の熱硬化条件の強さとダイシング条件(ブレード回転数や移動速度)との関係で決まるが、ダイシング後の耐高電界封止材とチップとの密着性等の他の要素を考慮して最適化して良い。
 耐高電界封止材を形成したチップは、後の絶縁基板への接合方法によっては問題を生じる場合がある。ここでは接合に高温鉛ハンダを用いるため、水素還元炉によって最高355℃の熱処理でハンダをリフローさせて接合するが、チップを絶縁基板上の適切な位置に固定するカーボン治具の側面とチップ端部の耐高電界封止材が固着する場合がある。図20a、図20bにこの様子を示した。図20aは耐高電界封止材がカーボン治具と固着する前の状態を、図20bは耐高電界封止材がカーボン治具と固着した状態を、それぞれ示す。カーボン治具とチップ端面の耐高電界封止材の接触部62で固着が発生する。
 両者の接触を避ければ固着は回避できるため、チップ外周端の断面を図21の構造とすることで解決できる。外周端面を高電界の緩和という本来目的には影響ない程度、電界緩和領域であるターミネーション領域幅の、最大でも1/3以下となる150μm以下、好ましくは30μmの少量だけチップ端からリセスする。図21の構造を実現するには、チップのダイシングにおいてブレード幅の異なる2種類のダイサーを使い、最初に幅広ブレード(100μm)でウエハ表面に達するまでの浅いダイシングを行い、次に幅の狭いブレード(50μm)で中心を最後まで切断する方法がある。もしくは、チップのダイシング後に、NMP(N-メチル-2-ピロリドン)等の溶剤を用いて耐高電界封止材を軽くエッチングするか、酸素プラズマ等によるアッシングを行うことで、耐高電界封止材の表面を等方的にリセスして所望の形状を形成できる。いずれの方法でも、チップ端部とカーボン治具内壁の接触を避けるギャップを形成すれば固着の問題は回避できる。
 チップと絶縁基板の接合に、ハンダと高温の熱処理炉を用いないハンダレス接合の場合は、上記のリセス部の形成は不要になる。しかしながら、ハンダレス接合は、焼結銀を用いた接合方法の場合も、接合面をイオンビーム等で清浄化して高真空で接合する方法においても、チップと絶縁基板を加圧する必要がある。このとき、耐高電界封止材が上面からの加圧の障害となりえる。これを避けるためには、加圧治具を耐高電界封止材の形成部に接触しないように図22の63に示す凹凸を設けた形とすれば良い。
 耐高電界封止材としては、ポリアミドイミド樹脂、ポリエーテルアミドイミド樹脂、ポリエーテルアミド樹脂の中から一種あるいは複数の構成を用いるが、ここではポリエーテルアミド樹脂とポリイミド樹脂の組み合わせを採用した。この場合、耐高電界封止材の絶縁破壊電界強度は230kV/mmで、シリコーンゲルの10倍以上の特性を有する。また、樹脂の粘度は、所望の膜厚に塗布するためにペースト状となる範囲に調整した。
 本実施例では耐圧3.3kVのSiC-SBDを用いる。チップのターミネーション領域上の構成は詳細には、図23に示すようにSiCのp型不純物領域64の上にSiO2膜65があり、その上には保護膜としてのポリイミド膜66が4~8μmの厚みで形成されている。その上に積層する形で耐高電界封止材34を形成する。図24に示すケース断面図において、ケース内の残りの空間67を封止するシリコーンゲル中で、SiC-SBDチップからの電界によってシリコーンゲルの絶縁破壊電界強度(14kV/mm)を超えないためには、ターミネーション領域上の耐高電界封止材34の膜厚は、主要領域をカバーしている図23のA-B地点間で少なくとも50μm以上、好ましくは80μm以上が必要となる。一方で、耐高電界封止材の膜厚は厚すぎても応力が増大しクラック等の問題が生じるため500μm以下とすることが良い。
 なお、本実施例では耐圧3.3kVの高圧品を対象としているが、1.7kVや1.2kVの中耐圧品では、ターミネーション領域の設計にも依存するが耐高電界封止材の膜厚下限は緩和可能で、少なくとも20μm以上となる。
 積層されたポリイミド膜66と耐高電界封止材34の比誘電率は、保護膜のポリイミドがおおよそ2.9、耐高電界封止材の主成分のポリエーテルアミドがおおよそ3.2であり、いずれも、下地の無機材料層SiO2膜65の比誘電率3.8~4.1よりも小さく、上層の封止材となるシリコーンゲル36の比誘電率おおよそ2.7よりも大きい。これらの関係は、下地層SiO2膜の比誘電率≧保護膜および耐高電界封止材の比誘電率≧上層の封止材シリコーンゲルの比誘電率、としている。比誘電率の差が小さい関係とすることで、電荷の蓄積による影響が抑制される。
 本発明の第二の実施形態として、耐圧3.3kV、電流容量1200Aで、スイッチング素子群としてのSiC-MOSを、ダイオード素子群としてSiC-SBDを搭載したフルSiCモジュールの構造と製造方法を示す。
 モジュールの外観やケース構造は第一の実施例と同等のため省略して、絶縁基板のレイアウトを図25に、SiC-MOSチップの上面を図26に示す。SiC-MOSでは、ゲート電極パッド70の存在がSiC-SBDとの相違点となる。配線等を考慮したレイアウト効率向上のためには、ゲート用のパッドを電極の端部やコーナに配置することが従来、一般的に行われてきた。しかし、ターミネーション領域を縮小して、耐高電界封止材を形成する場合には、耐高電界封止材の電極へのオーバーラップ長59によりゲートパッドが覆われてワイヤボンディングに不都合が生じる。これを解決するためゲートパッドを電極端から1mm以上離間させている。図26では、ゲート配線の等長化を考慮してゲート電極パッド70を中央に配置している。ゲート電極パッドによる無効面積を最小化するためには、図27に示すレイアウトとしてゲート電極パッド71を電極端部寄りに配置しても良い。
 この後の製造方法及び、他の部分の構成については第一の実施例と同等のため説明を省略する。また、本実施例の変形例として、SiC-SBDを省略してSiC-MOSの内蔵ダイオードを利用したSiC-MOSのみから成るフルSiCモジュールの構成にも適用可能である。
 以上、本発明の代表的な実施例を記載したが、本発明の本質はワイドバンドギャップ半導体を用いた半導体チップに用いる耐高電界封止材をチップ端部まで必要な膜厚で形成した構造と製造方法にあり、その意味では上記Si-IGBTとSiC-SBDの組み合わせであるSiCハイブリッドモジュールや、SiC-MOSを単独あるいはSiC-SBDと組み合わせたフルSiCモジュールのみに限定されず、SiCやGaN、ダイヤモンド等のワイドバンドギャップ半導体を用いた技術や、これらと、シリコンや、ガリウムヒ素、ゲルマニウム等の一般的なバンドギャップを持つ半導体の組み合わせにも有効であり、ショットキーバリアダイオードやPNダイオード、MOSやJFET、バイポーラトランジスタ、IGBTなどの素子の組み合わせ他技術においても効果がある。
 11 Si-IGBT
 12 SiC-SBD
 13 ワイヤ(ボンディング)
 21 電極主端子
 22 絶縁基板
 25 ケース
 26 カバー
 27 共通エミッタ(ソース)回路パタン
 28 共通エミッタ(ソース)主端子コンタクト
 30 耐高電界封止材の形成領域
 31 電極
 32 ターミネーション領域
 33 チップ外周部
 34 耐高電界封止材
 35 ハンダ
 36 シリコーンゲル
 37 回路配線金属
 38 耐高電界封止材の端部
 39 ターミネーション領域の幅
 40 耐高電界封止材の塗布工程
 41 チップを絶縁基板に接合する工程
 42 ディスペンサーの塗布ノズル
 43 ワイヤボンディング工程
 44 ダイシング工程
 45 スクライブライン
 46 ウエハ
 47 塗布時の横方向と縦方向の交差箇所
 48 ターミネーション領域のコーナ部分
 49 ウエハ特性検査工程
 50 ダイサーのブレード
 51 絶縁基板のベースプレートへの接合工程
 52 ケース接着やゲル封入等のモジュールアセンブリ工程一式
 53 チップ検査工程
 54 テーパー形状
 55 ウエハ状態での耐高電界封止材の塗布形状
 56 電極端境界
 57 ワイヤボンディングの接合部
 58 ワイヤボンディング接合部のヒール
 59 耐高電界封止材の電極へのオーバーラップ長
 60 耐高電界封止材の凹形状
 61 耐高電界封止材の凸形状
 62 カーボン治具とチップ端面の耐高電界封止材の接触部
 63 凹凸つきの加圧治具
 64 SiCのp型不純物領域
 65 SiO2
 66 ポリイミド膜
 67 ケース内の残りの空間
 68 ベースプレート
 69 チャネルストッパ
 70 中央配置のゲート電極パッド
 71 電極端部寄り配置のゲート電極パッド

Claims (15)

  1.  ワイドギャップ半導体素子が形成された半導体チップを備え、
     前記半導体チップのパタン面側のチップの周辺部に形成される耐高電界封止材の断面形状が、チップ外周端側の少なくとも一部が垂直またはそれに近い端面形状を有し、チップ内周端側では内側に向けて膜厚が減少する形状を有する
    ことを特徴とする半導体装置。
  2.  請求項1において、
     前記耐高電界封止材は、ポリアミドイミド樹脂、ポリエーテルアミドイミド樹脂、およびポリエーテルアミド樹脂のうちの少なくとも一種を含んで構成される
    ことを特徴とする半導体装置。
  3.  請求項1において、
     前記耐高電界封止材の膜厚が、少なくとも50μm以上で、かつ500μm以下である
    ことを特徴とする半導体装置。
  4.  請求項1において、
     前記耐高電界封止材の比誘電率が、下地の無機材料層の比誘電率より小さく、かつ上層の封止材の比誘電率より大きい
    ことを特徴とする半導体装置。
  5.  請求項1において、
     チップ外周端側の少なくとも一部が垂直ないしそれに近い端面形状を有する部分が、電界緩和領域幅の最大でも1/3以下だけチップ端からリセスした構造である
    ことを特徴とする半導体装置。
  6.  請求項1において、
     前記ワイドギャップ半導体素子はシリコンカーバイドを含んで構成される
    ことを特徴とする半導体装置。
  7.  ワイドギャップ半導体素子が形成された半導体チップを備えた半導体装置の製造方法であって、
     前記半導体チップのパタン面側のチップの周辺部に配置する耐高電界封止材を半導体ウエハの状態で形成する工程と、
     前記半導体ウエハに対して熱処理を実施する工程と、
     熱処理された前記半導体ウエハに対してダイシングを実施する工程と
    を有することを特徴とする半導体装置の製造方法。
  8.  請求項7において、
     前記熱処理の温度が、200℃から400℃の範囲にある
    ことを特徴とする半導体装置の製造方法。
  9.  請求項7において、
     前記耐高電界封止材の形成工程は、ウエハのスクライブラインに沿って前記耐高電界封止材を少なくとも2つの方向から交差させて塗布する工程を含む
    ことを特徴とする半導体装置の製造方法。
  10.  ワイドギャップ半導体素子が形成された半導体チップを搭載した半導体モジュールであって、
     前記半導体チップは、前記半導体チップのパタン面側のチップの周辺部に形成される耐高電界封止材の断面形状が、チップ外周端側の少なくとも一部が垂直またはそれに近い端面形状を有し、チップ内周端側では内側に向けて膜厚が減少する形状を有する
    ことを特徴とする半導体モジュール。
  11.  請求項10において、
     前記耐高電界封止材は、ポリアミドイミド樹脂、ポリエーテルアミドイミド樹脂、およびポリエーテルアミド樹脂のうちの少なくとも一種を含んで構成される
    ことを特徴とする半導体モジュール。
  12.  請求項10において、
     前記耐高電界封止材の膜厚が、少なくとも50μm以上で、かつ500μm以下である
    ことを特徴とする半導体モジュール。
  13.  請求項10において、
     前記耐高電界封止材の比誘電率が、下地の無機材料層の比誘電率より小さく、かつ上層の封止材の比誘電率より大きい
    ことを特徴とする半導体モジュール。
  14.  請求項10において、
     チップ外周端側の少なくとも一部が垂直ないしそれに近い端面形状を有する部分が、電界緩和領域幅の最大でも1/3以下だけチップ端からリセスした構造である
    ことを特徴とする半導体モジュール。
  15.  請求項10において、
     前記ワイドギャップ半導体素子はシリコンカーバイドを含んで構成される
    ことを特徴とする半導体モジュール。
PCT/JP2014/084456 2014-12-26 2014-12-26 半導体装置およびその製造方法、並びに半導体モジュール WO2016103434A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/539,447 US10083948B2 (en) 2014-12-26 2014-12-26 Semiconductor device, method for manufacturing same, and semiconductor module
PCT/JP2014/084456 WO2016103434A1 (ja) 2014-12-26 2014-12-26 半導体装置およびその製造方法、並びに半導体モジュール
JP2016565789A JP6416934B2 (ja) 2014-12-26 2014-12-26 半導体装置およびその製造方法、並びに半導体モジュール
DE112014007221.4T DE112014007221B4 (de) 2014-12-26 2014-12-26 Halbleitervorrichtung, Verfahren zur Herstellung selbiger und Halbleitermodul

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084456 WO2016103434A1 (ja) 2014-12-26 2014-12-26 半導体装置およびその製造方法、並びに半導体モジュール

Publications (1)

Publication Number Publication Date
WO2016103434A1 true WO2016103434A1 (ja) 2016-06-30

Family

ID=56149527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084456 WO2016103434A1 (ja) 2014-12-26 2014-12-26 半導体装置およびその製造方法、並びに半導体モジュール

Country Status (4)

Country Link
US (1) US10083948B2 (ja)
JP (1) JP6416934B2 (ja)
DE (1) DE112014007221B4 (ja)
WO (1) WO2016103434A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066496A1 (ja) * 2016-10-06 2018-04-12 株式会社日立製作所 パワーモジュールおよび電力変換装置
KR20180037770A (ko) * 2016-10-05 2018-04-13 한국전기연구원 아민계 폴리머를 포함한 실리콘 카바이드 다이오드 및 제조방법
JP2022513218A (ja) * 2018-12-14 2022-02-07 ゼネラル・エレクトリック・カンパニイ 電界抑制が向上させられた高電圧半導体装置を製作する方法
JP2022513216A (ja) * 2018-12-14 2022-02-07 ゼネラル・エレクトリック・カンパニイ 電界抑制が向上させられた高電圧半導体装置
JP2022044158A (ja) * 2020-09-07 2022-03-17 富士電機株式会社 半導体モジュールの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016006908T5 (de) * 2016-05-26 2019-02-14 Mitsubishi Electric Corporation Leistungshalbleitervorrichtung
CN112534584A (zh) * 2018-08-17 2021-03-19 三菱电机株式会社 半导体装置以及电力变换装置
WO2021050912A1 (en) 2019-09-13 2021-03-18 Milwaukee Electric Tool Corporation Power converters with wide bandgap semiconductors
EP3951841A1 (en) * 2020-08-07 2022-02-09 Hitachi Energy Switzerland AG Power semiconductor devices with edge termination and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201247A (ja) * 2006-01-27 2007-08-09 Mitsubishi Electric Corp 高耐圧半導体装置
JP2013191716A (ja) * 2012-03-14 2013-09-26 Hitachi Ltd SiC素子搭載パワー半導体モジュール

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3578964B2 (ja) * 2000-03-21 2004-10-20 富士通株式会社 半導体装置及びその製造方法
JP3706573B2 (ja) * 2001-11-22 2005-10-12 株式会社ルネサステクノロジ 半導体パッケージ及び半導体パッケージの製造方法
JP4016340B2 (ja) 2003-06-13 2007-12-05 ソニー株式会社 半導体装置及びその実装構造、並びにその製造方法
JP6277623B2 (ja) * 2013-08-01 2018-02-14 住友電気工業株式会社 ワイドバンドギャップ半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201247A (ja) * 2006-01-27 2007-08-09 Mitsubishi Electric Corp 高耐圧半導体装置
JP2013191716A (ja) * 2012-03-14 2013-09-26 Hitachi Ltd SiC素子搭載パワー半導体モジュール

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180037770A (ko) * 2016-10-05 2018-04-13 한국전기연구원 아민계 폴리머를 포함한 실리콘 카바이드 다이오드 및 제조방법
KR102221385B1 (ko) 2016-10-05 2021-03-02 한국전기연구원 아민계 폴리머를 포함한 실리콘 카바이드 다이오드 제조방법
WO2018066496A1 (ja) * 2016-10-06 2018-04-12 株式会社日立製作所 パワーモジュールおよび電力変換装置
US11296191B2 (en) 2016-10-06 2022-04-05 Hitachi, Ltd. Power module and power converter
JP2022513218A (ja) * 2018-12-14 2022-02-07 ゼネラル・エレクトリック・カンパニイ 電界抑制が向上させられた高電圧半導体装置を製作する方法
JP2022513216A (ja) * 2018-12-14 2022-02-07 ゼネラル・エレクトリック・カンパニイ 電界抑制が向上させられた高電圧半導体装置
JP7241879B2 (ja) 2018-12-14 2023-03-17 ゼネラル・エレクトリック・カンパニイ 電界抑制が向上させられた高電圧半導体装置
JP2022044158A (ja) * 2020-09-07 2022-03-17 富士電機株式会社 半導体モジュールの製造方法
JP7157783B2 (ja) 2020-09-07 2022-10-20 富士電機株式会社 半導体モジュールの製造方法及び半導体モジュール

Also Published As

Publication number Publication date
JP6416934B2 (ja) 2018-10-31
DE112014007221T5 (de) 2017-12-21
DE112014007221B4 (de) 2023-10-19
JPWO2016103434A1 (ja) 2017-07-13
US20170352648A1 (en) 2017-12-07
US10083948B2 (en) 2018-09-25

Similar Documents

Publication Publication Date Title
JP6416934B2 (ja) 半導体装置およびその製造方法、並びに半導体モジュール
JP6224292B2 (ja) 半導体装置および半導体モジュール
JP5578184B2 (ja) 半導体装置の製造方法
KR101055987B1 (ko) 반도체 장치
JP5621334B2 (ja) 半導体装置および半導体装置の製造方法
JP6251810B2 (ja) 半導体装置、半導体装置の製造方法および電力変換装置
US10068825B2 (en) Semiconductor device
JP7258124B2 (ja) 半導体装置および半導体モジュール
JP2012256662A (ja) 半導体素子および半導体装置
JP6647151B2 (ja) 半導体装置およびその製造方法並びに半導体モジュールおよび電力変換装置
JP2022513218A (ja) 電界抑制が向上させられた高電圧半導体装置を製作する方法
CN110211885B (zh) 功率芯片预封装、封装方法及其结构、晶圆预封装结构
JP2015109292A (ja) 半導体モジュール
EP3401954B1 (en) Semiconductor device
JP2017143185A (ja) 半導体装置およびその製造方法
JP7422799B2 (ja) パワー半導体デバイス、パッケージ構造および電子デバイス
WO2018066496A1 (ja) パワーモジュールおよび電力変換装置
JP7241879B2 (ja) 電界抑制が向上させられた高電圧半導体装置
WO2018014792A1 (zh) 钝化层制造方法及高压半导体功率器件、正面电极
WO2016111127A1 (ja) パワー半導体モジュール装置及びその製造方法
US20210296197A1 (en) Semiconductor device
JP7192334B2 (ja) 半導体装置
JP2017055008A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565789

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15539447

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014007221

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14909041

Country of ref document: EP

Kind code of ref document: A1