WO2016098892A1 - ザイールエボラウイルス検出用プライマーセット、アッセイキットおよび増幅方法 - Google Patents

ザイールエボラウイルス検出用プライマーセット、アッセイキットおよび増幅方法 Download PDF

Info

Publication number
WO2016098892A1
WO2016098892A1 PCT/JP2015/085534 JP2015085534W WO2016098892A1 WO 2016098892 A1 WO2016098892 A1 WO 2016098892A1 JP 2015085534 W JP2015085534 W JP 2015085534W WO 2016098892 A1 WO2016098892 A1 WO 2016098892A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
sequence
primer
complementary
sequences
Prior art date
Application number
PCT/JP2015/085534
Other languages
English (en)
French (fr)
Inventor
二朗 安田
陽平 黒▲崎▼
Original Assignee
国立大学法人 長崎大学
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015123538A external-priority patent/JP6605238B2/ja
Application filed by 国立大学法人 長崎大学, 東芝メディカルシステムズ株式会社 filed Critical 国立大学法人 長崎大学
Priority to EP15870091.4A priority Critical patent/EP3235904A1/en
Priority to CN201580069326.2A priority patent/CN107406845A/zh
Publication of WO2016098892A1 publication Critical patent/WO2016098892A1/ja
Priority to US15/626,938 priority patent/US10563249B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a primer set for detecting Zaire Ebola virus, an assay kit, and an amplification method.
  • Ebola virus is a virus that infects humans or non-human primates and kills them with high probability.
  • EBOV includes 5 of Zaire Ebola virus (ZEBOV), Sudan Ebola virus (SEBOV), Thai Forest Ebola virus (formerly Ivory Coast Ebola virus) (ICEBOV), Bundibu Goebola virus (BEBOOV) and Reston Ebola virus (REBOV).
  • ZEBOV Zaire Ebola virus
  • SEBOV Sudan Ebola virus
  • ICEBOV Thai Forest Ebola virus (formerly Ivory Coast Ebola virus)
  • BEBOOV Bundibu Goebola virus
  • REBOV Reston Ebola virus
  • ZEBOV has a fatality rate of 90% and is known as the most pathogenic virus.
  • ZEBOV is detected by pathological methods, antigen-antibody reaction methods using monoclonal antibodies, PCR methods using specific primer sets, and the like.
  • Embodiment aims at providing the means which can amplify or detect ZEBOV accurately.
  • a nucleic acid primer set for LAMP amplification for specifically amplifying the ZEBOV gene is provided.
  • the F1 sequence contains at least 13 consecutive bases contained in SEQ ID NO: 31 or 64.
  • the F2 sequence contains at least 13 consecutive bases contained in SEQ ID NO: 62 or 63.
  • the F3 sequence comprises at least 13 consecutive bases contained in SEQ ID NO: 29, 36, 38, 55, 56, 57, 58, 59, 60 or 61.
  • the B1c sequence comprises at least 13 consecutive bases contained in SEQ ID NO: 68, 69, 70, 71, 72, 73, 74 or 75.
  • the B2c sequence contains at least 13 consecutive bases contained in SEQ ID NO: 65 or 66.
  • the B3c sequence contains at least 13 consecutive bases contained in SEQ ID NO: 34, 67, 82 or 83.
  • ZEBOV is a non-segmented negative-strand RNA virus, and its length is about 19 kb. There are a leader region and a trailer region, which are non-coding sequences, at the 3 'end and 5' end of the gene, respectively.
  • the embodiment is based on the discovery that a ZEBOV strain that could not be detected so far can be detected by designing a primer region using a specific sequence of the trailer region.
  • the primer set of the embodiment can detect a 2014-type Guinea strain (Guinea 14 strain).
  • a 2014-type Guinea strain (Guinea 14 strain).
  • 14 strains of Guinea cannot be detected.
  • the 1976-type Zaire strain (Zaire 76 strain)
  • the 1995-type Zaire strain (Zaire 95 strain) that were popular in the past were used.
  • the primer region according to the embodiment will be described with reference to FIGS. 1A and 1B.
  • FIG. 1A is a diagram showing ZEBOV RNA (referred to as “vRNA” in the figure) as a template, its cDNA, and each primer in association with each other.
  • the ZEBOV RNA to be detected includes an F3c region, an F2c region, an F1c region, a B1 region, a B2 region, and a B3 region as regions (that is, recognition regions) to which each primer binds. These regions are contained in the ZEBOV RNA in this order from the 3 'side to the 5' side. These regions include the F3c sequence, F2c sequence, F1c sequence, B1 sequence, B2 sequence and B3 sequence, respectively. These sequences and their complementary sequences, ie, F3 sequence, F2 sequence, F1 sequence, B1c sequence, B2c sequence and B3c sequence are referred to as recognition sequences.
  • Such ZEBOV RNA is used as the first template sequence.
  • CDNA is a complementary strand of ZEBOV RNA, and includes F3 sequence, F2 sequence, F1 sequence, B1c sequence, B2c sequence, and B3c sequence from 5 ′ side to 3 ′ side.
  • a cDNA is produced from the ZEBOV RNA contained in the sample to be examined by reverse transcription, and the amplification reaction is performed with the primer set of the embodiment using the ZEBOV RNA and cDNA as a template nucleic acid.
  • the F1 and F1c, F2 and F2c, F3 and F3c, B1 and B1c, B2 and B2c, and B3 and B3c sequences are complementary to each other.
  • a primer set including an internal primer (FIP and BIP primer) corresponding to the above six recognition regions and two external primers (F3 and B3 primers) was designed as one set.
  • the primer set according to the embodiment includes an FIP primer, an F3 primer, a BIP primer, and a B3 primer.
  • the FIP primer includes an F1c sequence and an F2 sequence from the 5 'side toward the 3' side.
  • the F3 primer contains the F3 sequence.
  • the BIP primer includes a B1c sequence and a B2 sequence from the 5 'side toward the 3' side.
  • the B3 primer contains the B3 sequence. Regions corresponding to the sequences of these primers are indicated by arrows in FIG. 1A.
  • the direction of the arrow indicates the directionality of the primer sequence corresponding to each region.
  • the starting point of the arrow represents the 5 'end and the end point of the arrow represents the 3' end.
  • the primer set according to the embodiment may include an LF primer and / or an LB primer as a loop primer.
  • FIG. 1B is a diagram showing an example of design sequences of the LF primer and the LB primer in addition to the primer design sequence of FIG. 1A.
  • ZEBOV RNA includes F3c region, F2c region, LFc region, F1c region, B1 region, LB region, B2 region, and B3 region as primer recognition regions. These regions are contained in the ZEBOV RNA in this order from the 3 'side to the 5' side.
  • the LFc region and the LB region include an LFc sequence and an LB sequence, respectively.
  • Such ZEBOV RNA is used as a template sequence.
  • the loop primer may be designed to bind to the loop portion of the amplification product, for example.
  • the loop portion may be a region indicated as a single-stranded portion in FIG. 1B. That is, the loop region is, for example, a range from the 5 ′ end of the F2c region of the vRNA to the base 3 ′ side of the 3 ′ end of the F1c region, or the 3 ′ end of the B2 region of the vRNA to the 5 ′ end of the B1 region. It may be in the range up to 5 ′ base.
  • each primer was determined by comparing the sequences of the 130 strains with accession numbers shown in Table 1.
  • Table 2 These strain names are shown in Table 2.
  • Table 2-1, Table 2-2, Table 2-3, Table 2-4, and Table 2-5 are collectively referred to as Table 2.
  • the comparison of the 130 strains was done by creating an alignment.
  • the used region is the 18299th to 18658th of the cDNA region corresponding to the trailer sequence of each strain.
  • the primer recognition region is designed using the LAMP primer design support software program (PrimerExplorer.ver.3; Net Research Laboratory, Tokyo (Japan); http://primerexplorer.jp/e/). Thereafter, the position on the cDNA and the type of base were altered and adjusted manually and visually while taking into account information from the alignment and experimental results.
  • the designed base area is the Tr2 system.
  • the Tr2-based F3, F2, F1, B1c, B2c and B3c regions are the regions of 18339-18358, 18368-18388, 18408-18427, 18449-18471, 18501-18522 and 18543-18562, respectively. is there.
  • the T273 system and the 5'UTR system were designed by modifying and adjusting the Tr2 system.
  • the T237 series F3, F2, F1, B1c, B2c and B3c regions are the regions of 18338-18357, 18367-18387, 18407-18426, 18435-18455, 18496-18513 and 18530-18551. .
  • the 5'UTR F3, F2, F1, B1c, B2c, and B3c regions are positions 18321-18343, 18367-18387, 18407-18426, 18449-18471, 18501-18522, and 18530-18551 Furthermore, positions 18388 to 18406 are LF regions.
  • cDNA of Zaire 76 H. sapiens-tc / COD / 1976 / Yambuku- Mayinga
  • 14 strain of Guinea H. sapiens ⁇ wt / GIN / 2014 / Gückedou-C05
  • Zaire 95 strain EBOV / H. sapiens-tc / COD / 1995/13625 Kikwit
  • two Gabon 96 strains EBOV / H. sapiens-tc / GAB / 1996 / 1Eko, EBOV / H. Sapiens-tc / GAB / 1996 / Ilembe
  • Zaire 07 strain EBOV / H.
  • Sapiens-tc / COD / 2007/4 / Luebo Sapiens-tc / COD / 2007/4 / Luebo
  • the sequence shown therein shows 360 bases from the 18299th to 18658th positions in the cDNA region corresponding to the Zaire Ebola virus trailer sequence in the 5 'to 3' direction.
  • 2A to 2C also show the primer recognition of Tr2 system, Tr273 system, and 5′UTR system, that is, Tr273wa system, Tr273wa2 system, Tr273wa3 system, Tr273wa4 system, and Tr273wa5 system, in association with the primer recognition region of cDNA.
  • Tr273wa system Tr273wa2 system
  • Tr273wa3 system Tr273wa4 system
  • Tr273wa5 system Tr273wa5 system
  • Table 3 shows primers designed for each of these strains. This table shows the correspondence between each primer sequence and the corresponding sequence number and the sequences shown in FIGS. 2A-2C.
  • the arrows in the figure indicate the direction of the sequence when used as a primer.
  • the underlined base is a modified site corresponding to the mutation of Guinea 14 strain.
  • FIGS. 3A and 3B examples of specific recognition sequences are shown in FIGS. 3A and 3B as in FIGS. 2A to 2C.
  • the sequence number is shown in parentheses.
  • a sequence number assigned with a symbol “c” indicates that it is a complementary sequence of the sequence represented by the sequence number.
  • FIGS. 3A and 3B the same sequence as the consensus sequence of FIGS. 2A to 2C (that is, the sequence from 18299 to 18658 in the cDNA region) is shown as positions 1 to 360.
  • the recognition sequence included in the primer set of the embodiment can be, for example, as follows.
  • the F3 sequence comprises at least 13 consecutive bases contained in SEQ ID NO: 29, 36, 38, 55, 56, 57, 58, 59, 60 or 61.
  • the F2 sequence contains at least 13 consecutive bases contained in SEQ ID NO: 62 or 63.
  • the F1 sequence contains at least 13 consecutive bases contained in SEQ ID NO: 31 or 64.
  • the B1c sequence comprises at least 13 consecutive bases contained in SEQ ID NO: 68, 69, 70, 71, 72, 73, 74 or 75.
  • the B2c sequence contains at least 13 consecutive bases contained in SEQ ID NO: 65 or 66.
  • the B3c sequence contains at least 13 consecutive bases contained in SEQ ID NO: 34, 67, 82 or 83. Any of these recognition sequences may be at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 bases included in the above SEQ ID NO. It may be 30 bases. Or these complementary sequences may be sufficient.
  • the design of the BIP primer and the selection of the F3 primer and the B3 primer combined therewith are important.
  • the fact that the design of the B1c region and the B2c region and the selection of the F3 primer and the B3 primer are important in order to amplify such a Guinea strain 14 is a finding first discovered by the present inventors.
  • a preferred B1c region for amplifying Guinea strain 14 is positions 18435 to 18471 in the cDNA region corresponding to the trailer sequence.
  • the B1c sequence may be designed based on, for example, the sequences represented by SEQ ID NOs: 68, 69, 70, 71, 72, 73, 74 and 75, and more preferably designed based on the SEQ ID NO: 75.
  • a preferred B1c sequence is, for example, at least 13 bases consecutive so as to include a base continuing from any of the first to fifth positions from the 5 ′ end contained in SEQ ID NO: 75, or the first position from the 3 ′ end. It may be at least 13 consecutive bases so as to include a base that continues from any base at the 6th position.
  • Examples of preferred B1c sequences are SEQ ID NOs: 6, 32, 46, 47 and 48, more preferably SEQ ID NOs: 46, 47 and 48.
  • a preferred B2 region for amplifying Guinea strain 14 is positions 18493 to 18522 in the cDNA region corresponding to the trailer sequence.
  • B2c sequences may be designed based on the sequences shown by SEQ ID NOs: 65 and 66, for example.
  • a preferred B2c sequence is, for example, at least 13 bases consecutive so as to include a base continuing from any of the first to seventh bases from the 5 'end contained in SEQ ID NOs: 65 and 66.
  • Examples of preferred B2c sequences are SEQ ID NOs: 33, 50, 51, 52, 53 and 78, more preferably SEQ ID NOs: 50, 51, 52 and 53. Alternatively, these are complementary sequences.
  • An example of a preferred F3 sequence is at least 13 consecutive bases contained in SEQ ID NO: 29, 55, 60 or 61, more preferably from the first position to the 5 ′ end contained in SEQ ID NO: 29, 55, 60 or 61. It is at least 13 bases continuous so as to include a base that continues from any base at the 5th position, for example, SEQ ID NO: 2, 39, and 40, and more preferably SEQ ID NO: 2 or 39. Alternatively, these are complementary sequences.
  • F2 sequences are SEQ ID NOs: 3, 42, 43, 62 and 63, more preferably SEQ ID NOs: 3 and 42. Alternatively, these are complementary sequences.
  • F1 sequences are SEQ ID NOs: 4, 44, 45 and 79, more preferably SEQ ID NOs: 4, 44 and 45. Alternatively, these are complementary sequences.
  • Examples of preferred B3c sequences include at least 13 bases that are consecutive from the 5 ′ end included in SEQ ID NO: 82 so as to include bases continuing from any of the first to fifth bases, or 3 included in SEQ ID NO: 34. It may be at least 13 consecutive bases so as to include a base continuing from any of the first to seventh bases from the end.
  • Preferred B3c sequences are, for example, SEQ ID NOs: 9 and 19. Alternatively, these are complementary sequences.
  • sequences for preferred loop primers are sequences comprising the sequences respectively represented by SEQ ID NOs: 11, 28 and 76, or sequences comprising at least 13 consecutive bases of these sequences.
  • SEQ ID NOs: 11 and 76 can be preferably used as a LFc primer.
  • SEQ ID NOs: 28 and 77 can be preferably used as LBc primers.
  • the sequence for the loop primer may be at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 bases included in the above SEQ ID NO. It may be a base to 30 bases. Or these complementary sequences may be sufficient.
  • the LFc sequence consists of SEQ ID NO: 76 and the LBc sequence consists of SEQ ID NO: 77.
  • these loop primers consist of these complementary sequences.
  • the length of the primer may be 13 to 40 bases, for example, 15 to 30 bases.
  • Any primer may contain additional sequences or components in addition to the recognition sequence, so long as they do not inhibit annealing to the template and do not interfere with primer extension.
  • the FIP primer can include a linker between the F1c and F2 sequences.
  • the BIP primer can also include a linker between the B1 and B2c sequences.
  • the linker sequence may be any base sequence, and preferably may be a sequence that does not specifically bind to the template sequence.
  • the length of the linker sequence may be, for example, 1 to 6 bases.
  • An example of a preferred linker sequence is TTTT.
  • each primer of a preferred primer set can be as follows.
  • the F3 primer may comprise a sequence represented by any of SEQ ID NO: 2, SEQ ID NO: 17, SEQ ID NO: 20, SEQ ID NO: 22 or SEQ ID NO: 39, or a complementary sequence thereof.
  • the FIP primer may comprise a sequence represented by any of SEQ ID NO: 12, SEQ ID NO: 18 or SEQ ID NO: 21 or a complementary sequence thereof.
  • the BIP primer may comprise a sequence represented by any of SEQ ID NO: 13, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26 or SEQ ID NO: 27, or a complementary sequence thereof.
  • the B3 primer may comprise the sequence shown in either SEQ ID NO: 10 or SEQ ID NO: 19 or a complementary sequence thereof.
  • each primer of a preferable primer set can be as follows, for example.
  • the F3 primer may comprise at least 13 consecutive bases contained in the sequence shown in any one of SEQ ID NO: 2, SEQ ID NO: 17, SEQ ID NO: 20, SEQ ID NO: 22 or SEQ ID NO: 39 or a complementary sequence thereof.
  • the FIP primer may comprise at least 13 consecutive bases contained in the sequence shown in any of SEQ ID NO: 12, SEQ ID NO: 18 or SEQ ID NO: 21 or a complementary sequence thereof.
  • the BIP primer may comprise at least 13 consecutive bases contained in the sequence shown in any of SEQ ID NO: 13, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26 or SEQ ID NO: 27 or a complementary sequence thereof.
  • the B3 primer may comprise at least 13 consecutive bases contained in the sequence shown in either SEQ ID NO: 10 or SEQ ID NO: 19 or a complementary sequence thereof.
  • the combination of sequences for the F3 primer, FIP primer, BIP primer and B3 primer included in the primer set may be selected from the group consisting of: (1) SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 13 and SEQ ID NO: 19 combination; (2) SEQ ID NO: 22, SEQ ID NO: 21, SEQ ID NO: 15 and SEQ ID NO: 10 combination; (3) SEQ ID NO: 20, sequence (4) Combination of SEQ ID NO: 22, SEQ ID NO: 21, SEQ ID NO: 24 and SEQ ID NO: 10; (5) SEQ ID NO: 22, SEQ ID NO: 21, SEQ ID NO: 25 and sequence (6) Combination of SEQ ID NO: 22, SEQ ID NO: 21, SEQ ID NO: 26 and SEQ ID NO: 10; (7) Combination of SEQ ID NO: 22, SEQ ID NO: 21, SEQ ID NO: 27 and SEQ ID NO: 10; (8 ) SEQ ID NO: 20, SEQ ID NO: 12, SEQ ID NO: 23 and SEQ ID NO: 10; (9) SEQ ID NO: 20, S
  • More preferred primer sets are the above (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13) , (14), (15), (16), (17) and (18) may be a primer set including primers in the combinations shown in FIG.
  • a primer set that further includes a loop primer in the above primer set is also preferable.
  • Such a primer set comprises a sequence combination for F3 primer, FIP primer, BIP primer, B3 primer and LFc loop primer included in the primer set, (20) A combination of SEQ ID NO: 39, SEQ ID NO: 12, SEQ ID NO: 13 and SEQ ID NO: 10, and SEQ ID NO: 11, or a combination of complementary sequences of each of the five sequences included in this primer set; Or a combination of sequences for F3 primer, FIP primer, BIP primer, B3 primer and LBc loop primer included in the primer set, (21) A combination of SEQ ID NO: 39, SEQ ID NO: 12, SEQ ID NO: 13 and SEQ ID NO: 10, and SEQ ID NO: 28, or a combination of complementary sequences of each of the five sequences included in this primer set; Or a combination of sequences for F3 primer, FIP primer, BIP primer, B3 primer, LFc loop primer and LBc loop primer included in the primer set,
  • the above-mentioned primer set includes an LFc primer represented by SEQ ID NO: 76.
  • the sequence included therein may include a sequence corresponding to the recognition sequence for each primer sequence.
  • any primer may contain additional sequences or components in addition to the recognition sequence as long as annealing to the template is not inhibited and primer extension is not prevented.
  • the primer set of the embodiment the 14 strains of Guinea can be amplified, so that it is possible to detect ZEBOV with higher accuracy than before by detecting the amplification product.
  • the primer set it is possible to amplify the genes of Guinea 14 strain in a short time. That is, for example, when 10 4 copies of RNA are present, the amplification product can be amplified in about 20 minutes before the amplification product can be detected. This makes it possible to quickly detect ZEBOV.
  • the Zaire 76 strain and Zaire 95 strain can be amplified in a short time.
  • these primer sets are one of the most preferred primer sets. By these, it is possible to detect ZEBOV more accurately and quickly.
  • a method for detecting a ZEBOV Guinea strain is provided.
  • a method for detecting a ZEBOV Guinea strain is to amplify a nucleic acid contained in a sample using any of the above primer sets, and detect whether or not the sample contains a ZEBOV Guinea strain. Can be determined.
  • Nucleic acid amplification may be any method known per se that amplifies nucleic acids based on the same principle as the LAMP method or LAMP method.
  • a reverse transcription reaction may be performed prior to nucleic acid amplification, or an RT-LAMP method in which the reverse transcription reaction and the amplification reaction are performed in one reaction may be used.
  • a more preferred amplification method in this method is the RT-LAMP method.
  • amplification products can be detected using, for example, turbidity or fluorescence as an index. Detection of the amplification product using turbidity as an index may be performed, for example, with a turbidimeter, an absorptiometer, and visual inspection. Detection of an amplification product using fluorescence as an index is performed by detecting the generated fluorescence using a reagent that generates fluorescence in response to the presence of an amplification product or an amplification reaction, such as a fluorescent reagent or an intercalator containing calcein. That's fine.
  • the detection of the amplification product can be performed, for example, at a specific time after starting the amplification reaction.
  • the determination as to whether or not a ZEBOV Guinea strain is contained in the sample may be made, for example, based on whether or not the amplification product is equal to or greater than a predetermined threshold at a specific time.
  • turbidity when turbidity equal to or higher than a predetermined value is measured, it may be determined that a ZEBOV guinea strain is contained in the sample. For example, when a turbidity of 0.1 or more is measured during 60 minutes, it may be determined that the specimen contains a ZEBOV guinea strain.
  • fluorescence when using fluorescence as an index, The sample to be subjected to the method for detecting a ZEBOV Guinea strain may be a sample containing or possibly containing a nucleic acid. The sample may be obtained from a living body or an ex vivo environment.
  • the sample can be, for example, blood, plasma, serum, urine, stool, semen, saliva, oral mucosa, other body cavity mucosa, throat swab, sputum, and the like.
  • the nucleic acid structure shown in FIG. 4 is obtained as an amplification product or a part thereof.
  • the 14 ZEBOV Guinea strains and, if desired, the Zaire 76 and Zaire 95 strains can be detected.
  • Such a nucleic acid structure is also provided as an embodiment.
  • the nucleic acid structure will be described with reference to FIG. 4 (a), FIG. 4 (b), FIG. 4 (c) and FIG. 4 (d) are formed by a stem portion, which is a double-stranded region composed of a sequence complementary to each other, and this double-stranded region.
  • a stem-and-loop structure including a loop portion that is a single-stranded region is shown.
  • the nucleic acid structure of FIG. 4A includes an F1 sequence, an F2c sequence, and an F1c sequence in this order from the 3 ′ side toward the 5 ′ side.
  • the F1 sequence and the F1c sequence are bonded to each other to form a double strand.
  • 4B includes a B1 sequence, a B2 sequence, and a B1c sequence in this order from the 3 'side toward the 5' side.
  • the B1 sequence and the B1c sequence are bonded to each other to form a double strand.
  • the nucleic acid structure of FIG. 4 (c) includes an F1c sequence, an F2 sequence, and an F1 sequence in this order from the 5 'side toward the 3' side.
  • the F1c sequence and the F1 sequence are bonded to each other to form a double strand.
  • the nucleic acid structure of FIG. 4 (d) includes a B1c sequence, a B2c sequence, and a B1 sequence in this order from the 5 'side to the 3' side.
  • the B1c sequence and the B1 sequence are bonded to each other to form a double strand.
  • dumbbell structures having stem and loop structures on the 3 'side and 5' side, respectively.
  • the nucleic acid structure of FIG. 4 (e) includes F1 sequence, F2c sequence, F1c sequence, B1 sequence, B2 sequence, and B1 sequence in this order from 3 ′ side to 5 ′ side.
  • the F1 sequence and the F1c sequence are combined with each other to form a double strand
  • the B1 sequence and the B1c sequence are combined with each other to form a double strand.
  • the nucleic acid structure of FIG. 4 (f) includes F1c sequence, F2 sequence, F1 sequence, B1c sequence, B2c sequence and B1 sequence in this order from 5 ′ side to 3 ′ side.
  • the F1c sequence and the F1 sequence are combined with each other to form a double strand
  • the B1c sequence and the B1 sequence are combined with each other to form a double strand.
  • the sequence contained in these nucleic acid structures is determined by the sequence of the primer set used for the amplification reaction. That is, the nucleic acid structure is obtained for the first time by providing the above-described primer set. By detecting such a nucleic acid structure, it is possible to detect ZEBOV 14 Guinea strains that could not be detected in the past. As a result, it is possible to detect ZEBOV more accurately than in the past. Moreover, such a nucleic acid structure can be rapidly formed by using the above-described primer set. Thus, the nucleic acid construct can be used to rapidly detect ZEBOV.
  • an assay kit for use in the method of detecting ZEBOV described above.
  • Such an assay kit may include any of the primer sets described above.
  • the assay kit may include a container for storing a primer set, an enzyme for performing an amplification reaction, a substrate, a washing solution, a buffer solution and / or a salt for preparing a buffer solution, and the like.
  • an assay kit it becomes possible to detect 14 strains of ZEBOV Guinea that could not be detected so far. As a result, ZEBOV can be detected with higher accuracy than in the prior art.
  • such an assay kit can amplify the genes of Guinea 14 strain in a short time. Therefore, it is possible to detect ZEBOV quickly.
  • Example 10 A test for detecting ZEBOV was performed using the primer set of the embodiment.
  • Viral RNA synthesis ZEBOV of Zaire 76 strain and Zaire 95 strain was used for the experiment. Viral RNAs of Zaire 76 strain and Zaire 95 strain were obtained from the National Microbiological Laboratory, Public Health Agency of Canada. A part of the viral cDNA containing the primer design region was amplified by RT-PCR and purified. Guinea 14 strain synthesized a part (300 bases) of the viral cDNA including the primer design region (Hokkaido System Science, Sapporo, Japan). The cDNA was cloned using the pGEM3Zf (+) vector (Promega), and a partial viral RNA containing the primer design region was synthesized using T7 RNA polymerase and purified. Viral RNA was quantified spectrophotometrically.
  • the primer sets shown in Table 4 were prepared.
  • the “Set ID” column indicates the primer set number.
  • RT-LAMP reaction was performed according to the manufacturer's protocol of the Loopamp RNA amplification kit (Eiken Chemical Co., Ltd., Tokyo, Japan).
  • LAMP reaction solution composition (25 ⁇ L) FIP 40pmol BIP 40pmol F3 5pmol B3 5pmol LF 20pmol LB 20 pmol 2 ⁇ Reaction Mixture 12.5 ⁇ L Enzyme Mix (Bst DNA polymerase, avian myeloblastosis virus reverse transcriptase) 1.0 ⁇ L RNA sample 2.0 ⁇ L.
  • the LAMP reaction solution was incubated at 63 ° C. and observed by spectrophotometric analysis using a real-time turbidimeter (LA-200; Terramex, Kyoto, Japan).
  • Table 5 shows amplification products generated by RT-LAMP method using each primer set shown in Table 4 for each of Zaire 76 strain, Zaire 95 strain, or Guinea 14 strain, using turbidity as an index. The detected result is shown. The result showed the time required for the turbidity to reach 0.1 or more in minutes.
  • This threshold value of turbidity of 0.1 or more was set based on turbidity obtained from a plurality of negative controls. That is, it is a value obtained by doubling the average value of turbidity obtained for a plurality of negative controls.
  • the “set ID” column in the table indicates the primer set number.
  • primer set numbers 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21 and 23, 0.1 or more within 40 minutes are examples of preferred primer sets because turbidity was observed.
  • FIGS. 5A to 5L show the results of measuring the reactivity when using each primer set over time using turbidity as an index.
  • the horizontal axis represents time in minutes
  • the vertical axis represents turbidity.
  • the solid line shows the result of amplifying the Zaire 76 strain and the broken line the 14 Guinea strain.
  • turbidity was also measured for the negative control as described above.
  • FIG. 5A shows primer set number 1
  • FIG. 5B shows primer set number 1 ′ obtained by adding LFc primer to primer set number 1
  • FIG. 5C shows primer set number 2
  • FIG. 5D shows primer set obtained by adding LBc primer.
  • Set number 2 ′ FIG. 5E shows primer set number 5
  • FIG. 5F shows primer set number 5 ′ obtained by adding an LFc primer to primer set number 5
  • FIG. 5G shows primer set number 20
  • FIG. 5H shows primer set number 21, FIG. Are the results obtained using the primer set number 22
  • FIG. 5J is the primer set number 23
  • FIG. 5K is the primer set number 24
  • FIG. 5L is the primer set number 25.
  • turbidity was measured for a negative control to which water was added instead of the RNA sample, but at any time point from 0 to 60 minutes for any primer set. Turbidity was approximately zero.
  • primer set number 20 amplification of the Guinea strain was observed in about 33 minutes, and amplification of the Zaire 76 strain was observed in about 35 minutes (FIG. 5G).
  • primer set number 21 in which the LFc primer was added to this primer set number 20, amplification of the Guinea strain was observed at about 23 minutes, and amplification of the Zaire 76 strain was observed at about 26 minutes (FIG. 5H).
  • primer set number 22 in which LBc primer was added to primer set number 20
  • a slight decrease in amplification efficiency was observed for both Guinea strain and Zaire 76 strain compared to primer set number 20 (FIG. 5I).
  • primer set number 23 in which the LFc primer and the LBc primer were added to primer set number 20, amplification of the Guinea strain was observed in about 24 minutes, and amplification of the Zaire 76 strain was observed in about 26 minutes (FIG. 5J).
  • the rise time of the Zaire 76 strain was about 30 minutes, but no amplification was observed in the Guinea strain (FIG. 5K).
  • the rise time of amplification of the Zaire 76 strain was about 23 minutes, and the rise time of amplification of the Guinea strain was about 35 minutes (FIG. 5L).
  • the LBc primer does not improve the amplification efficiency and may contain it, but the use of the LFc primer is more preferable.
  • these FIP and BIP primers are equal to each other, and these F3 primers share 6 bases with each other on the ZEBOV trailer sequence and are close to each other. Further, these B3 primers are sequences sharing a structure except that the two bases are different from each other.
  • primer set numbers 6 and 8 these F3, FIP and B3 primers are equal to each other, and only the BIP primer is different from each other.
  • the types of bases selected for the mutation sites contained in these BIP primers are different from each other. Nevertheless, in the case of primer set numbers 6 and 8, similarly, amplification of ZEBOV 14 strain of Guinea started in about 20 minutes.
  • the BIP primer of primer set number 10 includes SEQ ID NO: 49 as the B1c sequence and SEQ ID NO: 90 (complementary sequence of SEQ ID NO: 54) as the B2 sequence.
  • the BIP primer of primer set number 13 includes SEQ ID NO: 47 as the B1c sequence and SEQ ID NO: 88 (complementary sequence of SEQ ID NO: 52) as the B2 sequence.
  • the BIP primer of primer set number 14 includes SEQ ID NO: 46 as the B1c sequence and SEQ ID NO: 87 (complementary sequence of SEQ ID NO: 51) as the B2 sequence.
  • the BIP primer of primer set number 15 includes SEQ ID NO: 46 as the B1c sequence and SEQ ID NO: 86 (complementary to SEQ ID NO: 50) as the B2 sequence.
  • the BIP primer of primer set number 16 includes SEQ ID NO: 6 as the B1c sequence and SEQ ID NO: 8 (complementary sequence of SEQ ID NO: 7) as the B2 sequence.
  • the F3, FIP primer and B3 primer of primer set numbers 10 and 16 are all designed to correspond to the mutation sites of Guinea 14 strain, but depending on the BIP primer used together, rapid Guinea There were cases where amplification of 14 strains became possible (primer set number 13 to 16) and amplification of 14 strains of Guinea could not be observed (primer set number 10).
  • primer set numbers 20 and 21 are compared with the primer set numbers 24 and 25, the FIP primer and the BIP primer of these four primer sets are common.
  • the F3 primer and the B3 primer are equal in the primer set numbers 20 and 21, and are equal in the primer set numbers 24 and 25.
  • primer set numbers 21 and 25 contain the same LF primer.
  • the experimental results of primer set numbers 20, 21, 24 and 25 are shown in FIGS. 5G, 5H, 5K and 5L, respectively. Comparing FIG. 5G and FIG. 5K, the amplification rise time of Zaire 76 strain is about 34 minutes and about 31 minutes, respectively, as indicated by the solid line. The rise of amplification became a little less than 10 minutes. On the other hand, compared to primer set numbers 20 (FIG.
  • the LF primer is an example of a preferable primer for amplification of the Guinea 14 strain.
  • the Guinea 14 strain can be efficiently amplified regardless of the use of this preferred primer, and Guinea.
  • Primer set number 20 that was able to efficiently amplify Zaire 76 strain as well as 14 strains is considered to be a preferred primer set for the amplification of ZEBOV and its detection.
  • the difference between the primer set number 24 and the primer set number 21 is the F3 primer and the B3 primer, but considering the other results described above, the F3 primer, especially the amplification of Guinea 14 strain, It was suggested that the design and selection of primers and B3 primers are also important.
  • primer set number 20 amplification of Zaire 76 strain started in about 25 minutes, and this was shortened by about 5 minutes or more by adding the LFc primer (primer set number 21).
  • primer set number 22 the LBc primer was added to the primer set number 20
  • almost no change was observed in the time until the rise of amplification primer set number 22
  • the result of adding the LFc primer and the LBc primer to the primer set number 20 was almost the same as the result of adding only the LFc primer. This result suggests that the LBc primer does not affect the amplification efficiency of Guinea 14 strain.
  • the 14 ZEBOV Guinea strains were amplified by the primer set of the embodiment. By enabling amplification of 14 strains of ZEBOV Guinea, it became possible to detect ZEBOV more accurately.
  • primer set numbers 20 to 23 and the like were able to rapidly amplify Zaire 76 strain in addition to ZEBOV 14 strain of Guinea. Although not shown in the data, primer set numbers 20 to 23 and the like can be rapidly amplified for the Zaire 95 strain.
  • the RT-LAMP reaction was performed in the same manner as in (2) above except that the synthetic RNA brought into the LAMP reaction was 6.1 ⁇ 10 5 copies from 6.1 ⁇ 10 5 copies to 6.1 ⁇ 10 1 copies. went.
  • the primer sets used are set ID21 and set ID26, and these primer sets are primer sets in which only the F3 primer is different from each other.
  • the F3 primers of set ID 21 and set ID 26 were respectively composed of nucleotide sequences represented by SEQ ID NO: 39 and SEQ ID NO: 2, and primers having the same sequence were used for the other primers. Specific configurations of these primer sets used are shown in Tables 4-6 and 6.
  • the concentration of ZEBOV 14 strain of Guinea in the sample is 10 ⁇ 5 times (3.05 ⁇ 10 5 copies / ⁇ L) to 10 ⁇ 9 times (3.05 ⁇ 10 1 copies / ⁇ L) by serial dilution of the stock solution by 10 times. Prepared.
  • test method was the same as described in the section “(2) Confirmation of reactivity of primer set” above.
  • FIG. 7 is a graph showing the results when a viral gene was amplified with two types of LAPM primers.
  • the vertical axis represents turbidity, and the horizontal axis represents time in minutes.
  • the difference between the F3 primers contained in the set ID 21 and the set ID 26 is only the type of the 8th base from the 5 'end. That is, the 8th base from the 5 'end is thymine (t or T) in set ID21 and cytosine (c or C) in set ID26.
  • set ID21 and set ID26 can amplify nucleic acids derived from 14 strains of ZEBOV Guinea almost equally well. Thereby, it was suggested that the primer set according to the embodiment enables rapid and accurate detection.
  • RT-LAMP method using the primer set according to the embodiment and quantification of the detectability of ZEBOV 14 Guinea strain in a sample similarly collected in Guinea A test was performed to compare with a typical RT-PCR (qRT-PCR).
  • RT-LAMP method was performed using isothermal nucleic acid amplification and real-time fluorescence detection apparatus, Genie (registered trademark) III (Optigene, West Wales, UK). DEPC-treated water and synthetic RNA of Zaire 76 strain were used as negative control and positive control, respectively.
  • LAMP reaction solution composition (25 ⁇ L) FIP 20 pmol BIP 20pmol F3 5pmol B3 5pmol LF 10pmol Isomaster Master Mix 15.0 ⁇ L AMV reverse transcriptase (0.15 U) 1.0 ⁇ L RNA sample 5.0 ⁇ L.
  • amplification was performed for 30 minutes at 63 ° C. in Genie (registered trademark) III, followed by dissociation analysis at 95 ° C. to 80 ° C. Non-specific amplification was excluded by comparing with the melting temperature of the positive control reaction.
  • RT-PCR method was subjected to a comparative test using a Quantitect RT-PCR kit (Qiagen) and a ZaireEBOV2014 primer and probe kit (TIM MOLBIOL, Hamburg, Germany).
  • the TIB kit is an emergency use authorization (EUS) for EBOV diagnosis from the US Food and Drug Administration.
  • RNA sample 5 ⁇ L was added to 25 ⁇ L of the reaction mixture.
  • Each reaction was performed on a SmartCycler II system (Cefed, U.S.A).
  • Table 7 shows the test conditions of the RT-LAMP method and the qRT-PCR method described above.
  • the RT-LAMP test was conducted by blind test with the diagnosis result by RT-PCR method, and the results of both tests were compared after completion of the test.
  • the results obtained by the RT-LAMP method and the qRT-PCR method matched the diagnostic results in all the samples. That is, even when the RT-LAMP method was used, it was possible to detect the 14 ZEBOV Guinea strains in the sample with the same accuracy as the qRT-PCR method.
  • Table 9 shows the time required for detection of viral RNA in four representative samples (clinical specimens A, B, C, and D) having different virus titers in the detection tests by the RT-LAMP method and the qRT-PCR method, respectively. Shown in
  • the detection time by the RT-LAMP method is longer than the detection time by the qRT-PCR method. Remarkably short.
  • the detection time by the RT-LAMP method was 10.2 minutes at the shortest and 13.3 minutes at the longest.
  • the detection time by the qRT-PCR method was 40.3 minutes at the shortest and 54.0 minutes at the longest.
  • the ZEBOV strains including the 14 strains of Guinea can be detected more rapidly with the same high accuracy as the qRT-PCR method used as a conventional EBOV diagnostic method by the primer set of the embodiment. It was proved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Toxicology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 実施形態によれば、ZEBOV遺伝子を特異的に増幅するためのLAMP増幅用核酸プライマーセットが提供される。F1配列は、配列番号31または64に含まれる連続する少なくとも13塩基を含む。F2配列は、配列番号62または63に含まれる連続する少なくとも13塩基を含む。F3配列は、配列番号29、36、38、55、56、57、58、59、60、61または61に含まれる連続する少なくとも13塩基を含む。B1c配列は、配列番号68、69、70、71、72、73、74または75に含まれる連続する少なくとも13塩基を含む。B2c配列は、配列番号65または66に含まれる連続する少なくとも13塩基を含む。B3c配列は、配列番号34、67、82または83に含まれる連続する少なくとも13塩基を含む。

Description

ザイールエボラウイルス検出用プライマーセット、アッセイキットおよび増幅方法
 本発明は、ザイールエボラウイルス検出用プライマーセット、アッセイキットおよび増幅方法に関する。
 エボラウイルス(EBOV)は、ヒトまたはヒト以外の霊長動物に感染し、高い確率でそれらに死を齎すウイルスである。
 EBOVには、ザイールエボラウイルス(ZEBOV)、スーダンエボラウイルス(SEBOV)、タイフォレストエボラウイルス(旧アイボリーコーストエボラウイルス)(ICEBOV)、ブンディブギョエボラウイルス(BEBOV)およびレストンエボラウイルス(REBOV)の5つの種が存在する。これらのうちのZEBOV、SEBOV、ICEBOVおよびBEBOVがヒトに対して病原性を示すことが知られている。
 上記の種の中でも、ZEBOVの致死率は90%にもなり、最も病原性が高いウイルスとして知られている。
 ZEBOVの検出は、病理学的方法、モノクローナル抗体を使用する抗原抗体反応による方法、特異的なプライマーセットを利用するPCR法などにより行われている。
 2014年現在、エボラウイルスの流行が拡大する中、ZEBOVを精度よく検出できる手段の開発が望まれている。
 実施形態は、精度よくZEBOVを増幅または検出できる手段を提供することを目的とする。
 実施形態によれば、ZEBOV遺伝子を特異的に増幅するためのLAMP増幅用核酸プライマーセットが提供される。F1配列は、配列番号31または64に含まれる連続する少なくとも13塩基を含む。F2配列は、配列番号62または63に含まれる連続する少なくとも13塩基を含む。F3配列は、配列番号29、36、38、55、56、57、58、59、60または61に含まれる連続する少なくとも13塩基を含む。B1c配列は、配列番号68、69、70、71、72、73、74または75に含まれる連続する少なくとも13塩基を含む。B2c配列は、配列番号65または66に含まれる連続する少なくとも13塩基を含む。B3c配列は、配列番号34、67、82または83に含まれる連続する少なくとも13塩基を含む。
鋳型核酸とプライマーとの対応を示す模式図である。 鋳型核酸とプライマーとの対応を示す模式図である。 ザイールエボラウイルスゲノムのcDNAの1例と対応するプライマー認識領域の例とを示す図である。 ザイールエボラウイルスゲノムのcDNAの1例と対応するプライマー認識領域の例とを示す図である。 ザイールエボラウイルスゲノムのcDNAの1例と対応するプライマー認識領域の例とを示す図である。 ザイールエボラウイルスゲノムのcDNAの1例と対応するプライマー認識領域の例とを示す図である。 ザイールエボラウイルスゲノムのcDNAの1例と対応するプライマー認識領域の例とを示す図である。 核酸構造物を示す模式図である。 実験結果を示すグラフである。 実験結果を示すグラフである。 実験結果を示すグラフである。 実験結果を示すグラフである。 実験結果を示すグラフである。 実験結果を示すグラフである。 実験結果を示すグラフである。 実験結果を示すグラフである。 実験結果を示すグラフである。 実験結果を示すグラフである。 実験結果を示すグラフである。 実験結果を示すグラフである。 実験結果を示すグラフである。 実験結果を示すグラフである。
 ZEBOVは、非分節型マイナス鎖RNAウイルスであり、その長さは約19kbである。その遺伝子の3’端および5’端には、それぞれ非コード配列であるリーダー領域とトレーラー領域が存在している。
 実施形態は、トレーラー領域の特定の配列を利用してプライマー領域を設計することによって、これまで検出することができなかったZEBOV株を検出できることを発見したことに基づく。
 実施形態のプライマーセットは、2014年型のギニア株(ギニア14株)を検出することが可能である。2014年のZEBOVの流行拡大を鎮静化するためには、ZEBOVを精度よく、迅速に検出することが必須であるが、そのためには、このギニア14株の検出が必須である。従来のプライマーセットでは、ギニア14株を検出できないが、実施形態のプライマーセットによれば、過去に流行した1976年型のザイール株(ザイール76株)および1995年型のザイール株(ザイール95株)だけではなく、ギニア14株についてもより検出することが可能となる。それにより、ZEBOVを精度よく検出することが可能となる。
 実施形態に従うプライマー領域について、図1A、および1Bを用いて説明する。
 図1Aは、鋳型としてのZEBOVのRNA(図中、「vRNA」と記す)、そのcDNA、および各プライマーを互いに対応づけて示した図である。検出されるべきZEBOVのRNAは、各プライマーが結合すべき領域(即ち、認識領域)としてF3c領域、F2c領域、F1c領域、B1領域、B2領域、B3領域を含む。これらの領域は、3’側から5’側に向けて、この順番でZEBOVのRNAに含まれる。これらの領域は、それぞれF3c配列、F2c配列、F1c配列、B1配列、B2配列およびB3配列を含む。これらの配列、およびこれらと相補的な配列、即ち、F3配列、F2配列、F1配列、B1c配列、B2c配列およびB3c配列を認識配列と称する。このようなZEBOVのRNAが、第1の鋳型配列として使用される。
 cDNAは、ZEBOVのRNAの相補鎖であり、5’側から3’側に向けて、F3配列、F2配列、F1配列、B1c配列、B2c配列およびB3c配列を含む。検査に供される試料中に含まれるZEBOVのRNAから逆転写反応によりcDNAが作られ、ZEBOVのRNAとcDNAとを鋳型核酸として実施形態のプライマーセットによって増幅反応が行われる。
 ここで、F1配列とF1c配列、F2配列とF2c配列、F3配列とF3c配列、B1配列とB1c配列、B2配列とB2c配列、B3配列とB3c配列は、互いに相補的な配列である。
 このような鋳型配列について、上記の6つの認識領域に対応する内部プライマー(FIPおよびBIPプライマー)と2つの外部プライマー(F3およびB3プライマー)とを含むプライマーセットを1つのセットとして設計した。
 実施形態に従うプライマーセットは、FIPプライマー、F3プライマー、BIPプライマー、B3プライマーを含む。FIPプライマーは、5’側から3’側に向けてF1c配列とF2配列とを含む。F3プライマーは、F3配列を含む。BIPプライマーは、5’側から3’側に向けてB1c配列とB2配列とを含む。B3プライマーは、B3配列を含む。これらのプライマーのそれぞれの配列に該当する領域を図1A中に矢印で示した。矢印の向きは、各領域に該当するプライマー配列の方向性を示しており、矢印の始点が5’端、矢印の終点が3’端を表す。
 更に実施形態に従うプライマーセットは、LFプライマーおよび/またはLBプライマーをループプライマーとして含み得る。図1Bは、図1Aのプライマー設計配列に加えて、更に、LFプライマーおよびLBプライマーの設計配列の1例を示した図である。
 ZEBOVのRNAは、プライマー認識領域としてF3c領域、F2c領域、LFc領域、F1c領域、B1領域、LB領域、B2領域、B3領域を含む。これらの領域は、3’側から5’側に向けて、この順番でZEBOVのRNAに含まれる。LFc領域およびLB領域は、それぞれLFc配列およびLB配列を含む。このようなZEBOVのRNAが、鋳型配列として使用される。
 或いは、ループプライマーは、例えば、増幅産物のループ部分に結合するように設計されてもよい。ループ部分は、図1B中に一本鎖部分と示した領域であり得る。即ち、ループ領域は、例えば、vRNAのF2c領域の5’端からF1c領域の3’端よりも3’側の塩基までの範囲、またはvRNAのB2領域の3’端からB1領域の5’端よりも5’側の塩基までの範囲であり得る。
 各プライマーの配列は、表1に示すアクセッション番号の130株について配列を比較することにより決定した。
Figure JPOXMLDOC01-appb-T000001
 これらの株名を表2に示す。ここで、表の番号に枝番号がある場合に、枝番号を省略したときには、全ての枝番号の表を総称する。例えば、表2-1、表2-2、表2-3、表2-4および表2-5を総称して表2と記す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記130株の比較は、アライメントを作成して行った。使用した領域は、各株のトレーラー配列に対応するcDNAの領域の18299番目から18658番目までである。
 プライマー認識領域の設計は、まず、LAMPプライマー設計支援ソフトウェアプログラム(PrimerExplorer ver.3;ネット研究所、東京(日本);http://primerexplorer.jp/e/)を用いて基礎となる領域を設計し、その後、アライメントからの情報や実験結果などを考慮しながら、手動および目視などによってcDNA上での位置や塩基の種類について改変および調整を行った。
 設計された基礎となる領域は、Tr2系である。Tr2系のF3、F2、F1、B1c、B2cおよびB3c領域は、それぞれ18339~18358位、18368~18388位、18408~18427位、18449~18471位、18501~18522位および18543~18562位の領域である。
 更にTr2系について改変および調整を行って、T273系および5’UTR系を設計した。
 T237系のF3、F2、F1、B1c、B2cおよびB3c領域は、18338~18357位、18367~18387位、18407~18426位、18435~18455位、18496~18513位および18530~18551位の領域である。
 5’UTR系のF3、F2、F1、B1c、B2cおよびB3c領域は、18321~18343位、18367~18387位、18407~18426位、18449~18471位、18501~18522位および18530~18551位であり、更に、18388~18406位がLF領域である。
 図2A~2Cには、5’から3’の方向で、コンセンサス配列としてのザイール76株(H.sapiens-tc/COD/1976/Yambuku-Mayinga)のcDNAと、ギニア14株(H.sapiens-wt/GIN/2014/Gueckedou-C05)、ザイール95株(EBOV/H.sapiens-tc/COD/1995/13625 Kikwit)、2種類のガボン96株(EBOV/H.sapiens-tc/GAB/1996/1Eko、EBOV/H.sapiens-tc/GAB/1996/Ilembe)およびザイール07株(EBOV/H.sapiens-tc/COD/2007/4 Luebo)のcDNAとのアライメントとプライマー認識配列の設計例を示した。またそこに示された配列は、ザイールエボラウイルスのトレーラー配列に対応するcDNAの領域の18299番目から18658番目までの360個の塩基を5’から3’の方向で示している。
 また、図2A~2Cには、cDNAのプライマー認識領域に対応付けて、Tr2系、Tr273系、並びに5’UTR系、即ち、Tr273wa系、Tr273wa2系、Tr273wa3系、Tr273wa4系およびTr273wa5系のプライマー認識配列の例を示した。
 また、これらの系統でそれぞれ設計されるプライマーを表3に示す。この表には、それぞれのプライマー配列と、対応する配列番号、更に、図2A~2Cに示されている配列との対応を示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 図中の矢印は、プライマーとして使用される際の配列の向きを示す。下線を付した塩基は、ギニア14株の変異に合わせた改変部位である。
 更に、具体的な認識配列の例を図2A~2Cと同様に図3Aおよび3Bに示す。括弧内に配列番号を示す。配列番号に「c」の符号が付されているものは、それが配列番号で示される配列の相補配列であることを示す。図3Aおよび3Bでは、図2A~2Cのコンセンサス配列と同じ配列(即ち、cDNAの領域の18299番目から18658番目までの配列)を1~360位として示している。
 実施形態のプライマーセットに含まれる認識配列は、例えば、次の通りであり得る。F3配列は、配列番号29、36、38、55、56、57、58、59、60または61に含まれる連続する少なくとも13塩基を含む。F2配列は、配列番号62または63に含まれる連続する少なくとも13塩基を含む。F1配列は、配列番号31または64に含まれる連続する少なくとも13塩基を含む。B1c配列は、配列番号68、69、70、71、72、73、74または75に含まれる連続する少なくとも13塩基を含む。B2c配列は、配列番号65または66に含まれる連続する少なくとも13塩基を含む。B3c配列は、配列番号34、67、82または83に含まれる連続する少なくとも13塩基を含む。これらの認識配列は何れも、上記配列番号に含まれる連続する少なくとも15、16、17、18、19、20、21、22、23、24または25塩基であってもよく、例えば、15塩基~30塩基であってもよい。或いはこれらの相補配列であってもよい。
 ギニア株14を増幅するためには、BIPプライマーの設計と、それに組み合わせるF3プライマーおよびB3プライマーの選択が重要である。このようなギニア株14を増幅するためにB1c領域およびB2c領域の設計とF3プライマーおよびB3プライマーの選択が重要であるということは、本発明者によって初めて見出された知見である。
 例えば、ギニア株14を増幅するための好ましいB1c領域は、トレーラー配列に対応するcDNAの領域の18435位~18471位である。
 B1c配列は、例えば、配列番号68、69、70、71、72、73、74および75によりそれぞれ示される配列に基づいて設計されてよく、より好ましくは配列番号75に基づいて設計される。好ましいB1c配列は、例えば、配列番号75に含まれる5’端から第1位~第5位の何れかの塩基から続く塩基を含むように連続する少なくとも13塩基、または3’端から第1位~第6位の何れかの塩基から続く塩基を含むように連続する少なくとも13塩基であってもよい。好ましいB1c配列の例は、配列番号6、32、46、47および48であり、より好ましくは配列番号46、47および48である。
 例えば、ギニア株14を増幅するための好ましいB2領域は、トレーラー配列に対応するcDNAの領域の18493位~18522位である。
 B2c配列の例は、例えば、配列番号65および66によりそれぞれ示される配列に基づいて設計されてよい。好ましいB2c配列は、例えば、配列番号65および66に含まれる5’端から第1位~第7位の何れかの塩基から続く塩基を含むように連続する少なくとも13塩基である。好ましいB2c配列の例は、配列番号33、50、51、52、53および78であり、より好ましくは配列番号50、51、52および53である。或いはこれらの相補配列である。
 好ましいF3配列の例は、配列番号29、55、60または61に含まれる連続する少なくとも13塩基であり、より好ましくは配列番号29、55、60または61に含まれる5’端から第1位~第5位の何れかの塩基から続く塩基を含むように連続する少なくとも13塩基であり、例えば、配列番号2、39および40、より好ましくは配列番号2または39である。或いはこれらの相補配列である。
 好ましいF2配列の例は、配列番号3、42、43、62および63であり、より好ましくは配列番号3および42である。或いはこれらの相補配列である。
 好ましいF1配列の例は、配列番号4、44、45および79であり、より好ましくは配列番号4、44および45である。或いはこれらの相補配列である。
 好ましいB3c配列の例は、配列番号82に含まれる5’端から第1位~第5位の何れかの塩基から続く塩基を含むように連続する少なくとも13塩基、または配列番号34に含まれる3’端から第1位~第7位の何れかの塩基から続く塩基を含むように連続する少なくとも13塩基であってよい。好ましいB3c配列は、例えば、配列番号9および19である。或いはこれらの相補配列である。
 ループプライマーを使用することによって増幅効率を増大することが可能である。好ましいループプライマーのための配列の例は、配列番号11、28および76によりそれぞれ示される配列をそれぞれ含む配列、またはこれらの配列の連続する少なくとも13塩基を含む配列である。配列番号11および76は、LFcプライマーとして好ましく使用され得る。配列番号28および77は、LBcプライマーとして好ましく使用され得る。また、ループプライマーのための配列は、上記配列番号に含まれる連続する少なくとも15、16、17、18、19、20、21、22、23、24または25塩基であってもよく、例えば、15塩基~30塩基であってもよい。或いはこれらの相補配列であってもよい。
 好ましいループプライマーにおいて、例えば、LFc配列は配列番号76からなり、LBc配列は配列番号77からなる。或いはこれらのループプライマーは、これらの相補配列からなる。
 プライマーの長さは、13~40塩基、例えば、15~30塩基であってもよい。
 何れのプライマーも、鋳型へのアニーリングを阻害せず、且つプライマーの伸長を妨げない限り、認識配列に加えて更なる配列または成分を含んでもよい。
 例えば、FIPプライマーは、F1c配列とF2配列の間にリンカーを含み得る。また、BIPプライマーは、B1配列とB2c配列の間にリンカーを含み得る。リンカー配列は、任意の塩基配列であればよく、好ましくは鋳型配列に特異的に結合しない配列であり得る。リンカー配列の長さは、例えば、1~6塩基であればよい。好ましいリンカー配列の例は、TTTTである。
 例えば、好ましいプライマーセットの各プライマーは次の通りであり得る。F3プライマーは、配列番号2、配列番号17、配列番号20、配列番号22または配列番号39の何れかで示される配列またはその相補配列を含み得る。FIPプライマーは、配列番号12、配列番号18または配列番号21の何れかで示される配列またはその相補配列を含み得る。BIPプライマーは、配列番号13、配列番号23、配列番号24、配列番号25、配列番号26または配列番号27の何れかで示される配列またはその相補配列を含み得る。B3プライマーが、配列番号10または配列番号19の何れかで示される配列またはその相補配列を含み得る。
 或いは好ましいプライマーセットの各プライマーは例えば次の通りであり得る。F3プライマーは、配列番号2、配列番号17、配列番号20、配列番号22または配列番号39の何れかで示される配列またはその相補配列に含まれる連続する少なくとも13塩基を含み得る。FIPプライマーは、配列番号12、配列番号18または配列番号21の何れかで示される配列またはその相補配列に含まれる連続する少なくとも13塩基を含み得る。BIPプライマーは、配列番号13、配列番号23、配列番号24、配列番号25、配列番号26または配列番号27の何れかで示される配列またはその相補配列に含まれる連続する少なくとも13塩基を含み得る。B3プライマーが、配列番号10または配列番号19の何れかで示される配列またはその相補配列に含まれる連続する少なくとも13塩基を含み得る。
 プライマーセットに含まれるF3プライマー、FIPプライマー、BIPプライマーおよびB3プライマーのための配列の組み合わせは、以下からなる群より選択されてもよい:
(1)配列番号17、配列番号18、配列番号13および配列番号19の組み合わせ;(2)配列番号22、配列番号21、配列番号15および配列番号10の組み合わせ;(3)配列番号20、配列番号21、配列番号23および配列番号10の組み合わせ;(4)配列番号22、配列番号21、配列番号24および配列番号10の組み合わせ;(5)配列番号22、配列番号21、配列番号25および配列番号10の組み合わせ;(6)配列番号22、配列番号21、配列番号26および配列番号10の組み合わせ;(7)配列番号22、配列番号21、配列番号27おおび配列番号10の組み合わせ;(8)配列番号20、配列番号12、配列番号23および配列番号10の組み合わせ;(9)配列番号20、配列番号12、配列番号24および配列番号10の組み合わせ;(10)配列番号20、配列番号12、配列番号25および配列番号10の組み合わせ;(11)配列番号20、配列番号12、配列番号26および配列番号10の組み合わせ;(12)配列番号20、配列番号12、配列番号27および配列番号10の組み合わせ;(13)配列番号20、配列番号12、配列番号13および配列番号10の組み合わせ;(14)配列番号20、配列番号12、配列番号13および配列番号19の組み合わせ;(15)配列番号22、配列番号12、配列番号13および配列番号10の組み合わせ;(16)配列番号22、配列番号12、配列番号13および配列番号19の組み合わせ;(17)配列番号39、配列番号12、配列番号13および配列番号10の組み合わせ;(18)配列番号2、配列番号12、配列番号13および配列番号10の組み合わせ;(19)前記(1)~(18)の何れかの組み合わせに含まれる4つの配列のそれぞれの相補配列の組み合わせ。
 より好ましいプライマーセットは、上記(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)、(13)、(14)、(15)、(16)、(17)および(18)に示す組み合わせでプライマーを含むプライマーセットであり得る。
 また、上記のプライマーセットに更にループプライマーを含むプライマーセットも好ましい。そのようなプライマーセットは、プライマーセットに含まれるF3プライマー、FIPプライマー、BIPプライマー、B3プライマーおよびLFcループプライマーのための配列の組み合わせが、
(20)配列番号39、配列番号12、配列番号13および配列番号10、並びに配列番号11の組み合わせ、またはこのプライマーセットに含まれる5つの配列のそれぞれの相補配列の組み合わせ;
であってもよく、またはプライマーセットに含まれるF3プライマー、FIPプライマー、BIPプライマー、B3プライマーおよびLBcループプライマーのための配列の組み合わせが、
(21)配列番号39、配列番号12、配列番号13および配列番号10、並びに配列番号28の組み合わせ、またはこのプライマーセットに含まれる5つの配列のそれぞれの相補配列の組み合わせ;
であってもよく、或いは、プライマーセットに含まれるF3プライマー、FIPプライマー、BIPプライマー、B3プライマー、LFcループプライマーおよびLBcループプライマーのための配列の組み合わせが、
(22)配列番号39、配列番号12、配列番号13および配列番号10、並びに配列番号11および配列番号28の組み合わせ、またはこのプライマーセットに含まれる6つの配列のそれぞれの相補配列の組み合わせ
であってもよく、
(23)配列番号2、配列番号12、配列番号13および配列番号10、並びに配列番号11の組み合わせ、またはこのプライマーセットに含まれる5つの配列のそれぞれの相補配列の組み合わせ;
であってもよく、またはプライマーセットに含まれるF3プライマー、FIPプライマー、BIPプライマー、B3プライマーおよびLBcループプライマーのための配列の組み合わせが、
(24)配列番号2、配列番号12、配列番号13および配列番号10、並びに配列番号28の組み合わせ、またはこのプライマーセットに含まれる5つの配列のそれぞれの相補配列の組み合わせ;
であってもよく、或いは、プライマーセットに含まれるF3プライマー、FIPプライマー、BIPプライマー、B3プライマー、LFcループプライマーおよびLBcループプライマーのための配列の組み合わせが、
(25)配列番号2、配列番号12、配列番号13および配列番号10、並びに配列番号11および配列番号28の組み合わせ、またはこのプライマーセットに含まれる6つの配列のそれぞれの相補配列の組み合わせ
であってもよい。
 更に、上述のプライマーセットが、配列番号76で示されるLFcプライマーを含むことは好ましい。
 上述した何れのプライマーセットについても、そこに含まれる配列は、それぞれのプライマー配列のための認識配列に対応する配列を含んでいてもよい。また、鋳型へのアニーリングを阻害せず、且つプライマーの伸長を妨げない限り、何れのプライマーにおいても、認識配列に加えて更なる配列または成分を含んでもよい。
 このような方法によれば、これまで増幅することができなかったZEBOVのギニア14株の遺伝子を増幅することが可能となる。従来のプライマーセットには、ギニア14株の遺伝子を増幅できるものはない。従って、例えば、ギニア14株などに感染している場合には、そのような従来のプライマーセットでは得られる結果は偽陰性となってしまう。実施形態のプライマーセットによれば、ギニア14株を増幅することができるので、増幅産物を検出することによってZEBOVを従来に比べて精度よく検出することが可能となる。また、上述のプライマーセットによれば、ギニア14株の遺伝子を短い時間で増幅することが可能である。即ち、例えば、10コピーのRNAが存在する場合には、20分程度でその増幅産物を検出できるまでに増幅することが可能である。それによりZEBOVの検出を迅速に行うことが可能である。
 また、例えば、上述のプライマーセット(17)、(18)、(20)、(21)、(22)、(23)、(24)、(25)、は、ギニア14株の遺伝子を短時間で増幅できるのみならず、ザイール76株およびザイール95株についても短い時間で増幅することが可能となる。従って、これらのプライマーセットは、最も好ましいプライマーセットの1つである。これらによって、ZEBOVをより精度よく、且つ迅速に検出することが可能となる。
 更なる実施形態によれば、ZEBOVのギニア株を検出する方法が提供される。ZEBOVのギニア株を検出する方法は、上述の何れかのプライマーセットを用いて試料に含まれる核酸を増幅し、増幅産物を検出することにより前記試料にZEBOVのギニア株が含まれているか否かを判定すればよい。
 核酸の増幅は、LAMP法またはLAMP法と同様の原理により核酸を増幅するそれ自身公知の何れの方法であればよい。また当該方法においては、核酸の増幅に先駆けて逆転写反応を行ってもよく、或いは逆転写反応と増幅反応とを1つの反応において行うRT-LAMP法を用いてもよい。当該方法におけるより好ましい増幅方法は、RT-LAMP法である。
 また増幅産物の検出は、例えば、濁度または蛍光を指標に行い得る。濁度を指標にする増幅産物の検出は、例えば、濁度計、吸光度計、および目視などで行えばよい。蛍光を指標にする増幅産物の検出は、例えば、カルセインを含む蛍光試薬やインタカレータなど、増幅産物または増幅反応の存在に応じて蛍光を生ずる試薬を用い、生じた蛍光を検出することにより行われればよい。
 増幅産物の検出は、例えば、増幅反応を開始した後の特定の時点で行い得る。試料に、ZEBOVのギニア株が含まれているか否かの判定は、例えば、特定の時点で増幅産物が予め定められた閾値以上であるか否かで行われてもよい。
 例えば、濁度を指標にする場合では、予め定めた値以上の濁度が測定されたときに、試料中にZEBOVのギニア株が含まれていると判定すればよい。例えば、60分間の間に0.1以上の濁度が測定されたときに検体にZEBOVのギニア株が含まれていると判定してもよい。例えば、蛍光を指標にする場合では、
 ZEBOVのギニア株を検出する方法に供される試料は、核酸を含む、または核酸を含む可能性のある試料であればよい。試料は、生体または生体外の何れかの環境などから得られたものであってもよい。それらは、増幅反応を妨害しない状態であることが好ましく、採取された後にそれ自身公知の何れかの手段により前処理が行われてもよい。試料は、例えば、血液、血漿、血清、尿、便、精液、唾液、口腔内粘膜、それ以外の体腔粘膜、咽頭拭い液および喀痰などであり得る。
 このような方法によれば、これまで検出することができなかったZEBOVのギニア14株を検出することが可能となる。即ち、当該方法により得られる増幅産物を検出することによってZEBOVを従来に比べて精度よく検出ことが可能となる。また、上述のプライマーセットによれば、ギニア14株の遺伝子を短い時間で増幅することが可能である。それによりZEBOVの検出を迅速に行うことが可能である。
 当該方法では、増幅産物またはその一部分として図4に示す核酸構造体が得られる。これらの核酸構造体の存在を検出することにより、ZEBOVのギニア14株、所望に応じて、ザイール76株およびザイール95株が検出できる。このような核酸構造体も実施形態として提供される。
 核酸構造体について、図4を参照しながら説明する。図4(a)、図4(b)、図4(c)および図4(d)は、互いに相補的な配列からなる二本鎖領域であるステム部分と、この二本鎖領域により形成された一本鎖領域であるループ部分とを含むステム・ループ構造体を示す。
 図4(a)の核酸構造体は、3’側から5’側に向けて、F1配列、F2c配列およびF1c配列をこの順番で含む。F1配列およびF1c配列は、互いに結合し二本鎖を形成している。
 図4(b)の核酸構造体は、3’側から5’側に向けて、B1配列、B2配列およびB1c配列をこの順番で含む。B1配列および前記B1c配列は、互いに結合し二本鎖を形成している。
 図4(c)の核酸構造体は、5’側から3’側に向けて、F1c配列、F2配列およびF1配列をこの順番で含む。F1c配列および前記F1配列は、互いに結合し二本鎖を形成している。
 図4(d)の核酸構造体は、5’側から3’側に向けて、B1c配列、B2c配列およびB1配列をこの順番で含む。B1c配列および前記B1配列は、互いに結合し二本鎖を形成している。
 図4(e)および(f)は、3’側と5’側にそれぞれステム・ループ構造を有するダンベル構造体を示す。
 図4(e)の核酸構造体は、3’側から5’側に向けて、F1配列、F2c配列、F1c配列、B1配列、B2配列およびB1配列をこの順番で含む。F1配列とF1c配列とが互いに結合し二本鎖を形成し、B1配列とB1c配列とが互いに結合し二本鎖を形成している。
 図4(f)の核酸構造体は、5’側から3’側に向けて、F1c配列、F2配列、F1配列、B1c配列、B2c配列およびB1配列をこの順番で含む。F1c配列とF1配列とが互いに結合し二本鎖を形成し、B1c配列とB1配列とが互いに結合し二本鎖を形成している。
 これらの核酸構造体に含まれる配列は、増幅反応に使用されるプライマーセットの配列により決定される。即ち、当該核酸構造体は、上述したプライマーセットが提供されることにより初めて得られるものである。そして、このような核酸構造体を検出すれば、従来では検出できなかったZEBOVのギニア14株を検出することが可能となる。これにより、ZEBOVを従来に比べて精度よく検出ことが可能となる。また、このような核酸構造体は、上述のプライマーセットを用いることによって迅速に形成できる。従って、当該核酸構造体は、ZEBOVを迅速に検出するために使用できる。
 また実施形態によれば、上述したZEBOVを検出する方法において使用するためのアッセイキットが提供される。そのようなアッセイキットは、上述した何れかのプライマーセットを含めばよい。更に、当該アッセイキットは、プライマーセットを収容する容器、増幅反応を行うための酵素、基質、洗浄液、緩衝液および/または緩衝液を調製するための塩類などを含んでもよい。
 このようなアッセイキットによれば、これまで検出することができなかったZEBOVのギニア14株を検出することが可能となる。それによってZEBOVを従来に比べて精度よく検出ことが可能となる。また、このようなアッセイキットによって、ギニア14株の遺伝子を短い時間で増幅することが可能である。そのため、ZEBOVの検出を迅速に行うことが可能である。
 [例]
 実施形態のプライマーセットを用いて、ZEBOVを検出する試験を行った。
 (1)ウイルスRNA合成
 実験には、ザイール76株およびザイール95株のZEBOVを使用した。ザイール76株、ザイール95株のウイルスRNAは、カナダ公衆衛生局国立微生物研究所(National Microbiological Laboratory, Public Health Agency of Canada)から譲り受けた。RT-PCRにてプライマー設計領域を含むウイルスcDNAの一部を増幅し、精製した。ギニア14株は、プライマー設計領域を含むウイルスcDNAの一部(300塩基)を合成した(北海道システムサイエンス、日本、札幌)。cDNAはpGEM3Zf(+)ベクター(プロメガ)にてクローニングし、T7RNAポリメラーゼを用いてプライマー設計領域を含む部分的ウイルスRNAを合成し、精製した。ウイルスRNAは分光光度法にて定量した。
 ザイールエボラウイルスの検出を行うために表4に示すプライマーセットを準備した。表中、「セットID」の欄にはプライマーセット番号を示した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 (2)プライマーセットの反応性の確認
 上記(1)に示したそれぞれのプライマーセットを用いてLAMP増幅を以下の方法で行った。LAMP法による核酸の増幅を行うためのLAMP反応液の組成は以下の通りである。
 RT-LAMP反応はLoopampRNA増幅キット(栄研化学株式会社、日本、東京)の製造者のプロトコルに従って実施した。
 LAMP反応液組成(25μL)
FIP          40pmol
BIP          40pmol
F3           5pmol
B3           5pmol
LF           20pmol
LB           20pmol
2×Reaction Mixture  12.5μL
Enzyme Mix(Bst DNA polymerase、avian myeloblastosis virus逆転写酵素) 1.0μL
RNAサンプル      2.0μL。
 反応に持ち込んだ合成RNAの量は、ザイール76株が6.4x10、ザイール95株が3.9x10、ギニア14株が6.1x10コピーであった。
 RT-LAMPアッセイによる増幅をリアルタイムモニタリングするために、前記LAMP反応液を63℃でインキュベートし、リアルタイム濁度計(LA-200;テラメックス、京都、日本)を用いて吸光光度分析によって観察した。
 また、各プライマーセットを用いた増幅および濁度の測定に並行して、RNAサンプルの代わりに水を加えたこと以外は同様なプロトコルで試験を行い、その結果をネガティブコントロールとした。
 その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000016
 表5は、表4に示した各プライマーセットを使用してザイール76株、ザイール95株またはギニア14株のそれぞれについて、RT-LAMP法で増幅し、濁度を指標にして生じた増幅産物を検出した結果を示している。結果は、濁度が0.1以上となるまでに必要とされた時間を分単位で示した。この濁度0.1以上という閾値は、複数のネガティブコントロールから得られた濁度に基づいて設定した。即ち、複数のネガティブコントロールについて得られた濁度の平均値を2倍した値である。表中の「セットID」の欄にはプライマーセット番号を示した。
 結果は次の通りである。プライマーセット番号1、3、10および24では、閾値である0.1以上の濁度は観察されなかった。
 プライマーセット番号5、6、7、8、9、11、12、13、14、15、16、17、18、19、21および23では、40分以内に0.1以上の濁度が観察された。また、プライマーセット番号5、6、7、8、9、11、12、21および23は、約25分で0.1以上の濁度が観察された。
 また、プライマーセット番号20では、35分で0.1以上の濁度が観察されたが、このプライマーセットに配列番号11で示されるLFcループプライマーとして、Tr273wa_LFを追加した。その結果、プライマーセット番号21では増幅効率が増大し、約25分で0.1以上の濁度が観察された。また、プライマーセット番号20に配列番号28で示されるLBcループプライマーと配列番号11で示されるLFcループプライマーとを追加したプライマーセット23の場合では、増幅効率が増大し、26.2分で0.1以上の濁度が観察された。それに対して、プライマーセット番号20に配列番号28で示されるLBcループプライマー、即ち、Tr2_LBを追加したプライマーセット22の場合では、増幅効率に影響はなかった。
 これらの結果から、プライマーセット番号5、6、7、8、9、11、12、13、14、15、16、17、18、19、21および23では、40分以内に0.1以上の濁度が観察されたことから、これらは好ましいプライマーセットの例である。
 (3)プライマーの組み合わせによるギニア株14の増幅への影響
 上記(1)に示したプライマーセットのうち、プライマーセット番号1、2、5、20および22と、配列番号11または28の何れかのループプライマーを用いて上記(2)に記載のプロトコルと同様に試験を行った。
 その結果を図5A~5Lに示す。図5A~5Lには、各プライマーセットを用いたときの反応性を濁度を指標として経時的に測定した結果を示す。各グラフにおいて、横軸には時間を分単位で示し、縦軸には濁度を示した。グラフ中のデータは、実線がザイール76株、破線がギニア14株を増幅した結果を示す。また、全てのデータにおいて、各プライマーセットによる増幅に加えて、上述した通りのネガティブコントロールについても濁度を測定した。
 図5Aは、プライマーセット番号1、図5Bはプライマーセット番号1にLFcプライマーを加えたプライマーセット番号1’、 図5Cはプライマーセット番号2、図5Dはプライマーセット番号2にLBcプライマーを加えたプライマーセット番号2’、図5Eはプライマーセット番号5、図5Fはプライマーセット番号5にLFcプライマーを加えたプライマーセット番号5’、 図5Gはプライマーセット番号20、図5Hはプライマーセット番号21、図5Iはプライマーセット番号22、図5Jはプライマーセット番号23、図5Kはプライマーセット番号24、図5Lはプライマーセット番号25をそれぞれ用いて行った結果である。
 全てのプライマーセットの試験のために、RNAサンプルの代わりに水を添加したネガティブコントロールについて濁度を測定したが、何れのプライマーセットの場合でも測定時間0分~60分までの何れの時点においても濁度は大凡0であった。
 図5Aに示す通り、プライマーセット番号1では、ザイール76株の増幅は約30分で立ち上がったがギニア株の増幅は観察されなかった。このプライマーセットに対してLFcプライマーを追加したときの結果を図5Bに示す。LFcプライマーの追加は、ザイール76株の増幅を早めたが、ギニア株の増幅は見られなかった。
 プライマーセット番号2では、約25分でザイール76株の増幅が観察されたが、ギニア株では約50分近くになり漸く増幅が観察された(図5C)。このプライマーセット番号2にLBcプライマーを追加した場合では、ザイール76株の増幅の立ち上がりの時間は殆ど変らなかったが、ギニア株では約5分早く増幅の立ち上がりが観察された(図5D)。
 プライマーセット番号5では、約28分でギニア株の増幅が観察された(図5E)。このプライマーセット番号5にLFcプライマーを追加した場合では、ギニアの増幅は約8分早い立ち上がりが観察された(図5F)。ザイール76株についてはLFcプライマーの有無には関係なく増幅の立ち上がりは観察されなかった。
 プライマーセット番号20では、約33分でギニア株の増幅が観察され、ザイール76株の増幅は約35分で観察された(図5G)。このプライマーセット番号20にLFcプライマーを追加したプライマーセット番号21では、約23分でギニア株の増幅が観察され、ザイール76株の増幅は約26分で観察された(図5H)。
 プライマーセット番号20にLBcプライマーを追加したプライマーセット番号22では、ギニア株およびザイール76株ともに、プライマーセット番号20に比較して増幅効率の若干の低下が観察された(図5I)。
 プライマーセット番号20にLFcプライマーおよびLBcプライマーを追加したプライマーセット番号23では、約24分でギニア株の増幅が観察され、ザイール76株の増幅は約26分で観察された(図5J)。
 プライマーセット番号24では、ザイール76株の増幅の立ち上がりの時間は約30分であったが、ギニア株では増幅は観察されなかった(図5K)。プライマーセット番号25では、ザイール76株の増幅の立ち上がりの時間は約23分であり、ギニア株での増幅の立ち上がりの時間は約35分であった(図5L)。
 これらの結果から、上記のプライマーセットにおいては、LBcプライマーは増幅効率を向上せず、それを含んでいてもよいがLFcプライマーの使用がより好ましいことが示唆された。
 また、プライマーセット番号20では約35分でギニア株14の増幅の立ち上がりが観察されたのに対して、プライマーセット番号24では、60分以内ではギニア株の増幅の立ち上がりは観察されなかった。プライマーセット番号20とプライマーセット番号24とでは、これらのFIPおよびBIPプライマーは互いに等しく、これらのF3プライマーはZEBOVのトレーラー配列上で6塩基を互いに共有し、互いに近い位置にある配列である。また、これらのB3プライマーについては、2つの塩基の種類が互いに異なることのみを除き、構造を共有する配列である。
 一方、プライマーセット番号6および8では、これらのF3、FIPおよびB3プライマーは互いに等しく、BIPプライマーのみが互いに異なる。これらのBIPプライマーに含まれる変異部位のために選択された塩基の種類が互いに異なる。それにも拘わらず、プライマーセット番号6および8の場合では同様に約20分でZEBOVのギニア14株の増幅が立ち上がった。
 また、プライマーセット番号10とプライマーセット番号13~16とを比較すると、これらはF3、FIPプライマーおよびB3プライマーが互いに等しく、BIPプライマーのみが互いに異なる。プライマーセット番号10のBIPプライマーは、B1c配列として配列番号49、B2配列として配列番号90(配列番号54の相補配列)を含む。他方、プライマーセット番号13のBIPプライマーは、B1c配列として配列番号47、B2配列として配列番号88(配列番号52の相補配列)を含む。プライマーセット番号14のBIPプライマーは、B1c配列として配列番号46、B2配列として配列番号87(配列番号51の相補配列)を含む。プライマーセット番号15のBIPプライマーは、B1c配列として配列番号46、B2配列として配列番号86(配列番号50の相補配列)を含む。プライマーセット番号16のBIPプライマーは、B1c配列として配列番号6、B2配列として配列番号8(配列番号7の相補配列)を含む。特に、プライマーセット番号10および16のF3、FIPプライマーおよびB3プライマーは、何れもギニア14株の変異部位に対応するように設計されているが、共に使用されるBIPプライマーに依存して迅速なギニア14株の増幅が可能になる場合と(プライマーセット番号13~16)、ギニア14株の増幅が観察できない場合とがあった(プライマーセット番号10)。
 これらの結果から、ギニア14株を増幅するためには、BIPプライマーの設計が重要であることが明らかとなった。この結果は、単に保存された領域を選択し、増幅されるべき新株、即ち、ギニア14株遺伝子の変異部位の塩基にプライマー配列を対応させるだけではギニア14株の遺伝子を増幅できないことを示唆している。
 更に、プライマーセット番号20および21と、プライマーセット番号24と25とを比較すると、これらの4つのプライマーセットのFIPプライマーとBIPプライマーは共通している。またF3プライマーとB3プライマーは、プライマーセット番号20と21とで等しく、プライマーセット番号24と25とで等しい。更にプライマーセット番号21と25は、同じLFプライマーを含む。プライマーセット番号20、21、24および25の実験結果は、それぞれ図5G、図5H、図5Kおよび図5Lに示されている。図5Gと図5Kとを比べると、実線で示されているようにザイール76株の増幅の立ち上がりの時間はそれぞれ約34分と約31分であり、これらに同じLFプライマーを追加すると、両者ともに増幅の立ち上がりは10分弱早くなった。これに対して図中破線で示されるギニア14株についてプライマーセット番号20(図5G)と25(図5K)と比較すると、前者ではザイール76株よりも早く約32分で増幅の立ち上がりが観察できたのに対して、後者では60分以内にギニア14株の増幅の立ち上がりは観察されなかった。これらのプライマーセットにLFプライマーを追加すると、プライマーセット番号21ではギニア14株の増幅の立ち上がりが10分程度早くなり、ザイール76株では8分程度早くなった。他方、プライマーセット番号25においては、ザイール76株では7分程度立ち上がりが早くなった。またプライマーセット番号25においては、LFプライマーを含まないセットでは60分以内に観察されなかったギニア14株の増幅立ち上がりが、LFプライマーの使用によって33分頃に観察することができた。これらの結果から、LFプライマーがギニア14株の増幅においては好ましいプライマーの1例であることが示される一方で、この好ましいプライマーの使用の有無に拘わらずギニア14株を効率よく増幅でき、且つギニア14株と同様にザイール76株についても効率よく増幅することができたプライマーセット番号20は、ZEBOVの増幅およびその検出のために好ましいプライマーセットであると考えられる。また、プライマーセット番号24とプライマーセット番号21との違いは、F3プライマーとB3プライマーであるが、上述した他の結果を考え合わせると、ZEBOVの増幅、特に、ギニア14株の増幅には、F3プライマーおよびB3プライマーの設計および選択も重要であることが示唆された。
 (4)ループプライマーの反応性に対する影響
 LAMP反応に持ち込んだ合成RNAの量がザイール76株6.4x10であることを除いて上記(2)と同様にRT-LAMP反応を行った。プライマーセットは上述のプライマーセット番号20~23を使用した。結果を図6に示す。
 プライマーセット番号20では、約25分でザイール76株の増幅が立ち上がり、これは、LFcプライマーの追加により約5分以上短縮された(プライマーセット番号21)。また、プライマーセット番号20にLBcプライマーを追加した場合には、増幅立ち上がりまでの時間に殆ど変化は見られなかった(プライマーセット番号22)。プライマーセット番号20にLFcプライマーとLBcプライマーとを追加した結果は、LFcプライマーのみを追加した結果と殆ど変らなかった。この結果から、LBcプライマーはギニア14株の増幅効率に影響を与えないことが示唆された。
 実施形態のプライマーセットにより、ZEBOVのギニア14株が増幅された。ZEBOVのギニア14株の増幅を可能としたことにより、ZEBOVをより精度よく検出することが可能となった。
 例えば、プライマーセット番号20~23などは、ZEBOVのギニア14株の他に、ザイール76株についても迅速に増幅することが可能であった。また、データに示さないが、プライマーセット番号20~23などは、ザイール95株についても迅速に増幅することが可能である。
 (5)ZEBOVのギニア14株の検出
 LAMP反応に持ち込んだ合成RNAがギニア14株6.1x10コピーから6.1x10コピーであることを除いて上記(2)と同様にRT-LAMP反応を行った。使用したプライマーセットは、セットID21およびセットID26であり、これらのプライマーセットは、F3プライマーのみが互いに異なるプライマーセットである。具体的には、セットID21およびセットID26のF3プライマーはそれぞれ、配列番号39および配列番号2でそれぞれ示されるヌクレオチド配列からなり、それ以外のプライマーについては互いに同じ配列からなるプライマーを用いた。使用されたこれらのプライマーセットの具体的な構成は、表4-6および表6に示す通りである。
 サンプル中のZEBOVのギニア14株の濃度は、原液を予め10倍系列希釈することによって、10-5倍(3.05x10コピー/μL)から10-9倍(3.05x10コピー/μL)に調製した。
 試験の方法は、上記「(2)プライマーセットの反応性の確認」の項における記載と同じ方法により行った。
Figure JPOXMLDOC01-appb-T000017
 その結果を図7に示す。図7は、2種類のLAPMプライマーによってウイルス遺伝子を増幅したときの結果を示すグラフである。縦軸に濁度を示し、横軸に分単位で時間を示した。セットID21とセットID26とにそれぞれ含まれるF3プライマーの違いは、5’端から第8位の塩基の種類のみである。即ち、5’端から第8位の塩基は、セットID21ではチミン(tまたはT)であり、セットID26ではシトシン(cまたはC)である。
 全ての合成RNA濃度に亘り、セットID21およびセットID26共に良好にZEBOVのギニア14株由来の核酸を増幅することが可能であった。また、ウイルスの濃度が比較的低い場合、例えば、10-7倍希釈(6.1x10コピー)および10-8倍希釈(6.1x10コピー)の場合、セットID26のプライマーセットの方が増幅効率が高い傾向が観察された。
 以上の結果から、セットID21およびセットID26は、ほぼ同等に良好に特異的にZEBOVのギニア14株由来の核酸を増幅することが可能であることが明らかになった。これにより、実施形態に従うプライマーセットにより、迅速且つ正確な検出が可能であることが示唆された。
 (6)臨床的なZEBOVのギニア14株の検出
 更に、同様にギニアにおいて採取されたサンプル中のZEBOVのギニア14株の検出能について、実施形態に従うプライマーセットを用いたRT-LAMP法と、定量的RT-PCR(qRT-PCR)とを比較するための試験を行った。
  (a)RT-LAMP法
 RT-LAMP法は、等温核酸増幅およびリアルタイム蛍光検出装置、Genie(登録商標)III(Optigene、ウェスト・サセックス、U.K.)を用いて行った。DEPC処理水と、ザイール76株の合成RNAとをそれぞれネガティブコントロールとポジティブコントロールとして使用した。
 LAMP増幅のリアルタイム蛍光検出は、Isothermal Master Mix for GenieIII(Optigene)の製造者のプロトコルに従って実施した。
 LAMP反応液組成(25μL)
FIP          20pmol
BIP          20pmol
F3           5pmol
B3           5pmol
LF           10pmol
Isothermal Master Mix  15.0μL
AMV逆転写酵素(0.15U) 1.0μL
RNAサンプル      5.0μL。
 LAMP増幅および蛍光検出は、Genie(登録商標)IIIにおいて63℃、30分間に亘って増幅を行い、続いて95℃~80℃で解離分析を行った。非特異的な増幅は、ポジティブコントロール反応の融解温度と比較することにより除外した。
  (b)RT-PCR法
 RT-PCR法は、QuantitectRT-PCRキット(キアゲン)とZaireEBOV2014プライマーおよびプローブキット(TIM MOLBIOL、ハンブルク、ドイツ)を用いて比較試験を行った。TIBキットは、米国食品医薬品局からEBOV診断のための緊急使用権限(EUS)を受けたものである。
 5μLのRNAサンプルを25μLの反応混合物に添加した。各反応は、SmartCyclerIIシステム(セフィード、U.S.A)において行った。
 上述したRT-LAMP法およびqRT-PCR法の試験条件を表7に示す。
Figure JPOXMLDOC01-appb-T000018
 RT-LAMP試験は、RT-PCR法による診断結果を伏せたブラインド試験により行い、試験終了後に、両試験結果を比較した。
 (c)結果
 上記試験において使用されたサンプルは、ZEBOVのギニア14株への感染の疑いのある対象から採取されたサンプルである。
 表8に示すように、RT-LAMP法とqRT-PCR法とによりそれぞれ得られた結果は、全てのサンプルにおいて診断結果が一致した。即ち、RT-LAMP法を用いた場合であっても、qRT-PCR法と同様の精度でサンプル中のZEBOVのギニア14株を検出することが可能であった。
Figure JPOXMLDOC01-appb-T000019
 ウイルス力価の異なる代表的な4つのサンプル(臨床検体A、B、CおよびD)について、RT-LAMP法およびqRT-PCR法のそれぞれによる検出試験でウイルスRNAの検出に要した時間を表9に示す。
Figure JPOXMLDOC01-appb-T000020
 表9に示す結果から明らかであるように、臨床検体A、B、CおよびDの何れのサンプルの場合においても、RT-LAMP法による検出時間の方が、qRT-PCR法による検出時間よりも顕著に短かった。例えば、RT-LAMP法による検出時間は、最短で10.2分であり、最長でも13.3分であった。それに比べてqRT-PCR法による検出時間は、最短でも40.3分であり、最長で54.0分であった。
 以上のように、実施形態のプライマーセットにより、ギニア14株を含めたZEBOV株を従来のEBOV診断法として用いられるqRT-PCR法と同様の高い精度で、より迅速に検出することが可能であることが証明された。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (19)

  1.  ザイールエボラウイルスを特異的に増幅するためのLAMP増幅用核酸プライマーセットであって、
    それにより増幅されるべき鋳型配列は、3’側から5’側に向けてF3c配列、F2c配列、F1c配列、B1配列、B2配列およびB3配列をこの順番で含み、
    当該プライマーセットは、FIPプライマー、F3プライマー、BIPプライマーおよびB3プライマーを含み、FIPプライマーは、5’側から3’側に向けてF1c配列とF2配列とをこの順番で含み、F3プライマーはF3配列を含み、BIPプライマーは、5’側から3’側に向けてB1c配列とB2配列とをこの順番で含み、B3プライマーはB3配列を含み、
      ここで、F1配列とF1c配列、F2配列とF2c配列、F3配列とF3c配列、B1配列とB1c配列、B2配列とB2c配列、B3配列とB3c配列は互いに相補的であり、
    前記F1配列は、配列番号31若しくは配列番号64に含まれる連続する少なくとも13塩基またはその相補配列を含み、
    前記F2配列は、配列番号62若しくは配列番号63に含まれる連続する少なくとも13塩基またはその相補配列を含み、
    前記F3配列は、配列番号29、配列番号36、配列番号38、配列番号55、配列番号56、配列番号57、配列番号58、配列番号59、配列番号60若しくは配列番号61に含まれる連続する少なくとも13塩基またはその相補配列を含み、
    前記B1c配列は、配列番号68、配列番号69、配列番号70、配列番号71、配列番号72、配列番号73、配列番号74若しくは配列番号75に含まれる連続する少なくとも13塩基またはその相補配列を含み、
    前記B2c配列は、配列番号65若しくは配列番号66に含まれる連続する少なくとも13塩基またはその相補配列を含み、および
    前記B3c配列は、配列番号34、配列番号67、配列番号82若しくは配列番号83に含まれる連続する少なくとも13塩基またはその相補配列を含む
    ことを特徴とするプライマーセット。
  2.  前記F3プライマーが配列番号29、55、60若しくは61に含まれる5’端から第1位~第5位の何れかの塩基から続く塩基を含むように連続する少なくとも13塩基またはその相補配列であり、
     前記FIPプライマーが配列番号4、44若しくは45の何れかで示される配列またはその相補配列と、配列番号3若しくは42の何れかで示される配列またはその相補配列とを含み、
     前記BIPプライマーにおいて、当該B1c配列が、配列番号75に含まれる5’端から第1位~第5位の何れかの塩基を含むように連続する少なくとも13塩基若しくはその相補配列、または3’端から第1位~第6位の何れかの塩基を含むように連続する少なくとも13塩基若しくはその相補配列であり、当該B2c配列が、配列番号65若しくは66に含まれる5’端から第1位~第7位の何れかの塩基を含むように連続する少なくとも13塩基またはその相補配列であり、
     前記B3プライマーが、配列番号82に含まれる5’端から第1位~第5位の何れかの塩基を含むように連続する少なくとも13塩基若しくはその相補配列、または配列番号34に含まれる3’端から第1~第7位の何れかの塩基を含むように連続する少なくとも13塩基若しくはその相補配列である、
     前記LFcプライマーが、配列番号11で示される配列を含む、
    ことを特徴とする請求項1に記載のプライマーセット。
  3.  前記F3プライマーが、配列番号2、配列番号17、配列番号20、配列番号22または配列番号39の何れかで示される配列またはその相補配列を含み、
     前記FIPプライマーが、配列番号12、配列番号18または配列番号21の何れかで示される配列またはその相補配列を含み、
     前記BIPプライマーが、配列番号13、配列番号23、配列番号24、配列番号25、配列番号26または配列番号27の何れかで示される配列またはその相補配列を含み、 前記B3プライマーが、配列番号10または配列番号19の何れかで示される配列またはその相補配列を含む、
    ことを特徴とする請求項1または2に記載のプライマーセット。
  4.  前記F3プライマーが、配列番号2、配列番号17、配列番号20、配列番号22または配列番号39の何れかで示される配列またはその相補配列に含まれる連続する少なくとも13塩基を含み、
     前記FIPプライマーが、配列番号12、配列番号18または配列番号21の何れかで示される配列またはその相補配列に含まれる連続する少なくとも13塩基を含み、
     前記BIPプライマーが、配列番号13、配列番号23、配列番号24、配列番号25、配列番号26または配列番号27の何れかで示される配列またはその相補配列に含まれる連続する少なくとも13塩基を含み、
     前記B3プライマーが、配列番号10または配列番号19の何れかで示される配列またはその相補配列に含まれる連続する少なくとも13塩基を含む、
    ことを特徴とする請求項1または2に記載のプライマーセット。
  5.  前記プライマーセットに含まれるF3プライマー、FIPプライマー、BIPプライマーおよびB3プライマーのためのそれぞれの認識配列の組み合わせが以下からなる群より選択される請求項1~3の何れか1項に記載のプライマーセット:
    (1)配列番号17、配列番号18、配列番号13および配列番号19の組み合わせ;(2)配列番号22、配列番号21、配列番号15および配列番号10の組み合わせ;(3)配列番号20、配列番号21、配列番号23および配列番号10の組み合わせ;(4)配列番号22、配列番号21、配列番号24および配列番号10の組み合わせ;(5)配列番号22、配列番号21、配列番号25および配列番号10の組み合わせ;(6)配列番号22、配列番号21、配列番号26および配列番号10の組み合わせ;(7)配列番号22、配列番号21、配列番号27おおび配列番号10の組み合わせ;(8)配列番号20、配列番号12、配列番号23および配列番号10の組み合わせ;(9)配列番号20、配列番号12、配列番号24および配列番号10の組み合わせ;(10)配列番号20、配列番号12、配列番号25および配列番号10の組み合わせ;(11)配列番号20、配列番号12、配列番号26および配列番号10の組み合わせ;(12)配列番号20、配列番号12、配列番号27および配列番号9の組み合わせ;(13)配列番号20、配列番号12、配列番号13および配列番号9の組み合わせ;(14)配列番号20、配列番号12、配列番号13および配列番号19の組み合わせ;(15)配列番号22、配列番号12、配列番号13および配列番号10の組み合わせ;(16)配列番号22、配列番号12、配列番号13および配列番号19の組み合わせ;(17)配列番号39、配列番号12、配列番号13および配列番号10の組み合わせ;(18)配列番号2、配列番号12、配列番号13および配列番号10の組み合わせ;並びに
    (19)前記(1)~(18)の何れかの組み合わせに含まれる4つの配列のそれぞれの相補配列の組み合わせ。
  6.  前記ザイールエボラウイルスが、ギニア14株であることを特徴とする請求項1~5の何れか1項に記載のプライマーセット。
  7.  前記ザイールエボラウイルスが、ギニア14株、ザイール76株およびザイール95株であることを特徴とする請求項1~5の何れか1項に記載のプライマーセット。
  8.  前記FIPプライマーが、更に前記F1c配列と前記F2配列との間にリンカーを含み、および/または前記BIPプライマーが、更に前記B1配列と前記B2c配列との間にリンカーを含むことを特徴とする請求項1~7の何れか1項に記載のプライマーセット。
  9.  前記リンカーが、1~50塩基長を有する任意の塩基配列からなることを特徴とする請求項8に記載のプライマーセット。
  10.  更に、配列番号11またはその相補配列を含むLFcプライマーを含むことを特徴とする請求項1~9の何れか1項に記載のプライマーセット。
  11.  請求項1~5の何れか1項に記載の何れかのプライマーセットと、前記プライマーセットを収容する容器とを含むザイールエボラウイルスを検出するためのアッセイキット。
  12.  前記ザイールエボラウイルスが、ギニア14株であることを特徴とする請求項11に記載のアッセイキット。
  13.  前記ザイールエボラウイルスが、ザイール76株、ザイール95株およびギニア14株であることを特徴とする請求項11に記載のアッセイキット。
  14.  3’側から5’側に向けて、F1配列、F2c配列およびF1c配列をこの順番で含み、且つ前記F1配列と前記F1c配列とが互いに結合し二本鎖を形成している第1のステム・ループ構造体、
     3’側から5’側に向けて、B1配列、B2配列およびB1c配列をこの順番で含み、前記B1配列と前記B1c配列とが互いに結合し二本鎖を形成している第2のステム・ループ構造体、
     5’側から3’側に向けて、F1c配列、F2配列およびF1配列をこの順番で含み、前記F1c配列と前記F1配列とが互いに結合し二本鎖を形成している第3のステム・ループ構造体、
     5’側から3’側に向けて、B1c配列、B2c配列およびB1配列をこの順番で含み、前記B1c配列と前記B1配列とが互いに結合し二本鎖を形成している第4のステム・ループ構造体、
     3’側から5’側に向けて、F1配列、F2c配列、F1c配列、B1配列、B2配列およびB1c配列をこの順番で含み、且つ前記F1配列と前記F1c配列とが互いに結合し二本鎖を形成し、前記B1配列と前記B1c配列とが互いに結合し二本鎖を形成している第1のダンベル構造体、および/または
     5’側から3’側に向けて、F1c配列、F2配列、F1配列、B1c配列、B2c配列およびB1配列をこの順番で含み、且つ前記F1c配列と前記F1配列とが互いに結合し二本鎖を形成し、前記B1c配列と前記B1配列とが互いに結合し二本鎖を形成している第2のダンベル構造体
    を含む核酸構造体であって、
      ここで、F1配列とF1c配列、F2配列とF2c配列、F3配列とF3c配列、B1配列とB1c配列、B2配列とB2c配列、B3配列とB3c配列は互いに相補的であり、
    前記F1配列は、配列番号31若しくは配列番号64に含まれる連続する少なくとも13塩基またはその相補配列を含み、
    前記F2配列は、配列番号62若しくは配列番号63に含まれる連続する少なくとも13塩基またはその相補配列を含み、
    前記F3配列は、配列番号29、配列番号36、配列番号38、配列番号55、配列番号56、配列番号57、配列番号58、配列番号59、配列番号60若しくは配列番号61に含まれる連続する少なくとも13塩基またはその相補配列を含み、
    前記B1c配列は、配列番号68、配列番号69、配列番号70、配列番号71、配列番号72、配列番号73、配列番号74若しくは配列番号75に含まれる連続する少なくとも13塩基またはその相補配列を含み、
    前記B2c配列は、配列番号65若しくは配列番号66に含まれる連続する少なくとも13塩基またはその相補配列を含み、および
    前記B3c配列は、配列番号34、配列番号67、配列番号82若しくは配列番号83に含まれる連続する少なくとも13塩基またはその相補配列を含む
    ことを特徴とする核酸構造体。
  15.  前記核酸構造体が、鋳型としてのザイールエボラウイルスのギニア14株を起源とする請求項14に記載の核酸構造体。
  16.  前記ザイールエボラウイルスが、ギニア14株、ザイール76株およびザイール95株であることを特徴とする請求項15に記載の核酸構造体。
  17.  ザイールエボラウイルスを検出するための方法であって、請求項1~5に記載の何れかのプライマーセットを用いて検体に含まれる核酸を増幅し、濁度または蛍光を指標に前記検体にザイールエボラウイルスが含まれているか否かを判定する方法。
  18.  前記ザイールエボラウイルスが、ギニア14株であることを特徴とする請求項17に記載の方法。
  19.  前記ザイールエボラウイルスが、ギニア14株、ザイール76株およびザイール95株であることを特徴とする請求項17に記載の方法。
PCT/JP2015/085534 2014-12-19 2015-12-18 ザイールエボラウイルス検出用プライマーセット、アッセイキットおよび増幅方法 WO2016098892A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15870091.4A EP3235904A1 (en) 2014-12-19 2015-12-18 Primer set for detection of zaire ebola virus, assay kit, and amplification method
CN201580069326.2A CN107406845A (zh) 2014-12-19 2015-12-18 扎伊尔埃博拉病毒检测用引物对、检测试剂盒及扩增方法
US15/626,938 US10563249B2 (en) 2014-12-19 2017-06-19 Primer set for detection of Zaire ebola virus, assay kit, and amplification method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014258074 2014-12-19
JP2014-258074 2014-12-19
JP2015123538A JP6605238B2 (ja) 2014-12-19 2015-06-19 ザイールエボラウイルス検出用プライマーセット、アッセイキットおよび増幅方法
JP2015-123538 2015-06-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/626,938 Continuation US10563249B2 (en) 2014-12-19 2017-06-19 Primer set for detection of Zaire ebola virus, assay kit, and amplification method

Publications (1)

Publication Number Publication Date
WO2016098892A1 true WO2016098892A1 (ja) 2016-06-23

Family

ID=56126771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085534 WO2016098892A1 (ja) 2014-12-19 2015-12-18 ザイールエボラウイルス検出用プライマーセット、アッセイキットおよび増幅方法

Country Status (1)

Country Link
WO (1) WO2016098892A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177372A1 (ja) * 2020-03-05 2021-09-10 栄研化学株式会社 コロナウイルス(SARS-CoV-2)の検出方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024902A1 (fr) * 2000-09-19 2002-03-28 Eiken Kagaku Kabushiki Kaisha Procede permettant de synthetiser un polynucleotide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024902A1 (fr) * 2000-09-19 2002-03-28 Eiken Kagaku Kabushiki Kaisha Procede permettant de synthetiser un polynucleotide

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIROSHI TAKANO ET AL.: "Loop-mediated isothermal amplification (LAMP); Principle and applications", MODERN MEDIA, vol. 60, no. 7, July 2014 (2014-07-01), pages 211 - 231, XP009503835 *
KUROSAKI Y. ET AL.: "Rapid and simple detection of Ebola virus by reverse transcription-loop- mediated isothermal amplification", J. VIROL. METHODS., vol. 141, no. 1, 2007, pages 78 - 83, XP005896669, DOI: doi:10.1016/j.jviromet.2006.11.031 *
LI H. ET AL.: "Survey and Visual Detection of Zaire ebolavirus in Clinical Samples Targeting the Nucleoprotein Gene in Sierra Leone", FRONT. MICROBIOL., vol. 6, XP055455542 *
YOHEI KUROSAKI ET AL.: "Clinical evaluation of a rapid detection assay for Ebola virus in Guinea", THE 56TH ANNUAL MEETING FOR THE JAPANESE SOCIETY OF TROPICAL MEDICINE PROGRAM AND ABSTRACTS, vol. 56 th, 4 December 2015 (2015-12-04), pages 65 - 66, XP009503865 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177372A1 (ja) * 2020-03-05 2021-09-10 栄研化学株式会社 コロナウイルス(SARS-CoV-2)の検出方法
JPWO2021177372A1 (ja) * 2020-03-05 2021-09-10
JP7313537B2 (ja) 2020-03-05 2023-07-24 栄研化学株式会社 コロナウイルス(SARS-CoV-2)の検出方法

Similar Documents

Publication Publication Date Title
WO2017212904A1 (ja) 複数のプライマーセットを組み合わせたlamp法を用いたアフリカ豚コレラウイルスの迅速検出法
JP2019216722A (ja) 核酸プローブ
WO2018042598A1 (ja) ジカウイルス検出用プライマーセット
JP6007652B2 (ja) メチシリン耐性黄色ブドウ球菌を検出するためのプライマーおよびプローブ、ならびに、それらを用いたメチシリン耐性黄色ブドウ球菌の検出方法
WO2009001737A1 (ja) 改良されたノロウイルスrna検出方法
CN111154923A (zh) 一种扩增新型冠状病毒(SARS-CoV-2)基因核苷酸片段的引物及其应用
JP5553323B2 (ja) Hiv検出キット、及びhiv検出方法
WO2009098789A1 (ja) Lamp法による甲殻類病原性ウイルスの検出方法及び検出試薬キット
Fan et al. RAP: a novel approach to the rapid and highly sensitive detection of respiratory viruses
JP2019013248A (ja) Hev核酸を検出するための組成物および方法
WO2015118491A1 (en) Method for detecting hiv
JP4913042B2 (ja) Hivタイプおよびサブタイプの検出
JPWO2005001097A1 (ja) Sarsコロナウイルスの検出法
JP6605238B2 (ja) ザイールエボラウイルス検出用プライマーセット、アッセイキットおよび増幅方法
JP2018121607A (ja) ジカウイルス検出用プライマーセット、アッセイキットおよび増幅方法
WO2016098892A1 (ja) ザイールエボラウイルス検出用プライマーセット、アッセイキットおよび増幅方法
JP2018078806A (ja) ノロウイルスrnaの検出方法
JP2012143185A (ja) 口蹄疫ウィルスの包括的検出方法
US20230416824A1 (en) Systems for the detection of targeted gene variations and viral genomes and methods of producing and using same
JP2015128400A (ja) 肺炎マイコプラズマの検出方法
JP6569238B2 (ja) ノロウイルスgii群の検出方法
JP2011078389A (ja) サポウイルスrnaの検出方法および検出試薬
JP2007000040A (ja) B型肝炎ウイルスの検出方法
JP2005245434A (ja) ノロウイルスの検出試薬
JP2007222092A (ja) E型肝炎ウイルスゲノムの高感度検出法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870091

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015870091

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE