WO2016100626A1 - Multi-frequency guided wave devices and fabrication methods - Google Patents

Multi-frequency guided wave devices and fabrication methods Download PDF

Info

Publication number
WO2016100626A1
WO2016100626A1 PCT/US2015/066300 US2015066300W WO2016100626A1 WO 2016100626 A1 WO2016100626 A1 WO 2016100626A1 US 2015066300 W US2015066300 W US 2015066300W WO 2016100626 A1 WO2016100626 A1 WO 2016100626A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
layer
substrate
piezoelectric layer
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2015/066300
Other languages
English (en)
French (fr)
Inventor
Kushal Bhattacharjee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RF Micro Devices Inc
Original Assignee
RF Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RF Micro Devices Inc filed Critical RF Micro Devices Inc
Priority to US14/972,929 priority Critical patent/US10348269B2/en
Publication of WO2016100626A1 publication Critical patent/WO2016100626A1/en
Anticipated expiration legal-status Critical
Priority to US16/505,775 priority patent/US11476827B2/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02259Driving or detection means
    • H03H9/02275Comb electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/027Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the microelectro-mechanical [MEMS] type

Definitions

  • the method includes depositing a sacrificial material in the first recess and the second recess prior to the bonding step; planarizing at least one surface of the piezoelectric layer after deposition of the sacrificial material; and removing the sacrificial material from the first recess and the second recess after the bonding step.
  • the method includes filling at least one of the first recess or the second recess with a fast wave propagation material prior to the bonding step; and prior to the bonding step, planarizing at least one surface of the piezoelectric layer after filling of at least one of the first recess or the second recess.
  • each IDT 30, 32 the fingers 28 are parallel to one another and aligned in an acoustic region that encompasses the area in which the IDT 30, 32 and its corresponding reflector gratings 34, 36 reside.
  • the wave or waves generated when the IDT 30, 32 is excited with electrical signals essentially reside in this acoustic region. Acoustic waves essentially travel perpendicular to the length of the fingers 28.
  • the operating frequency of each resonator of the MEMS guided wave device 10 is a function of the pitch representing the spacing between fingers 28 of each respective IDT 30, 32.
  • a first pitch (P1) represents the spacing between fingers 28 of the first IDT 30.
  • a second pitch (P2) represents the spacing between fingers 28 of the second IDT 32.
  • one, some, or all recesses defined in a piezoelectric layer may be partially or completely filled with a fast wave propagation material or with a slow wave propagation material
  • sacrificial material such as, but not limited to, silicon dioxide
  • silicon dioxide may be provided within the recesses 18, 20 during fabrication, in order to provide an uninterrupted surface to promote direct bonding to a substrate, and thereby avoid distortion of features that otherwise would be suspended in the absence of sacrificial material.
  • the substrate 22 may be overlaid with a composite layer including field layer material regions as well as sacrificial material regions contained in an aperture within the field layer material regions, and the composite layer may be surface finished. Thereafter, two finished surfaces (corresponding to the piezoelectric layer 12 and the field layer 54) are bonded to form a bonded interface, the IDT 32 is deposited thereover, and sacrificial material is removed from below the thinned region 14 of the piezoelectric layer 12 as well as from an aperture defined in the field layer material regions to expose the recess 18, which spans portions of the piezoelectric layer 12 and the field layer 54.
  • the resulting structure includes the IDT 32 and the thinned region 14 of the piezoelectric layer 12 being suspended over the substrate 22, with a recess 18 being bounded from above by the thinned region 14, bounded from below by the substrate 22, and bounded along at least two sides by the field layer 54.
  • the recess 18 embodies an unfilled cavity extending laterally beyond the thinned region 14 of the piezoelectric layer 12 as well as the IDT 32.
  • resonator 3 depicts a single resonator for clarity of illustration, it is to be appreciated that in preferred embodiments, multiple resonators may be present, each including a different thinned region of the piezoelectric layer and each including multiple electrodes (e.g., an IDT), wherein different IDTs are configured for transduction of lateral acoustic waves of different wavelengths in the different thinned regions.
  • electrodes e.g., IDTs
  • FIG. 4C illustrates the piezoelectric wafer 12A following formation of the first recess 18 and removal of the photoresist layer 94 (shown in FIG. 4B). Thereafter, another photoresist layer (not shown) may be patterned over the first surface 60 to define another aperture exposing a different portion of the first surface 60, an etchant may be supplied to the first surface 60 to define a second recess 20, and the photoresist layer 94 may be removed to yield a wafer with recesses 18, 20 of different depths as illustrated in FIG. 4D.
  • an etchant e.g., an acid
  • any suitable technique may be used to form the recesses 18, 20, including but not limited to ion milling and micromachining.
  • the first and second recesses 18, 20 are filled with sacrificial material 64, 66 to a level along the first surface 60 of the piezoelectric wafer 12A, as shown in FIG. 4E.
  • the first surface 60 containing regions of sacrificial material 64, 66, as well as a mating surface of a substrate 22, are then surface finished (e.g., via chemical mechanical planarization (CMP) and polishing to provide near- atomic flatness), in preparation for bonding of the piezoelectric wafer 12A (including regions of sacrificial material 64, 66) to the substrate 22.
  • CMP chemical mechanical planarization
  • the entire piezoelectric wafer 12A is thinned and polished along the exposed second surface 62 by any suitable process steps (e.g., grinding followed by chemical and/or mechanical polishing) to yield the piezoelectric layer 12, which is bonded to the substrate 22 along a bonded interface 24 as shown in FIG. 4F.
  • the foregoing thinning step is performed to controllably reduce the thickness of the piezoelectric layer 12 (including first and second thinned regions 14, 16 proximate to the first and second recesses 18, 20 containing regions of sacrificial material 64, 66) and to prepare the exposed surface of the piezoelectric layer 12 for deposition of metal electrodes forming the IDTs 30, 32 as shown in FIG. 4G.
  • FIGS. 5A-5G are cross-sectional views of portions of a multi-frequency MEMS guided wave device during various steps of fabrication according to another embodiment of the present disclosure, with the resulting device (shown in FIG. 5G) including first and second thinned piezoelectric material regions 14, 16 of different thicknesses overlaid by IDTs 30, 32 and arranged over first and second recesses 18, 20 filled with fast wave propagation materials 68, 70. Fabrication of the device of FIG. 5G is similar to fabrication of the device of FIG.
  • fast wave propagation materials 68, 70 instead of sacrificial materials 64, 66 are deposited in the recesses 18, 20 defined in the piezoelectric wafer 12A, and the fast wave propagation materials 68, 70 are not removed after formation of the lDTs 30, 32.
  • the first surface 60 containing regions of fast wave propagation material 68, 70, as well as a mating surface of a substrate 22, are then surface finished (e.g., via chemical mechanical planarization (CMP) and polishing to provide near-atomic flatness), in preparation for bonding of the piezoelectric wafer 12A (including regions of fast wave propagation material 68, 70) to the substrate 22.
  • CMP chemical mechanical planarization
  • the entire piezoelectric wafer 12A is thinned and polished along the exposed second surface 62 by any suitable process steps (e.g., grinding followed by chemical and/or mechanical polishing) to yield the piezoelectric layer 12, which is bonded to the substrate 22 along a bonded interface 24 as shown in FIG. 5F.
  • the foregoing thinning step is performed to controllably reduce the thickness of the piezoelectric layer 12 (including first and second thinned regions 14, 16 proximate to the first and second recesses 18, 20 containing regions of fast wave propagation material 68, 70) and to prepare the exposed surface of the piezoelectric layer 12 for deposition of metal electrodes forming the IDTs 30, 32 as shown in FIG. 5G.
  • the resulting structure shown in FIG. 5G The resulting structure shown in FIG.
  • 5G embodies a multi- frequency MEMS guided wave device including first and second IDTs 30, 32 arranged over first and second thinned piezoelectric material regions 14, 16 of different thicknesses bounding recesses 18, 20 filled with regions of fast wave propagation material 68, 70, with the piezoelectric layer 12 being bonded to a substrate 22 along a bonded interface 24.
  • the IDTs 30, 32 are configured for transduction of lateral acoustic waves of different wavelengths in the different thinned regions 14, 16, with the regions of fast wave propagation material 68, 70 being arranged to promote confinement of the lateral acoustic waves.
  • one or more recesses of a MEMS guided wave device may contain at least one electrode proximate to a thinned region of a piezoelectric layer.
  • an electrode within a recess may include a substantially continuous electrode, such as may be used in combination with an IDT arranged on an opposing surface of a thinned region of a piezoelectric layer.
  • an electrode within a recess may be used as a floating electrode or a shorting electrode (e.g., to enable launch of asymmetric waves).
  • another photoresist layer (not shown) may be patterned over the first surface 60 to define another aperture exposing a different portion of the first surface 60, an etchant may be supplied to the first surface 60 to define a second recess 20, and the photoresist layer may be removed to yield a wafer with recesses 18, 20 of different depths as illustrated in FIG. 6D.
  • a masking layer 69 is formed over portions of the first surface 60 and the first recess 18, with a window 71 in the masking layer 69 exposing the second recess 20, as shown in FIG. 6E.
  • metal is deposited in the second recess 20 to form an electrode 72, and the masking layer 69 is removed, as shown in FIG.
  • FIGS. 7A-7I are cross-sectional views of portions of a multi-frequency MEMS guided wave device during various steps of fabrication according to one embodiment of the present disclosure, with the resulting device (shown in FIG. 7I) including first and second thinned piezoelectric material regions 14, 16 of different thicknesses overlaid by IDTs 30, 32 and arranged to bound first and second recesses 18, 20 filled with fast wave propagation material 68, 70, wherein an electrode 72 is provided within the second recess 20, and the piezoelectric layer 12 is bonded to a substrate 22.
  • Fabrication of the device of FIG. 7I is similar to fabrication of the device of FIG. 5G, with the addition of a step of forming an electrode 72 within the second recess 20.
  • FIG. 7A illustrates a single crystal piezoelectric wafer 12A including first and second surfaces 60, 62.
  • FIG. 7B illustrates the piezoelectric wafer 12A following patterning of the first surface 60 with a photoresist layer 94 defining an aperture 96 to expose a portion of the first surface 60.
  • Such aperture 96 enables the exposed portion of the first surface 60 to receive an etchant (e.g., an acid) to enable formation of a first recess 18.
  • FIG. 7C illustrates the piezoelectric wafer 12A following formation of the first recess 18 and removal of the photoresist layer 94 (shown in FIG. 7B).
  • the first and second recesses 18, 20 are filled with fast wave propagation material 68, 70 to a level along the first surface 60 of the piezoelectric wafer 12A, as shown in FIG. 7G.
  • the first surface 60 containing regions of fast wave propagation material 68, 70-, as well as a mating surface of a substrate 22, are then surface finished (e.g., via chemical mechanical planarization (CMP) and polishing to provide near-atomic flatness), in preparation for bonding of the piezoelectric wafer 12A (including regions of fast wave propagation material 68, 70) to a substrate 22.
  • CMP chemical mechanical planarization
  • 7I embodies a multi-frequency MEMS guided wave device including first and second IDTs 30, 32 arranged over first and second thinned piezoelectric material regions 14, 16 of different thicknesses bounding recesses 18, 20 filled with fast wave propagation material 68, 70 (or alternatively filled with a slow wave propagation material), with the second recess 20 containing an electrode 72, and with the piezoelectric layer 12 being bonded to a substrate 22.
  • the first IDT 30, and the second IDT 32 in combination with the electrode 72 are configured for transduction of acoustic waves of different wavelengths in the different thinned regions 14, 16 of the piezoelectric layer 12, and each region of fast wave propagation material 68, 70 is arranged to promote confinement of a laterally excited wave in the proximately arranged thinned region 14, 16 of the piezoelectric layer 12.
  • FIG. 7I illustrates an electrode 72 formed only in the second recess 20, it is to be appreciated that electrodes may be formed in either or both recesses 18, 20 in certain embodiments.
  • a continuous buffer layer may be intermediately arranged between a recess-defining piezoelectric layer and a substrate.
  • a buffer layer may facilitate bonding with the respective adjacent layers, and/or prevent chemical interaction with the substrate during removal of sacrificial material from recesses defined in the piezoelectric layer. If a buffer layer is provided, then the recesses defined in the piezoelectric layer may be bounded laterally and from above by piezoelectric material, and bounded below by buffer layer material.
  • a buffer layer may be added to any of the embodiments previously disclosed herein.
  • FIG. 8A illustrates a single crystal piezoelectric wafer 12A including first and second surfaces 60, 62.
  • FIG. 8B illustrates the piezoelectric wafer 12A following patterning of the first surface 60 with a photoresist layer 94 defining an aperture 96 to expose a portion of the first surface 60.
  • Such aperture 96 enables the exposed portion of the first surface 60 to receive an etchant (e.g., an acid) to enable formation of a first recess 18.
  • FIG. 8C illustrates the piezoelectric wafer 12A following formation of the first recess 18 and removal of the photoresist layer 94 (shown in FIG. 8B).
  • another photoresist layer (not shown) may be patterned over the first surface 60 to define another aperture exposing a different portion of the first surface 60, an etchant may be supplied to the first surface 60 to define a second recess 20, and the photoresist layer may be removed to yield a wafer 12A with recesses 18, 20 of different depths as illustrated in FIG. 8D. Thereafter, the first and second recesses 18, 20 are filled with sacrificial material 64, 66 to a level along the first surface 60 of the piezoelectric wafer 12A, as shown in FIG. 8E.
  • the piezoelectric wafer 12A is thinned and planarized along the exposed second surface 62 by any suitable process steps (e.g., grinding followed by chemical mechanical planarization and polishing) to yield a piezoelectric layer 12 bonded over a substrate 22 with a buffer layer 74 arranged therebetween, wherein a bonded interface 24is provided between the substrate 22 and the piezoelectric layer 12 along one surface of the buffer layer 74, as shown in FIG. 8G.
  • any suitable process steps e.g., grinding followed by chemical mechanical planarization and polishing
  • the foregoing thinning step is performed to controllably reduce the thickness of the piezoelectric layer 12 (including first and second thinned regions 14, 16 proximate to the first and second recesses 18, 20 containing regions of sacrificial material 64, 66) and to prepare the exposed surface of the piezoelectric layer 12 for deposition of metal electrodes forming the IDTs 30, 32 as shown in FIG. 8H.
  • the sacrificial materials 64, 66 are removed from the recesses 18, 20 (e.g., by flowing one or more liquids suitable for dissolution of the sacrificial material through vertical apertures (not shown) extending through the piezoelectric layer 12) to cause the recesses 18, 20 to form unfilled cavities, as shown in FIG. 8I.
  • the resulting structure shown in FIG. 81 embodies a multi-frequency MEMS guided wave device including first and second IDTs 30, 32 arranged over first and second thinned piezoelectric material regions 14, 16 of different thicknesses bounding unfilled recesses 18, 20, with the piezoelectric layer 12 and substrate 22 being bonded through an intermediately arranged buffer layer 74.
  • the IDTs 30, 32 are configured for transduction of lateral acoustic waves of different wavelengths in the different thinned regions 14, 16 of the piezoelectric layer 12.
  • a multi-frequency MEMS guided wave device may include recesses defined in a substrate, wherein the recesses defined in the substrate are substantially registered with unfilled recesses defined below the first and second thinned regions of the piezoelectric layer.
  • Such a configuration may aid removal of sacrificial material from below thinned regions of a piezoelectric layer, thereby enabling formation of features and geometries that would be difficult to achieve in a reproducible way using prior methods relying upon ion implantation to create a damaged internal release layer of piezoelectric material.
  • FIG. 9A illustrates a substrate 22 defining first and second recesses 78, 80 containing sacrificial material 98.
  • Such recesses 78, 80 may be formed by photolithographic etching (similar to the steps described previously herein for forming recesses in a piezoelectric layer), subsequently filled with sacrificial material 98, and then surface finished in preparation for direct bonding.
  • FIG. 9B illustrates a multi-frequency MEMS guided wave device similar to the device of FIG. 4H, but including the substrate of FIG. 9A defining recesses 78, 80 (following removal of the sacrificial material), wherein the recesses 78, 80 defined in the substrate 22 are substantially registered with unfilled recesses 18, 20 defined below first and second thinned regions 14, 16 of the piezoelectric layer 12, such that recesses 18, 78 are continuous with one another, and recesses 20, 80 are continuous with one another.
  • a first surface 60 of the piezoelectric layer 12 is directly bonded to the substrate 22 along a bonded interface 24.
  • First and second IDTs 30, 32 are arranged over the first and second thinned piezoelectric material regions 14, 16 of different thicknesses, such that the recesses 18, 20 are bounded from above by the thinned regions 14, 16, of the piezoelectric layer, and bounded from below by the substrate 22.
  • the IDTs 30, 32 are configured for transduction of lateral acoustic waves of different wavelengths in the different thinned regions 14, 16.
  • FIG. 9C illustrates a multi-frequency MEMS guided wave device similar to the device of FIG. 9B, with addition of an electrode 72 within the second recess 20.
  • the device of FIG. 9C includes first and second IDTs 30, 32 arranged over first and second thinned piezoelectric material regions 14, 16 of different thicknesses bounding recesses 18, 20, with one surface 60 of the piezoelectric layer 12 being bonded to a substrate 22 along a bonded interface 24.
  • Unfilled recesses 18, 20 are defined below first and second thinned regions 14, 16 of the piezoelectric layer 12, such that recesses 18, 78 are continuous with one another, and recesses 20, 80 are continuous with one another.
  • the IDTs 30, 32 are configured for transduction of lateral acoustic waves of different wavelengths in the different thinned regions 14, 16.
  • FIG. 9C illustrates an electrode 72 formed only in the second recess 20, it is to be appreciated that electrodes may be formed in either or both recesses 18, 20 in certain embodiments.
  • FIGS. 9B and 9C illustrate the recesses 18, 20, 78, and 80 as unfilled cavities
  • one, some, or all of the recesses 18, 20, 78, or 80 may be partially or completely filled with a material such as a fast wave propagation material or a slow wave propagation material.
  • a field layer is intermediately arranged between the piezoelectric layer and the substrate layer, wherein the field layer defines a first field layer aperture substantially registered with the first recess and defines a second field layer aperture substantially registered with the second recess.
  • FIG. 10A is a cross-sectional view of a substrate 22 overlaid with a composite layer including a field layer material 82 as well as first and second sacrificial layer regions 88, 90 provided in apertures 84, 86 defined in the field layer material 82.
  • the field layer material 82 may be deposited on a surface of the substrate 22, followed by definition of apertures 84, 86 by photolithography, followed by deposition of sacrificial layer regions 88, 90 in the apertures 84, 86.
  • the substrate 22 and composite layer shown in FIG. 10A are suitable for use in fabricating multi-frequency MEMS guided wave devices according to FIGS. 10B and 10C.
  • FIG. 10B illustrates a multi-frequency MEMS guided wave device similar to the device of FIG. 4H, but including the substrate 22 of FIG. 10A following removal of the sacrificial material 88, 90 to yield unfilled apertures 84, 86 in the field layer material 82, wherein the apertures 84, 86 defined in the field layer material 82 are substantially registered with unfilled recesses 18, 20 defined below the first and second thinned regions 14, 16 of the piezoelectric layer 12.
  • recesses 18, 20 are continuous with the apertures 84, 86, respectively, such that the recesses 18, 20 are bounded from above by the piezoelectric layer 12, bounded laterally by the piezoelectric layer 12 and the apertures 84, 86, and bounded from below by the substrate 22.
  • a bonded interface 24 is provided between the piezoelectric layer 12 and the substrate 22 proximate to the field layer 82, which is intermediately arranged between the piezoelectric layer 12 and the substrate 22.
  • 10B embodies a multi-frequency MEMS guided wave device including first and second IDTs 30, 32 arranged over first and second thinned piezoelectric material regions 14, 16 of different thicknesses bounding unfilled recesses 18, 20.
  • the IDTs 30, 32 are configured for transduction of lateral acoustic waves of different wavelengths in the different thinned regions 14, 16.
  • FIG. 10C illustrates a multi-frequency MEMS guided wave device similar to the device of FIG. 10B, with addition of an electrode 72 within the second recess 20.
  • the device of FIG. 10C includes first and second IDTs 30, 32 arranged over first and second thinned piezoelectric material regions 14, 16 arranged over recesses 18, 20.
  • the recesses 18, 20 are continuous with apertures 84, 86, respectively, such that the recesses 18, 20 are bounded from above by the piezoelectric layer 12, bounded laterally by the piezoelectric layer 12 and the apertures 84, 86, and bounded from below by the substrate 22.
  • a bonded interface 24 is provided between the piezoelectric layer 12 and the substrate 22 proximate to the field layer 82, which is intermediately arranged between the piezoelectric layer 12 and the substrate 22.
  • the first IDT 30, and the second IDT 32 in combination with the electrode 72, are configured for transduction of acoustic waves of different wavelengths in the different thinned regions 14, 16.
  • FIG. 10C illustrates an electrode 72 formed only in the second recess 20, it is to be appreciated that electrodes may be formed in either or both recesses 18, 20 in certain embodiments.
  • FIGS. 10B and 10C illustrate the recesses 18, 20 and the apertures 84, 86 as unfilled cavities
  • one, some, or all of the recesses 18, 20 and/or the apertures 84, 86 may be partially or completely filled with a material such as a fast wave propagation material or a slow wave propagation material.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Micromachines (AREA)
PCT/US2015/066300 2014-12-17 2015-12-17 Multi-frequency guided wave devices and fabrication methods Ceased WO2016100626A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/972,929 US10348269B2 (en) 2014-12-17 2015-12-17 Multi-frequency guided wave devices and fabrication methods
US16/505,775 US11476827B2 (en) 2014-12-17 2019-07-09 Multi-frequency guided wave devices and fabrication methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462093184P 2014-12-17 2014-12-17
US62/093,184 2014-12-17
US201462093753P 2014-12-18 2014-12-18
US62/093,753 2014-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/972,929 Continuation US10348269B2 (en) 2014-12-17 2015-12-17 Multi-frequency guided wave devices and fabrication methods

Publications (1)

Publication Number Publication Date
WO2016100626A1 true WO2016100626A1 (en) 2016-06-23

Family

ID=55071237

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2015/066300 Ceased WO2016100626A1 (en) 2014-12-17 2015-12-17 Multi-frequency guided wave devices and fabrication methods
PCT/US2015/066424 Ceased WO2016100692A2 (en) 2014-12-17 2015-12-17 Plate wave devices with wave confinement structures and fabrication methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2015/066424 Ceased WO2016100692A2 (en) 2014-12-17 2015-12-17 Plate wave devices with wave confinement structures and fabrication methods

Country Status (4)

Country Link
US (6) US10374573B2 (cg-RX-API-DMAC7.html)
JP (2) JP6800882B2 (cg-RX-API-DMAC7.html)
CN (1) CN107567682B (cg-RX-API-DMAC7.html)
WO (2) WO2016100626A1 (cg-RX-API-DMAC7.html)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658596C1 (ru) * 2017-08-07 2018-06-21 Акционерное общество "Научно-производственное предприятие "Радар ммс" Чувствительный элемент на поверхностных акустических волнах для измерения давления жидкостей и газов

Families Citing this family (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225311B2 (en) * 2012-02-21 2015-12-29 International Business Machines Corporation Method of manufacturing switchable filters
CN104380601B (zh) * 2012-06-22 2016-12-21 株式会社村田制作所 弹性波装置
CN107567682B (zh) 2014-12-17 2021-01-22 Qorvo美国公司 具有波限制结构的板波装置和制造方法
US10770642B2 (en) * 2015-03-24 2020-09-08 Carnegie Mellon University Two-dimensional mode resonators
US10305443B2 (en) 2016-01-22 2019-05-28 Qorvo Us, Inc. Mixed domain guided wave devices utilizing embedded electrodes
US10173262B2 (en) * 2016-02-04 2019-01-08 The Aerospace Corporation Systems and methods for monitoring temperature using acoustic waves during processing of a material
US10938367B2 (en) 2016-03-31 2021-03-02 Qorvo Us, Inc. Solidly mounted layer thin film device with grounding layer
US10160061B2 (en) * 2016-08-15 2018-12-25 The Aerospace Corporation Systems and methods for modifying acoustic waves based on selective heating
US10804879B2 (en) 2016-09-30 2020-10-13 Intel Corporation Film bulk acoustic resonator (FBAR) devices for high frequency RF filters
US10924086B2 (en) * 2016-10-14 2021-02-16 Qorvo Us, Inc. Surface acoustic wave (SAW) device with antireflective structure
JP2018093487A (ja) * 2016-11-30 2018-06-14 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. 段状断面の圧電基板を備えたsawフィルタ
JP2018110291A (ja) * 2016-12-28 2018-07-12 株式会社村田製作所 弾性波デバイス
US11032011B2 (en) * 2017-04-06 2021-06-08 Arizona Board Of Regents On Behalf Of The University Of Arizona Systems and methods for a quantum-analogue computer
DE102017111448B4 (de) * 2017-05-24 2022-02-10 RF360 Europe GmbH SAW-Vorrichtung mit unterdrückten Störmodensignalen
US11539341B2 (en) 2017-07-04 2022-12-27 Kyocera Corporation Acoustic wave device, multiplexer, and communication apparatus
US11451209B2 (en) * 2017-10-31 2022-09-20 The Board Of Trustees Of The University Of Illinois Interdigital transducers on a piezoelectric thin-film for signal compression
US11316495B2 (en) * 2017-11-15 2022-04-26 Huawei Technologies Co., Ltd. Surface acoustic wave device
US11218132B2 (en) 2017-12-12 2022-01-04 Ii-Vi Delaware, Inc. Acoustic resonator
FR3076126A1 (fr) * 2017-12-26 2019-06-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de realisation d'un resonateur acoustique a ondes de volume a capacite parasite reduite
US10601392B2 (en) 2018-06-15 2020-03-24 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator
US11323090B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US10790802B2 (en) 2018-06-15 2020-09-29 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated Y-X cut lithium niobate
US12237826B2 (en) 2018-06-15 2025-02-25 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US12040779B2 (en) 2020-04-20 2024-07-16 Murata Manufacturing Co., Ltd. Small transversely-excited film bulk acoustic resonators with enhanced Q-factor
US11509279B2 (en) 2020-07-18 2022-11-22 Resonant Inc. Acoustic resonators and filters with reduced temperature coefficient of frequency
US12088281B2 (en) 2021-02-03 2024-09-10 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multi-mark interdigital transducer
US11323096B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US10756697B2 (en) 2018-06-15 2020-08-25 Resonant Inc. Transversely-excited film bulk acoustic resonator
US11146232B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US10637438B2 (en) 2018-06-15 2020-04-28 Resonant Inc. Transversely-excited film bulk acoustic resonators for high power applications
US10911023B2 (en) 2018-06-15 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with etch-stop layer
US11996827B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11206009B2 (en) 2019-08-28 2021-12-21 Resonant Inc. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US11323089B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
CN111727565B (zh) * 2018-02-26 2024-11-22 京瓷株式会社 弹性波元件
FR3079668B1 (fr) 2018-03-29 2020-03-27 Frec'n'sys Dispositif d'onde acoustique de surface sur substrat composite
JP7169083B2 (ja) * 2018-04-04 2022-11-10 太陽誘電株式会社 弾性波デバイスおよびマルチプレクサ
CN108540105A (zh) * 2018-04-11 2018-09-14 武汉大学 射频谐振器结构
SG10201905013VA (en) * 2018-06-11 2020-01-30 Skyworks Solutions Inc Acoustic wave device with spinel layer
US10868513B2 (en) 2018-06-15 2020-12-15 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US12113512B2 (en) 2021-03-29 2024-10-08 Murata Manufacturing Co., Ltd. Layout of XBARs with multiple sub-resonators in parallel
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US12170516B2 (en) 2018-06-15 2024-12-17 Murata Manufacturing Co., Ltd. Filters using transversly-excited film bulk acoustic resonators with frequency-setting dielectric layers
US11228296B2 (en) 2018-06-15 2022-01-18 Resonant Inc. Transversely-excited film bulk acoustic resonator with a cavity having a curved perimeter
US12224732B2 (en) 2018-06-15 2025-02-11 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonators and filters for 27 GHz communications bands
US11171629B2 (en) 2018-06-15 2021-11-09 Resonant Inc. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US10985728B2 (en) 2018-06-15 2021-04-20 Resonant Inc. Transversely-excited film bulk acoustic resonator and filter with a uniform-thickness dielectric overlayer
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US12237827B2 (en) 2018-06-15 2025-02-25 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic filters with multiple piezoelectric plate thicknesses
US11323091B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US11349452B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US12191838B2 (en) 2018-06-15 2025-01-07 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic device and method
US12095441B2 (en) 2018-06-15 2024-09-17 Murata Manufacturing Co., Ltd. Transversely excited film bulk acoustic resonator with recessed interdigital transducer fingers
US12081187B2 (en) 2018-06-15 2024-09-03 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator
US12218650B2 (en) 2018-06-15 2025-02-04 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator
US11146238B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Film bulk acoustic resonator fabrication method
US12463619B2 (en) 2018-06-15 2025-11-04 Murata Manufacturing Co., Ltd. Filter device
US12155371B2 (en) 2021-03-29 2024-11-26 Murata Manufacturing Co., Ltd. Layout of xbars with multiple sub-resonators in series
US11323095B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Rotation in XY plane to suppress spurious modes in XBAR devices
US12155374B2 (en) 2021-04-02 2024-11-26 Murata Manufacturing Co., Ltd. Tiled transversely-excited film bulk acoustic resonator high power filters
US11349450B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Symmetric transversely-excited film bulk acoustic resonators with reduced spurious modes
US10992284B2 (en) 2018-06-15 2021-04-27 Resonant Inc. Filter using transversely-excited film bulk acoustic resonators with multiple frequency setting layers
US10917072B2 (en) 2019-06-24 2021-02-09 Resonant Inc. Split ladder acoustic wave filters
US12119808B2 (en) 2018-06-15 2024-10-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US11201601B2 (en) 2018-06-15 2021-12-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US10998877B2 (en) 2018-06-15 2021-05-04 Resonant Inc. Film bulk acoustic resonator fabrication method with frequency trimming based on electric measurements prior to cavity etch
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11996825B2 (en) 2020-06-17 2024-05-28 Murata Manufacturing Co., Ltd. Filter using lithium niobate and rotated lithium tantalate transversely-excited film bulk acoustic resonators
US12191837B2 (en) 2018-06-15 2025-01-07 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic device
US12212306B2 (en) 2018-06-15 2025-01-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US10992283B2 (en) 2018-06-15 2021-04-27 Resonant Inc. High power transversely-excited film bulk acoustic resonators on rotated Z-cut lithium niobate
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US12301212B2 (en) 2018-06-15 2025-05-13 Murata Manufacturing Co., Ltd. XBAR resonators with non-rectangular diaphragms
US11329628B2 (en) 2020-06-17 2022-05-10 Resonant Inc. Filter using lithium niobate and lithium tantalate transversely-excited film bulk acoustic resonators
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US12283944B2 (en) 2018-06-15 2025-04-22 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with recessed rotated-Y-X cut lithium niobate
US12040781B2 (en) 2018-06-15 2024-07-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US12149227B2 (en) 2018-06-15 2024-11-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US10826462B2 (en) 2018-06-15 2020-11-03 Resonant Inc. Transversely-excited film bulk acoustic resonators with molybdenum conductors
US10797675B2 (en) 2018-06-15 2020-10-06 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated z-cut lithium niobate
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US12119805B2 (en) 2018-06-15 2024-10-15 Murata Manufacturing Co., Ltd. Substrate processing and membrane release of transversely-excited film bulk acoustic resonator using a sacrificial tub
US11374549B2 (en) 2018-06-15 2022-06-28 Resonant Inc. Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers
US11728785B2 (en) 2018-06-15 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US12184261B2 (en) 2018-06-15 2024-12-31 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a cavity having round end zones
US12244295B2 (en) 2018-06-15 2025-03-04 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US12375056B2 (en) 2018-06-15 2025-07-29 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators
US12009798B2 (en) 2018-06-15 2024-06-11 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with electrodes having irregular hexagon cross-sectional shapes
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11264966B2 (en) 2018-06-15 2022-03-01 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US12095446B2 (en) 2018-06-15 2024-09-17 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US12021496B2 (en) * 2020-08-31 2024-06-25 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US10998882B2 (en) 2018-06-15 2021-05-04 Resonant Inc. XBAR resonators with non-rectangular diaphragms
US11646714B2 (en) * 2018-07-10 2023-05-09 Texas Instruments Incorporated Laterally vibrating bulk acoustic wave resonator
US11362640B2 (en) * 2018-07-17 2022-06-14 Ii-Vi Delaware, Inc. Electrode-defined unsuspended acoustic resonator
DE102019115589B4 (de) 2018-07-17 2024-06-13 Ii-Vi Delaware, Inc. Elektrodenbegrenzter resonator
US11750169B2 (en) 2018-07-17 2023-09-05 Ii-Vi Delaware, Inc. Electrode-defined unsuspended acoustic resonator
US12076973B2 (en) 2018-07-17 2024-09-03 Ii-Vi Delaware, Inc. Bonded substrate including polycrystalline diamond film
US11738539B2 (en) 2018-07-17 2023-08-29 II-VI Delaware, Inc Bonded substrate including polycrystalline diamond film
US10630256B2 (en) * 2018-09-07 2020-04-21 Vtt Technical Research Centre Of Finland Ltd Two-stage lateral bulk acoustic wave filter
CN112823473B (zh) * 2018-09-20 2024-04-16 株式会社村田制作所 弹性波装置
GB2612701B (en) * 2018-10-16 2023-08-02 Univ Tohoku Acoustic wave devices
CN118523745A (zh) * 2018-10-31 2024-08-20 株式会社村田制作所 固态装配型横向激励的薄膜体声波谐振器
EP3878097A1 (en) * 2018-11-13 2021-09-15 Huawei Technologies Co., Ltd. Surface acoustic wave device with phononic crystal
US12063027B2 (en) 2018-11-21 2024-08-13 Skyworks Solutions, Inc. Acoustic wave device with ceramic substrate
US11621694B2 (en) * 2018-12-06 2023-04-04 Texas Instruments Incorporated Lamb wave resonator-based torque sensor
CN109831172B (zh) 2018-12-20 2022-03-01 苏州敏芯微电子技术股份有限公司 一种体声波谐振器的制备方法
US11489511B2 (en) * 2018-12-30 2022-11-01 Texas Instruments Incorporated Highly dispersive bulk acoustic wave resonators
US11177791B2 (en) * 2019-02-01 2021-11-16 Qorvo Us, Inc. High quality factor transducers for surface acoustic wave devices
US11876501B2 (en) 2019-02-26 2024-01-16 Skyworks Solutions, Inc. Acoustic wave device with multi-layer substrate including ceramic
DE112020001227T5 (de) 2019-03-14 2022-02-10 Resonant Inc. Transversal angeregter akustischer Filmresonator mit Lambda-Halbe-Dielektrikumschicht
US11901873B2 (en) * 2019-03-14 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with partial BRAGG reflectors
KR20250136424A (ko) * 2019-04-03 2025-09-16 도호쿠 다이가쿠 고차 모드 표면 탄성파 디바이스
CN118316415A (zh) 2019-04-05 2024-07-09 株式会社村田制作所 横向激励薄膜体声波谐振器封装和方法
TWI866311B (zh) * 2019-06-12 2024-12-11 美商特拉華公司 電極界定未懸掛之聲波共振器
US12034423B2 (en) 2019-06-27 2024-07-09 Murata Manufacturing Co., Ltd XBAR frontside etch process using polysilicon sacrificial layer
US10911021B2 (en) 2019-06-27 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with lateral etch stop
US10862454B1 (en) 2019-07-18 2020-12-08 Resonant Inc. Film bulk acoustic resonators in thin LN-LT layers
US11329625B2 (en) 2019-07-18 2022-05-10 Resonant Inc. Film bulk acoustic sensors using thin LN-LT layer
CN110460319B (zh) * 2019-08-20 2020-10-09 电子科技大学 一种集成鱼鳞形反射镜阵列的体声波谐振器及其加工方法
JP7459934B2 (ja) * 2019-08-28 2024-04-02 株式会社村田製作所 複数のダイアフラム厚さ有する横方向励起フィルムバルク音響共振器及び製造方法
WO2021042345A1 (zh) * 2019-09-05 2021-03-11 刘宇浩 一种体声波谐振装置的形成方法
CN114467257A (zh) * 2019-09-27 2022-05-10 株式会社村田制作所 弹性波装置
US12301201B2 (en) * 2019-09-27 2025-05-13 Skyworks Solutions, Inc. Acoustic wave element having high acoustic velocity layer
US11909378B2 (en) 2019-11-21 2024-02-20 Skyworks Solutions, Inc. Acoustic wave device with velocity adjustment layer
US11463065B2 (en) 2019-12-03 2022-10-04 Skyworks Solutions, Inc. Laterally excited bulk wave device with acoustic mirror
US11552614B2 (en) 2019-12-03 2023-01-10 Skyworks Solutions, Inc. Laterally excited bulk wave device with acoustic mirrors
JP7561343B2 (ja) * 2019-12-09 2024-10-04 三安ジャパンテクノロジー株式会社 表面弾性波フィルタ、デュプレクサ及びモジュール
CN113098431B (zh) * 2020-01-08 2023-09-08 中芯集成电路(宁波)有限公司 用于制作声波谐振器复合基板及表声波谐振器及制造方法
US12255625B2 (en) 2020-02-28 2025-03-18 Murata Manufacturing Co., Ltd. Filter using transversely-excited film bulk acoustic resonators with inductively coupled sub-resonators
US12506462B2 (en) 2020-02-28 2025-12-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multi-pitch interdigital transducer
JP7428237B2 (ja) * 2020-03-18 2024-02-06 株式会社村田製作所 弾性波装置及び複合フィルタ装置
US12278617B2 (en) 2020-04-20 2025-04-15 Murata Manufacturing Co., Ltd. High Q solidly-mounted transversely-excited film bulk acoustic resonators
US12341493B2 (en) 2020-04-20 2025-06-24 Murata Manufacturing Co., Ltd. Low loss transversely-excited film bulk acoustic resonators and filters
US12341490B2 (en) 2020-04-20 2025-06-24 Murata Manufacturing Co., Ltd. Low loss transversely-excited film bulk acoustic resonators and filters
CN117254781A (zh) * 2020-04-29 2023-12-19 株式会社村田制作所 弹性波器件和梯形滤波器
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11469733B2 (en) 2020-05-06 2022-10-11 Resonant Inc. Transversely-excited film bulk acoustic resonators with interdigital transducer configured to reduce diaphragm stress
US12074584B2 (en) 2020-05-28 2024-08-27 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes
US12267062B2 (en) 2020-06-17 2025-04-01 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with three-layer electrodes
US10992282B1 (en) 2020-06-18 2021-04-27 Resonant Inc. Transversely-excited film bulk acoustic resonators with electrodes having a second layer of variable width
US11742828B2 (en) 2020-06-30 2023-08-29 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with symmetric diaphragm
CN111817678B (zh) * 2020-07-03 2021-12-28 中国科学院上海微系统与信息技术研究所 单片式混合集成声波谐振器阵列及其制备方法
US11817845B2 (en) 2020-07-09 2023-11-14 Murata Manufacturing Co., Ltd. Method for making transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate
WO2022014495A1 (ja) * 2020-07-15 2022-01-20 株式会社村田製作所 弾性波装置
US11264969B1 (en) 2020-08-06 2022-03-01 Resonant Inc. Transversely-excited film bulk acoustic resonator comprising small cells
US11271539B1 (en) 2020-08-19 2022-03-08 Resonant Inc. Transversely-excited film bulk acoustic resonator with tether-supported diaphragm
US11671070B2 (en) 2020-08-19 2023-06-06 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators using multiple dielectric layer thicknesses to suppress spurious modes
WO2022047406A1 (en) * 2020-08-31 2022-03-03 Resonant Inc. Resonators with different membrane thicknesses on the same die
WO2022054773A1 (ja) * 2020-09-09 2022-03-17 株式会社村田製作所 弾性波装置
US11894835B2 (en) 2020-09-21 2024-02-06 Murata Manufacturing Co., Ltd. Sandwiched XBAR for third harmonic operation
US11405019B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters
US11929733B2 (en) 2020-10-05 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with input and output impedances matched to radio frequency front end elements
US11728784B2 (en) 2020-10-05 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with split die sub-filters
US11405017B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Acoustic matrix filters and radios using acoustic matrix filters
US11658639B2 (en) 2020-10-05 2023-05-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with noncontiguous passband
US11476834B2 (en) 2020-10-05 2022-10-18 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters with switches in parallel with sub-filter shunt capacitors
US11463066B2 (en) 2020-10-14 2022-10-04 Resonant Inc. Transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate
CN112217490B (zh) * 2020-10-22 2021-09-14 展讯通信(上海)有限公司 层状温补型声表面波谐振器与封装方法
CN112290904A (zh) * 2020-10-29 2021-01-29 武汉大学 基于嵌入型电极的超高频谐振器
US12119806B2 (en) 2020-10-30 2024-10-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with spiral interdigitated transducer fingers
US12255617B2 (en) 2020-11-11 2025-03-18 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonators with low thermal impedance
US12003226B2 (en) 2020-11-11 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance
US12431856B2 (en) 2020-11-12 2025-09-30 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced loss in the aperture direction
US12255626B2 (en) 2020-11-13 2025-03-18 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic filters with excess piezoelectric material removed
US12028039B2 (en) 2020-11-13 2024-07-02 Murata Manufacturing Co., Ltd. Forming XBAR devices with excess piezoelectric material removed
US12362725B2 (en) 2020-11-13 2025-07-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic filters with excess piezoelectric material removed
US11496113B2 (en) 2020-11-13 2022-11-08 Resonant Inc. XBAR devices with excess piezoelectric material removed
US11405020B2 (en) 2020-11-26 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonators with structures to reduce acoustic energy leakage
CN112564666B (zh) * 2020-12-03 2024-06-11 武汉敏声新技术有限公司 一种中空型超高频谐振器
CN116569487A (zh) * 2020-12-11 2023-08-08 株式会社村田制作所 弹性波装置
CN112653414B (zh) * 2020-12-17 2024-04-12 广东广纳芯科技有限公司 兰姆波谐振器及具备该兰姆波谐振器的滤波器和电子设备
CN112886941B (zh) * 2020-12-23 2022-04-26 杭州左蓝微电子技术有限公司 声表面波谐振器及其制造方法
CN116671012A (zh) * 2021-01-12 2023-08-29 株式会社村田制作所 弹性波装置
US12166468B2 (en) 2021-01-15 2024-12-10 Murata Manufacturing Co., Ltd. Decoupled transversely-excited film bulk acoustic resonators for high power filters
US11239816B1 (en) 2021-01-15 2022-02-01 Resonant Inc. Decoupled transversely-excited film bulk acoustic resonators
US12126318B2 (en) 2021-01-15 2024-10-22 Murata Manufacturing Co., Ltd. Filters using decoupled transversely-excited film bulk acoustic resonators
US12463615B2 (en) 2021-01-21 2025-11-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonators with improved coupling and reduced energy leakage
US12308826B2 (en) 2021-02-03 2025-05-20 Murata Manufacturing Co., Ltd. Bandpass filters using transversely-excited film bulk acoustic resonators
US12113510B2 (en) 2021-02-03 2024-10-08 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with multiple piezoelectric membrane thicknesses on the same chip
US12308825B2 (en) 2021-02-12 2025-05-20 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonators with narrow gaps between busbars and ends of interdigital transducer fingers
US12348216B2 (en) 2021-03-24 2025-07-01 Murata Manufacturing Co., Ltd. Acoustic filters with shared acoustic tracks and cascaded series resonators
US12355426B2 (en) 2021-03-24 2025-07-08 Murata Manufacturing Co., Ltd. Acoustic filters with shared acoustic tracks
US12289099B2 (en) 2021-03-24 2025-04-29 Murata Manufacturing Co., Ltd. Acoustic filters with shared acoustic tracks for series and shunt resonators
US12126328B2 (en) 2021-03-24 2024-10-22 Murata Manufacturing Co., Ltd. Acoustic filters with shared acoustic tracks
US12341492B2 (en) 2021-03-29 2025-06-24 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with busbar side edges that form angles with a perimeter of the cavity
US12224735B2 (en) 2021-03-30 2025-02-11 Murata Manufacturing Co., Ltd. Diplexer using decoupled transversely-excited film bulk acoustic resonators
WO2022212569A1 (en) 2021-03-30 2022-10-06 Resonant Inc. Filter for 6 ghz wi-fi using transversely-excited film bulk acoustic resonators
US20220321088A1 (en) * 2021-03-31 2022-10-06 Skyworks Solutions, Inc. Acoustic wave device with double side acoustic mirror
US12249971B2 (en) 2021-04-02 2025-03-11 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with solidly mounted resonator (SMR) pedestals
US12237823B2 (en) 2021-04-02 2025-02-25 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with solidly mounted resonator (SMR) pedestals
US12126316B2 (en) 2021-04-16 2024-10-22 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator
US12255633B2 (en) 2021-04-16 2025-03-18 Murata Manufacturing Co., Ltd. Filter using transversely-excited film bulk acoustic resonators
US12160220B2 (en) 2021-04-30 2024-12-03 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with oxide strip acoustic confinement structures
US12255607B2 (en) 2021-04-30 2025-03-18 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with buried oxide strip acoustic confinement structures
US12075700B2 (en) * 2021-05-07 2024-08-27 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator fabrication using polysilicon pillars
US12057823B2 (en) 2021-05-07 2024-08-06 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with concentric interdigitated transducer fingers
KR102834841B1 (ko) 2021-06-22 2025-07-17 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
US12170513B2 (en) 2021-06-30 2024-12-17 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced substrate to contact bump thermal resistance
CN113489471B (zh) * 2021-07-12 2023-11-17 无锡市好达电子股份有限公司 一种低损耗的声表面波装置
CN113328724A (zh) * 2021-07-22 2021-08-31 绍兴汉天下微电子有限公司 一种体声波谐振器及其制作方法
WO2023048191A1 (ja) * 2021-09-24 2023-03-30 株式会社村田製作所 フィルタ装置
US12456962B2 (en) 2021-09-24 2025-10-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators wafer-level packaging using a dielectric cover
US12225387B2 (en) 2021-09-29 2025-02-11 Murata Manufacturing Co., Ltd. Communications device with concurrent operation in 5GHZ and 6GHZ U-NII frequency ranges
US12451864B2 (en) 2021-09-29 2025-10-21 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with curved shaped ends of fingers or opposing busbars
US20230103956A1 (en) * 2021-10-04 2023-04-06 Skyworks Solutions, Inc. Stacked single mirror acoustic wave device and double mirror acoustic wave device
US12316297B2 (en) * 2021-10-12 2025-05-27 Skyworks Solutions, Inc. Interdigital transducer electrode for acoustic wave device with improved response
WO2023074463A1 (ja) * 2021-10-26 2023-05-04 株式会社村田製作所 弾性波装置
US12407326B2 (en) 2021-11-04 2025-09-02 Murata Manufacturing Co., Ltd. Stacked die transversely-excited film bulk acoustic resonator (XBAR) filters
US12424999B2 (en) 2021-12-28 2025-09-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with gap dielectric stripes in busbar-electrode gaps
US12494768B2 (en) 2021-12-28 2025-12-09 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with gap dielectric stripes in busbar-electrode gaps
US12413196B2 (en) 2022-02-16 2025-09-09 Murata Manufacturing Co., Ltd. Tuning acoustic resonators with back-side coating
JP7745741B2 (ja) * 2022-02-22 2025-09-29 京セラ株式会社 弾性波装置および通信装置
WO2023190656A1 (ja) * 2022-03-29 2023-10-05 株式会社村田製作所 弾性波装置
US12489417B2 (en) 2022-04-12 2025-12-02 Murata Manufacturing Co., Ltd. Ladder filter with transversely-excited film bulk acoustic resonators having different pitches
US20240002216A1 (en) * 2022-06-30 2024-01-04 Texas Instruments Incorporated Micro-acoustic resonator springy anchor based on offset acoustic reflector trenches
CN119422327A (zh) * 2022-07-15 2025-02-11 株式会社村田制作所 弹性波装置
US12494757B2 (en) * 2022-09-16 2025-12-09 Shenzhen Newsonic Technology Co., Ltd. Structure and manufacturing method of surface acoustic wave filter with interdigital transducer
US12489415B2 (en) 2022-10-19 2025-12-02 Murata Manufacturing Co., Ltd. Acoustic resonator lid for thermal transport
US20240275357A1 (en) * 2023-02-09 2024-08-15 Qorvo Us, Inc. Surface acoustic wave device having an interface layer between an idt and a piezoelectric layer
US20240333260A1 (en) * 2023-03-28 2024-10-03 Skyworks Solutions, Inc. Stacked surface acoustic wave device
WO2025192328A1 (ja) * 2024-03-14 2025-09-18 京セラ株式会社 弾性波装置
CN119341517A (zh) * 2024-12-20 2025-01-21 天通瑞宏科技有限公司 一种声表面滤波器及其制备方法
CN119363063A (zh) * 2024-12-27 2025-01-24 天通瑞宏科技有限公司 一种具有板波抑制的晶圆结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1821406A2 (en) * 2006-02-16 2007-08-22 Seiko Epson Corporation Lamb wave type frequency device and method thereof
US7586239B1 (en) 2007-06-06 2009-09-08 Rf Micro Devices, Inc. MEMS vibrating structure using a single-crystal piezoelectric thin film layer
US20100327995A1 (en) 2009-06-30 2010-12-30 Commissariat a L'Energie Atomique at aux Energies Alternatives Guided Acoustic Wave Resonant Device and Method for Producing the Device
US7898158B1 (en) 2007-11-01 2011-03-01 Rf Micro Devices, Inc. MEMS vibrating structure using a single-crystal piezoelectric thin-film layer having domain inversions
US20110109196A1 (en) * 2008-07-11 2011-05-12 Goto Rei Plate wave element and electronic equipment using same
US8278802B1 (en) * 2008-04-24 2012-10-02 Rf Micro Devices, Inc. Planarized sacrificial layer for MEMS fabrication

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664509A (en) * 1979-12-20 1981-06-01 Kinseki Kk Surface elastic wave element
JP3088189B2 (ja) 1992-02-25 2000-09-18 三菱電機株式会社 弾性表面波装置
JP3318920B2 (ja) 1994-05-10 2002-08-26 住友電気工業株式会社 表面弾性波素子
US6767749B2 (en) 2002-04-22 2004-07-27 The United States Of America As Represented By The Secretary Of The Navy Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting
JP2004187204A (ja) * 2002-12-06 2004-07-02 Sony Corp 音響共振器および信号処理装置
DE10325281B4 (de) * 2003-06-04 2018-05-17 Snaptrack, Inc. Elektroakustisches Bauelement und Verfahren zur Herstellung
US7353710B2 (en) * 2003-11-27 2008-04-08 Kyocera Corporation Pressure sensor device with surface acoustic wave elements
JP4483323B2 (ja) 2004-02-05 2010-06-16 セイコーエプソン株式会社 弾性表面波デバイス
JP2007202087A (ja) * 2005-05-11 2007-08-09 Seiko Epson Corp ラム波型高周波デバイス
US7619347B1 (en) 2005-05-24 2009-11-17 Rf Micro Devices, Inc. Layer acoustic wave device and method of making the same
US20070057734A1 (en) * 2005-09-09 2007-03-15 Ruby Richard C Oscillatory circuit having two oscillators
DE102005055871A1 (de) 2005-11-23 2007-05-24 Epcos Ag Elektroakustisches Bauelement
CN100550619C (zh) * 2006-02-16 2009-10-14 精工爱普生株式会社 拉姆波式高频设备、拉姆波式高频设备的制造方法
JP4627269B2 (ja) 2006-02-24 2011-02-09 日本碍子株式会社 圧電薄膜デバイスの製造方法
US8490260B1 (en) 2007-01-17 2013-07-23 Rf Micro Devices, Inc. Method of manufacturing SAW device substrates
US7408286B1 (en) 2007-01-17 2008-08-05 Rf Micro Devices, Inc. Piezoelectric substrate for a saw device
US7812692B2 (en) * 2007-06-01 2010-10-12 Georgia Tech Research Corporation Piezo-on-diamond resonators and resonator systems
US9391588B2 (en) 2007-08-31 2016-07-12 Rf Micro Devices, Inc. MEMS vibrating structure using an orientation dependent single-crystal piezoelectric thin film layer
JP5433367B2 (ja) 2008-11-19 2014-03-05 日本碍子株式会社 ラム波装置
EP2377176B1 (en) 2008-12-17 2016-12-14 Analog Devices, Inc. Mechanical resonating structures including a temperature compensation structure
WO2010082571A1 (ja) * 2009-01-15 2010-07-22 株式会社村田製作所 圧電デバイスおよび圧電デバイスの製造方法
EP2658122B1 (en) * 2010-12-24 2019-02-13 Murata Manufacturing Co., Ltd. Elastic wave device and production method thereof
JP5650553B2 (ja) * 2011-02-04 2015-01-07 太陽誘電株式会社 弾性波デバイスの製造方法
FR2974691B1 (fr) * 2011-04-28 2019-08-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif electromecanique a ondes acoustiques comprenant une zone de transduction et une cavite etendue
JP6092535B2 (ja) * 2012-07-04 2017-03-08 太陽誘電株式会社 ラム波デバイスおよびその製造方法
US9466430B2 (en) 2012-11-02 2016-10-11 Qorvo Us, Inc. Variable capacitor and switch structures in single crystal piezoelectric MEMS devices using bimorphs
US9991872B2 (en) 2014-04-04 2018-06-05 Qorvo Us, Inc. MEMS resonator with functional layers
CN107567682B (zh) 2014-12-17 2021-01-22 Qorvo美国公司 具有波限制结构的板波装置和制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1821406A2 (en) * 2006-02-16 2007-08-22 Seiko Epson Corporation Lamb wave type frequency device and method thereof
US7586239B1 (en) 2007-06-06 2009-09-08 Rf Micro Devices, Inc. MEMS vibrating structure using a single-crystal piezoelectric thin film layer
US7898158B1 (en) 2007-11-01 2011-03-01 Rf Micro Devices, Inc. MEMS vibrating structure using a single-crystal piezoelectric thin-film layer having domain inversions
US8278802B1 (en) * 2008-04-24 2012-10-02 Rf Micro Devices, Inc. Planarized sacrificial layer for MEMS fabrication
US20110109196A1 (en) * 2008-07-11 2011-05-12 Goto Rei Plate wave element and electronic equipment using same
US20100327995A1 (en) 2009-06-30 2010-12-30 Commissariat a L'Energie Atomique at aux Energies Alternatives Guided Acoustic Wave Resonant Device and Method for Producing the Device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GONG SONGBIN ET AL: "Monolithic Multi-Frequency Wideband RF Filters Using Two-Port Laterally Vibrating Lithium Niobate MEMS Resonators", JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, IEEE SERVICE CENTER, US, vol. 23, no. 5, 1 October 2014 (2014-10-01), pages 1188 - 1197, XP011560278, ISSN: 1057-7157, [retrieved on 20140929], DOI: 10.1109/JMEMS.2014.2308259 *
R.H. OLSSON III ET AL.: "Lamb Wave Micromechanical Resonators Formed in Thin Plates of Lithium Niobate", SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS WORKSHOP, 8 June 2014 (2014-06-08)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658596C1 (ru) * 2017-08-07 2018-06-21 Акционерное общество "Научно-производственное предприятие "Радар ммс" Чувствительный элемент на поверхностных акустических волнах для измерения давления жидкостей и газов

Also Published As

Publication number Publication date
US20190379345A1 (en) 2019-12-12
CN107567682A (zh) 2018-01-09
WO2016100692A3 (en) 2016-09-09
WO2016100692A4 (en) 2016-11-10
JP2018506930A (ja) 2018-03-08
US20160182007A1 (en) 2016-06-23
JP6800882B2 (ja) 2020-12-16
US20160182009A1 (en) 2016-06-23
JP7313327B2 (ja) 2023-07-24
US11545955B2 (en) 2023-01-03
WO2016100692A2 (en) 2016-06-23
US11476827B2 (en) 2022-10-18
CN107567682B (zh) 2021-01-22
US20230134688A1 (en) 2023-05-04
US10389332B2 (en) 2019-08-20
US10348269B2 (en) 2019-07-09
US10374573B2 (en) 2019-08-06
JP2021044835A (ja) 2021-03-18
US20160182008A1 (en) 2016-06-23
US20190341904A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
US11476827B2 (en) Multi-frequency guided wave devices and fabrication methods
US9641154B2 (en) Single crystal micromechanical resonator
JP7517840B2 (ja) 転写圧電又は強誘電体層から微小電気機械システムを製造するプロセス
JP2018506930A5 (cg-RX-API-DMAC7.html)
KR100869296B1 (ko) 압전 박막 디바이스의 제조 방법
KR100850696B1 (ko) 압전 박막 디바이스
KR100799391B1 (ko) 박막 음향공진기 및 그 제조방법
JPWO2004001964A1 (ja) 薄膜圧電共振器、薄膜圧電デバイスおよびその製造方法
WO2007078646A1 (en) Frequency tuning of film bulk acoustic resonators (fbar)
CN114242885A (zh) 体声波器件或表面声波器件及其制造方法
KR20070088397A (ko) 압전 박막 디바이스
JP5862368B2 (ja) 圧電デバイスの製造方法
JP2008306280A (ja) 圧電薄膜デバイス
US20250062747A1 (en) Transversely-excited film bulk acoustic resonators with multiple piezoelectric membrane thicknesses on the same chip
TWI748497B (zh) 電極界定未懸掛之聲波共振器
CN214851161U (zh) 一种频率可调的薄膜体声波谐振器
JP2007228340A (ja) 圧電薄膜デバイス
JP2007228320A (ja) 圧電薄膜デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821227

Country of ref document: EP

Kind code of ref document: A1