WO2016098330A1 - 温度制御弁、および、該温度制御弁が設けられた冷凍サイクルシステム - Google Patents

温度制御弁、および、該温度制御弁が設けられた冷凍サイクルシステム Download PDF

Info

Publication number
WO2016098330A1
WO2016098330A1 PCT/JP2015/006190 JP2015006190W WO2016098330A1 WO 2016098330 A1 WO2016098330 A1 WO 2016098330A1 JP 2015006190 W JP2015006190 W JP 2015006190W WO 2016098330 A1 WO2016098330 A1 WO 2016098330A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
valve body
valve
control valve
Prior art date
Application number
PCT/JP2015/006190
Other languages
English (en)
French (fr)
Inventor
本田 伸
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015188152A external-priority patent/JP2016118295A/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016098330A1 publication Critical patent/WO2016098330A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof

Definitions

  • the present disclosure relates to a temperature control valve that controls the flow rate of the refrigerant according to the temperature of the refrigerant, and a refrigeration cycle system provided with the temperature control valve.
  • EPR Evaporator Pressure Regulator
  • a refrigeration cycle system described in Patent Document 1 As this type of refrigeration cycle system, a refrigeration cycle system described in Patent Document 1 has been proposed.
  • a pressure regulating valve is provided downstream of the evaporator in the refrigeration cycle, that is, between the evaporator and the compressor, and the pressure inside the evaporator (the outlet of the evaporator) is provided by this pressure regulating valve. Pressure).
  • the pressure regulating valve provided in the refrigeration cycle system includes a valve body that opens and closes to control the flow rate of the refrigerant, and an expansion / contraction portion (spring, bellows, etc.) that expands and contracts according to the pressure of the refrigerant.
  • the valve opening is mechanically changed based on the expansion / contraction of the expansion / contraction part.
  • the valve opening degree of the pressure regulating valve is reduced to increase the pressure in the evaporator. That is, in this refrigeration cycle system, the evaporator pressure is controlled to be maintained at a predetermined pressure or higher.
  • the frost when the temperature of the evaporator is low by mechanically changing the valve opening of the pressure regulating valve and controlling the pressure of the evaporator above a predetermined pressure in this way. The occurrence of freezing) is suppressed.
  • the refrigeration cycle system described in Patent Document 1 may not be able to suppress the generation of frost corresponding to a plurality of types of refrigerant. That is, in the refrigeration cycle system described in Patent Document 1, by setting a predetermined pressure that is maintained by the pressure regulating valve in correspondence with one refrigerant, the temperature in the evaporator is changed to the frost when that one refrigerant is used. Even if it is configured to be maintained at a temperature that is high enough to prevent the occurrence of frost, if other refrigerants are used in that configuration, it cannot be maintained at a temperature that is high enough to prevent frosting. May not be sufficiently suppressed.
  • This disclosure is intended to provide a temperature control valve capable of suppressing the generation of frost corresponding to a plurality of types of refrigerant, and a refrigeration cycle system provided with the temperature control valve.
  • a temperature control valve in a circuit in which a refrigerant circulates, and a valve body that is displaced to control the flow rate of the refrigerant, and a valve opening degree that displaces the valve body in accordance with the temperature of the refrigerant. And a temperature sensitive part that changes the temperature.
  • frost is suppressed by controlling the evaporator temperature so as not to be lower than a predetermined set temperature by the above configuration. That is, the valve opening of the temperature control valve is not adjusted based on the pressure of the evaporator, but the flow rate of the refrigerant is controlled by adjusting the valve opening based on the temperature. For this reason, if the predetermined set temperature is set high enough to prevent the generation of frost corresponding to a plurality of different types of refrigerant, the generation of frost in the plurality of different types of refrigerant can be suppressed. Therefore, it is possible to suppress the occurrence of frost when different types of refrigerants are used. That is, the generation of frost can be suppressed corresponding to a plurality of refrigeration cycle systems using different types of refrigerants.
  • FIG. 6 is a diagram showing a relationship between temperature and pressure for the refrigerant (HFC-134a) and the working medium (R600a) in the refrigeration cycle system 1 shown in FIG.
  • a refrigeration cycle system 1 according to a first embodiment of the present disclosure will be described with reference to FIGS. 1 and 2.
  • the refrigeration cycle system 1 is applied to, for example, a vehicle air conditioner for a hybrid vehicle that obtains driving force for vehicle travel from an internal combustion engine and a travel motor.
  • the refrigeration cycle system 1 functions to cool or heat the vehicle interior air blown into the vehicle interior, which is the air conditioning target space, in the vehicle air conditioner.
  • the refrigeration cycle system 1 includes a compressor 2, a condenser 3, an expansion valve 4, an evaporator 5, and a temperature control valve 6.
  • the refrigeration cycle system 1 exhibits a function of cooling or heating by circulating a refrigerant.
  • a refrigerant such as HCFC-22, CFC-12, HFC-134a may be used.
  • Compressor 2 is arranged in the engine room, sucks refrigerant in refrigeration cycle system 1, compresses it, and discharges it.
  • the compressor 2 is an electric compressor that drives, for example, a fixed capacity type compression mechanism with a fixed discharge capacity by an electric motor.
  • various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed as the compression mechanism.
  • An electric motor is a device whose operation (number of rotations) is controlled by a control signal output from a control device.
  • the electric motor either an AC motor or a DC motor may be adopted.
  • coolant discharge capability of a compression mechanism is changed by this rotation speed control.
  • the inlet side of the condenser 3 is connected to the discharge port side of the compressor 2.
  • the condenser 3 is a heat exchanger for cooling the high-temperature and high-pressure refrigerant (refrigerant gas) sent from the compressor 2 to condense and liquefy it.
  • the condenser 3 functions as a radiator in the heating mode or the like.
  • the condenser 3 as a radiator is disposed, for example, in a casing of an air conditioning unit in the passenger compartment, dissipates the refrigerant (high-pressure refrigerant) discharged from the compressor 2, and passes through the evaporator 5. Heat.
  • a first refrigerant passage 7 that guides the refrigerant flowing out of the condenser 3 to the evaporator 5 is connected to the outlet side of the condenser 3.
  • the first refrigerant passage 7 is provided with an expansion valve 4 configured so that the passage area (throttle opening) of the first refrigerant passage 7 can be changed.
  • the expansion valve 4 here is a valve body configured to be able to change the passage opening degree (throttle opening degree) of the first refrigerant passage 7, and the throttle opening degree of the valve body is changed.
  • An electric variable aperture mechanism having an electric actuator composed of a stepping motor.
  • the operation of the expansion valve 4 is controlled by a control signal output from the control device.
  • the inlet side of the evaporator 5 is connected to the outlet side of the expansion valve 4.
  • the evaporator 5 has a function of removing heat from the air passing outside the evaporator 5 and cooling the air by evaporating the refrigerant (liquid refrigerant) liquefied by the condenser 3 and having become low temperature and low pressure by the expansion valve 4. It is a heat exchanger that fulfills
  • a second refrigerant passage 9 that guides the refrigerant flowing out of the evaporator 5 to the suction side of the compressor 2 via the accumulator tank 8 is connected to the outlet side of the evaporator 5.
  • the accumulator tank 8 is a gas-liquid separator that separates the gas-liquid refrigerant flowing into the accumulator tank and stores excess refrigerant in the refrigeration cycle. As shown in FIG. 1, the outlet side of the evaporator 5 is connected to the inlet side of the accumulator tank 8, and the inlet side of the compressor 2 is connected to the outlet side of the accumulator tank 8.
  • the accumulator tank 8 functions to prevent liquid refrigerant from being sucked into the compressor 2 and prevent liquid compression in the compressor 2.
  • a temperature control valve 6 is arranged on the outlet side of the evaporator 5 as shown in FIG.
  • the temperature control valve 6 is a valve that controls the flow rate of the refrigerant by detecting the temperature of the refrigerant and adjusting the valve opening degree by displacing the valve body 64 based on the detected temperature of the refrigerant.
  • the temperature control valve 6 is provided between the evaporator 5 and the compressor 2 in the refrigeration cycle (second refrigerant passage 9). That is, the temperature control valve 6 is disposed in a circuit in which the refrigerant circulates.
  • the refrigerant path which comprises the circuit through which a refrigerant circulates is comprised by the 1st refrigerant path, the 2nd refrigerant path, etc.
  • the temperature control valve 6 in the present embodiment will be described with reference to FIG.
  • the temperature control valve 6 includes a cylindrical first case 61 made of Al (aluminum) or the like and a cylindrical second case 62 made of Al or the like.
  • the temperature control valve 6 is fastened by caulking, in which a first case 61 and a second case 62 are fitted.
  • the first case 61 and the second case 62 form an in-case refrigerant passage 63 that is a substantially cylindrical space as a passage through which the refrigerant passes. That is, in the temperature control valve 6, an in-case refrigerant passage 63 communicating with the first case 61 and the second case 62 is formed.
  • a seal member 65 is provided at a fitting portion between the first case 61 and the second case 62.
  • the first case 61 includes a refrigerant inlet 61a for introducing the refrigerant flowing out of the evaporator 5 into the in-case refrigerant passage 63, a guide hole 61b into which a valve body 64 described later is slidably inserted, and a valve body flange 64a. Is provided with a sheet surface 61c that contacts and separates.
  • the guide hole 61b forms part of the in-case refrigerant passage 63. Even if the shape memory spring 66 is arranged between the first case 61 and the valve body 64 so that the biasing direction of the bias spring 67 is the same in the in-case refrigerant passage 63 in the second case 62. good.
  • the biasing direction of the shape memory spring 66 and the biasing direction of the bias spring 67 may be arranged to oppose each other.
  • the second case 62 is formed with a refrigerant outlet 62a through which the refrigerant that has passed through the in-case refrigerant passage 63 is led out to the compressor 2 via the accumulator tank 8.
  • a bias spring 67 is disposed in the in-case refrigerant passage 63 in the second case 62.
  • the valve body 64 is a bottomed cylindrical member that slides in the axial direction of the in-case refrigerant passage 63.
  • the valve body 64 is made of Al.
  • the valve body 64 includes a valve body passage hole 64b having a through-hole shape in a cylindrical portion, and a valve body flange portion 64a that protrudes radially outward on the outer peripheral surface on the bottom side, that is, the downstream side of the refrigerant flow, and the valve body flange portion 64a.
  • a bleed hole 64c penetrating from one end side end surface in the axial direction to the other end side end surface in the axial direction.
  • the bleed hole 64 c is a hole provided as a passage through which oil passes to return the oil to the compressor 2. In the refrigeration cycle system 1, the bleed hole 64 c is formed so that oil flows to the compressor 2 side even when the valve body 64 of the temperature control valve 6 is in a fully closed state.
  • the valve body 64 has a cylindrical portion slidably inserted into the guide hole 61b, and the opening degree of the valve body passage hole 64b changes depending on the position of the valve body 64 (that is, the in-case refrigerant passage 63 is opened and closed). )
  • valve body 64 is biased in the direction in which the opening degree of the valve body passage hole 64b is increased by the refrigerant pressure on the refrigerant inlet 61a side (that is, the refrigerant pressure on the outlet side of the evaporator 5). Further, the valve body 64 is urged in a direction in which the opening degree of the valve body passage hole 64b decreases due to the refrigerant pressure on the refrigerant outlet port 62a side (that is, the refrigerant pressure on the inlet side of the accumulator tank 8).
  • a shape memory spring 66 and a bias spring 67 are disposed in the in-case refrigerant passage 63.
  • the shape memory spring 66 is disposed between the first case 61 and the valve body 64, and the bias spring 67 is disposed between the valve body 64 and the second case 62.
  • the bias spring 67 is fixed to the second case 62 via a spring seat 68 fixed to the second case 62.
  • the spring seat 68 is formed with a through hole 68a that communicates the space on the refrigerant inlet 61a side and the space on the refrigerant outlet 62a side of the in-case refrigerant passage 63 in the second case 62. It consists of
  • the shape memory spring 66 and the bias spring 67 are both arranged to be extendable and contractible in the axial direction of the in-case refrigerant passage 63, that is, in the sliding direction of the valve body 64.
  • the shape memory spring 66 is a shape memory alloy such as a Ti (titanium) -Ni (nickel) alloy, that is, even if it is deformed below a certain temperature (transformation point), it recovers its original shape when heated above that temperature.
  • the shape memory spring 66 is in a state in which the shape is memorized in advance by being extended beyond the natural length at a temperature equal to or higher than a predetermined temperature.
  • the “predetermined temperature” is a temperature corresponding to a predetermined set temperature (for example, 0 ° C.) set as a minimum temperature suitable as a temperature in the evaporator 5 in order to suppress frost.
  • the shape memory spring 66 may be an example of a temperature sensitive part that changes the valve opening by displacing the valve body in accordance with the temperature of the refrigerant.
  • the bias spring 67 is a spring made of SUS304 or the like.
  • the shape memory spring 66 when it is required to suppress the self-excited vibration of the valve body 64 that occurs when a larger pressure is applied, the shape memory spring 66 that is more difficult to expand and contract. Further, a bias spring 67, that is, a shape memory spring 66 and a bias spring 67 having a larger spring constant are employed.
  • the performance as a pressure control valve is insufficient, that is, the opening / closing change of the valve with respect to the refrigerant pressure becomes insufficient, and as a result the refrigeration cycle system Stops functioning.
  • the expansion / contraction part is sufficient due to the refrigerant pressure during normal operation of the system.
  • the pressure control valve cannot be opened and closed.
  • the temperature control valve 6 in the present embodiment considers that the generation of noise due to the self-excited vibration of the valve body 64 is suppressed, and the shape memory spring 66 and the bias spring 67 are both
  • the material is made of a material that has a large spring constant and hardly expands or contracts, that is, a material that hardly expands and contracts when a small external force is applied and expands and contracts only when a large external force is applied.
  • the shape memory spring is set so that the valve opening change when the refrigerant pressure change is 0.1 MPa at maximum is 2%.
  • 66 and the bias spring 67 are made of a material that hardly stretches.
  • the temperature control valve 6 in the present embodiment has been described above.
  • the refrigerant introduced from the refrigerant introduction port 61 a sequentially flows through the guide hole 61 b and the valve body 64 in the in-case refrigerant passage 63 to the space where the bias spring 67 is disposed. After passing through the through hole 68a formed in the spring seat 68, it is led out from the refrigerant outlet port 62a.
  • the shape memory spring 66 when the shape memory spring 66 is less than a predetermined temperature (the air conditioning load is low), the shape memory spring 66 is contracted by the reaction force of the bias spring 67, thereby opening the valve. The degree becomes smaller.
  • the air conditioning load when the air conditioning load is low, that is, when the temperature of the refrigerant is low, by reducing the valve opening, the temperature of the evaporator 5 does not become lower than a predetermined set temperature (for example, 0 ° C.). To do.
  • a predetermined set temperature for example, 0 ° C.
  • the valve opening degree is restored by restoring the shape memorized by the shape memory spring 66. Becomes larger. That is, according to the temperature of the refrigerant, when the shape memory spring 66 is heated by the refrigerant and becomes equal to or higher than a predetermined temperature, the shape memory spring 66 starts to recover to the original shape, thereby compressing the bias spring 67. As a result, the valve opening increases.
  • the air conditioning load is high, that is, when the temperature of the refrigerant is high, the temperature of the evaporator 5 is prevented from becoming too high by increasing the valve opening.
  • the refrigeration cycle system 1 utilizes the fact that the shape (length) of the shape memory spring 66 changes due to the temperature of the shape memory spring 66 changing according to the temperature of the refrigerant.
  • the flow rate of the refrigerant is controlled by adjusting the valve opening. That is, the flow rate of the refrigerant is controlled by adjusting the valve opening degree using the shape memory effect of the shape memory spring 66.
  • the shape memory spring 66 as a temperature sensitive unit detects the temperature of the refrigerant and controls the flow rate of the refrigerant based on the temperature.
  • the generation of frost is suppressed by controlling the temperature of the evaporator 5 so as not to be lower than a predetermined set temperature. That is, in the refrigeration cycle system 1 according to the present embodiment, the valve opening degree of the pressure control valve is not adjusted based on the pressure of the evaporator, but the flow rate of the refrigerant is controlled by adjusting the valve opening degree based on the temperature. To do. For this reason, in the refrigeration cycle system 1 according to the present embodiment, if a predetermined set temperature is appropriately set corresponding to a plurality of different types of refrigerant, frost is generated in the plurality of different types of refrigerant. Can be suppressed.
  • the refrigeration cycle system 1 it is possible to suppress the occurrence of frost when different types of refrigerants are used. That is, the generation of frost can be suppressed corresponding to a plurality of refrigeration cycle systems that use different types of refrigerants.
  • valve opening of the temperature control valve is changed sensitively according to the refrigerant pressure. For this reason, in such a refrigeration cycle system that mechanically changes the valve opening degree of the temperature control valve, when the pressure of the refrigerant suddenly increases (for example, when the refrigerant flow rate suddenly rises when the system is started).
  • the valve body of the temperature control valve vibrates by itself, which may cause abnormal noise. Specifically, for example, self-excited vibration of the valve body occurs at the following times. That is, when the internal pressure of the refrigeration cycle when the system is stopped is increased, the system is started in a state where the valve body is held in a fully opened state.
  • the pressure between the evaporator and the compressor rapidly decreases, and accordingly the temperature control valve reduces the pressure in the evaporator to a predetermined value.
  • the temperature control valve is suddenly fully closed.
  • the expansion valve opens and the refrigerant flows into the evaporator
  • the pressure rapidly increases due to the inflow of the refrigerant, and the temperature control valve is suddenly moved in the opening direction (valve opening). Degree increases).
  • the valve body falls into self-excited vibration, which may cause abnormal noise.
  • the temperature of the refrigerant is detected, and the flow rate of the refrigerant is controlled based on the temperature.
  • the temperature of the evaporator 5 changes in accordance with the change in the pressure of the evaporator 5
  • the pressure of the evaporator 5 changes instantaneously, Not detected as a change in temperature. From this, in the refrigeration cycle system 1 according to the present embodiment, when the refrigerant pressure changes suddenly and instantaneously, such as when the system is started, the temperature change of the evaporator 5 is not detected, and the valve body 64 is Does not displace.
  • the generation of abnormal noise caused by the self-excited vibration of the valve body 64 of the temperature control valve 6 when the pressure of the refrigerant suddenly increases instantaneously is suppressed.
  • noise is not generated due to the self-excited vibration of the valve body 64 of the temperature control valve 6 with a simple configuration without using a complicated configuration of the pressure control valve 6 such as providing an O-ring. Occurrence can be suppressed.
  • the valve opening degree can be changed by the function of the temperature sensitive portion (shape memory spring 66) while the expansion and contraction portion is made of a material that is difficult to expand and contract.
  • the self-excited vibration of the valve body 64 of the temperature control valve 6 can be suppressed while maintaining the function as the cycle system 1.
  • the shape memory spring 66 functions as a temperature sensitive part that changes the valve opening degree by displacing the valve body 64 in accordance with the temperature of the refrigerant.
  • the refrigeration cycle system 1 detects the temperature of the refrigerant and controls the flow rate of the refrigerant based on the temperature.
  • the temperature control valve has a temperature sensitive part (shape memory spring 66). 6 is provided.
  • the generation of frost is suppressed by controlling the temperature of the evaporator 5 so as not to be lower than a predetermined set temperature. That is, in the refrigeration cycle system 1 according to the present embodiment, the valve opening degree of the pressure control valve is not adjusted based on the pressure of the evaporator, but the flow rate of the refrigerant is controlled by adjusting the valve opening degree based on the temperature. To do. For this reason, in the refrigeration cycle system 1 according to the present embodiment, if a predetermined set temperature is set high enough to prevent generation of frost in correspondence with a plurality of different types of refrigerants, a plurality of different types of refrigerants. Generation of frost can be suppressed.
  • the refrigeration cycle system 1 it is possible to suppress the occurrence of frost when different types of refrigerants are used. That is, generation
  • the temperature control valve 6 in the present embodiment considers that the generation of noise due to the self-excited vibration of the valve body 64 is suppressed, and the shape memory spring 66 and the bias spring 67 are However, it is made of a material that has a large spring constant and is difficult to expand and contract, that is, a material that hardly expands and contracts when a small external force is applied and expands and contracts only when a large external force is applied.
  • the valve opening degree can be changed by the function of the temperature sensitive portion (shape memory spring 66) while the expansion and contraction portion is made of a material that is difficult to expand and contract.
  • the self-excited vibration of the valve body 64 of the temperature control valve 6 can be suppressed while maintaining the function as the system 1.
  • the refrigeration cycle system 1 includes a shape memory spring 66, and uses the shape memory effect of the shape memory spring 66 to displace the valve body 64 to change the valve opening.
  • a temperature sensitive unit that detects the temperature of the refrigerant and controls the flow rate of the refrigerant based on the temperature.
  • the temperature control valve 6 has a complicated configuration such as an O-ring, and a simple configuration allows the self-excited vibration of the valve body 64 of the temperature control valve 6. The occurrence of abnormal noise can be suppressed.
  • a guide hole 62b into which the valve body 64 is slidably inserted is formed in the second case 62 in place of the guide hole 61b in the first embodiment. Further, the second case 62 is formed with a seat surface 62c to which the valve body flange portion 64a comes in contact with and separates from the seat surface 61c in the first embodiment.
  • the valve body 64 has a cylindrical portion slidably inserted into the guide hole 62b, and the opening degree of the valve body passage hole 64b changes depending on the position of the valve body 64 (that is, the in-case refrigerant passage 63 is opened and closed). )
  • the in-case refrigerant passage 63 is provided with a working medium 66A and a working medium enclosing portion 66B instead of the shape memory spring 66 in the first embodiment.
  • the working medium 66A may be an example of a temperature sensitive unit that changes the valve opening by displacing the valve body in accordance with the temperature of the refrigerant.
  • the working medium 66A is a medium that changes in volume by being solidified by the heat of the refrigerant.
  • the working medium 66A can be composed of water, fatty acid, n-paraffin, water-absorbing resin, and the like. It consists of water that solidifies below 0 ° C.
  • the working medium enclosing portion 66B functions as a container for enclosing the working medium 66A, and expands and contracts at least in the axial direction of the refrigerant passage 63 in the case, that is, in the sliding direction of the valve body 64 in accordance with the volume change of the working medium 66A.
  • the working medium enclosing portion 66 ⁇ / b> B is here configured to wrap the rubber tube 66 ⁇ / b> Ba that encloses the working medium 66 ⁇ / b> A in the cavity and the rubber tube 66 ⁇ / b> Ba in the cavity without a substantial gap.
  • An arranged resin tube 66Bb is provided.
  • the rubber tube 66Ba is made of a material that expands and contracts at least in the axial direction of the in-case refrigerant passage 63 in accordance with a change in volume of the working medium 66A.
  • the resin tube 66Bb is made of a hard resin material, thereby suppressing the rubber tube 66Ba from extending in the radial direction.
  • the working medium enclosure 66B is disposed between the first case 61 and the valve body 64.
  • the spring seat 68 is fixed to the first case 61 via an annular buffer member 69 made of rubber packing or the like.
  • the buffer member 69 is provided to absorb excessive elongation of the rubber tube 66Ba due to volume expansion of the working medium 66A.
  • One end of the rubber tube 66Ba is fixed to the spring seat 68 by a caulking ring 66Bc, and the other end on the opposite side is fixed to the valve body 64 by a caulking ring 66Bc. Only the inner peripheral side of the resin pipe 66Bb is bonded to the rubber pipe 66Ba.
  • the bias spring 67 is disposed between the valve body 64 and the second case 62.
  • the bias spring 67 is directly fixed to the second case 62.
  • the bias spring 67 is disposed so as to be expandable and contractable in the axial direction of the in-case refrigerant passage 63.
  • the refrigerant introduced from the refrigerant introduction port 61 a passes through the through hole 68 a formed in the spring seat 68, in the space in the case refrigerant passage 63 where the buffer member 69 is disposed. Then, it flows in sequence to the space in which the working medium enclosing portion 66B is arranged, flows through the valve body 64 to the guide hole 62b, and then is led out from the refrigerant outlet port 62a.
  • the working medium 66A when the working medium 66A is less than a predetermined temperature (in a state where the air conditioning load is low), the working medium 66A solidifies and changes in volume, and the rubber tube 66Ba expands and contracts and the bias spring 67 is expanded. As the valve expands and contracts, the valve opening changes.
  • the “predetermined temperature” is a temperature corresponding to a predetermined set temperature (for example, 0 ° C.) set as a minimum temperature suitable as a temperature in the evaporator 5 in order to suppress frost.
  • a predetermined set temperature for example, 0 ° C.
  • the working medium 66A solidifies and expands in volume, and the rubber tube 66Ba extends.
  • the bias spring 67 is contracted, so that the valve opening is reduced.
  • the working medium 66A is liquid when the working medium 66A is equal to or higher than a predetermined set temperature
  • the volume of the working medium 66A is larger than when the working medium 66A is solidified.
  • the valve opening is different.
  • water that solidifies at 0 ° C. or less is used as the working medium 66A
  • the working medium 66A becomes water and the volume shrinks, and the rubber tube
  • the valve opening degree increases as 66Ba contracts and the bias spring 67 extends.
  • the air conditioning load is high, that is, when the temperature of the refrigerant is high, the temperature of the evaporator 5 is prevented from becoming too high by increasing the valve opening.
  • the working medium 66A solidifies and contracts in volume, thereby extending the bias spring 67, thereby reducing the valve opening.
  • the volume expansion coefficient of the working medium 66A when the working medium 66A (water) solidifies was 9%.
  • the valve is utilized by using the volume change of the working medium 66A when the temperature of the working medium 66A is reduced due to the temperature change of the refrigerant and the working medium 66A is solidified.
  • the flow rate of the refrigerant is controlled by adjusting the opening.
  • the working medium 66A as the temperature sensitive unit detects the temperature of the refrigerant and controls the flow rate of the refrigerant based on the temperature.
  • the same effects as those of the first embodiment can be obtained. That is, in the refrigeration cycle system 1 according to the present embodiment, the generation of frost is suppressed by controlling the flow rate of the refrigerant in this way so that the temperature of the evaporator 5 does not become lower than a predetermined set temperature. . For this reason, in the refrigeration cycle system 1 according to the present embodiment, it is possible to suppress the occurrence of frost when different types of refrigerants are used. That is, the generation of frost can be suppressed corresponding to a plurality of refrigeration cycle systems that use different types of refrigerants. The generation of noise due to the self-excited vibration of the valve body 64 of the temperature control valve 6 can be suppressed with a simple configuration without making the temperature control valve 6 complicated such as providing an O-ring.
  • FIGS. 5 and 6 A third embodiment of the present disclosure will be described with reference to FIGS. 5 and 6.
  • the configuration of the temperature control valve 6 is changed with respect to the second embodiment, and the other aspects are the same as those of the second embodiment, and thus the description thereof is omitted here.
  • the temperature control valve 6 in the present embodiment includes a guide hole 610 a into which the valve body 64 is slidably inserted and a seat surface 610 b with which the valve body flange portion 64 a comes into contact with and separates from the valve guide. It is comprised as a spool valve provided with 610.
  • the valve body 64 has a cylindrical portion slidably inserted into the guide hole 610a, and the opening degree of the valve body passage hole 64b changes depending on the position of the valve body 64 (that is, the in-case refrigerant passage 63 is opened and closed). )
  • the in-case refrigerant passage 63 is provided with a working medium 66C and a working medium enclosure 66D instead of the working medium 66A and the working medium enclosure 66B in the second embodiment.
  • the working medium 66C may be an example of a temperature sensitive unit that changes the valve opening by displacing the valve body according to the temperature of the refrigerant.
  • the working medium 66C is a medium whose pressure changes due to the heat of the refrigerant.
  • R600a, HFC-23, or the like may be employed as the working medium 66C.
  • the working medium enclosing portion 66D functions as a container for enclosing the working medium 66C, and at least the axial direction of the in-case refrigerant passage 63, that is, the valve body 64 according to the difference between the pressure of the refrigerant and the pressure of the working medium 66C. It is a portion that expands and contracts in the sliding direction.
  • the working medium enclosing portion 66D is configured by a bellows that encloses the working medium 66C in the hollow portion.
  • the working medium enclosure 66D may be an example of an expansion / contraction part that expands and contracts according to the difference between the refrigerant pressure and the working medium pressure.
  • the refrigerant and the working medium 66C include a working medium enclosing portion in a direction in which the valve opening decreases in accordance with the difference between the pressure of the refrigerant and the pressure of the working medium 66C when the working medium 66C is below a predetermined temperature. While extending 66D, when the working medium 66C is more than predetermined temperature, it is comprised so that the working medium enclosure part 66D may be shrunk
  • HFC-134a R134a
  • R600a is used as the working medium 66C.
  • the “predetermined temperature” is a temperature corresponding to a predetermined set temperature (for example, 0 ° C.) set as a minimum temperature suitable as a temperature in the evaporator 5 in order to suppress frost.
  • the temperature of the evaporator 5 is prevented from becoming less than a predetermined set temperature by reducing the valve opening.
  • the temperature of the evaporator 5 is easily maintained at a predetermined temperature or higher, and the occurrence of frost in the refrigeration cycle (especially in the evaporator 5) is suppressed.
  • the working medium enclosing unit 66D when the working medium enclosing unit 66D is equal to or higher than a predetermined set temperature (in a state where the air conditioning load is high), the refrigerant pressure becomes equal to or higher than the pressure of the working medium 66C.
  • the valve opening increases as the portion 66D contracts and the bias spring 67 extends.
  • the working medium 66C and the working medium enclosing unit 66D as temperature sensitive units detect the temperature of the refrigerant and control the flow rate of the refrigerant based on the temperature.
  • the same effects as in the first and second embodiments can be obtained. That is, in the refrigeration cycle system 1 according to the present embodiment, the generation of frost is suppressed by controlling the flow rate of the refrigerant in this way so that the temperature of the evaporator 5 does not become lower than a predetermined set temperature. . For this reason, in the refrigeration cycle system 1 according to the present embodiment, it is possible to suppress the occurrence of frost when different types of refrigerants are used. That is, the generation of frost can be suppressed corresponding to a plurality of refrigeration cycle systems that use different types of refrigerants. The generation of noise due to the self-excited vibration of the valve body 64 of the temperature control valve 6 can be suppressed with a simple configuration without making the temperature control valve 6 complicated such as providing an O-ring.
  • FIG. 7 shows the configuration of the temperature control valve 6 of the present embodiment.
  • the temperature control valve 6 of this embodiment includes a shape memory spring 66, a bias spring 67, a valve body 64, a spring seat 68, an adjustment screw 67a, a washer 67b, and a nut 67c.
  • the valve body 64 has a bottomed cylindrical shape, and a valve body flange 64a is formed at the bottom thereof.
  • the valve body 64 is housed in a case member having a first case 61 and a second case 62.
  • a bias spring 67 is disposed along the inner peripheral surface of the valve body 64, and a shape memory spring 66 is disposed along the outer peripheral surface of the valve body 64.
  • the bias spring 67 is a spring member that biases the shape memory spring 66 in a compressing direction.
  • the bias spring 67 is fixed to the adjustment screw 67 a on the opening side of the valve body 64.
  • a nut 67c is fastened to the adjustment screw 67a so as to sandwich a circular plate washer 67b.
  • the washer 67 b has a circular plate shape having an opening, and is fixed to the inner peripheral surface of the second case 62.
  • an adjustment screw 67a that is screwed with the washer 67b during manufacture, the compression amount of the bias spring 67 is changed, and fine adjustment of the valve opening / closing temperature is possible.
  • the nut 67c is fastened to prohibit the rotation of the adjusting screw 67a.
  • the spring seat 68 is fixed to the inner peripheral surface of the second case 62 and supports the valve body 64 slidably in the axial direction of the valve body 64.
  • the spring seat 68 has an opening 68a for allowing the refrigerant to pass therethrough.
  • the direction of the refrigerant flowing from the refrigerant inlet 61a to the refrigerant outlet 62a is defined as one direction (first direction).
  • the force Fp that acts on the valve body 64 due to the differential pressure between the refrigerant pressure at the refrigerant inlet 61a and the refrigerant pressure at the refrigerant outlet 62a and the force Fb that biases the valve body 64 by the bias spring 67 are unidirectional, that is, the refrigerant flow. Acts on direction. Further, the urging force Fs acting on the valve body 64 by the shape memory spring 66 acts in the direction opposite to the one direction (second direction), that is, in the direction opposite to the refrigerant flow direction.
  • the configuration of the temperature control valve 6 in the present embodiment has been described above.
  • the refrigerant introduced from the refrigerant introduction port 61 a passes through the outer peripheral side of the valve body 64 in the in-case refrigerant passage 63, the space where the shape memory spring 66 is disposed, and the valve body 64. Is introduced to the refrigerant outlet port 62a side.
  • the shape memory spring 66 when the shape memory spring 66 is below a predetermined temperature (in a state where the air conditioning load is low), the shape memory spring 66 is contracted by the reaction force of the bias spring 67, thereby opening the valve opening degree. Becomes smaller.
  • the valve opening degree is restored by restoring the shape memorized by the shape memory spring 66. growing.
  • FIG. 8 is a diagram showing directions of forces Fp, Fs, and Fb acting on the valve body 64 in the temperature control valve 6 of the first embodiment as a comparative example.
  • FIG. 9 is a diagram showing the relationship between the force Fp, Fs, Fb applied to the valve body 64 in the temperature control valve 6 of the first embodiment and the valve opening degree.
  • the refrigerant pressure on the refrigerant inlet 61 a side and the refrigerant pressure on the refrigerant outlet 62 a side in the same direction as the refrigerant flow direction with respect to the valve body 64.
  • a force Fp corresponding to the refrigerant differential pressure is applied.
  • the shape memory spring 66 becomes equal to or higher than a predetermined set temperature, the memorized shape is recovered. For this reason, the force Fs in the direction in which the valve opening degree of the valve body passage hole 64 b increases acts on the valve body 64. Further, a force Fb is applied to the valve body 64 in such a direction that the valve opening degree of the valve body passage hole 64b is reduced by the bias spring 67b.
  • FIG. 9 shows the balance of forces of Fp, Fs and Fb in the temperature control valve 6 of the first embodiment.
  • shaft in FIG. 9 is an absolute value of Fp, Fs, and Fb.
  • Fs + Fp needs to be lower than Fb.
  • Fs + Fp is lower than Fb.
  • Fs + Fp exceeds Fb, and the valve body passage hole 64b is fully closed. A situation arises in which it is impossible to make it.
  • the degree of freedom in design may be limited.
  • FIG. 10 shows the balance of Fp, Fs and Fb forces in the temperature control valve 6 of the fourth embodiment.
  • Fb + Fp in order for the valve opening degree of the valve body 64 to be fully open, Fb + Fp needs to be lower than Fs.
  • Fb + Fp in order for the valve opening degree of the valve body 64 to be fully closed, Fb + Fp needs to exceed Fs.
  • the force Fp acting on the valve body 64 and the bias spring 67 bias the shape memory spring 66 by the differential pressure between the refrigerant pressure at the refrigerant inlet 61a and the refrigerant pressure at the refrigerant outlet 62a.
  • the force Fb is opposite to the biasing force Fs acting on the valve body 66 by the shape memory spring 66. For this reason, for example, even when the force Fp generated by the refrigerant differential pressure before and after the valve body 64 is large, the design in which Fb + Fp exceeds Fs is easy.
  • the shape memory spring 66 using the shape memory alloy is provided as a member for generating the biasing force that displaces the valve body 64, and the refrigerant introduction port 61a for introducing the refrigerant and the refrigerant are led out.
  • Case members 61 and 62 having a refrigerant outlet port 62a and accommodating the valve body 64 between the refrigerant inlet port 61a and the refrigerant outlet port 62a, and a bias spring 67 for urging the shape memory spring 66 in a compressing direction. It is equipped with.
  • the direction of the refrigerant flowing from the refrigerant inlet 61a to the refrigerant outlet 62a is defined as one direction.
  • the force Fp acting on the valve body 64 by the differential pressure between the refrigerant pressure at the refrigerant inlet 61a and the refrigerant pressure at the refrigerant outlet 62a and the force Fb for biasing the shape memory spring 66 by the bias spring 67 act in one direction.
  • the urging force Fs acting on the valve body 64 acts in the direction opposite to the one direction. For this reason, it is easy to design such that Fb + Fp exceeds Fs, and the opening / closing operation of the valve body 64 can be performed reliably. Further, the degree of freedom in design can be improved even in the configuration using the shape memory spring 66 that has a small spring constant and does not easily generate a large force.
  • another shape memory alloy may be used instead of the shape memory spring 66.
  • the shape memory spring 66 in order to reduce the temperature response speed from the refrigerant to the shape memory spring 66, the shape memory spring 66 is made of a coating material 66a such as resin as shown in FIG. It may be coated. In this case, it is possible to suppress a sudden change in the temperature of the shape memory spring 66. As a result, it is possible to prevent the generation of noise due to the sudden change in the temperature of the shape memory spring 66 and the self-excited vibration of the valve body 64 of the temperature control valve 6.
  • the temperature response speed of the shape memory spring 66 can be controlled by the film thickness of the coating material 66a.
  • one end 64d of the valve body 64 may have a piston shape.
  • the spring seat 68 has a through hole 68a into which the one end 64d of the valve body 64 is slidably inserted, and a small hole 68b that allows the through hole 68a to communicate with the space on the refrigerant outlet 62a side of the in-case refrigerant passage 63. It is good also as a container shape provided with.
  • a diaphragm may be employed as the working medium enclosing unit 66D.
  • the temperature control valve 6 may include a temperature detection device (such as a temperature sensor) 10 and a flow rate adjustment device 11 including a valve body 64 that adjusts the flow rate of the refrigerant. good.
  • the temperature control valve 6 detects the temperature of the refrigerant by the temperature detection device 10 and adjusts the flow rate of the refrigerant by changing the opening of the valve body 64 of the flow rate adjustment device 11 based on the temperature ( (Control amplifier etc.) 12 may be provided.
  • the opening degree of the valve body 64 of the temperature control valve 6 is reduced by the control of the control device 12.
  • the air conditioning load is low, that is, when the temperature of the refrigerant is low
  • the temperature of the evaporator 5 is prevented from becoming less than a predetermined set temperature by reducing the valve opening.
  • the temperature of the evaporator 5 is easily maintained at a predetermined temperature or higher, and the occurrence of frost in the refrigeration cycle is suppressed.
  • the temperature detection device 10 detects that the temperature is equal to or higher than the predetermined set temperature
  • the opening degree of the valve body 64 of the temperature control valve 6 is increased by the control of the control device 12.
  • the temperature detection device 10 and the control device 12 may be temperature sensitive units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

 温度制御弁は、冷媒が循環する回路内に設けられ、冷媒の流量を制御するために変位する弁体(64)と、冷媒の温度に応じて弁体を変位させて弁開度を変化させる温度感応部(66、66A、66C、10、12)と、を備える。蒸発器(5)の温度が所定の設定温度未満とならないように制御することにより、フロストの発生が抑制される。また、種類の異なる複数の冷媒に対応させて所定の設定温度をフロストが発生しない程度に高く設定すれば、その種類の異なる複数の冷媒においてフロストの発生を抑制することができる。

Description

温度制御弁、および、該温度制御弁が設けられた冷凍サイクルシステム 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年12月18日に出願された日本特許出願2014-256395および、2015年9月25日に出願された日本特許出願2015-188152を基にしている。
 本開示は、冷媒の温度に応じて冷媒の流量を制御する温度制御弁、および、該温度制御弁が設けられた冷凍サイクルシステムに関する。
 従来、冷媒を循環させる冷凍サイクルシステムにおいて、蒸発器内の圧力を調整する圧力調整弁(EPR:Evaporator Pressure Regulator)が設けられたものが知られている。
 この種の冷凍サイクルシステムとしては、特許文献1に記載の冷凍サイクルシステムが提案されている。この冷凍サイクルシステムでは、冷凍サイクル内における蒸発器よりも下流側、すなわち蒸発器と圧縮機との間において、圧力調整弁が設けられ、この圧力調整弁によって蒸発器内の圧力(蒸発器の出口圧力)を制御する。具体的には、この冷凍サイクルシステムに設けられた圧力調整弁は、冷媒の流量を制御するために開閉する弁体と、冷媒の圧力によって伸縮する伸縮部(ばね、ベローズなど)を含み、この伸縮部の伸縮に基づいて機械的に弁開度を変化させる構成とされている。そして、この冷凍サイクルシステムでは、蒸発器の出口圧力が所定圧力を下回った場合には、該圧力調整弁の弁開度を小さくして蒸発器内の圧力を大きくする。すなわち、この冷凍サイクルシステムでは、蒸発器の圧力が所定圧力以上に維持されるように制御している。この冷凍サイクルシステムでは、このように機械的に圧力調整弁の弁開度を変化させて蒸発器の圧力を所定圧力以上に制御することによって、蒸発器の温度が低いときのフロスト(着霜、氷結)の発生を抑制している。
 しかしながら、冷媒はその種類によって飽和蒸気圧が異なるため、特許文献1に記載の冷凍サイクルシステムでは、複数の種類の冷媒に対応してフロストの発生を抑制することができない場合がある。すなわち、特許文献1に記載の冷凍サイクルシステムでは、1つの冷媒に対応させて圧力調整弁によって維持する所定圧力を設定することで、その1つの冷媒を使用した場合に蒸発器内の温度がフロストの発生しない程度に高い温度に維持されるように構成されても、その構成のままで他の冷媒を使用した場合には、フロストの発生しない程度に高い温度に維持することができず、フロストの発生を十分に抑制することができないことがある。
特許第2781064号公報
 本開示は、複数の種類の冷媒に対応してフロストの発生を抑制することができる温度制御弁、および、温度制御弁が設けられた冷凍サイクルシステムを提供することを目的とする。
 本開示の一態様による温度制御弁は、冷媒が循環する回路内に設けられ、冷媒の流量を制御するために変位する弁体と、冷媒の温度に応じて弁体を変位させて弁開度を変化させる温度感応部と、を備える。
 上記の構成によって蒸発器の温度が所定の設定温度未満とならないように制御することにより、フロストの発生が抑制される。すなわち、蒸発器の圧力に基づいて温度制御弁の弁開度を調整するわけではなく、温度に基づいて弁開度を調整して冷媒の流量を制御する。このため、種類の異なる複数の冷媒に対応させて所定の設定温度をフロストが発生しない程度に高く設定すれば、その種類の異なる複数の冷媒においてフロストの発生を抑制することができる。したがって、異なる種類の冷媒を用いた場合におけるフロストの発生をも抑制することができる。つまり、種類の異なる冷媒を使用した複数の冷凍サイクルシステムに対応してフロストの発生を抑制することができる。
本開示の第1実施形態に係る冷凍サイクルシステムを模式的に示す図である。 図1に示す冷凍サイクルシステムにおける温度制御弁を示す断面図である。 本開示の第2実施形態に係る冷凍サイクルシステムにおける温度制御弁を示す断面図である。 図3に示す冷凍サイクルシステムにおける作動媒体(水)についての温度と圧力の関係を示す図である。 本開示の第3実施形態に係る冷凍サイクルシステムにおける温度制御弁を示す断面図である。 図5に示す冷凍サイクルシステム1における冷媒(HFC-134a)と作動媒体(R600a)についての温度と圧力の関係を示す図である。 本開示の第4実施形態に係る冷凍サイクルシステムにおける温度制御弁6を示す断面図である。 本開示の第1実施形態に係る温度制御弁6における弁体に作用する力Fp、Fs、Fbの向きを示した図である。 本開示の第1実施形態に係る温度制御弁における弁体に作用する力Fp、Fs、Fbのバランスについて説明する図である。 本開示の第4実施形態に係る温度制御弁における弁体に作用する力Fp、Fs、Fbのバランスについて説明する図である。 第1実施形態の変形例に係る冷凍サイクルシステムにおける形状記憶ばねの一部を示す断面図である。 第1実施形態の変形例に係る冷凍サイクルシステムにおける温度制御弁を示す断面図である。 第1実施形態の変形例に係る冷凍サイクルシステムを模式的に示す図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 本開示の第1実施形態に係る冷凍サイクルシステム1について図1、図2を参照して説明する。この冷凍サイクルシステム1は、例えば内燃機関および走行用電動機から車両走行用の駆動力を得るハイブリッド車両の車両用空調装置に適用されるものである。この冷凍サイクルシステム1は、車両用空調装置において、空調対象空間である車室内へ送風される車室内送風空気を冷却あるいは加熱する機能を果たす。
 図1に示すように、本実施形態に係る冷凍サイクルシステム1は、圧縮機2、凝縮器3、膨張弁4、蒸発器5、および温度制御弁6を有する。冷凍サイクルシステム1は、冷媒を循環させることにより冷却あるいは加熱する機能を発揮する。冷媒としては、HCFC-22、CFC-12、HFC-134aなど公知の冷媒が用いられても良い。
 圧縮機2は、エンジンルーム内に配置されて、冷凍サイクルシステム1において冷媒を吸入し、圧縮して吐出する。圧縮機2は、例えば吐出容量が固定された固定容量型の圧縮機構を電動機にて駆動する電動圧縮機である。圧縮機構としては、具体的には、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。
 電動機は、制御装置から出力される制御信号によって、その作動(回転数)が制御される装置である。電動機としては、交流モータ、直流モータのいずれの形式が採用されても良い。そして、この回転数制御によって、圧縮機構の冷媒吐出能力が変更される。
 図1に示すように、圧縮機2の吐出口側には、凝縮器3の入口側が接続されている。凝縮器3は、圧縮機2から送り込まれてきた高温高圧の冷媒(冷媒ガス)を冷却し、凝縮液化させるための熱交換器である。なお、凝縮器3は、暖房モード時等においては放熱器として機能する。放熱器としての凝縮器3は、例えば車室内の空調ユニットのケーシング内に配置されて、圧縮機2から吐出された冷媒(高圧冷媒)を放熱させて、蒸発器5を通過した車室内送風空気を加熱する。
 図1に示すように、凝縮器3の出口側には、凝縮器3から流出した冷媒を蒸発器5へ導く第1冷媒通路7が接続されている。この第1冷媒通路7には、第1冷媒通路7の通路面積(絞り開度)を変更可能に構成された膨張弁4が配置されている。
 より具体的には、この膨張弁4は、ここでは、第1冷媒通路7の通路開度(絞り開度)を変更可能に構成された弁体と、この弁体の絞り開度を変化させるステッピングモータからなる電動アクチュエータとを有する電気式の可変絞り機構である。
 なお、膨張弁4は、制御装置から出力される制御信号によって、その作動が制御される。
 図1に示すように、膨張弁4の出口側には、蒸発器5の入口側が接続されている。蒸発器5は、凝縮器3で液化されて膨張弁4で低温低圧となった冷媒(液冷媒)を蒸発させることにより、蒸発器5の外部を通過する空気から熱を奪い、空気を冷やす機能を果たす熱交換器である。
 図1に示すように、蒸発器5の出口側には、蒸発器5から流出した冷媒を、アキュムレータタンク8を介して圧縮機2の吸入側へ導く第2冷媒通路9が接続されている。
 アキュムレータタンク8は、その内部に流入した冷媒の気液を分離して、冷凍サイクル内の余剰冷媒を蓄える気液分離器である。図1に示すように、アキュムレータタンク8の入口側には、蒸発器5の出口側が接続されており、アキュムレータタンク8の出口側には、圧縮機2の入口側が接続されている。アキュムレータタンク8は、圧縮機2に液冷媒が吸入されることを抑制し、圧縮機2における液圧縮を防止する機能を果たす。
 また、蒸発器5の出口側には、図1に示すように、温度制御弁6が配置されている。
 温度制御弁6は、冷媒の温度を検出し、検出した冷媒の温度に基づいて弁体64を変位させて弁開度を調整することで、冷媒の流量を制御する弁である。図1に示すように、温度制御弁6は、冷凍サイクル内(第2冷媒通路9)における蒸発器5と圧縮機2との間に設けられている。すなわち、温度制御弁6は、冷媒が循環する回路内に配置されている。なお、冷媒が循環する回路を構成する冷媒通路は、第1冷媒通路、第2冷媒通路等により構成される。
 ここで、本実施形態における温度制御弁6について図2を参照しつつ説明する。図2に示すように、温度制御弁6は、Al(アルミニウム)等から成る筒状の第1ケース61とAl等から成る筒状の第2ケース62とを備える。温度制御弁6は、ここでは、第1ケース61と第2ケース62とが嵌合させられ、かしめにより締結されている。そして、この温度制御弁6では、第1ケース61と第2ケース62とが、冷媒が通る通路としての略円柱状の空間であるケース内冷媒通路63を内部に形成している。すなわち、この温度制御弁6では、第1ケース61及び第2ケース62において連通するケース内冷媒通路63が形成されている。また、第1ケース61と第2ケース62との嵌合部には、シール部材65が設けられている。
 第1ケース61は、蒸発器5から流出した冷媒をケース内冷媒通路63に導入する冷媒導入口61a、後述する弁体64が摺動自在に挿入されるガイド孔61b、および弁体鍔部64aが接離するシート面61cを備えている。なお、ガイド孔61bは、ケース内冷媒通路63の一部をなしている。また、第2ケース62内のケース内冷媒通路63において、バイアスばね67と付勢方向が同一となるように、第1ケース61と弁体64の間に、形状記憶ばね66が配置されても良い。形状記憶ばね66の付勢方向とバイアスばね67の付勢方向が互いに対抗するように配置されても良い。
 第2ケース62には、ケース内冷媒通路63を通過した冷媒を、アキュムレータタンク8を介して圧縮機2へ導出する冷媒導出口62aが形成されている。また、第2ケース62内のケース内冷媒通路63において、バイアスばね67が配置されている。
 弁体64は、ケース内冷媒通路63の軸方向に摺動する有底円筒状の部材である。弁体64は、ここでは、Alから成る。弁体64は、円筒部に貫通孔形状の弁体通路孔64bを備え、底部側、すなわち冷媒流れ下流側の外周面に径外方向に突出する弁体鍔部64aと、弁体鍔部64aの軸方向における一端側端面から軸方向における他端側端面まで貫通するブリード孔64cとを備えている。ブリード孔64cは、オイルを圧縮機2に戻すためにオイルを通す通路として設けられた孔である。この冷凍サイクルシステム1では、このブリード孔64cが形成されていることにより、温度制御弁6の弁体64が全閉状態の場合でも、オイルが圧縮機2側へ流されるようになっている。
 そして、弁体64は、円筒部がガイド孔61bに摺動自在に挿入され、弁体64の位置により弁体通路孔64bの開度が変化する(すなわち、ケース内冷媒通路63が開閉される)ようになっている。
 また、弁体64は、冷媒導入口61a側の冷媒圧力(すなわち、蒸発器5の出口側の冷媒圧力)により、弁体通路孔64bの開度が増大する向きに付勢される。また、弁体64は、冷媒導出口62a側の冷媒圧力(すなわち、アキュムレータタンク8の入口側の冷媒圧力)により弁体通路孔64bの開度が減少する向きに付勢される。
 図2に示すように、ケース内冷媒通路63には、形状記憶ばね66およびバイアスばね67が配置されている。形状記憶ばね66は、第1ケース61と弁体64の間に配置され、バイアスばね67は、弁体64と第2ケース62の間に配置されている。なお、バイアスばね67は、第2ケース62に固定されたばね座68を介して第2ケース62に固定されている。ばね座68は、第2ケース62内のケース内冷媒通路63のうち冷媒導入口61a側の空間と冷媒導出口62a側の空間とを連通させる貫通孔68aが形成されており、ここでは、Alで構成されている。形状記憶ばね66およびバイアスばね67は、いずれも、ケース内冷媒通路63の軸方向、すなわち弁体64の摺動方向に伸縮自在に配置されている。
 形状記憶ばね66は、Ti(チタン)-Ni(ニッケル)合金などの形状記憶合金、すなわち、ある温度(変態点)以下で変形しても、その温度以上に加熱すると、元の形状に回復する性質を持った合金から成るばねである。形状記憶ばね66は、ここでは、予め、所定の温度以上の温度下で自然長よりも伸ばされることで形状を記憶した状態とされている。ここでいう「所定の温度」は、フロストを抑制するために蒸発器5内の温度として好適な最低限度の温度として設定される所定の設定温度(例えば、0℃)に対応する温度である。なお、この形状記憶ばね66は、冷媒の温度に応じて弁体を変位させて弁開度を変化させる温度感応部の一例であっても良い。バイアスばね67は、SUS304などから成るばねである。
 ここで、伸縮部がより伸縮し難い材質であればあるほど、より激しく冷媒の圧力が高まった時においても自励振動に起因する異音の発生を抑制することができる。したがって、後述する「大きな外力が印加された場合のみにおいて伸縮する」の「大きな外力」の程度は、どの程度の大きな圧力が印加された場合に生じる弁体64の自励振動を抑制するかによって定められる。
 すなわち、本実施形態に係る冷凍サイクルシステム1においては、より大きな圧力が印加された場合に生じる弁体64の自励振動を抑制することが求められる場合には、より伸縮し難い形状記憶ばね66およびバイアスばね67、つまり、よりばね定数の大きい形状記憶ばね66、バイアスばね67が採用される。
 なお、単に伸縮部(ばね)の材料を伸縮し難い材料に変更した場合には、圧力制御弁としての性能が不十分、すなわち冷媒の圧力に対する弁の開閉変化が不十分となり、ひいては冷凍サイクルシステムが機能しなくなる。特に、システム起動時における急激な冷媒流量の立ち上がり時などの特に高圧時に対応させるために、特に伸縮し難い伸縮部を用いた場合においては、システムの通常運転時における冷媒の圧力によって伸縮部が十分に伸縮せず、圧力制御弁を開閉させることができない。
 これらのことに鑑み、本実施形態における温度制御弁6は、弁体64の自励振動に起因する異音の発生を抑制することを考慮し、形状記憶ばね66およびバイアスばね67が、いずれも、ばね定数が大きく伸縮し難い材料、すなわち、小さな外力が印加された場合にはほとんど伸縮せず、大きな外力が印加された場合のみにおいて伸縮する材料で構成されている。具体的には、例えば、弁が全開状態である場合を100%として、冷媒の圧力変化が最大で0.1MPaであるときの弁開度変化が最大で2%となるように、形状記憶ばね66およびバイアスばね67が伸縮し難い材料で構成されている。
 以上、本実施形態における温度制御弁6について説明した。この温度制御弁6では、冷媒導入口61aから導入された冷媒が、ケース内冷媒通路63のうち、ガイド孔61b、弁体64を通って、バイアスばね67が配置された空間へと順に流れ、ばね座68に形成された貫通孔68aを通った後、冷媒導出口62aから導出される。
 そして、本実施形態に係る冷凍サイクルシステム1では、形状記憶ばね66が所定の温度未満(空調負荷が低い状態)においては、バイアスばね67の反力によって形状記憶ばね66が縮むことで、弁開度が小さくなる。このように、空調負荷が低い状態、すなわち冷媒の温度が低い場合には、弁開度を小さくすることで、蒸発器5の温度が所定の設定温度(例えば、0℃)未満とならないようにする。これにより、この冷凍サイクルシステム1では、蒸発器5の温度が所定の設定温度以上に維持され易くなり、冷凍サイクル内(特に、蒸発器5内)におけるフロストの発生が抑制される。
 また、本実施形態に係る冷凍サイクルシステム1では、形状記憶ばね66が所定の設定温度以上(空調負荷が高い状態)においては、形状記憶ばね66が記憶した形状に回復することで、弁開度が大きくなる。すなわち、冷媒の温度に応じて、形状記憶ばね66が冷媒によって加熱されて所定の温度以上となったときに、形状記憶ばね66が元の形状に回復し始めることにより、バイアスばね67を押し縮めることで、弁開度が大きくなる。このように、空調負荷が高い状態、すなわち冷媒の温度が高い場合には、弁開度を大きくすることで、蒸発器5の温度が高くなり過ぎないようにする。
 以上で説明したように、本実施形態に係る冷凍サイクルシステム1では、冷媒の温度によって形状記憶ばね66の温度が変化して形状記憶ばね66の形状(長さ)が変化することを利用して弁開度を調整することにより、冷媒の流量を制御する。すなわち、形状記憶ばね66の形状記憶効果を利用して弁開度を調整することにより、冷媒の流量を制御する。このように、本実施形態に係る冷凍サイクルシステム1では、温度感応部としての形状記憶ばね66が、冷媒の温度を検出して該温度に基づいて冷媒の流量を制御する。
 このため、本実施形態に係る冷凍サイクルシステム1では、蒸発器5の温度が所定の設定温度未満とならないように制御することにより、フロストの発生が抑制される。すなわち、本実施形態に係る冷凍サイクルシステム1では、蒸発器の圧力に基づいて圧力制御弁の弁開度を調整するわけではなく、温度に基づいて弁開度を調整して冷媒の流量を制御する。このため、本実施形態に係る冷凍サイクルシステム1では、種類の異なる複数の冷媒に対応させて所定の設定温度を適切に設定した構成とすれば、その種類の異なる複数の冷媒においてフロストの発生を抑制することができる。したがって、本実施形態に係る冷凍サイクルシステム1では、異なる種類の冷媒を用いた場合におけるフロストの発生をも抑制することができる。つまり、種類の異なる冷媒を使用する複数の冷凍サイクルシステムに対応してフロストの発生を抑制することができる。
 なお、機械的に温度制御弁の弁開度を変化させる冷凍サイクルシステムである場合、冷媒の圧力に応じて敏感に温度制御弁の弁開度を変化させる。このため、このような機械的に温度制御弁の弁開度を変化させる冷凍サイクルシステムでは、急激に冷媒の圧力が高まった時(例えば、システム起動時における急激な冷媒流量の立ち上がり時など)に温度制御弁の弁体が自励振動し、これに起因して異音が発生する場合がある。具体的には、例えば、以下のような時に弁体の自励振動が生じる。すなわち、システム停止時の冷凍サイクルの内部圧力が上がった状態において、弁体が全開状態に保持された状態でシステムを起動する。このとき、圧縮機の吸収から膨張弁の作動開始までの時間遅れにより、蒸発器と圧縮機との間の圧力が急激に低下し、これに伴い温度制御弁が蒸発器内の圧力を所定値以上に保つように作動して、その温度制御弁が急激に全閉状態となる。そして、この後に膨張弁が開弁作動して、冷媒が蒸発器に流入するとき、その冷媒の流入により圧力が急速に上昇して、温度制御弁が急激に開放方向へ移動させられる(弁開度が大きくなる)。この振動をきっかけとして弁体が自励振動に陥り、異音が発生するおそれがある。
 そこで、弁体の摺動部に摺動抵抗を付与するためのOリングを備える冷凍サイクルシステムとされる場合、圧力調整弁の弁体の自励振動に起因する異音の発生を抑制することが可能である。
 しかしながら、冷凍サイクルシステムの起動時に一瞬冷媒が流れた後にしばらくの間冷媒が循環しない所謂ドライ運転状態において、Oリングが摺動面に引っかかった後に引っかかりが解除されることをトリガーとして圧力調整弁の弁体が自励振動することで異音が発生することがある。このため、この冷凍サイクルシステムにおいても、異音の発生を十分に抑制することができないおそれがある。
 これに対し、本実施形態に係る冷凍サイクルシステム1では、上記したように、冷媒の温度を検出して該温度に基づいて冷媒の流量を制御する。ここで、蒸発器5の圧力の変化に応じて蒸発器5の温度が変化するまでにはある程度の時間を要するため、蒸発器5の圧力が瞬間的に変化した場合においては、蒸発器5の温度の変化として検出されない。このことから、本実施形態に係る冷凍サイクルシステム1では、システム起動時など急激かつ瞬間的に冷媒の圧力が変化した時においては、蒸発器5の温度の変化が検出されず、弁体64は変位しない。このため、本実施形態に係る冷凍サイクルシステム1では、急激かつ瞬間的に冷媒の圧力が高まった時における温度制御弁6の弁体64の自励振動に起因する異音の発生を抑制することができる。なお、この冷凍サイクルシステム1では、Oリングを設けるなど圧力制御弁6を複雑な構成とすること無く、簡素な構成によって、温度制御弁6の弁体64の自励振動に起因する異音の発生を抑制することができる。
 このように、本実施形態に係る冷凍サイクルシステム1では、伸縮部を伸縮し難い材料で構成しながらも、温度感応部(形状記憶ばね66)の機能によって弁開度を変化させられるため、冷凍サイクルシステム1としての機能を保持しつつ、温度制御弁6の弁体64の自励振動を抑制することができる。
 このように、本実施形態に係る冷凍サイクルシステム1では、形状記憶ばね66が、冷媒の温度に応じて弁体64を変位させて弁開度を変化させる温度感応部として機能する。
 上記で説明したように、本実施形態に係る冷凍サイクルシステム1は、冷媒の温度を検出して該温度に基づいて冷媒の流量を制御する温度感応部(形状記憶ばね66)を有する温度制御弁6が設けられている。
 このため、本実施形態に係る冷凍サイクルシステム1では、蒸発器5の温度が所定の設定温度未満とならないように制御することにより、フロストの発生が抑制される。すなわち、本実施形態に係る冷凍サイクルシステム1では、蒸発器の圧力に基づいて圧力制御弁の弁開度を調整するわけではなく、温度に基づいて弁開度を調整して冷媒の流量を制御する。このため、本実施形態に係る冷凍サイクルシステム1では、種類の異なる複数の冷媒に対応させて所定の設定温度をフロストが発生しない程度に高く設定した構成とすれば、その種類の異なる複数の冷媒においてフロストの発生を抑制することができる。したがって、本実施形態に係る冷凍サイクルシステム1では、異なる種類の冷媒を用いた場合におけるフロストの発生をも抑制することができる。つまり、種類の異なる冷媒を使用する複数の冷凍サイクルシステムに対応してフロストとの発生を抑制することができる。
 さらに、上記したように、本実施形態における温度制御弁6は、弁体64の自励振動に起因する異音の発生を抑制することを考慮し、形状記憶ばね66およびバイアスばね67が、いずれも、ばね定数が大きく伸縮し難い材料、すなわち、小さな外力が印加された場合にはほとんど伸縮せず、大きな外力が印加された場合のみにおいて伸縮する材料で構成されている。
 このため、本実施形態に係る冷凍サイクルシステム1では、伸縮部を伸縮し難い材料で構成しながらも、温度感応部(形状記憶ばね66)の機能によって弁開度を変化させられるため、冷凍サイクルシステム1としての機能を保持しつつ、温度制御弁6の弁体64の自励振動を抑制することができる。
 なお、一例として、本実施形態に係る冷凍サイクルシステム1は、形状記憶ばね66を含み、形状記憶ばね66の形状記憶効果を利用して弁体64を変位させて弁開度を変化させることにより、冷媒の温度を検出して該温度に基づいて冷媒の流量を制御する温度感応部を備える。
 このため、本実施形態に係る冷凍サイクルシステム1では、Oリングを設けるなど温度制御弁6を複雑な構成とすること無く、簡素な構成によって、温度制御弁6の弁体64の自励振動に起因する異音の発生を抑制することができる。
 (第2実施形態)
 本開示の第2実施形態について図3、図4を参照して説明する。本実施形態は、第1実施形態に対して、温度制御弁6の構成を変更したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 本実施形態における温度制御弁6は、第2ケース62には、第1実施形態におけるガイド孔61bの代わりとして、弁体64が摺動自在に挿入されるガイド孔62bが形成されている。また、第2ケース62には、第1実施形態におけるシート面61cの代わりとして、弁体鍔部64aが接離するシート面62cが形成されている。
 そして、弁体64は、円筒部がガイド孔62bに摺動自在に挿入され、弁体64の位置により弁体通路孔64bの開度が変化する(すなわち、ケース内冷媒通路63が開閉される)ようになっている。
 図3に示すように、ケース内冷媒通路63には、第1実施形態における形状記憶ばね66の代わりとして、作動媒体66Aおよび作動媒体封入部66Bが備えられている。なお、作動媒体66Aは、冷媒の温度に応じて弁体を変位させて弁開度を変化させる温度感応部の一例であっても良い。
 作動媒体66Aは、冷媒の熱によって凝固することで体積変化する媒体であり、例えば、水、脂肪酸、n-パラフィン、高吸水性樹脂に水を含ませたもの等によって構成され得るが、ここでは0℃以下で凝固する水によって構成されている。
 作動媒体封入部66Bは、作動媒体66Aを封入するための容器として機能すると共に、作動媒体66Aの体積変化に応じて少なくともケース内冷媒通路63の軸方向、すなわち弁体64の摺動方向に伸縮する。図3に示すように、具体的には、作動媒体封入部66Bは、ここでは、その空洞部において作動媒体66Aを封入するゴム管66Ba、および、略隙間無く空洞部においてゴム管66Baを包むように配置された樹脂管66Bbを備えている。ゴム管66Baは、作動媒体66Aの体積変化に応じて少なくともケース内冷媒通路63の軸方向に伸縮する材料によって構成されている。樹脂管66Bbは、硬い樹脂材料で構成されることで、ゴム管66Baが径方向に伸びることを抑制する。作動媒体封入部66Bは、第1ケース61と弁体64の間に配置されている。
 本実施形態では、ばね座68は、ゴムパッキンなどで構成された円環形状の緩衝部材69を介して第1ケース61に固定されている。緩衝部材69は、作動媒体66Aの体積膨張によるゴム管66Baの過剰な伸びを吸収するために設けられたものである。そして、ゴム管66Baは、一端部がばね座68にかしめリング66Bcによって固定されると共に、反対側の他端部が弁体64にかしめリング66Bcによって固定されている。樹脂管66Bbは、内周側のみがゴム管66Baに接着されている。
 バイアスばね67は、弁体64と第2ケース62の間に配置されている。バイアスばね67は、第2ケース62に直接に固定されている。バイアスばね67は、ケース内冷媒通路63の軸方向に伸縮自在に配置されている。
 本実施形態における温度制御弁6では、冷媒導入口61aから導入された冷媒が、ケース内冷媒通路63のうち、緩衝部材69が配置された空間、ばね座68に形成された貫通孔68aを通って、作動媒体封入部66Bが配置された空間へと順に流れ、弁体64を通ってガイド孔62bへ流れた後、冷媒導出口62aから導出される。
 本実施形態に係る冷凍サイクルシステム1では、作動媒体66Aが所定の温度未満(空調負荷が低い状態)においては、作動媒体66Aが凝固して体積変化し、ゴム管66Baが伸縮すると共にバイアスばね67が伸縮することで、弁開度が変化する。ここでいう「所定の温度」は、フロストを抑制するために蒸発器5内の温度として好適な最低限度の温度として設定される所定の設定温度(例えば、0℃)に対応する温度である。なお、ここでは、作動媒体66Aとして0℃以下で凝固する水を用いているため、作動媒体66Aの温度が0℃以下となると、作動媒体66Aが凝固して体積膨張し、ゴム管66Baが伸びると共にバイアスばね67が縮むことで、弁開度が小さくなる。このように、空調負荷が低い状態、すなわち冷媒の温度が低い場合には、弁開度を小さくすることで、蒸発器5の温度が所定の設定温度未満とならないようにする。これにより、この冷凍サイクルシステム1では、蒸発器5の温度が所定の設定温度以上に維持され易くなり、冷凍サイクル内におけるフロストの発生が抑制される。
 また、本実施形態に係る冷凍サイクルシステム1では、作動媒体66Aが所定の設定温度以上においては、作動媒体66Aが液体であるため、作動媒体66Aが凝固した場合に比べて、作動媒体66Aの体積が異なり、弁開度が異なってくる。なお、ここでは、作動媒体66Aとして0℃以下で凝固する水を用いているため、作動媒体66Aの温度が0℃より高い温度になると、作動媒体66Aが水となって体積収縮し、ゴム管66Baが縮むと共にバイアスばね67が伸びることで、弁開度が大きくなる。このように、空調負荷が高い状態、すなわち冷媒の温度が高い場合には、弁開度を大きくすることで、蒸発器5の温度が高くなり過ぎないようにする。
 ここで、本実施形態に係る冷凍サイクルシステム1において、作動媒体66Aとして、水以外のもの、例えば脂肪酸、n-パラフィンを用いた場合には、図3において、作動媒体封入部66Bとバイアスばね67の位置関係を逆にし、かつ冷媒の流れ方向も逆にする。この場合には、作動媒体66Aの温度が所定の温度以下となると、作動媒体66Aが凝固して体積収縮し、これによりバイアスばね67が伸びることで、弁開度が小さくなる。これにより、空調負荷が低い状態、すなわち冷媒の温度が低い場合には、弁開度を小さくすることで、蒸発器5の温度が所定の設定温度未満とならないようにする。
 なお、ここでは、図4に示すように、作動媒体66A(水)が凝固したときの作動媒体66Aの体積膨張率は9%であった。
 上記で説明したように、本実施形態に係る冷凍サイクルシステム1では、冷媒の温度変化によって作動媒体66Aの温度が下がって作動媒体66Aが凝固したときの作動媒体66Aの体積変化を利用して弁開度を調整することにより、冷媒の流量を制御する。このように、本実施形態に係る冷凍サイクルシステム1では、温度感応部としての作動媒体66Aが、冷媒の温度を検出して該温度に基づいて冷媒の流量を制御する。
 以上説明した本実施形態に係る冷凍サイクルシステム1によれば、第1実施形態の場合と同様の効果を得られる。すなわち、本実施形態に係る冷凍サイクルシステム1では、このように冷媒の流量を制御し、蒸発器5の温度が所定の設定温度未満とならないように制御することにより、フロストの発生が抑制される。このため、本実施形態に係る冷凍サイクルシステム1では、異なる種類の冷媒を用いた場合におけるフロストの発生をも抑制することができる。つまり、種類の異なる冷媒を使用する複数の冷凍サイクルシステムに対応してフロストの発生を抑制することができる。Oリングを設けるなど温度制御弁6を複雑な構成とすること無く、簡素な構成によって、温度制御弁6の弁体64の自励振動に起因する異音の発生を抑制することができる。
 (第3実施形態)
 本開示の第3実施形態について図5、図6を参照して説明する。本実施形態は、第2実施形態に対して、温度制御弁6の構成を変更したものであり、その他に関しては第2実施形態と同様であるため、ここでは説明を省略する。
 図5に示すように、本実施形態における温度制御弁6は、弁体64が摺動自在に挿入されるガイド孔610aと、弁体鍔部64aが接離するシート面610bとを備える弁ガイド610を備えるスプール弁として構成されている。
 そして、弁体64は、円筒部がガイド孔610aに摺動自在に挿入され、弁体64の位置により弁体通路孔64bの開度が変化する(すなわち、ケース内冷媒通路63が開閉される)ようになっている。
 図5に示すように、ケース内冷媒通路63には、第2実施形態における作動媒体66Aおよび作動媒体封入部66Bの代わりとして、作動媒体66Cおよび作動媒体封入部66Dが備えられている。なお、この作動媒体66Cは、冷媒の温度に応じて弁体を変位させて弁開度を変化させる温度感応部の一例であっても良い。
 作動媒体66Cは、冷媒の熱によって圧力が変化する媒体である。作動媒体66Cとしては、R600a、HFC-23などが採用され得る。
 作動媒体封入部66Dは、作動媒体66Cを封入するための容器として機能すると共に、冷媒の圧力と作動媒体66Cの圧力の差に応じて少なくともケース内冷媒通路63の軸方向、すなわち弁体64の摺動方向に伸縮する部分である。具体的には、作動媒体封入部66Dは、その空洞部において作動媒体66Cを封入する蛇腹(ベローズ)によって構成されている。なお、この作動媒体封入部66Dは、冷媒の圧力と作動媒体の圧力の差に応じて伸縮する伸縮部の一例であっても良い。
 本実施形態における冷媒および作動媒体66Cは、冷媒の圧力と作動媒体66Cの圧力の差に応じて、作動媒体66Cが所定の温度未満の場合には弁開度が小さくなる方向に作動媒体封入部66Dを伸ばすと共に、作動媒体66Cが所定の温度以上の場合には弁開度が大きくなる方向に作動媒体封入部66Dを縮めるように、構成されている。具体的には、ここでは、冷媒として、HFC-134a(R134a)を用い、作動媒体66Cとして、R600aを用いている。
 冷媒としてHFC-134aを用い、作動媒体66CとしてR600aを用いた場合には、図6に示すように、所定の温度Tsを境に冷媒の圧力(飽和蒸気圧)と作動媒体66Cの圧力(飽和蒸気圧)との大小関係が入れ替わる。すなわち、所定の温度Tsよりも低い温度の場合には、作動媒体66Cの圧力が冷媒の圧力よりも大きくなり、所定の温度Tsよりも高い温度の場合には、作動媒体66Cの圧力が冷媒の圧力よりも低くなる。
 このため、本実施形態に係る冷凍サイクルシステム1では、作動媒体66Cが所定の温度Ts未満(空調負荷が低い状態)においては、作動媒体66Cの圧力が冷媒の圧力よりも大きくなって作動媒体封入部66Dが伸び、バイアスばね67が縮むことで弁開度が小さくなる。ここでいう「所定の温度」は、フロストを抑制するために蒸発器5内の温度として好適な最低限度の温度として設定される所定の設定温度(例えば、0℃)に対応する温度である。このように、空調負荷が低い状態、すなわち冷媒の温度が低い場合には、弁開度を小さくすることで、蒸発器5の温度が所定の設定温度未満とならないようにする。これにより、この冷凍サイクルシステム1では、蒸発器5の温度が所定の設定温度以上に維持され易くなり、冷凍サイクル内(特に、蒸発器5内)におけるフロストの発生が抑制される。
 また、本実施形態に係る冷凍サイクルシステム1では、作動媒体封入部66Dが所定の設定温度以上(空調負荷が高い状態)においては、冷媒の圧力が作動媒体66Cの圧力以上となって作動媒体封入部66Dが縮み、バイアスばね67が伸びることで弁開度が大きくなる。このように、空調負荷が高い状態、すなわち冷媒の温度が高い場合には、弁開度を大きくすることで、蒸発器5の温度が高くなり過ぎないようにする。
 上記で説明したように、本実施形態に係る冷凍サイクルシステム1では、冷媒の熱による作動媒体66Aの圧力変化に応じた作動媒体封入部66Dの伸縮を利用して弁開度を調整することにより、冷媒の流量を制御する。このように、本実施形態に係る冷凍サイクルシステム1では、温度感応部としての作動媒体66Cおよび作動媒体封入部66Dが、冷媒の温度を検出して該温度に基づいて冷媒の流量を制御する。
 以上説明した本実施形態に係る冷凍サイクルシステム1によれば、第1、2実施形態の場合と同様の効果を得られる。すなわち、本実施形態に係る冷凍サイクルシステム1では、このように冷媒の流量を制御し、蒸発器5の温度が所定の設定温度未満とならないように制御することにより、フロストの発生が抑制される。このため、本実施形態に係る冷凍サイクルシステム1では、異なる種類の冷媒を用いた場合におけるフロストの発生をも抑制することができる。つまり、種類の異なる冷媒を使用する複数の冷凍サイクルシステムに対応してフロストの発生を抑制することができる。Oリングを設けるなど温度制御弁6を複雑な構成とすること無く、簡素な構成によって、温度制御弁6の弁体64の自励振動に起因する異音の発生を抑制することができる。
 (第4実施形態)
 本の第4実施形態について図7~図10を参照して説明する。本実施形態は、第1実施形態に対して、温度制御弁6の構成を変更したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
 本実施形態の温度制御弁6の構成を図7に示す。なお、図7において、冷媒は紙面右側から左側へ流れる。本実施形態の温度制御弁6は、形状記憶ばね66、バイアスばね67、弁体64、ばね座68、調整ネジ67a、ワッシャ67b、ナット67cを有している。
 弁体64は、有底筒形状を成しており、その底部に弁体鍔部64aが形成されている。弁体64は、第1ケース61および第2ケース62を有するケース部材に収納されている。弁体64の内周面に沿ってバイアスばね67が配置され、弁体64の外周面に沿って形状記憶ばね66が配置されている。
 バイアスばね67は、形状記憶ばね66を圧縮する方向に付勢するばね部材である。バイアスばね67は、弁体64の開口部側にて、調整ネジ67aに固定されている。この調整ネジ67aには、円形板状のワッシャ67bを挟むようにしてナット67cが締結されている。
 ワッシャ67bは、開口部を有する円形板状を成し、第2ケース62内周面に固定されている。製造時にワッシャ67bと螺合する調整ネジ67aを回転させることで、バイアスばね67の圧縮量を変更し、弁の開閉温度の微調整を可能としている。調整後はナット67cを締結して調整ネジ67aの回転を禁止する。
 ばね座68は、第2ケース62内周面に固定されており、弁体64を弁体64の軸方向に摺動自在に支持する。ばね座68は、冷媒を通すための開口部68aを有している。
 冷媒導入口61aから冷媒導出口62aへ流れる冷媒の方向を一方向(第1方向)とする。冷媒導入口61aの冷媒圧力と冷媒導出口62aの冷媒圧力の差圧により弁体64に作用する力Fpおよびバイアスばね67が弁体64を付勢する力Fbは一方向、すなわち、冷媒の流れ方向に作用する。また、形状記憶ばね66により弁体64に作用する付勢力Fsは、一方向と逆方向(第2方向)、すなわち、冷媒の流れ方向と逆方向に作用する。
 以上、本実施形態における温度制御弁6の構成について説明した。この温度制御弁6では、冷媒導入口61aから導入された冷媒が、ケース内冷媒通路63のうち、弁体64の外周側を通って、形状記憶ばね66が配置された空間と、弁体64の内周側を通って、冷媒導出口62a側へと導入される。
 そして、本実施形態の温度制御弁6では、形状記憶ばね66が所定の温度未満(空調負荷が低い状態)においては、バイアスばね67の反力によって形状記憶ばね66が縮むことで、弁開度が小さくなる。
 また、本実施形態の温度制御弁6では、形状記憶ばね66が所定の設定温度以上(空調負荷が高い状態)においては、形状記憶ばね66が記憶した形状に回復することで、弁開度が大きくなる。
 図8は、比較例として、第1実施形態の温度制御弁6における弁体64に作用する力Fp、Fs、Fbの向きを示した図である。図9は、第1実施形態の温度制御弁6における弁体64にかかる力Fp、Fs、Fbと弁開度の関係を示した図である。
 図8に示すように、第1実施形態の温度制御弁6では、弁体64に対して冷媒流れ方向と同じ方向に、冷媒導入口61a側の冷媒圧力と冷媒導出口62a側の冷媒圧力との冷媒差圧に応じた力Fpが作用する。
 また、第1実施形態の温度制御弁6では、形状記憶ばね66が所定の設定温度以上になると記憶した形状に回復する。このため、弁体通路孔64bの弁開度が増大する向きの力Fsが弁体64に作用する。また、弁体64には、バイアスばね67bによって、弁体通路孔64bの弁開度が減少する向きの力Fbが作用する。
 図9は、第1実施形態の温度制御弁6におけるFp、FsおよびFbの力のバランスを示したものである。なお、図9における縦軸は、Fp、FsおよびFbの絶対値となっている。この図において、弁開度を全閉とするためには、Fs+FpがFbを下回る必要がある。しかし、Fs+FpがFbを下回るようバランスさせて設計することは可能であるが、弁体64の前後の冷媒差圧が大きい場合、Fs+FpがFbを上回ってしまい、弁体通路孔64bを全閉状態にすることができなくなるといった状況が生じる。
 第1実施形態の温度制御弁6において、形状記憶ばね66のばね定数を大きくすれば、すなわち、図9における形状記憶ばね66の力Fsの勾配を大きくすれば、弁体64の前後の冷媒差圧が大きくても、Fs+FpがFbを上回らないよう設計することが可能である。しかし、形状記憶ばね66は大きな力を発生させるのが難しく、形状記憶ばね66のばね定数を大きくするのが困難であるため、設計自由度が制限されてしまうおそれがある。
 図10は、第4実施形態の温度制御弁6におけるFp、FsおよびFbの力のバランスを示したものである。この図において、弁体64の弁開度が全開となるためには、Fb+FpがFsを下回る必要がある。逆に弁体64の弁開度が全閉となるにはFb+FpがFsを上回る必要がある。
 本実施形態の温度制御弁6は、冷媒導入口61aの冷媒圧力と冷媒導出口62aの冷媒圧力の差圧により弁体64に作用する力Fpおよびバイアスばね67が形状記憶ばね66を付勢する力Fbが、形状記憶ばね66により弁体66に作用する付勢力Fsと逆向きとなっている。このため、例えば、弁体64の前後の冷媒差圧によって生じる力Fpが大きい場合であっても、Fb+FpがFsを上回る設計が容易である。
 以上説明した本実施形態に係る冷凍サイクルシステム1によれば、第1実施形態の場合と同様の効果を得られる。
 また、上記した構成によれば、弁体64を変位させる付勢力を発生させる部材として形状記憶合金を用いた形状記憶ばね66を備え、さらに、冷媒を導入する冷媒導入口61aと冷媒を導出する冷媒導出口62aを有し、冷媒導入口61aと冷媒導出口62aとの間に弁体64を収納するケース部材61、62と、形状記憶ばね66を圧縮する方向に付勢するバイアスばね67と、を備えている。冷媒導入口61aから冷媒導出口62aへ流れる冷媒の方向を一方向とする。このとき、冷媒導入口61aの冷媒圧力と冷媒導出口62aの冷媒圧力の差圧により弁体64に作用する力Fpおよびバイアスばね67が形状記憶ばね66を付勢する力Fbは一方向に作用し、形状記憶合ばね66は、弁体64に作用する付勢力Fsが一方向と逆方向に作用する。このため、Fb+FpがFsを上回るような設計が容易であり、弁体64の開閉作動を確実に行わせることが可能である。また、ばね定数が小さく大きな力を発生しにくい形状記憶ばね66を用いた構成においても設計自由度を向上することが可能である。
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。
 例えば、第1実施形態に係る冷凍サイクルシステム1において、形状記憶ばね66の代わりとして他の形状記憶合金を用いても良い。
 また、第1実施形態に係る冷凍サイクルシステム1において、冷媒から形状記憶ばね66への温度応答速度を低下させるために、図11に示すように、形状記憶ばね66を樹脂などのコーティング材66aによってコーティングしても良い。この場合には、形状記憶ばね66の温度が急激に変化することを抑制できる。これにより、形状記憶ばね66の温度が急激に変化して温度制御弁6の弁体64が自励振動することに起因する異音の発生を防止することができる。なお、コーティング材66aの膜厚によって形状記憶ばね66の温度応答速度を制御することができる。
 また、第1実施形態に係る冷凍サイクルシステム1において、冷媒から形状記憶ばね66への温度応答速度を低下させるために、図12に示すように、弁体64の一端64dを、ピストン形状としても良い。また、ばね座68を、弁体64の一端64dが摺動自在に挿入される貫通孔68a、及び、貫通孔68aをケース内冷媒通路63のうち冷媒導出口62a側の空間と連通させる小穴68bを備える器形状としても良い。この場合、ばね座68をダッシュポッドとして機能させることで、形状記憶ばね66の温度が急激に変化した場合でも温度制御弁6の弁体64が自励振動することに起因する異音の発生を防止することができる。
 また、第3実施形態に係る冷凍サイクルシステム1において、作動媒体封入部66Dとしてダイヤフラムを採用しても良い。
 また、図13に示すように、第1実施形態に係る温度制御弁6が、温度検出装置(温度センサなど)10、冷媒の流量を調整する弁体64を含む流量調整装置11を備えても良い。加えて温度制御弁6は、温度検出装置10によって冷媒の温度を検出すると共に該温度に基づいて流量調整装置11の弁体64の開度を変化させることによって冷媒の流量を調整する制御装置(制御アンプなど)12を備えても良い。
 この場合、温度検出装置10によって所定の温度未満であることが検出されたときには、制御装置12の制御によって、温度制御弁6の弁体64の開度を小さくする。このように、空調負荷が低い状態、すなわち冷媒の温度が低い場合には、弁開度を小さくすることで、蒸発器5の温度が所定の設定温度未満とならないようにする。これにより、この場合においても、蒸発器5の温度が所定の設定温度以上に維持され易くなり、冷凍サイクル内におけるフロストの発生が抑制される。また、この場合、温度検出装置10によって所定の設定温度以上であることが検出されたときには、制御装置12の制御によって、温度制御弁6の弁体64の開度を大きくする。このように、空調負荷が高い状態、すなわち冷媒の温度が高い場合には、弁開度を大きくすることで、蒸発器5の温度が高くなり過ぎないようにする。なお、この場合、温度検出装置10および制御装置12が、温度感応部であっても良い。  本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 

Claims (6)

  1.  冷媒が循環する回路内に設けられ、前記冷媒の流量を制御するために変位する弁体(64)と、
     前記冷媒の温度に応じて前記弁体を変位させて弁開度を変化させる温度感応部(66、66A、66C、10、12)と、を備える温度制御弁。
  2.  前記温度感応部が、形状記憶合金(66)を含み、前記形状記憶合金が形状記憶効果によって前記弁体を変位させて弁開度を変化させる請求項1に記載の温度制御弁。
  3.  前記温度感応部が、前記冷媒の熱によって凝固する作動媒体(66A)を含み、前記作動媒体は、凝固したときの前記作動媒体の体積変化によって前記弁体を変位させて弁開度を変化させる請求項1に記載の温度制御弁。
  4.  前記温度感応部が、前記冷媒の熱によって圧力が変化する作動媒体(66C)および前記冷媒の圧力と前記作動媒体の圧力の差に応じて伸縮する伸縮部(66D)を含み、前記伸縮部は、前記冷媒の熱による前記作動媒体の圧力変化に応じて伸縮し、前記弁体を変位させて弁開度を変化させる請求項1に記載の温度制御弁。
  5.  前記冷媒を導入する冷媒導入口(61a)と前記冷媒を導出する冷媒導出口(62a)とを有し、前記冷媒導入口と前記冷媒導出口との間に前記弁体を収納するケース部材(61、62)と、
     前記形状記憶合金を圧縮する方向に付勢するばね部材(67)と、をさらに備え、
     前記形状記憶合金は前記弁体を変位させる付勢力を発生させ、
     前記冷媒導入口から前記冷媒導出口へ流れる前記冷媒の方向を第1方向としたとき、
     前記冷媒導入口の冷媒圧力と前記冷媒導出口の冷媒圧力との差圧により前記弁体に作用する力および前記ばね部材が前記形状記憶合金を付勢する力は前記第1方向に作用し、
     前記形状記憶合金は、前記弁体に作用する前記付勢力が前記第1方向と逆の第2方向に作用するよう構成されている請求項2に記載の温度制御弁。
  6.  圧縮機(2)および蒸発器(5)を有すると共に、該蒸発器と該圧縮機との間に請求項1ないし5のいずれか1つに記載の温度制御弁(6)が設けられている冷凍サイクルシステム。

     
PCT/JP2015/006190 2014-12-18 2015-12-11 温度制御弁、および、該温度制御弁が設けられた冷凍サイクルシステム WO2016098330A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-256395 2014-12-18
JP2014256395 2014-12-18
JP2015188152A JP2016118295A (ja) 2014-12-18 2015-09-25 温度制御弁、および、該温度制御弁が設けられた冷凍サイクルシステム
JP2015-188152 2015-09-25

Publications (1)

Publication Number Publication Date
WO2016098330A1 true WO2016098330A1 (ja) 2016-06-23

Family

ID=56126238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006190 WO2016098330A1 (ja) 2014-12-18 2015-12-11 温度制御弁、および、該温度制御弁が設けられた冷凍サイクルシステム

Country Status (1)

Country Link
WO (1) WO2016098330A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106439136A (zh) * 2016-08-30 2017-02-22 江苏永冠给排水设备有限公司 一种基于可控液体流量的记忆式恒流管及实现方法
CN110397784A (zh) * 2018-04-24 2019-11-01 Zf 腓德烈斯哈芬股份公司 恒温阀

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920340B1 (ja) * 1969-10-24 1974-05-24
GB1379549A (en) * 1971-12-10 1975-01-02 Burrington H W Temperature responsive throttling valve
JPS55100759U (ja) * 1979-01-10 1980-07-14
JPS56167970A (en) * 1980-05-27 1981-12-23 Nippon Radiator Co Ltd Refrigerant control valve
JPH03271669A (ja) * 1990-03-19 1991-12-03 Nippondenso Co Ltd 蒸発圧力調整弁
JPH0478479U (ja) * 1990-11-19 1992-07-08
JP2000230650A (ja) * 1999-02-09 2000-08-22 Denso Corp 圧力制御弁
JP2002181227A (ja) * 2000-10-05 2002-06-26 Fuji Koki Corp 可変オリフィス装置
JP2003207237A (ja) * 2002-12-25 2003-07-25 Matsushita Electric Ind Co Ltd 冷凍装置
JP2008138812A (ja) * 2006-12-04 2008-06-19 Tgk Co Ltd 差圧弁

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920340B1 (ja) * 1969-10-24 1974-05-24
GB1379549A (en) * 1971-12-10 1975-01-02 Burrington H W Temperature responsive throttling valve
JPS55100759U (ja) * 1979-01-10 1980-07-14
JPS56167970A (en) * 1980-05-27 1981-12-23 Nippon Radiator Co Ltd Refrigerant control valve
JPH03271669A (ja) * 1990-03-19 1991-12-03 Nippondenso Co Ltd 蒸発圧力調整弁
JPH0478479U (ja) * 1990-11-19 1992-07-08
JP2000230650A (ja) * 1999-02-09 2000-08-22 Denso Corp 圧力制御弁
JP2002181227A (ja) * 2000-10-05 2002-06-26 Fuji Koki Corp 可変オリフィス装置
JP2003207237A (ja) * 2002-12-25 2003-07-25 Matsushita Electric Ind Co Ltd 冷凍装置
JP2008138812A (ja) * 2006-12-04 2008-06-19 Tgk Co Ltd 差圧弁

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106439136A (zh) * 2016-08-30 2017-02-22 江苏永冠给排水设备有限公司 一种基于可控液体流量的记忆式恒流管及实现方法
CN106439136B (zh) * 2016-08-30 2017-09-19 江苏永冠给排水设备有限公司 一种基于可控液体流量的记忆式恒流管及实现方法
CN110397784A (zh) * 2018-04-24 2019-11-01 Zf 腓德烈斯哈芬股份公司 恒温阀

Similar Documents

Publication Publication Date Title
JP5292537B2 (ja) 膨張装置
JP2006189240A (ja) 膨張装置
JP2006266660A (ja) 膨張装置
CN112292276A (zh) 用于运行车辆的具有制冷介质回路的制冷设备的方法
US7536872B2 (en) High pressure control valve
WO2016098330A1 (ja) 温度制御弁、および、該温度制御弁が設けられた冷凍サイクルシステム
JP6342084B2 (ja) 空調機
JP4179231B2 (ja) 圧力制御弁と蒸気圧縮式冷凍サイクル
JP2006292184A (ja) 膨張装置
JP3467989B2 (ja) 蒸気圧縮式冷凍サイクル
JP6467011B2 (ja) 空調機
JP2008286065A (ja) 可変容量圧縮機の温度制御装置
JP2016118295A (ja) 温度制御弁、および、該温度制御弁が設けられた冷凍サイクルシステム
JP4616103B2 (ja) 可変容量コンプレッサ及び可変容量コンプレッサの制御方法
JP2007278616A (ja) 膨張装置
JP2010032159A (ja) 冷凍サイクル装置
JP2008164239A (ja) 圧力制御弁
JP2009250590A (ja) 膨張弁
JP6565737B2 (ja) 冷凍サイクル装置
JP6583134B2 (ja) 冷凍サイクル装置
JP3528433B2 (ja) 蒸気圧縮式冷凍サイクル
JPH09133436A (ja) 温度式膨脹弁およびこれを用いた車両用空調装置
KR101698756B1 (ko) 히트펌프 시스템의 냉매량 조절장치
JP2781064B2 (ja) 冷房装置用の蒸発圧力調整弁
JP6634624B2 (ja) 膨張弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869539

Country of ref document: EP

Kind code of ref document: A1