WO2016098368A1 - 光起電力装置の製造方法 - Google Patents

光起電力装置の製造方法 Download PDF

Info

Publication number
WO2016098368A1
WO2016098368A1 PCT/JP2015/063432 JP2015063432W WO2016098368A1 WO 2016098368 A1 WO2016098368 A1 WO 2016098368A1 JP 2015063432 W JP2015063432 W JP 2015063432W WO 2016098368 A1 WO2016098368 A1 WO 2016098368A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicate glass
silicon substrate
diffusion layer
main surface
photovoltaic device
Prior art date
Application number
PCT/JP2015/063432
Other languages
English (en)
French (fr)
Inventor
剛彦 佐藤
邦彦 西村
慎也 西村
達郎 綿引
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580066670.6A priority Critical patent/CN107155378B/zh
Priority to US15/522,458 priority patent/US20170330990A1/en
Priority to JP2016564695A priority patent/JP6257803B2/ja
Priority to TW104121455A priority patent/TWI578560B/zh
Publication of WO2016098368A1 publication Critical patent/WO2016098368A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a photovoltaic device such as a crystalline silicon solar cell, and more particularly to a method for manufacturing a photovoltaic device in which an impurity diffusion layer is formed using solid phase diffusion.
  • solar cells crystalline silicon solar cells
  • the solar cell a diffusion type solar cell in which an impurity semiconductor layer is formed by diffusing impurities on the light receiving surface side, and a heterojunction type solar cell in which an impurity semiconductor layer is formed by a thin film such as amorphous silicon
  • a back junction solar cell in which impurity semiconductor layers having the same conductivity type as the substrate and impurity semiconductor devices having a conductivity type different from that of the substrate are alternately arranged on the back side of the substrate in a comb shape.
  • the diffusion type solar cells occupy most of the currently manufactured solar cells because the manufacturing process is easy.
  • a diffusion type solar cell is formed by forming a texture, a diffusion layer, and an antireflection film for suppressing light reflection on a crystalline silicon substrate (hereinafter simply referred to as a silicon substrate) having a thickness of about 200 ⁇ m.
  • a current collecting electrode such as a grid electrode and a bus electrode is formed on the non-light-receiving surface on the back surface by screen printing, and then fired at about 800 ° C.
  • a conventional diffusion type solar cell using a p-type silicon substrate is formed by forming an Al electrode on the entire back surface of the silicon substrate by screen printing, and diffusing Al contained in the Al electrode into the silicon substrate. Although the (back surface electric field layer) is formed, since the diffusion layer formed by screen printing has a large recombination, the characteristics of the diffusion type solar cell cannot be greatly improved.
  • solar cells employing a structure in which a passivation film is formed on the back surface of a silicon substrate and electrodes are locally formed in the same manner as the light receiving surface have been manufactured as more efficient solar cells.
  • This structure is used not only in a diffusion type solar cell using a p-type silicon substrate but also in a diffusion type solar cell using an n-type silicon substrate.
  • the above structure has a structure in which a diffusion layer having a conductivity type different from that of the light receiving surface is formed on the entire back surface of the silicon substrate, and a diffusion layer is formed only on the electrode portion, and no diffusion layer is formed on the other portions.
  • the substrate is directly terminated with a passivation film.
  • a method of locally forming an electrode and a diffusion layer by screen printing using Al is often used as in the past without forming a diffusion layer on the entire back surface.
  • an n-type diffusion layer cannot be formed when an electrode is formed by screen printing. Therefore, n-type impurities such as phosphorus are often diffused over the entire back surface. Therefore, a diffusion type solar cell using an n-type silicon substrate requires a process (manufacturing process) for forming different diffusion layers on the front surface and the back surface.
  • the diffusion layer is formed by various methods. For example, by performing heat treatment in a gas atmosphere such as BBr3 as a p-type impurity and POCl3 as an n-type impurity, a BSG (boron silicate glass) film is formed on one surface of the silicon substrate, and PSG is formed on the other surface. There is a method of forming a (phosphosilicate glass) film and thermally diffusing boron or phosphorus from each of the BSG film and the PSG film to the silicon substrate.
  • a gas atmosphere such as BBr3 as a p-type impurity and POCl3 as an n-type impurity
  • BSG is formed on one surface of the silicon substrate by plasma CVD (Chemical Vapor Deposition), low pressure CVD, atmospheric pressure CVD, or the like using a gas containing boron or phosphorus, such as SiH4 and B2H6, or SiH4 and PH3, as a source gas.
  • a gas containing boron or phosphorus such as SiH4 and B2H6, or SiH4 and PH3, as a source gas.
  • boron or phosphorus such as SiH4 and B2H6, or SiH4 and PH3
  • an ionized gas such as B + or P +, implanting (implanting) it into a substrate, and performing a heat treatment to activate the implanted ions to form a diffusion layer.
  • the method for forming a diffusion layer in a gas atmosphere can perform diffusion and heat treatment using a single diffusion furnace. Can be formed. However, since p-type impurities and n-type impurities are diffused on both surfaces of the silicon substrate, a p-type diffusion layer is formed on one surface of the silicon substrate and an n-type diffusion layer is formed on the other surface. In order to do so, a mask is required.
  • each of BSG and PSG can be formed on one side of a silicon substrate, and thick silicon oxide is laminated on each of BSG and PSG.
  • evaporation of boron and phosphorus from the BSG and PSG to the gas phase can be suppressed. Therefore, impurities can be effectively diffused into the silicon substrate.
  • the method of forming BSG and PSG on each of the light receiving surface (front surface) and the back surface can be arbitrarily selected, for example, the boron layer (BSG) side is formed by CVD, and the back surface (PSG) side is formed in a gas phase.
  • a process of forming by diffusion is also conceivable.
  • BSG is formed on one surface of a silicon substrate by PECVD, a SiO2 film serving as a mask is formed on the BSG, and then heat treatment is performed in a source gas atmosphere containing phosphorus, whereby one surface is formed.
  • a method of forming BSG and PSG on the other surface in a lump see, for example, Patent Document 1).
  • Patent Document 1 discloses a process in which BSG and PSG are simultaneously formed by performing heat treatment in a source gas atmosphere after forming BSG by PECVD. Although this process is effective for simplifying the process, the CVD film formed on the surface of the texture has a texture valley such that the film in the texture valley becomes thin due to stress during subsequent heat treatment. There is a difference in film thickness between the ridges and the peaks, or pinholes that allow the source gas to pass through are formed in the SiO2 film formed by CVD. Therefore, in the subsequent thermal diffusion treatment of phosphorus, phosphorus diffuses on the BSG via the thin film portion and the pinhole, and a reverse junction is formed by the presence of n + in the p + region. There is a problem that a reduction or current leakage occurs.
  • the present invention has been made to solve such a problem, and provides a method for manufacturing a photovoltaic device capable of suppressing a decrease in open-circuit voltage and fill factor, or occurrence of current leakage. With the goal.
  • a method of manufacturing a photovoltaic device includes (a) a step of forming a pyramidal texture on a first main surface of a silicon substrate, and (b) a first main device. Forming a first silicate glass containing impurities of the first conductivity type on the surface; (c) forming a second silicate glass containing no conductivity type impurities on the first silicate glass; (D) diffusing a first conductivity type impurity contained in the first silicate glass into the first main surface of the silicon substrate; and (e) a first conductivity type impurity on the second silicate glass. (F) After the step (e), a second conductivity type impurity is added to the second main surface opposite to the first main surface of the silicon substrate. And a step of diffusing.
  • a method of manufacturing a photovoltaic device includes (a) a step of forming a pyramidal texture on a first main surface of a silicon substrate, and (b) a first conductive surface on the first main surface.
  • a step of forming a first silicate glass containing impurities of a type includes (c) a step of forming a second silicate glass containing no conductive impurities on the first silicate glass; and (d) a first silicate.
  • a step of diffusing impurities of the second conductivity type on the second main surface opposite to the first main surface of the silicon substrate includes (a) a step of forming a pyramidal texture on a first main surface of a silicon substrate, and (b) a first conductive surface on the first main surface.
  • FIG. 1 It is a figure which shows an example of the manufacturing process of the photovoltaic apparatus by Embodiment 1 of this invention. It is a figure which shows an example of the manufacturing process of the photovoltaic apparatus by Embodiment 1 of this invention. It is a figure which shows an example of the manufacturing process of the photovoltaic apparatus by Embodiment 1 of this invention. It is a figure which shows an example of the manufacturing process of the photovoltaic apparatus by Embodiment 1 of this invention. 2 is a cross-sectional view of a photovoltaic device according to Comparative Example 1.
  • FIG. It is sectional drawing of the photovoltaic apparatus by Embodiment 1 of this invention. It is a flowchart which shows an example of the manufacturing method of the photovoltaic apparatus by Embodiment 2 of this invention.
  • Embodiment 1 First, the configuration of the photovoltaic device according to Embodiment 1 of the present invention will be described.
  • the photovoltaic device is described as a solar battery cell.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the photovoltaic device according to the first embodiment.
  • a texture is formed on the first main surface (the upper surface of the paper) and the second main surface (the lower surface of the paper).
  • a first diffusion layer 2 containing a p-type impurity (first conductivity type impurity) and a first passivation film 4 are laminated.
  • a first electrode 6 is formed so as to penetrate the first passivation film 4 and come into contact with the first diffusion layer 2.
  • a second diffusion layer 3 containing an n-type impurity (second conductivity type impurity) and a second passivation film 5 are laminated on the second main surface. Further, a second electrode 7 is formed so as to penetrate the second passivation film 5 and come into contact with the second diffusion layer 3.
  • FIG. 2 is a flowchart showing an example of a method for manufacturing a photovoltaic device.
  • 3 to 10 are diagrams showing an example of the manufacturing process of the photovoltaic device.
  • step S101 a texture is formed on both sides of the silicon substrate 1 as shown in FIG. Specifically, the silicon substrate 1 is immersed in an alkaline solution to remove wire saw damage during slicing. Thereafter, the silicon substrate 1 is immersed in an alkaline solution to which isopropyl alcohol is added, thereby forming pyramidal textures on both surfaces (first main surface and second main surface) of the silicon substrate 1.
  • the silicon substrate 1 is made of an n-type single crystal and has a size of 156 mm ⁇ (square with a side of 156 mm), a specific resistance of 1 ⁇ cm, and a thickness of about 200 ⁇ m.
  • the texture is formed on both surfaces of the silicon substrate 1 .
  • the texture may be formed on at least the surface on which light is incident, or may be formed on only one surface. .
  • a silicate glass 8 (first silicate glass) containing boron (first conductivity type impurity) is formed on the first main surface of the silicon substrate 1, and conductivity is increased.
  • a silicate glass 9 (second silicate glass) that does not contain impurities to be imparted is laminated by atmospheric pressure CVD.
  • the impurity imparting conductivity includes group III or group V boron, phosphorus, gallium, arsenic, and the like as long as silicon is a group IV element semiconductor.
  • the silicate glass 9 does not contain impurities, the impurity imparting conductivity contained in the silicate glass 9 is sufficiently smaller than the amount diffused from the silicate glass 8 after the heat treatment in the subsequent steps, This indicates that the amount is less than that which does not substantially affect the diffusion layer 2 or the diffusion layer 3 formed in the subsequent steps, and does not necessarily mean that it is not completely contained.
  • step S103 as shown in FIG. 5, boron is applied from the silicate glass 8 to the first main surface of the silicon substrate 1 by annealing (heat treatment) the silicon substrate 1 after step S102 in an atmosphere of about 1000 ° C.
  • the first diffusion layer 2 is formed by diffusing.
  • step S104 as shown in FIG. 6, a silicate glass 10 (third silicate glass) containing boron (first conductivity type impurities) and an impurity imparting conductivity are not contained on the silicate glass 9.
  • a silicate glass 11 (fourth silicate glass) is formed.
  • the silicate glass 11 is formed to prevent boron from evaporating from the silicate glass 10 into the atmosphere and adhering to the second main surface. However, when the amount of evaporation of boron is small depending on the conditions of the silicate glass 10 or when the characteristics of the photovoltaic device are not deteriorated due to boron adhering to the second main surface, the formation of the silicate glass 11 is omitted. May be.
  • step S105 as shown in FIG. 7, phosphorus (second conductivity type impurities) is diffused into the second main surface of the silicon substrate 1 to form the second diffusion layer 3 and the silicate glass 12.
  • POCl3 is volatilized by a bubbling method, and the silicon substrate 1 after step S104 is heated in a furnace, whereby a silicate glass 12 is formed on the second main surface, and the second main surface The second diffusion layer 3 is formed.
  • the method of forming the second diffusion layer 3 by the bubbling method is a general method of forming an n-type diffusion layer and can be formed at a low cost.
  • the silicate glass 12 is formed on both surfaces of the silicon substrate 1. Therefore, it is necessary to previously form a mask film or the like on the first main surface side where the silicate glass 12 is not formed.
  • the silicate glasses 8 to 11 function as a mask film that prevents phosphorus from diffusing into the first main surface of the silicon substrate 1.
  • step S106 the silicate glass 8, 9, 10, 11, 12 is removed as shown in FIG. Specifically, the silicate glass 8, 9, 10, 11, 12 is removed by immersing the silicon substrate 1 after step S105 in about 10% hydrofluoric acid solution.
  • step S107 as shown in FIG. 9, the first passivation film 4 is formed on the first diffusion layer 2, and the second passivation film 5 is formed on the second diffusion layer 3. Specifically, by annealing (heat treatment) the silicon substrate 1 after step S106 in an oxygen atmosphere, a first passivation film 4 by thermal oxidation is formed on the first diffusion layer 2, and by thermal oxidation. A second passivation film 5 is formed on the second diffusion layer 3.
  • a silicon nitride film (not shown) as an antireflection film is formed on each of the first passivation film 4 and the second passivation film 5 by plasma CVD.
  • step S108 printing is performed on the both surfaces of the silicon substrate 1 shown in FIG. 9 using a printing paste containing Ag as a main component, followed by baking, thereby collecting current electrodes (first electrodes) including grid electrodes and bus electrodes. 6. Form a second electrode 7). Thereby, a photovoltaic device as shown in FIG. 1 is produced.
  • FIG. 10 is a cross-sectional view of the photovoltaic device according to Comparative Example 1, showing the manufacturing process of the photovoltaic device.
  • FIG. 10 although not shown for simplicity, it is assumed that texture is formed on both surfaces of the silicon substrate 1.
  • Comparative example 1 is a diagram used to explain the effect of the first embodiment shown in FIG. 11 described later.
  • the silicate glasses 10 and 11 are not formed in the manufacturing process.
  • a defective portion 13 (a non-formed portion of the silicate glass 8 or 9, a pinhole or the like) is formed in the silicate glass 8 or 9.
  • the defective portion 13 generated in the silicate glass 9 may be generated under the influence of particles or the like when forming the silicate glasses 8 and 9, and the film stress in the heat treatment during the formation of the first diffusion layer 2. May also occur.
  • the silicate glass becomes particularly thin at the bottom of the pyramid-like texture, which leads to characteristic deterioration.
  • the impurity concentration of the impurity diffusion layer 14 that affects the characteristics of the photovoltaic device depends on the impurity content of the silicate glasses 8 and 9 and the subsequent annealing conditions.
  • the sheet resistance of the impurity diffusion layer 14 finally formed is not more than three times the sheet resistance of the first diffusion layer 2, for example, when the sheet resistance of the first diffusion layer 2 is 100 ⁇ / ⁇ , the impurity diffusion layer When the sheet resistance of 14 is 300 ⁇ / ⁇ or less, the above characteristic deterioration or current leakage occurs.
  • FIG. 11 is a cross-sectional view of the photovoltaic device according to the first embodiment, showing a manufacturing process of the photovoltaic device.
  • FIG. 11 although not shown for simplicity, it is assumed that textures are formed on both surfaces of the silicon substrate 1. Further, it is assumed that the silicate glass 11 is not formed.
  • heat treatment is performed to form the first diffusion layer 2 after the silicate glasses 8 and 9 are formed.
  • the silicate glass 10 is formed after the heat treatment. Therefore, when the second diffusion layer 3 is formed thereafter, the silicate glass 10 can prevent phosphorus (second conductivity type impurities) from entering the defect portion 13.
  • the impurity concentration increasing part 15 is formed in the 1st diffusion layer 2 and the defect part 13 by the heat processing at the time of forming the 2nd diffusion layer 3, and the characteristic fall in the defect part 13 can be suppressed.
  • the impurity concentration increasing portion 15 is formed to increase the electric field effect of the first diffusion layer 2 so that the carriers in the silicon substrate 1 approach the defect portion 13. It is possible to prevent the carrier from recombining at the portion where the state of the interface between the first diffusion layer 2 and the silicon substrate 1 is lowered.
  • the current-voltage characteristics are evaluated under AM1.5 light irradiation.
  • the open circuit voltage was higher by 2 mV and the fill factor was higher by 0.005 than Comparative Example 1.
  • the current (leakage current) that flows when a voltage of 10 V is applied in the direction opposite to the current-voltage characteristic is 1.0 A in the first comparative example, whereas it is 0.2 A in the first embodiment. There was a tendency to improve.
  • step S102 of FIG. 2 (corresponding to FIG. 4), when the silicate glasses 8 and 9 are formed on the first main surface of the silicon substrate 1, the silicate glasses 8 and 9 are formed on the second main surface of the silicon substrate 1. 9 is formed to wrap around.
  • the second embodiment of the present invention is characterized in that the silicate glasses 8 and 9 formed on the second main surface of the silicon substrate 1 are removed. Since other manufacturing methods are the same as those in the first embodiment, the description thereof is omitted here.
  • FIG. 12 is a flowchart showing an example of a method for manufacturing a photovoltaic device according to the second embodiment. Note that step S201, step S202, step S204 to step S209 in FIG. 12 correspond to step S101 to step S108 in FIG. Hereinafter, step S203 will be described.
  • step S203 the silicon substrate 1 after step S202 is immersed in 1% hydrofluoric acid, and the silicate glasses 8 and 9 formed on the second main surface of the silicon substrate 1 are removed.
  • the silicate glasses 8 and 9 formed on the second main surface of the silicon substrate 1 serve as a mask to prevent subsequent formation of the second diffusion layer 3.
  • the silicate glasses 8 and 9 cause the first impurity (boron in this case) to diffuse into the second main surface of the silicon substrate 1 by heat treatment when the second diffusion layer 3 is formed, and the characteristics are deteriorated. cause.
  • the silicate glasses 8 and 9 formed on the second main surface of the silicon substrate 1 are preferably treated (removed) with hydrofluoric acid, but the silicate glass formed on the second main surface.
  • the silicate glass 9 formed on the first main surface side is thinned to further increase the defect portion that originally existed.
  • silicate glass 10 is formed on silicate glass 9 formed on the first main surface side of silicon substrate 1 after step S203 (step S205). Therefore, the silicate glass 9 on the first main surface side whose film has been reduced in step S203 can be supplemented by the silicate glass 10.
  • the photovoltaic device manufactured without forming the silicate glasses 10 and 11 in FIG. 12 (without performing Step S205) is set as Comparative Example 2
  • the current-voltage characteristics are obtained under the light irradiation of AM1.5.
  • the photovoltaic device according to the second embodiment has a result that the open circuit voltage is 4 mV higher and the fill factor is 0.008 higher than that of Comparative Example 2.
  • the current (leakage current) that flows when a voltage of 10 V is applied in the direction opposite to the current-voltage characteristic is 2.0 A in the second comparative example, whereas it is 0.2 A in the second embodiment. There was a tendency to improve.
  • Such a leakage current is most likely to occur at the pn junction, and increases remarkably when an emitter diffusion region having a reverse conductivity type is formed in the emitter diffusion layer. Therefore, when a diffusion layer having a conductivity type different from that of the substrate is formed on the substrate surface as in the present application, if there is a possibility that a defect occurs in the mask film of this diffusion layer, a reverse junction is formed at the pn junction portion, There arises a problem that a large leakage current and characteristic deterioration occur. Compared to this, the influence of the reverse conductivity type diffusion layer was relatively small for the diffusion type of the same conductivity type as that of the substrate.
  • FIG. 13 is a flowchart showing an example of a method for manufacturing a photovoltaic device according to the third embodiment. Note that steps S301, S302, and S307 to S309 in FIG. 13 correspond to steps S201, S202, and S207 to S209 in FIG. Hereinafter, steps S303 to S306 will be described.
  • step S303 the silicate glass 10 and the silicate glass 11 are formed on the silicate glass 9 as shown in FIG. Specifically, the silicate glass 10 and the silicate glass 11 are formed by sputtering.
  • the silicate glass 10 and the silicate glass 11 can be formed before the formation of the first diffusion layer 2 (before the heat treatment), and the silicate glass 10 and the silicate glass that go around to the second main surface side than the atmospheric pressure CVD. Since the amount of 11 is small, the silicate glass 8, 9, 10, formed on the second main surface side in a state where the first main surface is protected when the subsequent treatment using hydrofluoric acid is performed. Since 11 can be removed, it becomes difficult to produce a defective part.
  • step S304 the silicon substrate 1 after step S303 is immersed in 1% hydrofluoric acid, and the silicate glasses 8, 9, 10, and 11 formed on the second main surface of the silicon substrate 1 are removed.
  • step S305 boron is diffused from the silicate glass 8 to the first main surface of the silicon substrate 1 by annealing the silicon substrate 1 after step S304 in an atmosphere of about 1000 ° C., and the first diffusion layer 2 is formed. Form.
  • step S306 phosphorus (second conductivity type impurity) is diffused in the second main surface of the silicon substrate 1 to form the second diffusion layer 3 and the silicate glass 12.
  • the photovoltaic device manufactured without forming the silicate glasses 10 and 11 in FIG. 13 (without performing Step S303) is Comparative Example 3
  • the current-voltage characteristics are obtained under the light irradiation of AM1.5.
  • the photovoltaic device according to the third embodiment has a result that the open circuit voltage is 5 mV higher and the fill factor is 0.01 higher than that of Comparative Example 3.
  • the current (leakage current) that flows when a voltage of 10 V is applied in the direction opposite to the current-voltage characteristic is 2.0 A in Comparative Example 3, whereas it is 0.2 A in the third embodiment. There was a tendency to improve.
  • the fourth embodiment of the present invention is characterized in that the silicate glasses 10 and 11 are partially formed by coating. Since other manufacturing methods are the same as those in the first embodiment, the description thereof is omitted here.
  • the silicate glasses 10 and 11 are formed by applying only the end of the silicon substrate 1, preferably only about 5 mm from the end by inkjet.
  • Comparative Example 4 the photovoltaic device manufactured without applying the ink jet corresponding to step S104 is referred to as Comparative Example 4.
  • the process of Comparative Example 4 is the same as that of Comparative Example 1 in Embodiment 1, and the current-voltage characteristics and the current leakage characteristics are also the same as those of Comparative Example 1.
  • the open circuit voltage is 2 mV higher than the comparative example 4, and the fill factor is 0.005 higher.
  • the current (leakage current) that flows when a voltage of 10 V is applied in the direction opposite to the current-voltage characteristic is 1.0 A in Comparative Example 4, but 0.3 A in the fourth embodiment.
  • the improvement effect was small compared with Embodiment 1, the tendency to improve was seen. This indicates that the characteristic degradation portion is concentrated at 5 mm from the end of the silicon substrate 1. That is, in the fourth embodiment, the same effect as in the first embodiment can be obtained by using a simple method of coating.
  • Embodiment 5 First, the configuration of the photovoltaic device according to the fifth embodiment of the present invention will be described. In Embodiment 5, the photovoltaic device will be described as a solar battery cell.
  • FIG. 15 is a cross-sectional view showing an example of the configuration of the photovoltaic device according to the fifth embodiment.
  • the photovoltaic device has a texture formed on the first main surface (the upper surface of the paper) and the second main surface (the lower surface of the paper).
  • a first diffusion layer 17 containing an n-type impurity (first conductivity type impurity) and a first passivation film 19 are stacked on the first main surface. Further, the first electrode 21 is formed so as to penetrate the first passivation film 19 and come into contact with the first diffusion layer 17.
  • a second diffusion layer 18 containing a p-type impurity (second conductivity type impurity) and a second passivation film 20 are laminated on the second main surface.
  • a second electrode 22 is formed so as to penetrate the second passivation film 20 and come into contact with the second diffusion layer 18.
  • FIG. 16 is a flowchart showing an example of a method for manufacturing a photovoltaic device.
  • 17 to 23 are diagrams showing an example of the manufacturing process of the photovoltaic device.
  • step S401 textures are formed on both sides of the silicon substrate 16 as shown in FIG. Specifically, the silicon substrate 16 is immersed in an alkaline solution to remove wire saw damage during slicing. Thereafter, the silicon substrate 16 is immersed in an alkaline solution to which isopropyl alcohol has been added, thereby forming pyramidal textures on both surfaces (first main surface and second main surface) of the silicon substrate 16.
  • the silicon substrate 16 is made of p-type single crystal and has a 156 mm ⁇ (square shape with one side of 156 mm), a specific resistance of 1 ⁇ cm, and a thickness of about 200 ⁇ m.
  • the texture is formed on both surfaces of the silicon substrate 16 .
  • the texture may be formed on at least the light incident surface, or may be formed only on one surface. .
  • step S402 as shown in FIG. 18, a silicate glass 23 (first silicate glass) containing phosphorus (first conductivity type impurities) is formed on the first main surface of the silicon substrate 16, and conductivity is increased.
  • a silicate glass 24 (second silicate glass) that does not contain impurities to be applied is laminated and formed by atmospheric pressure CVD.
  • step S403 the silicon substrate 16 after step S402 is annealed (heat-treated) in an atmosphere of about 900 ° C., whereby phosphorus is transferred from the silicate glass 23 to the first main surface of the silicon substrate 16.
  • the first diffusion layer 17 is formed by diffusing.
  • step S404 as shown in FIG. 20, a silicate glass 25 (third silicate glass) containing phosphorus (first conductivity type impurities) on the silicate glass 24 and a silicate containing no conductive impurities. Glass 26 (fourth silicate glass) is formed.
  • the silicate glass 26 is formed to prevent phosphorus from evaporating from the silicate glass 25 into the atmosphere and adhering to the second main surface. However, if the amount of phosphorus evaporation is small depending on the conditions of the silicate glass 25 or if the characteristics of the photovoltaic device are not deteriorated due to phosphorus adhering to the second main surface, the formation of the silicate glass 26 is omitted. May be.
  • step S405 boron (second conductivity type impurities) is diffused in the second main surface of the silicon substrate 16 to form the second diffusion layer 18 and the silicate glass 27.
  • boron second conductivity type impurities
  • BBr3 boron bromide
  • the method of forming the second diffusion layer 18 by the bubbling method is a general method of forming a p-type diffusion layer and can be formed at low cost.
  • the silicate glass 27 is formed on both surfaces of the silicon substrate 16. Therefore, it is necessary to previously form a mask film or the like on the first main surface side where the silicate glass 27 is not formed.
  • the silicate glasses 23 to 26 function as a mask film that prevents boron from diffusing into the first main surface of the silicon substrate 16.
  • step S406 the silicate glasses 23, 24, 25, 26, and 27 are removed as shown in FIG. Specifically, the silicate glass 23, 24, 25, 26, 27 is removed by immersing the silicon substrate 16 after step S405 in about 10% hydrofluoric acid solution.
  • step S407 the first passivation film 19 is formed on the first diffusion layer 17, and the second passivation film 20 is formed on the second diffusion layer 18. Specifically, by annealing (heat treatment) the silicon substrate 16 after step S406 in an oxygen atmosphere, a first passivation film 19 is formed on the first diffusion layer 17 by thermal oxidation, and is formed by thermal oxidation. A second passivation film 20 is formed on the second diffusion layer 18.
  • a silicon nitride film (not shown) as an antireflection film is formed on each of the first passivation film 19 and the second passivation film 20 by plasma CVD.
  • step S408 the both sides of the silicon substrate 16 shown in FIG. 23 are printed using a printing paste containing Ag as a main component and then baked, whereby a collector electrode (first electrode) composed of a grid electrode and a bus electrode is formed. 21 and the second electrode 22) are formed. Thereby, a photovoltaic device as shown in FIG. 15 is produced.
  • the silicate glasses 25 and 26 are not formed in the manufacturing process. Other manufacturing steps are the same as those in the fifth embodiment.
  • the cross section of the photovoltaic device according to Comparative Example 5 is the same as that shown in FIG. Note that each of the silicon substrate 1, the first diffusion layer 2, the second diffusion layer 3, and the silicate glass 8, 9, 12 of FIG. 10 is the silicon substrate 16, the first diffusion layer 17, the first diffusion layer 17 in the comparative example 5. 2 diffusing layers 18 and silicate glasses 23, 24, 27. Referring to FIG. 10, in the photovoltaic device according to Comparative Example 5, it is assumed that defective portions (non-formed portions of silicate glass 23, 24, pinholes, etc.) are formed in silicate glasses 23, 24. .
  • each of the silicon substrate 1, the first diffusion layer 2, the second diffusion layer 3, and the silicate glass 8, 9, 10, 12 in FIG. 11 is the silicon substrate 16 in the fifth embodiment, the first diffusion layer. This corresponds to the layer 17, the second diffusion layer 18, and the silicate glass 23, 24, 25, 27.
  • the current-voltage characteristics are evaluated under AM1.5 light irradiation.
  • the open circuit voltage was higher by 2 mV and the fill factor was higher by 0.005 than Comparative Example 5.
  • the current (leakage current) that flows when a voltage of 10 V is applied in the direction opposite to the current-voltage characteristic is 1.2 A in Comparative Example 5, whereas 0.2 A in the fifth embodiment. There was a tendency to improve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、開放電圧およびフィルファクターの低下、あるいは電流リークの発生を抑制することが可能な光起電力装置の製造方法を提供することを目的とする。本発明による光起電力装置の製造方法は、(a)シリコン基板(1)の第1の主面にピラミッド状のテクスチャーを形成する工程と、(b)第1の主面上に第1の導電型の不純物を含む第1のシリケートガラス(8)を形成する工程と、(c)第1のシリケートガラス(8)上に導電型不純物を含まない第2のシリケートガラス(9)を形成する工程と、(d)第1のシリケートガラス(8)に含まれる第1の導電型の不純物をシリコン基板(1)の第1の主面に拡散させる工程と、(e)第2のシリケートガラス(9)上に第1の導電型の不純物を含む第3のシリケートガラス(10)を形成する工程と、(f)工程(e)の後、シリコン基板(1)の第2の主面に第2の導電型の不純物を拡散させる工程とを備える。

Description

光起電力装置の製造方法
 本発明は、例えば結晶シリコン系太陽電池等の光起電力装置の製造方法に関し、特に、固相拡散を用いて不純物拡散層を形成する光起電力装置の製造方法に関する。
 現在、結晶シリコン系太陽電池(以下、単に太陽電池という)には種々の型があり、いずれの型の太陽電池も量産レベルで製造されている。ここで、太陽電池としては、受光面側に不純物を拡散することによって不純物半導体層を形成した拡散型の太陽電池と、アモルファスシリコン等の薄膜によって不純物半導体層を形成したヘテロ接合型の太陽電池と、基板と同じ導電型の不純物半導体層と、基板と異なる導電型の不純物半導体装置とを、基板の裏面側に交互にくし型に配置した裏面接合型の太陽電池とが挙げられる。これらの太陽電池のうちの拡散型の太陽電池は、製造工程が容易であるため、現在製造されている太陽電池の大部分を占めている。
 拡散型の太陽電池は、厚さが200μm程度の結晶シリコン基板(以下、単にシリコン基板という)に、光の反射を抑制するテクスチャー、拡散層、および反射防止膜を形成し、シリコン基板の表面および裏面の非受光面にグリッド電極およびバス電極等の集電電極をスクリーン印刷によって形成した後、800℃程度で焼成することによって作製される。従来のp型のシリコン基板を用いた拡散型の太陽電池は、スクリーン印刷によってシリコン基板の裏面全面にAl電極を形成し、当該Al電極に含まれるAlをシリコン基板に拡散させることによって、拡散層(裏面電界層)を形成しているが、スクリーン印刷によって形成された拡散層は再結合が大きいため、拡散型の太陽電池の特性を大きく向上させることができない。
 これに対して、近年、シリコン基板の裏面にパッシベーション膜を形成し、受光面と同様に電極を局部的に形成する構造を採用した太陽電池が、より効率の高い太陽電池として製造されている。当該構造は、p型のシリコン基板を用いた拡散型の太陽電池で採用されるだけでなく、n型のシリコン基板を用いた拡散型の太陽電池でも採用されている。また、上記の構造は、シリコン基板の裏面全面に受光面とは異なる導電型の拡散層を形成する構造と、電極部のみに拡散層を形成し、その他の部分には拡散層を形成せずに基板をパッシベーション膜で直接終端する構造とがある。p型のシリコン基板では、裏面全面に拡散層を形成せずに、従来と同様、Alを用いたスクリーン印刷によって局所的に電極および拡散層を形成する方法を用いることが多い。一方、n型のシリコン基板では、スクリーン印刷によって電極を形成するときにn型の拡散層を形成することができないため、裏面全面にリンなどのn型不純物の拡散を行うことが多い。従って、n型のシリコン基板を用いた拡散型の太陽電池では、表面および裏面の各々に異なる拡散層を形成するプロセス(製造工程)が必要となる。
 拡散層は、種々の方法によって形成される。例えば、p型不純物としてBBr3、n型不純物としてPOCl3等のガス雰囲気中で熱処理を行うことによって、シリコン基板の一方側の面にBSG(ボロンシリケートガラス)膜を形成し、他方側の面にPSG(リンシリケートガラス)膜を形成し、BSG膜およびPSG膜の各々からシリコン基板にボロンまたはリンを熱拡散させる方法がある。また、SiH4とB2H6、あるいはSiH4とPH3等、ボロンあるいはリンを含むガスを原料ガスとしてプラズマCVD(Chemical Vapor Deposition)、減圧CVD、または常圧CVD等によって、シリコン基板の一方側の面にBSGを形成し、他方側の面にPSGを形成し、その後、高温で熱処理を行うことによってBSG膜およびPSG膜の各々からシリコン基板にボロンまたはリンを熱拡散させる方法がある。また、B+、P+等のイオン化したガスを加速させて基板に打ち込み(注入し)、さらに熱処理を行うことによって、注入したイオンを活性化させて拡散層を形成する方法がある。
 上記の拡散層を形成する各方法のうちのガス雰囲気中で拡散層を形成する方法は、1つの拡散炉を用いて拡散と熱処理とを行うことができるため、簡単な装置とプロセスによって拡散層を形成することができる。しかし、シリコン基板の両面にp型不純物およびn型不純物が拡散されてしまうため、シリコン基板の一方側の面にp型の拡散層を形成し、他方側の面にn型の拡散層を形成するためには、マスクが必要となる。
 また、イオン注入を用いて拡散層を形成する方法は、シリコン基板の片面ずつ処理することによって、受光面(表面)および裏面の各々に異なる導電型の拡散層を容易に形成することができる。しかし、拡散層に欠陥が生じやすい。また、シリコン基板の表面にボロンを直接打ち込んでいるが、シリコン基板の表面は露出した状態となっているため、ボロンが熱処理の際にシリコン基板の表面から抜けやすい。さらに、熱処理の際にボロンがクラスター化しやすく、良好な拡散プロファイルを形成しにくいことなどから、拡散層の表面における再結合(表面再結合)が要因となって高い開放電圧Vocを得ることが難しい。
 また、CVDを用いてBSGおよびPSGを形成する方法は、BSGおよびPSGの各々をシリコン基板の片面ずつに形成することが可能であり、BSGおよびPSGの各々の上に厚い酸化シリコンを積層することによって、BSGおよびPSGからボロンおよびリンの気相への蒸発を抑制することができる。従って、シリコン基板内に不純物を有効に拡散させることができる。また、受光面(表面)および裏面の各々にBSGおよびPSGを形成する方法は任意に選択可能であるため、例えば、ボロン層(BSG)側をCVDによって形成し、裏面(PSG)側を気相拡散によって形成するといったプロセスも考えられる。従来、シリコン基板の一方側の面にPECVDによってBSGを形成し、当該BSG上にマスクとなるSiO2膜を形成し、その後、リンを含む原料ガス雰囲気中で熱処理を行うことによって、一方側の面にBSGを、他方側の面にPSGを一括して形成する方法が開示されている(例えば、特許文献1参照)。
特表2013-526049号公報
 特許文献1では、PECVDによってBSGを形成した後、原料ガス雰囲気中で熱処理を行うことによってBSGおよびPSGを同時に形成するプロセスが開示されている。当該プロセスは、プロセスを簡略化するのに有効であるが、テスクチャーの表面上に形成されたCVD膜は、その後の熱処理時のストレスによってテクスチャーの谷部における膜が薄くなる等、テスクチャーの谷部と山部とに膜厚差が生じたり、CVDによって形成されたSiO2膜には、原料ガスを通過させてしまうようなピンホールが形成されたりする。そのため、その後のリンの熱拡散処理において、薄膜部およびピンホールを介してBSG上にリンが拡散してしまい、p+領域にn+が混在することによって逆接合が形成され、開放電圧およびフィルファクターの低下、あるいは電流リークが生じるという問題がある。
 本発明は、このような問題を解決するためになされたものであり、開放電圧およびフィルファクターの低下、あるいは電流リークの発生を抑制することが可能な光起電力装置の製造方法を提供することを目的とする。
 上記の課題を解決するために、本発明による光起電力装置の製造方法は、(a)シリコン基板の第1の主面にピラミッド状のテクスチャーを形成する工程と、(b)第1の主面上に第1の導電型の不純物を含む第1のシリケートガラスを形成する工程と、(c)第1のシリケートガラス上に導電型不純物を含まない第2のシリケートガラスを形成する工程と、(d)第1のシリケートガラスに含まれる第1の導電型の不純物をシリコン基板の第1の主面に拡散させる工程と、(e)第2のシリケートガラス上に第1の導電型の不純物を含む第3のシリケートガラスを形成する工程と、(f)工程(e)の後、シリコン基板の第1の主面とは反対側の第2の主面に第2の導電型の不純物を拡散させる工程とを備える。
 本発明によると、光起電力装置の製造方法は、(a)シリコン基板の第1の主面にピラミッド状のテクスチャーを形成する工程と、(b)第1の主面上に第1の導電型の不純物を含む第1のシリケートガラスを形成する工程と、(c)第1のシリケートガラス上に導電型不純物を含まない第2のシリケートガラスを形成する工程と、(d)第1のシリケートガラスに含まれる第1の導電型の不純物をシリコン基板の第1の主面に拡散させる工程と、(e)第2のシリケートガラス上に第1の導電型の不純物を含む第3のシリケートガラスを形成する工程と、(f)工程(e)の後、シリコン基板の第1の主面とは反対側の第2の主面に第2の導電型の不純物を拡散させる工程とを備えるため、開放電圧およびフィルファクターの低下、あるいは電流リークの発生を抑制することが可能となる。
 本発明の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態1による光起電力装置の構成の一例を示す断面図である。 本発明の実施の形態1による光起電力装置の製造方法の一例を示すフローチャートである。 本発明の実施の形態1による光起電力装置の製造工程の一例を示す図である。 本発明の実施の形態1による光起電力装置の製造工程の一例を示す図である。 本発明の実施の形態1による光起電力装置の製造工程の一例を示す図である。 本発明の実施の形態1による光起電力装置の製造工程の一例を示す図である。 本発明の実施の形態1による光起電力装置の製造工程の一例を示す図である。 本発明の実施の形態1による光起電力装置の製造工程の一例を示す図である。 本発明の実施の形態1による光起電力装置の製造工程の一例を示す図である。 比較例1による光起電力装置の断面図である。 本発明の実施の形態1による光起電力装置の断面図である。 本発明の実施の形態2による光起電力装置の製造方法の一例を示すフローチャートである。 本発明の実施の形態3による光起電力装置の製造方法の一例を示すフローチャートである。 本発明の実施の形態3による光起電力装置の製造工程の一例を示す図である。 本発明の実施の形態5による光起電力装置の構成の一例を示す断面図である。 本発明の実施の形態5による光起電力装置の製造方法の一例を示すフローチャートである。 本発明の実施の形態5による光起電力装置の製造工程の一例を示す図である。 本発明の実施の形態5による光起電力装置の製造工程の一例を示す図である。 本発明の実施の形態5による光起電力装置の製造工程の一例を示す図である。 本発明の実施の形態5による光起電力装置の製造工程の一例を示す図である。 本発明の実施の形態5による光起電力装置の製造工程の一例を示す図である。 本発明の実施の形態5による光起電力装置の製造工程の一例を示す図である。 本発明の実施の形態5による光起電力装置の製造工程の一例を示す図である。
 本発明の実施の形態について、図面に基づいて以下に説明する。
 <実施の形態1>
 まず、本発明の実施の形態1による光起電力装置の構成について説明する。なお、本実施の形態1において、光起電力装置は太陽電池セルであるものとして説明する。
 図1は、本実施の形態1による光起電力装置の構成の一例を示す断面図である。
 図1に示すように、光起電力装置は、第1の主面(紙面上側の面)および第2の主面(紙面下側の面)にテクスチャーが形成されている。第1の主面上には、p型の不純物(第1の導電型の不純物)を含む第1の拡散層2と、第1のパッシベーション膜4とが積層して形成されている。また、第1のパッシベーション膜4を突き抜けて第1の拡散層2と接触するように第1の電極6が形成されている。
 一方、第2の主面上には、n型の不純物(第2の導電型の不純物)を含む第2の拡散層3と、第2のパッシベーション膜5とが積層して形成されている。また、第2のパッシベーション膜5を突き抜けて第2の拡散層3と接触するように第2の電極7が形成されている。
 次に、光起電力装置の製造方法について、図2~10を用いて説明する。
 図2は、光起電力装置の製造方法の一例を示すフローチャートである。また、図3~10は、光起電力装置の製造工程の一例を示す図である。
 ステップS101において、図3に示すように、シリコン基板1の両面にテクスチャーを形成する。具体的には、アルカリ溶液中にシリコン基板1を浸漬し、スライス時のワイヤーソーダメージを除去する。その後、イソプロピルアルコールを添加したアルカリ溶液中にシリコン基板1を浸漬させることによって、シリコン基板1の両面(第1の主面、第2の主面)にピラミッド状のテクスチャーを形成する。
 なお、シリコン基板1は、n型の単結晶からなり、156mm□(一辺が156mmの四角形)、比抵抗1Ωcm、厚さ200μm程度であるものとする。
 また、本実施の形態1では、シリコン基板1の両面にテクスチャーを形成する場合について説明するが、少なくとも光が入射する側の面に形成すればよく、一方側の面のみに形成してもよい。
 ステップS102において、図4に示すように、シリコン基板1の第1の主面上に、ボロン(第1の導電型の不純物)を含むシリケートガラス8(第1のシリケートガラス)と、導電性を付与する不純物を含まないシリケートガラス9(第2のシリケートガラス)とを、常圧CVDによって積層して形成する。ここで、導電性を付与する不純物とは、IV族元素の半導体であるシリコンであれば、III族またはV族のボロン、リン、ガリウム、ヒ素等が挙げられる。また、シリケートガラス9に不純物を含まないとは、シリケートガラス9に含まれる導電性を付与する不純物が、以降のステップでの熱処理後に前記のシリケートガラス8から拡散する量に比べて十分に少なく、以降のステップで形成される拡散層2あるいは拡散層3に実質的に影響がない程度以下の量であることを示しており、必ずしも完全に含有しないことを意味しない。
 ステップS103において、図5に示すように、1000℃程度の雰囲気中において、ステップS102後のシリコン基板1をアニール(熱処理)することによってシリケートガラス8からシリコン基板1の第1の主面にボロンを拡散させ、第1の拡散層2を形成する。
 ステップS104において、図6に示すように、シリケートガラス9上に、ボロン(第1の導電型の不純物)を含むシリケートガラス10(第3のシリケートガラス)と、導電性を付与する不純物を含まないシリケートガラス11(第4のシリケートガラス)とを形成する。
 なお、シリケートガラス11は、シリケートガラス10からボロンが雰囲気中に蒸発して第2の主面に付着することを防ぐために形成している。しかし、シリケートガラス10の条件によってボロンの蒸発量が少ない、あるいは第2の主面にボロンが付着することによって光起電力装置の特性が低下しないような場合は、シリケートガラス11の形成を省略してもよい。
 ステップS105において、図7に示すように、シリコン基板1の第2の主面にリン(第2の導電型の不純物)を拡散させ、第2の拡散層3およびシリケートガラス12を形成する。具体的には、POCl3をバブリング法によって揮発させ、ステップS104後のシリコン基板1を炉内で加熱することによって、第2の主面上にシリケートガラス12が形成されるとともに、第2の主面に第2の拡散層3が形成される。
 なお、バブリング法によって第2の拡散層3を形成する方法は、n型の拡散層を形成する一般的な方法であり、安価に形成することができるが、シリコン基板1の両面にシリケートガラス12が形成されるため、シリケートガラス12を形成しない第1の主面側にはマスク膜などを予め形成しておく必要がある。本実施の形態1では、シリケートガラス8~11が、シリコン基板1の第1の主面へのリンの拡散を防ぐマスク膜として機能している。
 ステップS106において、図8に示すように、シリケートガラス8,9,10,11,12を除去する。具体的には、10%程度のフッ化水素酸溶液に、ステップS105後のシリコン基板1を浸漬させることによって、シリケートガラス8,9,10,11,12を除去する。
 ステップS107において、図9に示すように、第1の拡散層2上に第1のパッシベーション膜4を形成し、第2の拡散層3上に第2のパッシベーション膜5を形成する。具体的には、酸素雰囲気中において、ステップS106後のシリコン基板1をアニール(熱処理)することによって、熱酸化による第1のパッシベーション膜4が第1の拡散層2上に形成され、熱酸化による第2のパッシベーション膜5が第2の拡散層3上に形成される。
 その後、第1のパッシベーション膜4および第2のパッシベーション膜5の各々の上に、反射防止膜としての窒化シリコン膜(図示せず)をプラズマCVDによって形成する。
 ステップS108において、図9に示すシリコン基板1の両面に、Agを主成分とする印刷ペーストを用いた印刷を行った後に焼成することによって、グリッド電極およびバス電極からなる集電極(第1の電極6、第2の電極7)を形成する。これにより、図1に示すような光起電力装置が作製される。
 次に、本実施の形態1による光起電力装置の効果について説明する。
 図10は、比較例1による光起電力装置の断面図であり、光起電力装置の製造工程を示している。なお、図10において、簡単のため図示はしないが、シリコン基板1の両面には、テクスチャーが形成されているものとする。比較例1は、後述の図11に示す本実施の形態1の効果を説明するために用いる図である。
 比較例1による光起電力装置では、その製造工程においてシリケートガラス10,11が形成されていない。また、シリケートガラス8,9には、欠陥部13(シリケートガラス8,9の無形成部、ピンホール等)が形成されているものとする。
 図10に示すように、シリコン基板1の第2の主面にリン(第2の導電型の不純物)を拡散させて第2の拡散層3を形成する際に、リンがシリコン基板1の第1の主面側に形成された欠陥部13を通って第1の拡散層2に拡散され、第1の拡散層2および欠陥部13に不純物拡散層14が形成される(このとき、シリケートガラス9上にはシリケートガラス12が形成される)。そして、第1の拡散層2へのリンの拡散量が、第1の拡散層2の不純物濃度に対して無視できない量になると、開放電圧およびフィルファクターの低下を引き起こしたり、逆バイアスを印加した場合の電流リークを生じたりする。
 シリケートガラス9にて生じる欠陥部13は、シリケートガラス8,9を形成する際のパーティクル等の影響を受けて発生する場合があり、また、第1の拡散層2の形成時の熱処理における膜ストレスによって生じる場合もある。太陽電池において形成されるピラミッド状のテクスチャーにおいては、シリケートガラスがピラミッド状のテスクチャーの底部で特に薄くなり、これが特性劣化につながる。
 光起電力装置の特性に影響を及ぼす不純物拡散層14の不純物濃度(図10の例では、リンの濃度)は、シリケートガラス8,9の不純物含有量、およびその後のアニール条件にもよるが、最終的に形成される不純物拡散層14のシート抵抗が第1の拡散層2のシート抵抗の3倍以下、例えば、第1の拡散層2のシート抵抗が100Ω/□であるとき、不純物拡散層14のシート抵抗が300Ω/□以下になると、上記の特性劣化または電流リークが生じる。
 図11は、本実施の形態1による光起電力装置の断面図であり、光起電力装置の製造工程を示している。なお、図11において、簡単のため図示はしないが、シリコン基板1の両面には、テクスチャーが形成されているものとする。また、シリケートガラス11は形成されていないものとする。
 図11に示すように、シリケートガラス8,9の形成後に第1の拡散層2を形成するために熱処理を行うが、上述の通り、シリケートガラス8,9の形成時、または熱処理時のストレスによってシリケートガラス8,9に欠陥部13が生じる。本実施の形態1による光起電力装置では、当該熱処理の後にシリケートガラス10を形成している。従って、その後の第2の拡散層3を形成するときに、シリケートガラス10よって欠陥部13へのリン(第2の導電型の不純物)の侵入を防ぐことができる。また、第2の拡散層3を形成する際の熱処理によって、第1の拡散層2および欠陥部13に不純物濃度増加部15が形成され、欠陥部13における特性低下を抑制することができる。
 具体的には、欠陥部13は、その原因となるパーティクル、およびシリケートガラス8,9の形成後に付着した金属不純物等が後の工程で拡散し、第1の拡散層2とシリコン基板1との界面の状態を低下させ、特性低下を引き起こすことがある。本実施の形態1による光起電力装置では、不純物濃度増加部15を形成して第1の拡散層2の電界効果を増加させることによって、シリコン基板1中のキャリアが欠陥部13に近づくことを防ぎ、第1の拡散層2とシリコン基板1との界面の状態が低下した部分においてキャリアが再結合することを抑制することができる。
 上記の比較例1による光起電力装置(図10参照)と、本実施の形態1による光起電力装置(図11参照)とについて、AM1.5の光照射下で電流-電圧特性を評価すると、本実施の形態1は、比較例1対して、開放電圧が2mV高く、フィルファクターが0.005高い結果となった。また、電流-電圧特性とは逆方向に10Vの電圧印加を行う際に流れる電流(リーク電流)は、比較例1では1.0Aであるのに対して、本実施の形態1では0.2Aと改善する傾向がみられた。
 以上のことから、本実施の形態1によれば、開放電圧およびフィルファクターの低下、あるいは電流リークの発生を抑制することが可能となる。
 <実施の形態2>
 図2のステップS102(図4に対応)において、シリコン基板1の第1の主面上にシリケートガラス8,9を形成するときに、シリコン基板1の第2の主面上にシリケートガラス8,9が回り込んで形成される。本発明の実施の形態2では、シリコン基板1の第2の主面上に形成されたシリケートガラス8,9を除去することを特徴とする。その他の製造方法については、実施の形態1と同様であるため、ここでは説明を省略する。
 図12は、本実施の形態2による光起電力装置の製造方法の一例を示すフローチャートである。なお、図12のステップS201,ステップS202,ステップS204~ステップS209は、図2のステップS101~ステップS108に対応しているため、ここでは説明を省略する。以下では、ステップS203について説明する。
 ステップS203において、ステップS202後のシリコン基板1を1%のフッ化水素酸に浸漬させ、シリコン基板1の第2の主面上に形成されたシリケートガラス8,9を除去する。
 シリコン基板1の第2の主面上に形成されたシリケートガラス8,9は、自らがマスクとなって、その後の第2の拡散層3の形成を妨げる。また、シリケートガラス8,9は、第2の拡散層3を形成する際の熱処理によって、シリコン基板1の第2の主面に第1の不純物(ここでは、ボロン)を拡散させて特性低下を引き起こす。従って、シリコン基板1の第2の主面上に形成されたシリケートガラス8,9は、フッ化水素酸で処理(除去)することが望ましいが、第2の主面上に形成されたシリケートガラス8,9を除去するためにシリコン基板1全体をフッ化水素酸に浸漬すると、第1の主面側に形成されたシリケートガラス9が薄化し、元々存在していた欠陥部をさらに増大させたり、新たな欠陥部を発生させたりする。特に、シリコン基板1の両面に形成されたテクスチャーの底部は、アニールによるストレスによって薄化しているため、フッ化水素酸で簡単に溶融されて欠陥部が生じることになる。このような問題に対して、本実施の形態2では、ステップS203の後に、シリコン基板1の第1の主面側に形成されたシリケートガラス9上にシリケートガラス10を形成している(ステップS205)ため、ステップS203において膜減りした第1主面側のシリケートガラス9をシリケートガラス10によって補完することができる。
 図12にてシリケートガラス10,11を形成せずに(ステップS205を行わずに)作製した光起電力装置を比較例2とした場合において、AM1.5の光照射下で電流-電圧特性を評価すると、本実施の形態2による光起電力装置は、比較例2に対して、開放電圧が4mV高く、フィルファクターが0.008高い結果となった。また、電流-電圧特性とは逆方向に10Vの電圧印加を行う際に流れる電流(リーク電流)は、比較例2では2.0Aであるのに対して、本実施の形態2では0.2Aと改善する傾向がみられた。
 このようなリーク電流は、pn接合部において最も発生しやすく、エミッタ拡散層にエミッタと逆導電型の領域ができると顕著に増大した。従って、本願のように基板と異なる導電型の拡散層を基板表面に形成する場合において、この拡散層のマスク膜に欠陥が生じる可能性がある場合は、pn接合部分に逆接合が形成され、大きなリーク電流および特性低下が生じるという問題が生じた。これに比べると基板の導電型と同じ導電型の拡散層に対しては、逆導電型の拡散層の影響は比較的小さかった。
 以上のことから、本実施の形態2によれば、開放電圧およびフィルファクターの低下、あるいは電流リークの発生を抑制することが可能となる。
 <実施の形態3>
 実施の形態1,2では、第1の拡散層2を形成した後にシリケートガラス10を形成する場合について説明した。本発明の実施の形態3では、第1の拡散層2を形成する前にシリケートガラス10を形成することを特徴とする。その他の製造方法については、実施の形態2と同様であるため、ここでは説明を省略する。
 図13は、本実施の形態3による光起電力装置の製造方法の一例を示すフローチャートである。なお、図13のステップS301,ステップS302,ステップS307~ステップS309は、図2のステップS201,ステップS202,ステップS207~ステップS209に対応しているため、ここでは説明を省略する。以下では、ステップS303~ステップS306について説明する。
 ステップS303において、図14に示すように、シリケートガラス9上にシリケートガラス10およびシリケートガラス11を形成する。具体的には、シリケートガラス10およびシリケートガラス11をスパッタリングによって形成する。
 スパッタリングは、常圧CVDよりも熱によるストレスの影響を与えにくく、成膜条件によってはテクスチャーの底部に厚く形成することができる。従って、第1の拡散層2の形成前(熱処理前)にシリケートガラス10およびシリケートガラス11を形成することができる他、常圧CVDよりも第2の主面側に回り込むシリケートガラス10およびシリケートガラス11の量が少ないため、その後のフッ化水素酸を用いた処理を行う際に、第1の主面を保護した状態で第2の主面側に形成されたシリケートガラス8,9,10,11を除去することができるため、欠陥部が生じにくくなる。
 ステップS304において、ステップS303後のシリコン基板1を1%のフッ化水素酸に浸漬させ、シリコン基板1の第2の主面上に形成されたシリケートガラス8,9,10,11を除去する。
 ステップS305において、1000℃程度の雰囲気中において、ステップS304後のシリコン基板1をアニールすることによってシリケートガラス8からシリコン基板1の第1の主面にボロンを拡散させ、第1の拡散層2を形成する。
 ステップS306において、シリコン基板1の第2の主面にリン(第2の導電型の不純物)を拡散させ、第2の拡散層3およびシリケートガラス12を形成する。
 図13にてシリケートガラス10,11を形成せずに(ステップS303を行わずに)作製した光起電力装置を比較例3とした場合において、AM1.5の光照射下で電流-電圧特性を評価すると、本実施の形態3による光起電力装置は、比較例3に対して、開放電圧が5mV高く、フィルファクターが0.01高い結果となった。また、電流-電圧特性とは逆方向に10Vの電圧印加を行う際に流れる電流(リーク電流)は、比較例3では2.0Aであるのに対して、本実施の形態3では0.2Aと改善する傾向がみられた。
 以上のことから、本実施の形態3によれば、開放電圧およびフィルファクターの低下、あるいは電流リークの発生を抑制することが可能となる。
 なお、上記では、本実施の形態3を実施の形態2に適用する場合について説明したが、これに限るものではなく、本実施の形態3を実施の形態1に適用してもよい。
 <実施の形態4>
 本発明の実施の形態4では、シリケートガラス10,11を塗布によって部分的に形成することを特徴とする。その他の製造方法については、実施の形態1と同様であるため、ここでは説明を省略する。
 例えば、図2のステップS104において、シリケートガラス10,11は、シリコン基板1の端部にのみ、望ましくは端部から5mm程度の部分にのみインクジェットで塗布することによって形成する。
 ここで、実施の形態1と同様にステップS104に相当するインクジェットでの塗布を行わずに作製した光起電力装置を比較例4とした。比較例4のプロセスは、実施の形態1における比較例1と同様であり、電流-電圧特性、および電流リーク特性も比較例1と同様である。本実施の形態4は、比較例4よりも開放電圧が2mV高く、フィルファクターが0.005高い結果となった。また、電流-電圧特性とは逆方向に10Vの電圧印加を行う際に流れる電流(リーク電流)は、比較例4では1.0Aであるのに対して、本実施の形態4では0.3Aと、実施の形態1と比較して改善効果は小さいものの、改善する傾向がみられた。これは、特性低下の部分がシリコン基板1の端部から5mmに集中していることを示している。すなわち、本実施の形態4では、塗布という簡単な方法を用いることによって、実施の形態1と同様の効果が得られる。
 以上のことから、本実施の形態4によれば、開放電圧およびフィルファクターの低下、あるいは電流リークの発生を抑制することが可能となる。
 なお、上記では、本実施の形態4を実施の形態1に適用する場合について説明したが、これに限るものではなく、本実施の形態4を実施の形態2に適用してもよい。
 <実施の形態5>
 まず、本発明の実施の形態5による光起電力装置の構成について説明する。なお、本実施の形態5において、光起電力装置は太陽電池セルであるものとして説明する。
 図15は、本実施の形態5による光起電力装置の構成の一例を示す断面図である。
 図15に示すように、光起電力装置は、第1の主面(紙面上側の面)および第2の主面(紙面下側の面)にテクスチャーが形成されている。第1の主面上には、n型の不純物(第1の導電型の不純物)を含む第1の拡散層17と、第1のパッシベーション膜19とが積層して形成されている。また、第1のパッシベーション膜19を突き抜けて第1の拡散層17と接触するように第1の電極21が形成されている。
 一方、第2の主面上には、p型の不純物(第2の導電型の不純物)を含む第2の拡散層18と、第2のパッシベーション膜20とが積層して形成されている。また、第2のパッシベーション膜20を突き抜けて第2の拡散層18と接触するように第2の電極22が形成されている。
 次に、光起電力装置の製造方法について、図16~23を用いて説明する。
 図16は、光起電力装置の製造方法の一例を示すフローチャートである。また、図17~23は、光起電力装置の製造工程の一例を示す図である。
 ステップS401において、図17に示すように、シリコン基板16の両面にテクスチャーを形成する。具体的には、アルカリ溶液中にシリコン基板16を浸漬し、スライス時のワイヤーソーダメージを除去する。その後、イソプロピルアルコールを添加したアルカリ溶液中にシリコン基板16を浸漬させることによって、シリコン基板16の両面(第1の主面、第2の主面)にピラミッド状のテクスチャーを形成する。
 なお、シリコン基板16は、p型の単結晶からなり、156mm□(一辺が156mmの四角形)、比抵抗1Ωcm、厚さ200μm程度であるものとする。
 また、本実施の形態5では、シリコン基板16の両面にテクスチャーを形成する場合について説明するが、少なくとも光が入射する側の面に形成すればよく、一方側の面にのみ形成してもよい。
 ステップS402において、図18に示すように、シリコン基板16の第1の主面上に、リン(第1の導電型の不純物)を含むシリケートガラス23(第1のシリケートガラス)と、導電性を付与する不純物を含まないシリケートガラス24(第2のシリケートガラス)とを、常圧CVDによって積層して形成する。
 ステップS403において、図19に示すように、900℃程度の雰囲気中において、ステップS402後のシリコン基板16をアニール(熱処理)することによってシリケートガラス23からシリコン基板16の第1の主面にリンを拡散させ、第1の拡散層17を形成する。
 ステップS404において、図20に示すように、シリケートガラス24上に、リン(第1の導電型の不純物)を含むシリケートガラス25(第3のシリケートガラス)と、導電性を有する不純物を含まないシリケートガラス26(第4のシリケートガラス)とを形成する。
 なお、シリケートガラス26は、シリケートガラス25からリンが雰囲気中に蒸発して第2の主面に付着することを防ぐために形成している。しかし、シリケートガラス25の条件によってリンの蒸発量が少ない、あるいは第2の主面にリンが付着することによって光起電力装置の特性が低下しないような場合は、シリケートガラス26の形成を省略してもよい。
 ステップS405において、図21に示すように、シリコン基板16の第2の主面にボロン(第2の導電型の不純物)を拡散させ、第2の拡散層18およびシリケートガラス27を形成する。具体的には、臭化ボロン(BBr3)をバブリング法によって揮発させ、ステップS404後のシリコン基板16を炉内で加熱することによって、第2の主面上にシリケートガラス27が形成されるとともに、第2の主面に第2の拡散層18が形成される。
 なお、バブリング法によって第2の拡散層18を形成する方法は、p型の拡散層を形成する一般的な方法であり、安価に形成することができるが、シリコン基板16の両面にシリケートガラス27が形成されるため、シリケートガラス27を形成しない第1の主面側にはマスク膜などを予め形成しておく必要がある。本実施の形態5では、シリケートガラス23~26が、シリコン基板16の第1の主面へのボロンの拡散を防ぐマスク膜として機能している。
 ステップS406において、図22に示すように、シリケートガラス23,24,25,26,27を除去する。具体的には、10%程度のフッ化水素酸溶液に、ステップS405後のシリコン基板16を浸漬させることによって、シリケートガラス23,24,25,26,27を除去する。
 ステップS407において、図23に示すように、第1の拡散層17上に第1のパッシベーション膜19を形成し、第2の拡散層18上に第2のパッシベーション膜20を形成する。具体的には、酸素雰囲気中において、ステップS406後のシリコン基板16をアニール(熱処理)することによって、熱酸化による第1のパッシベーション膜19が第1の拡散層17上に形成され、熱酸化による第2のパッシベーション膜20が第2の拡散層18上に形成される。
 その後、第1のパッシベーション膜19および第2のパッシベーション膜20の各々の上に、反射防止膜としての窒化シリコン膜(図示せず)をプラズマCVDによって形成する。
 ステップS408において、図23に示すシリコン基板16の両面に、Agを主成分とする印刷ペーストを用いた印刷を行った後に焼成することによって、グリッド電極およびバス電極からなる集電極(第1の電極21、第2の電極22)を形成する。これにより、図15に示すような光起電力装置が作製される。
 次に、本実施の形態5による光起電力装置の効果について、比較例5を用いて説明する。
 比較例5による光起電力装置では、その製造工程においてシリケートガラス25,26が形成されていない。その他の製造工程は、実施の形態5と同様である。また、比較例5による光起電力装置の断面は、図10と同様である。なお、図10のシリコン基板1、第1の拡散層2、第2の拡散層3、シリケートガラス8,9,12の各々は、比較例5におけるシリコン基板16、第1の拡散層17、第2の拡散層18、シリケートガラス23,24,27に対応している。図10を参照して、比較例5による光起電力装置では、シリケートガラス23,24には、欠陥部(シリケートガラス23,24の無形成部、ピンホール等)が形成されているものとする。
 一方、本実施の形態5による光起電力装置の断面は、図11と同様である。なお、図11のシリコン基板1、第1の拡散層2、第2の拡散層3、シリケートガラス8,9,10,12の各々は、本実施の形態5におけるシリコン基板16、第1の拡散層17、第2の拡散層18、シリケートガラス23,24,25,27に対応している。
 上記の比較例5による光起電力装置(図10参照)と、本実施の形態5による光起電力装置(図11参照)とについて、AM1.5の光照射下で電流-電圧特性を評価すると、本実施の形態5は、比較例5に対して、開放電圧が2mV高く、フィルファクターが0.005高い結果となった。また、電流-電圧特性とは逆方向に10Vの電圧印加を行う際に流れる電流(リーク電流)は、比較例5では1.2Aであるのに対して、本実施の形態5では0.2Aと改善する傾向がみられた。
 以上のことから、本実施の形態5によれば、開放電圧およびフィルファクターの低下、あるいは電流リークの発生を抑制することが可能となる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 本発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1 シリコン基板、2 第1の拡散層、3 第2の拡散層、4 第1のパッシベーション膜、5 第2のパッシベーション膜、6 第1の電極、7 第2の電極、8~12 シリケートガラス、13 欠陥部、14 不純物拡散層、15 不純物濃度増加部、16 シリコン基板、17 第1の拡散層、18 第2の拡散層、19 第1のパッシベーション膜、20 第2のパッシベーション膜、21 第1の電極、22 第2の電極、23~26 シリケートガラス。

Claims (11)

  1.  (a)シリコン基板(1,16)の第1の主面にピラミッド状のテクスチャーを形成する工程と、
     (b)前記第1の主面上に第1の導電型の不純物を含む第1のシリケートガラス(8,23)を形成する工程と、
     (c)前記第1のシリケートガラス(8,23)上に導電型不純物を含まない第2のシリケートガラス(9,24)を形成する工程と、
     (d)前記第1のシリケートガラス(8,23)に含まれる前記第1の導電型の不純物を前記シリコン基板(1,16)の前記第1の主面に拡散させる工程と、
     (e)前記第2のシリケートガラス(9,24)上に前記第1の導電型の不純物を含む第3のシリケートガラス(10,25)を形成する工程と、
     (f)前記工程(e)の後、前記シリコン基板(1,16)の前記第1の主面とは反対側の第2の主面に第2の導電型の不純物を拡散させる工程と、
    を備える、光起電力装置の製造方法。
  2.  前記シリコン基板の導電型がn型である場合において、前記第1の導電型はp型であり、前記第2の導電型はn型であることを特徴とする、請求項1に記載の光起電力装置の製造方法。
  3.  前記シリコン基板の導電型がp型である場合において、前記第1の導電型はn型であり、前記第2の導電型はp型であることを特徴とする、請求項1に記載の光起電力装置の製造方法。
  4.  前記工程(f)の前において、
     (g)前記第3のシリケートガラス(10,25)上に、導電性を付与する不純物を含まない第4のシリケートガラス(11,26)を形成する工程をさらに備えることを特徴とする、請求項1に記載の光起電力装置の製造方法。
  5.  前記工程(b)において、
     前記第1のシリケートガラス(8,23)は、CVDによって形成されることを特徴とする、請求項1に記載の光起電力装置の製造方法。
  6.  前記工程(c)の後、
     (h)前記シリコン基板(1,16)の前記第2の主面上に形成された前記第1のシリケートガラス(8,23)および前記第2のシリケートガラス(9,24)を除去する工程をさらに備えることを特徴とする、請求項1に記載の光起電力装置の製造方法。
  7.  前記工程(h)において、
     前記除去は、フッ化水素酸を用いて行われることを特徴とする、請求項6に記載の光起電力装置の製造方法。
  8.  前記工程(e)において、前記第3のシリケートガラス(10,25)は、スパッタリングによって形成されることを特徴とする、請求項1に記載の光起電力装置の製造方法。
  9.  前記工程(g)において、前記第4のシリケートガラス(11,26)は、スパッタリングによって形成されることを特徴とする、請求項4に記載の光起電力装置の製造方法。
  10.  前記工程(e)において、前記第3のシリケートガラス(10,25)は、前記シリコン基板(1,16)の端部に形成されることを特徴とする、請求項1に記載の光起電力装置の製造方法。
  11.  前記工程(g)において、前記第4のシリケートガラス(11,26)は、前記シリコン基板(1,16)の端部に形成されることを特徴とする、請求項4に記載の光起電力装置の製造方法。
PCT/JP2015/063432 2014-12-17 2015-05-11 光起電力装置の製造方法 WO2016098368A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580066670.6A CN107155378B (zh) 2014-12-17 2015-05-11 光电动势装置的制造方法
US15/522,458 US20170330990A1 (en) 2014-12-17 2015-05-11 Method for manufacturing photovoltaic device
JP2016564695A JP6257803B2 (ja) 2014-12-17 2015-05-11 光起電力装置の製造方法
TW104121455A TWI578560B (zh) 2014-12-17 2015-07-02 光伏電力裝置之製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-254762 2014-12-17
JP2014254762 2014-12-17

Publications (1)

Publication Number Publication Date
WO2016098368A1 true WO2016098368A1 (ja) 2016-06-23

Family

ID=56126272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063432 WO2016098368A1 (ja) 2014-12-17 2015-05-11 光起電力装置の製造方法

Country Status (5)

Country Link
US (1) US20170330990A1 (ja)
JP (1) JP6257803B2 (ja)
CN (1) CN107155378B (ja)
TW (1) TWI578560B (ja)
WO (1) WO2016098368A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391317B (zh) * 2019-07-29 2021-03-09 通威太阳能(成都)有限公司 一种单晶硅片的绒面制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187462A (ja) * 2012-03-09 2013-09-19 Sharp Corp 光電変換素子および光電変換素子の製造方法
JP2013219355A (ja) * 2012-04-04 2013-10-24 Samsung Sdi Co Ltd 光電素子の製造方法
WO2014174613A1 (ja) * 2013-04-24 2014-10-30 三菱電機株式会社 太陽電池の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838400B2 (en) * 2008-07-17 2010-11-23 Applied Materials, Inc. Rapid thermal oxide passivated solar cell with improved junction
DE102008056456A1 (de) * 2008-11-07 2010-06-17 Centrotherm Photovoltaics Technology Gmbh Verfahren zur Herstellung einer Solarzelle mit einer zweistufigen Dotierung
US20130089944A1 (en) * 2010-06-11 2013-04-11 Amtech Systems, Inc. Solar cell silicon wafer process
CN102364698A (zh) * 2011-06-30 2012-02-29 常州天合光能有限公司 扩散氧化层二次利用的太阳能电池制备方法
US20130213469A1 (en) * 2011-08-05 2013-08-22 Solexel, Inc. High efficiency solar cell structures and manufacturing methods
CN102655178B (zh) * 2012-04-28 2015-08-26 法国圣戈班玻璃公司 盖板及其制造方法、太阳能玻璃、光伏器件
CN104037245B (zh) * 2014-07-01 2017-11-10 中国科学院宁波材料技术与工程研究所 具有带负电荷抗反射层的太阳电池及其制法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187462A (ja) * 2012-03-09 2013-09-19 Sharp Corp 光電変換素子および光電変換素子の製造方法
JP2013219355A (ja) * 2012-04-04 2013-10-24 Samsung Sdi Co Ltd 光電素子の製造方法
WO2014174613A1 (ja) * 2013-04-24 2014-10-30 三菱電機株式会社 太陽電池の製造方法

Also Published As

Publication number Publication date
TWI578560B (zh) 2017-04-11
JPWO2016098368A1 (ja) 2017-04-27
CN107155378A (zh) 2017-09-12
CN107155378B (zh) 2019-05-10
US20170330990A1 (en) 2017-11-16
TW201624753A (zh) 2016-07-01
JP6257803B2 (ja) 2018-01-10

Similar Documents

Publication Publication Date Title
US20080283120A1 (en) Method of Manufacturing N-Type Multicrystalline Silicon Solar Cells
CN108666393B (zh) 太阳能电池的制备方法及太阳能电池
KR101225978B1 (ko) 태양전지 및 그 제조방법
JP2012525701A (ja) 裏面ドーピングを伴う両面型太陽電池
US9871156B2 (en) Solar cell and method of manufacturing the same
JP5737204B2 (ja) 太陽電池及びその製造方法
US20170133545A1 (en) Passivated contacts for photovoltaic cells
JP5889163B2 (ja) 光起電力装置およびその製造方法、光起電力モジュール
KR101680036B1 (ko) 태양 전지 및 이의 제조 방법
WO2019021545A1 (ja) 太陽電池、及び、その製造方法
JP2015118979A (ja) 太陽電池および太陽電池の製造方法
JP2011166021A (ja) 太陽電池の製造方法及び太陽電池
WO2013100085A1 (ja) 太陽電池素子、太陽電池素子の製造方法および太陽電池モジュール
KR101165915B1 (ko) 태양전지의 제조방법
JP2015144149A (ja) 光電変換装置および光電変換装置の製造方法
JP5868290B2 (ja) 光起電力装置およびその製造方法
JP5830143B1 (ja) 太陽電池セルの製造方法
KR101160116B1 (ko) 후면 접합 태양전지의 제조방법
JP2014007284A (ja) 太陽電池セルの製造方法
WO2013111312A1 (ja) 光起電力装置およびその製造方法、光起電力モジュール
JP6257803B2 (ja) 光起電力装置の製造方法
KR100995654B1 (ko) 태양전지 및 그 제조방법
JPH06252428A (ja) 光電変換素子の製造方法
JP6647425B2 (ja) 太陽電池の製造方法
TWI481060B (zh) 太陽能電池的製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564695

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15522458

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869577

Country of ref document: EP

Kind code of ref document: A1