WO2016103364A1 - 排ガス用触媒、排ガス処理装置および排ガス処理方法 - Google Patents

排ガス用触媒、排ガス処理装置および排ガス処理方法 Download PDF

Info

Publication number
WO2016103364A1
WO2016103364A1 PCT/JP2014/084135 JP2014084135W WO2016103364A1 WO 2016103364 A1 WO2016103364 A1 WO 2016103364A1 JP 2014084135 W JP2014084135 W JP 2014084135W WO 2016103364 A1 WO2016103364 A1 WO 2016103364A1
Authority
WO
WIPO (PCT)
Prior art keywords
cos
catalyst
hcn
titanium oxide
iron
Prior art date
Application number
PCT/JP2014/084135
Other languages
English (en)
French (fr)
Inventor
紘志 吉岡
澤田 明宏
田中 幸男
米村 将直
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2014/084135 priority Critical patent/WO2016103364A1/ja
Publication of WO2016103364A1 publication Critical patent/WO2016103364A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36

Definitions

  • the present invention relates to an exhaust gas catalyst, an exhaust gas treatment apparatus, and an exhaust gas treatment method.
  • the exhaust gas discharged contains carbonyl sulfide (COS) which is hardly soluble in the absorbing solution.
  • COS carbonyl sulfide
  • the COS is converted to H 2 S by a hydrolysis reaction represented by the following formula (1) or a hydrogenation reaction represented by the formula (2) by a COS conversion catalyst provided in the COS processing apparatus. Then, H 2 S is removed by absorbing H 2 S in the downstream absorption tower.
  • a COS conversion catalyst for example, a catalyst containing titania (for example, Patent Document 1, Patent Document 2), a catalyst containing alumina, a Group IV metal and barium, a catalyst containing an alkali metal, chromium oxide and alumina, etc. are known. (Patent Document 3).
  • an O 2 removal catalyst a catalyst having a chromium and barium supported titanium oxide as a carrier (hereinafter sometimes referred to as a “Cr / Ba / TiO 2 catalyst”) or a nickel and barium supported titanium oxide as a carrier And the like (hereinafter sometimes referred to as "Ni / Ba / TiO 2 catalyst”) and the like.
  • Patent No. 1463827 gazette Japanese Patent Application Laid-Open No. 11-80760 JP 2000-248286 A
  • An object of the present invention is to provide an exhaust gas catalyst, an exhaust gas treatment apparatus, and an exhaust gas treatment method which are alternatives to the Cr / Ba / TiO 2 catalyst and which can comply with environmental regulations.
  • a first embodiment according to the present invention is an O 2 removing catalyst for removing O 2 in a gas containing at least O 2 , H 2 S and CO, which comprises nickel oxide, nickel sulfide, oxide It is a catalyst which uses as a carrier a titanium oxide based carrier carrying at least one of iron, iron sulfide or iron oxyhydroxide.
  • a second form according to the present invention is a COS conversion catalyst for converting COS of a gas containing at least COS and at least one of H 2 O or H 2 , which comprises iron oxide, iron sulfide or iron oxyhydroxide It is a catalyst which uses as a support the titanium oxide type support
  • a third aspect of the present invention is an HCN decomposition catalyst for decomposing HCN of a gas containing at least HCN and at least one of H 2 O or H 2 , which comprises iron oxide, iron sulfide or iron oxyhydroxide It is a catalyst which uses as a support the titanium oxide type support
  • the fourth aspect according to the present invention is to remove CO 2 in a gas containing at least O 2 , COS, HCN, H 2 S, CO and at least one of H 2 O or H 2 and convert COS as well.
  • a catalyst for decomposing HCN wherein the catalyst is a titanium oxide based carrier that carries at least one of iron oxide, iron sulfide or iron oxyhydroxide as a carrier.
  • COS, H 2 S, CO, at least one of O 2 and H 2 O or H 2 a COS processing apparatus including at least gas, and O 2 removal catalyst
  • the apparatus is provided with a COS conversion catalyst that converts the COS of the gas after O 2 removal, and the O 2 removal catalyst supports at least one of nickel oxide, nickel sulfide, iron oxide, iron sulfide, or iron oxyhydroxide.
  • This is a COS processing device which is a catalyst using a titanium oxide based carrier as a carrier.
  • COS carbon dioxide
  • H 2 S carbon dioxide
  • CO carbon dioxide
  • a COS processing apparatus including at least gas, and O 2 removal catalyst
  • a COS conversion catalyst for converting COS of the gas after O 2 removal wherein the COS conversion catalyst comprises a titanium oxide based carrier carrying at least one of iron oxide, iron sulfide or iron oxyhydroxide as a carrier
  • the COS conversion catalyst comprises a titanium oxide based carrier carrying at least one of iron oxide, iron sulfide or iron oxyhydroxide as a carrier
  • It is a COS processing device which is a catalyst to
  • a seventh aspect according to the present invention is an HCN decomposition apparatus for gas containing at least HCN and at least one of H 2 O or H 2 , wherein at least any one of iron oxide, iron sulfide or iron oxyhydroxide is used. It is a HCN decomposition apparatus provided with the HCN decomposition catalyst which makes a carrier the titanium oxide type support
  • An eighth aspect according to the present invention is a COS treatment and HCN decomposition apparatus for gas containing at least O 2 , COS, HCN, H 2 S, CO and at least one of H 2 O or H 2 , wherein O (2) A removal catalyst, a COS conversion catalyst for converting the COS of the gas after removal of O 2 , and an HCN decomposition catalyst for degrading HCN, the O 2 removal catalyst comprising nickel oxide, nickel sulfide, iron oxide, iron sulfide Or, it is a COS treatment and HCN decomposing apparatus which is a catalyst using a titanium oxide based support carrying at least one of iron oxyhydroxides as a support.
  • a ninth form according to the present invention is a COS treatment and HCN decomposition apparatus for gas containing at least O 2 , COS, HCN, H 2 S, CO and at least one of H 2 O or H 2 , wherein O (2) A removal catalyst, a COS conversion catalyst for converting the COS of the gas after O 2 removal, and an HCN decomposition catalyst for decomposing HCN, the COS conversion catalyst comprising iron oxide, iron sulfide or iron oxyhydroxide
  • COS treatment and a HCN decomposition device which are catalysts supported on a titanium oxide-based carrier carrying at least one of the foregoing.
  • a tenth mode according to the present invention is a COS treatment and HCN decomposition apparatus for gas containing at least O 2 , COS, HCN, H 2 S, CO and at least one of H 2 O or H 2 , wherein O (2) A removal catalyst, a COS conversion catalyst for converting COS of the gas after removal of O 2 , and an HCN decomposition catalyst for decomposing HCN, wherein the HCN decomposition catalyst is iron oxide, iron sulfide or oxyhydroxide of iron These are a COS treatment and a HCN decomposition device which are catalysts supported on a titanium oxide-based carrier carrying at least one of the foregoing.
  • the O 2 removal catalyst is a catalyst using a titanium oxide-based carrier that supports at least one of nickel oxide, nickel sulfide, iron oxide, iron sulfide, or iron oxyhydroxide as a carrier.
  • the COS conversion catalyst is a catalyst in which a titanium oxide based carrier carrying at least one of iron oxide, iron sulfide or iron oxyhydroxide is used as a carrier.
  • a thirteenth aspect of the present invention is a method for HCN decomposition of a gas containing at least HCN and at least one of H 2 O or H 2 , wherein HCN decomposition step of HCN decomposition is performed using an HCN decomposition catalyst.
  • the HCN decomposition catalyst is a catalyst having as a carrier a titanium oxide-based carrier that supports at least one of iron oxide, iron sulfide, and iron oxyhydroxide.
  • a fourteenth aspect according to the present invention is a method for COS treatment and HCN decomposition of a gas containing at least O 2 , COS, HCN, H 2 S, CO and at least one of H 2 O or H 2 , wherein O (2) An O 2 removal step of removing O 2 by reaction with H 2 S and CO using a removal catalyst, and COS of said gas after removal of O 2 to H 2 S using a COS conversion catalyst a COS conversion processes, using HCN decomposition catalyst comprises HCN decomposition step of decomposing the HCN, the O 2 removal catalyst is nickel oxide, nickel sulfide, iron oxide, any at least oxyhydroxide iron sulfide or iron It is a COS treatment and a HCN decomposition method which is a catalyst which uses a titanium oxide type carrier carrying a carbon as a carrier.
  • An O 2 removal step of removing O 2 by reaction with H 2 S and CO using a removal catalyst, and COS of said gas after removal of O 2 to H 2 S using a COS conversion catalyst A titanium oxide system comprising a COS conversion step and an HCN decomposition step of decomposing HCN using an HCN decomposition catalyst, wherein the COS conversion catalyst supports at least one of iron oxide, iron sulfide or iron oxyhydroxide It is a COS treatment and HCN decomposition method which is a catalyst using a carrier as a carrier.
  • a method for COS treatment and HCN decomposition of a gas comprising at least O 2 , COS, HCN, H 2 S, CO and at least one of H 2 O or H 2.
  • An O 2 removal step of removing O 2 by reaction with H 2 S and CO using a removal catalyst, and COS of said gas after removal of O 2 to H 2 S using a COS conversion catalyst A titanium oxide system comprising a COS conversion step and an HCN decomposition step for decomposing HCN using an HCN decomposition catalyst, wherein the HCN decomposition catalyst carries at least one of iron oxide, iron sulfide or iron oxyhydroxide It is a COS treatment and HCN decomposition method which is a catalyst using a carrier as a carrier.
  • the exhaust gas processing apparatus and the exhaust gas processing method of the present invention environmental regulations can be satisfied while maintaining a predetermined exhaust gas processing performance. Furthermore, the exhaust gas catalyst of the present invention has durability against poisoned substances such as hydrogen sulfide and hydrogen chloride.
  • the figure which shows the apparatus structure of exhaust gas processing apparatus The figure which shows the apparatus structure of the waste gas processing apparatus of this invention of the aspect different from FIG. It shows the results of evaluation of the O 2 removal performance of the catalyst of the present invention.
  • the figure which shows the result of having evaluated the COS conversion performance of the catalyst of this invention The figure which shows the result of having evaluated the COS conversion performance of the catalyst of this invention by evaluation different from FIG.
  • To evaluate the durability of the hydrogen sulfide of the catalyst in Example 1 shows the results of evaluation of the O 2 removal performance.
  • an O 2 removal catalyst is a catalyst for removing O 2 in a gas containing at least O 2 , H 2 S and CO.
  • the O 2 removal catalyst is a catalyst supported on a titanium oxide based carrier that supports at least one of nickel oxide, nickel sulfide, iron oxide, iron sulfide, and iron oxyhydroxide.
  • the support can be loaded with any one of nickel oxide, nickel sulfide, iron oxide, iron sulfide or iron oxyhydroxide as a main component.
  • the carrier can be supported as a main component by combining a plurality of nickel oxide, nickel sulfide, iron oxide, iron sulfide or iron oxyhydroxide.
  • the titanium oxide-based support may further support barium as a main component.
  • carrier can also carry
  • the loading amount of the main component can be 0.1 to 25% by mass with respect to the total mass of the O 2 removal catalyst. More preferably, it can be 1 to 10% by mass.
  • a titanium oxide-based carrier as a carrier is capable of reliably immobilizing the above-mentioned main component, and because it is chemically stable under the conditions of catalyst use, it may inhibit the action of the catalyst. It is because there is not. It is more preferable to use titanium oxide of anatase type crystal structure having a large specific surface area as the titanium oxide-based carrier, since the amount of the active component supported is increased and the catalytic activity is improved.
  • a titanium oxide-based composite oxide can be used as the titanium oxide-based carrier.
  • the titanium oxide-based composite oxide includes at least one selected from the group consisting of a composite oxide of titanium oxide and silicon oxide, a composite oxide of titanium oxide and aluminum oxide, and a composite oxide of titanium oxide and zirconium oxide Be
  • the complex ratio of titanium oxide to the metal oxide to be complexed is preferably 1:99 to 99: 1, and more preferably 50:50 to 95: 5. This is because the specific surface area, which is a place to support the active ingredient, can be increased.
  • the O 2 removal catalyst can be of any shape suitable for use, such as spherical, pelleted, and honeycombed. For example, by forming into a honeycomb shape, clogging and pressure loss of the catalyst and the titanium oxide based composition can be prevented even in a situation where dust etc. coexist, and the catalyst can be maintained in a highly active state.
  • the O 2 removal catalyst is prepared, for example, by adding the above-mentioned main component to titanium oxide powder, adding a binder and a plasticizer and kneading, appropriately forming into spherical, pellet, and honeycomb shapes, and drying and calcining. be able to.
  • the support is a titanium oxide composite oxide
  • the preparation of the complex oxide is carried out, for example, by dropping an alkaline solution such as ammonia into an aqueous solution of a metal salt such as titanium, silicon, aluminum, and metal nitrates, chlorides, and sulfates of zirconium to form a complex hydroxide. It can be done by washing, drying and baking.
  • the COS conversion catalyst according to the second aspect of the present invention is a catalyst that converts COS of a gas containing at least COS and at least one of H 2 O or H 2 .
  • the catalyst converts COS into H 2 S by a hydrolysis reaction shown in Formula (1) or a hydrogenation reaction shown in Formula (2).
  • the COS conversion catalyst is a catalyst supported on a titanium oxide based carrier that supports at least one of iron oxide, iron sulfide and iron oxyhydroxide.
  • the carrier can be loaded with any one of iron oxide, iron sulfide or iron oxyhydroxide as a main component.
  • the carrier may be supported as a main component by combining a plurality of iron oxides, iron sulfides or iron oxyhydroxides.
  • the titanium oxide-based support may further support barium as a main component.
  • carrier can also carry
  • the loading amount of the main component may be 0.1 to 25% by mass with respect to the total mass of the COS conversion catalyst. More preferably, it can be 1 to 10% by mass.
  • a titanium oxide-based carrier as a carrier is capable of reliably immobilizing the above-mentioned main component, and because it is chemically stable under the conditions of catalyst use, it may inhibit the action of the catalyst. It is because there is not. It is more preferable to use titanium oxide of anatase type crystal structure having a large specific surface area as the titanium oxide-based carrier, since the amount of the active component supported is increased and the catalytic activity is improved.
  • a titanium oxide-based composite oxide can be used as the titanium oxide-based carrier.
  • the titanium oxide-based composite oxide includes at least one selected from the group consisting of a composite oxide of titanium oxide and silicon oxide, a composite oxide of titanium oxide and aluminum oxide, and a composite oxide of titanium oxide and zirconium oxide Be
  • the complex ratio of titanium oxide to the metal oxide to be complexed is preferably 1:99 to 99: 1, and more preferably 50:50 to 95: 5. This is because the specific surface area, which is a place to support the active ingredient, can be increased.
  • the COS conversion catalyst can be in any shape suitable for use, such as spherical, pellet and honeycomb shapes. For example, by forming into a honeycomb shape, clogging and pressure loss of the catalyst and the titanium oxide based composition can be prevented even in a situation where dust etc. coexist, and the catalyst can be maintained in a highly active state.
  • the COS conversion catalyst is produced, for example, by adding the above-mentioned main component to titanium oxide powder, adding a binder and a plasticizer and kneading, appropriately forming into a spherical shape, a pellet shape, and a honeycomb shape, drying and firing.
  • the support is a titanium oxide composite oxide
  • the preparation of the complex oxide is carried out, for example, by dropping an alkaline solution such as ammonia into an aqueous solution of a metal salt such as titanium, silicon, aluminum, and metal nitrates, chlorides, and sulfates of zirconium to form a complex hydroxide. It can be done by washing, drying and baking.
  • HCN decomposition catalyst of the third embodiment according to the present invention is a catalyst for decomposing HCN of at least comprises a gas.
  • the said catalyst decomposes
  • the HCN decomposition catalyst is a catalyst supported on a titanium oxide based carrier that supports at least one of iron oxide, iron sulfide or iron oxyhydroxide.
  • the carrier can be loaded with any one of iron oxide, iron sulfide or iron oxyhydroxide as a main component.
  • the carrier can also be supported as a main component by combining iron oxide, iron sulfide or iron oxyhydroxide.
  • the titanium oxide based support can also carry barium as a main component.
  • the titanium oxide-based support can further support molybdenum as a main component. With these main components, high HCN decomposition performance can be satisfied.
  • the loading amount of the main component can be 0.1 to 25% by mass with respect to the total mass of the HCN decomposition catalyst. More preferably, it can be 1 to 10% by mass.
  • a titanium oxide-based carrier as a carrier is capable of reliably immobilizing the above-mentioned main component, and because it is chemically stable under the conditions of catalyst use, it may inhibit the action of the catalyst. It is because there is not. It is more preferable to use titanium oxide of anatase type crystal structure having a large specific surface area as the titanium oxide-based carrier, since the amount of the active component supported is increased and the catalytic activity is improved.
  • a titanium oxide-based composite oxide can be used as the titanium oxide-based carrier.
  • the titanium oxide-based composite oxide includes at least one selected from the group consisting of a composite oxide of titanium oxide and silicon oxide, a composite oxide of titanium oxide and aluminum oxide, and a composite oxide of titanium oxide and zirconium oxide Be
  • the complex ratio of titanium oxide to the metal oxide to be complexed is preferably 1:99 to 99: 1, and more preferably 50:50 to 95: 5. This is because the specific surface area, which is a place to support the active ingredient, can be increased.
  • the HCN cracking catalyst can be of any shape suitable for use, such as spherical, pellet and honeycomb shapes. For example, by forming into a honeycomb shape, clogging and pressure loss of the catalyst and the titanium oxide based composition can be prevented even in a situation where dust etc. coexist, and the catalyst can be maintained in a highly active state.
  • the HCN decomposition catalyst is produced, for example, by adding the above-mentioned main component to titanium oxide powder, adding a binder and a plasticizer and kneading, appropriately forming into spherical, pellet or honeycomb shape, and drying and calcining.
  • the support is a titanium oxide composite oxide
  • the preparation of the complex oxide is carried out, for example, by dropping an alkaline solution such as ammonia into an aqueous solution of a metal salt such as titanium, silicon, aluminum, and metal nitrates, chlorides, and sulfates of zirconium to form a complex hydroxide. It can be done by washing, drying and baking.
  • the catalyst according to the present invention for removing the fourth form of O 2 and converting the COS and decomposing the HCN comprises at least O 2 , COS, HCN, H 2 S, CO and H 2 O or H 2 .
  • the catalyst is a catalyst that converts CO and converts HCN while removing O 2 in a gas containing at least either.
  • the carrier can be loaded with any one of iron oxide, iron sulfide or iron oxyhydroxide as a main component.
  • the carrier can also be supported as a main component by combining iron oxide, iron sulfide or iron oxyhydroxide.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide-based support can further support molybdenum as a main component. With these main components, high O 2 removal performance, COS conversion performance, and HCN decomposition performance can be satisfied.
  • the loading amount of the main component can be 0.1 to 25% by mass with respect to the total mass of the catalyst. More preferably, it can be 1 to 10% by mass.
  • a titanium oxide-based carrier as a carrier is capable of reliably immobilizing the above-mentioned main component, and because it is chemically stable under the conditions of catalyst use, it may inhibit the action of the catalyst. It is because there is not. It is more preferable to use titanium oxide of anatase type crystal structure having a large specific surface area as the titanium oxide-based carrier, since the amount of the active component supported is increased and the catalytic activity is improved.
  • a titanium oxide-based composite oxide can be used as the titanium oxide-based carrier.
  • the titanium oxide-based composite oxide includes at least one selected from the group consisting of a composite oxide of titanium oxide and silicon oxide, a composite oxide of titanium oxide and aluminum oxide, and a composite oxide of titanium oxide and zirconium oxide Be
  • the complex ratio of titanium oxide to the metal oxide to be complexed is preferably 1:99 to 99: 1, and more preferably 50:50 to 95: 5. This is because the specific surface area, which is a place to support the active ingredient, can be increased.
  • the catalyst that removes the O 2 , converts the COS, and decomposes the HCN can be in any shape suitable for use, such as spherical, pellet, and honeycomb shapes. For example, by forming into a honeycomb shape, clogging and pressure loss of the catalyst and the titanium oxide based composition can be prevented even in a situation where dust etc. coexist, and the catalyst can be maintained in a highly active state.
  • the catalyst may be produced, for example, by adding the main component to a powder of titanium oxide, adding a binder and a plasticizer, kneading as appropriate, forming into a spherical shape, a pellet shape, and a honeycomb shape, drying and calcining. it can.
  • the support is a titanium oxide composite oxide
  • the preparation of the complex oxide is carried out, for example, by dropping an alkaline solution such as ammonia into an aqueous solution of a metal salt such as titanium, silicon, aluminum, and metal nitrates, chlorides, and sulfates of zirconium to form a complex hydroxide. It can be done by washing, drying and baking.
  • a COS processing apparatus is an apparatus for processing COS of a gas containing at least COS, H 2 S, CO, O 2 and at least one of H 2 O or H 2 .
  • the gas of interest includes COS, as long as it is intended to convert it.
  • gas in which low-grade fuel such as coal and heavy oil is gasified by gasifying agent such as oxygen, air or air enriched with oxygen can be mentioned.
  • the COS processor comprises an O 2 removal catalyst and a COS conversion catalyst that converts the COS of the gas after O 2 removal. As shown in the formula (3), although COS is generated from O 2 , H 2 S and CO by the COS formation reaction, removal of O 2 can prevent the formation of COS.
  • the O 2 removal catalyst is nickel oxide, nickel sulfide, iron oxide, a catalyst of titanium oxide-based carrier carrying at least one of an oxyhydroxide of iron sulfide or iron and a carrier.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide based support can further support molybdenum as a main component.
  • the COS conversion catalyst can be a catalyst supported on a titanium oxide based carrier that supports at least one of iron oxide, iron sulfide or iron oxyhydroxide.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide based support can further support molybdenum as a main component.
  • the catalyst support for fixed catalyst bed for filling the catalyst in the main body of the COS processing apparatus, the catalyst bed, the body of the COS processor
  • a gas supply pipe and a gas discharge pipe connected to the top and bottom of the valve, and a valve for controlling supply and discharge of gas can be provided.
  • a COS processing apparatus is an apparatus for processing COS of a gas containing at least COS, H 2 S, CO, O 2 and at least one of H 2 O or H 2 .
  • the COS processor comprises an O 2 removal catalyst and a COS conversion catalyst that converts the COS of the gas after O 2 removal.
  • the said COS conversion catalyst is a catalyst which makes a support the titanium oxide type support
  • the titanium oxide based support can further support barium as a main component. In addition, the titanium oxide based support can further support molybdenum as a main component.
  • HCN decomposition apparatus of the seventh embodiment according to the present invention at least one of HCN and H 2 O or H 2, a device for decomposing the HCN gas containing at least.
  • the gas of interest is a gas of interest including HCN, and it may be one for the purpose of decomposing it.
  • gas in which low-grade fuel such as coal and heavy oil is gasified by gasifying agent such as oxygen, air or air enriched with oxygen can be mentioned.
  • the HCN cracking unit comprises a HCN cracking catalyst.
  • HCN is decomposed by a hydrolysis reaction or a hydrogenation reaction shown in Formula (5).
  • the HCN decomposition catalyst is a catalyst supported on a titanium oxide based carrier that supports at least one of iron oxide, iron sulfide or iron oxyhydroxide.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide based support can further support molybdenum as a main component.
  • the HCN decomposition unit also includes a catalyst bed for loading the catalyst inside the body of the HCN decomposition unit, a catalyst support for fixing the catalyst bed, and the top and bottom of the body of the HCN decomposition unit.
  • a gas supply pipe and a gas discharge pipe connected as well as a valve for controlling supply and discharge of gas can be provided.
  • An eighth form COS treatment and HCN decomposition apparatus treats COS of a gas containing at least O 2 , COS, HCN, H 2 S, CO and at least one of H 2 O or H 2. And an apparatus for decomposing HCN.
  • the COS processing and HCN decomposition apparatus comprises an O 2 removal catalyst, a COS conversion catalyst that converts the COS of the gas after O 2 removal, and an HCN decomposition catalyst that decomposes HCN.
  • the O 2 removal catalyst is nickel oxide, nickel sulfide, iron oxide, a catalyst of titanium oxide-based carrier carrying at least one of an oxyhydroxide of iron sulfide or iron and a carrier.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide based support can further support molybdenum as a main component.
  • the COS conversion catalyst can be a catalyst supported on a titanium oxide based carrier that supports at least one of iron oxide, iron sulfide or iron oxyhydroxide.
  • the titanium oxide based support can further support barium as a main component.
  • the COS conversion catalyst can further support molybdenum as a main component.
  • the HCN decomposition catalyst can be a catalyst that uses a titanium oxide based support that supports at least one of iron oxide, iron sulfide or iron oxyhydroxide as a support.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide based support can further support molybdenum as a main component.
  • the COS treatment and the HCN decomposition device fix the catalyst bed for loading the catalyst inside the main body of the COS treatment and the HCN decomposition device, in addition to the O 2 removal catalyst, the COS conversion catalyst and the HCN decomposition catalyst
  • the catalyst support, the gas supply pipe and the gas discharge pipe connected to the top and bottom of the body of the COS treatment and the HCN decomposition apparatus, and a valve for controlling the supply and discharge of gas can be provided.
  • a ninth aspect of the present invention is a COS processing and HCN decomposing apparatus that processes COS of a gas containing at least O 2 , COS, HCN, H 2 S, CO and at least one of H 2 O or H 2. And an apparatus for decomposing HCN.
  • the COS processing and HCN decomposition apparatus comprises an O 2 removal catalyst, a COS conversion catalyst that converts the COS of the gas after O 2 removal, and an HCN decomposition catalyst that decomposes HCN.
  • the COS conversion catalyst is a catalyst supported on a titanium oxide-based carrier that supports at least one of iron oxide, iron sulfide and iron oxyhydroxide.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide based support can further support molybdenum as a main component.
  • a tenth form of the present invention is a COS processing and HCN decomposing apparatus for treating COS of a gas containing at least O 2 , COS, HCN, H 2 S, CO and at least one of H 2 O or H 2. And an apparatus for decomposing HCN.
  • the COS processing and HCN decomposition apparatus comprises an O 2 removal catalyst, a COS conversion catalyst that converts the COS of the gas after O 2 removal, and an HCN decomposition catalyst that decomposes HCN.
  • the HCN decomposition catalyst is a catalyst that uses a titanium oxide based carrier that supports at least one of iron oxide, iron sulfide or iron oxyhydroxide as a carrier.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide based support can further support molybdenum as a main component.
  • An eleventh form of the present invention is a method of treating COS of a gas containing at least COS, H 2 S, CO, O 2 and at least one of H 2 O or H 2 .
  • the gas of interest includes COS, as long as it is intended to convert it.
  • gas in which low-grade fuel such as coal and heavy oil is gasified by gasifying agent such as oxygen, air or air enriched with oxygen can be mentioned.
  • the COS treatment method includes an O 2 removal step and a COS conversion step.
  • the O 2 removal step is a step of removing O 2 by reaction with H 2 S and CO using an O 2 removal catalyst.
  • the COS conversion step is a step of converting COS of the gas after O 2 removal into H 2 S using a COS conversion catalyst. As shown in the formula (3), although COS is generated from O 2 , H 2 S and CO by the COS formation reaction, removal of O 2 can prevent the formation of COS.
  • the O 2 removal catalyst is nickel oxide, nickel sulfide, iron oxide, a catalyst of titanium oxide-based carrier carrying at least one of an oxyhydroxide of iron sulfide or iron and a carrier.
  • the titanium oxide-based support can further support barium as a main component.
  • the titanium oxide-based support can further support molybdenum as a main component.
  • the COS conversion catalyst can be a catalyst supported on a titanium oxide based carrier that supports at least one of iron oxide, iron sulfide or iron oxyhydroxide.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide based support can further support molybdenum as a main component.
  • COS treatment method can include the O 2 removal step and COS conversion step.
  • the twelfth form COS processing method is a method of processing COS of a gas containing at least COS, H 2 S, CO, O 2 and at least one of H 2 O or H 2 .
  • the COS treatment method includes an O 2 removal step and a COS conversion step.
  • the O 2 removal step is a step of removing O 2 by reaction with H 2 S and CO using an O 2 removal catalyst.
  • the COS conversion step is a step of converting COS of the gas after O 2 removal into H 2 S using a COS conversion catalyst.
  • the COS conversion catalyst is a catalyst supported on a titanium oxide-based carrier that supports at least one of iron oxide, iron sulfide and iron oxyhydroxide.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide based support can further support molybdenum as a main component.
  • HCN decomposition method of the thirteenth embodiment according to the present invention at least one of HCN and H 2 O or H 2, a method of degrading HCN of at least including gas.
  • the gas of interest includes HCN and may be one for the purpose of decomposing it.
  • gas in which low-grade fuel such as coal and heavy oil is gasified by gasifying agent such as oxygen, air or air enriched with oxygen can be mentioned.
  • the HCN decomposition method comprises an HCN decomposition step of decomposing HCN using an HCN decomposition catalyst.
  • HCN is decomposed by a hydrolysis reaction or a hydrogenation reaction shown in Formula (5).
  • the HCN decomposition catalyst is a catalyst supported on a titanium oxide based carrier that supports at least one of iron oxide, iron sulfide or iron oxyhydroxide.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide based support can further support molybdenum as a main component.
  • the HCN decomposition method can include the above HCN decomposition step and the like.
  • a fourteenth aspect of the present invention relates to a COS treatment and HCN decomposition method for treating COS of a gas containing at least O 2 , COS, HCN, H 2 S, CO and at least one of H 2 O or H 2.
  • it is a method of decomposing HCN.
  • the COS treatment and HCN decomposition methods include an O 2 removal step, a COS conversion step, and an HCN decomposition step.
  • the O 2 removal step is a step of removing O 2 by reaction with H 2 S and CO using an O 2 removal catalyst.
  • the COS conversion step is a step of converting COS of the gas after O 2 removal into H 2 S using a COS conversion catalyst.
  • the HCN decomposition step is a step of decomposing HCN using an HCN decomposition catalyst.
  • the O 2 removal catalyst is nickel oxide, nickel sulfide, iron oxide, a catalyst of titanium oxide-based carrier carrying at least one of an oxyhydroxide of iron sulfide or iron and a carrier.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide-based support can further support molybdenum as a main component.
  • the COS conversion catalyst can be a catalyst supported on a titanium oxide based carrier that supports at least one of iron oxide, iron sulfide or iron oxyhydroxide.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide based support can further support molybdenum as a main component.
  • the HCN decomposition catalyst can be a catalyst that uses a titanium oxide based support that supports at least one of iron oxide, iron sulfide or iron oxyhydroxide as a support.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide based support can further support molybdenum as a main component.
  • COS processing and HCN decomposition method can include the O 2 removing step, COS conversion processes, the HCN decomposition step.
  • a fifteenth form of the COS treatment and HCN decomposition method according to the present invention treats COS of a gas containing at least O 2 , COS, HCN, H 2 S, CO and at least one of H 2 O or H 2. In addition, it is a method of decomposing HCN.
  • the COS treatment and HCN decomposition methods include an O 2 removal step, a COS conversion step, and an HCN decomposition step.
  • the O 2 removal step is a step of removing O 2 by reaction with H 2 S and CO using an O 2 removal catalyst.
  • the COS conversion step is a step of converting COS of the gas after O 2 removal into H 2 S using a COS conversion catalyst.
  • the HCN decomposition step is a step of decomposing HCN using an HCN decomposition catalyst.
  • the COS conversion catalyst is a catalyst supported on a titanium oxide-based carrier that supports at least one of iron oxide, iron sulfide and iron oxyhydroxide.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide based support can further support molybdenum as a main component.
  • a sixteenth aspect of the present invention relates to a method for treating COS and treating HCN, which comprises treating COS of a gas containing at least O 2 , COS, HCN, H 2 S, CO and at least one of H 2 O or H 2. In addition, it is a method of decomposing HCN.
  • the COS treatment and HCN decomposition methods include an O 2 removal step, a COS conversion step, and an HCN decomposition step.
  • the O 2 removal step is a step of removing O 2 by reaction with H 2 S and CO using an O 2 removal catalyst.
  • the COS conversion step is a step of converting COS of the gas after O 2 removal into H 2 S using a COS conversion catalyst.
  • the HCN decomposition step is a step of decomposing HCN using an HCN decomposition catalyst.
  • the HCN decomposition catalyst is a catalyst that uses a titanium oxide based carrier that supports at least one of iron oxide, iron sulfide or iron oxyhydroxide as a carrier.
  • the titanium oxide based support can further support barium as a main component.
  • the titanium oxide based support can further support molybdenum as a main component.
  • FIG. 1 is a view showing an apparatus configuration of the exhaust gas processing apparatus.
  • the exhaust gas processing apparatus 1 includes an O 2 removal catalyst 3 and a COS conversion catalyst 4 inside the apparatus body 2. These catalysts are fixed inside the apparatus body 2 by a catalyst bed (not shown) for loading the catalyst and a catalyst support (not shown) for fixing the catalyst bed.
  • the apparatus body 2 is provided with a gas supply pipe 5 for supplying the exhaust gas A to the inside of the apparatus body 2.
  • the device body 2 includes a gas discharge pipe 6 that discharges the exhaust gas from the inside of the device body 2.
  • the exhaust gas is introduced into the inside of the apparatus main body 2 from the gas supply pipe 5, passes through the O 2 removal catalyst 3 and the COS conversion catalyst 4, and is discharged from the gas exhaust pipe 6 to the outside.
  • the exhaust gas processing device 1 can be equipped with either the O 2 removal catalyst of the present invention and the COS conversion catalyst of the present invention, or both of them.
  • FIG. 2 is a view showing a device configuration of an exhaust gas processing device of an aspect different from that of FIG.
  • the exhaust gas processing apparatus 10 includes an exhaust gas catalyst 13 inside the apparatus body 12.
  • the exhaust gas catalyst 13 is fixed inside the apparatus body 12 by a catalyst bed (not shown) for loading the catalyst and a catalyst support (not shown) for fixing the catalyst bed.
  • the apparatus body 12 is provided with a gas supply pipe 15 for supplying the exhaust gas A to the inside of the apparatus body 12.
  • the device body 12 includes a gas discharge pipe 16 that discharges the exhaust gas from the inside of the device body 12.
  • the exhaust gas is introduced into the inside of the apparatus main body 12 from the gas supply pipe 15, passes through the exhaust gas catalyst 13, and is discharged to the outside from the gas discharge pipe 16.
  • the exhaust gas processing device 10 can include either the COS conversion catalyst of the present invention, the HCN decomposition catalyst of the present invention, or both of them. Then, as the COS conversion catalyst of the present invention and the HCN decomposition catalyst of the present invention, a catalyst exhibiting an effect as an O 2 removal catalyst can be used.
  • Example 1 Add barium carbonate (Hayashi Pure Chemical Co., Ltd. special grade reagent) to 100 mass parts of anatase type titanium oxide powder (CSP-003 manufactured by JGC Catalysts & Chemicals Co., Ltd.) so that the content of barium is 3.0 mass%, 5 parts by mass of 10% ammonia water was added and kneading was performed for 60 minutes. Next, 3 parts by mass of glass fiber as a binder, 5 parts by mass of kaolin as a binder, 5 parts by mass of cellulose acetate as an organic plasticizer and 5 parts by mass of 10% aqueous ammonia as an organic plasticizer were added and kneaded.
  • barium carbonate Hyashi Pure Chemical Co., Ltd. special grade reagent
  • CSP-003 anatase type titanium oxide powder
  • the kneaded product was extruded to obtain an integral honeycomb molded article having a 5.0 mm pitch and a wall thickness of 1.0 mm.
  • the molded product was dried at room temperature until the water content reached 10%, and fired at 500 ° C. for 5 hours to remove the organic plasticizer, to obtain a honeycomb catalyst carrier.
  • the obtained honeycomb catalyst carrier was immersed in a 30% aqueous iron nitrate solution, and iron was supported by a liquid water absorption impregnation method so that the content of iron oxide was 5.5% by mass. After drying the support on which the iron oxide is supported at 110 ° C. until the moisture content reaches 10%, the temperature is raised from room temperature to 500 ° C. at a heating rate of 100 ° C./hour, followed by 3 hours at 500 ° C. I baked it. Thus, a honeycomb catalyst of Example 1 was obtained.
  • Example 2 The honeycomb catalyst carrier as in Example 1 is immersed in a mixed solution of a 30% aqueous iron nitrate solution and a 10% aqueous ammonium molybdate solution, and the content of iron oxide is 5.5% by mass, oxidation by a liquid water absorption impregnation method Iron oxide and molybdenum oxide were supported such that the content of molybdenum was 5.5% by mass. Subsequent drying and baking were performed under the same conditions as in Example 1. Thus, a honeycomb catalyst of Example 2 was obtained.
  • Example 3 The same honeycomb catalyst carrier as in Example 1 was immersed in a 20% aqueous solution of nickel nitrate, and nickel oxide was supported by a liquid water absorption impregnation method so that the content of nickel oxide was 5.5% by mass. Subsequent drying and baking were performed under the same conditions as in Example 1. Thereby, a honeycomb catalyst of Example 3 was obtained.
  • Example 4 The honeycomb catalyst carrier as in Example 1 is immersed in a mixed solution of 20% aqueous nickel nitrate solution and 10% aqueous ammonium molybdate solution, and the content of nickel oxide is 5.5% by mass, oxidation by a liquid water absorption impregnation method. Nickel oxide and molybdenum oxide were supported such that the content of molybdenum was 5.5% by mass. Subsequent drying and baking were performed under the same conditions as in Example 1. Thereby, a honeycomb catalyst of Example 4 was obtained.
  • Example 1 The same honeycomb catalyst carrier as in Example 1 was immersed in a 30% aqueous solution of chromium nitrate to carry chromium oxide by a liquid water absorption impregnation method so that the content of chromium oxide was 5.5% by mass. Subsequent drying and baking were performed under the same conditions as in Example 1. Thus, the honeycomb catalyst of Conventional Example 1 was obtained.
  • Comparative Example 1 The same honeycomb catalyst carrier as in Example 1 was used as a honeycomb catalyst.
  • Table 1 shows the catalyst species, the contents of iron, nickel, chromium, barium and molybdenum, and the type of support of the honeycomb catalysts of Examples, Conventional Examples, and Comparative Examples prepared as described above.
  • the O 2 removal rate of the catalyst of Example 1 is shown in FIG. 6, and the COS conversion rate is shown in FIG. These figures compare the catalyst in which H 2 S was passed with the untreated catalyst. From these results, it was revealed that the catalyst of Example 1 hardly shows deterioration of the catalyst due to flowing hydrogen sulfide, and there is no problem in durability to hydrogen sulfide.
  • the O 2 removal rate of the catalyst of Example 1 is shown in FIG. This figure compares the HCl flowed catalyst with the untreated catalyst. From these results, it was found that the catalyst of Example 1 hardly shows deterioration of the catalyst due to flowing hydrogen chloride, and there is no problem in durability to hydrogen chloride.
  • the iron state analysis result of the catalyst of Example 1 is shown in FIG. From these results, it was revealed from the peak position of ESCA that the iron state of the catalyst of Example 1 is iron oxide, iron sulfide, iron sulfate or oxyhydroxide of iron.
  • the exhaust gas catalyst, the exhaust gas treatment apparatus and the exhaust gas treatment method of the present invention are industrially useful because environmental regulations can be satisfied while maintaining a predetermined exhaust gas treatment performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

所定の排ガス処理性能を維持しつつ、環境規制にも対応することのできる排ガス用触媒、排ガス処理装置および排ガス処理方法を提供する。O、HSおよびCOを少なくとも含むガスのOを除去するO除去触媒であって、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒。

Description

排ガス用触媒、排ガス処理装置および排ガス処理方法
 本発明は、排ガス用触媒、排ガス処理装置および排ガス処理方法に関する。
 近年では、良質な化石燃料だけではなく、低質な化石燃料をも積極的に用いるという多様化の観点から、石炭や重質油といった低質な燃料の有効利用が求められている。火力発電の分野では、発電効率向上の観点から、ガス燃料を用いるガスタービンとスチームタービンを併用した石炭ガス化複合発電(IGCC)や、炭化水素ガスを燃料電池に導入する発電も普及しつつある。そこで、低質な燃料をガス化してこれらの発電に利用する研究開発が行われている。
 石炭ガス化複合発電において、排出される排ガス中には、吸収液に溶けにくい硫化カルボニル(COS)が含まれている。このCOSは、COS処理装置に備えられたCOS転換触媒により、下記式(1)に示す加水分解反応や式(2)に示す水素化反応によってHSに転換する。そして、後流の吸収塔にてHSを吸収することで、HSを除去している。COS転換触媒としては、例えば、チタニアを含む触媒(例えば特許文献1、特許文献2)、アルミナとIV族金属とバリウムを含む触媒、およびアルカリ金属と酸化クロムとアルミナを含む触媒等が知られている(特許文献3)。
Figure JPOXMLDOC01-appb-M000001
 
 しかしながら、COS処理装置に流入するガス中に酸素が含まれる場合、下記式(3)に示すCOS生成反応によりCOSが生成してしまう。その結果、COS転換触媒により転換したHSがCOSに変化してしまうため、COS転換触媒の性能が見かけ上低下することとなる。
Figure JPOXMLDOC01-appb-M000002
 
 そこで、COS転換触媒の性能低下を防止するべく、O除去触媒を用いて、ガス中の酸素を予め除去する手段が採用されている。O除去触媒としては、クロムおよびバリウムを担持した酸化チタンを担体とする触媒(以下、「Cr/Ba/TiO触媒」とする場合がある。)やニッケルおよびバリウムを担持した酸化チタンを担体とする触媒(以下、「Ni/Ba/TiO触媒」とする場合がある。)等が挙げられる。
特許第1463827号公報 特開平11-80760号公報 特開2000-248286号公報
 近年は、国際的に環境規制が強化される傾向にある。特に、6価クロムは規制が進んでおり、将来的には3価クロムの規制も予想されている。そのため、今後はCr/Ba/TiO触媒の製造、調達、および輸出等が困難になることが予想される。また、環境に配慮した触媒として、クロムフリーの触媒の需要が、今後、高まることが予想される。
 本発明は、Cr/Ba/TiO触媒に代わる触媒であって、環境規制にも対応することのできる排ガス用触媒、排ガス処理装置および排ガス処理方法を提供することを目的とする。
 上記課題を解決するため、本発明に係る第1の形態は、O、HSおよびCOを少なくとも含むガスのOを除去するO除去触媒であって、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。
 本発明に係る第2の形態は、COSおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOSを転換するCOS転換触媒であって、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。
 本発明に係る第3の形態は、HCNおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのHCNを分解するHCN分解触媒であって、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。
 本発明に係る第4の形態は、O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのOを除去すると共に、COSを転換し、かつHCNを分解する触媒であって、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。
 本発明に係る第5の形態は、COS、HS、CO、OおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理装置であって、O除去触媒と、O除去後の前記ガスのCOSを転換するCOS転換触媒を備え、前記O除去触媒が、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理装置である。
 本発明に係る第6の形態は、COS、HS、CO、OおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理装置であって、O除去触媒と、O除去後の前記ガスのCOSを転換するCOS転換触媒を備え、前記COS転換触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理装置である。
 本発明に係る第7の形態は、HCNおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのHCN分解装置であって、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とするHCN分解触媒を備えるHCN分解装置である。
 本発明に係る第8の形態は、O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理およびHCN分解装置であって、O除去触媒と、O除去後の前記ガスのCOSを転換するCOS転換触媒と、HCNを分解するHCN分解触媒を備え、前記O除去触媒が、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理およびHCN分解装置である。
 本発明に係る第9の形態は、O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理およびHCN分解装置であって、O除去触媒と、O除去後の前記ガスのCOSを転換するCOS転換触媒と、HCNを分解するHCN分解触媒を備え、前記COS転換触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理およびHCN分解装置である。
 本発明に係る第10の形態は、O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理およびHCN分解装置であって、O除去触媒と、O除去後の前記ガスのCOSを転換するCOS転換触媒と、HCNを分解するHCN分解触媒を備え、前記HCN分解触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理およびHCN分解装置である。
 本発明に係る第11の形態は、COS、HS、CO、OおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理方法であって、O除去触媒を用いて、HSおよびCOとの反応によりOを除去するO除去工程と、COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換するCOS転換工程を備え、前記O除去触媒が、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理方法である。
 本発明に係る第12の形態は、COS、HS、CO、OおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理方法であって、O除去触媒を用いて、HSおよびCOとの反応によりOを除去するO除去工程と、COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換するCOS転換工程を備え、前記COS転換触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理方法である。
 本発明に係る第13の形態は、HCNおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのHCN分解方法であって、HCN分解触媒を用いて、HCNを分解するHCN分解工程を備え、前記HCN分解触媒が,酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるHCN分解方法である。
 本発明に係る第14の形態は、O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理およびHCN分解方法であって、O除去触媒を用いて、HSおよびCOとの反応によりOを除去するO除去工程と、COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換するCOS転換工程と、HCN分解触媒を用いて、HCNを分解するHCN分解工程を備え、前記O除去触媒が、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理およびHCN分解方法である。
 本発明に係る第15の形態は、O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理およびHCN分解方法であって、O除去触媒を用いて、HSおよびCOとの反応によりOを除去するO除去工程と、COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換するCOS転換工程と、HCN分解触媒を用いて、HCNを分解するHCN分解工程を備え、前記COS転換触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理およびHCN分解方法である。
 本発明に係る第16の形態は、O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理およびHCN分解方法であって、O除去触媒を用いて、HSおよびCOとの反応によりOを除去するO除去工程と、COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換するCOS転換工程と、HCN分解触媒を用いて、HCNを分解するHCN分解工程を備え、前記HCN分解触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理およびHCN分解方法である。
 本発明の排ガス用触媒、排ガス処理装置および排ガス処理方法によれば、所定の排ガス処理性能を維持しつつ、環境規制にも対応することができる。更に、本発明の排ガス用触媒は、硫化水素や塩化水素等の被毒物質に対する耐久性を有する。
排ガス処理装置の装置構成を示す図。 図1とは異なる態様の本発明の排ガス処理装置の装置構成を示す図。 本発明の触媒のO除去性能を評価した結果を示す図。 本発明の触媒のCOS変換性能を評価した結果を示す図。 図4とは異なる評価により本発明の触媒のCOS変換性能を評価した結果を示す図。 実施例1の触媒の硫化水素への耐久性を評価するために、O除去性能を評価した結果を示す図。 実施例1の触媒の硫化水素への耐久性を評価するために、COS変換性能を評価した結果を示す図。 実施例1の触媒の塩化水素への耐久性を評価するために、O除去性能を評価した結果を示す図。 実施例1の触媒の鉄をESCAにより分析した結果を示す図。
 以下、本発明の触媒、排ガス用触媒、排ガス処理装置および排ガス処理方法について、詳細に説明する。
 まず、本発明にかかる第1の形態のO除去触媒は、O、HSおよびCOを少なくとも含むガスのOを除去する触媒である。式(3)に示すように、COS生成反応によって、O、HSおよびCOからCOSが生成するところ、Oを除去すれば、COSの生成を防止することができる。O除去触媒は、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。
 担体は、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物のうちのいずれか1つを主成分として担持することができる。また、担体は、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物のうちの複数を組み合わせて、主成分として担持することができる。前記酸化チタン系担体は、バリウムをさらに主成分として担持することもできる。また、前記酸化チタン系担体は、モリブデンをさらに主成分として担持することもできる。これらの主成分であれば、高いO除去性能を満足することができる。
 上記主成分の担持量は、O除去触媒の総質量に対して0.1~25質量%とすることができる。より好ましくは1~10質量%とすることができる。
 酸化チタン系担体を担体とするのは、上記主成分を確実に固定化することが可能であり、また、触媒使用条件下において化学的に安定しているため、触媒の働きを阻害することがないからである。酸化チタン系担体としては、比表面積の大きいアナターゼ型の結晶構造の酸化チタンを用いれば、活性成分の担持量も多くなり、触媒活性が向上するため、より好ましい。
 酸化チタン系担体としては、酸化チタンの他にも、酸化チタン系複合酸化物を用いることができる。酸化チタンを複合金属酸化物化することにより、比表面積が増大し、耐熱性も向上することとなる。酸化チタン系複合酸化物としては、酸化チタンと酸化ケイ素の複合酸化物、酸化チタンと酸化アルミニウムの複合酸化物、酸化チタンと酸化ジルコニウムの複合酸化物からなる群から選択される少なくとも1種が挙げられる。酸化チタンと複合する金属酸化物との複合割合は、1:99~99:1であること好ましく,特に50:50~95:5の範囲が好ましい。活性成分を担持する場である比表面積が大きく出来る範囲だからである。
 O除去触媒は、球状、ペレット状、およびハニカム形状等、使用に適した任意の形状とすることができる。例えば、ハニカム形状とすることにより、ダスト等が共存する状況下においても、触媒や酸化チタン系組成物の目詰まりや圧力損失を防ぐことができ、触媒を高活性な状態に維持することができる
 O除去触媒は、例えば酸化チタンの粉末に前記主成分を添加し、さらにバインダや可塑剤を加えて混練し、適宜球状やペレット状、ハニカム状に成形化し、乾燥・焼成を行って製造することができる。また、担体が酸化チタン系複合酸化物である場合には、当該複合酸化物を予め調製することが必要となる。複合酸化物の調製は、例えばチタンやケイ素、アルミニウム、ジルコニウムの金属硝酸塩、塩化物、硫酸塩等の金属塩水溶液にアンモニア等のアルカリ溶液を滴下して、共沈させて複合水酸化物を形成させたうえで、洗浄、乾燥、焼成によって行うことができる。
 本発明にかかる第2の形態のCOS転換触媒は、COSおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOSを転換する触媒である。当該触媒は、式(1)に示す加水分解反応や式(2)に示す水素化反応によって、COSをHSに転換する。COS転換触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。
 担体は、酸化鉄,硫化鉄または鉄のオキシ水酸化物のうちのいずれか1つを主成分として担持することができる。担体は、酸化鉄,硫化鉄または鉄のオキシ水酸化物のうちの複数を組み合わせて、主成分として担持することもできる。前記酸化チタン系担体は、バリウムをさらに主成分として担持することもできる。また、前記酸化チタン系担体は、モリブデンをさらに主成分として担持することもできる。これらの主成分であれば、高いCOS転換性能を満足することができる。
 上記主成分の担持量は、COS転換触媒の総質量に対して0.1~25質量%とすることができる。より好ましくは1~10質量%とすることができる。
 酸化チタン系担体を担体とするのは、上記主成分を確実に固定化することが可能であり、また、触媒使用条件下において化学的に安定しているため、触媒の働きを阻害することがないからである。酸化チタン系担体としては、比表面積の大きいアナターゼ型の結晶構造の酸化チタンを用いれば、活性成分の担持量も多くなり、触媒活性が向上するため、より好ましい。
 酸化チタン系担体としては、酸化チタンの他にも、酸化チタン系複合酸化物を用いることができる。酸化チタンを複合金属酸化物化することにより、比表面積が増大し、耐熱性も向上することとなる。酸化チタン系複合酸化物としては、酸化チタンと酸化ケイ素の複合酸化物、酸化チタンと酸化アルミニウムの複合酸化物、酸化チタンと酸化ジルコニウムの複合酸化物からなる群から選択される少なくとも1種が挙げられる。酸化チタンと複合する金属酸化物との複合割合は、1:99~99:1であること好ましく,特に50:50~95:5の範囲が好ましい。活性成分を担持する場である比表面積が大きく出来る範囲だからである。
 COS転換触媒は、球状、ペレット状、およびハニカム形状等、使用に適した任意の形状とすることができる。例えば、ハニカム形状とすることにより、ダスト等が共存する状況下においても、触媒や酸化チタン系組成物の目詰まりや圧力損失を防ぐことができ、触媒を高活性な状態に維持することができる
 COS転換触媒は、例えば酸化チタンの粉末に前記主成分を添加し、さらにバインダや可塑剤を加えて混練し、適宜球状やペレット状、ハニカム状に成形化し、乾燥・焼成を行って製造することができる。また、担体が酸化チタン系複合酸化物である場合には、当該複合酸化物を予め調製することが必要となる。複合酸化物の調製は、例えばチタンやケイ素、アルミニウム、ジルコニウムの金属硝酸塩、塩化物、硫酸塩等の金属塩水溶液にアンモニア等のアルカリ溶液を滴下して、共沈させて複合水酸化物を形成させたうえで、洗浄、乾燥、焼成によって行うことができる。
 本発明にかかる第3の形態のHCN分解触媒は、HCNおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのHCNを分解する触媒である。当該触媒は、下記式(4)に示す加水分解反応または式(5)に示す水素化反応によって、HCNを分解する。HCN分解触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。
Figure JPOXMLDOC01-appb-M000003
 
 担体は、酸化鉄、硫化鉄または鉄のオキシ水酸化物のうちのいずれか1つを主成分として担持することができる。また、担体は、酸化鉄,硫化鉄または鉄のオキシ水酸化物を組み合わせて、主成分として担持することもできる。酸化チタン系担体は、バリウムをさらに主成分として担持することもできる。また、酸化チタン系担体は、モリブデンをさらに主成分として担持することもできる。これらの主成分であれば、高いHCN分解性能を満足することができる。
 上記主成分の担持量は、HCN分解触媒の総質量に対して0.1~25質量%とすることができる。より好ましくは1~10質量%とすることができる。
 酸化チタン系担体を担体とするのは、上記主成分を確実に固定化することが可能であり、また、触媒使用条件下において化学的に安定しているため、触媒の働きを阻害することがないからである。酸化チタン系担体としては、比表面積の大きいアナターゼ型の結晶構造の酸化チタンを用いれば、活性成分の担持量も多くなり、触媒活性が向上するため、より好ましい。
 酸化チタン系担体としては、酸化チタンの他にも、酸化チタン系複合酸化物を用いることができる。酸化チタンを複合金属酸化物化することにより、比表面積が増大し、耐熱性も向上することとなる。酸化チタン系複合酸化物としては、酸化チタンと酸化ケイ素の複合酸化物、酸化チタンと酸化アルミニウムの複合酸化物、酸化チタンと酸化ジルコニウムの複合酸化物からなる群から選択される少なくとも1種が挙げられる。酸化チタンと複合する金属酸化物との複合割合は、1:99~99:1であること好ましく,特に50:50~95:5の範囲が好ましい。活性成分を担持する場である比表面積が大きく出来る範囲だからである。
 HCN分解触媒は、球状、ペレット状、およびハニカム形状等、使用に適した任意の形状とすることができる。例えば、ハニカム形状とすることにより、ダスト等が共存する状況下においても、触媒や酸化チタン系組成物の目詰まりや圧力損失を防ぐことができ、触媒を高活性な状態に維持することができる
 HCN分解触媒は、例えば酸化チタンの粉末に前記主成分を添加し、さらにバインダや可塑剤を加えて混練し、適宜球状やペレット状、ハニカム状に成形化し、乾燥・焼成を行って製造することができる。また、担体が酸化チタン系複合酸化物である場合には、当該複合酸化物を予め調製することが必要となる。複合酸化物の調製は、例えばチタンやケイ素、アルミニウム、ジルコニウムの金属硝酸塩、塩化物、硫酸塩等の金属塩水溶液にアンモニア等のアルカリ溶液を滴下して、共沈させて複合水酸化物を形成させたうえで、洗浄、乾燥、焼成によって行うことができる。
 本発明にかかる第4の形態のOを除去すると共に、COSを転換し、かつHCNを分解する触媒は、O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのOを除去すると共に、COSを転換し、かつHCNを分解する触媒である。当該触媒は、O除去、COS転換およびHCN分解のいずれの機能をも発揮する触媒である。酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。
 担体は、酸化鉄,硫化鉄または鉄のオキシ水酸化物のうちのいずれか1つを主成分として担持することができる。また、担体は、酸化鉄,硫化鉄または鉄のオキシ水酸化物を組み合わせて、主成分として担持することもできる。酸化チタン系担体は、バリウムをさらに主成分として担持することができる。また、酸化チタン系担体は、モリブデンをさらに主成分として担持することもできる。これらの主成分であれば、高いO除去性能、COS転換性能、およびHCN分解性能を満足することができる。
 上記主成分の担持量は、当該触媒の総質量に対して0.1~25質量%とすることができる。より好ましくは1~10質量%とすることができる。
 酸化チタン系担体を担体とするのは、上記主成分を確実に固定化することが可能であり、また、触媒使用条件下において化学的に安定しているため、触媒の働きを阻害することがないからである。酸化チタン系担体としては、比表面積の大きいアナターゼ型の結晶構造の酸化チタンを用いれば、活性成分の担持量も多くなり、触媒活性が向上するため、より好ましい。
 酸化チタン系担体としては、酸化チタンの他にも、酸化チタン系複合酸化物を用いることができる。酸化チタンを複合金属酸化物化することにより、比表面積が増大し、耐熱性も向上することとなる。酸化チタン系複合酸化物としては、酸化チタンと酸化ケイ素の複合酸化物、酸化チタンと酸化アルミニウムの複合酸化物、酸化チタンと酸化ジルコニウムの複合酸化物からなる群から選択される少なくとも1種が挙げられる。酸化チタンと複合する金属酸化物との複合割合は、1:99~99:1であること好ましく,特に50:50~95:5の範囲が好ましい。活性成分を担持する場である比表面積が大きく出来る範囲だからである。
 Oを除去すると共に、COSを転換し、かつHCNを分解する触媒は、球状、ペレット状、およびハニカム形状等、使用に適した任意の形状とすることができる。例えば、ハニカム形状とすることにより、ダスト等が共存する状況下においても、触媒や酸化チタン系組成物の目詰まりや圧力損失を防ぐことができ、触媒を高活性な状態に維持することができる
 当該触媒は、例えば酸化チタンの粉末に前記主成分を添加し、さらにバインダや可塑剤を加えて混練し、適宜球状やペレット状、ハニカム状に成形化し、乾燥・焼成を行って製造することができる。また、担体が酸化チタン系複合酸化物である場合には、当該複合酸化物を予め調製することが必要となる。複合酸化物の調製は、例えばチタンやケイ素、アルミニウム、ジルコニウムの金属硝酸塩、塩化物、硫酸塩等の金属塩水溶液にアンモニア等のアルカリ溶液を滴下して、共沈させて複合水酸化物を形成させたうえで、洗浄、乾燥、焼成によって行うことができる。
 本発明にかかる第5の形態のCOS処理装置は、COS、HS、CO、OおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOSを処理する装置である。対象となるガスは、COSを含み、これを転換する目的のものであればよい。例えば、石炭や重質油等の低質燃料が酸素、空気または酸素富化された空気等のガス化剤によりガス化したガスが挙げられる。
 COS処理装置は、O除去触媒と、O除去後の前記ガスのCOSを転換するCOS転換触媒を備える。式(3)に示すように、COS生成反応によって、O、HSおよびCOからCOSが生成するところ、Oを除去すれば、COSの生成を防止することができる。
 前記O除去触媒は、酸化ニッケル、硫化ニッケル,酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 前記COS転換触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒とすることができる。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 COS処理装置は、上記O除去触媒とCOS転換触媒の他、COS処理装置の本体の内部に触媒を充填するための触媒床、前記触媒床を固定するための触媒サポート、COS処理装置の本体の頂部および底部に接続されたガス供給管とガス排出管、およびガスの供給や排出を制御するためのバルブ等を備えることができる。
 本発明にかかる第6の形態のCOS処理装置は、COS、HS、CO、OおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOSを処理する装置である。COS処理装置は、O除去触媒と、O除去後の前記ガスのCOSを転換するCOS転換触媒を備える。前記COS転換触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 本発明にかかる第7の形態のHCN分解装置は、HCNおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのHCNを分解する装置である。対象となるガスは、対象となるガスは、HCNを含み、これを分解する目的のものであればよい。例えば、石炭や重質油等の低質燃料が酸素、空気または酸素富化された空気等のガス化剤によりガス化したガスが挙げられる。
 HCN分解装置は、HCN分解触媒を備える。式(4)に示すように、加水分解反応または式(5)に示す水素化反応によって、HCNを分解する。HCN分解触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 HCN分解装置は、上記HCN分解触媒の他、HCN分解装置の本体の内部に触媒を充填するための触媒床、前記触媒床を固定するための触媒サポート、HCN分解装置の本体の頂部および底部に接続されたガス供給管とガス排出管、およびガスの供給や排出を制御するためのバルブ等を備えることができる。
 本発明にかかる第8の形態のCOS処理およびHCN分解装置は、O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOSを処理すると共に、HCNを分解する装置である。
 COS処理およびHCN分解装置は、O除去触媒と、O除去後の前記ガスのCOSを転換するCOS転換触媒と、HCNを分解するHCN分解触媒を備える。
 前記O除去触媒は、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 前記COS転換触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒とすることができる。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、COS転換触媒は、モリブデンを主成分としてさらに担持することもできる。
 前記HCN分解触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒とすることができる。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 COS処理およびHCN分解装置は、上記O除去触媒、COS転換触媒およびHCN分解触媒の他、COS処理およびHCN分解装置の本体の内部に触媒を充填するための触媒床、前記触媒床を固定するための触媒サポート、COS処理およびHCN分解装置の本体の頂部および底部に接続されたガス供給管とガス排出管、およびガスの供給や排出を制御するためのバルブ等を備えることができる。
 本発明にかかる第9の形態のCOS処理およびHCN分解装置は、O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOSを処理すると共に、HCNを分解する装置である。
 COS処理およびHCN分解装置は、O除去触媒と、O除去後の前記ガスのCOSを転換するCOS転換触媒と、HCNを分解するHCN分解触媒を備える。
 前記COS転換触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 本発明にかかる第10の形態のCOS処理およびHCN分解装置は、O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOSを処理すると共に、HCNを分解する装置である。
 COS処理およびHCN分解装置は、O除去触媒と、O除去後の前記ガスのCOSを転換するCOS転換触媒と、HCNを分解するHCN分解触媒を備える。
 前記HCN分解触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 本発明にかかる第11の形態のCOS処理方法は、COS、HS、CO、OおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOSを処理する方法である。対象となるガスは、COSを含み、これを転換する目的のものであればよい。例えば、石炭や重質油等の低質燃料が酸素、空気または酸素富化された空気等のガス化剤によりガス化したガスが挙げられる。
 COS処理方法は、O除去工程とCOS転換工程を含む。O除去工程は、O除去触媒を用いて、HSおよびCOとの反応によりOを除去する工程である。また、COS転換工程は、COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換する工程である。式(3)に示すように、COS生成反応によって、O、HSおよびCOからCOSが生成するところ、Oを除去すれば、COSの生成を防止することができる。
 前記O除去触媒は、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。酸化チタン系担体は、バリウムを主成分としてさらに担持することもできる。また、酸化チタン系担体は、モリブデンをさらに主成分として担持することもできる。
 前記COS転換触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒とすることができる。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 COS処理方法は、上記O除去工程とCOS転換工程等を含むことができる。
 本発明にかかる第12の形態のCOS処理方法は、COS、HS、CO、OおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOSを処理する方法である。COS処理方法は、O除去工程とCOS転換工程を含む。O除去工程は、O除去触媒を用いて、HSおよびCOとの反応によりOを除去する工程である。また、COS転換工程は、COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換する工程である。
 前記COS転換触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 本発明にかかる第13の形態のHCN分解方法は、HCNおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのHCNを分解する方法である。対象となるガスは、HCNを含み、これを分解する目的のものであればよい。例えば、石炭や重質油等の低質燃料が酸素、空気または酸素富化された空気等のガス化剤によりガス化したガスが挙げられる。
 HCN分解方法は、HCN分解触媒を用いて、HCNを分解するHCN分解工程を備える。式(4)に示すように、加水分解反応または式(5)に示す水素化反応によって、HCNを分解する。HCN分解触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 HCN分解方法は、上記HCN分解工程等を含むことができる。
 本発明にかかる第14の形態のCOS処理およびHCN分解方法は、O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOSを処理すると共に、HCNを分解する方法である。
 COS処理およびHCN分解方法は、O除去工程と、COS転換工程と、HCN分解工程を含む。O除去工程は、O除去触媒を用いて、HSおよびCOとの反応によりOを除去する工程である。COS転換工程は、COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換する工程である。HCN分解工程は、HCN分解触媒を用いて、HCNを分解する工程である。
 前記O除去触媒は、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンをさらに主成分として担持することもできる。
 前記COS転換触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒とすることができる。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 前記HCN分解触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒とすることができる。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 COS処理およびHCN分解方法は、上記O除去工程、COS転換工程、HCN分解工程等を含むことができる。
 本発明にかかる第15の形態のCOS処理およびHCN分解方法は、O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOSを処理すると共に、HCNを分解する方法である。
 COS処理およびHCN分解方法は、O除去工程と、COS転換工程と、HCN分解工程を含む。O除去工程は、O除去触媒を用いて、HSおよびCOとの反応によりOを除去する工程である。COS転換工程は、COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換する工程である。HCN分解工程は、HCN分解触媒を用いて、HCNを分解する工程である。
 前記COS転換触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 本発明にかかる第16の形態のCOS処理およびHCN分解方法は、O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOSを処理すると共に、HCNを分解する方法である。
 COS処理およびHCN分解方法は、O除去工程と、COS転換工程と、HCN分解工程を含む。O除去工程は、O除去触媒を用いて、HSおよびCOとの反応によりOを除去する工程である。COS転換工程は、COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換する工程である。HCN分解工程は、HCN分解触媒を用いて、HCNを分解する工程である。
 前記HCN分解触媒は、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である。酸化チタン系担体は、バリウムを主成分としてさらに担持することができる。また、酸化チタン系担体は、モリブデンを主成分としてさらに担持することもできる。
 以下、本発明の実施の形態を、図面を参照して説明する。この場合において、本発明は図面の実施形態に限定されるものではない。
 図1は、排ガス処理装置の装置構成を示す図である。排ガス処理装置1は、装置本体2の内部に、O除去触媒3、COS転換触媒4を備える。これらの触媒は、触媒を充填するための触媒床(図示せず)および前記触媒床を固定する触媒サポート(図示せず)によって、装置本体2の内部に固定されている。装置本体2には、装置本体2の内部に排ガスAを供給するガス供給管5を備える。また、装置本体2は、装置本体2の内部から排ガスを排出するガス排出管6を備える。
 排ガスは、ガス供給管5より装置本体2の内部へ導入され、O除去触媒3、およびCOS転換触媒4を通過した後、ガス排出管6より外部へ排出される。排ガス処理装置1は、本発明のO除去触媒、および本発明のCOS転換触媒のいずれか、またはこれらの両方を備えることができる。
 図2は、図1とは異なる態様の排ガス処理装置の装置構成を示す図である。排ガス処理装置10は、装置本体12の内部に、排ガス触媒13を備える。排ガス触媒13は、触媒を充填するための触媒床(図示せず)および前記触媒床を固定する触媒サポート(図示せず)によって、装置本体12の内部に固定されている。装置本体12には、装置本体12の内部に排ガスAを供給するガス供給管15を備える。また、装置本体12は、装置本体12の内部から排ガスを排出するガス排出管16を備える。
 排ガスは、ガス供給管15より装置本体12の内部へ導入され、排ガス触媒13を通過した後、ガス排出管16より外部へ排出される。排ガス処理装置10は、本発明のCOS転換触媒、および本発明のHCN分解触媒のいずれか、またはこれらの両方を備えることができる。そして、本発明のCOS転換触媒、および本発明のHCN分解触媒として、O除去触媒としての効果を発揮する触媒を用いることができる。
 以下、実施例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
[加水分解用触媒の製造]
[実施例1]
 アナターゼ型酸化チタン粉末(日揮触媒化成社製CSP-003)100質量部に対して炭酸バリウム(林純薬製試薬特級)を、バリウムの含有量が3.0質量%となるように添加し、10%アンモニア水5質量部を加えて60分ニーダー混練を行った。次に、この混練物にバインダとしてグラスファイバを3質量部、カオリンを5質量部、さらに有機可塑剤として酢酸セルロース5質量部と10%アンモニア水5質量部を添加して混練を行った。この混練物を押出し成形し、5.0mmピッチ、壁厚1.0mmの一体型ハニカム成形物を得た。この成形物を含水率10%となるまで室温乾燥させた後、500℃にて5時間焼成して有機可塑剤を除去することにより、ハニカム触媒の担体を得た。
 次に、得られたハニカム触媒の担体を30%硝酸鉄水溶液に浸漬し、液吸水含浸法により、酸化鉄の含有量が5.5質量%となるように鉄を担持させた。酸化鉄を担持させた担体を110℃で含水率10%となるまで室温乾燥させた後、昇温速度を100℃/時間として室温から500℃まで昇温し、続いて500℃にて3時間焼成した。これにより、実施例1のハニカム触媒を得た。
[実施例2]
 実施例1と同様のハニカム触媒の担体を、30%硝酸鉄水溶液及び10%モリブデン酸アンモニウム水溶液の混合溶液に浸漬し、液吸水含浸法により、酸化鉄の含有量が5.5質量%、酸化モリブデンの含有量が5.5質量%となるように、酸化鉄および酸化モリブデンを担持させた。その後の乾燥、焼成は実施例1と同じ条件とした。これにより、実施例2のハニカム触媒を得た。
[実施例3]
 実施例1と同様のハニカム触媒の担体を、20%硝酸ニッケル水溶液に浸漬し、液吸水含浸法により、酸化ニッケルの含有量が5.5質量%となるように、酸化ニッケルを担持させた。その後の乾燥、焼成は実施例1と同じ条件とした。これにより、実施例3のハニカム触媒を得た。
[実施例4]
 実施例1と同様のハニカム触媒の担体を、20%硝酸ニッケル水溶液及び10%モリブデン酸アンモニウム水溶液の混合溶液に浸漬し、液吸水含浸法により、酸化ニッケルの含有量が5.5質量%、酸化モリブデンの含有量が5.5質量%となるように、酸化ニッケルおよび酸化モリブデンを担持させた。その後の乾燥、焼成は実施例1と同じ条件とした。これにより、実施例4のハニカム触媒を得た。
[従来例1]
 実施例1と同様のハニカム触媒の担体を、30%硝酸クロム水溶液に浸漬し、液吸
水含浸法により、酸化クロムの含有量が5.5質量%となるように、酸化クロムを担持させた。その後の乾燥、焼成は実施例1と同じ条件とした。これにより、従来例1のハニカム触媒を得た。
[比較例1]
 実施例1と同様のハニカム触媒の担体を、ハニカム触媒とした。
 表1に、上記のように調製した実施例、従来例、および比較例のハニカム触媒の触媒種、鉄、ニッケル、クロム、バリウムおよびモリブデンの含有量、および担体の種類について示す。
Figure JPOXMLDOC01-appb-T000004
 
[O除去性能の評価]
 上記実施例1、従来例1、および比較例1の触媒を用いて、表2に示す試験条件により、O除去性能を評価した。O除去率は、下記式4により求めた。
Figure JPOXMLDOC01-appb-M000005
  
Figure JPOXMLDOC01-appb-T000006
 
 評価結果を図3に示す。図3の結果から、触媒層平均温度が300℃の場合において、実施例1の触媒のO除去率は98.6%であり、参考例1の触媒のO除去率は97.1%であった。よって、実施例1の触媒は、従来例1の触媒と同等のO除去性能を発揮したことは明らかである。
[COS変換性能の評価]
 上記実施例1、従来例1、および比較例1の触媒を用いて、表3に示す試験条件により、COSの加水分解反応を行った。COS変換率は、下記式5により求めた。
Figure JPOXMLDOC01-appb-M000007
  
Figure JPOXMLDOC01-appb-T000008
 
 評価結果を図4に示す。図4の結果から、触媒層平均温度が300℃の場合において、実施例1の触媒のCOS転換率は75.8%であり、従来例1の触媒のCOS転換率は67.8%であった。よって、実施例1の触媒は、従来例1の触媒と同等のCOS転換性能を発揮したことは明らかである。
 上記COS変換性能の評価の他、酸素濃度を40ppmおよび390ppmとした場合におけるCOS変換性能を評価した。試験条件を表4に示す。
Figure JPOXMLDOC01-appb-T000009
 
 
 評価結果を図5に示す。図5の結果から、実施例1の触媒は、酸素濃度が高い条件であっても、優れたCOS変換性能を発揮した。結果として、実施例1の触媒は、COS転換触媒として使用することが可能であること、および酸素濃度に対して高いロバスト性を持つことが明らかとなった。
[硫化水素への耐久性の評価]
 実施例1の触媒について、硫化水素への耐久性を評価した。表5に示す試験条件により、実施例1の触媒へ硫化水素を流通させた。硫化水素を流通させた実施例1の触媒について、表6に示すO除去率評価条件、および表7に示すCOS変換率評価条件により、O2除去性能およびCOS変換性能を評価した。
Figure JPOXMLDOC01-appb-T000010
 
 
Figure JPOXMLDOC01-appb-T000011
 
 
Figure JPOXMLDOC01-appb-T000012
 
 
 実施例1の触媒のO除去率を図6、COS変換率を図7に示す。これらの図は、HSを流通させた触媒を、無処理の触媒と比較したものである。これらの結果から、実施例1の触媒は、硫化水素を流通させたことによる触媒の劣化がほとんど認められず、硫化水素への耐久性に問題がないことが明らかとなった。
[塩化水素への耐久性の評価]
 実施例1の触媒について、塩化水素への耐久性を評価した。表8に示す試験条件により、実施例1の触媒へ塩化水素を流通させた。塩化水素を流通させた実施例1の触媒について、表9に示すO除去率評価条件により、O2除去性能を評価した。
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
 
 実施例1の触媒のO除去率を図8に示す。この図は、HClを流通させた触媒を、無処理の触媒と比較したものである。これらの結果から、実施例1の触媒は、塩化水素を流通させたことによる触媒の劣化がほとんど認められず、塩化水素への耐久性に問題がないことが明らかとなった。
[触媒中鉄の状態評価]
 実施例1の触媒について、試験後の触媒の鉄の状態分析をESCAにより実施した。
 実施例1の触媒の鉄の状態分析結果を図8に示す。これらの結果から、ESCAのピーク位置より、実施例1の触媒の鉄の状態は、酸化鉄、硫化鉄、硫酸鉄、または鉄のオキシ水酸化物であることが明らかになった。
 本発明の排ガス用触媒、排ガス処理装置および排ガス処理方法によれば、所定の排ガス処理性能を維持しつつ、環境規制にも対応することができるため、産業上有用である。
   1 排ガス処理装置
   2 装置本体
   3 O除去触媒
   4 COS転換触媒
   5 ガス供給管
   6 ガス排出管
  10 排ガス処理装置
  12 装置本体
  13 排ガス触媒
  15 ガス供給管
  16 ガス排出管
   A 排ガス

Claims (66)

  1.  O、HSおよびCOを少なくとも含むガスのOを除去するO除去触媒であって、
     酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒。
  2.  前記酸化チタン系担体が、バリウムをさらに担持する請求項1に記載の触媒。
  3.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項1または請求項2に記載の触媒。
  4.  COSおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOSを転換するCOS転換触媒であって、
     酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒。
  5.  前記酸化チタン系担体が、バリウムをさらに担持する請求項4に記載の触媒。
  6.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項4または請求項5に記載の触媒。
  7.  HCNおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのHCNを分解するHCN分解触媒であって、
     酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒。
  8.  前記酸化チタン系担体が、バリウムをさらに担持する請求項7に記載の触媒
  9.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項7または請求項8に記載の触媒。
  10.  O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのOを除去すると共に、COSを転換し、かつHCNを分解する触媒であって、
     酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒。
  11.  前記酸化チタン系担体が、バリウムをさらに担持する請求項10に記載の触媒。
  12.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項10または請求項11に記載の触媒。
  13.  COS、HS、CO、OおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理装置であって、
     O除去触媒と、
     O除去後の前記ガスのCOSを転換するCOS転換触媒を備え、
     前記O除去触媒が、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理装置。
  14.  前記酸化チタン系担体が、バリウムをさらに担持する請求項13に記載のCOS処理装置。
  15.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項13または請求項14に記載のCOS処理装置。
  16.  前記COS転換触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である請求項13~請求項15のいずれかに記載のCOS処理装置。
  17.  前記酸化チタン系担体が、バリウムをさらに担持する請求項16に記載のCOS処理装置。
  18.  前記酸化チタン系担体が、モリブデンをさらに担持する、請求項16または請求項17に記載のCOS処理装置。
  19.  COS、HS、CO、OおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理装置であって、
     O除去触媒と、
     O除去後の前記ガスのCOSを転換するCOS転換触媒を備え、
     前記COS転換触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理装置。
  20.  前記酸化チタン系担体が、バリウムをさらに担持する請求項19に記載のCOS処理装置。
  21.  前記酸化チタン系担体が、モリブデンをさらに担持する、請求項19または請求項20に記載のCOS処理装置。
  22.  HCNおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのHCN分解装置であって、
     酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とするHCN分解触媒を備えるHCN分解装置。
  23.  前記酸化チタン系担体が、バリウムをさらに担持する請求項22に記載のHCN分解装置。
  24.  前記酸化チタン系担体が、モリブデンをさらに担持する、請求項22または請求項23に記載のHCN分解装置。
  25.  O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理およびHCN分解装置であって、
     O除去触媒と、
     O除去後の前記ガスのCOSを転換するCOS転換触媒と、
     HCNを分解するHCN分解触媒を備え、
     前記O除去触媒が、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理およびHCN分解装置。
  26.  前記酸化チタン系担体が、バリウムをさらに担持する請求項25に記載のCOS処理およびHCN分解装置。
  27.  前記酸化チタン系担体が、モリブデンをさらに担持する、請求項25または請求項26に記載のCOS処理およびHCN分解装置。
  28.  前記COS転換触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である請求項17または請求項18記載のCOS処理およびHCN分解装置。
  29.  前記酸化チタン系担体が、バリウムをさらに担持する請求項28に記載のCOS処理およびHCN分解装置。
  30.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項28または請求項29に記載のCOS処理およびHCN分解装置。
  31.  前記HCN分解触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である請求項25~請求項30のいずれかに記載のCOS処理およびHCN分解装置。
  32.  前記酸化チタン系担体が、バリウムをさらに担持する請求項31に記載のCOS処理およびHCN分解装置。
  33.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項31または請求項32に記載のCOS処理およびHCN分解装置。
  34.  O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理およびHCN分解装置であって、
     O除去触媒と、
     O除去後の前記ガスのCOSを転換するCOS転換触媒と、
     HCNを分解するHCN分解触媒を備え、
     前記COS転換触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理およびHCN分解装置。
  35.  前記酸化チタン系担体が、バリウムをさらに担持する請求項34に記載のCOS処理およびHCN分解装置。
  36.  前記酸化チタン系担体が、モリブデンをさらに担持する、請求項34または請求項35に記載のCOS処理およびHCN分解装置。
  37.  O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理およびHCN分解装置であって、
     O除去触媒と、
     O除去後の前記ガスのCOSを転換するCOS転換触媒と、
     HCNを分解するHCN分解触媒を備え、
     前記HCN分解触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理およびHCN分解装置。
  38.  前記酸化チタン系担体が、バリウムをさらに担持する請求項37に記載のCOS処理およびHCN分解装置。
  39.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項37または請求項38に記載のCOS処理およびHCN分解装置。
  40.  COS、HS、CO、OおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理方法であって、
     O除去触媒を用いて、HSおよびCOとの反応によりOを除去するO除去工程と、
     COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換するCOS転換工程を含み、
     前記O除去触媒が、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理方法。
  41.  前記酸化チタン系担体が、バリウムをさらに担持する請求項40に記載のCOS処理方法。
  42.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項40または請求項41に記載のCOS処理方法。
  43.  前記COS転換触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である請求項40~請求項42のいずれかに記載のCOS処理方法。
  44.  前記酸化チタン系担体が、バリウムをさらに担持する請求項43に記載のCOS処理方法。
  45.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項43または請求項44に記載のCOS処理方法。
  46.  COS、HS、CO、OおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理方法であって、
     O除去触媒を用いて、HSおよびCOとの反応によりOを除去するO除去工程と、
     COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換するCOS転換工程を含み、
     前記COS転換触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理方法。
  47.  前記酸化チタン系担体が、バリウムをさらに担持する請求項46に記載のCOS処理方法。
  48.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項46または請求項47に記載のCOS処理方法。
  49.  HCNおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのHCN分解方法であって、
     HCN分解触媒を用いて、HCNを分解するHCN分解工程を含み、
     前記HCN分解触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるHCN分解方法。
  50.  前記酸化チタン系担体が、バリウムをさらに担持する請求項49に記載のHCN分解方法。
  51.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項49または請求項50に記載のHCN分解方法。
  52.  O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理およびHCN分解方法であって、
     O除去触媒を用いて、HSおよびCOとの反応によりOを除去するO除去工程と、
     COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換するCOS転換工程と、
     HCN分解触媒を用いて、HCNを分解するHCN分解工程を含み、
     前記O除去触媒が、酸化ニッケル、硫化ニッケル、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理およびHCN分解方法。
  53.  前記酸化チタン系担体が、バリウムをさらに担持する請求項52に記載のCOS処理およびHCN分解方法。
  54.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項52または請求項53に記載のCOS処理およびHCN分解方法。
  55.  前記COS転換触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である請求項52~請求項54のいずれかに記載のCOS処理およびHCN分解方法。
  56.  前記酸化チタン系担体が、バリウムをさらに担持する請求項55に記載のCOS処理およびHCN分解方法。
  57.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項55または請求項56に記載のCOS処理およびHCN分解方法。
  58.  前記HCN分解触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒である請求項52~請求項57のいずれかに記載のCOS処理およびHCN分解方法。
  59.  前記酸化チタン系担体が、バリウムをさらに担持する請求項58に記載のCOS処理およびHCN分解方法。
  60.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項58または請求項59に記載のCOS処理およびHCN分解方法。
  61.  O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理およびHCN分解方法であって、
     O除去触媒を用いて、HSおよびCOとの反応によりOを除去するO除去工程と、
     COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換するCOS転換工程と、
     HCN分解触媒を用いて、HCNを分解するHCN分解工程を含み、
     前記COS転換触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理およびHCN分解方法。
  62.  前記酸化チタン系担体が、バリウムをさらに担持する請求項61に記載のCOS処理およびHCN分解方法。
  63.  前記酸化チタン系担体が、モリブデンをさらに担持する請求項61または請求項62に記載のCOS処理およびHCN分解方法。
  64.  O、COS、HCN、HS、COおよびHOまたはHの少なくともいずれか、を少なくとも含むガスのCOS処理およびHCN分解方法であって、
     O除去触媒を用いて、HSおよびCOとの反応によりOを除去するO除去工程と、
     COS転換触媒を用いて、O除去後の前記ガスのCOSをHSに転換するCOS転換工程と、
     HCN分解触媒を用いて、HCNを分解するHCN分解工程を含み、
     前記HCN分解触媒が、酸化鉄、硫化鉄または鉄のオキシ水酸化物の少なくともいずれかを担持する酸化チタン系担体を担体とする触媒であるCOS処理およびHCN分解方法。
  65.  前記酸化チタン系担体が、バリウムをさらに担持する請求項64に記載のCOS処理およびHCN分解方法。
  66.  前記酸化チタン系担体が、モリブデンをさらに担持する、請求項64または請求項65に記載のCOS処理およびHCN分解方法。
PCT/JP2014/084135 2014-12-24 2014-12-24 排ガス用触媒、排ガス処理装置および排ガス処理方法 WO2016103364A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084135 WO2016103364A1 (ja) 2014-12-24 2014-12-24 排ガス用触媒、排ガス処理装置および排ガス処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084135 WO2016103364A1 (ja) 2014-12-24 2014-12-24 排ガス用触媒、排ガス処理装置および排ガス処理方法

Publications (1)

Publication Number Publication Date
WO2016103364A1 true WO2016103364A1 (ja) 2016-06-30

Family

ID=56149462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084135 WO2016103364A1 (ja) 2014-12-24 2014-12-24 排ガス用触媒、排ガス処理装置および排ガス処理方法

Country Status (1)

Country Link
WO (1) WO2016103364A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110420648A (zh) * 2019-07-12 2019-11-08 华南师范大学 一种可高效降解高浓度苯酚的铁硫耦合催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166924A (en) * 1980-04-23 1981-12-22 Elf Aquitaine Catalytic incinerating method for residual gas often containing small amount of at least one kind of sulfur compound selected from cos, cs2 and mercaptan and at least one kind selected from group consisting of gassy sulfur and/or vesicular sulfur, h2s, so2
JPS61274729A (ja) * 1980-08-04 1986-12-04 Takeda Chem Ind Ltd 排ガス中のシアン化水素の除去法
JPH0889807A (ja) * 1994-09-07 1996-04-09 Huels Ag 触媒及びガス中のhcnの分解法
JP2005029466A (ja) * 2003-07-11 2005-02-03 Inst Fr Petrole 直接的酸化による含硫黄化合物の除去方法
JP2005504631A (ja) * 2001-10-09 2005-02-17 アクセンス ガス混合物中のCOSおよび/またはHCNを加水分解するための触媒としてのTiO2系組成物の使用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166924A (en) * 1980-04-23 1981-12-22 Elf Aquitaine Catalytic incinerating method for residual gas often containing small amount of at least one kind of sulfur compound selected from cos, cs2 and mercaptan and at least one kind selected from group consisting of gassy sulfur and/or vesicular sulfur, h2s, so2
JPS61274729A (ja) * 1980-08-04 1986-12-04 Takeda Chem Ind Ltd 排ガス中のシアン化水素の除去法
JPH0889807A (ja) * 1994-09-07 1996-04-09 Huels Ag 触媒及びガス中のhcnの分解法
JP2005504631A (ja) * 2001-10-09 2005-02-17 アクセンス ガス混合物中のCOSおよび/またはHCNを加水分解するための触媒としてのTiO2系組成物の使用
JP2005029466A (ja) * 2003-07-11 2005-02-03 Inst Fr Petrole 直接的酸化による含硫黄化合物の除去方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110420648A (zh) * 2019-07-12 2019-11-08 华南师范大学 一种可高效降解高浓度苯酚的铁硫耦合催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP5955026B2 (ja) 硫化カルボニルおよびシアン化水素の加水分解用触媒ならびに酸化チタン系組成物の使用
BR112016011587B1 (pt) Catalisador para a redução seletiva de óxidos de nitrogênio, métodos para a redução de óxidos de nitrogênio nos gases de exaustão de motores de combustão interna de queima pobre, e sistema de limpeza de gases de exaustão
CN101584962A (zh) 一种高强度羟基氧化铁脱硫剂及其制备方法
WO2016013652A1 (ja) アンモニア態窒素含有廃棄物からのアンモニア分解水素製造方法
US9486797B2 (en) Method for regenerating COS hydrolysis catalyst
RU2297878C2 (ru) ПРИМЕНЕНИЕ КОМПОЗИЦИИ НА ОСНОВЕ TiO2 В КАЧЕСТВЕ КАТАЛИЗАТОРА ГИДРОЛИЗА COS И/ИЛИ HCN В ГАЗООБРАЗНОЙ СМЕСИ
WO2019138728A1 (ja) 硫化カルボニルの加水分解用触媒及びその製造方法
CN107282141A (zh) 一种用于舰船烟气脱硫脱硝的光催化剂及其制备方法
KR101373372B1 (ko) 수은 산화 촉매 및 이의 제조방법
EA021965B1 (ru) Катализатор для удаления вредных углеводородов, присутствующих в отходящих или технологических газах, и способ изготовления такого катализатора
JP2011518931A (ja) 貴金属系触媒を用い、ガス化プロセスに由来するガス中のタール含有量を触媒により減少させる方法
WO2016103364A1 (ja) 排ガス用触媒、排ガス処理装置および排ガス処理方法
KR20160072283A (ko) 이산화황에 높은 저항성을 갖는 질소산화물(NOx) 제거용 망간기반 산화물 촉매 및 그 제조방법
AU2014353383A1 (en) Catalyst materials useful for sour gas shift reactions and methods for using them
CN109069994A (zh) 用于热气过滤的催化活性过滤器、制备该过滤器的方法和从气流中同时去除固体颗粒和不期望的化合物的方法
WO2019130899A1 (ja) 硫化カルボニルの加水分解用触媒及びその製造方法
JP2013180286A (ja) 排ガス処理用脱硝触媒および排ガス処理方法
CN106378145B (zh) 一种气态双氧水用催化剂及其应用
KR102433113B1 (ko) 황산화물 및 질소산화물 동시제거용 흡착촉매제
Liu et al. Selective Synergistic Catalytic Elimination of NO x and CH3SH via Engineering Deep Oxidation Sites against Toxic Byproducts Formation
Li et al. Catalytic urea hydrolysis by composite metal oxide catalyst towards efficient urea-based SCR process: performance evaluation and mechanism investigation
CN109562319B (zh) 气体净化装置和气体净化方法
JPWO2010131358A1 (ja) Coシフト触媒及びその製造方法、並びにcoシフト触媒を用いたcoシフト反応装置
JP3998218B2 (ja) 炭素析出抑制脱硫剤
Cheng et al. Removal of HCN over Mn based catalysts under low temperatures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP