WO2016098423A1 - 酸化物の前駆体、酸化物層、半導体素子、及び電子デバイス、並びに酸化物層の製造方法及び半導体素子の製造方法 - Google Patents

酸化物の前駆体、酸化物層、半導体素子、及び電子デバイス、並びに酸化物層の製造方法及び半導体素子の製造方法 Download PDF

Info

Publication number
WO2016098423A1
WO2016098423A1 PCT/JP2015/078158 JP2015078158W WO2016098423A1 WO 2016098423 A1 WO2016098423 A1 WO 2016098423A1 JP 2015078158 W JP2015078158 W JP 2015078158W WO 2016098423 A1 WO2016098423 A1 WO 2016098423A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
aliphatic polycarbonate
precursor
layer
binder
Prior art date
Application number
PCT/JP2015/078158
Other languages
English (en)
French (fr)
Inventor
下田 達也
井上 聡
深田 和宏
聖司 西岡
信貴 藤本
鈴木 正博
Original Assignee
国立大学法人北陸先端科学技術大学院大学
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北陸先端科学技術大学院大学, 住友精化株式会社 filed Critical 国立大学法人北陸先端科学技術大学院大学
Priority to KR1020177011097A priority Critical patent/KR102460301B1/ko
Priority to JP2015552674A priority patent/JP6481865B2/ja
Priority to US15/532,769 priority patent/US10400336B2/en
Priority to EP15869631.0A priority patent/EP3236488A4/en
Priority to CN201580062190.2A priority patent/CN107004606B/zh
Priority to TW104135998A priority patent/TWI670324B/zh
Publication of WO2016098423A1 publication Critical patent/WO2016098423A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02244Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of a metallic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to an oxide precursor, an oxide layer, a semiconductor element, and an electronic device, an oxide layer manufacturing method, and a semiconductor element manufacturing method.
  • a polycrystalline silicon film or an amorphous silicon film has been mainly used as a channel layer of a thin film transistor which is an example of an electronic device.
  • the electron mobility is limited due to the scattering of electrons occurring at the interface of the polycrystalline particles, resulting in variations in transistor characteristics.
  • an amorphous silicon film there is a problem that the electron mobility is extremely low, the element is deteriorated with time, and the reliability of the element is extremely low.
  • oxide semiconductors having higher electron mobility than amorphous silicon films and less variation in transistor characteristics than polycrystalline silicon films.
  • oxide conductors or oxide insulators made of oxides are, for example, indispensable technical elements for realizing electronic devices using only oxides. The interest is very high.
  • Patent Documents 1 to 3 attempts have been made to produce a coated flexible electronic device using a conductive polymer or an organic semiconductor.
  • the “layer” in the present application is a concept including not only a layer but also a film.
  • the “film” in the present application is a concept including not only a film but also a layer.
  • the thickness of a layer formed by a printing method (particularly, screen printing method) and the thickness of a layer required for a semiconductor element.
  • a relatively thick layer is formed during patterning using a printing method, but the layer thickness required for a semiconductor element is generally very thin.
  • the viscosity is adjusted by adding a binder.
  • the inventors of the present invention use a paste or a solution in which a thin layer (typically an oxide semiconductor layer, an oxide conductor layer, or an oxide insulator layer) constituting a semiconductor element is added to a binder.
  • a thin layer typically an oxide semiconductor layer, an oxide conductor layer, or an oxide insulator layer
  • the process of forming the oxide precursor layer by the printing method a part of the precursor is threaded from the precursor layer on which a pattern is formed on the substrate. This may cause a problem that the desired pattern is destroyed.
  • the above-described oxide precursor pattern is formed by, for example, a printing method, it is necessary to maintain the shape of the once formed pattern. Therefore, it can be said that the formation of a pattern that hardly changes with time is one of the problems required particularly in the printing method.
  • the inventors of the present application are conducting research to form various metal oxides from a liquid material, and in particular, a gel-like layer (hereinafter also referred to as “gel layer”) obtained from the above-described paste or solution has a pattern.
  • a detailed analysis was performed on the formation process.
  • the properties of the binder itself or the paste or solution to which the binder is added are It was found that there is a considerable influence when forming the pattern.
  • the inventors of the present invention are able to use a binder having a specific range of molecular weight or a specific spinnability made of an aliphatic polycarbonate in an electronic device or a semiconductor element. It was confirmed that it can contribute to the realization of a desired pattern of the gel layer having a thin enough thickness to be employed.
  • the inventors of the present application have studied the realization of the desired pattern of the gel layer from another viewpoint. Specifically, after the pattern is once formed, the above-mentioned binder is an impurity as viewed from the finally obtained metal oxide, and becomes an object to be decomposed or removed. Therefore, the time required for the binder is only temporary. Therefore, the inventors of the present application are not devised to maintain the shape of the pattern once formed for a considerably long time as has been conventionally developed, but rather from the formation of the pattern until it is disassembled or removed. We conducted research and analysis based on the idea that the pattern should be maintained for a short period of time. As a result, it has been clarified that by devising the solvent in the above paste or solution, it can further contribute to the realization of the desired pattern of the above gel layer.
  • an oxide layer obtained by heat-treating the gel layer which is an oxide precursor, can be easily formed by a low energy production process typified by a printing method. That is, each viewpoint and device described above contributes to further improvement of the performance of semiconductor elements and electronic devices including a desired thin layer metal oxide formed by using a low energy manufacturing process, and manufacturing technology thereof. obtain.
  • the present invention was created based on the above viewpoints and numerous analyses.
  • the inventors of the present application have realized in the past equipment or a method for obtaining an oxide semiconductor layer while accurately decomposing or removing the binder by firing for forming the above-described metal oxide (for example, internationally). From the published publication WO / 2015/019771), at least a part of such equipment or method can be utilized also in the present application. In the present application, it is not always necessary to utilize techniques and technical ideas that have been researched or developed so far. However, utilizing the technology and the technical idea, combined with solving at least a part of the above-described technical problems, further enhances the performance of the above-described semiconductor elements and electronic devices and the manufacturing technology thereof. Can contribute to improvement.
  • the “process from a liquid to a gel state” is a typical example, in which a binder and a solvent are removed by heat treatment, but a metal compound that becomes a metal oxide when oxidized (for example, , A situation where the ligand) is not decomposed.
  • the “process from a gel state to a solidified state or a sintered state” is a typical example, where the above-mentioned ligand is decomposed and oxidized to form a metal oxide and oxygen. A situation where the bond is almost completed.
  • One oxide precursor of the present invention comprises an aliphatic polycarbonate binder (inevitable impurities) in which the ratio of the aliphatic polycarbonate having a molecular weight of 6,000 to 400,000 is 80% by mass or more of the entire aliphatic polycarbonate. And a metal compound that becomes a metal oxide when oxidized.
  • the range of molecular weight occupying 80% by mass or more of the entire aliphatic polycarbonate serving as a paste is 6,000 or more and 400,000 or less.
  • the spinnability of the binder can be appropriately controlled.
  • a favorable pattern can be obtained for the oxide precursor.
  • another oxide precursor of the present invention is contained in an aliphatic polycarbonate reservoir having a zero shear viscosity ⁇ measured using a rheometer (model, AR-2000EX) manufactured by TA Instruments.
  • a rheometer model, AR-2000EX
  • the thread length L from the outermost surface of the aliphatic polycarbonate reservoir is When measured, in a solution containing a binder (which may contain inevitable impurities) made of the above-mentioned aliphatic polycarbonate having a value of L / (D ⁇ v ⁇ ⁇ ) of 0.25 mm ⁇ 1 Pa ⁇ 1 or more, A metal compound which becomes a metal oxide when oxidized is dispersed.
  • an aliphatic polycarbonate serving as a paste has a numerical range based on the above formula (ie, L / (D ⁇ v ⁇ ⁇ )). Satisfying the above, for example, the knowledge that the spinnability of the binder can be appropriately controlled for the layer formed by the printing method. Therefore, if the above numerical range is satisfied, a good pattern can be obtained for the oxide precursor.
  • one oxide layer of the present invention includes a binder (inevitable impurities) whose aliphatic polycarbonate having a molecular weight of 6,000 or more and 400,000 or less is 80% by mass or more of the entire aliphatic polycarbonate. And a precursor layer of an oxide in which a metal compound that becomes a metal oxide when dispersed is baked in a solution containing
  • the range of molecular weight occupying 80% by mass or more of the entire aliphatic polycarbonate serving as a paste in the precursor of the oxide layer is 6,000 to 400,000, for example, printing
  • the spinnability of the binder can be appropriately controlled.
  • a good pattern can be formed for the oxide precursor, and thus an oxide layer with a good pattern can be obtained.
  • another oxide layer of the present invention is formed in a reservoir of an aliphatic polycarbonate having a zero shear viscosity ⁇ measured using a rheometer (model, AR-2000EX) manufactured by TA Instruments. After sinking a cylindrical rod made of tetratetrafluoroethylene (polytetrafluoroethylene) whose diameter is D, the thread length L from the outermost surface of the aliphatic polycarbonate reservoir when the cylindrical rod is pulled up at a speed v is measured.
  • the aliphatic polycarbonate that serves as a paste in the precursor of the oxide layer satisfies the numerical range based on the above-described calculation formula, for example, a layer formed by a printing method.
  • the knowledge that the spinnability of the binder can be appropriately controlled was obtained. Therefore, when the above numerical range is satisfied, a favorable pattern of the oxide precursor layer can be formed, and thus an oxide layer having a favorable pattern can be obtained.
  • the manufacturing method of one oxide layer of this invention is the binder consisting of the aliphatic polycarbonate whose ratio of the aliphatic polycarbonate whose molecular weight is 6,000 or more and 400,000 or less is 80 mass% or more of the whole aliphatic polycarbonate.
  • the range of molecular weight occupying 80% by mass or more of the entire aliphatic polycarbonate serving as a paste is 6,000 or more and 400,000 or less.
  • an oxide layer of the present invention is as follows.
  • a pool of aliphatic polycarbonate having a zero shear viscosity ⁇ measured using a rheometer (AR-2000EX) manufactured by TA Instruments When a cylindrical rod made of polytetrafluoroethylene having a diameter of D is submerged and then the cylindrical rod is pulled at a speed v, the thread length L from the outermost surface of the aliphatic polycarbonate reservoir is In a solution containing a binder (which may contain unavoidable impurities) consisting of an aliphatic polycarbonate whose L / (D ⁇ v ⁇ ⁇ ) value is 0.25 mm ⁇ 1 Pa ⁇ 1 or more when measured.
  • an aliphatic polycarbonate that serves as a paste for an oxide precursor is formed by, for example, a printing method by satisfying a numerical range based on the above calculation formula.
  • the knowledge that the spinnability of the binder can be appropriately controlled for the layer was obtained. Therefore, when the above numerical range is satisfied, a good pattern of the oxide precursor layer can be formed.
  • metal oxide in the present application is a concept including an oxide semiconductor, an oxide conductor, or an oxide insulator.
  • each of the oxide semiconductor, the oxide conductor, and the oxide insulator is a relative concept from the viewpoint of electrical conductivity, and thus is not required to be strictly distinguished. Even if it is the same kind of metal oxide, it may be recognized by those skilled in the art as an oxide semiconductor depending on the requirements of various devices, or may be recognized by those skilled in the art as an oxide conductor or oxide insulator.
  • the “substrate” in the present application is not limited to the foundation of the plate-like body, but includes other forms of foundations or base materials.
  • “application” refers to forming a layer on a substrate by a low energy manufacturing process, typically a printing method.
  • a layer formed by a printing method can appropriately control the spinnability of a binder made of an aliphatic polycarbonate.
  • a good pattern can be obtained for the body.
  • the method for producing one oxide layer of the present invention it is possible to appropriately control the spinnability of a binder made of an aliphatic polycarbonate, so that a good pattern is formed with respect to an oxide precursor. can do.
  • the contact angle between the substrate and the solution with respect to the change in the concentration of 2-nitropropane, 30 seconds after the solution containing the aliphatic polycarbonate is disposed on the substrate It is a graph which shows the spreading rate of this solution on a base material.
  • the contact angle between the substrate and the solution with respect to the change in the concentration of 2-nitropropane 120 seconds after the solution containing the aliphatic polycarbonate is disposed on the substrate It is a graph which shows the spreading rate of this solution on a base material.
  • 6 is a graph showing TG-DTA characteristics of an indium-containing solution, which is an example of a constituent material of an oxide semiconductor precursor for forming a channel of a thin film transistor according to a second embodiment of the present invention.
  • 6 is a graph showing TG-DTA characteristics of a polypropylene carbonate solution which is an example of a solution containing only a binder as a solute for forming the constituent elements of the thin film transistor of the second embodiment of the present invention.
  • 6 is a graph showing TG-DTA characteristics of a precursor of an oxide semiconductor for forming a constituent element of a thin film transistor according to a second embodiment of the present invention.
  • Oxide precursor, oxide layer configuration, and method for producing the same a representative aspect in which an aliphatic polycarbonate and a metal compound that becomes a metal oxide when oxidized are mixed.
  • an “oxide precursor” a typical example of this oxide precursor is a fat that is considered to serve as a binder (which may contain unavoidable impurities; the same applies hereinafter) a metal compound that becomes a metal oxide when oxidized. It is dispersed in a solution containing a group polycarbonate.
  • the aliphatic polycarbonate as a binder is an impurity as viewed from the metal oxide finally obtained after a pattern is once formed by, for example, a printing method. It becomes.
  • the ratio of the aliphatic polycarbonate having a molecular weight of 6,000 or more and 400,000 or less is 80% by mass or more of the entire aliphatic polycarbonate.
  • An example of the metal oxide of this embodiment is an oxide semiconductor, an oxide conductor, or an oxide insulator.
  • an endothermic decomposable aliphatic polycarbonate having good thermal decomposability is used as the binder.
  • the fact that the thermal decomposition reaction of the binder is an endothermic reaction can be confirmed by a differential thermal measurement method (DTA).
  • DTA differential thermal measurement method
  • Such an aliphatic polycarbonate has a high oxygen content and can be decomposed into a low molecular weight compound at a relatively low temperature, thereby reducing the residual amount of impurities typified by carbon impurities in the metal oxide. Contribute positively.
  • the organic solvent that can be employed in the solution containing the binder is not particularly limited as long as it is an organic solvent that can dissolve the aliphatic polycarbonate.
  • the organic solvent include diethylene glycol monoethyl ether acetate (Diethylene-Glycol-Monoethyl Ether Acetate (hereinafter also referred to as “DEGMEA”)), ⁇ -terpineol, ⁇ -terpineol, N-methyl-2-pyrrolidone, 2- Nitropropane, isopropyl alcohol, diethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether, toluene, cyclohexane, methyl ethyl ketone, dimethyl carbonate, diethyl carbonate, propylene carbonate, and the like.
  • DEGMEA diethylene glycol monoethyl ether acetate
  • ⁇ -terpineol ⁇ -terpineol
  • N-methyl-2-pyrrolidone, 2-nitropropane and propylene carbonate are preferably used.
  • the binder in the formed pattern is finally subject to decomposition or removal as impurities. Therefore, it is preferable to employ a mixed solvent of DEGMEA and 2-nitropropane from the viewpoint that it is sufficient to maintain the pattern for a relatively short time from the formation of the pattern until it is decomposed or removed.
  • the manufacturing method of the oxide precursor of the present embodiment is not particularly limited.
  • a method of uniformly dispersing and dissolving the components of the metal oxide, the binder, and the organic solvent by stirring using a conventionally known stirring method can be employed.
  • a method of obtaining a precursor by stirring an organic solvent containing a metal oxide and a solution obtained by dissolving a binder in an organic solvent using a conventionally known stirring method is also an embodiment.
  • the above-mentioned known stirring methods include, for example, a method of mixing using a stirrer, or a method of kneading by rotating and / or vibrating using an apparatus such as a mill filled with ceramic balls.
  • a dispersant, a plasticizer and the like can be further added to the solution containing the binder as desired.
  • dispersant examples include as follows: Polyhydric alcohol esters such as glycerin and sorbitan; Polyether polyols such as diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol and polypropylene glycol; amines such as polyethyleneimine; (Meth) acrylic resins such as polyacrylic acid and polymethacrylic acid; Examples thereof include a copolymer of isobutylene or styrene and maleic anhydride, and an amine salt thereof.
  • Polyhydric alcohol esters such as glycerin and sorbitan
  • Polyether polyols such as diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol and polypropylene glycol
  • amines such as polyethyleneimine
  • (Meth) acrylic resins such as polyacrylic acid and polymethacrylic acid
  • examples thereof include a copolymer of isobutylene or
  • plasticizer examples include polyether polyol, phthalate ester and the like.
  • the method for forming the oxide precursor layer of the present embodiment is not particularly limited. Formation of the layer by a low energy manufacturing process is a preferred embodiment. More specifically, printing methods such as gravure printing, screen printing, offset printing, and inkjet printing are particularly suitable low energy manufacturing processes in the present embodiment. In addition, as other low energy production processes, coating methods such as roll coating, die coating, air knife coating, blade coating, spin coating, reverse coating, and gravure coating can be used. Of the above, it is preferable to form the oxide precursor layer by applying it to the substrate by screen printing, which is a particularly simple method.
  • aliphatic polycarbonate is at least one selected from the group consisting of polyethylene carbonate and polypropylene carbonate from the viewpoint of high oxygen content and decomposition into a low molecular weight compound at a relatively low temperature. It is preferable. Any of the above-described aliphatic polycarbonates can achieve the same effects as those of the present embodiment as long as the molecular weight is within the above-described numerical range.
  • the above epoxide is not particularly limited as long as it is an epoxide that undergoes a polymerization reaction with carbon dioxide to become an aliphatic polycarbonate having a structure containing an aliphatic in the main chain.
  • ethylene oxide and propylene oxide are preferably used from the viewpoint of high polymerization reactivity with carbon dioxide.
  • each above-mentioned epoxide may be used individually, respectively, and can also be used in combination of 2 or more type.
  • the mass average molecular weight of the above-mentioned aliphatic polycarbonate is preferably 5,000 to 1,000,000, more preferably 10,000 to 500,000.
  • the weight average molecular weight of the aliphatic polycarbonate is less than 5,000, the effect as a binder may not be sufficiently obtained due to, for example, the influence of a decrease in viscosity.
  • the mass average molecular weight of an aliphatic polycarbonate exceeds 1000000, since the solubility to the organic solvent of an aliphatic polycarbonate falls, handling may become difficult.
  • the numerical value of the above-mentioned mass average molecular weight can be calculated by the following method.
  • a chloroform solution having the above-mentioned aliphatic polycarbonate concentration of 0.5% by mass is prepared and measured using high performance liquid chromatography. After the measurement, the molecular weight is calculated by comparing with polystyrene having a known mass average molecular weight measured under the same conditions.
  • the measurement conditions are as follows. Model: HLC-8020 (manufactured by Tosoh Corporation) Column: GPC column (trade name of Tosoh Corporation: TSK GEL Multipore HXL-M) Column temperature: 40 ° C Eluent: Chloroform Flow rate: 1 mL / min
  • a method for producing the above-mentioned aliphatic polycarbonate a method in which the above-described epoxide and carbon dioxide are subjected to a polymerization reaction in the presence of a metal catalyst can be employed.
  • the example of manufacture of an aliphatic polycarbonate is as follows.
  • the inside of a 1 L autoclave system equipped with a stirrer, a gas introduction tube, and a thermometer was previously substituted with a nitrogen atmosphere, and then a reaction solution containing an organozinc catalyst, hexane, and propylene oxide were charged.
  • carbon dioxide was added while stirring to replace the inside of the reaction system with a carbon dioxide atmosphere, and carbon dioxide was charged until the inside of the reaction system became about 1.5 MPa.
  • the autoclave was heated to 60 ° C., and a polymerization reaction was carried out for several hours while supplying carbon dioxide consumed by the reaction.
  • the autoclave was cooled, depressurized and filtered. Then, polypropylene carbonate was obtained by drying under reduced pressure.
  • metal catalyst examples include an aluminum catalyst or a zinc catalyst.
  • a zinc catalyst is preferably used because it has high polymerization activity in the polymerization reaction of epoxide and carbon dioxide.
  • an organic zinc catalyst is particularly preferably used.
  • organozinc catalysts such as zinc acetate, diethyl zinc, dibutyl zinc; or With organic zinc catalysts obtained by reacting compounds such as primary amines, divalent phenols, divalent aromatic carboxylic acids, aromatic hydroxy acids, aliphatic dicarboxylic acids, and aliphatic monocarboxylic acids with zinc compounds is there.
  • organic zinc catalysts since it has higher polymerization activity, it is preferable to employ an organic zinc catalyst obtained by reacting a zinc compound, an aliphatic dicarboxylic acid, and an aliphatic monocarboxylic acid. It is an aspect.
  • the production example of the organozinc catalyst is as follows. First, zinc oxide, glutaric acid, acetic acid, and toluene were charged into a four-necked flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, and a reflux condenser. Next, after replacing the inside of the reaction system with a nitrogen atmosphere, the temperature of the flask was raised to 55 ° C., and the mixture was stirred at the same temperature for 4 hours to carry out the reaction treatment of each of the aforementioned materials. Thereafter, the temperature was raised to 110 ° C., and the mixture was further stirred for 4 hours at the same temperature for azeotropic dehydration to remove only moisture.
  • reaction liquid containing an organozinc catalyst was obtained by cooling the flask to room temperature.
  • IR was measured about the organozinc catalyst obtained by fractionating and filtering this reaction liquid (The product name: AVATAR360 by the Thermo Nicolet Japan Co., Ltd.). As a result, no peak based on the carboxylic acid group was observed.
  • the amount of the metal catalyst used for the polymerization reaction is preferably 0.001 to 20 parts by mass, more preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the epoxide. .
  • the usage-amount of a metal catalyst is less than 0.001 mass part, there exists a possibility that a polymerization reaction may become difficult to advance.
  • the usage-amount of a metal catalyst exceeds 20 mass parts, there exists a possibility that there may be no effect corresponding to a usage-amount and it may become economical.
  • the reaction solvent used as needed in the above polymerization reaction is not particularly limited.
  • Various organic solvents can be applied as the reaction solvent.
  • this organic solvent are: Aliphatic hydrocarbon solvents such as pentane, hexane, octane, decane and cyclohexane; Aromatic hydrocarbon solvents such as benzene, toluene, xylene; Chloromethane, methylene dichloride, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, ethyl chloride, trichloroethane, 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro-2 -Halogenated hydrocarbon solvents such as methylpropane, chlorobenzene, bromobenzene; And carbonate solvents such as dimethyl carbonate, diethyl carbonate,
  • the amount of the reaction solvent used is preferably 500 parts by mass or more and 10000 parts by mass or less with respect to 100 parts by mass of the epoxide from the viewpoint of smoothing the reaction.
  • the method of reacting epoxide and carbon dioxide in the presence of a metal catalyst is not particularly limited.
  • a method may be employed in which the above epoxide, metal catalyst, and reaction solvent as required are charged into an autoclave and mixed, and then carbon dioxide is injected to react.
  • the operating pressure of carbon dioxide used in the above polymerization reaction is not particularly limited.
  • the pressure is preferably 0.1 MPa to 20 MPa, more preferably 0.1 MPa to 10 MPa, and further preferably 0.1 MPa to 5 MPa.
  • the use pressure of carbon dioxide exceeds 20 MPa, there is a possibility that the effect corresponding to the use pressure may not be obtained and it may not be economical.
  • the polymerization reaction temperature in the above polymerization reaction is not particularly limited. Typically, the temperature is preferably 30 to 100 ° C, more preferably 40 to 80 ° C. When the polymerization reaction temperature is less than 30 ° C., the polymerization reaction may take a long time. On the other hand, when the polymerization reaction temperature exceeds 100 ° C., side reactions occur and the yield may decrease. Although the polymerization reaction time varies depending on the polymerization reaction temperature, it cannot be generally stated, but it is typically preferably 2 to 40 hours.
  • an aliphatic polycarbonate can be obtained by filtering off by filtration or the like, washing with a solvent if necessary, and drying.
  • the manufacture example of the precursor of an oxide is as follows.
  • a precursor that becomes an oxide semiconductor when oxidized that is, a precursor of an oxide semiconductor is typically employed.
  • indium acetylacetonate and propionic acid were gradually mixed with stirring in a 50 mL flask to obtain an indium-containing solution that finally became indium oxide.
  • polypropylene carbonate was dissolved in a mixed solvent of DEGMEA and 2-nitropropane in a 50 mL eggplant type flask to obtain a 25 wt% polypropylene carbonate solution.
  • Example 1 Samples prepared by dissolving four types of PPCs having different mass average molecular weights as shown in the following (1) to (10) or a combination of two of them were prepared.
  • sample A Only PPC with mass average molecular weight of 30,000 (hereinafter also referred to as “sample A”) (2) Only PPC with mass average molecular weight of 90,000 (hereinafter also referred to as “sample B”) (3) Sample A mixture of A and Sample B at a ratio of 1: 1 (hereinafter also referred to as “Sample AB”) (4) Only PPC having a mass average molecular weight of 230,000 (hereinafter also referred to as “sample C”) (5) Only PPC having a mass average molecular weight of 590,000 (hereinafter also referred to as “sample D”) (6) Sample D mixed with 1: 1 ratio (hereinafter also referred to as “sample CD”) (7) Sample A and sample C mixed at a ratio of 1: 1 (hereinafter also referred to
  • the ratio with respect to the whole aliphatic polycarbonate of the aliphatic polycarbonate whose molecular weight is 6,000 or more and 400,000 or less was calculated
  • the spinnability of the binder was evaluated using the above sample. Specifically, a rectangular pattern with the above-mentioned binder was formed on a glass substrate “Eagle XG” (200 ⁇ 150 ⁇ 0.7 tmm 3 ) using a screen printing method.
  • Pattern shape in Table 2 indicates the fidelity of a pattern formed using the printing method. Therefore, the description of “defective” in “pattern shape” means a state in which a pattern is not formed to such an extent that it cannot be used for manufacturing a device. On the contrary, the description “good” in “pattern shape” means that the pattern is reproduced to the extent that it can be used for manufacturing the device. “Poor” in “Spinning” in Table 2 means that a part of the binder is threaded from the binder layer on which the pattern is formed by using the printing method, so that the desired pattern is destroyed. Means the state. In addition, “good” in “threadability” means a state in which little or no stringiness is observed.
  • pattern height in Table 2 is a measurement value of the highest pattern point by an atomic force microscope (AFM). Note that the description of “impossible to measure” in “pattern height” of the sample (6) means that the pattern itself was not substantially formed.
  • results of the above (1), (7), and (8) are shown in FIG. 1 as an example of a typical optical micrograph that can realize a good pattern.
  • results of the above (5), (9), and (10) are shown in FIG. 2A. Shown in
  • Example A As shown in Table 2, FIG. 1 and FIG. 2A, (1) “Sample A”, (2) “Sample B”, and (3) “Sample AB”, which are aliphatic polycarbonates having a relatively low molecular weight, As for (7) “Sample AC” of the aliphatic polycarbonate having a medium molecular weight, good results were obtained for “pattern shape” and “threadability”. In particular, Sample C ((4) in the table) has a spinnability of “bad” in Table 2, but only a part of the patterns showed a spinnability. I will add.
  • the result that it is thought that the factor which deteriorates "patterning shape” or “threading property” exists in the increase in molecular weight was obtained.
  • the formed pattern has a certain “height” or more. Therefore, in order to obtain a “pattern height” above a certain level while maintaining a good “pattern shape” and “spinnability”, it is not preferable to employ an aliphatic polycarbonate having a very low molecular weight. Has also been obtained.
  • sample AD “Sample AD” and (10) “Sample BD” have the following causes of “bad” in “patterning shape” and “threadability” as follows.
  • each pattern height (5.3 ⁇ m) of (9) “Sample AD” and (10) “Sample BD” is equal to the pattern height of “Sample A” (1 4 ⁇ m) and the pattern height of “Sample D” (4 ⁇ m), or the sum of the pattern height of “Sample A” (1.5 ⁇ m) and the pattern height of “Sample D” (4 ⁇ m) It is almost the same.
  • sample AC or (8) “Sample BC”, which has a relatively small difference in molecular weight, is suitable for high-molecular-weight aliphatic polycarbonate and low-molecular-weight aliphatic polycarbonate without phase separation. Therefore, it is considered that good “patterning shape” and “threadability” can be obtained.
  • the ratio of the aliphatic polycarbonate having a molecular weight of 6,000 to 400,000 is 80% by mass or more of the total aliphatic polycarbonate.
  • the results shown in the above (1) to (10) show that the precursor of the oxide semiconductor described in “Preparation step of each experiment” in which four kinds of PPCs having different mass average molecular weights were dissolved as binders. Even when a sample of the oxide semiconductor precursor prepared by dissolving a sample of the above or a combination of two types of PPC as a binder is prepared, it is confirmed that the trend of data is applicable. . Note that the oxide semiconductor precursor sample contains 5% by mass of a 0.2 mol / kg indium-containing solution. In addition, the same number is used for each sample number in Table 3 in order to make the correspondence with (1) to (10) in Table 1 easy to understand.
  • Example A which are relatively low molecular weight aliphatic polycarbonates
  • sample B which are relatively low molecular weight aliphatic polycarbonates
  • sample AC aliphatic polycarbonate
  • FIG. 2B is an optical micrograph showing the results of (9) and (10) in which a good pattern was formed as a result of controlling the spinnability.
  • the pattern shape and spinnability of each sample of (9) and (10) were good, probably because an indium-containing solution was added to the sample adopted in Table 2 so that the overall PPC concentration was The reason is considered to be a slight decrease.
  • the average thread length (mm) is made of polytetrafluoroethylene and has a diameter D in a reservoir of aliphatic polycarbonate formed in each container.
  • a 2.9 mm cylindrical rod was submerged.
  • the thread length L (mm) from the outermost surface of the aliphatic polycarbonate pool when the cylindrical rod was pulled up at a speed v of 5 mm / second was measured.
  • the zero shear viscosity ⁇ of each sample was measured using a rheometer (AR-2000EX) manufactured by TA Instruments. Then, the above-described values were calculated as evaluation parameters by substituting them into the following equations.
  • ⁇ Calculation formula> “Evaluation parameter” (mm ⁇ 1 ⁇ Pa ⁇ 1 ) L / (D ⁇ v ⁇ ⁇ )
  • Table 4 shows the relationship between each sample in this experimental example, the average thread length (mm), and the zero shear viscosity (Pa ⁇ s). Moreover, FIG. 3A is a graph which shows the relationship between each sample in this experiment example, and the evaluation parameter which shows a spinnability.
  • the upper limit of the “evaluation parameter” for obtaining good “patterning shape” and “threadability” is not particularly limited, but from the viewpoint of obtaining the pattern height with higher accuracy, the “evaluation parameter”
  • the value of “parameter” is preferably 1.2 or less (more narrowly 0.9 or less).
  • the range of the molecular weight of the aliphatic polycarbonate of the present embodiment is not limited to the numerical range disclosed in each experimental example described above. According to the analysis by the inventors of the present application, for example, the ratio of the aliphatic polycarbonate having a molecular weight of 6,000 to 300,000 is 75% by mass or more of the entire aliphatic polycarbonate. From the viewpoint of controlling and forming a good pattern, this is a more preferable embodiment.
  • the inventors used a polypropylene carbonate solution obtained by dissolving polypropylene carbonate (25 wt%) in a mixed solvent of DEGMEA and 2-nitropropane as a base material (in this experimental example, a glass substrate). It was investigated how the contact angle between the base material and the solution and the spreading rate of the solution on the base material changed after 30 seconds and 120 seconds from the placement. In order to make it easier to examine the change in the contact angle, each of the above evaluations was performed after changing the concentration (wt%) of 2-nitropropane, which is a suitable solvent for the aliphatic polycarbonate. In addition, the above-mentioned “spreading ratio” was calculated based on the actual pattern dimension with respect to the design value.
  • FIG. 4A shows the contact angle between the substrate and the solution versus the change in 2-nitropropane concentration 30 seconds after placing the solution containing the aliphatic polycarbonate on the substrate and the solution on the substrate. It is a graph which shows the spreading rate of a solution.
  • 4B shows the contact angle between the substrate and the solution with respect to the change in the concentration of 2-nitropropane after 120 seconds from the placement of the solution containing the aliphatic polycarbonate on the substrate, It is a graph which shows the spreading rate of this solution.
  • the correlation between the contact angle between the base material and the solution and the spreading ratio of the solution on the base material are opposite to each other. That is, as the concentration of 2-nitropropane increased, the contact angle increased, while the spreading rate decreased. However, as shown in FIG. 4B, it was found that even when the concentration of 2-nitropropane was high (for example, 75%), the contact angle did not increase. In addition, in particular, the contact angle tends to increase rapidly when the concentration of 2-nitropropane reaches a certain value (typically 55% or more and 60% or less) in both FIG. 4A and FIG. 4B. It became clear that
  • the solution containing the aliphatic polycarbonate is preferably prepared so as to have an angle equal to or smaller than the above-described contact angles.
  • the solution containing the aliphatic polycarbonate is prepared so as to have an angle equal to or larger than the above-described contact angles.
  • results shown in FIG. 4A and FIG. 4B described above are the oxide semiconductor precursor samples described in “Preparation Steps for Each Experiment” in which four types of PPCs having different mass average molecular weights are dissolved as binders. It has also been confirmed that this also applies when a sample of the oxide semiconductor precursor in which a combination of two of them is dissolved as a binder is prepared.
  • FIG. 5 to FIG. 10 and FIG. 13 to FIG. 16 are cross-sectional schematic views showing one process of a method of manufacturing a thin film transistor 100 which is an example of a semiconductor element.
  • FIG. 16 is a schematic cross-sectional view showing one process and the entire configuration of the method of manufacturing the thin film transistor 100 in the present embodiment.
  • the gate electrode 24, the gate insulator 34, the channel 44, the source electrode 58, and the drain electrode 56 are stacked in this order on the substrate 10 from the lower layer. .
  • the thin film transistor 100 employs a so-called bottom gate structure, but this embodiment is not limited to this structure. Therefore, a person skilled in the art can form a top gate structure by changing the order of the steps by referring to the description of the present embodiment with ordinary technical common sense. Moreover, the display of the temperature in this application represents the surface temperature of the heating surface of the heater which contacts a board
  • the substrate 10 of the present embodiment is not particularly limited, and a substrate generally used for a semiconductor element is used.
  • a substrate generally used for a semiconductor element is used.
  • high heat-resistant glass SiO 2 / Si substrate (that is, a substrate in which a silicon oxide film is formed on a silicon substrate), alumina (Al 2 O 3 ) substrate, STO (SrTiO) substrate, SiO 2 layer on the surface of Si substrate
  • various insulating substrates including a semiconductor substrate (for example, a Si substrate, a SiC substrate, a Ge substrate, etc.) such as an insulating substrate in which an STO (SrTiO) layer is formed via a Ti layer can be applied.
  • the insulating substrate is made of materials such as polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, cellulose triacetate, polycarbonate, polyamide, polyimide, polyamideimide, polysulfone, aramid, and aromatic polyamide. Film or sheet is included. Further, the thickness of the substrate is not particularly limited, but is, for example, 3 ⁇ m or more and 300 ⁇ m or less. Further, the substrate may be hard or flexible.
  • a metal compound that becomes an oxide conductor when oxidized (hereinafter also simply referred to as “oxide conductor”) is employed as the material of the gate electrode 24.
  • the gate electrode 24 of the present embodiment is made of an oxide conductor (however, an unavoidable impurity may be included. The same applies to oxides of other materials as well as oxides of this material). It is formed by firing a precursor layer of an oxide conductor (hereinafter, also referred to as “precursor layer of oxide conductor”) dispersed in a solution containing a binder.
  • precursor layer of oxide conductor hereinafter, also referred to as “precursor layer of oxide conductor”
  • a low energy manufacturing process for example, a printing method or a spin coating method
  • a SiO 2 / Si substrate hereinafter also simply referred to as “substrate”
  • the gate electrode precursor layer 22 can be formed by applying a gate electrode precursor solution as a starting material.
  • a firing step is performed in which the gate electrode precursor layer 22 is heated at 450 ° C. to 550 ° C. for a predetermined time (for example, 10 minutes to 1 hour) in the air, for example.
  • a gate electrode 24 is formed on the substrate 10 as shown in FIG.
  • the thickness of the layer of the gate electrode 24 of this embodiment is about 100 nm, for example.
  • an example of the above-described oxide conductor is a material having a structure (typically a complex structure) in which a ligand is coordinated to a metal that becomes an oxide conductor when oxidized.
  • a metal organic acid salt, a metal inorganic acid salt, a metal halide, or various metal alkoxides can be included in the oxide conductor of this embodiment.
  • An example of a metal that becomes an oxide conductor when oxidized is ruthenium (Ru).
  • a gate electrode precursor solution starting from a solution obtained by dissolving ruthenium (III) nitrosylacetate in a mixed solvent of propionic acid and 2-aminoethanol containing a binder made of an aliphatic polycarbonate,
  • a ruthenium oxide which is an oxide conductor is performed by performing a baking step of heating at about 450 ° C. to about 550 ° C. for a predetermined time (for example, 10 minutes to 1 hour) in the atmosphere. Since an object is formed, the gate electrode 24 can be formed.
  • the pattern of the gate electrode precursor layer 22 is good using the printing method.
  • Various patterns can be formed. More specifically, since the spinnability of the aliphatic polycarbonate that can serve as a binder in the gate electrode precursor solution can be appropriately controlled, a favorable pattern of the gate electrode precursor layer 22 is obtained. Can be formed.
  • a refractory metal such as platinum, gold, silver, copper, aluminum, molybdenum, palladium, ruthenium, iridium, tungsten, or an alloy thereof is used.
  • a metal material, or a p + -silicon layer or an n + -silicon layer can be applied.
  • the gate electrode 24 can be formed on the substrate 10 by a known sputtering method or CVD method.
  • the material of the gate insulator 34 is a metal compound that becomes an oxide insulator when oxidized (hereinafter also simply referred to as “oxide insulator”). ) Is dispersed in a solution containing an aliphatic polycarbonate binder, and a layer of an oxide insulator precursor (hereinafter, also referred to as “oxide insulator precursor layer”) is fired.
  • a gate of the above-described oxide insulator is applied to the gate electrode 24 by using a low energy manufacturing process (for example, a printing method or a spin coating method).
  • An insulator precursor layer 32 is formed.
  • the gate insulator precursor layer 32 in a gel state is heated at about 450 ° C. to about 550 ° C. for a predetermined time (for example, 10 minutes to 1 hour), for example, in the atmosphere (main baking).
  • a predetermined time for example, 10 minutes to 1 hour
  • an oxide made of lanthanum (La) and zirconium (Zr) which are oxide insulators is formed.
  • the gate insulator 34 can be formed as shown in FIG. Note that the thickness of the layer of the gate insulator 34 of the present embodiment is, for example, about 100 nm to about 250 nm.
  • an example of the above oxide insulator is a material having a structure (typically a complex structure) in which a ligand is coordinated to a metal that becomes an oxide insulator when oxidized.
  • a structure typically a complex structure
  • metal organic acid salts, metal inorganic acid salts, metal halides, or various metal alkoxides, or other organic acid salts, inorganic acid salts, halides, or various alkoxides are also used in the oxide insulation of the present embodiment. Can be included in the body.
  • a typical oxide insulator is an oxide composed of lanthanum (La) and zirconium (Zr). This oxide can be employed as the gate insulator 34.
  • the first solution in which lanthanum acetate (III) is dissolved in propionic acid (solvent) containing a binder made of an aliphatic polycarbonate, and propionic acid (solvent) containing zirconium butoxide in the form of a binder made of an aliphatic polycarbonate.
  • solvent propionic acid
  • solvent propionic acid
  • the gate insulator precursor solution mixed with the first solution and the second solution for example, in the atmosphere after the above-described irradiation step, for a predetermined time (for example, 10 minutes to 1 hour),
  • An oxide insulator can be formed by performing a baking step of heating at about 450 ° C. to about 550 ° C.
  • the pattern of the gate insulator precursor layer 32 is formed using a printing method.
  • a good pattern can be formed. More specifically, since it becomes possible to appropriately control the spinnability of the aliphatic polycarbonate that can serve as a binder in the precursor of the oxide insulator, a good gate insulator precursor layer 32 can be obtained. The pattern can be formed.
  • silicon oxide or silicon oxynitride can be applied instead of the gate insulator 34 described above.
  • the gate insulator 34 can be formed on the gate electrode 24 by a known CVD method or the like.
  • a metal compound that becomes an oxide semiconductor when oxidized (hereinafter also simply referred to as “oxide semiconductor”) is formed from an aliphatic polycarbonate.
  • An oxide semiconductor precursor layer (hereinafter also referred to as an “oxide semiconductor precursor layer”) dispersed in a solution containing a binder is formed by firing.
  • a channel precursor layer 42 can be formed by applying a channel precursor solution as a starting material on the gate insulator 34 using a low energy manufacturing process (for example, a printing method or a spin coating method).
  • the channel precursor layer 22 is subjected to a baking process described later, whereby a channel 44 is formed as shown in FIG.
  • an example of the above-described oxide semiconductor is a material having a structure in which a ligand is coordinated to a metal that becomes an oxide semiconductor when oxidized (typically a complex structure).
  • a metal organic acid salt, a metal inorganic acid salt, a metal halide, or various metal alkoxides can be included in the material for forming the oxide semiconductor of this embodiment.
  • a typical example of an oxide semiconductor is indium oxide (hereinafter also referred to as “InO”).
  • a baking process in which a solution of indium acetylacetonate dissolved in propionic acid (also referred to as “In solution”) is heated at 450 ° C. to 550 ° C. for a predetermined time (eg, 10 minutes to 1 hour) in the atmosphere.
  • a predetermined time eg, 10 minutes to 1 hour
  • metals that become oxide semiconductors when oxidized are indium, tin, zinc, cadmium, titanium, silver, copper, tungsten, nickel, indium-zinc, indium-tin, indium-gallium-zinc, antimony -One or more selected from the group consisting of tin and gallium-zinc.
  • indium-zinc is preferably employed as a metal that becomes an oxide semiconductor when oxidized.
  • a good pattern is obtained when the pattern of the channel precursor layer 42 is formed using a printing method. Can be formed. More specifically, since the spinnability of the aliphatic polycarbonate that can serve as a binder in the channel precursor solution can be appropriately controlled, a good pattern of the channel precursor layer 42 is formed. can do.
  • the present inventors when forming the channel 44 which is an oxide semiconductor layer, the present inventors have created so far, for example, disclosed in International Publication No. WO / 2015/019771.
  • the invention relating to the method for producing a metal oxide can be adopted as a suitable example.
  • a typical method for forming the channel 44 is that a precursor of an oxide semiconductor in which a metal compound that becomes an oxide semiconductor when oxidized is dispersed in a solution containing a binder made of an aliphatic polycarbonate is formed on the substrate or its substrate.
  • a precursor layer forming step formed in a layer on the upper side, and after heating the precursor layer at a first temperature that decomposes 90 wt% or more of the binder, the temperature is higher than the first temperature, and the metal and oxygen
  • a firing step in which the precursor layer is fired at a temperature equal to or higher than a second temperature which is an exothermic peak value in the differential thermal analysis (DTA) of the precursor or the metal compound described above. including.
  • DTA differential thermal analysis
  • FIG. 11 shows TG-DTA of an indium-containing solution (In solution) which is an example of a constituent material of an oxide semiconductor precursor for forming a channel of the thin film transistor of the first embodiment. It is a graph which shows an example of a characteristic.
  • FIG. 12A is a graph showing an example of TG-DTA characteristics of a polypropylene carbonate solution, which is an example of a solution containing only a binder for forming a constituent element (for example, a channel) of a thin film transistor as a solute.
  • thermogravimetry in FIG. 11, a significant decrease in weight, considered to be the evaporation of the solvent, was observed in the vicinity of 120 ° C. to 130 ° C. Moreover, as shown in FIG. 11, the exothermic peak in the graph of differential calorimetry of the In solution was confirmed at around 350 ° C. Therefore, it is confirmed that indium is bonded to oxygen at around 350 ° C. Therefore, this 350 ° C. corresponds to the second temperature described above.
  • thermogravimetry in FIG. 12A from about 120 ° C. to about 170 ° C., with the disappearance of the solvent of the polypropylene carbonate solution, there is a significant decrease in weight due to the decomposition or disappearance of part of the polypropylene carbonate itself. It was seen. In addition, it is thought that polypropylene carbonate has changed into carbon dioxide and water by this decomposition. From the results shown in FIG. 12A, it was confirmed that the binder was decomposed and removed by 90 wt% or more at around 255 ° C. Therefore, this 255 ° C. corresponds to the first temperature in the first embodiment. In more detail, it can be seen that 95 wt% or more of the binder is decomposed at around 260 ° C., and almost all (99 wt% or more) of the binder is decomposed at around 270 ° C.
  • the temperature (second temperature) at which the above-described metal constituting the oxide semiconductor is bonded to oxygen and is a peak value of heat generation in the differential thermal measurement method (DTA) (second temperature) is higher than the temperature at which the binder is decomposed. It is preferable that the temperature at which the binder is decomposed is sufficiently lower than the temperature that is the peak value of the heat generation (second temperature). In such a case, the binder can be decomposed with higher accuracy by 90 wt% or more (more preferably 95 wt% or more, more preferably 99 wt% or more, and most preferably 99.9 wt% or more). According to the research and analysis by the inventors of the present application, the difference between the first temperature and the second temperature is 10 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 100 ° C. or higher. Residue of impurities typified by carbon impurities therein is suppressed.
  • phase state of the oxide semiconductor is not particularly limited.
  • it may be crystalline, polycrystalline, or amorphous.
  • a dendritic or scaly crystal is also one phase state that can be employed in the present embodiment.
  • shape for example, spherical shape, elliptical shape, rectangular shape
  • FIG. 12B and FIG. 12C show an example of TG-DTA characteristics of a sample (a precursor of an oxide semiconductor) obtained by mixing an indium-containing solution and a polypropylene carbonate solution.
  • a sample a precursor of an oxide semiconductor obtained by mixing an indium-containing solution and a polypropylene carbonate solution.
  • FIG. 12C by reducing the amount of the solvent component from the initial stage (that is, before the characteristic measurement) with respect to the sample of FIG. It was produced to make it sharper.
  • peaks shown in (A) and (B) are observed.
  • the peak (A) in the vicinity of 255 ° C. to 270 ° C. is desorbed as a part of the polypropylene carbonate becomes carbon dioxide (CO 2 ).
  • CO 2 carbon dioxide
  • this peak (A) coincides with the exothermic peak around 255 ° C. to 270 ° C. shown in FIG. 12A.
  • the peak (B) observed near 350 ° C. is considered to be a state in which indium is bonded to oxygen.
  • the TG-DTA characteristics of the oxide semiconductor precursor the TG-DTA characteristics of the indium-containing solution and the TG-DTA characteristics of the polypropylene carbonate solution can coexist as separate characteristics. Therefore, the first temperature and / or the second temperature can be substantially known without preparing an oxide semiconductor precursor.
  • a channel precursor solution is applied onto the gate insulator 34 by using a low energy manufacturing process (for example, a printing method or a spin coating method).
  • a channel precursor layer 42 is formed.
  • the thickness (wet) of the channel precursor layer 42 which is an oxide semiconductor precursor layer is not particularly limited.
  • the channel precursor layer 42 having a thickness of about 600 nm is formed by heating at a predetermined time (for example, 3 minutes), for example, 150 ° C.
  • the first pre-baking step is mainly intended for fixing the channel precursor layer 42 on the gate insulator 34. Therefore, when the second pre-baking step described later is performed, the first pre-baking step is performed. Can be omitted.
  • a second pre-baking step (drying step) is performed at a predetermined temperature (first temperature).
  • first temperature a predetermined temperature that causes the binder to decompose by 90 wt% or more.
  • the first temperature is preferably a temperature at which the above-mentioned binder is decomposed by 95 wt% or more. Further, it is more preferable that the temperature is such that the binder is decomposed by 99 wt% or more.
  • the second pre-baking step is not limited to room temperature and normal pressure drying.
  • a treatment such as heating or decompression may be performed as long as it does not adversely affect the substrate, the gate insulator, etc., such as heat drying, vacuum drying, and vacuum heating drying.
  • the second pre-baking step is a step that can affect the increase or decrease in the surface roughness of the oxide semiconductor layer, but the behavior during drying differs depending on the solvent. Therefore, the second pre-baking step is appropriately performed depending on the type of the solvent. Conditions such as process temperature (first temperature) are selected.
  • the channel precursor layer 42 is heated for a predetermined time (for example, 30 minutes), for example, in the range of 180 ° C. or higher and 300 ° C. or lower.
  • a predetermined time for example, 30 minutes
  • oxygen-containing atmosphere oxygen-containing atmosphere
  • the channel precursor layer 42 is further subjected to, for example, a predetermined time in an oxygen-containing atmosphere at 200 ° C. or higher, more preferably 300 ° C. or higher, and further in electrical characteristics. Preferably, heating is performed in a range of 500 ° C. or higher.
  • a channel 44 that is an oxide semiconductor layer is formed over the gate insulator 34.
  • the final thickness of the oxide semiconductor layer after the main baking is typically 0.01 ⁇ m or more and 10 ⁇ m or less. In particular, even when a very thin layer of about 0.01 ⁇ m (that is, about 10 nm) is formed, it is worthy of special mention that cracks hardly occur.
  • the set temperature in the firing step is a temperature at which the metal and oxygen are bonded after the oxide semiconductor ligand is decomposed in the formation process of the oxide semiconductor, and a differential thermal measurement method (described later) A temperature (second temperature) equal to or higher than the temperature of the exothermic peak value in DTA) is selected.
  • the second temperature is higher by 10 ° C. or more than the first temperature is more accurate, and is a preferable embodiment from the viewpoint of suppressing the remaining impurities typified by carbon impurities in the oxide semiconductor layer after the main baking. It is.
  • the second temperature is higher than the first temperature by 50 ° C. or more, it is possible to suppress the remaining of such impurities with higher accuracy.
  • the second temperature is higher than the first temperature by 100 ° C. or more. Is the most preferred example.
  • the maximum difference between the second temperature and the first temperature is not particularly limited.
  • the binder is substantially decomposed by heating at the above-mentioned first temperature, and in the subsequent baking step (main baking) at the second temperature, the decomposition process of the binder is almost the same. It is considered that a reaction that is almost specific to the bond between the metal and oxygen occurs. That is, ideally, different roles of the first temperature and the second temperature are considered to make it difficult to generate cracks even in a very thin layer as described above.
  • the heating method is not particularly limited in any of the first pre-baking step, the second pre-baking step, and the main baking (baking step).
  • a conventional heating method using a thermostat or an electric furnace may be used, but in particular, when the substrate is vulnerable to heat, the oxide semiconductor layer is heated by ultraviolet heating, electromagnetic wave heating, or lamp heating so that the heat is not transmitted to the substrate. It is preferable to use a method of heating only.
  • the aliphatic polycarbonate not only can reduce or eliminate the decomposition products remaining in the oxide semiconductor layer after the calcination decomposition, but also contributes to the formation of a dense oxide semiconductor layer. be able to. Therefore, employing an aliphatic polycarbonate is a preferred aspect of this embodiment.
  • the final channel can be obtained by changing the weight ratio of the metal compound and the binder, which becomes an oxide semiconductor when oxidized, or by changing the concentration of the binder or metal compound. It was also confirmed by the present inventors' study that the thickness of 44 can be controlled. For example, it has been found that a channel 44 having a thickness of 10 nm to 50 nm, which is a very thin layer, can be formed without generating cracks. It should be noted that not only the aforementioned thin layer but also a layer having a thickness of 50 nm or more can be formed relatively easily by appropriately adjusting the thickness of the channel precursor layer 42, the aforementioned weight ratio, and the like. .
  • the thickness of the layer used for the channel is 0.01 ⁇ m (that is, 10 nm) or more and 1 ⁇ m or less, so that the final thickness of the channel 44 can be controlled. It can be said that the semiconductor precursor and the oxide semiconductor layer are suitable as materials for forming the thin film transistor.
  • the oxide semiconductor precursor of the present embodiment is employed, even if an oxide semiconductor precursor layer having a considerably thick film (for example, 10 ⁇ m or more) is initially formed, a binder or the like may be formed by a subsequent baking step. Is decomposed with high accuracy, the thickness of the layer after firing can be very thin (eg, 10 nm to 100 nm). Furthermore, it is worthy of special mention that even such a thin layer will not cause cracks or be suppressed with high accuracy. Therefore, the oxide semiconductor precursor and the oxide semiconductor layer of this embodiment, which can sufficiently secure the initial thickness and can finally form an extremely thin layer, are described in a low-energy manufacturing process or described later. It was found that it is very suitable for the process by stamping. In addition, the use of an oxide semiconductor layer in which even such an extremely thin layer does not generate cracks or is suppressed with high accuracy greatly enhances the stability of the thin film transistor 100 of this embodiment.
  • a binder or the like may be formed by a subsequent baking step. Is decomposed with high accuracy,
  • the electrical characteristics and stability of the oxide semiconductor layer forming the channel are improved by appropriately adjusting the types and combinations of the above-described oxide semiconductors and the ratio of mixing with the binder. Can do.
  • the channel 44 and the resist film 90 are formed.
  • the ITO layer 50 is formed by a known sputtering method.
  • the target material of the present embodiment is, for example, ITO containing 5 wt% tin oxide (SnO 2 ), and is formed under conditions of room temperature to 100 ° C. Thereafter, when the resist film 90 is removed, the drain electrode 56 and the source electrode 58 made of the ITO layer 50 are formed on the channel 44 as shown in FIG.
  • a resist film 90 patterned by a known photolithography method is formed on the drain electrode 56, the source electrode 58, and the channel 44, and then one of the resist film 90 and the drain electrode 56 is formed.
  • the exposed channel 44 is removed by using a known dry etching method with argon (Ar) plasma using a part of the source electrode 58 and a part of the source electrode 58 as a mask.
  • argon (Ar) plasma argon (Ar) plasma
  • the drain electrode and the paste electrode are used by using paste silver (Ag) or paste ITO (indium tin oxide), for example, by a printing method.
  • the method of forming the pattern of the source electrode is one aspect that can be adopted.
  • a pattern of a drain electrode and a source electrode of gold (Au) or aluminum (Al) formed by a known vapor deposition method may be employed.
  • the thin film transistor of this embodiment is a manufacturing process of the thin film transistor 100 of the second embodiment, except that an irradiation process of irradiating ultraviolet rays is further performed after the channel baking process (main baking) in the second embodiment. And the configuration is the same. Therefore, the description which overlaps with 2nd Embodiment is abbreviate
  • a wavelength of 185 nm is set using a known low-pressure mercury lamp (SAMCO UV ozone cleaner, model: UV-300h-E). Ultraviolet rays having a spectrum peak at 254 nm were irradiated. Thereafter, the same steps as the manufacturing method of the thin film transistor 100 of the second embodiment were performed.
  • the wavelength of ultraviolet rays is not particularly limited. Similar effects can be achieved even with ultraviolet rays other than 185 nm or 254 nm.
  • a channel 44 patterned by a known photolithography method and dry etching is formed.
  • a printing method typified by a screen printing method is employed, a desired pattern of the channel precursor layer 42 is formed without using a known photolithography method and dry etching, as shown in FIG. Can be formed. Therefore, the use of the printing method is a preferable embodiment because the pattern forming step shown in FIG. 15 is not necessary. 17 and subsequent steps are performed according to the steps of the second embodiment except for the steps based on the known photolithography method and dry etching shown in FIG.
  • each layer (gate electrode 24, gate insulator 34, etc.) other than the channel in the thin film transistor 100 for example, when a printing method typified by a screen printing method is adopted, a known photolithography method and dry etching are performed. A pattern can be formed without using it.
  • each of the above-described embodiments is not limited to the structure.
  • a thin film transistor having a staggered structure but also a thin film transistor having a so-called planar structure in which a source electrode, a drain electrode, and a channel are arranged on the same plane can achieve the effects of the above-described embodiments. The same effect can be achieved.
  • the channel (that is, the oxide semiconductor layer) of each of the above embodiments is formed over a substrate.
  • the present invention relates to a field of electronic devices including portable terminals including various semiconductor elements, information appliances, sensors, other known electrical appliances, MEMS (Micro Electro Mechanical Systems) or NEMS (Nano Electro Mechanical Systems), medical equipment, and the like. Can be widely applied to etc.
  • portable terminals including various semiconductor elements, information appliances, sensors, other known electrical appliances, MEMS (Micro Electro Mechanical Systems) or NEMS (Nano Electro Mechanical Systems), medical equipment, and the like. Can be widely applied to etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Thin Film Transistor (AREA)
  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Formation Of Insulating Films (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

【課題】電子デバイス又は半導体素子に採用され得る薄膜を印刷法によって形成する際に、曳糸性を制御し得る脂肪族ポリカーボネート、酸化物の前駆体、及び酸化物層を提供する。 【解決手段】本発明の1つの酸化物の前駆体は、分子量が6千以上40万以下の脂肪族ポリカーボネートの比率が該脂肪族ポリカーボネート全体の80質量%以上である、前述の脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む溶液中に、酸化されたときに金属酸化物となる金属の化合物を分散させたものである。その結果、図1に示すように、半導体素子の製造に使用できる良好なパターンを形成することができる。

Description

酸化物の前駆体、酸化物層、半導体素子、及び電子デバイス、並びに酸化物層の製造方法及び半導体素子の製造方法
 本発明は、酸化物の前駆体、酸化物層、半導体素子、及び電子デバイス、並びに酸化物層の製造方法及び半導体素子の製造方法に関する。
 従来、電子デバイスの一例である、薄膜トランジスタのチャネル層として、主に、多結晶シリコン膜、又は非晶質シリコン膜が用いられてきた。しかしながら、多結晶シリコン膜の場合、多結晶粒子界面で起こる電子の散乱により、電子移動度が制限され、結果としてトランジスタ特性にばらつきが生じていた。また、非晶質シリコン膜の場合、電子移動度が極めて低く、時間による素子の劣化が発生し、素子の信頼性が極めて低くなるという問題がある。そこで、電子移動度が非晶質シリコン膜より高く、且つ多結晶シリコン膜よりトランジスタ特性のばらつきが少ない、酸化物半導体に関心が集まっている。また、酸化物半導体のみならず、酸化物からなる酸化物導電体又は酸化物絶縁体は、例えば、酸化物のみによる電子デバイスの実現のためには不可欠な技術要素であるため、それらに対する産業界の関心も非常に高い。
 最近では、フレキシブルな樹脂基板上に電子デバイスを、印刷法等の低エネルギー製造プロセスで作製しようという試みが盛んになされている。印刷法等を用いることにより、直接、基板上に半導体層をパターニングできる結果、パターニングのためのエッチング処理工程を省くことができるという利点がある。
 例えば、特許文献1~3にあるように、導電性高分子や有機半導体を用いて塗布フレキシブル電子デバイスを作製する試みが行われている。
特開2007-134547号公報 特開2007-165900号公報 特開2007-201056号公報
SID 2015 DIGEST,p.1135
 様々な形態の情報端末や情報家電が産業界及び消費者に求められる中、半導体は、より高速に動作し、長期間安定であり、且つ低環境負荷であることが必要となる。しかしながら、従来技術では、例えば、真空プロセスやフォトリソグラフィー法を用いたプロセスといった比較的長時間、及び/又は高価な設備を要するプロセスを採用するのが一般的であるため、原材料や製造エネルギーの使用効率が非常に悪くなる。これは、工業性ないし量産性の観点から好ましくない。一方、現状では、これまで主流として用いられているシリコン半導体又はその他の半導体に対して、グラビア印刷、スクリーン印刷、オフセット印刷、インクジェット印刷などの印刷法による層を形成することは極めて困難である。また、特許文献1~3に記載された導電性高分子や有機半導体を採用した場合であっても、その電気物性や安定性は未だ不十分である。なお、本願における「層」は、層のみならず膜をも含む概念である。逆に、本願における「膜」は、膜のみならず層をも含む概念である。
 ところで、上述の各種の印刷法による層の形成と、機能性溶液ないし機能性ペーストを用いて製造される各種の半導体素子及び電子デバイスは、該電子デバイスのフレキシブル化、及び上述の工業性ないし量産性の観点から、現在、産業界において非常に注目を集めている。
 しかしながら、例えば、印刷法(特に、スクリーン印刷法)によって形成される層の厚さと半導体素子に要求される層の厚さとは違いがある。具体的には、印刷法を用いたパターニングの際には比較的厚い層が形成されるが、半導体素子に要求される層の厚さは一般的に非常に薄い。また、印刷法に用いられるペースト又は溶液(例えば、酸化されたときに金属酸化物となる金属の化合物を、バインダーを含む溶液中に分散させた酸化物の前駆体)には、パターニングを行うための好適な粘度が存在することから、バインダーを添加することによってその粘度が調整されている。本願発明者らは、特に、半導体素子を構成する薄い層(代表的には、酸化物半導体層、酸化物導電体層、又は酸化物絶縁体層)を、バインダーを添加したペースト又は溶液を用いて例えば印刷法による層を形成するときに、そのバインダーの曳糸性を適切に制御できないという状況が生じ得ることを確認した。そのような場合、半導体素子に使用に耐え得る、又は半導体素子の製造に適した良好なパターンを形成することができないという問題が生じる。より具体的な例で言えば、印刷法によって酸化物の前駆体の層を形成する過程において、基板上においてあるパターンが形成された前駆体の層から、一部の前駆体が糸状に曳かれることにより、所望のパターンを崩してしまうという問題が生じ得る。
 また、例えば印刷法によって、上述の酸化物の前駆体のパターンを形成する際には、一旦形成されたパターンの形状が維持される必要がある。従って、経時変化が生じにくいパターンの形成も、特に印刷法においては求められる課題の1つといえる。
 本願発明者らは、液体材料から種々の金属酸化物を形成する研究を行う中で、特に、上述のペースト又は溶液から得られるゲル状の層(以下、「ゲル層」ともいう)がパターンを形成する過程について詳細に分析を行った。その結果、ゲル層から固化状態ないし焼結状態の層に至る前、すなわち本焼成としての加熱処理が行われる前の段階においては、バインダー自身又はバインダーを添加したペースト又は溶液の特性が、ゲル層のパターンを形成する際に、少なからず影響しているという知見が得られた。
 多くの試行錯誤と分析の結果、本願発明者らは、脂肪族ポリカーボネートからなる、特定の範囲の分子量のバインダー、又は特定の曳糸性を有するバインダーを活用することが、電子デバイス又は半導体素子に採用することができる程度の薄さを備えたゲル層の所望のパターンの実現に寄与し得ることを確認した。
 さらに、本願発明者らは、別の視点からも該ゲル層の所望のパターンの実現について検討を重ねた。具体的には、上述のバインダーは、一旦パターンが形成された後においては、最終的に得られる金属酸化物から見れば不純物であり、分解又は除去される対象となる。従って、該バインダーを必要とする時間は、いわば一時的に過ぎない。そこで、本願発明者らは、従来開発されてきたような、一旦形成されたパターンの形状を相当長い時間、維持するための工夫ではなく、むしろパターンが形成されてから分解又は除去されるまでの間の、短い時間、そのパターンを維持すればよいとの考えに基づいて研究と分析を行った。その結果、上述のペースト又は溶液における溶媒を工夫することによって、さらに、上述のゲル層の所望のパターンの実現に寄与し得ることが明らかとなった。
 加えて、酸化物の前駆体である該ゲル層を加熱処理することによって得られる酸化物層も、印刷法に代表される低エネルギー製造プロセスによって容易に形成することができることも確認された。すなわち、上述の各視点及び工夫は、低エネルギー製造プロセスを用いて形成した所望の薄い層の金属酸化物を備える半導体素子及び電子デバイスの性能、並びにそれらの製造技術のより一層の向上に貢献し得る。
 本発明は、上述の各視点と数多くの分析に基づいて創出された。
 なお、本願発明者らは、上述の金属酸化物を形成するための焼成によってバインダーを確度高く分解ないし除去するとともに、酸化物半導体層を得る設備又は方法を過去に実現している(例えば、国際公開公報WO/2015/019771号)ことから、本願においても、そのような設備又は方法の少なくとも一部を活用することができる。必ずしも、本願において、これまでの研究又は開発された技術及び技術思想を活用する必要はない。但し、その技術及び技術思想を活用することは、上述の技術課題の少なくとも一部を解決することと相俟って、上述の半導体素子及び電子デバイスの性能、並びにそれらの製造技術のより一層の向上に貢献し得る。
 また、本願においては、「液体からゲル状態に至る過程」は、代表的な例で言えば、熱処理によってバインダーと溶媒を除去するが、酸化されたときに金属酸化物となる金属の化合物(例えば、配位子)が分解されていない状況をいう。また、「ゲル状態から固化状態ないし焼結状態に至る過程」は、代表的な例で言えば、前述の配位子が分解し、酸化されたときに金属酸化物となる金属と酸素との結合がほぼ出来上がる状況をいう。
 本発明の1つの酸化物の前駆体は、分子量が6千以上40万以下の脂肪族ポリカーボネートの比率が該脂肪族ポリカーボネート全体の80質量%以上である、その脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む溶液中に、酸化されたときに金属酸化物となる金属の化合物を分散させたものである。
 この酸化物の前駆体によれば、ペーストとしての役割を果たす脂肪族ポリカーボネート全体の80質量%以上を占める分子量の範囲が6千以上40万以下であるため、例えば印刷法によって形成される層について、そのバインダーの曳糸性を適切に制御することが可能となる。その結果、酸化物の前駆体について良好なパターンを得ることができる。
 また、本発明のもう1つの酸化物の前駆体は、ティー・エイ・インスツルメント社製レオメーター(型式、AR-2000EX)を用いて測定したゼロせん断粘度ηの脂肪族ポリカーボネートの溜まり中に、ポリテトラフルオロエチレン(polytetrafluoroethylene)製の直径がDである円柱棒を沈めた後に、その円柱棒を速度vで引き上げたときの、その脂肪族ポリカーボネートの溜まりの最表面からの曳糸長Lが測定された場合に、L/(D×v×η)の値が0.25mm-1Pa-1以上である前述の脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む溶液中に、酸化されたときに金属酸化物となる金属の化合物を分散させたものである。
 本願発明者らの研究と分析によれば、酸化物の前駆体について、ペーストとしての役割を果たす脂肪族ポリカーボネートが上述の計算式(すなわち、L/(D×v×η))に基づく数値範囲を満足することにより、例えば印刷法によって形成される層について、そのバインダーの曳糸性を適切に制御し得るという知見が得られた。従って、上述の数値範囲を満たせば、酸化物の前駆体について良好なパターンを得ることができる。
 また、本発明の1つの酸化物層は、分子量が6千以上40万以下の脂肪族ポリカーボネートの比率が該脂肪族ポリカーボネート全体の80質量%以上である、その脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む溶液中に、酸化されたときに金属酸化物となる金属の化合物を分散させた酸化物の前駆体の層を焼成することにより形成される。
 この酸化物層によれば、該酸化物層の前駆体中のペーストとしての役割を果たす脂肪族ポリカーボネート全体の80質量%以上を占める分子量の範囲が6千以上40万以下であるため、例えば印刷法によって形成される層について、そのバインダーの曳糸性を適切に制御することが可能となる。その結果、酸化物の前駆体について良好なパターンを形成することができるため、良好なパターンの酸化物層を得ることができる。
 また、本発明のもう1つの酸化物層は、ティー・エイ・インスツルメント社製レオメーター(型式、AR-2000EX)を用いて測定したゼロせん断粘度ηの脂肪族ポリカーボネートの溜まり中に、ポリテトラフルオロエチレン(polytetrafluoroethylene)製の直径がDである円柱棒を沈めた後に、その円柱棒を速度vで引き上げたときの、その脂肪族ポリカーボネートの溜まりの最表面からの曳糸長Lが測定された場合に、L/(D×v×η)の値が0.25mm-1Pa-1以上である前述の脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む溶液中に、酸化されたときに金属酸化物となる金属の化合物を分散させた酸化物の前駆体の層を焼成することにより形成される。
 この酸化物層によれば、該酸化物層の前駆体中のペーストとしての役割を果たす脂肪族ポリカーボネートが、上述の計算式に基づく数値範囲を満足することにより、例えば印刷法によって形成される層について、そのバインダーの曳糸性を適切に制御し得るという知見が得られた。従って、上述の数値範囲を満たせば、酸化物の前駆体層の良好なパターンを形成することができるため、良好なパターンの酸化物層を得ることができる。
 また、本発明の1つの酸化物層の製造方法は、分子量が6千以上40万以下の脂肪族ポリカーボネートの比率が該脂肪族ポリカーボネート全体の80質量%以上である、その脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む溶液中に、酸化されたときに金属酸化物となる金属の化合物を分散させた酸化物の前駆体の層を、印刷法によって形成する前駆体層形成工程と、その前駆体の層を焼成する焼成工程と、を含む。
 この酸化物層の製造方法によれば、ペーストとしての役割を果たす脂肪族ポリカーボネート全体の80質量%以上を占める分子量の範囲が6千以上40万以下であるため、例えば印刷法によって形成される層について、そのバインダーの曳糸性を適切に制御することが可能となる。その結果、酸化物の前駆体について良好なパターンを形成することができる。
 また、本発明のもう1つの酸化物層の製造方法は、ティー・エイ・インスツルメント社製レオメーター(AR-2000EX)を用いて測定したゼロせん断粘度ηの脂肪族ポリカーボネートの溜まり中に、ポリテトラフルオロエチレン(polytetrafluoroethylene)製の直径がDである円柱棒を沈めた後に、その円柱棒を速度vで引き上げたときの、前述の脂肪族ポリカーボネートの溜まりの最表面からの曳糸長Lが測定された場合に、L/(D×v×η)の値が0.25mm-1Pa-1以上であるその脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む溶液中に、酸化されたときに金属酸化物となる金属の化合物を分散させた酸化物の前駆体の層を、印刷法によって形成する前駆体層形成工程と、その前駆体の層を焼成する焼成工程と、を含む。
 本願発明者らの研究と分析によれば、酸化物の前駆体について、ペーストとしての役割を果たす脂肪族ポリカーボネートが上述の計算式に基づく数値範囲を満足することにより、例えば印刷法によって形成される層について、そのバインダーの曳糸性を適切に制御し得るという知見が得られた。従って、上述の数値範囲を満たせば、酸化物の前駆体層の良好なパターンを形成することができる。
 ところで、本出願における「金属酸化物」は、酸化物半導体、酸化物導電体、又は酸化物絶縁体を含む概念である。なお、酸化物半導体、酸化物導電体、及び酸化物絶縁体のそれぞれは、電気伝導性の観点から言えば相対的な概念であるため、厳格な区別を要求されない。仮に同種の金属酸化物であっても、各種デバイスの要求によって、場合によっては酸化物半導体として当業者に認識されることもあれば、酸化物導電体又は酸化物絶縁体として当業者に認識される場合も有り得る。また、本願における「基板」とは、板状体の基礎に限らず、その他の形態の基礎ないし母材を含む。加えて、本願の後述する各実施形態においては、「塗布」とは、低エネルギー製造プロセス、代表的には印刷法によってある基板上に層を形成することをいう。
 本発明の1つの酸化物の前駆体によれば、例えば印刷法によって形成される層について、脂肪族ポリカーボネートからなるバインダーの曳糸性を適切に制御することが可能となるため、酸化物の前駆体について良好なパターンを得ることができる。また、本発明の1つの酸化物層によれば、例えば印刷法によって形成される層について、脂肪族ポリカーボネートからなるバインダーの曳糸性を適切に制御することが可能となる。その結果、酸化物の前駆体について良好なパターンを形成することができるため、良好なパターンの酸化物層を得ることができる。
 また、本発明の1つの酸化物層の製造方法によれば、脂肪族ポリカーボネートからなるバインダーの曳糸性を適切に制御することが可能となるため、酸化物の前駆体について良好なパターンを形成することができる。
本発明の第1の実施形態における良好なパターンを実現し得た代表的な光学顕微鏡写真の例である。 本発明の第1の実施形態における好ましくないパターンが形成された代表的な光学顕微鏡写真の例である。 本発明の第1の実施形態における良好なパターンが形成された代表的な光学顕微鏡写真の例である。 本発明の第1の実施形態における各試料と曳糸性を示す評価パラメータとの関係を示すグラフである。 本発明の第1の実施形態における各試料と曳糸性を示す評価パラメータとの関係を示すグラフである。 本発明の第1の実施形態における、基材上に脂肪族ポリカーボネートを含む溶液を配置してから30秒後の、2-ニトロプロパンの濃度の変化に対する、基材と該溶液との接触角、及び基材上の該溶液の広がり率を示すグラフである。 本発明の第1の実施形態における、基材上に脂肪族ポリカーボネートを含む溶液を配置してから120秒後の、2-ニトロプロパンの濃度の変化に対する、基材と該溶液との接触角、及び基材上の該溶液の広がり率を示すグラフである。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態の薄膜トランジスタのチャネルを形成するための酸化物半導体の前駆体の構成材の一例である、インジウム含有溶液のTG-DTA特性を示すグラフである。 本発明の第2の実施形態の薄膜トランジスタの構成要素を形成するためのバインダーのみを溶質とする溶液の一例であるポリプロピレンカーボネート溶液のTG-DTA特性を示すグラフである。 本発明の第2の実施形態の薄膜トランジスタの構成要素を形成するための、酸化物半導体の前駆体のTG-DTA特性を示すグラフである。 本発明の第2の実施形態の薄膜トランジスタの構成要素を形成するための、酸化物半導体の前駆体の他のTG-DTA特性を示すグラフである。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態における薄膜トランジスタの全体構成及びその製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態の変形例(2)における薄膜トランジスタの製造方法の一過程を示す断面模式図である。
 本発明の実施形態である脂肪族ポリカーボネート、酸化物の前駆体、酸化物層、半導体素子、及び電子デバイス並びにそれらの製造方法を、添付する図面に基づいて詳細に述べる。なお、この説明に際し、全図にわたり、特に言及がない限り、共通する部分には共通する参照符号が付されている。また、図中、本実施形態の要素は必ずしも互いの縮尺を保って記載されるものではない。さらに、各図面を見やすくするために、一部の符号が省略され得る。
<第1の実施形態>
1.酸化物の前駆体、及び酸化物層の構成、並びにそれらの製造方法
 本実施形態においては、脂肪族ポリカーボネートと、酸化されたときに金属酸化物となる金属の化合物とを混在させる代表的な態様が、「酸化物の前駆体」である。従って、この酸化物の前駆体の代表的な例は、酸化されたときに金属酸化物となる金属の化合物を、バインダー(不可避不純物を含み得る。以下、同じ)の役割を果たすと考えられる脂肪族ポリカーボネートを含む溶液中に分散させたものである。なお、バインダーとしての脂肪族ポリカーボネートは、例えば印刷法によって一旦パターンが形成された後においては、最終的に得られる金属酸化物から見れば不純物であるため、主として加熱処理によって分解又は除去される対象となる。
 また、本実施形態においては、分子量が6千以上40万以下の脂肪族ポリカーボネートの比率が、該脂肪族ポリカーボネート全体の80質量%以上である。また、本実施形態の金属酸化物の例は、酸化物半導体、酸化物導電体、又は酸化物絶縁体である。
(バインダー及び該バインダーを含む溶液について)
 次に、本実施形態におけるバインダーに着目し、該バインダー及び該バインダーを含む溶液について詳述する。
 本実施形態においては、バインダーとして、熱分解性の良い吸熱分解型の脂肪族ポリカーボネートが用いられる。なお、バインダーの熱分解反応が吸熱反応であることは、示差熱測定法(DTA)によって確認することができる。このような脂肪族ポリカーボネートは、酸素含有量が高く、比較的低温で低分子化合物に分解することが可能であるため、金属酸化物中の炭素不純物に代表される不純物の残存量を低減させることに積極的に寄与する。
 また、本実施形態において、バインダーを含む溶液に採用され得る有機溶媒は、脂肪族ポリカーボネートを溶解可能な有機溶媒であれば特に限定されない。有機溶媒の具体例は、ジエチレングリコールモノエチルエーテルアセテート(Diethylene-Glycol-Monoethyl Ether Acetate(以下、「DEGMEA」ともいう。))、α-ターピネオール、β-ターピネオール、N-メチル-2-ピロリドン、2-ニトロプロパン、イソプロピルアルコール、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、トルエン、シクロヘキサン、メチルエチルケトン、ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネートなどである。これらの有機溶媒の中でも、沸点が適度に高く、室温での蒸発が少なく、酸化物の前駆体を焼成する際に均一に有機溶媒が除去できる観点から、ジエチレングリコールモノエチルエーテルアセテート、α-ターピネオール、N-メチル-2-ピロリドン、2-ニトロプロパン及びプロピレンカーボネートが好適に用いられる。なお、本実施形態においては、形成されたパターン中のバインダーが最終的には不純物として分解又は除去される対象となる。従って、パターンが形成されてから分解又は除去されるまでの比較的短い時間だけ、そのパターンを維持すれば足りるという観点から、DEGMEAと2-ニトロプロパンとの混合溶媒を採用することが好ましい。
 本実施形態の酸化物の前駆体の製造方法は、特に限定されない。例えば、金属酸化物、バインダー、及び有機溶媒の各成分を、従来公知の攪拌方法を用いて攪拌して均一に分散、溶解する方法が採用され得る。また、金属酸化物を含む有機溶媒とバインダーを有機溶媒に溶解した溶液とを、従来公知の攪拌方法を用いて攪拌して前駆体を得る方法も採用され得る一態様である。
 上述の公知の攪拌方法には、例えば、攪拌機を用いて混合する方法、あるいはセラミックスボールが充填されたミル等の装置を用いて、回転及び/又は振動させることにより混練する方法が含まれる。
 また、金属酸化物の分散性を向上させる観点から、バインダーを含む溶液には、所望により分散剤、可塑剤等をさらに添加することができる。
 上述の分散剤の具体例は、
 グリセリン、ソルビタン等の多価アルコールエステル;
 ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテルポリオール;ポリエチレンイミン等のアミン;
 ポリアクリル酸、ポリメタクリル酸等の(メタ)アクリル樹脂;
 イソブチレンまたはスチレンと無水マレイン酸との共重合体、及びそのアミン塩など
である。
 上述の可塑剤の具体例は、ポリエーテルポリオール、フタル酸エステルなどである。
 また、本実施形態の酸化物の前駆体層を形成する方法は、特に限定されない。低エネルギー製造プロセスによる層の形成は、好適な一態様である。より具体的には、グラビア印刷、スクリーン印刷、オフセット印刷、インクジェット印刷などの印刷法は、本実施形態における特に好適な低エネルギー製造プロセスである。また、その他の低エネルギー製造プロセスとして、ロールコート、ダイコート、エアナイフコート、ブレードコート、スピンコート、リバースコート、グラビアコートなどの塗工法などを用いることができる。なお、上述の中でも、特に簡便な方法であるスクリーン印刷により基板に塗布することにより、酸化物の前駆体層を形成することが好ましい。
(脂肪族ポリカーボネートについて)
 なお、後述する各実験例においては、脂肪族ポリカーボネートの例として、ポリプロピレンカーボネートが採用されているが、本実施形態で用いられる脂肪族ポリカーボネートの種類は特に限定されない。例えば、エポキシドと二酸化炭素とを重合反応させた脂肪族ポリカーボネートも、本実施形態において採用し得る好適な一態様である。このようなエポキシドと二酸化炭素とを重合反応させた脂肪族ポリカーボネートを用いることにより、脂肪族ポリカーボネートの構造を制御することで吸熱分解性を向上させられる、所望の分子量を有する脂肪族ポリカーボネートが得られるという効果が奏される。とりわけ、脂肪族ポリカーボネートの中でも酸素含有量が高く、比較的低温で低分子化合物に分解する観点から言えば、脂肪族ポリカーボネートは、ポリエチレンカーボネート、及びポリプロピレンカーボネートからなる群より選ばれる少なくとも1種であることが好ましい。上述のいずれの脂肪族ポリカーボネートにおいても、その分子量が上述の数値範囲内であれば、本実施形態の効果と同様の効果が奏され得る。
 また、上述のエポキシドは、二酸化炭素と重合反応して主鎖に脂肪族を含む構造を有する脂肪族ポリカーボネートとなるエポキシドであれば特に限定されない。例えば、エチレンオキシド、プロピレンオキシド、1-ブテンオキシド、2-ブテンオキシド、イソブチレンオキシド、1-ペンテンオキシド、2-ペンテンオキシド、1-ヘキセンオキシド、1-オクテンオキシド、1-デセンオキシド、シクロペンテンオキシド、シクロヘキセンオキシド、スチレンオキシド、ビニルシクロヘキセンオキシド、3-フェニルプロピレンオキシド、3,3,3-トリフルオロプロピレンオキシド、3-ナフチルプロピレンオキシド、3-フェノキシプロピレンオキシド、3-ナフトキシプロピレンオキシド、ブタジエンモノオキシド、3-ビニルオキシプロピレンオキシド、及び3-トリメチルシリルオキシプロピレンオキシド等のエポキシドは、本実施形態において採用し得る一例である。これらのエポキシドの中でも、二酸化炭素との高い重合反応性を有する観点から、エチレンオキシド、及びプロピレンオキシドが好適に用いられる。なお、上述の各エポキシドは、それぞれ単独で使用されてもよいし、2種以上を組み合わせて用いられることもできる。
 上述の脂肪族ポリカーボネートの質量平均分子量は、好ましくは5000~1000000であり、より好ましくは10000~500000である。脂肪族ポリカーボネートの質量平均分子量が5000未満の場合、例えば、粘度の低下による影響等により、バインダーとしての効果が十分に得られなくなるおそれがある。また、脂肪族ポリカーボネートの質量平均分子量が1000000を超える場合、脂肪族ポリカーボネートの有機溶媒への溶解性が低下するために取り扱いが難しくなるおそれがある。なお、前述の質量平均分子量の数値は、次の方法によって算出することができる。
 具体的には、上述の脂肪族ポリカーボネート濃度が0.5質量%のクロロホルム溶液を調製し、高速液体クロマトグラフィーを用いて測定する。測定後、同一条件で測定した質量平均分子量が既知のポリスチレンと比較することにより、分子量を算出する。また、測定条件は、以下の通りである。
  機種:HLC-8020(東ソー株式会社製)
  カラム:GPCカラム(東ソー株式会社の商品名:TSK GEL Multipore HXL-M)
  カラム温度:40℃
  溶出液:クロロホルム
  流速:1mL/分
 また、上述の脂肪族ポリカーボネートの製造方法の一例として、上述のエポキシドと二酸化炭素とを金属触媒の存在下で重合反応させる方法等が採用され得る。
 ここで、脂肪族ポリカーボネートの製造例は、次のとおりである。
 攪拌機、ガス導入管、温度計を備えた1L容のオートクレーブの系内をあらかじめ窒素雰囲気に置換した後、有機亜鉛触媒を含む反応液、ヘキサン、及びプロピレンオキシドを仕込んだ。次に、攪拌しながら二酸化炭素を加えることによって反応系内を二酸化炭素雰囲気に置換し、反応系内が約1.5MPaとなるまで二酸化炭素を充填した。その後、そのオートクレーブを60℃に昇温し、反応により消費される二酸化炭素を補給しながら数時間重合反応を行った。反応終了後、オートクレーブを冷却して脱圧し、ろ過した。その後、減圧乾燥することによりポリプロピレンカーボネートを得た。
 また、上述の金属触媒の具体例は、アルミニウム触媒、又は亜鉛触媒である。これらの中でも、エポキシドと二酸化炭素との重合反応において高い重合活性を有することから、亜鉛触媒が好ましく用いられる。また、亜鉛触媒の中でも有機亜鉛触媒が特に好ましく用いられる。
 また、上述の有機亜鉛触媒の具体例は、
 酢酸亜鉛、ジエチル亜鉛、ジブチル亜鉛等の有機亜鉛触媒;あるいは、
 一級アミン、2価のフェノール、2価の芳香族カルボン酸、芳香族ヒドロキシ酸、脂肪族ジカルボン酸、脂肪族モノカルボン酸等の化合物と亜鉛化合物とを反応させることにより得られる有機亜鉛触媒など
である。
 これらの有機亜鉛触媒の中でも、より高い重合活性を有することから、亜鉛化合物と、脂肪族ジカルボン酸と、脂肪族モノカルボン酸とを反応させて得られる有機亜鉛触媒を採用することは好適な一態様である。
 ここで、有機亜鉛触媒の製造例は、次のとおりである。
 まず、攪拌機、窒素ガス導入管、温度計、還流冷却管を備えた四つ口フラスコに、酸化亜鉛、グルタル酸、酢酸、及びトルエンを仕込んだ。次に、反応系内を窒素雰囲気に置換した後、そのフラスコを55℃まで昇温し、同温度で4時間攪拌することにより、前述の各材料の反応処理を行った。その後、110℃まで昇温し、さらに同温度で4時間攪拌して共沸脱水させ、水分のみを除去した。その後、そのフラスコを室温まで冷却することにより、有機亜鉛触媒を含む反応液を得た。なお、この反応液の一部を分取し、ろ過して得た有機亜鉛触媒について、IRを測定(サーモニコレージャパン株式会社製、商品名:AVATAR360)した。その結果、カルボン酸基に基づくピークは認められなかった。
 また、重合反応に用いられる上述の金属触媒の使用量は、エポキシド100質量部に対して、0.001~20質量部であることが好ましく、0.01~10質量部であることがより好ましい。金属触媒の使用量が0.001質量部未満の場合、重合反応が進行しにくくなるおそれがある。また、金属触媒の使用量が20質量部を超える場合、使用量に見合う効果がなく経済的でなくなるおそれがある。
 上述の重合反応において必要に応じて用いられる反応溶媒は、特に限定されるものではない。この反応溶媒は、種々の有機溶媒が適用し得る。この有機溶媒の具体例は、
 ペンタン、ヘキサン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素系溶媒;
 ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;
 クロロメタン、メチレンジクロリド、クロロホルム、四塩化炭素、1,1-ジクロロエタン、1,2-ジクロロエタン、エチルクロリド、トリクロロエタン、1-クロロプロパン、2-クロロプロパン、1-クロロブタン、2-クロロブタン、1-クロロ-2-メチルプロパン、クロルベンゼン、ブロモベンゼン等のハロゲン化炭化水素系溶媒;
 ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート等のカーボネート系溶媒など
である。
 また、上述の反応溶媒の使用量は、反応を円滑にさせる観点から、エポキシド100質量部に対して、500質量部以上10000質量部以下であることが好ましい。
 また、上述の重合反応において、エポキシドと二酸化炭素とを金属触媒の存在下で反応させる方法としては、特に限定されるものではない。例えば、オートクレーブに、上述のエポキシド、金属触媒、及び必要により反応溶媒を仕込み、混合した後、二酸化炭素を圧入して、反応させる方法が採用され得る。
 加えて、上述の重合反応において用いられる二酸化炭素の使用圧力は、特に限定されない。代表的には、0.1MPa~20MPaであることが好ましく、0.1MPa~10MPaであることがより好ましく、0.1MPa~5MPaであることがさらに好ましい。二酸化炭素の使用圧力が20MPaを超える場合、使用圧力に見合う効果がなく経済的でなくなるおそれがある。
 さらに、上述の重合反応における重合反応温度は、特に限定されない。代表的には、30~100℃であることが好ましく、40~80℃であることがより好ましい。重合反応温度が30℃未満の場合、重合反応に長時間を要するおそれがある。また、重合反応温度が100℃を超える場合、副反応が起こり、収率が低下するおそれがある。重合反応時間は、重合反応温度により異なるために一概には言えないが、代表的には、2時間~40時間であることが好ましい。
 重合反応終了後は、ろ過等によりろ別し、必要により溶媒等で洗浄後、乾燥させることにより、脂肪族ポリカーボネートを得ることができる。
[脂肪族ポリカーボネートの分子量と、曳糸性及びパターン形状との相関性]
 本願発明者らは、代表的には以下の実験を行うことにより、脂肪族ポリカーボネートの分子量と、曳糸性及びパターン形状との相関性に関する分析及び検討を入念に行った。その結果、脂肪族ポリカーボネートの分子量の代表的な例として、6千以上40万以下の脂肪族ポリカーボネートの比率が、該脂肪族ポリカーボネート全体の80質量%以上であれば、酸化物の前駆体の曳糸性を制御し、良好なパターンを形成することができることを本願発明者らは確認した。なお、以下の各実験例において採用される脂肪族ポリカーボネートは、ポリプロピレンカーボネート(以下、「PPC」ともいう。)である。
(各実験の準備工程)
 なお、酸化物の前駆体の製造例は、次のとおりである。なお、下記の各実験例においては、代表的に、酸化されたときに酸化物半導体となる前駆体、すなわち、酸化物半導体の前駆体を採用する。
 まず、50mL容のフラスコに、インジウムアセチルアセトナート及びプロピオン酸を撹拌しながら徐々に混合することにより、最終的にインジウム酸化物となる、インジウム含有溶液を得た。
 次に、50mL容のナス型フラスコに、ポリプロピレンカーボネートを、DEGMEAと2-ニトロプロパンの混合溶媒中に溶解し、25wt%のポリプロピレンカーボネート溶液を得た。
 その後、そのポリプロピレンカーボネートの溶液中に、上述のインジウム含有溶液を徐々に加え、酸化物半導体の前駆体を得た。
[実験例1]
 以下の(1)~(10)に示す、質量平均分子量が異なる4種類のPPCの単体を溶解させた試料、又はそれらのうちの2種類を組み合わせたものを溶解させた試料を調製した。
 (1)質量平均分子量が3万のPPC(以下、「試料A」ともいう。)のみ
 (2)質量平均分子量が9万のPPC(以下、「試料B」ともいう。)のみ
 (3)試料Aと試料Bとを1:1の比率で混合したもの(以下、「試料AB」ともいう。)
 (4)質量平均分子量が23万のPPC(以下、「試料C」ともいう)のみ
 (5)質量平均分子量が59万のPPC(以下、「試料D」ともいう)のみ
 (6)試料Cと試料Dとを1:1の比率で混合したもの(以下、「試料CD」ともいう。)
 (7)試料Aと試料Cとを1:1の比率で混合したもの(以下、「試料AC」ともいう。)
 (8)試料Bと試料Cとを1:1の比率で混合したもの(以下、「試料BC」ともいう。)
 (9)試料Aと試料Dとを1:1の比率で混合したもの(以下、「試料AD」ともいう。)
 (10)試料Bと試料Dとを1:1の比率で混合したもの(以下、「試料BD」ともいう。)
 上述の試料について、分子量が6千以上40万以下の脂肪族ポリカーボネートの、脂肪族ポリカーボネート全体に対する比率を以下のようにして求めた。すなわち、脂肪族ポリカーボネート濃度が0.5質量%のクロロホルム溶液を調製し、高速液体クロマトグラフィーを用いて以下の測定条件で、分子量が既知のポリスチレンと比較することにより、分子量分布を測定する。
  機種:HLC-8020(東ソー株式会社製)
  カラム:GPCカラム(東ソー株式会社の商品名:TSK GEL Multipore HXL-M)
  カラム温度:40℃
  溶出液:クロロホルム
  流速:1mL/分
 上記の方法で得られる、横軸を分子量(Log分子量)、縦軸を溶出割合(dwt/d(log分子量))とするクロマトグラムから、クロマトグラム全領域の面積と分子量が6千以上40万以下の分子量範囲の面積との比率を算出した。得られた結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 上記の試料を用いてバインダーの曳糸性を評価した。具体的には、ガラス基板「イーグルXG」(200×150×0.7tmm)上に、スクリーン印刷法を用いて、上述のバインダーによる矩形のパターンを形成した。
 その後、大気雰囲気中にて150℃で30分間の該パターンに対する予備的な焼成をした後、該パターンに対する曳糸性の評価を光学顕微鏡、及び原子間力顕微鏡(AFM)を用いて行った。
 上述の実験結果をまとめた表を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2における「パターン形状」は、印刷法を用いて形成されたパターンの忠実性を示している。従って、「パターン形状」における「不良」という記載は、デバイスの製造に利用できない程度にパターンが形成されていない状況を意味する。逆に、「パターン形状」における「良好」という記載は、デバイスの製造に利用可能な程度にパターンが再現されていることを意味している。また、表2における「曳糸性」における「不良」とは、印刷法を用いてパターンが形成されたバインダーの層から、一部のバインダーが糸状に曳かれることにより、所望のパターンが崩されている状態を意味する。また、「曳糸性」における「良好」とは、曳糸性がほとんど又は全く見られない状態を意味する。加えて、表2における「パターン高さ」は、原子間力顕微鏡(AFM)によるパターン最高点の測定値である。なお、試料(6)の「パターン高さ」における「測定不能」との記載は、パターン自身が実質的に形成されていない状況であったことを意味している。
 上述の表2に加えて、良好なパターンを実現し得た代表的な光学顕微鏡写真の例として、上記の(1)、(7)、及び(8)の結果を図1に示す。また、曳糸性を制御することができずに、好ましくないパターンが形成された代表的な光学顕微鏡写真の例として、上記の(5)、(9)、及び(10)の結果を図2Aに示す。
 表2、図1、及び図2Aに示すように、比較的低分子量の脂肪族ポリカーボネートである、(1)「試料A」、(2)「試料B」、及び(3)「試料AB」、並びに中程度の分子量である脂肪族ポリカーボネートの(7)「試料AC」については、「パターン形状」及び「曳糸性」について良好な結果が得られた。なお、特に、試料C(表中の(4))は、表2において曳糸性が「不良」と記載されているが、一部のパターンのみに曳糸性が見られたに過ぎない点を付言する。
 また、「パターニング形状」又は「曳糸性」が悪化する要因は、分子量の増加にあると考えられる結果が得られた。一方、例えば、スクリーン印刷法においては、形成されたパターンが一定以上の「高さ」を有することが好ましい。従って、良好な「パターン形状」及び「曳糸性」を維持しつつ、一定以上の「パターン高さ」を得るためには、著しく低分子量の脂肪族ポリカーボネートを採用することは好ましくないとの知見も得られている。
 なお、本願発明者らは、(9)「試料AD」及び(10)「試料BD」について、それぞれの「パターニング形状」及び「曳糸性」が「不良」となった原因を次のように考察する。
 表2の「パターン高さ」が示すように、(9)「試料AD」及び(10)「試料BD」の各パターン高さ(5.3μm)は、「試料A」のパターン高さ(1.4μm)と「試料D」のパターン高さ(4μm)との和、あるいは、「試料A」のパターン高さ(1.5μm)と「試料D」のパターン高さ(4μm)との和とほぼ同じである。従って、PPCの単体をバインダーとして溶解させた試料を用いた場合は、一定程度の分子量差を越えると、高分子量の脂肪族ポリカーボネートと低分子量の脂肪族ポリカーボネートとが、いわば相分離することによって混ざらない状況が形成されると考えられる。敢えて積極的に言及すれば、低分子量の脂肪族ポリカーボネート上に高分子量の脂肪族ポリカーボネートが乗っている状況か、あるいはその逆の状態が形成されている可能性がある。一方、分子量の差が比較的小さい、(7)「試料AC」又は(8)「試料BC」は、高分子量の脂肪族ポリカーボネートと低分子量の脂肪族ポリカーボネートとが、いわば相分離せずに適度に混ざっている状態であると考えられるため、良好な「パターニング形状」及び「曳糸性」が得られると考えられる。
 従って、たとえ同じ種類の材料であっても、それぞれ異なった質量平均分子量を有する脂肪族ポリカーボネートを複数用いた場合、単純に、各脂肪族ポリカーボネートの質量平均分子量を平均させることによって、良好な「パターニング形状」及び「曳糸性」を得るための適切な分子量を導出できる訳ではないことを、上述の実験結果は示しているといえる。
 上述の各結果と、本願発明者らがその他の分子量について調査、分析した結果とを合わせると、分子量が6千以上40万以下の脂肪族ポリカーボネートの比率が該脂肪族ポリカーボネート全体の80質量%以上である脂肪族ポリカーボネートを採用することにより、良好な「パターン形状」及び「曳糸性」を実現し得る。
 また、上述の(1)~(10)に示す結果が、質量平均分子量が異なる4種類のPPCの単体をバインダーとして溶解させた、「各実験の準備工程」において説明した酸化物半導体の前駆体の試料、又はそれらのPPCのうちの2種類を組み合わせたものをバインダーとして溶解させた該酸化物半導体の前駆体の試料を調製した場合にも、データの傾向として当て嵌まることが確認されている。なお、該酸化物半導体の前駆体の試料は、0.2mol/kgのインジウム含有溶液を、5質量%含む。また、表3の各試料番号は、表1の(1)~(10)との対応関係を分かりやすくするために、同じ番号を使用している。
 具体的には、表3に示すように、比較的低分子量の脂肪族ポリカーボネートである、(1)「試料A」、(2)「試料B」、及び(3)「試料AB」、並びに中程度の分子量である脂肪族ポリカーボネートの(7)「試料AC」については、「パターン形状」及び「曳糸性」について良好な結果が得られた。加えて、興味深いことに、分子量が比較的大きい(9)及び(10)の各試料のパターン形状及び曳糸性も、良好であることが確認された。図2Bは、曳糸性を制御することができた結果、良好なパターンが形成された、(9)及び(10)の結果を示す光学顕微鏡写真である。(9)及び(10)の各試料のパターン形状及び曳糸性が良好であったのは、おそらく、表2において採用した試料にインジウム含有溶液が追加されたために、全体としてのPPCの濃度が若干低下したことが原因と考えられる。
Figure JPOXMLDOC01-appb-T000003
 [実験例2]
 次に、本願発明者らは、実験例1において採用した(1)~(10)に示す試料について、以下の実験により、平均曳糸長(mm)及びゼロせん断粘度(Pa・s)を測定した。
 本実験では、まず、平均曳糸長(mm)については、各試料を用いて形成した、収容器内の脂肪族ポリカーボネートの溜まり中に、ポリテトラフルオロエチレン(polytetrafluoroethylene)製であって直径Dが2.9mmの円柱棒を沈めた。その後、その円柱棒を速度vが5mm/秒で引き上げたときの、脂肪族ポリカーボネートの溜まりの最表面からの曳糸長L(mm)を測定した。また、各試料のゼロせん断粘度ηは、ティー・エイ・インスツルメント社製レオメーター(AR-2000EX)を用いて測定した。そして、評価パラメータとして、上述の各値を次の式に代入して算出した。
<計算式>
「評価パラメータ」(mm-1・Pa-1)=L/(D×v×η)
 表4は、本実験例における各試料と、平均曳糸長(mm)及びゼロせん断粘度(Pa・s)との関係を示している。また、図3Aは、本実験例における各試料と、曳糸性を示す評価パラメータとの関係を示すグラフである。
Figure JPOXMLDOC01-appb-T000004
 表4及び図3Aに示すように、PPCの単体をバインダーとして溶解させた試料を用いた場合は、上述の計算式によって算出される「評価パラメータ」(mm-1・Pa-1)の値が、少なくとも、0.4mm-1Pa-1以上であれば、良好な「パターニング形状」及び「曳糸性」を得ることができるとの知見が得られた。
 ところで、以下の表5に示すように、上述の(1)~(10)に示す結果が、質量平均分子量が異なる4種類のPPCの単体をバインダーとして溶解させた、「各実験の準備工程」において説明した酸化物半導体の前駆体の試料、又はそれらのうちの2種類を組み合わせたものをバインダーとして溶解させた該酸化物半導体の前駆体の試料、を調製した場合も、データの傾向として当て嵌まることが確認されている。なお、以下の表5の各試料番号は、表1の(1)~(10)との対応関係を分かりやすくするために、同じ番号を使用している。
 表4、表5、図3A、及び図3Bに示すように、PPCの単体をバインダーとして溶解させた試料を用いた結果よりも、上述の酸化物半導体の前駆体の試料を用いた結果の方が、該「評価パラメータ」の値が全体的に大きくなっていることが分かる。従って、(9)及び(10)の結果も踏まえた上で、表3乃至5、及び図3B、並びに図2Bの結果を合わせて検討すると、該「評価パラメータ」(mm-1・Pa-1)の値が、0.25mm-1Pa-1以上(より狭義には0.29mm-1Pa-1以上)であれば、良好な「パターニング形状」及び「曳糸性」を得ることができるとの知見が得られた。なお、良好な「パターニング形状」及び「曳糸性」を得るための、該「評価パラメータ」の上限値は特に限定されないが、より確度高くパターンの高さを得る観点から言えば、該「評価パラメータ」の値が1.2以下(より狭義には、0.9以下)であることは好適である。
Figure JPOXMLDOC01-appb-T000005
(他の好適な脂肪族ポリカーボネートの分子量の範囲)
 なお、本実施形態の脂肪族ポリカーボネートの分子量の範囲は、上述の各実験例において開示された数値範囲に限定されない。本願発明者らの分析によれば、例えば、分子量が6千以上30万以下の脂肪族ポリカーボネートの比率が、該脂肪族ポリカーボネート全体の75質量%以上であることは、より確度高く曳糸性を制御し、良好なパターンを形成する観点から言えば、さらに好ましい一態様である。
[実験例3]
(接触角及び広がり率の評価)
 既に述べたとおり、バインダーとしての機能を発揮し得ると考えられる脂肪族ポリカーボネートは、一旦パターンが形成された後においては、最終的に得られる金属酸化物から見れば不純物であり、分解又は除去される対象となる。従って、該バインダーを必要とする時間は、いわば一時的に過ぎない。しかしながら、その一時的な時間を維持するためのパターンの形成作用(換言すれば、バランスの取れた粘度又は塗れ性)を、脂肪族ポリカーボネートを含む溶液が有するか否かは、基材上に該溶液を配置したときの、該溶液とその基材との接触角を評価することが好適な指標になると発明者らは考えた。そこで、発明者らは、ポリプロピレンカーボネート(25wt%)を、DEGMEAと2-ニトロプロパンの混合溶媒中に溶解することによって得られたポリプロピレンカーボネート溶液を、基材(この実験例においては、ガラス基板)上に配置してから30秒後、及び120秒後に、基材と該溶液との接触角、及び基材上の該溶液の広がり率がどのように変化するかを調査した。なお、接触角の変化を調べやすいように、脂肪族ポリカーボネートの好適な溶媒である2-ニトロプロパンの濃度(wt%)を変化させた上で、上述の各評価が行われた。また、上述の「広がり率」は、設計値に対する実際のパターン寸法に基づいて算出された。
 図4Aは、基材上に脂肪族ポリカーボネートを含む溶液を配置してから30秒後における、2-ニトロプロパンの濃度の変化に対する、基材と該溶液との接触角、及び基材上の該溶液の広がり率を示すグラフである。また、図4Bは、基材上に脂肪族ポリカーボネートを含む溶液を配置してから120秒後における、2-ニトロプロパンの濃度の変化に対する、基材と該溶液との接触角、及び基材上の該溶液の広がり率を示すグラフである。
 図4A及び図4Bに示すように、基材と該溶液との接触角と、基材上の該溶液の広がり率とは互いに逆の相関性が認められる。すなわち、2-ニトロプロパンの濃度が上昇するに従って、接触角は増加する一方、広がり率は減少することが明らかとなった。但し、図4Bに示すように、2-ニトロプロパンの濃度が高い場合(例えば、75%)であっても、接触角が増加しない場合も存在していることが分かった。加えて、特に接触角については、図4A及び図4Bのいずれにおいても、2-ニトロプロパンの濃度がある値(代表的には、55%以上60%以下)になると急激に上昇する傾向が見られることも明らかとなった。
 本願発明者らのさらなる研究と分析によれば、30秒後の段階において接触角が36°を超える場合、又は、120秒後の段階において接触角が32°を超える場合は、脂肪族ポリカーボネートを含む溶液が基材に対して弾かれる状況となるため、一時的な時間を維持するために十分なパターンが形成され難いという知見が得られている。従って、脂肪族ポリカーボネートを含む溶液は、前述の各接触角以下の角度となるように調製されることが好ましい。
 他方、30秒後の段階において接触角が30°未満となる場合、又は、120秒後の段階において接触角が26°未満となる場合は、パターンの再現性が悪くなるため、この場合も、一時的な時間を維持するために十分なパターンが形成され難いという知見が得られている。従って、脂肪族ポリカーボネートを含む溶液は、前述の各接触角以上の角度となるように調製されることが好ましい。
 また、上述の図4A及び図4Bに示す結果が、質量平均分子量が異なる4種類のPPCの単体をバインダーとして溶解させた、「各実験の準備工程」において説明した酸化物半導体の前駆体の試料、又はそれらのうちの2種類を組み合わせたものをバインダーとして溶解させた該酸化物半導体の前駆体の試料、を調製した場合にも当て嵌まることが確認されている。
 上述のとおり、脂肪族ポリカーボネートを含む溶液中に酸化物の前駆体が含有されていない実験例の結果と脂肪族ポリカーボネートを含む溶液中に酸化物の前駆体が含有されている実施例の結果とが略同等であることを確認することができる。
<第2の実施形態>
2.本実施形態の薄膜トランジスタの全体構成
 図5乃至図10、及び図13乃至図16は、それぞれ、半導体素子の一例である薄膜トランジスタ100の製造方法の一過程を示す断面模式図である。また、図16は、本実施形態における薄膜トランジスタ100の製造方法の一過程及び全体構成を示す断面模式図である。図16に示すように、本実施形態における薄膜トランジスタ100においては、基板10上に、下層から、ゲート電極24、ゲート絶縁体34、チャネル44、ソース電極58及びドレイン電極56の順序で積層されている。なお、この半導体素子を備える電子デバイス(例えば、携帯端末や情報家電、あるいはその他の公知の電化製品)の提供ないし実現は、本実施形態の半導体素子を理解する当業者であれば特に説明を要せず十分に理解され得る。また、後述する、各種の酸化物の前駆体の層を形成するための工程は、本願における「前駆体層形成工程」に含まれる。
 薄膜トランジスタ100は、いわゆるボトムゲート構造を採用しているが、本実施形態はこの構造に限定されない。従って、当業者であれば、通常の技術常識を以って本実施形態の説明を参照することにより、工程の順序を変更することにより、トップゲート構造を形成することができる。また、本出願における温度の表示は、基板と接触するヒーターの加熱面の表面温度を表している。また、図面を簡略化するため、各電極からの引き出し電極のパターニングについての記載は省略する。
 本実施形態の基板10は、特に限定されず、一般的に半導体素子に用いられる基板が用いられる。例えば、高耐熱ガラス、SiO/Si基板(すなわち、シリコン基板上に酸化シリコン膜を形成した基板)、アルミナ(Al)基板、STO(SrTiO)基板、Si基板の表面にSiO層及びTi層を介してSTO(SrTiO)層を形成した絶縁性基板等、半導体基板(例えば、Si基板、SiC基板、Ge基板等)を含む、種々の絶縁性基材が適用できる。なお、絶縁性基板には、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル類、ポリオレフィン類、セルローストリアセテート、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリスルフォン、アラミド、芳香族ポリアミドなどの材料からなる、フィルム又はシートが含まれる。また、基板の厚さは特に限定されないが、例えば3μm以上300μm以下である。また、基板は、硬質であってもよく、フレキシブルであってもよい。
(1)ゲート電極の形成
 本実施形態においては、ゲート電極24の材料として、酸化されたときに酸化物導電体となる金属の化合物(以下、単に「酸化物導電体」ともいう)を採用することができる。この場合、本実施形態のゲート電極24は、酸化物導電体(但し、不可避不純物を含み得る。以下、この材料の酸化物に限らず他の材料の酸化物についても同じ。)を脂肪族ポリカーボネートからなるバインダーを含む溶液中に分散させた酸化物導電体の前駆体の層(以下、「酸化物導電体の前駆体層」ともいう)を焼成することによって形成される。本実施形態では、図5に示すように、基材であるSiO/Si基板(以下、単に「基板」ともいう)10上に低エネルギー製造プロセス(例えば、印刷法又はスピンコート法)を用いて出発材であるゲート電極用前駆体溶液を塗布することにより、ゲート電極用前駆体層22を形成することができる。
 その後、ゲート電極用前駆体層22を、例えば、大気中において、所定時間(例えば、10分間~1時間)、450℃~550℃で加熱する焼成工程が行われる。その結果、図6に示すように、基板10上に、ゲート電極24が形成される。なお、本実施形態のゲート電極24の層の厚みは、例えば、約100nmである。
 ここで、上述の酸化物導電体の一例は、酸化されたときに酸化物導電体となる金属に、配位子が配位した構造(代表的には錯体構造)を有する材料である。例えば、金属有機酸塩、金属無機酸塩、金属ハロゲン化物、又は各種の金属アルコキシドも本実施形態の酸化物導電体に含まれ得る。なお、酸化されたときに酸化物導電体となる金属の例は、ルテニウム(Ru)である。本実施形態においては、ニトロシル酢酸ルテニウム(III)を、脂肪族ポリカーボネートからなるバインダーを含むプロピオン酸と2-アミノエタノールとの混合溶媒に溶解した溶液を出発材とするゲート電極用前駆体溶液を、例えば、上述の照射工程の後、大気中において、所定時間(例えば、10分間~1時間)、約450℃~約550℃で加熱する焼成工程を行うことにより、酸化物導電体であるルテニウム酸化物が形成されるため、ゲート電極24を形成することができる。
 本実施形態においては、特に、第1の実施形態の脂肪族ポリカーボネートを採用したゲート電極用前駆体溶液を用いれば、印刷法を用いてゲート電極用前駆体層22のパターンを形成した場合に良好なパターンを形成することができる。より具体的には、ゲート電極用前駆体溶液におけるバインダーとしての役割を果たし得る脂肪族ポリカーボネートの曳糸性を適切に制御することが可能となるため、良好なゲート電極用前駆体層22のパターンを形成することができる。
 なお、本実施形態においては、上述のゲート電極24の代わりに、例えば、白金、金、銀、銅、アルミ、モリブデン、パラジウム、ルテニウム、イリジウム、タングステン、などの高融点金属、又はその合金等の金属材料、あるいはp-シリコン層やn-シリコン層を適用することができる。その場合、ゲート電極24を、公知のスパッタリング法やCVD法により基板10上に形成することができる。
(2)ゲート絶縁体の形成
 また、本実施形態においては、ゲート絶縁体34の材料として、酸化されたときに酸化物絶縁体となる金属の化合物(以下、単に「酸化物絶縁体」ともいう)を脂肪族ポリカーボネートからなるバインダーを含む溶液中に分散させた酸化物絶縁体の前駆体の層(以下、「酸化物絶縁体の前駆体層」ともいう)を焼成することによって形成される。
 具体的には、図7に示すように、ゲート電極24上に低エネルギー製造プロセス(例えば、印刷法又はスピンコート法)を用いて上述の酸化物絶縁体の前駆体を塗布することにより、ゲート絶縁体用前駆体層32が形成される。
 その後、ゲル状態となったゲート絶縁体用前駆体層32を、例えば、大気中において、所定時間(例えば、10分間~1時間)、約450℃~約550℃で加熱する焼成(本焼成)工程が行われることにより、例えば、酸化物絶縁体であるランタン(La)とジルコニウム(Zr)とからなる酸化物が形成される。その結果、図8に示すように、ゲート絶縁体34を形成することができる。なお、本実施形態のゲート絶縁体34の層の厚みは、例えば、約100nm~約250nmである。
 ここで、上述の酸化物絶縁体の一例は、酸化されたときに酸化物絶縁体となる金属に、配位子が配位した構造(代表的には錯体構造)を有する材料である。例えば、金属有機酸塩、金属無機酸塩、金属ハロゲン化物、又は各種の金属アルコキシド、あるいは、その他の有機酸塩、無機酸塩、ハロゲン化物、又は各種のアルコキシドも、本実施形態の酸化物絶縁体に含まれ得る。
 なお、代表的な酸化物絶縁体の例は、ランタン(La)とジルコニウム(Zr)とからなる酸化物である。この酸化物をゲート絶縁体34として採用し得る。本実施形態においては、酢酸ランタン(III)を、脂肪族ポリカーボネートからなるバインダーを含むプロピオン酸(溶媒)に溶解した第1溶液、並びにジルコニウムブトキシドを、脂肪族ポリカーボネートからなるバインダーを含むプロピオン酸(溶媒)に溶解した第2溶液を準備する。第1溶液と第2溶液との混合した、出発材としてのゲート絶縁体用前駆体溶液を、例えば、上述の照射工程の後、大気中において、所定時間(例えば、10分間~1時間)、約450℃~約550℃で加熱する焼成工程を行うことにより、酸化物絶縁体を形成することができる。
 本実施形態においては、特に、第1の実施形態の脂肪族ポリカーボネートを採用した酸化物絶縁体の前駆体を用いれば、印刷法を用いてゲート絶縁体用前駆体層32のパターンを形成した場合に良好なパターンを形成することができる。より具体的には、酸化物絶縁体の前駆体におけるバインダーとしての役割を果たし得る脂肪族ポリカーボネートの曳糸性を適切に制御することが可能となるため、良好なゲート絶縁体用前駆体層32のパターンを形成することができる。
 なお、本実施形態においては、上述のゲート絶縁体34の代わりに、例えば、酸化シリコン又は酸窒化シリコンを適用することができる。その場合、ゲート絶縁体34を、公知のCVD法等によりゲート電極24上に形成することができる。
(3)チャネルの形成
 また、本実施形態においては、チャネル44の材料として、酸化されたときに酸化物半導体となる金属の化合物(以下、単に「酸化物半導体」ともいう)を脂肪族ポリカーボネートからなるバインダーを含む溶液中に分散させた酸化物半導体の前駆体の層(以下、「酸化物半導体の前駆体層」ともいう)を焼成することによって形成される。本実施形態では、図9に示すように、ゲート絶縁体34上に低エネルギー製造プロセス(例えば、印刷法又はスピンコート法)を用いて出発材であるチャネル用前駆体溶液を塗布することにより、チャネル用前駆体層42を形成することができる。
 その後、チャネル用前駆体層22を、後述する焼成工程を行うことにより、図10に示すようにチャネル44が形成される。
 ここで、上述の酸化物半導体の一例は、酸化されたときに酸化物半導体となる金属に、配位子が配位した構造(代表的には錯体構造)を有する材料である。例えば、金属有機酸塩、金属無機酸塩、金属ハロゲン化物、又は各種の金属アルコキシドも本実施形態の酸化物半導体を形成するための材料に含まれ得る。なお、代表的な酸化物半導体の例は、インジウム酸化物(以下、「InO」ともいう)である。例えば、インジウムアセチルアセトナートをプロピオン酸に溶解した溶液(「In溶液」ともいう)を、大気中において、所定時間(例えば、10分間~1時間)、450℃~550℃で加熱する焼成工程を行うことにより、酸化物半導体であるインジウム酸化物(以下、「InO」ともいう)を形成することができる。その結果、チャネル44を形成することができる。
 なお、酸化されたときに酸化物半導体となる金属の例は、インジウム、スズ、亜鉛、カドミウム、チタン、銀、銅、タングステン、ニッケル、インジウム-亜鉛、インジウム-スズ、インジウム-ガリウム-亜鉛、アンチモン-スズ、ガリウム-亜鉛の群から選択される1種又は2種以上である。但し、素子性能や安定性等の観点から言えば、インジウム-亜鉛が、酸化されたときに酸化物半導体となる金属として採用されることが好ましい。
 本実施形態においては、特に、第1の実施形態の脂肪族ポリカーボネートを採用したチャネル用前駆体溶液を用いれば、印刷法を用いてチャネル用前駆体層42のパターンを形成した場合に良好なパターンを形成することができる。より具体的には、チャネル用前駆体溶液におけるバインダーとしての役割を果たし得る脂肪族ポリカーボネートの曳糸性を適切に制御することが可能となるため、良好なチャネル用前駆体層42のパターンを形成することができる。
 また、本実施形態においては、特に、酸化物半導体の層であるチャネル44を形成する際に、本願発明者らがこれまでに創出した、例えば、国際公開公報WO/2015/019771号に開示される金属酸化物の製造方法に係る発明を、好適な例として採用することができる。
 代表的なチャネル44の形成方法は、酸化されたときに酸化物半導体となる金属の化合物を脂肪族ポリカーボネートからなるバインダーを含む溶液中に分散させた酸化物半導体の前駆体を、基板上又はその上方に層状に形成する前駆体層の形成工程と、該前駆体層を、該バインダーを90wt%以上分解させる第1温度によって加熱した後、その第1温度よりも高く、かつ該金属と酸素とが結合する温度であって、前述の前駆体又は前述の金属の化合物の示差熱分析法(DTA)における発熱ピーク値である第2温度以上の温度によって該前駆体層を焼成する焼成工程と、を含む。
<TG-DTA(熱重量測定及び示差熱)特性>
 より具体的に説明すると、図11は、第1の実施形態の薄膜トランジスタのチャネルを形成するための酸化物半導体の前駆体の構成材の一例である、インジウム含有溶液(In溶液)のTG-DTA特性の一例を示すグラフである。また、図12Aは、薄膜トランジスタの構成要素(例えば、チャネル)を形成するためのバインダーのみを溶質とする溶液の一例であるポリプロピレンカーボネート溶液のTG-DTA特性の一例を示すグラフである。なお、図11及び図12Aに示す各TG-DTA特性は、大気雰囲気中、温度上昇3℃/minで測定された。また、図11及び図12Aに示すように、図11の破線及び図12Aにおける太線は、熱重量(TG)測定結果であり、図11の実線及び図12Aにおける細線は示差熱(DTA)測定結果である。
 図11における熱重量測定の結果から、120℃~130℃付近には、溶媒の蒸発と考えられる、重量の顕著な減少が見られた。また、図11に示すように、In溶液の示差熱測定のグラフにおける発熱ピークが350℃付近に確認された。従って、350℃付近でインジウムが酸素と結合している状態であることが確認される。従って、この350℃が、上述の第2温度に対応する。
 一方、図12Aにおける熱重量測定の結果から、120℃付近から170℃付近にかけて、ポリプロピレンカーボネート溶液の溶媒の消失とともに、バインダーであるポリプロピレンカーボネート自身の一部の分解ないし消失による重量の顕著な減少が見られた。なお、この分解により、ポリプロピレンカーボネートは、二酸化炭素と水に変化していると考えられる。また、図12Aに示す結果から、255℃付近において、該バインダーが90wt%以上分解され、除去されていることが確認された。従って、この255℃が、第1の実施形態における第1温度に対応する。なお、さらに詳しく見ると、260℃付近において、該バインダーが95wt%以上分解され、270℃付近において、該バインダーがほぼ全て(99wt%以上)分解されていることが分かる。
 なお、酸化物半導体を構成する上述の金属と酸素とが結合する温度であって、示差熱測定法(DTA)における発熱ピーク値である温度(第2温度)が、バインダーを分解させる温度に比べて十分に高いこと、あるいは、その発熱ピーク値である温度(第2温度)よりもバインダーを分解させる温度が十分に低いことが好ましい。そのような場合は、より確度高くバインダーを90wt%以上(より好ましくは95wt%以上であり、さらに好ましくは99wt%以上、最も好ましくは、99.9wt%以上)分解できる。なお、本願発明者らの研究と分析によれば、第1温度と第2温度との差が10℃以上、より好ましくは50℃以上、さらに好ましくは100℃以上であることによって、酸化物層中の炭素不純物に代表される不純物の残存が抑えられることになる。
 また、酸化物半導体の相状態は、特に限定されない。例えば、結晶状又は多結晶状、あるいはアモルファス状のいずれであってもよい。また、結晶成長の結果として、樹枝状又は鱗片状の結晶の場合も、本実施形態において採用し得る一つの相状態である。加えて、パターニングされた形状(例えば、球状、楕円状、矩形状)にも特定されないことは言うまでもない。
 なお、参考までに、インジウム含有溶液とポリプロピレンカーボネート溶液とを混合した試料(酸化物半導体の前駆体)に関するTG-DTA特性の一例を、図12B及び図12Cに示す。なお、図12Cは、図12Bの試料に対して当初(すなわち、該特性測定前)の段階から溶媒成分の量を低減させておくことによって、該特性測定時において検出される幾つかのピークをより先鋭化させるために作製されたものである。
 図12B及び図12Cに示すように、(A)及び(B)に示されるピークが観察される。ここで、本願発明者らの研究と分析によれば、255℃~270℃付近におけるピーク(A)は、ポリプロピレンカーボネートの一部が二酸化炭素(CO)となって脱離するとともに、ポリプロピレンカーボネート内、あるいはポリプロピレンカーボネートが分解した状態の物質内に残存する炭素成分が、燃焼反応を生じさせているために生じているピークであると考えられる。従って、このピーク(A)は、図12Aに示す255℃~270℃付近における発熱ピークと一致する。一方、350℃付近に観察されるピーク(B)は、インジウムが酸素と結合している状態であると考えられる。
 従って、酸化物半導体の前駆体のTG-DTA特性においては、インジウム含有溶液のTG-DTA特性と、ポリプロピレンカーボネート溶液のTG-DTA特性とが、それぞれ別々の特性として共存し得ることが分かる。従って、酸化物半導体の前駆体を準備しなくても、実質的に、第1温度及び/又は第2温度を知ることが可能となる。
(チャネル用前駆体層の焼成工程)
 次に、具体的なチャネル44の形成方法について説明する。なお、このチャネル44の形成方法の一部又はほぼ全部は、上述の酸化物導電体又は酸化物絶縁体の製造にも適用し得る。
 既に述べたとおり、本実施形態では、図9に示すように、ゲート絶縁体34上に低エネルギー製造プロセス(例えば、印刷法又はスピンコート法)を用いてチャネル用前駆体溶液を塗布することにより、チャネル用前駆体層42が形成される。なお、酸化物半導体の前駆体層であるチャネル用前駆体層42の厚さ(wet)は特に限定されない。
 その後、予備焼成(「第1予備焼成」ともいう)工程として、所定時間(例えば、3分間)、例えば150℃で加熱することにより、厚みが約600nmのチャネル用前駆体層42を形成する。この第1予備焼成工程は、主にゲート絶縁体34上のチャネル用前駆体層42の定着を目的とするものであるため、後述する第2予備焼成工程を行う場合は、第1予備焼成工程を省略することもできる。
 本実施形態では、その後、チャネル用前駆体層42中のバインダーを分解させるために、所定の温度(第1温度)により第2予備焼成工程(乾燥工程)が行われる。本実施形態の第2予備焼成工程では、バインダーを90wt%以上分解させる第1温度によって加熱する。この第2予備焼成工程と、後述する本焼成(焼成工程)とが相俟って、最終的にチャネル用前駆体層42中の、特にバインダーに起因する炭素不純物に代表される不純物をほぼ消失させることができる。なお、チャネル44中の特にバインダーに起因する炭素不純物に代表される不純物の残存をより確度高く抑える観点から言えば、第1温度は、上述のバインダーを95wt%以上分解させる温度であることが好ましく、そのバインダーを99wt%以上分解させる温度であることはさらに好ましい。
 ここで、第2予備焼成工程は、常温常圧乾燥に限られない。例えば、加熱乾燥、減圧乾燥、減圧加熱乾燥など、基板やゲート絶縁体などに悪影響を与えない限り、加熱や減圧などの処理を行ってもよい。なお、第2予備焼成工程は、酸化物半導体層の表面粗さの増減に影響を与え得る工程であるが、溶媒によって乾燥中の挙動が異なるため、溶媒の種類によって、適宜、第2予備焼成工程の温度(第1温度)等の条件が選定される。
 一例としての本実施形態の第2予備焼成工程は、チャネル用前駆体層42を所定時間(例えば、30分間)、例えば180℃以上300℃以下の範囲で加熱する。なお、上述の予備焼成は、例えば、酸素雰囲気中又は大気中(以下、総称して、「酸素含有雰囲気」ともいう。)において行われる。なお、窒素雰囲気中で第2予備焼成工程が行われることも採用し得る一態様である。
 その後、本焼成、すなわち「焼成工程」として、チャネル用前駆体層42を、例えば、酸素含有雰囲気において、所定時間、200℃以上、より好適には300℃以上、加えて、電気的特性において更に好適には500℃以上の範囲で加熱する。その結果、図10に示すように、ゲート絶縁体34上に、酸化物半導体層であるチャネル44が形成される。なお、本焼成後の酸化物半導体層の最終的な厚さは、代表的には0.01μm以上10μm以下である。特に、0.01μm程度(つまり、10nm程度)の極めて薄い層が形成された場合であっても、クラックが生じにくいことは、特筆に値する。
 ここで、この焼成工程における設定温度は、酸化物半導体の形成過程において酸化物半導体の配位子を分解した上でその金属と酸素とが結合する温度であるとともに、後述する示差熱測定法(DTA)における発熱ピーク値の温度以上の温度(第2温度)が選定される。この焼成工程により、チャネル用前駆体層42中のバインダー、分散剤、及び有機溶媒が、確度高く分解及び/又は除去されることになる。なお、第2温度が第1温度に対して10℃以上高いことは、より確度高く、本焼成後の酸化物半導体層中の炭素不純物に代表される不純物の残存を抑える観点から好適な一態様である。加えて、第2温度が第1温度に対して50℃以上高いことにより、さらに確度高くそのような不純物の残存を抑えることが可能となる。そして、最終的な酸化物半導体層の厚みの制御性及び/又は薄層化の実現、及び不純物の残存の低減の観点から言えば、第2温度が第1温度に対して100℃以上高いことは最も好適な例である。他方、第2温度と第1温度との最大差については特に限定されない。
 本願出願人らの分析によれば、上述の第1温度での加熱によってバインダーがほぼ分解することにより、その後の第2温度での焼成工程(本焼成)においては、そのバインダーの分解過程はほぼ生じなくなるとともに、金属と酸素との結合にほぼ特化した反応が行われると考えられる。すなわち、理想的には、第1温度と第2温度の役割を異ならせることが、上述のとおり、非常に薄い層であっても、クラックの生成を生じにくくさせていると考えられる。
 なお、上述の第1予備焼成工程、第2予備焼成工程、及び本焼成(焼成工程)のいずれにおいても、加熱方法は特に限定されない。例えば、恒温槽や電気炉などを用いる従来の加熱方法でもよいが、特に、基板が熱に弱い場合には、基板に熱が伝わらないように紫外線加熱、電磁波加熱やランプ加熱によって酸化物半導体層のみを加熱する方法を用いることが好ましい。
 チャネル44の形成過程において、脂肪族ポリカーボネートは、焼成分解後において酸化物半導体層中に残存する分解生成物を低減、又は消失させることができるだけでなく、緻密な酸化物半導体層の形成に寄与することができる。従って、脂肪族ポリカーボネートを採用することは本実施形態の好適な一態様である。
 なお、本実施形態においては、酸化されたときに酸化物半導体となる金属の化合物とバインダーとの重量比を変動させること、あるいは、バインダー又は金属の化合物の濃度を変えることにより、最終的なチャネル44の厚みを制御することが可能であることも、本願発明者らの研究によって確認された。例えば、非常に薄い層といえる、10nm~50nmの厚みのチャネル44がクラックを発生させることなく形成され得ることが分かった。なお、前述の薄い層のみならず、50nm以上の厚みの層についても、チャネル用前駆体層42の厚みや、前述の重量比などを適宜調整することにより、比較的容易に形成することができる。なお、一般的には、チャネルに用いられる層の厚みは0.01μm(つまり10nm)以上1μm以下であることから、最終的なチャネル44の厚みを制御することが可能な本実施形態の酸化物半導体の前駆体、並びに酸化物半導体層は、薄膜トランジスタを構成する材料として適しているといえる。
 加えて、本実施形態の酸化物半導体の前駆体を採用すれば、当初はかなり厚膜(例えば、10μm以上)の酸化物半導体の前駆体層を形成したとしても、その後の焼成工程によってバインダー等が高い確度で分解されることになるため、焼成後の層の厚みは、極めて薄く(例えば、10nm~100nm)なり得る。さらに、そのような薄い層であっても、クラックの発生が無い、又は確度高く抑制されることになる点は、特筆に値する。従って、当初の厚みを十分に確保できる上、最終的に極めて薄い層を形成することも可能な本実施形態の酸化物半導体の前駆体、並びに酸化物半導体層は、低エネルギー製造プロセスや後述する型押し加工によるプロセスにとって極めて適していることが知見された。また、そのような極めて薄い層であってもクラックの発生が無い、又は確度高く抑制される酸化物半導体層の採用は、本実施形態の薄膜トランジスタ100の安定性を極めて高めることになる。
 さらに、本実施形態においては、上述の酸化物半導体の種類や組み合わせ、バインダーと混合させる比率を適宜調節することにより、チャネルを形成する酸化物半導体層の電気的特性や安定性の向上を図ることができる。
(4)ソース電極及びドレイン電極の形成
 さらにその後、図13に示すように、チャネル44上に、公知のフォトリソグラフィー法によってパターニングされたレジスト膜90が形成された後、チャネル44及びレジスト膜90上に、公知のスパッタリング法により、ITO層50を形成する。本実施形態のターゲット材は、例えば、5wt%酸化錫(SnO)を含有するITOであり、室温~100℃の条件下において形成される。その後、レジスト膜90が除去されると、図14に示すように、チャネル44上に、ITO層50によるドレイン電極56及びソース電極58が形成される。
 その後、図15に示すように、ドレイン電極56、ソース電極58、及びチャネル44上に、公知のフォトリソグラフィー法によってパターニングされたレジスト膜90が形成された後、レジスト膜90、ドレイン電極56の一部、及びソース電極58の一部をマスクとして、公知のアルゴン(Ar)プラズマによるドライエッチング法を用いて、露出しているチャネル44を除去する。その結果、図16に示すように、パターニングされたチャネル44が形成されることにより、薄膜トランジスタ100が製造される。
 なお、本実施形態においては、上述のドレイン電極56及びソース電極58の代わりに、例えば、印刷法により、ペースト状の銀(Ag)又はペースト状のITO(酸化インジウムスズ)を用いてドレイン電極及びソース電極のパターンを形成する方法は、採用し得る一態様である。また、ドレイン電極56及びソース電極58の代わりに、公知の蒸着法によって形成された金(Au)又はアルミニウム(Al)のドレイン電極及びソース電極のパターンが採用されてもよい。
<第2の実施形態の変形例(1)>
 本実施形態の薄膜トランジスタは、第2の実施形態におけるチャネルの焼成工程(本焼成)後に、さらに紫外線を照射する照射工程が行われている点を除き、第2の実施形態の薄膜トランジスタ100の製造工程及び構成と同様である。従って、第2の実施形態と重複する説明は省略する。
 本実施形態では、第2の実施形態におけるチャネルの焼成工程(本焼成)後に、公知の低圧水銀ランプ(株式会社SAMCO製UVオゾンクリーナー、型式:UV-300h-E)を用いて、波長185nmと254nmにスペクトルのピークを持つ紫外線が照射された。その後、第2の実施形態の薄膜トランジスタ100の製造方法と同様の工程が行われた。なお、本実施形態においては、紫外線の波長は特に限定されるものではない。185nm又は254nm以外の紫外線であっても同様の効果が奏され得る。
<第2の実施形態の変形例(2)>
 また、第2の実施形態においては、図15に示すように公知のフォトリソグラフィー法及びドライエッチングによりパターニングされたチャネル44が形成されている。しかしながら、例えばスクリーン印刷法に代表される印刷法が採用される場合は、公知のフォトリソグラフィー法及びドライエッチングを用いることなく、図17に示すように、チャネル用前駆体層42の所望のパターンが形成され得る。従って、印刷法が採用されることは、図15に示すパターンの形成工程が不要となるため、好適な一態様である。なお、図17以降の各工程は、図15に示す公知のフォトリソグラフィー法及びドライエッチングに基づく工程を除き、第2の実施形態の各工程に準じて行われる。同様に、薄膜トランジスタ100におけるチャネル以外の各層(ゲート電極24、ゲート絶縁体34等)においても、例えばスクリーン印刷法に代表される印刷法が採用される場合は、公知のフォトリソグラフィー法及びドライエッチングを用いることなくパターンの形成が可能である。
<その他の実施形態>
 ところで、上述の各実施形態においては、いわゆる逆スタガ型の構造を有する薄膜トランジスタが説明されているが、上述の各実施形態はその構造に限定されない。例えば、スタガ型の構造を有する薄膜トランジスタのみならず、ソース電極、ドレイン電極、及びチャネルが同一平面上に配置される、いわゆるプレーナ型の構造を有する薄膜トランジスタであっても、上述の各実施形態の効果と同様の効果が奏され得る。さらに、上述の各実施形態のチャネル(すなわち、酸化物半導体層)が基板上に形成されることも採用し得る他の一態様である。
 以上述べたとおり、上述の各実施形態及び実験例の開示は、それらの実施形態及び実験例の説明のために記載したものであって、本発明を限定するために記載したものではない。加えて、各実施形態の他の組み合わせを含む本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
 本発明は、各種の半導体素子を含む携帯端末、情報家電、センサー、その他の公知の電化製品、MEMS(Micro Electro Mechanical Systems)又はNEMS(Nano Electro Mechanical Systems)、及び医療機器等を含む電子デバイス分野等に広く適用され得る。
 10    基板
 24    ゲート電極
 32    ゲート絶縁体用前駆体層
 34    ゲート絶縁体
 42    チャネル用前駆体層
 44    チャネル
 50    ITO層
 56    ドレイン電極
 58    ソース電極
 90    レジスト膜
 100   薄膜トランジスタ

Claims (14)

  1.  分子量が6千以上40万以下の脂肪族ポリカーボネートの比率が該脂肪族ポリカーボネート全体の80質量%以上である、前記脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む溶液中に、酸化されたときに金属酸化物となる金属の化合物を分散させた、
     酸化物の前駆体。
  2.  ティー・エイ・インスツルメント社製レオメーター(AR-2000EX)を用いて測定したゼロせん断粘度ηの脂肪族ポリカーボネートの溜まり中に、ポリテトラフルオロエチレン(polytetrafluoroethylene)製の直径がDである円柱棒を沈めた後に、前記円柱棒を速度vで引き上げたときの、前記脂肪族ポリカーボネートの溜まりの最表面からの曳糸長Lが測定された場合に、L/(D×v×η)の値が0.25mm-1Pa-1以上である前記脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む溶液中に、酸化されたときに金属酸化物となる金属の化合物を分散させた、
     酸化物の前駆体。
  3.  前記溶液が基材上に配置されてから30秒後に、前記溶液の基材に対する接触角が、30°以上36°以下であるか、あるいは、前記溶液が基材上に配置されてから120秒後に、前記溶液の基材に対する接触角が、26°以上32°以下である、
     請求項1又は請求項2に記載の酸化物の前駆体。
  4.  前記溶液は、ティー・エイ・インスツルメント社製レオメーター(AR-2000EX)を用いて測定したゼロせん断粘度ηの脂肪族ポリカーボネートの溜まり中に、ポリテトラフルオロエチレン(polytetrafluoroethylene)製の直径がDである円柱棒を沈めた後に、前記円柱棒を速度vで引き上げたときの、前記脂肪族ポリカーボネートの溜まりの最表面からの曳糸長Lが測定された場合に、
     L/(D×v×η)の値が0.25mm-1Pa-1以上である前記脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む、
     請求項1乃至請求項3のいずれか1項に記載の酸化物の前駆体。
  5.  前記脂肪族ポリカーボネートが、エポキシドと二酸化炭素とを重合させた脂肪族ポリカーボネートである、
     請求項1乃至請求項4のいずれか1項に記載の酸化物の前駆体。
  6.  前記脂肪族ポリカーボネートが、ポリエチレンカーボネート及びポリプロピレンカーボネートからなる群より選ばれる少なくとも1種である、
     請求項1乃至請求項5のいずれか1項に記載の酸化物の前駆体。
  7.  分子量が6千以上40万以下の脂肪族ポリカーボネートの比率が該脂肪族ポリカーボネート全体の80質量%以上である、前記脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む溶液中に、酸化されたときに金属酸化物となる金属の化合物を分散させた酸化物の前駆体の層を焼成することにより形成される、
     酸化物層。
  8.  ティー・エイ・インスツルメント社製レオメーター(AR-2000EX)を用いて測定したゼロせん断粘度ηの脂肪族ポリカーボネートの溜まり中に、ポリテトラフルオロエチレン(polytetrafluoroethylene)製の直径がDである円柱棒を沈めた後に、前記円柱棒を速度vで引き上げたときの、前記脂肪族ポリカーボネートの溜まりの最表面からの曳糸長Lが測定された場合に、L/(D×v×η)の値が0.25mm-1Pa-1以上である前記脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む溶液中に、
     酸化されたときに金属酸化物となる金属の化合物を分散させた、酸化物の前駆体の層を焼成することにより形成される、
     酸化物層。
  9.  前記溶液が基材上に配置されてから30秒後に、前記溶液の基材に対する接触角が、30°以上36°以下であるか、あるいは、前記溶液が基材上に配置されてから120秒後に、前記溶液の基材に対する接触角が、26°以上32°以下である、
     請求項7又は請求項8に記載の酸化物層。
  10.  請求項7乃至請求項9のいずれか1項に記載の酸化物層を備えた、
     半導体素子。
  11.  請求項9に記載の酸化物層、又は請求項10に記載の半導体素子を備えた、
     電子デバイス。
  12.  分子量が6千以上40万以下の脂肪族ポリカーボネートの比率が該脂肪族ポリカーボネート全体の80質量%以上である、前記脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む溶液中に、酸化されたときに金属酸化物となる金属の化合物を分散させた酸化物の前駆体の層を、印刷法によって形成する前駆体層形成工程と、
     前記前駆体の層を焼成する焼成工程と、を含む、
     酸化物層の製造方法。
  13.  ティー・エイ・インスツルメント社製レオメーター(AR-2000EX)を用いて測定したゼロせん断粘度ηの脂肪族ポリカーボネートの溜まり中に、ポリテトラフルオロエチレン(polytetrafluoroethylene)製の直径がDである円柱棒を沈めた後に、前記円柱棒を速度vで引き上げたときの、前記脂肪族ポリカーボネートの溜まりの最表面からの曳糸長Lが測定された場合に、
     L/(D×v×η)の値が0.25mm-1Pa-1以上である前記脂肪族ポリカーボネートからなるバインダー(不可避不純物を含み得る)を含む溶液中に、
     酸化されたときに金属酸化物となる金属の化合物を分散させた酸化物の前駆体の層を、印刷法によって形成する前駆体層形成工程と、
     前記前駆体の層を焼成する焼成工程と、を含む、
     酸化物層の製造方法。
  14.  請求項12又は請求項13に記載の前記前駆体層形成工程と、
     請求項12又は請求項13に記載の前記焼成工程と、を含む、
     半導体素子の製造方法。
PCT/JP2015/078158 2014-12-16 2015-10-05 酸化物の前駆体、酸化物層、半導体素子、及び電子デバイス、並びに酸化物層の製造方法及び半導体素子の製造方法 WO2016098423A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177011097A KR102460301B1 (ko) 2014-12-16 2015-10-05 산화물의 전구체, 산화물층, 반도체 소자, 및 전자 디바이스, 그리고 산화물층의 제조방법 및 반도체 소자의 제조방법
JP2015552674A JP6481865B2 (ja) 2014-12-16 2015-10-05 酸化物の前駆体、酸化物層、半導体素子、及び電子デバイス、並びに酸化物層の製造方法及び半導体素子の製造方法
US15/532,769 US10400336B2 (en) 2014-12-16 2015-10-05 Oxide precursor, oxide layer, semiconductor element, and electronic device, and method of producing oxide layer and method of producing semiconductor element
EP15869631.0A EP3236488A4 (en) 2014-12-16 2015-10-05 Oxide precursor, oxide layer, semiconductor element, electronic device, method for producing oxide layer, and method for producing semiconductor element
CN201580062190.2A CN107004606B (zh) 2014-12-16 2015-10-05 氧化物的前驱体、氧化物层、半导体元件以及电子装置
TW104135998A TWI670324B (zh) 2014-12-16 2015-11-02 氧化物的前驅物、氧化物層、半導體元件、及電子裝置和氧化物層的製造方法及半導體元件的製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014253552 2014-12-16
JP2014-253552 2014-12-16

Publications (1)

Publication Number Publication Date
WO2016098423A1 true WO2016098423A1 (ja) 2016-06-23

Family

ID=56126325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078158 WO2016098423A1 (ja) 2014-12-16 2015-10-05 酸化物の前駆体、酸化物層、半導体素子、及び電子デバイス、並びに酸化物層の製造方法及び半導体素子の製造方法

Country Status (7)

Country Link
US (1) US10400336B2 (ja)
EP (1) EP3236488A4 (ja)
JP (1) JP6481865B2 (ja)
KR (1) KR102460301B1 (ja)
CN (1) CN107004606B (ja)
TW (1) TWI670324B (ja)
WO (1) WO2016098423A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190094101A (ko) 2018-02-02 2019-08-12 스미토모 세이카 가부시키가이샤 지방족 폴리카보네이트 함유 용액 및 그 제조방법, 및 지방족 폴리카보네이트 함유층 및 그 제조방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180096853A1 (en) * 2015-04-16 2018-04-05 Japan Advanced Institute Of Science And Technology Method of producing etching mask, etching mask precursor, and oxide layer, and method of manufacturing thin film transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010549A (ja) * 2008-06-30 2010-01-14 Konica Minolta Holdings Inc 薄膜トランジスタの製造方法及び薄膜トランジスタ
JP2011119681A (ja) * 2009-10-27 2011-06-16 Dainippon Printing Co Ltd 遷移金属化合物含有ナノ粒子及びその製造方法、正孔注入輸送層用インク、並びに正孔注入輸送層を有するデバイス及びその製造方法
JP2012169404A (ja) * 2011-02-14 2012-09-06 Toppan Printing Co Ltd 薄膜トランジスタの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365118B2 (en) * 2003-07-08 2008-04-29 Los Alamos National Security, Llc Polymer-assisted deposition of films
GB0416859D0 (en) * 2004-07-29 2004-09-01 Oxonia Ltd Improved deposition process
KR101146667B1 (ko) 2005-11-07 2012-05-24 삼성에스디아이 주식회사 금속산화물 페이스트 조성물 및 그를 이용한 반도체 전극의제조방법
JP2007134547A (ja) 2005-11-11 2007-05-31 Toppan Printing Co Ltd トランジスタおよびその製造方法
GB2433646A (en) 2005-12-14 2007-06-27 Seiko Epson Corp Printing ferroelectric devices
JP2007201056A (ja) 2006-01-25 2007-08-09 Toppan Printing Co Ltd 薄膜トランジスタ及びその製造方法
JP5700259B2 (ja) * 2010-02-17 2015-04-15 住友金属鉱山株式会社 透明導電膜の製造方法及び透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイス
JP2012193073A (ja) 2011-03-16 2012-10-11 Sumitomo Chemical Co Ltd 酸化物成形体、酸化物焼結体、および透明導電膜形成材料
JP6089921B2 (ja) 2012-05-15 2017-03-08 旭硝子株式会社 ガラスペースト
KR102147816B1 (ko) 2013-08-09 2020-08-25 고쿠리츠다이가쿠호진 호쿠리쿠 센단 가가쿠 기쥬츠 다이가쿠인 다이가쿠 산화물 반도체층 및 그 제조방법, 그리고 산화물 반도체의 전구체, 산화물 반도체층, 반도체 소자, 및 전자 디바이스

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010549A (ja) * 2008-06-30 2010-01-14 Konica Minolta Holdings Inc 薄膜トランジスタの製造方法及び薄膜トランジスタ
JP2011119681A (ja) * 2009-10-27 2011-06-16 Dainippon Printing Co Ltd 遷移金属化合物含有ナノ粒子及びその製造方法、正孔注入輸送層用インク、並びに正孔注入輸送層を有するデバイス及びその製造方法
JP2012169404A (ja) * 2011-02-14 2012-09-06 Toppan Printing Co Ltd 薄膜トランジスタの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3236488A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190094101A (ko) 2018-02-02 2019-08-12 스미토모 세이카 가부시키가이샤 지방족 폴리카보네이트 함유 용액 및 그 제조방법, 및 지방족 폴리카보네이트 함유층 및 그 제조방법

Also Published As

Publication number Publication date
KR102460301B1 (ko) 2022-10-27
EP3236488A1 (en) 2017-10-25
CN107004606A (zh) 2017-08-01
TWI670324B (zh) 2019-09-01
JP6481865B2 (ja) 2019-03-13
US20170335461A1 (en) 2017-11-23
TW201623438A (zh) 2016-07-01
JPWO2016098423A1 (ja) 2017-09-21
US10400336B2 (en) 2019-09-03
KR20170095808A (ko) 2017-08-23
EP3236488A4 (en) 2018-04-25
CN107004606B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
JP5749411B1 (ja) 酸化物半導体層及びその製造方法、並びに酸化物半導体の前駆体、酸化物半導体層、半導体素子、及び電子デバイス
WO2017158930A1 (ja) 積層体、エッチングマスク、積層体の製造方法、及びエッチングマスクの製造方法、並びに薄膜トランジスタの製造方法
US11133191B2 (en) Method of producing etching mask, etching mask precursor, and oxide layer, and method of manufacturing thin film transistor
US10749034B2 (en) Semiconductor device, method for producing same and aliphatic polycarbonate
JP6481865B2 (ja) 酸化物の前駆体、酸化物層、半導体素子、及び電子デバイス、並びに酸化物層の製造方法及び半導体素子の製造方法
JP6441060B2 (ja) 酸化物層及びその製造方法、並びに半導体素子及びその製造方法、並びに電子デバイス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015552674

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177011097

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015869631

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE