WO2016095122A1 - 一种2,5-呋喃二甲酸的制备方法 - Google Patents

一种2,5-呋喃二甲酸的制备方法 Download PDF

Info

Publication number
WO2016095122A1
WO2016095122A1 PCT/CN2014/094070 CN2014094070W WO2016095122A1 WO 2016095122 A1 WO2016095122 A1 WO 2016095122A1 CN 2014094070 W CN2014094070 W CN 2014094070W WO 2016095122 A1 WO2016095122 A1 WO 2016095122A1
Authority
WO
WIPO (PCT)
Prior art keywords
diacetylfuran
halogen element
furandicarboxylic acid
liquid phase
solvent
Prior art date
Application number
PCT/CN2014/094070
Other languages
English (en)
French (fr)
Inventor
王静刚
刘小青
朱锦
那海宁
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to PCT/CN2014/094070 priority Critical patent/WO2016095122A1/zh
Publication of WO2016095122A1 publication Critical patent/WO2016095122A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/68Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen

Definitions

  • the invention relates to a preparation method of 2,5-furandicarboxylic acid, belonging to the technical field of preparation of polymer monomers such as high performance polyester, epoxy resin, polyamide and polyurethane, and chemical and pharmaceutical intermediates.
  • 2,5-furandicarboxylic acid can be directly used in the preparation of high performance engineering plastics such as polyester, epoxy resin, polyamide, polyurethane, etc. due to its rigid furan ring and para-dicarboxylic acid structure.
  • the polymer prepared using furanic acid has excellent mechanical properties in terms of strength, modulus, creep resistance, etc., and has a higher glass transition temperature and heat distortion temperature.
  • 2,5-furandicarboxylic acid itself can also be used as a chemical raw material and a pharmaceutical intermediate.
  • the main synthesis method of 2,5-furandicarboxylic acid is based on expensive 5-hydroxymethylfurfural (HMF). The method has the disadvantages of low overall yield and high cost, and it is difficult to realize the disadvantages of large-scale industrial application.
  • HMF 5-hydroxymethylfurfural
  • a process for the preparation of 2,5-furandicarboxylic acid which comprises 2,5-diacetylfuran as a raw material and prepares 2,5-furandicarboxylic acid in high yield.
  • the method is simple and efficient, the process is short, and the by-products are few.
  • the purity of 2,5-furandicarboxylic acid prepared by the method is high, and can satisfy the raw materials of engineering plastics such as high-performance polyester, epoxy resin, polyamide, polyurethane, etc. Requirements for raw materials for chemical raw materials and pharmaceutical intermediates.
  • the preparation method of the 2,5-furandicarboxylic acid is characterized in that it comprises at least the following steps:
  • step b) adjusting the pH of the liquid phase obtained in step a) to not more than 4, and the obtained solid is the 2,5-furandicarboxylic acid.
  • the halogen element is derived from at least one of a halogen element and a halogen-containing compound. Further preferably, the halogen element of the step a) is derived from at least one of a halogen elemental substance and a halogen-containing inorganic compound.
  • the halogen is at least one selected from the group consisting of chlorine, bromine, and iodine.
  • the molar ratio of the 2,5-diacetylfuran to the halogen element in step a) is 1:1.5-60.
  • the upper limit of the range of the molar ratio of the 2,5-diacetylfuran to the halogen element in the step a) is selected from 1:6.25, 1:10, and the lower limit is selected from 1:60, 1:20, 1 : 18, 1:16, 1:14.
  • the system containing the 2,5-diacetylfuran and the halogen element in the step a) contains a solvent selected from the group consisting of water, ethanol, diethyl ether, propylene glycol, 1,4-dioxane, N At least one of N-dimethylacetamide and dimethyl sulfoxide.
  • the raw material of step a) contains a solvent, and the solvent is water, ethanol, diethyl ether, At least two of propylene glycol, 1,4-dioxane, N,N-dimethylacetamide, and dimethyl sulfoxide. Further preferably, the raw material of step a) contains a solvent, and the solvent is at least one of 1,4-dioxane, N,N-dimethylacetamide and dimethyl sulfoxide and water. mixture.
  • the mass percentage of the solvent in the system containing 2,5-diacetylfuran and a halogen element is from 10% to 99%.
  • the upper limit of the mass percentage of the solvent in the system containing the 2,5-diacetylfuran and the halogen element is selected from the group consisting of 95%, 90%, and 85%, and the lower limit is selected from the group consisting of 20%, 29%, and 30%. 40%, 50%, 52%, 60%, 65%.
  • step a) is a solution in which a basic substance and/or a basic substance is added to a system containing 2,5-diacetylfuran and a halogen element, and the pH is adjusted to not less than 7, and the solid phase is removed. , the liquid phase is obtained. Further preferably, the step a) is to add an aqueous solution of a basic substance to a system containing 2,5-diacetylfuran and a halogen element, adjust the pH to not less than 7, and remove the solid phase to obtain a liquid phase.
  • the basic substance is selected from the group consisting of an alkali metal or alkaline earth metal oxide, an alkali metal or alkaline earth metal hydroxide, an alkali metal or alkaline earth metal carbonate, and at least one of ammonia water.
  • the basic substance is selected from the group consisting of sodium hydroxide, potassium hydroxide, lithium hydroxide, barium hydroxide, barium hydroxide, barium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate, potassium carbonate, and ammonia. At least one of them.
  • step a) is to adjust the pH of the system containing 2,5-diacetylfuran and a halogen element to 7 to 9, and remove the solid phase to obtain a liquid phase.
  • step a) adjusts the pH of the system containing 2,5-diacetylfuran and a halogen element to not less than 7, and is carried out at a reaction temperature of 0 ° C to 160 ° C.
  • the upper limit of the reaction temperature range is selected from the group consisting of 140 ° C, 120 ° C, and 100 ° C
  • the lower limit is selected from the group consisting of 20 ° C, 40 ° C, and 60 ° C. 80 ° C.
  • step b) is to adjust the pH of the liquid phase obtained in step a) to 1-3, and the resulting solid is the 2,5-furandicarboxylic acid.
  • step b) is to adjust the pH of the liquid phase obtained in step a) to not more than 4 with an acidic substance, and the resulting solid is the 2,5-furandicarboxylic acid.
  • step b) is to adjust the pH of the liquid phase obtained in step a) to 1 to 3 with a solution of an acidic substance and/or an acidic substance, and the obtained solid is the 2,5-furandicarboxylic acid.
  • step b) is to adjust the pH of the liquid phase obtained in step a) to 1-3 with an aqueous solution of an acidic substance, and the resulting solid is the 2,5-furandicarboxylic acid.
  • the acidic substance is selected from the group consisting of inorganic acidic substances and/or organic acidic substances. Further preferably, the acidic substance is at least one selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, methanesulfonic acid, boron trifluoride diethyl ether complex, and benzyl methanesulfonic acid.
  • the method described herein developed a new route for the preparation of 2,5-furandicarboxylic acid.
  • High-purity 2,5-furandicarboxylic acid is prepared from 2,5-diacetylfuran, thereby opening up a technical route for synthesizing high-performance engineering materials from raw furan compounds. Since the raw material furan can be bio-based, the application can drive the bio-based polymer material industry to gradually shed its dependence on petroleum resources and promote the sustainable development of the entire polymer material industry.
  • the 2,5-furandicarboxylic acid prepared by the method described in the present invention has high purity and can be satisfied as high performance.
  • Raw materials for engineering plastics such as polyester, epoxy resin, polyamide, and polyurethane, and as raw materials for chemical raw materials and pharmaceutical intermediates.
  • Example 1 is a 1 H-NMR chart of 2,5-furandicarboxylic acid obtained in Example 1.
  • the molecular weight of 156.1 was determined by 1H-NMR (400 MHz, DMSO), CH, 2H, ⁇ (7.29) on the furan ring; carboxyl OH, 2H, ⁇ (13.62), and liquid chromatography mass spectrometry (LC-MS).
  • the molecular weight of 156.1 was determined by 1H-NMR (400 MHz, DMSO), CH, 2H, ⁇ (7.29) on the furan ring; carboxyl OH, 2H, ⁇ (13.62), and liquid chromatography mass spectrometry (LC-MS).
  • the molecular weight of 156.1 was determined by 1H-NMR (400 MHz, DMSO), CH, 2H, ⁇ (7.29) on the furan ring; carboxyl OH, 2H, ⁇ (13.62), and liquid chromatography mass spectrometry (LC-MS).
  • the molecular weight of 156.1 was determined by 1H-NMR (400 MHz, DMSO), CH, 2H, ⁇ (7.29) on the furan ring; carboxyl OH, 2H, ⁇ (13.62), and liquid chromatography mass spectrometry (LC-MS).
  • the molecular weight of 156.1 was determined by 1H-NMR (400 MHz, DMSO), CH, 2H, ⁇ (7.29) on the furan ring; carboxyl OH, 2H, ⁇ (13.62), and liquid chromatography mass spectrometry (LC-MS).
  • the molecular weight of 156.1 was determined by 1H-NMR (400 MHz, DMSO), CH, 2H, ⁇ (7.29) on the furan ring; carboxyl OH, 2H, ⁇ (13.62), and liquid chromatography mass spectrometry (LC-MS).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Furan Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

本申请提供了一种2,5-呋喃二甲酸的制备方法,以2,5-二乙酰基呋喃为原料,高产率的制备2,5-呋喃二甲酸。该方法简单高效、流程短、副产物少,采用该方法制备的2,5-呋喃二甲酸纯度高,可满足作为高性能聚酯、环氧树脂、聚酰胺、聚氨酯等工程塑料的原料以及作为化工原料和医药中间体原料的要求。

Description

一种2,5-呋喃二甲酸的制备方法 技术领域
本申请涉及一种2,5-呋喃二甲酸的制备方法,属于高性能聚酯、环氧树脂、聚酰胺和聚氨酯等聚合物单体制备和化工、医药中间体的技术领域。
背景技术
2,5-呋喃二甲酸因含有刚性的呋喃环和对位的二甲酸基结构,可直接用于聚酯、环氧树脂、聚酰胺、聚氨酯等高性能工程塑料的制备。采用呋喃二酸制备的聚合物在强度、模量、抗蠕变等方面具有优良的力学性能,同时具有更高的玻璃化转变温度和热变形温度。此外,2,5-呋喃二甲酸本身也可以作为化工原料和医药中间体使用。目前2,5-呋喃二甲酸主要的合成方法是以价格昂贵的5-羟甲基糠醛(HMF)为原料。该方法具有总产率低,成本高的缺点,很难实现大规模工业化应用的缺点。
发明内容
根据本申请的一个方面,提供了一种2,5-呋喃二甲酸的制备方法,以2,5-二乙酰基呋喃为原料,高产率的制备2,5-呋喃二甲酸。该方法简单高效、流程短、副产物少,采用该方法制备的2,5-呋喃二甲酸纯度高,可满足作为高性能聚酯、环氧树脂、聚酰胺、聚氨酯等工程塑料的原料以及作为化工原料和医药中间体原料的要求。
所述2,5-二乙酰基呋喃的结构式如式I所示:
Figure PCTCN2014094070-appb-000001
所述2,5-呋喃二甲酸的结构式如式II所示:
Figure PCTCN2014094070-appb-000002
所述2,5-呋喃二甲酸的制备方法,其特征在于,至少包括以下步骤:
a)将含有2,5-二乙酰基呋喃和卤族元素的体系的pH值调至不小于7,除去固相,得到液相;
b)调节步骤a)所得液相的pH值至不大于4,所得固体即为所述2,5-呋喃二甲酸。
优选地,步骤a)所述原料中,卤族元素来自卤素单质、含有卤素的化合物中的至少一种。进一步优选地,步骤a)所述卤族元素来自卤素单质、含有卤素的无机化合物中的至少一种。
所述卤素选自氯、溴、碘中的至少一种。
优选地,步骤a)所述2,5-二乙酰基呋喃与卤族元素的摩尔比为1:1.5~60。进一步优选地,步骤a)所述2,5-二乙酰基呋喃与卤族元素的摩尔比的范围上限选自1:6.25、1:10,下限任选自1:60、1:20、1:18、1:16、1:14。
优选地,步骤a)所述含有2,5-二乙酰基呋喃和卤族元素的体系中含有溶剂,所述溶剂选自水、乙醇、乙醚、丙二醇、1,4-二氧六环、N,N-二甲基乙酰胺、二甲基亚砜中的至少一种。
优选地,步骤a)所述原料中含有溶剂,所述溶剂为水、乙醇、乙醚、 丙二醇、1,4-二氧六环、N,N-二甲基乙酰胺、二甲基亚砜中的至少两种。进一步优选地,步骤a)所述原料中含有溶剂,所述溶剂为1,4-二氧六环、N,N-二甲基乙酰胺、二甲基亚砜中的至少一种与水的混合物。
优选地,含有2,5-二乙酰基呋喃和卤族元素的体系中溶剂的质量百分含量为10%~99%。进一步优选地,含有2,5-二乙酰基呋喃和卤族元素的体系中溶剂的质量百分含量上限选自95%、90%、85%,下限选自20%、29%、30%、40%、50%、52%、60%、65%。
优选地,步骤a)为向将含有2,5-二乙酰基呋喃和卤族元素的体系中加入碱性物质和/或碱性物质的溶液,将pH值调至不小于7,除去固相,得到液相。进一步优选地,步骤a)为向将含有2,5-二乙酰基呋喃和卤族元素的体系中加入碱性物质的水溶液,将pH值调至不小于7,除去固相,得到液相。
优选地,所述碱性物质选自碱金属或碱土金属的氧化物、碱金属或碱土金属的氢氧化物、碱金属或碱土金属的碳酸盐、氨水中的至少一种。进一步优选地,所述碱性物质选自氢氧化钠、氢氧化钾、氢氧锂、氢氧化铷、氢氧化铯、氢氧化钡、氢氧化钙、氢氧化镁、碳酸钠、碳酸钾、氨水中的至少一种。
优选地,步骤a)为将含有2,5-二乙酰基呋喃和卤族元素的体系的pH值调至7~9,除去固相,得到液相。
优选地,步骤a)将含有2,5-二乙酰基呋喃和卤族元素的体系的pH值调至不小于7,在反应温度0℃~160℃下进行。进一步优选地,所述反应温度范围的上限选自140℃、120℃、100℃,下限选自20℃、40℃、60℃、 80℃。
优选地,步骤b)为调节步骤a)所得液相的pH值至1~3,所得固体即为所述2,5-呋喃二甲酸。
优选地,步骤b)为用酸性物质调节步骤a)所得液相的pH值至不大于4,所得固体即为所述2,5-呋喃二甲酸。进一步优选地,步骤b)为用酸性物质和/或酸性物质的溶液调节步骤a)所得液相的pH值至1~3,所得固体即为所述2,5-呋喃二甲酸。更进一步优选地,步骤b)为用酸性物质的水溶液调节步骤a)所得液相的pH值至1~3,所得固体即为所述2,5-呋喃二甲酸。
所述酸性物质选自无机酸性物质和/或有机酸性物质。进一步优选地,所述酸性物质选自盐酸、硫酸、磷酸、甲酸、甲磺酸、三氟化硼乙醚络合物、苯甲磺酸中的至少一种。
本申请能产生的有益效果至少包括:
(1)本申请所述方法开发了一条制备2,5-呋喃二甲酸的新路径。以2,5-二乙酰基呋喃为原料制备高纯度的2,5-呋喃二甲酸,从而打通了由原料呋喃化合物合成高性能工程材料的技术路线。由于原料呋喃可以生物基来源,因此,本申请可带动生物基高分子材料产业逐渐摆脱对石油资源的依赖,促进整个高分子材料产业的可持续发展。
(3)本申请所述方法简单高效、流程短、副产物少,产物总收率60%-95%,适合大规模工业化生产。
(4)本申请所述方法制备的2,5-呋喃二甲酸纯度高,可满足作为高性能 聚酯、环氧树脂、聚酰胺、聚氨酯等工程塑料的原料以及作为化工原料和医药中间体原料的要求。
附图说明
图1是实施例1所得2,5-呋喃二甲酸的1H-NMR图谱。
具体实施方式
下面结合实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例中,核磁共振氢谱1H-NMR采用布鲁克公司(Bruker)的400AVANCEⅢ型分光仪(Spectrometer)测定,400MHz,二甲亚砜DMSO。
产物分析采用安捷伦公司(Agilent)的7890B-5977A型液相色谱-质谱联用仪检测。
2,5-呋喃二甲酸的产率通过以下公式计算得到:
产率=2,5-呋喃二甲酸的质量/(2,5-二乙酰基呋喃的摩尔数×156.1)
实施例1
在250ml反应器中,将3.04g2,5-二乙酰基呋喃,溶解于20ml水中,20℃时滴加入35.5g碘和200ml水,然后滴加NaOH水溶液(浓度为2mol/L)调节PH为7,过滤去除沉淀,用盐酸(浓度为0.5mol/L)将反应溶液PH值调节至1,过滤析出的固体并烘干,得到2,5-呋喃二甲酸,产率75%。
1H-NMR(400MHz,DMSO)测试得到,呋喃环上CH,2H,δ(7.29);羧基OH,2H,δ(13.62),如图1所示,液相质谱联用仪(LC-MS)测得分 子量156.1。
实施例2
在250ml反应器中,将0.02mol2,5-二乙酰基呋喃,溶解于100ml水中,40℃时缓慢通入0.2mol氯气,同时滴加KOH水溶液(浓度为1mol/L),氯气加入完毕用KOH溶液(浓度为1mol/L)调节PH为7,过滤去除沉淀,用硫酸(浓度为0.5mol/L),将反应溶液PH值调节至1,过滤析出的固体并烘干,得到2,5-呋喃二甲酸,产率81%。
经1H-NMR(400MHz,DMSO)测试得到,呋喃环上CH,2H,δ(7.29);羧基OH,2H,δ(13.62),液相质谱联用仪(LC-MS)测得分子量156.1。
实施例3
在250ml反应器中,将3.04g2,5-二乙酰基呋喃,溶解于20ml水中,60℃时加入10.0g溴和50ml水,然后滴加LiOH水溶液(浓度为2mol/L),调节PH为7,过滤去除沉淀,用磷酸(浓度为1mol/L),将反应溶液PH值调节至1,过滤析出的固体并烘干,得到2,5-呋喃二甲酸,产率70%。
经1H-NMR(400MHz,DMSO)测试得到,呋喃环上CH,2H,δ(7.29);羧基OH,2H,δ(13.62),液相质谱联用仪(LC-MS)测得分子量156.1。
实施例4
在250ml反应器中,将3.04g2,5-二乙酰基呋喃,溶解于20ml水中,80℃时滴加含有0.28mol次氯酸钠的水溶液400ml,然后滴加RaOH水溶液(浓 度为2mol/L),调节PH为7,过滤去除沉淀,用甲酸将反应溶液PH值调节至1,过滤析出的固体并烘干,得到2,5-呋喃二甲酸,产率84%。经1H-NMR(400MHz,DMSO)测试得到,呋喃环上CH,2H,δ(7.29);羧基OH,2H,δ(13.62),液相质谱联用仪(LC-MS)测得分子量156.1。
实施例5
在250ml反应器中,将3.04g2,5-二乙酰基呋喃,溶解于100ml水和20ml1,4-二氧六环中,100℃时滴加含有0.32mol次碘酸钠的水溶液800ml,然后滴加CsOH水溶液(浓度为4mol/L),调节PH为7,过滤去除沉淀,用甲磺酸将反应溶液PH值调节至1,过滤析出的固体并烘干,得到2,5-呋喃二甲酸,产率80%。经1H-NMR(400MHz,DMSO)测试得到,呋喃环上CH,2H,δ(7.29);羧基OH,2H,δ(13.62),液相质谱联用仪(LC-MS)测得分子量156.1。
实施例6
在250ml反应器中,将3.04g 2,5-二乙酰基呋喃,溶解于40ml水和10ml N,N-二甲基乙酰胺中,140℃时滴加含有0.36mol次溴酸钠的溶液1000ml,然后滴加碳酸钾水溶液(浓度为0.5mol/L),调节PH为7,过滤去除沉淀,用三氟化硼乙醚络合物将反应溶液PH值调节至2,过滤析出的固体并烘干,得到2,5-呋喃二甲酸,产率90%。
经1H-NMR(400MHz,DMSO)测试得到,呋喃环上CH,2H,δ(7.29);羧基OH,2H,δ(13.62),液相质谱联用仪(LC-MS)测得分子量156.1。
实施例7
在250ml反应器中,将3.04g2,5-二乙酰基呋喃,溶解于60ml水和10ml二甲基亚砜中,120℃时滴加含有0.40mol碘和0.4mol碘化钾的水溶液600ml,然后滴加氨水溶液调节PH为7,过滤去除沉淀,用苯甲磺酸将反应溶液PH值调节至3,过滤析出的固体并烘干,得到2,5-呋喃二甲酸,产率90%。
经1H-NMR(400MHz,DMSO)测试得到,呋喃环上CH,2H,δ(7.29);羧基OH,2H,δ(13.62),液相质谱联用仪(LC-MS)测得分子量156.1。
本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (10)

  1. 一种2,5-呋喃二甲酸的制备方法,其特征在于,至少包括以下步骤:
    a)将含有2,5-二乙酰基呋喃和卤族元素的体系的pH值调至不小于7,除去固相,得到液相;
    b)调节步骤a)所得液相的pH值至不大于4,所得固体即为所述2,5-呋喃二甲酸。
  2. 根据权利要求1所述的方法,其特征在于,步骤a)所述卤族元素来自卤素单质、含有卤素的无机化合物中的至少一种。
  3. 根据权利要求1所述的方法,其特征在于,步骤a)所述2,5-二乙酰基呋喃与卤族元素的摩尔比为1:1.5~60。
  4. 根据权利要求1所述的方法,其特征在于,步骤a)所述含有2,5-二乙酰基呋喃和卤族元素的体系中含有溶剂,所述溶剂选自水、乙醇、乙醚、丙二醇、1,4-二氧六环、N,N-二甲基乙酰胺、二甲基亚砜中的至少一种。
  5. 根据权利要求1所述的方法,其特征在于,步骤a)所述原料中含有溶剂,所述溶剂为水、乙醇、乙醚、丙二醇、1,4-二氧六环、N,N-二甲基乙酰胺、二甲基亚砜中的至少两种。
  6. 根据权利要求4或5所述的方法,含有2,5-二乙酰基呋喃和卤族元素的体系中溶剂的质量百分含量为10%~99%。
  7. 根据权利要求1所述的方法,其特征在于,步骤a)为向将含有2,5-二乙酰基呋喃和卤族元素的体系中加入碱性物质和/或碱性物质的溶液,将pH值调至不小于7,除去固相,得到液相。
  8. 根据权利要求1所述的方法,其特征在于,步骤a)为将含有2,5-二乙酰基呋喃和卤族元素的体系的pH值调至7~9,除去固相,得到液相。
  9. 根据权利要求1所述的方法,其特征在于,步骤a)在反应温度0℃~160℃下进行。
  10. 根据权利要求1所述的方法,其特征在于,步骤b)为加入酸性物质和/或酸性物质的溶液调节步骤a)所得液相的pH值至1~3,所得固体即为所述2,5-呋喃二甲酸。
PCT/CN2014/094070 2014-12-17 2014-12-17 一种2,5-呋喃二甲酸的制备方法 WO2016095122A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/094070 WO2016095122A1 (zh) 2014-12-17 2014-12-17 一种2,5-呋喃二甲酸的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/094070 WO2016095122A1 (zh) 2014-12-17 2014-12-17 一种2,5-呋喃二甲酸的制备方法

Publications (1)

Publication Number Publication Date
WO2016095122A1 true WO2016095122A1 (zh) 2016-06-23

Family

ID=56125586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094070 WO2016095122A1 (zh) 2014-12-17 2014-12-17 一种2,5-呋喃二甲酸的制备方法

Country Status (1)

Country Link
WO (1) WO2016095122A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108299354A (zh) * 2017-01-12 2018-07-20 中国科学院宁波材料技术与工程研究所 一种2,5-呋喃二甲酸或其酯化物的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3326944A (en) * 1964-03-09 1967-06-20 Atlas Chem Ind Method of producing dehydromucic acid
CN101891719A (zh) * 2010-07-15 2010-11-24 华南理工大学 一种合成2,5-呋喃二甲酸的方法
US20110092720A1 (en) * 2009-10-19 2011-04-21 Canon Kabushiki Kaisha Method of producing 2,5-furandicarboxylic acid
CN103724303A (zh) * 2012-10-15 2014-04-16 中国科学院大连化学物理研究所 一种催化氧化制备2,5-呋喃二甲酸的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3326944A (en) * 1964-03-09 1967-06-20 Atlas Chem Ind Method of producing dehydromucic acid
US20110092720A1 (en) * 2009-10-19 2011-04-21 Canon Kabushiki Kaisha Method of producing 2,5-furandicarboxylic acid
CN101891719A (zh) * 2010-07-15 2010-11-24 华南理工大学 一种合成2,5-呋喃二甲酸的方法
CN103724303A (zh) * 2012-10-15 2014-04-16 中国科学院大连化学物理研究所 一种催化氧化制备2,5-呋喃二甲酸的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108299354A (zh) * 2017-01-12 2018-07-20 中国科学院宁波材料技术与工程研究所 一种2,5-呋喃二甲酸或其酯化物的制备方法

Similar Documents

Publication Publication Date Title
US9840485B1 (en) Bisfuran dihalide, method for producing bisfuran dihalide, and method for producing bisfuran diacid, bisfuran diol or bisfuran diamine using bisfuran dihalide
CN103508942B (zh) 一种2,3-二氯-5-甲基吡啶的合成方法
CN106554338A (zh) 一种糠酸制备2,5-呋喃二甲酸的方法
WO2016095122A1 (zh) 一种2,5-呋喃二甲酸的制备方法
CN108299354A (zh) 一种2,5-呋喃二甲酸或其酯化物的制备方法
KR101583851B1 (ko) 3-메틸-2-티오펜카르복실산의 제조 방법
CN108947800B (zh) 一种(1s)-4,5-二甲氧基-1-(羰基氨基甲基)苯并环丁烷的合成方法
TW201718510A (zh) 製備1-甲基-3-(三氟甲基)-1h-吡唑-5-醇的方法
CN108530380B (zh) 一种n-甲基-1,2-苯并异噻唑啉-3-酮的合成方法
CN102643157B (zh) 一种全氟烷烃的制备方法
CN105152903B (zh) 一种脂肪族二元羧酸的制备方法
CN105753821B (zh) 一种2,5-呋喃二甲酸的制备方法
CN104926599A (zh) 一种在新型溶剂体系下制备高纯度联苯二氯苄的方法
CN109912400B (zh) 全氟乙烯基全氟碘代乙基醚及其中间体的合成方法
JPWO2007034558A1 (ja) 無水3−ヒドロキシフタル酸の製造方法
JP2012519172A5 (zh)
CN102633683B (zh) 一种1-羟甲基环丙基乙腈合成方法
CN104230747B (zh) 一种不对称芳香偶氮化合物的制备方法
CN115650840B (zh) 一种4,4’-二苯醚二甲酸的制备方法
CN108864009A (zh) 一种4-羟基苯酐的制备方法
CN111116504B (zh) 一种制备1,4-双(5-苯基-2-恶唑基)苯的工艺方法
US11384061B2 (en) Process for preparing esters of N-acylated amino acids with acid-labile keto protective group functions
WO2016034150A1 (zh) 博舒替尼及其结晶的制备方法
RU2797180C2 (ru) Способ синтеза 5-гидроксиметилфурфураля (5-hmf) из углеводов
JP2016199488A (ja) テトラキスフェノールエタン類の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908157

Country of ref document: EP

Kind code of ref document: A1