WO2016093131A1 - 照明装置及び反射特性測定装置 - Google Patents

照明装置及び反射特性測定装置 Download PDF

Info

Publication number
WO2016093131A1
WO2016093131A1 PCT/JP2015/083944 JP2015083944W WO2016093131A1 WO 2016093131 A1 WO2016093131 A1 WO 2016093131A1 JP 2015083944 W JP2015083944 W JP 2015083944W WO 2016093131 A1 WO2016093131 A1 WO 2016093131A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflection
reflective
illuminated
lighting device
Prior art date
Application number
PCT/JP2015/083944
Other languages
English (en)
French (fr)
Inventor
貴志 川崎
利夫 河野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to EP15866940.8A priority Critical patent/EP3232171A4/en
Priority to JP2016563643A priority patent/JP6790828B2/ja
Publication of WO2016093131A1 publication Critical patent/WO2016093131A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0251Colorimeters making use of an integrating sphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0262Constructional arrangements for removing stray light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J2003/425Reflectance

Definitions

  • the present invention relates to an illumination device and a reflection characteristic measurement device including the illumination device.
  • an illumination light receiving system having a predetermined geometry for example, a so-called 45: 0 degree geometry is used.
  • the 45: 0 degree illumination light receiving system includes an illumination optical system that illuminates the sample surface from a direction at 45 ° from the normal line, and a light receiving optical system that receives reflected light from the sample surface from the normal direction. .
  • Patent Document 1 there is a technique proposed in Patent Document 1 as an illumination optical system having such a geometry.
  • a part of light emitted from a large number of LED light sources arranged on the circumference surrounding the normal line of the sample surface is deflected by a mirror so as to hit all of the sample surface at an angle of 45 °, 45: 0 degree geometry is realized.
  • three sets of nine LED light sources each having nine different spectra are arranged in three sets along the circumferential direction of the cylinder. Thereby, the sample is illuminated from three directions by light having a wavelength over the entire visible light range.
  • an illumination optical system including one surface light source disposed on the normal line of the sample surface and a large number of plane mirrors is used.
  • the surface light source irradiates light in all directions at an angle of 45 degrees with the normal of the sample surface.
  • a large number of plane mirrors are arranged in the circumferential direction along a cylinder surrounding the normal line of the sample surface between the sample surface and the light source.
  • the irradiated light beam is deflected in the direction of the sample surface by a number of plane mirrors. This realizes a 45: 0 ° geometry.
  • the colorimeter of Patent Document 2 further includes a light-receiving mechanism for color measurement that extends from the normal line of the sample surface to the outside of the cylinder in which the mirror is arranged.
  • the colorimeter disclosed in Patent Document 2 can use light from the light source more efficiently than the apparatus disclosed in Patent Document 1.
  • the colorimeter disclosed in Patent Document 2 irradiates light from a surface light source in all directions, reflects the light toward a sample surface from a number of mirrors arranged on a cylinder, and illuminates the sample surface.
  • the colorimeter of Patent Document 2 can obtain a stable measurement value as compared with the apparatus of Patent Document 1 even when measuring a sample having a directional surface.
  • the colorimeter of Patent Document 2 still has a problem that the amount of reflected light from the sample surface varies greatly depending on the orientation of the sample surface with respect to the colorimeter.
  • the present invention has been made to solve such problems, and can suppress fluctuations in the amount of light reflected from an illuminated surface having directionality in reflection characteristics and improve the utilization efficiency of a light bundle irradiated from a light source.
  • the purpose is to provide technology that can be used.
  • an illumination device that illuminates a surface to be illuminated, the surface light source disposed on a normal line of the surface to be illuminated, and the normal line.
  • a reflection mechanism that is provided between the surface light source and the surface to be illuminated so as to surround the surface and reflects light emitted from the surface light source toward the surface to be illuminated.
  • a reflective region that reflects light toward the illuminated surface and a non-reflective region that does not reflect the light toward the illuminated surface alternately in the circumferential direction along a virtual cylindrical surface surrounding the normal line By arranging, three or more reflective areas and three or more non-reflective areas are arranged, and each of the three or more reflective areas is a partial cylindrical area along the virtual cylindrical surface. And the three or more non-reflective regions surround the normal. It is arranged to be dispersed in the circumferential direction.
  • the lighting device according to the second aspect is the lighting device according to the first aspect, and the three or more non-reflective regions are arranged at equal intervals in the circumferential direction.
  • the illuminating device according to the third aspect is the illuminating device according to the first or second aspect, wherein the light is reflected by the three or more reflective regions respectively toward the illuminated surface.
  • the plurality of reflecting surfaces are arranged in the circumferential direction along the virtual cylindrical surface.
  • the reflection device is the illumination device according to the third aspect, wherein each of the plurality of reflection surfaces is a planar reflection surface.
  • An illumination device is the illumination device according to the third aspect, wherein each of the plurality of reflection surfaces is a curved reflection surface extending in the normal direction, and the normal line A cross section perpendicular to the curve is an arc-shaped curve convex on the normal side or on the opposite side.
  • the illumination device is the illumination device according to any one of the third to fifth aspects, wherein the reflection mechanism is arranged in the circumferential direction of the virtual cylindrical surface for each of the plurality of reflection regions.
  • Each of the plurality of members has a facing surface facing the normal line, and the plurality of reflecting surfaces are at least some of the plurality of members.
  • the adjacent members of the plurality of members are coupled to each other so that the directions of the plurality of reflecting surfaces are fixed to each other.
  • the illumination device is the illumination device according to any one of the third to sixth aspects, wherein the light is applied to a part of each of the three or more reflective regions.
  • a non-reflective portion that does not reflect toward the surface is disposed, and the three or more non-reflective portions respectively disposed in the three or more reflective regions are arranged in a circumferential direction of the virtual cylindrical surface so as to surround the normal line. Are distributed.
  • the illuminating device according to the eighth aspect is the illuminating device according to the seventh aspect, wherein the three or more non-reflective portions are arranged at equal intervals in the circumferential direction.
  • the illuminating device is the illuminating device according to the seventh or eighth aspect, wherein the non-reflective portion is equal to or greater than a range occupied by one reflective surface of the plurality of reflective surfaces in the reflective region. In the reflection region.
  • the illuminating device according to the tenth aspect is the illuminating device according to any one of the seventh to ninth aspects, and a portion of the reflective region other than the non-reflective portion is larger than the non-reflective portion.
  • An illuminating device is the illuminating device according to any one of the first to tenth aspects, wherein the surface light source includes a spherical space and a round hole-shaped emission port, and the space An integrating sphere in which the inner surface has a diffuse reflection surface, the exit port connects the space and the outside, and the space and the exit port have the normal as a common central axis. And a straight tube light source extending in the tube axis direction across the space and having a discharge section.
  • the illuminating device is the illuminating device according to any one of the first to tenth aspects, and the surface light source is an LED light source.
  • a reflection characteristic measurement device is generated by the illumination device according to any one of the first to twelfth aspects and the illuminated surface reflecting the light reflected by the reflection mechanism.
  • a light receiving mechanism that receives the reflected light and outputs a measurement result of the reflected light.
  • An illuminating device is an illuminating device that illuminates a surface to be illuminated, a surface light source arranged on a normal line of the surface to be illuminated, and the surface light source and the surface to be illuminated so as to surround the normal line.
  • a reflection mechanism that is provided between the illumination surface and reflects the light emitted from the surface light source toward the illuminated surface, and the reflection mechanism directs the light toward the illuminated surface.
  • a reflective region that reflects and a low-reflective region that reflects the light toward the surface to be illuminated are lower in reflectance than the reflective region, alternately along the virtual cylindrical surface that surrounds the normal line in the circumferential direction.
  • the three or more reflection regions and the three or more low reflection regions are arranged by being arranged, and each of the three or more reflection regions is a partial cylindrical region along the virtual cylindrical surface. Yes, the three or more low reflection areas surround the normal. It is arranged to be dispersed in the circumferential direction.
  • a reflection characteristic measurement device receives the reflected light generated by the illumination device according to the fourteenth aspect and the illuminated surface reflecting the light reflected by the reflection mechanism, And a light receiving mechanism for outputting a result of the measurement with respect to the reflected light.
  • the three or more non-reflective regions are distributed in the circumferential direction of the virtual cylindrical surface surrounding the normal line of the illuminated surface. Therefore, three or more reflective regions are also distributed and arranged in the circumferential direction.
  • the wrinkle pattern and the stripe pattern on the illuminated surface often have two-fold rotational symmetry. For this reason, it is possible to suppress the occurrence of cases where the amount of reflected light is extremely reduced by irradiating illumination light from all directions with low reflectivity of the surface to be illuminated and not irradiating illumination light from all directions with high reflectivity. Is done.
  • each of the three or more reflective areas is a partial cylindrical area along the virtual cylindrical surface, the light flux reflected from each reflective area among the light bundles emitted from the surface light source is efficiently illuminated. It can reflect towards the surface. Thereby, the utilization efficiency of the said light bundle can be improved.
  • the three or more non-reflective regions are arranged at equal intervals in the circumferential direction of the virtual cylindrical surface that surrounds the normal line of the illuminated surface. Variations in the amount of light reflected from the illuminated surface can be further suppressed.
  • each of the three or more reflection regions is provided with a plurality of reflection surfaces, and the plurality of reflection surfaces are arranged in the circumferential direction along the virtual cylindrical surface. . Therefore, the use efficiency of the light bundle emitted from the surface light source can be further improved by adjusting the direction of each of the plurality of reflecting surfaces.
  • each of the plurality of reflecting surfaces is a flat reflecting surface, it is easy to manufacture each reflecting surface, and it is easy to manufacture an illuminating device with small variations in performance. Become.
  • each of the plurality of reflecting surfaces is a curved reflecting surface extending in the normal direction, and a cross section perpendicular to the normal is convex to the normal side or the opposite side. Therefore, the illumination area by the light reflected from each reflecting surface can be widened or narrowed.
  • the reflection mechanism includes a plurality of members arranged in the circumferential direction of the virtual cylindrical surface for each of the plurality of reflection regions, and the plurality of reflection surfaces are a plurality of members. Adjacent members of the plurality of members are joined to each other so that the directions of the plurality of reflecting surfaces are fixed to each other. Therefore, the number of parts constituting the reflection mechanism can be reduced, and the manufacturing cost of the lighting device can be reduced.
  • the three or more non-reflective portions respectively disposed in the three or more reflective regions are distributed in the circumferential direction of the virtual cylindrical surface. Occurrence of cases in which the amount of reflected light is extremely reduced by irradiating illumination light from all orientations with low reflectivity of the illuminated surface and not illuminating illumination light from all orientations with high reflectivity is further suppressed. . In addition, the occurrence of a case where the amount of reflected light is extremely increased by irradiating illumination light from all directions with low reflectivity and irradiating illumination light from all directions with high reflectivity is further suppressed. . Accordingly, it is possible to further suppress fluctuations in the amount of light reflected from the illuminated surface having the directionality in the reflection characteristics.
  • the three or more non-reflective portions are arranged at equal intervals in the circumferential direction of the virtual cylindrical surface. Accordingly, it is possible to further suppress fluctuations in the amount of light reflected from the illuminated surface having the directionality in the reflection characteristics.
  • the non-reflective portion occupies a range in the reflective region that is greater than or equal to the range that one of the reflective surfaces occupies in the reflective region. Accordingly, since the non-reflective region can be suppressed from becoming extremely small, fluctuations in the amount of light reflected from the illuminated surface having a directivity in the reflection characteristics can be further suppressed.
  • the portion other than the non-reflective portion in the reflective region is larger than the non-reflective portion, it is possible to suppress a decrease in the amount of light reflected from the reflective region toward the illuminated surface. .
  • the light emitted from the straight tube light source is diffused and reflected by the diffuse reflection surface, and then emitted from the round hole-shaped exit, so that the light emitted from the surface light source becomes uniform.
  • the surface light source has a vertical light distribution characteristic substantially following Lambert's cosine law. Therefore, even when the illuminated surface moves in the normal direction, fluctuations in illuminance can be suppressed.
  • the surface light source is an LED light source
  • the surface light source can be miniaturized and the overall size of the lighting device can be kept small.
  • the reflection characteristic measuring apparatus measures an illuminated surface having directionality in the reflection characteristics, so that the fluctuation of the amount of light reflected from the illuminated surface can be suppressed, so that the stable Measurements can be obtained.
  • the three or more non-reflective regions are distributed in the circumferential direction of the virtual cylindrical surface surrounding the normal line of the illuminated surface. Therefore, three or more low reflection regions are also distributed in the circumferential direction. It is possible to suppress fluctuations in the amount of light that is irradiated from the reflection mechanism onto the surface to be illuminated having directionality in the reflection characteristics and reflected from the surface to be illuminated. Since each of the three or more reflective areas is a partial cylindrical area along the virtual cylindrical surface, the light flux reflected from each reflective area among the light bundles emitted from the surface light source is efficiently illuminated. Since the light can be reflected toward the surface, the light beam utilization efficiency can be improved.
  • Colorimeter> The schematic diagram of FIG. 1 shows a colorimeter.
  • the colorimeter 1000 shown in FIG. 1 measures the spectral reflectance of the sample. Reflection characteristics other than the spectral reflectance may be measured. For example, the color value may be measured. That is, the function of the spectrocolorimeter that the colorimeter 1000 has may be changed to the function of a reflection characteristic measuring device other than the spectrocolorimeter. For example, the spectral colorimeter function of the colorimeter 1000 may be changed to a colorimeter function.
  • Spectral reflectance is measured by a geometry with an illumination angle of 45 ° and a light receiving angle of 0 °.
  • the illuminated surface is illuminated by the annular illumination.
  • the illuminated surface is the surface of the sample. Geometry and / or lighting may be changed.
  • the colorimeter 1000 includes a measurement mechanism 1010, a controller 1011 and a housing 1012.
  • the measurement mechanism 1010 is responsible for color measurement.
  • the controller 1011 controls the measurement mechanism 1010.
  • the housing 1012 houses the measurement mechanism 1010, the controller 1011 and the like.
  • the schematic diagram of FIG. 2 shows the top surface of the measurement mechanism.
  • the schematic diagram of FIG. 3 shows the lower surface of the measurement mechanism.
  • the schematic diagram of FIG. 4 shows a cross section of the measurement mechanism.
  • the schematic diagram of FIG. 5 shows a cross section of the measuring mechanism excluding the light receiving mechanisms for colorimetry and correction.
  • the schematic diagram of FIG. 6 shows a longitudinal section of the measurement mechanism.
  • the measurement mechanism 1010 shown in FIG. 2 to FIG. 5 includes an illumination mechanism 1032 for color measurement, a light reception mechanism 1033 for color measurement, a light reception mechanism 1034 for correction, and the like.
  • the illumination mechanism 1032 for colorimetry illuminates the illuminated surface 1050 with illumination light 1042 from around the illuminated surface 1050.
  • Illuminated surface 1050 is an illumination target region (also referred to as “measurement target region”) on the illuminated surface.
  • the colorimetric light receiving mechanism 1033 receives the reflected light 1043 and outputs a measurement result for the reflected light 1043.
  • the reflected light 1043 is light that is reflected by the illuminated surface 1050 in the direction of the normal 1120, that is, the direction in which the light receiving angle is 0 °, by the illuminated surface 1050.
  • the correction light receiving mechanism 1034 receives the light 1045 and outputs a measurement result for the light 1045.
  • the illumination mechanism 1032 for color measurement may be used for purposes other than color measurement. When the illumination mechanism 1032 for color measurement is used in an application other than color measurement, the illumination mechanism 1032 may be used alone, or the illumination mechanism 1032 may be incorporated in an apparatus other than the colorimeter 1000.
  • the color measurement illumination mechanism 1032 shown in FIGS. 2 to 6 includes a light emission mechanism 1190, a reflection mechanism 1191, and the like, as shown in FIGS.
  • the light emitting mechanism 1190 emits light 1044, light 1045, and the like.
  • the reflection mechanism 1191 turns the light 1044 into illumination light 1042.
  • the light emitting mechanism 1190 may be used in applications other than colorimetry. When the light emission mechanism 1190 is used in applications other than color measurement, the light emission mechanism 1190 may be used alone, or the light emission mechanism 1190 may be incorporated in an apparatus other than the colorimeter 1000.
  • FIG. 7 shows a cross section of the light emitting mechanism.
  • the 4 to 7 includes a straight tube type xenon lamp 1200, an integrating sphere 1201, a baffle 1202, and the like.
  • the straight tube type xenon lamp 1200 emits light.
  • the integrating sphere 1201 makes the light uniform.
  • the baffle 1202 prevents light from being emitted without being made uniform.
  • a spherical space 1210 formed in the integrating sphere 1201 is defined on the inner surface 1220 of the integrating sphere 1201.
  • the integrating sphere 1201 is formed by integrating integrating hemispheres 1205 and 1206 with screws.
  • the hemispherical spaces 1207 and 1208 formed in the integrating hemispheres 1205 and 1206 are defined by hemispherical inner surfaces 1217 and 1218.
  • the inner surfaces 1217 and 1218 are each coated with a white matte paint (light diffusion material).
  • the respective hemispheres having the respective hemispherical surfaces along the main portions of the inner surfaces 1217 and 1218 can be grasped.
  • the diameter of the hemisphere grasped from the space 1207, that is, the hemisphere along the main portion of the inner surface 1217 is smaller than the diameter of the hemisphere grasped from the space 1208, that is, the hemisphere along the main portion of the inner surface 1218.
  • the space 1207 is open to one end surface of the integrating hemisphere 1205.
  • the other end surface of the integrating hemisphere 1206 is in contact with the one end surface.
  • the space 1208 opens to the other end surface of the integrating hemisphere 1206.
  • the opening diameters of the openings 1227 and 1228 in the spaces 1207 and 1208 are equal to the diameters of the respective hemispheres grasped from the spaces 1207 and 1208, respectively.
  • the integrating hemispheres 1205 and 1206 are coupled to each other with the one end surface of the integrating hemisphere 1205 and the other end surface of the integrating hemisphere 1206 in contact with each other so that the centers of the openings 1227 and 1228 coincide with each other.
  • the centers of the openings 1227 and 1228 are the center 1240 of the integrating sphere 1201.
  • a round hole-shaped exit port 1211 formed in the integrating sphere 1201 is defined on the inner surface 1217 of the integrating hemisphere 1205.
  • the emission port 1211 communicates the space 1210 and the outside of the integrating sphere 1201.
  • the diameter of the emission port 1211 is constant.
  • the exit 1211 may be divergent from one end on the space 1210 side toward the other end on the outside of the integrating sphere 1201. In order to say that the exit port 1211 has a round hole shape, it is only necessary to grasp the rotationally symmetric body.
  • the space 1210 that is, the spaces 1207 and 1208, and the emission port 1211 have a common central axis 1230.
  • the symmetry axes of the sphere and the hemisphere along the main parts of the inner surfaces 1220, 1217, and 1218, and the symmetry axis of the rotationally symmetric body grasped from the exit port 1211 are on the central axis 1230.
  • the center 1240 of the integrating sphere 1201 is also on the central axis 1230.
  • Center axis 1230 coincides with normal 1120 passing through the center of illuminated surface 1050. That is, the light emitting mechanism 1190 is disposed on the normal line 1120 of the illuminated surface 1050.
  • the space 1210 has a spherical shape, a rotationally symmetric body having a central axis 1230 as a symmetry axis from a main portion of the inner surface 1220, that is, a space where the respective hemispheres grasped from the main portions of the inner surfaces 1217 and 1218 are combined. It is enough if you can grasp it.
  • the inner surface 1220 may have some unevenness, and some holes may be exposed on the inner surface 1220.
  • the emission port 1211 exposed to the inner surface 1220 also corresponds to the hole.
  • the diameter of the hemisphere grasped from the space 1207 that is, the diameter of the opening 1227 is smaller than the diameter of the hemisphere grasped from the space 1208, that is, the diameter of the opening 1228.
  • a line connecting each point on each reflection surface 1340 described later included in the reflection mechanism 1191 and each point on the periphery of the opening 1228 is blocked by the periphery of the opening 1227. For this reason, the periphery of the opening 1228 of the space 1208 cannot be seen from each reflecting surface 1340.
  • the white matte paint is easily peeled off at the connection portion between the openings. Due to the peeling of the paint, the reflectance of the light at the connection portion is lower than the surrounding portion. For this reason, when the said connection part is visible from each reflective surface 1340 through the output port 1211, the light quantity of the light inject
  • the peripheral edge of the opening 1227 does not hit the other end surface of the integrating hemisphere 1206, and thus the reflectance of the peripheral edge of the opening 1227 is the same as that of other parts. It will be about.
  • the peripheral edge of the opening 1228 is a corner where one end surface of the integrating hemisphere 1205 and the inner surface 1218 contact each other at an angle of approximately 90 degrees, and thus the reflectance is lower than the other portions.
  • the periphery of the opening 1227 is visible from each reflecting surface 1340, but the periphery of the opening 1228 is not visible from each reflecting surface 1340. Accordingly, it is possible to suppress unevenness in the amount of light emitted from the emission port 1211 to each reflection surface 1340 due to a decrease in reflectance at the periphery of the opening 1228.
  • the inner surface 1220 that is, the inner surfaces 1217 and 1218 has a diffuse reflection surface 1245. Desirably, the entire inner surface 1220 becomes the diffuse reflection surface 1245, but the inner surface 1220 may have a slight surface that is not the diffuse reflection surface 1245.
  • the diffuse reflection surface 1245 is a surface painted with a white matte paint.
  • the white matte paint includes a resin, a white pigment, a matte material, and the like.
  • the resin is an acrylic resin or the like.
  • the white pigment is a powder of titanium oxide, zinc oxide, barium sulfate, calcium carbonate or the like.
  • the matting material is fine particles such as silica, calcium carbonate, calcium phosphate.
  • the white matte paint may be replaced with an achromatic matte paint other than white.
  • the diffuse reflection surface 1245 may be formed by roughening the inner surface 1220.
  • FIG. 8 is a perspective view of a part of a straight tube type xenon lamp and a part of a baffle.
  • a straight tube type xenon lamp (also referred to as “straight tube light source”) 1200 shown in FIGS. 4, 5, 7 and 8 includes an arc tube 1250, an electrode 1251, and an electrode 1252, as shown in FIG. , A sealed gas 1253, and the like.
  • the electrode 1251 is sealed to one end of the arc tube 1250.
  • the electrode 1252 is sealed to the other end of the arc tube 1250.
  • the sealed gas 1253 is sealed in the arc tube 1250.
  • the main component of the sealed gas 1253 is xenon gas.
  • the straight tube type xenon lamp 1200 extends in the tube axis direction in which the tube shaft 1310 extends.
  • the straight tube xenon lamp 1200 has a discharge section 1260.
  • the discharge section 1260 is between the electrode 1251 and the electrode 1252.
  • a voltage is applied between the electrode 1251 and the electrode 1252, a discharge occurs in the discharge section 1260, and light is emitted from the straight tube xenon lamp 1200.
  • the straight tube type xenon lamp 1200 has an advantage that it is inexpensive and has a large amount of light emitted over the entire visible range. This advantage contributes to lowering the manufacturing cost of the colorimeter 1000 and improving the colorimetric signal-to-noise ratio.
  • a straight tube type light source replacing the straight tube type xenon lamp 1200
  • a straight tube type HID lamp High-intensity-discharge lamp
  • UCM metal halide lamp manufactured by Ushio Lighting Co., Ltd.
  • Integral hemispheres 1205 and 1206 have a concavo-convex structure that can be fitted to the concavo-convex structure at both ends of the xenon lamp 1200 at one end and the other end in the tube axis 1310 direction.
  • the integration hemispheres 1205 and 1206 are fixed to each other in a state where the xenon lamp 1200 is sandwiched between the integration hemispheres 1205 and 1206 so that these fitting structures are fitted to each other. Thereby, the xenon lamp 1200 is fixed to the integrating sphere 1201.
  • the straight tube type xenon lamp 1200 traverses the space 1210.
  • the baffle 1202 is between the discharge section 1260 and the outlet 1211.
  • the baffle 1202 prevents a part or all of the exit port 1211 from being seen through the discharge section 1260, and desirably prevents the whole exit port 1211 from being seen through the discharge section 1260.
  • One position is seen from another position (also referred to as “visible”) means that there is no light shielding object on a straight line connecting one position and another position, and the light beam is directly from one position to another position. To reach the target.
  • one position is not seen from another position (also referred to as “invisible”), there is a light shielding object on a straight line connecting the one position and the other position. This means that the light beam cannot reach the position of.
  • the baffle 1202 shields the light beam that travels directly from the discharge section 1260 to the exit port 1211, and suppresses the light emitted from the discharge section 1260 from exiting from the exit port 1211 without being diffusely reflected by the diffuse reflection surface 1245. As a result, stray light is suppressed and the accuracy of colorimetry is improved.
  • the uniformed light 1045 is received by the light receiving mechanism 1034 for correction, and the emission port 1211. The fluctuation of the light 1044 emitted from the light source is appropriately monitored.
  • the baffle 1202 has a partial cylindrical shape and extends in a direction parallel to the direction in which the discharge section 1260 extends.
  • the partial cylinder refers to a shape obtained by cutting a part from one circumferential position of the cylinder to another circumferential position. In order to say that the shape is a partial cylindrical shape, it is sufficient that the shape is along the partial cylinder, and the shape may have some unevenness with respect to the partial cylinder.
  • An inner peripheral surface 1275 of the baffle 1202 is directed to the discharge section 1260.
  • the outer peripheral surface 1276 of the baffle 1202 is directed to the emission port 1211. The shape of the baffle 1202 may be changed.
  • the surface 1280 of the baffle 1202 has a diffuse reflection surface 1290. Desirably, the entire surface 1280 is the diffuse reflection surface 1290, but the surface 1280 may have a slight surface that is not the diffuse reflection surface 1290. However, even when the surface of the baffle 1202 does not have the diffuse reflection surface 1290, the function of the integrating sphere 1201 for making the light uniform is not lost, and the usefulness of the light emitting mechanism 1190 is not lost.
  • the straight tube type xenon lamp 1200 When the straight tube type xenon lamp 1200 emits light, the light sequentially proceeds through the space 1210 and the emission port 1211 and finally exits from the integrating sphere 1201.
  • the light is diffusely reflected on the diffuse reflection surface 1245 at least once while traveling through the space 1210. Most of the light is diffusely reflected by the diffuse reflection surface 1245 repeatedly while traveling through the space 1210.
  • the light is diffused and reflected by the diffuse reflection surface 1245 and then emitted from the emission port 1211, whereby the light emitted from the light emission mechanism 1190 becomes uniform, and the light emission mechanism 1190 is substantially vertically distributed according to Lambert's cosine law. It has characteristics.
  • the luminous intensity of light emitted in a direction that forms an angle ⁇ with the central axis 1230 is proportional to the cosine cos ⁇ of the angle ⁇ .
  • the straight tube type xenon lamp 1200 has a drawback that the vertical light distribution characteristic does not follow Lambert's cosine law. Further, the straight tube type xenon lamp 1200 has a drawback that the horizontal light distribution characteristic is not uniform. However, these disadvantages are alleviated to such an extent that they are not substantially problematic by integrating sphere 1201.
  • One end 1301 and the other end 1302 of the discharge section 1260 are along the inner surface 1220, preferably on the spherical surface of the grasped sphere.
  • the protrusion of the straight tube type xenon lamp 1200 from the space 1210 is reduced, and the light emission mechanism 1190 is reduced in size.
  • most of the discharge section 1260 is accommodated in the space 1210, and most of the light emitted from the straight tube xenon lamp 1200 is emitted to the space 1210, so that the efficiency of the light emission mechanism 1190 is improved.
  • the one end 1301 and the other end 1302 of the discharge section 1260 are on the spherical surface of the grasped sphere or the one end 1301 and the other end 1301 of the discharge section 1260. It suffices if the other end 1302 is close to the inner surface 1220 at a distance from the inner surface 1220.
  • the center 1300 of the discharge section 1260 is the center of the portion included in the space 1210 in the discharge section 1260.
  • the center 1300 is on the tube axis 1310 of the straight tube type xenon lamp 1200 and at the same distance from the electrode 1251 and the electrode 1252.
  • the xenon lamp 1200 is arranged so as to be shifted from the central axis 1230 in a direction crossing the normal line 1120 of the illuminated surface 1050 so that the center 1240 of the integrating sphere 1201 is not positioned on the tube axis 1310 of the xenon lamp 1200.
  • the amount of light emitted from the xenon lamp 1200 to each mirror can be made uniform by setting the straight tube extension direction of the xenon lamp 1200 as a bridge.
  • the reflection mechanism 1191 includes an odd number of mirror blocks 600, as described above, the xenon lamp 1200 is shifted from the center 1240 so that the amount of light radiated from the emission port 1211 to each mirror block 600 can be easily obtained. Can be made uniform.
  • the center 1300 of the portion included in the space 1210 in the discharge section 1260 is preferably out of the area where any of the three reflection areas can be seen through the emission port 1211 in the space 1210.
  • the exit 1211 is in the tube radial direction 1320 that is away from the tube axis 1310 when viewed from the discharge section 1260.
  • the discharge section 1260 preferably extends in a plane perpendicular to the direction of the central axis 1230, that is, the axial direction 1330 and parallel to the illuminated surface 1050.
  • the center 1300 of the discharge section 1260 may be on the central axis 1230.
  • the LED light source is also a surface light source, an LED light source may be used instead of the light emitting mechanism 1190.
  • FIGS. 9 and 10 are a top view and a perspective view showing a part of the structure of the illumination mechanism 1032.
  • the reflection mechanism 1191 is provided between the light emission mechanism 1190 and the illuminated surface 1050 so as to surround the normal 1120.
  • the reflection mechanism 1191 reflects the light 1044 emitted from the light emission mechanism 1190 toward the illumination target surface 1050 as illumination light 1042.
  • the reflection mechanism 1191 includes three or more (three in the illustrated example) mirror blocks 600.
  • the mirror blocks 600 are arranged in a distributed manner in the circumferential direction 1350 along the virtual cylindrical surface K1 surrounding the normal 1120.
  • Each mirror block 600 is a partially cylindrical plate member along the virtual cylindrical surface K1. From both end faces in the normal 1120 direction of each mirror block 600, a protrusion N1 (FIG. 5) protrudes in the normal 1120 direction.
  • a plurality of protrusions N1 are provided on at least one end face of the both end faces.
  • the measurement mechanism 1010 further includes cylindrical members 810 and 820 that are provided with the normal 1120 as an axis.
  • the cylindrical member 810, the reflection mechanism 1191, and the cylindrical member 820 are provided in this order from the illuminated surface 1050 side.
  • the cylindrical members 810 and 820 and the reflection mechanism 1191 are located between the illuminated surface 1050 and the light emission mechanism 1190.
  • the diameters of the cylindrical members 810 and 820 and the virtual cylindrical surface K1 are equal to each other.
  • the cylindrical member 820 includes a cylindrical side wall 823 having a normal line 1120 as a central axis, and a disk-shaped lid 822 that closes an opening of the side wall 823 on the light emission mechanism 1190 side.
  • a round hole-shaped opening 821 centering on the normal 1120 is formed at the center of the lid 822.
  • the opening 821 has a larger diameter than the exit port 1211 of the integrating sphere 1201.
  • the space 1210 of the integrating sphere 1201 and the internal space of the cylindrical member 820 communicate with each other via the emission port 1211 and the opening 821.
  • one end face on the light emitting mechanism 1190 side and the other end face on the illuminated surface 1050 side of both end faces in the normal 1120 direction of each mirror block 600 are in contact with each other.
  • One end surface of the cylindrical member 810 is provided with a hole that can be fitted to the protrusion N ⁇ b> 1 provided on the other end surface of the mirror block 600.
  • the cylindrical member 810 and the mirror block 600 are fixed to each other by fitting the hole and the protrusion N1 of the mirror block 600.
  • each mirror block 600 Of the both end surfaces of each mirror block 600, one end surface on the light emitting mechanism 1190 side and the other end surface on the illuminated surface 1050 side of both end surfaces of the side wall 823 of the cylindrical member 820 are in contact with each other.
  • the other end surface of the side wall 823 is provided with a hole that can be fitted to the protrusion N1 provided on one end surface of the mirror block 600.
  • the mirror block 600 and the cylindrical member 820 are fixed to each other by fitting the hole and the protrusion N1.
  • the inner peripheral surface of the mirror block 600 that is, the surface facing the normal 1120 is a reflection region 500 that reflects the light 1044 toward the illuminated surface 1050.
  • the adjacent mirror blocks 600 are provided at intervals from each other along the virtual cylindrical surface K1. A portion between the adjacent mirror blocks 600 is a non-reflective region 502 that does not reflect the light 1044 toward the illuminated surface 1050.
  • the reflection mechanism 1191 three or more (three in the illustrated example) reflective regions 500 and three or more (three in the illustrated example) non-reflective regions 502 are arranged.
  • the reflective region 500 and the non-reflective region 502 are alternately arranged in the circumferential direction 1350 along the virtual cylindrical surface K1 surrounding the normal 1120.
  • Each reflective region 500 is a partial cylindrical region along the virtual cylindrical surface K1, and three or more non-reflective regions 502 are arranged in the circumferential direction 1350 along the virtual cylindrical surface K1 so as to surround the normal 1120. It is distributed. Accordingly, the three or more reflective regions 500 are also distributed in the circumferential direction 1350 along the virtual cylindrical surface K1 so as to surround the normal 1120.
  • the three or more non-reflective regions 502 are preferably arranged at equal intervals in the circumferential direction 1350.
  • the shape of the plurality of reflection regions 500 in the reflection mechanism 1191 preferably has a rotational symmetry of three or more times (three times in the example of FIG. 9) with the central axis 1230 as a rotation axis.
  • Each reflection region 500 of each mirror block 600 is provided with a plurality (four in the illustrated example) of reflection surfaces 1340 that reflect the light 1044 toward the surface 1050 to be illuminated.
  • the plurality of reflection surfaces 1340 are arranged in the circumferential direction 1350 along the virtual cylindrical surface K1.
  • Each reflection surface 1340 is a mirror surface and reflects light 1044.
  • Each reflecting surface 1340 is formed in a curved shape extending in the direction of the normal 1120, and a cross section perpendicular to the normal 1120 is an arc-shaped curve convex toward the normal 1120 side.
  • the cross section may be an arcuate curve convex on the opposite side of the normal line 1120.
  • each reflective surface 1340 may be a planar reflective surface.
  • Each reflective surface 1340 faces the radially inner side approaching the central axis 1230.
  • Each reflecting surface 1340 is arranged such that the light 1044 becomes incident light and the reflected light becomes illumination light 1042.
  • the illumination light 1042 enters the illuminated surface 1050 from a direction with an illumination angle of 45 °.
  • the direction of the illumination angle of 45 ° is a direction that forms a 45 ° with the normal line 1120 of the surface to be illuminated 1050.
  • the vertical light distribution characteristic of the light emitting mechanism 1190 follows Lambert's cosine law, and the light 1044 emitted from the emission port 1211 in the direction of 45 ° with the central axis 1230 enters the illuminated surface 1050 from the direction of the illumination angle of 45 °. In the case of light, the illuminance does not fluctuate greatly even when the illuminated surface 1050 moves in the axial direction 1330 from the reference position, and the colorimetric stability is improved.
  • Each mirror block 600 includes a plurality of plate-like members (5 in the illustrated example) 340 arranged in a line in the circumferential direction 1350. That is, the reflection mechanism 1191 includes a plurality of members 340 arranged in a line in the circumferential direction 1350 for each of the plurality of reflection regions 500. Each of the plurality of members 340 has a facing surface that faces the normal 1120. The plurality of reflecting surfaces 1340 are formed on opposing surfaces of at least a part (four in the illustrated example) of the plurality of members 340. Adjacent members of the plurality of members 340 are preferably coupled to each other such that the directions of the plurality of reflecting surfaces 1340 are fixed to each other. The plurality of members 340 are combined in this manner, so that the mirror block 600 is formed.
  • a non-reflective portion 1342 that does not reflect the light 1044 toward the illuminated surface 1050 is preferably disposed in a part of each of the three or more reflective regions 500. That is, three or more non-reflective portions 1342 are arranged in the reflection mechanism 1191. Each non-reflective portion 1342 is formed, for example, by applying black paint or flocking paper to a part of the reflective region 500. In addition, a non-reflective portion 1342 may be realized by providing a through hole or the like in a part of the reflective region 500. The three or more non-reflective portions 1342 are distributed in the circumferential direction 1350 so as to surround the normal 1120. The three or more non-reflective portions 1342 are preferably arranged at equal intervals in the circumferential direction 1350.
  • Each non-reflective portion 1342 preferably occupies a range in the reflective region 500 that is greater than or equal to the range occupied by one reflective surface in the reflective region 500 among the plurality of reflective surfaces 1340 of each reflective region 500.
  • the portion other than the non-reflective portion 1342 in the reflective region 500 is preferably provided to be larger than the non-reflective portion 1342.
  • the non-reflective portion 1342 includes a portion painted black as described above or a portion to which flocked paper is attached.
  • the reflectance of the non-reflective portion is preferably set to 10% or less, more preferably 5% or less. Even if a low reflection portion having a reflectance of about 10% to 30% is employed instead of the non-reflection portion 1342, the usefulness of the present invention is not impaired. Moreover, even if all the inner peripheral surfaces of the members 340 included in the reflection region 500 are the reflection surfaces 1340, the usefulness of the present invention is not impaired.
  • the non-reflective region 502 is preferably a region in the space between the adjacent mirror blocks 600. However, it is non-reflective due to the area where black coating or flocking paper is applied to the inner peripheral surface of the partially cylindrical plate so that the reflectance is 10% or less, more preferably 5% or less. Even if the region 502 is realized, the usefulness of the present invention is not impaired.
  • a low-reflective region whose reflectivity for reflecting the light 1044 toward the illuminated surface 1050 is lower than that of the reflective region 500 may be employed. The reflectance of the low reflection region is, for example, 10% to 30%.
  • the colorimetric light receiving mechanism 1033 shown in FIGS. 2 to 4 includes a mirror 1360, a lens 1361, a spectroscopic measurement mechanism 1362, and a lens barrel 1363, as shown in FIG.
  • the mirror 1360 and the lens 1361 are held by the inner wall of the lens barrel 1363, and the spectroscopic measurement mechanism 1362 is attached to the end of the lens barrel 1363.
  • the mirror 1360 reflects the reflected light 1043.
  • the lens 1361 converges the light beam of the reflected light 1043.
  • the spectroscopic measurement mechanism 1362 outputs a signal corresponding to the light amount of each wavelength component of the reflected light 1043.
  • Mirror 1360 is on normal 1120.
  • the reflecting surface 1380 of the mirror 1360 faces the middle direction between the direction toward the illuminated surface 1050 and the direction toward the spectroscopic measurement mechanism 1362.
  • the lens 1361 is between the reflecting surface 1380 and the spectroscopic measurement mechanism 1362.
  • the reflected light 1043 travels along the optical axis 1112.
  • the reflected light 1043 is generated when the illuminated surface 1050 reflects the illuminated light 1042, exits from the illuminated surface 1050 in the direction of the light receiving angle of 0 °, is reflected by the mirror 1360, passes through the lens 1361, and is measured spectroscopically.
  • Light is received by mechanism 1362.
  • the direction of the light receiving angle of 0 ° is a direction that forms 0 ° with the normal line 1120 of the illuminated surface 1050.
  • the spectroscopic measurement mechanism 1362 outputs a signal corresponding to the light amount of each wavelength component of the reflected light 1043.
  • a signal output from the spectroscopic measurement mechanism 1362 becomes a result of measurement with respect to the reflected light 1043.
  • the reflected light 1043 is reflected by the mirror 1360 so that the optical axis 1112 is bent.
  • the reflected light 1043 passes through the lens 1361, the light flux of the reflected light 1043 is converged.
  • the reflected light 1043 travels from the illuminated surface 1050 to the reflecting surface 1380 along the optical axis 1112 in the direction of the light receiving angle of 0 °, and is reflected by the reflecting surface 1380.
  • the reflected reflected light 1043 travels along the optical axis 1112 from the reflecting surface 1380 and reaches the spectroscopic measurement mechanism 1362 through the lens 1361.
  • Mirror 1360 may be replaced with another type of bending optical element.
  • the mirror 1360 may be replaced with a prism.
  • a bending optical element other than the mirror 1360 may be added, and the optical axis 1112 may be further bent.
  • the optical system including the mirror 1360 and the lens 1361 may be replaced with another type of optical system that bends the optical axis 1112 and converges the light beam of the reflected light 1043.
  • an optical system including the mirror 1360 and the lens 1361 may be replaced with an optical system including a mirror having a concave reflecting surface.
  • the spectroscopic measurement mechanism 1362 may be replaced with a mechanism that measures tristimulus values.
  • the correction light receiving mechanism 1034 shown in FIGS. 2 and 4 includes a mirror 1390, an optical fiber 1391, and a spectroscopic measurement mechanism 1392 as shown in FIG.
  • the spectroscopic measurement mechanism 1392 is shared with the spectroscopic measurement mechanism 1362.
  • the light 1045 travels along the optical axis 1113.
  • Light 1045 exits from the exit port 1211 in a direction that forms 0 ° with the central axis 1230, is reflected by the mirror 1390, is guided to the optical fiber 1391, and is received by the spectroscopic measurement mechanism 1392.
  • the spectroscopic measurement mechanism 1392 outputs a signal corresponding to the light amount of each wavelength component of the light 1045.
  • Mirror 1390 may be replaced with another type of bending optical element.
  • the mirror 1390 may be replaced with a prism.
  • a bending optical element other than the mirror 1390 may be added.
  • the optical fiber 1391 may be replaced with another type of light guide mechanism.
  • the optical fiber 1391 may be replaced with a bending optical element.
  • the optical fiber 1391 may be omitted, and the light 1045 may travel straight from the reflection surface 1400 to the spectroscopic measurement mechanism 1392.
  • the controller 1011 illustrated in FIG. 1 includes an embedded computer, a control circuit, and the like, and causes the embedded computer to execute firmware. All or part of the processing by the embedded computer may be realized by hardware that does not execute the program.
  • the controller 1011 controls the measurement mechanism 1010.
  • the controller 1011 controls lighting of the straight tube type xenon lamp 1200 and acquires the measurement result from the spectroscopic measurement mechanism 1362 and the spectroscopic measurement mechanism 1392.
  • the controller 1011 obtains colorimetric information from the measurement result acquired from the spectroscopic measurement mechanism 1362.
  • the controller 1011 performs correction to reflect the measurement result acquired from the spectroscopic measurement mechanism 1392 when obtaining colorimetric information. Thereby, the influence which the fluctuation
  • the colorimetric information is a spectral spectrum, a color value, and the like.
  • FIG. 11 is a diagram schematically illustrating an example of fluctuations in the amount of illumination light in each direction ⁇ of the illumination light 1042 in a graph format.
  • the variation in the amount of illumination light is shown as a periodic signal F ( ⁇ ) with each direction ⁇ as a variable.
  • the azimuth ⁇ corresponds to the rotation angle ⁇ when the reference plane having the normal line 1120 of the illuminated surface 1050 as one side is rotated from the predetermined reference position with the normal line 1120 as the rotation center.
  • the periodic signal F ( ⁇ ) is a signal that normalizes fluctuations in the amount of light emitted from the reflection mechanism 1191 to the illuminated surface 1050 along the reference plane in the illumination light 1042 in a range of 0 to 1.
  • the value of the periodic signal F ( ⁇ ) is 1, and when it does not intersect, the value of the periodic signal F ( ⁇ ) is 0.
  • FIG. 12 shows the variation in reflectance of light reflected from the illuminated surface 1050 in the direction of the light receiving angle 0 ° when the illuminated light 1050 is irradiated along the reference plane in each azimuth ⁇ .
  • This is schematically shown as periodic noise N ( ⁇ ) with azimuth ⁇ as a variable. If the amount of light emitted from each direction is constant, the change in reflectance is given as the change in reflected light amount.
  • the periodic noise N ( ⁇ ) is shown normalized to 0 to 1.
  • the direction ⁇ of the illuminated surface 1050 corresponds to a rotation angle when the illuminated surface 1050 rotates around the normal line 1120.
  • the direction ⁇ is a constant.
  • the period of the periodic noise N ( ⁇ ) is determined by, for example, the shape and depth of the embossed surface 1050.
  • the periodic noise N ( ⁇ ) is ideally represented by a cosine function.
  • the period of the periodic noise N ( ⁇ ) is 180 °.
  • This variation pattern of the periodic noise N ( ⁇ ) is a variation pattern in the case where the wrinkle pattern or the wrinkle on the illuminated surface 1050 has two-fold rotational symmetry.
  • the periodic noise N ( ⁇ ) is shifted according to the phase difference of 60 °.
  • the amount of reflected light when the illuminated surface 1050 having directionality is arranged at an angle of ⁇ with respect to the illumination mechanism 1032 includes the periodic noise N ( ⁇ ) of the illuminated surface (sample surface) and the periodic signal F of the illumination light. It can be expressed by a cross-correlation function of ( ⁇ ). Furthermore, as shown in the graph of FIG. 12, assuming that the periodic noise N ( ⁇ ) can be expressed by a cosine function of an ideal period (“noise period”) ⁇ , the obtained reflected light amount E ⁇ ( ⁇ ) Is represented by Formula (1).
  • FIG. 13 is a graph showing the variation of the product of the periodic noise N ( ⁇ ) of the illuminated surface and the periodic signal F ( ⁇ ) of the illumination light in the equation (1) indicating the reflected light amount E ⁇ ( ⁇ ) with respect to the direction ⁇ . It is a figure shown in a format.
  • the periodic signal F ( ⁇ ) in FIG. 11 is employed as the periodic signal F ( ⁇ ) of the illumination light.
  • the periodic noise of FIG. 12 is adopted as the periodic noise N ( ⁇ ) of the illuminated surface.
  • FIG. 14 is a graph showing an example of the variation of the reflected light amount E ⁇ ( ⁇ ) in the direction of the light receiving angle of 0 ° in the form of a graph with respect to the direction ⁇ of the illuminated surface.
  • the illumination light periodic signal F ( ⁇ ) a signal shown in FIG. 11 is employed.
  • the periodic noise N ( ⁇ ) of the surface to be illuminated a signal ideally represented by a cosine function is adopted as in the example of FIG. 180 ° and 120 ° are employed as the period ⁇ of the periodic noise.
  • the period of the periodic signal is 180 °, as shown in FIG. 14, when the period of the periodic noise is also 180 °, the amount of reflected light E ⁇ ( ⁇ ) increases depending on the direction of the illuminated surface. It has fluctuated. On the other hand, when the period of the periodic noise is 120 °, the amount of reflected light is constant regardless of the direction ⁇ of the illuminated surface.
  • the periodic noise N ( ⁇ - ⁇ ) for the actual illuminated surface (sample surface) often has a plurality of noise periods.
  • the periodic noise in that case can be expressed by adding the periodic noise of each period ⁇ .
  • the periodic noise of the illuminated surface actually measured has many long-period components such as 180 degrees, 120 degrees, and 90 degrees. More specifically, the period of the periodic noise is most often 180 degrees. Further, even when noise with other periods is included, in many cases, noise with a period of 180 degrees is also included. Conversely, there is almost no case where the period is 30 degrees or 60 degrees.
  • the amount of reflected light depending on the direction (angle) ⁇ of the surface to be illuminated 1050 is obtained by variously changing the configuration of the light emitting mechanism that gives the periodic signal F ( ⁇ ) to obtain the amount of reflected light calculated by Equation (1). It is also possible to obtain a configuration of a light emission mechanism that can suppress fluctuations in the above.
  • 15 to 18 are graphs showing examples of fluctuations in the amplitude of the reflected light quantity in the direction of the light receiving angle of 0 °. 15 to 18, the fluctuations in the amplitude of the reflected light amount are shown as graphs 1 to 4. FIG.
  • the periodic signal of the illumination light changes.
  • the installation interval of the non-reflective area in the reflection mechanism or the width of the non-reflective area (the circumferential length along the virtual cylindrical surface K1) changes.
  • the above-described installation interval and width are changed.
  • the installation intervals of the non-reflective areas are set to 60 °, 120 °, 180 °, and 360 ° (the number of non-reflective regions 502 is only one), respectively.
  • the width of the non-reflective area is set to 15 °, 30 °, 45 °, and 90 °, respectively.
  • the amplitude of the reflected light amount in the graph 1 has a large peak value when the period of the periodic noise is 30 ° and 60 °, but becomes a small value when the period of the periodic noise becomes longer than 60 °. Yes. That is, when the period of the periodic noise is larger than 180 °, it is possible to satisfactorily suppress the fluctuation of the amount of light reflected from the illuminated surface having the directivity in the reflection characteristics.
  • the actual period of periodic noise on the illuminated surface is often greater than 180 °.
  • the amplitude of the reflected light amount in the graph 2 takes a large peak value when the period of the periodic noise is 60 ° and 120 °, but is a small value at 90 ° and 180 °. For this reason, the fluctuation
  • the amplitude of the reflected light amount in the graph 3 takes a large value when the period of the periodic noise is 90 ° and 180 °. For this reason, it is difficult to satisfactorily suppress fluctuations in the amount of light reflected from many illuminated surfaces.
  • the amplitude of the reflected light amount in the graph 4 is 0 when the period of the periodic noise is 90 degrees, but the amplitude of the reflected light amount increases as the period of the periodic noise becomes longer. For this reason, it is difficult to satisfactorily suppress fluctuations in the amount of light reflected from many illuminated surfaces.
  • the three or more non-reflective regions 502 are distributed and arranged in the circumferential direction 1350 of the virtual cylindrical surface K1 surrounding the normal line of the illuminated surface 1050.
  • the three or more reflection regions 500 are also distributed and arranged in the circumferential direction 1350.
  • the wrinkle pattern and the stripe pattern on the illuminated surface 1050 often have two-fold rotational symmetry. For this reason, the illumination light 1042 is irradiated from all azimuths with low reflectivity of the surface to be illuminated 1050, and the reflected light quantity is extremely reduced by irradiating the illumination light 1042 from all azimuths with high reflectivity. Occurrence is suppressed.
  • the plurality of reflective regions 500 do not have the same number of rotational symmetries as the number of rotational symmetry such as the wrinkle pattern of the illuminated surface 1050, the direction and illumination with high reflectance of the illuminated surface 1050
  • the azimuth with the large incident light quantity of the light 1042 is suppressed to exactly match, and the azimuth with low reflectance and the azimuth with the small incident light quantity are also prevented from matching exactly.
  • variation of the light quantity of the reflected light 1043 is suppressed.
  • each of the three or more reflection regions 500 is a partial cylindrical region along the virtual cylindrical surface K1
  • the light beam reflected from each reflection region 500 among the light beams emitted from the light emission mechanism 1190. Can be efficiently reflected toward the illuminated surface 1050. Thereby, the utilization efficiency of the said light bundle can be improved.
  • the three or more non-reflective regions 502 are equally spaced in the circumferential direction 1350 of the virtual cylindrical surface K1 surrounding the normal line of the illuminated surface 1050. Therefore, it is possible to further suppress fluctuations in the amount of light reflected from the illuminated surface 1050 that has directionality in the reflection characteristics.
  • a plurality of reflection surfaces 1340 are provided in each of the three or more reflection regions 500, and the plurality of reflection surfaces 1340 are virtual. They are arranged in the circumferential direction 1350 along the cylindrical surface K1. Therefore, the utilization efficiency of the light beam emitted from the light emitting mechanism 1190 can be further improved by adjusting the direction of each of the plurality of reflecting surfaces 1340.
  • each of the plurality of reflecting surfaces 1340 is a planar reflecting surface, so that each reflecting surface can be easily manufactured, and performance can be improved. It is easy to manufacture a lighting device with small variations.
  • each of the plurality of reflecting surfaces 1340 is a curved reflecting surface extending in the normal direction, and a cross section perpendicular to the normal line. Is an arc-shaped curve that is convex on the normal line side or the opposite side thereof, so that the illumination area by the light reflected from each reflecting surface 1340 can be widened or narrowed.
  • the reflection mechanism 1191 includes the plurality of members 340 arranged in the circumferential direction 1350 of the virtual cylindrical surface K1 for each of the plurality of reflection regions 500.
  • the plurality of reflection surfaces 1340 are formed on the facing surfaces of at least some of the plurality of members 340, and the plurality of reflection surfaces 1340 are fixed to each other so that their directions are fixed to each other. Adjacent members of the member 340 are coupled to each other. Therefore, the number of parts constituting the reflection mechanism 1191 can be reduced, and the manufacturing cost of the lighting device can be reduced.
  • the three or more non-reflective portions respectively disposed in the three or more reflective regions 500 are arranged in the circumferential direction 1350 of the virtual cylindrical surface K1. It is distributed. There is a further occurrence of a case in which the amount of reflected light is extremely reduced by irradiating the illumination light 1042 from all directions with low reflectance of the illuminated surface 1050 and not irradiating the illumination light 1042 from all directions with high reflectance. It is suppressed. In addition, the case where the illumination light 1042 is not irradiated from all orientations with low reflectivity and the illumination light 1042 is illuminated from all orientations with high reflectivity is further suppressed. Is done. Accordingly, it is possible to further suppress fluctuations in the amount of light reflected from the illuminated surface 1050 having a directivity in the reflection characteristics.
  • the three or more non-reflective portions are arranged at equal intervals in the circumferential direction 1350 of the virtual cylindrical surface K1. Accordingly, it is possible to further suppress fluctuations in the amount of light reflected from the illuminated surface 1050 having a directivity in the reflection characteristics.
  • the non-reflective portion has a range larger than the range occupied by one reflective surface 1340 in the reflective region 500 among the plurality of reflective surfaces 1340. In the reflective region 500. Accordingly, since the non-reflective region 502 can be suppressed from becoming extremely small, fluctuations in the amount of light reflected from the illuminated surface 1050 having a directivity in reflection characteristics can be further suppressed.
  • the reflective region 500 is directed toward the illuminated surface 1050.
  • the decrease in the amount of reflected light can be suppressed.
  • the light emitted from the xenon lamp 1200 is diffusely reflected by the diffuse reflection surface 1245 and then emitted from the round hole-shaped emission port.
  • the light emitted from the radiation mechanism 1190 becomes uniform, and the light radiation mechanism 1190 has a vertical light distribution characteristic substantially following Lambert's cosine law. Therefore, even when the illuminated surface 1050 moves in the normal direction, fluctuations in illuminance can be suppressed.
  • the surface light source is an LED light source, and therefore, the surface light source can be downsized and the overall size of the illumination device can be kept small.
  • the reflected light 1043 reflected from the illuminated surface 1050 is measured even when the illuminated surface 1050 having the directivity in the reflection characteristics is measured. Since fluctuations in the amount of light can be suppressed, stable measurement values can be obtained.
  • three or more non-reflective regions are dispersed in the circumferential direction 1350 of the virtual cylindrical surface K1 surrounding the normal line of the illuminated surface 1050. Is arranged. Therefore, three or more low-reflection areas are also distributed in the circumferential direction 1350. Variations in the amount of light that is irradiated from the reflection mechanism 1191 to the illuminated surface 1050 that has directionality in the reflection characteristics and reflected from the illuminated surface 1050 can be suppressed.
  • each of the three or more reflection regions is a partial cylindrical region along the virtual cylindrical surface K1
  • the light bundles reflected from the respective reflection regions are efficiently used. Since it can be reflected well toward the illuminated surface 1050, the utilization efficiency of the light beam can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

 反射特性に方向性を有する被照明面から反射される光量の変動を抑制するとともに、光源から照射される光線束の利用効率を改善することを図る。該目的を達成するために照明装置は、被照明面を照明する照明装置であって、被照明面の法線上に配置される面光源と、法線を取り囲むように面光源と被照明面との間に設けられ、面光源から照射された光を被照明面に向けて反射する反射機構と、を備え、反射機構には、光を被照明面に向けて反射する反射領域と、光を被照明面に向けて反射しない非反射領域とが、法線を取り囲む仮想円筒面に沿ってその周方向に交互に配置されることによって、3つ以上の反射領域と3つ以上の非反射領域とが配置されており、3つ以上の反射領域のそれぞれは、仮想円筒面に沿う部分円筒状の領域であり、3つ以上の非反射領域は、法線を取り囲むように周方向に分散して配置されている。

Description

照明装置及び反射特性測定装置
 本発明は、照明装置、照明装置を備える反射特性測定装置に関する。
 分光反射特性の測定には、所定のジオメトリー、例えば、いわゆる45:0度のジオメトリーの照明受光系が使用される。この45:0度のジオメトリーの照明受光系は、試料面をその法線から45°の方向から照明する照明光学系と、試料面の反射光を法線方向から受光する受光光学系とを備える。
 このようなジオメトリーを持つ照明光学系として、例えば特許文献1に提案された技術がある。この技術では、試料面の法線を囲む円周上に配置された多数のLED光源から出た光の一部を、ミラーによってすべて試料面に45°の角度で当たるように偏向することで、45:0度のジオメトリーを実現している。当該技術では、具体的には、9種類の異なるスペクトルをそれぞれ持つ9つのLED光源のセットが、円筒の周方向に沿って3セット並べられている。これにより、可視光全域にわたる波長の光によって3方位から試料が照明される。
 特許文献2に記載されている測色計では、試料面の法線上に配置された一つの面光源と、多数の平面ミラーとを備えた照明光学系が用いられている。面光源は、試料面の法線と45度の角度をなす全方位に光線を照射する。多数の平面ミラーは試料面と光源の中間に、試料面の法線を囲む円筒に沿ってその周方向に配置される。照射された光線は、多数の平面ミラーによって試料面の方向へ偏向される。これにより、45:0°のジオメトリーが実現される。
 特許文献2の測色計は、試料面の法線上からミラーが配置された円筒の外部まで延在する測色用の受光機構をさらに備えている。
米国特許第8130377号明細書 特開2010-281808号公報
 しわ模様や筋模様のように方向性のある面を持つ試料を45:0度のジオメトリーの照明光学系で照明する場合には、試料面を照明する光の試料面に対する方位が限定されていると、照明に対する試料の方向に依存して反射光の光量が変動する問題がある。光量が変動すると安定した測定値を得られない。
 特許文献1の技術では、9つの異なるスペクトルを持つLEDが用いられているが、同一スペクトルを持つLED光源は3つである。このため、試料面は、等価的に、円周上の極めて狭い3つの局所的な領域にそれぞれ配置された3つの光源によって3方位から照明されることになる。
 このため、特許文献1の照明光学系によって方向性のある試料面を測定する場合には、照明光学系に対する試料面の向きに応じて、試料面からの反射光量が、スペクトル毎に、大きく変動する。また、各々のLED光源から出射される光のうち、1方位の近傍へ出射される光のみしか使われないため、光線束の利用効率が悪いという問題もある。
 特許文献2の測色計は、特許文献1の装置に比べて光源の光を効率よく使うことができる。また、特許文献2の測色計は、面光源から全方位に光を照射し、当該光を円筒上に配置された多数のミラーから試料面に向けて反射して試料面を照明する。これにより、特許文献2の測色計は、方向性のある面を持つ試料の測定においても、特許文献1の装置に比べて安定した測定値を得ることが可能となる。
 しかしながら、特許文献2の測色計では、試料面の法線を囲む多数の平面ミラーによって反射された照明光の一部が、試料面の法線上からミラーが配置された円筒の外部まで延在する測色用の受光機構によって遮られる。このため、反射特性に方向性を有する試料を測定する場合には、受光機構に対する試料面の方位によって、試料面から反射される光量が変動する。
 このため、特許文献2の測色計によってもなお、測色計に対する試料面の向きによっては、試料面からの反射光量が大きく変動するといった問題がある。
 本発明は、こうした問題を解決するためになされたもので、反射特性に方向性を有する被照明面から反射される光量の変動を抑制できるとともに、光源から照射される光線束の利用効率を改善できる技術を提供することを目的とする。
 上記の課題を解決するために、第1の態様に係る照明装置は、被照明面を照明する照明装置であって、前記被照明面の法線上に配置される面光源と、前記法線を取り囲むように前記面光源と前記被照明面との間に設けられ、前記面光源から照射された光を前記被照明面に向けて反射する反射機構と、を備え、前記反射機構には、前記光を前記被照明面に向けて反射する反射領域と、前記光を前記被照明面に向けて反射しない非反射領域とが、前記法線を取り囲む仮想円筒面に沿ってその周方向に交互に配置されることによって、3つ以上の反射領域と3つ以上の非反射領域とが配置されており、前記3つ以上の反射領域のそれぞれは、前記仮想円筒面に沿う部分円筒状の領域であり、前記3つ以上の非反射領域は、前記法線を取り囲むように前記周方向に分散して配置されている。
 第2の態様に係る照明装置は、第1の態様に係る照明装置であって、前記3つ以上の非反射領域は、前記周方向に等間隔に配置されている。
 第3の態様に係る照明装置は、第1または第2の態様に係る照明装置であって、前記3つ以上の反射領域のそれぞれに、前記光を前記被照明面に向けてそれぞれ反射する複数の反射面が設けられており、前記複数の反射面は、前記仮想円筒面に沿って前記周方向に並んでいる。
 第4の態様に係る反射装置は、第3の態様に係る照明装置であって、前記複数の反射面のそれぞれは、平面状の反射面である。
 第5の態様に係る照明装置は、第3の態様に係る照明装置であって、前記複数の反射面のそれぞれは、前記法線方向に延在する曲面状の反射面であり、前記法線に垂直な断面が前記法線側またはその反対側に凸の弧状の曲線である。
 第6の態様に係る照明装置は、第3から第5の何れか1つの態様に係る照明装置であって、前記反射機構は、前記複数の反射領域のそれぞれについて、前記仮想円筒面の周方向に並ぶ複数の部材を備えており、前記複数の部材のそれぞれは、前記法線に対向する対向面を有しており、前記複数の反射面は、前記複数の部材のうち少なくとも一部の部材における前記対向面に形成されており、前記複数の反射面のそれぞれの向きが相互に固定されるように、前記複数の部材のうち隣り合う部材同士が、互いに結合されている。
 第7の態様に係る照明装置は、第3から第6の何れか1つの態様に係る照明装置であって、前記3つ以上の反射領域のそれぞれの一部には、前記光を前記被照明面に向けて反射しない非反射部分が配置されており、前記3つ以上の反射領域にそれぞれ配置された3つ以上の非反射部分は、前記法線を取り囲むように前記仮想円筒面の周方向に分散して配置されている。
 第8の態様に係る照明装置は、第7の態様に係る照明装置であって、前記3つ以上の非反射部分は、前記周方向に等間隔に配置されている。
 第9の態様に係る照明装置は、第7または第8の態様に係る照明装置であって、前記非反射部分は、前記複数の反射面のうち1つの反射面が前記反射領域において占める範囲以上の大きさの範囲を前記反射領域において占めている。
 第10の態様に係る照明装置は、第7から第9の何れか1つの態様に係る照明装置であって、前記反射領域のうち前記非反射部分以外の部分が前記非反射部分よりも大きい。
 第11の態様に係る照明装置は、第1から第10の何れか1つの態様に係る照明装置であって、前記面光源は、球状の空間及び丸孔状の出射口が形成され、前記空間を規定する内面を有し、前記内面が拡散反射面を有し、前記出射口が前記空間と外部とを連絡し、前記空間及び前記出射口が前記法線を共通の中心軸として有する積分球と、前記空間を横断して管軸方向に延設され、放電区間を有する直管形光源とを備える光放射機構である。
 第12の態様に係る照明装置は、第1から第10の何れか1つの態様に係る照明装置であって、前記面光源は、LED光源である。
 第13の態様に係る反射特性測定装置は、第1から第12の何れか1つの態様に係る照明装置と、前記反射機構が反射した前記光を前記被照明面が反射することにより生成される反射光を受光し、前記反射光に対する測定の結果を出力する受光機構と、を備える。
 第14の態様に係る照明装置は、被照明面を照明する照明装置であって、前記被照明面の法線上に配置される面光源と、前記法線を取り囲むように前記面光源と前記被照明面との間に設けられ、前記面光源から照射された光を前記被照明面に向けて反射する反射機構と、を備え、前記反射機構には、前記光を前記被照明面に向けて反射する反射領域と、前記光を前記被照明面に向けて反射する反射率が前記反射領域よりも低い低反射領域とが、前記法線を取り囲む仮想円筒面に沿ってその周方向に交互に配置されることによって、3つ以上の反射領域と3つ以上の低反射領域とが配置されており、前記3つ以上の反射領域のそれぞれは、前記仮想円筒面に沿う部分円筒状の領域であり、前記3つ以上の低反射領域は、前記法線を取り囲むように前記周方向に分散して配置されている。
 第15の態様に係る反射特性測定装置は、第14の態様に係る照明装置と、前記反射機構が反射した前記光を前記被照明面が反射することにより生成される反射光を受光し、前記反射光に対する測定の結果を出力する受光機構と、を備える。
 第1の態様に係る発明によれば、3つ以上の非反射領域は、被照明面の法線を取り囲む仮想円筒面の周方向に分散して配置されている。従って、3つ以上の反射領域も当該周方向に分散して配置される。これに対して被照明面のしわ模様や筋模様は、多くの場合、2回の回転対称性を有している。このため、被照明面の反射率の低い全ての方位から照明光が照射され、かつ、反射率の高い全方位からは照明光が照射されないことによって反射光量が極端に少なくなるケースの発生が抑制される。また、反射率の低い全ての方位から照明光が照射されず、かつ、反射率の高い全ての方位から照明光が照射されることによって反射光量が極端に多くなるケースの発生も抑制される。従って、反射機構から反射特性に方向性(「異方性」とも称する)を有する被照明面に照射されて被照明面から反射される光量の変動を抑制できる。また、3つ以上の反射領域のそれぞれは、仮想円筒面に沿う部分円筒状の領域であるので、面光源から出射される光線束のうち各反射領域から反射された光線束を効率よく被照明面に向けて反射することができる。これにより、当該光線束の利用効率を改善できる。
 第2の態様に係る発明によれば、3つ以上の非反射領域は、被照明面の法線を取り囲む仮想円筒面の周方向に等間隔に配置されているので、反射特性に方向性を有する被照明面から反射される光量の変動をさらに抑制できる。
 第3の態様に係る発明によれば、3つ以上の反射領域のそれぞれに、複数の反射面が設けられており、複数の反射面は、仮想円筒面に沿ってその周方向に並んでいる。従って、複数の反射面のそれぞれの向きを調整することによって、面光源から出射される光線束の利用効率をさらに改善できる。
 第4の態様に係る発明によれば、複数の反射面のそれぞれは、平面状の反射面であるので、各反射面の製作が容易になり、性能のバラつきが小さい照明装置の製作が容易になる。
 第5の態様に係る発明によれば、複数の反射面のそれぞれは、法線方向に延在する曲面状の反射面であり、法線に垂直な断面が法線側またはその反対側に凸の弧状の曲線であるので、各反射面から反射される光による照明領域を広げたり、狭めたりすることができる。
 第6の態様に係る発明によれば、反射機構は、複数の反射領域のそれぞれについて、仮想円筒面の周方向に並ぶ複数の部材を備えており、複数の反射面は、複数の部材のうち少なくとも一部の部材における当該対向面に形成されており、複数の反射面のそれぞれの向きが相互に固定されるように、前記複数の部材のうち隣り合う部材同士が、互いに結合されている。従って、反射機構を構成する部品数を削減し、照明装置の製造コストを低減できる。
 第7の態様に係る発明によれば、3つ以上の反射領域にそれぞれ配置された3つ以上の非反射部分は、仮想円筒面の周方向に分散して配置されている。被照明面の反射率の低い全ての方位から照明光が照射され、かつ、反射率の高い全方位からは照明光が照射されないことによって反射光量が極端に少なくなるケースの発生がさらに抑制される。また、反射率の低い全ての方位から照明光が照射されず、かつ、反射率の高い全ての方位から照明光が照射されることによって反射光量が極端に多くなるケースの発生もさらに抑制される。従って、反射特性に方向性を有する被照明面から反射される光量の変動をさらに抑制できる。
 第8の態様に係る発明によれば、3つ以上の非反射部分は、仮想円筒面の周方向に等間隔に配置されている。従って、反射特性に方向性を有する被照明面から反射される光量の変動をさらに抑制できる。
 第9の態様に係る発明によれば、非反射部分は、複数の反射面のうち1つの反射面が反射領域において占める範囲以上の大きさの範囲を反射領域において占めている。従って、非反射領域が、極端に小さくなることを抑制できるので、反射特性に方向性を有する被照明面から反射される光量の変動をさらに抑制できる。
 第10の態様に係る発明によれば、反射領域のうち非反射部分以外の部分が非反射部分よりも大きいので、反射領域から被照明面に向けて反射される光の光量の低下を抑制できる。
 第11の態様に係る発明によれば、直管形光源から照射される光が拡散反射面に拡散反射された後に丸孔状の出射口から出射し、面光源から出射する光が均一になり、面光源が実質的にランバートのコサイン則に従う鉛直配光特性を有するようになる。従って、被照明面がその法線方向に移動した場合でも照度の変動を抑制することができる。
 第12の態様に係る発明によれば、面光源は、LED光源であるので、面光源を小型化し、照明装置全体のサイズを小さく抑えることができる。
 第13の態様に係る発明によれば、反射特性測定装置が、反射特性に方向性を有する被照明面を測定する場合でも、被照明面から反射される光量の変動を抑制できるので、安定した測定値を得ることができる。
 第14の態様に係る発明によれば、3つ以上の非反射領域は、被照明面の法線を取り囲む仮想円筒面の周方向に分散して配置されている。従って、3つ以上の低反射領域も当該周方向に分散して配置される。反射機構から反射特性に方向性を有する被照明面に照射されて被照明面から反射される光量の変動を抑制できる。また、3つ以上の反射領域のそれぞれは、仮想円筒面に沿う部分円筒状の領域であるので、面光源から出射される光線束のうち各反射領域から反射された光線束を効率よく被照明面に向けて反射することができるので、光線束の利用効率を改善できる。
測色計の模式図である。 測定機構の上面図である。 測定機構の下面図である。 測定機構の横断面図である。 図4から測色用、補正用の各受光機構を除いた部分を示す図である。 測定機構の縦断面図である。 光放射機構の断面図である。 直管形のキセノンランプの一部及びバッフルの一部の斜視図である。 照明機構の一部の構成を示す上面図である。 照明機構の一部の構成を示す斜視図である。 各方位から照射される照明光の光量の変動の一例をグラフ形式で示す図である。 照明光が被照明面から受光角0°方向に反射されるときの試料面の反射率の変動(周期ノイズ)の一例をグラフ形式で示す図である。 被照明面の周期ノイズNと照明光の周期信号との積の変動の一例をグラフ形式で示す図である。 受光角0°方向への反射光量の変動例をグラフ形式で示す図である。 受光角0°方向への反射光量の振幅の変動例をグラフ形式で示す図である。 受光角0°方向への反射光量の振幅の変動例をグラフ形式で示す図である。 受光角0°方向への反射光量の振幅の変動例をグラフ形式で示す図である。 受光角0°方向への反射光量の振幅の変動例をグラフ形式で示す図である。
 <1.測色計>
 図1の模式図は、測色計を示す。
 図1に示される測色計1000は、試料の分光反射率を測定する。分光反射率以外の反射特性が測定されてもよい。例えば、色彩値が測定されてもよい。すなわち、測色計1000が持つ分光測色計の機能が分光測色計以外の反射特性測定装置の機能に変更されてもよい。例えば、測色計1000が持つ分光測色計の機能が色彩計の機能に変更されてもよい。
 分光反射率は、照明角が45°となり受光角が0°となるジオメトリーにより測定される。分光反射率が測定される場合は、環状照明により被照明面が照明される。被照明面は、試料の表面である。ジオメトリー及び照明の両方又は片方が変更されてもよい。
 測色計1000は、測定機構1010、コントローラー1011、筐体1012等を備える。測定機構1010は、測色を担う。コントローラー1011は、測定機構1010を制御する。筐体1012は、測定機構1010、コントローラー1011等を収容する。
 <2.測定機構>
 図2の模式図は、測定機構の上面を示す。図3の模式図は、測定機構の下面を示す。図4の模式図は、測定機構の横断面を示す。図5の模式図は、測色用と補正用のそれぞれの受光機構を除いた測定機構の横断面を示す。図6の模式図は、測定機構の縦断面を示す。
 図2から図5までに示される測定機構1010は、測色用の照明機構1032、測色用の受光機構1033、補正用の受光機構1034等を備える。測色用の照明機構1032は、被照明面1050の周囲から照明光1042で被照明面1050を照明する。被照明面1050は、被照明面における照明対象領域(「測定対象領域」とも称する)である。測色用の受光機構1033は、反射光1043を受光し、反射光1043に対する測定の結果を出力する。反射光1043は、被照明面1050に照射された照明光1042が被照明面1050によって法線1120の方向、すなわち受光角が0°となる方向に反射された光である。補正用の受光機構1034は、光1045を受光し、光1045に対する測定の結果を出力する。測色用の照明機構1032が測色以外の用途において用いられてもよい。測色用の照明機構1032が測色以外の用途において用いられる場合は、照明機構1032が単独で使用されてもよいし、照明機構1032が測色計1000以外の装置に組み込まれてもよい。
 <3.測色用の照明機構>
 図2から図6までに示される測色用の照明機構1032は、図4から図6に示されるように、光放射機構1190、反射機構1191等を備える。光放射機構1190は、光1044、光1045等を放射する。反射機構1191は、光1044を照明光1042にする。光放射機構1190が測色以外の用途において用いられてもよい。光放射機構1190が測色以外の用途において用いられる場合は、光放射機構1190が単独で使用されてもよいし、光放射機構1190が測色計1000以外の装置に組み込まれてもよい。
 <4.光放射機構>
 図7は、光放射機構の断面を示す。
 図4~図7に示される光放射機構1190は、直管形のキセノンランプ1200、積分球1201、バッフル1202等を備える。直管形のキセノンランプ1200は、光を放射する。積分球1201は、光を均一にする。バッフル1202は、光が均一にされないまま出射することを抑制する。
 積分球1201に形成される球状の空間1210は、積分球1201の内面1220に規定される。積分球1201は、積分半球1205、1206がネジによって互いに結合されて形成されている。空間1210が球状であるといえるためには、内面1220の主要部に沿う球面を有する球を把握できれば足りる。積分半球1205、1206に形成される半球状の空間1207、1208は、半球状の内面1217、1218によって規定される。内面1217、1218は、白色のつや消し塗料(光拡散材料)をそれぞれ塗布されている。空間1207、1208が半球状であるといえるためには、内面1217、1218の主要部に沿う各半球面をそれぞれ有する各半球を把握できれば足りる。空間1207から把握される半球、すなわち内面1217の主要部に沿う半球の径は、空間1208から把握される半球、すなわち内面1218の主要部に沿う半球の径よりも小さい。空間1207は、積分半球1205の一端面に開口している。当該一端面には、積分半球1206の他端面が当接している。空間1208は、積分半球1206の他端面に開口している。空間1207、1208の開口1227、1228のそれぞれの開口径は、空間1207、1208から把握される各半球の径にそれぞれ等しい。開口1227、1228のそれぞれの中心が互いに一致するように積分半球1205の一端面と積分半球1206の他端面とが当接した状態で、積分半球1205、1206は互いに結合されている。開口1227、1228のそれぞれの中心は、積分球1201の中心1240である。
 積分球1201に形成される丸孔状の出射口1211は、積分半球1205の内面1217に規定される。出射口1211は、空間1210と積分球1201の外部とを連絡する。出射口1211の径は一定である。出射口1211が、空間1210の側の一端から積分球1201の外部の側の他端へ向かって末広がりになってもよい。出射口1211が丸孔状であるといえるためには、回転対称体を把握できれば足りる。
 空間1210、すなわち空間1207、1208と、出射口1211とは、共通の中心軸1230を有する。内面1220、1217、1218の主要部にそれぞれ沿う球および半球の対称軸と、出射口1211から把握される回転対称体の対称軸とは、中心軸1230上にある。積分球1201の中心1240も、中心軸1230上にある。中心軸1230は、被照明面1050の中心を通る法線1120に一致する。すなわち、光放射機構1190は、被照明面1050の法線1120上に配置されている。
 空間1210が球状であるといえるためには、内面1220の主要部、すなわち内面1217、1218の主要部からそれぞれ把握される各半球が結合した空間から中心軸1230を対称軸とする回転対称体を把握できれば足りる。内面1220は若干の凹凸を有してもよいし、内面1220に若干の孔が露出していてもよい。内面1220に露出する出射口1211も、当該孔に該当する。
 既述したように、空間1207から把握される半球の径、すなわち開口1227の径は、空間1208から把握される半球の径、すなわち開口1228の径よりも小さい。これにより、反射機構1191が備える後述する各反射面1340上の各点と、開口1228の周縁上の各点とを結ぶ線は、開口1227の周縁部によって遮られる。このため、各反射面1340からは、空間1208の開口1228の周縁が見えない。
 例えば、開口1227、1228の径が互いに等しい場合には、開口同士の接続部分は、白色のつや消し塗料が剥がれやすい。塗装が剥がれることなどに起因して接続部分の光の反射率は、周囲の部分よりも低くなる。このため、当該接続部分が出射口1211を通して各反射面1340から見える場合には、出射口1211から各反射面1340に射出される光の光量にむらが生ずる。
 一方、開口1227の径が、開口1228の径よりも小さい場合には、開口1227の周縁は、積分半球1206の他端面に当たらないため、開口1227の周縁の反射率は、他の部分と同程度となる。これに対して、開口1228の周縁は、積分半球1205の一端面と、内面1218とが略90度の角度で互いに当接する角部であるため、反射率が他の部分よりも低下する。しかしながら上述したように、開口1227の周縁は各反射面1340から見えるが、開口1228の周縁は各反射面1340から見えない。これにより、開口1228の周縁における反射率の低下に起因して出射口1211から各反射面1340に射出される光の光量にむらが生ずることを抑制できる。
 ただし、開口1227、1228の径が互いに等しい場合においても、光を均一にするという積分球1201の機能は失われず、光放射機構1190の有用性は失われない。
 内面1220、すなわち内面1217、1218は、拡散反射面1245を有する。望ましくは内面1220の全体が拡散反射面1245となるが、内面1220が拡散反射面1245でない面をわずかに有してもよい。拡散反射面1245は、白色のつや消し塗料により塗装された面である。白色のつや消し塗料は、樹脂、白色顔料、つや消し材等を含む。樹脂は、アクリル樹脂等である。白色顔料は、酸化チタン、酸化亜鉛、硫酸バリウム、炭酸カルシウム等の粉末である。つや消し材は、シリカ、炭酸カルシウム、リン酸カルシウム等の微粒子である。白色のつや消し塗料が白色以外の無彩色のつや消し塗料に置き換えられてもよい。内面1220を粗くすることにより拡散反射面1245が形成されてもよい。
 図8の模式図は、直管形のキセノンランプの一部及びバッフルの一部の斜視図である。
 図4、図5、図7及び図8に示される直管形のキセノンランプ(「直管形光源」とも称する)1200は、図7に示されるように、発光管1250、電極1251、電極1252、封入ガス1253等を備える。電極1251は、発光管1250の一端に封着される。電極1252は、発光管1250の他端に封着される。封入ガス1253は、発光管1250に封入される。封入ガス1253の主成分は、キセノンガスである。直管形のキセノンランプ1200は、管軸1310が延びる管軸方向に延設されている。直管形のキセノンランプ1200は、放電区間1260を有する。放電区間1260は、電極1251と電極1252との間にある。電極1251と電極1252との間に電圧が印加された場合は、放電区間1260に放電が発生し、直管形のキセノンランプ1200から光が放射される。直管形のキセノンランプ1200は、安価であり可視域の全域にわたって放射する光の光量が大きいという利点を有する。この利点は、測色計1000の製造原価を下げ、測色の信号対ノイズ比を改善することに寄与する。また、直管形のキセノンランプ1200に代わる直管形光源として、例えば、ウシオライティング株式会社製のメタルハライドランプUCMのような直管形のHIDランプ(High intensity discharge lamp)が用いられてもよい。
 積分半球1205、1206のそれぞれの管軸1310方向における一端部分と他端部分とには、キセノンランプ1200の両端部分の凹凸構造と嵌合可能な凹凸構造が形成されている。これらの嵌合構造同士が嵌合するように、積分半球1205、1206の間にキセノンランプ1200が挟まれた状態で、積分半球1205、1206が互いに固定される。これにより、キセノンランプ1200は、積分球1201に固定される。直管形のキセノンランプ1200は、空間1210を横断する。直管形のキセノンランプ1200が空間1210を横断する場合は、直管形のキセノンランプ1200を大きくすることと積分球1201を小さくすることとを両立しやすくなる。直管形のキセノンランプ1200を大きくすることは、直管形のキセノンランプ1200が放射する光の光量を大きくし直管形のキセノンランプ1200の寿命を長くすることに寄与する。
 バッフル1202は、放電区間1260と出射口1211との間にある。バッフル1202は、放電区間1260から出射口1211の一部又は全部が見通されないようにし、望ましくは放電区間1260から出射口1211の全部が見通されないようにする。一の位置が他の位置から見通される(「見える」とも称する)とは、一の位置と他の位置とを結ぶ直線上に光線の遮蔽物がなく一の位置から他の位置へ光線が直接的に到達することをいう。逆に、一の位置が他の位置から見通されない(「見えない」とも称する)とは、一の位置と他の位置とを結ぶ直線上に光線の遮蔽物があるため一の位置から他の位置へ光線が直接的に到達できないことをいう。バッフル1202により、放電区間1260から出射口1211に直接的に向かう光線が遮蔽され、放電区間1260から放射された光が拡散反射面1245に拡散反射されることなく出射口1211から出射することが抑制され、迷光が抑制され、測色の精度が向上する。また、放電区間1260から放射された光が拡散反射面1245に拡散反射された後に出射口1211から出射する場合は、均一化された光1045が補正用の受光機構1034に受光され、出射口1211から出射する光1044の変動が適切に監視される。逆に、放電区間1260から放射された光が拡散反射面1245に拡散反射されることなく出射口1211から出射する場合は、水平配光特性が均一でないという直管形のキセノンランプ1200の欠点の影響を受け、出射口1211から出射する光1045の変動が適切に監視されない。ただし、バッフル1202が省略された場合も、光を均一にするという積分球1201の機能は失われず、光放射機構1190の有用性は失われない。
 バッフル1202は、部分円筒状であり、放電区間1260が延びる方向と平行をなす方向に延びる。部分円筒とは、円筒の一の周方向位置から他の周方向位置までの部分を切り取った形状をいう。部分円筒状の形状であるといえるためには、当該形状が部分円筒に沿っていれば足り、当該形状が部分円筒に対して若干の凹凸を有していてもよい。バッフル1202の内周面1275は、放電区間1260に向けられる。バッフル1202の外周面1276は、出射口1211に向けられる。バッフル1202の形状が変更されてもよい。
 バッフル1202の表面1280は、拡散反射面1290を有する。望ましくは表面1280の全体が拡散反射面1290とされるが、表面1280が拡散反射面1290でない面をわずかに有してもよい。ただし、バッフル1202の表面が拡散反射面1290を有しない場合も、光を均一にするという積分球1201の機能は失われず、光放射機構1190の有用性は失われない。
 直管形のキセノンランプ1200が光を放射した場合は、光が空間1210及び出射口1211を順次に進み最終的に積分球1201の外部に出射する。光は、空間1210を進む間に少なくとも1回は拡散反射面1245に拡散反射される。光の大部分は、空間1210を進む間に繰り返し拡散反射面1245に拡散反射される。光が拡散反射面1245に拡散反射された後に出射口1211から出射することにより、光放射機構1190から出射する光が均一になり、光放射機構1190が実質的にランバートのコサイン則に従う鉛直配光特性を有するようになる。光放射機構1190がランバートのコサイン則に従う鉛直配光特性を有する場合は、中心軸1230と角度θをなす方向に出射する光の光度が角度θの余弦cosθに比例する。
 直管形のキセノンランプ1200は、鉛直配光特性がランバートのコサイン則に従わないという欠点を有する。また、直管形のキセノンランプ1200は、水平配光特性が均一でないという欠点を有する。しかし、これらの欠点は、積分球1201により実質的に問題とならない程度まで緩和される。
 <5.直管形のキセノンランプの配置>
 放電区間1260の一端1301及び他端1302は、内面1220に沿い、望ましくは把握される球の球面上にある。放電区間1260の一端1301及び他端1302が内面1220に沿う場合は、空間1210からの直管形のキセノンランプ1200のはみ出しが小さくなり、光放射機構1190が小型になる。また、放電区間1260の大部分が空間1210に収容され、直管形のキセノンランプ1200から放射される光の大部分が空間1210に放射され、光放射機構1190の効率が向上する。
 放電区間1260の一端1301及び他端1302が内面1220に沿うといえるためには、放電区間1260の一端1301及び他端1302が把握される球の球面上にあるか又は放電区間1260の一端1301及び他端1302が内面1220から若干の距離だけ離れて内面1220に近接していれば足りる。
 放電区間1260の中心1300は、より詳細には、放電区間1260のうち空間1210に内包される部分の中心である。中心1300は、直管形のキセノンランプ1200の管軸1310上であって電極1251及び電極1252からの距離が等しい点にある。キセノンランプ1200の管軸1310上に積分球1201の中心1240が位置しないように、キセノンランプ1200は、中心軸1230から被照明面1050の法線1120を横切る方向にずれて配置されている。反射機構1191が偶数個のミラーブロック600を備える場合には、キセノンランプ1200の直管の延長方向をブリッジにすることでキセノンランプ1200から各ミラーに放射される光量を均一にすることができる。反射機構1191が奇数個のミラーブロック600を備える場合には、上述のように、キセノンランプ1200を中心1240からずらして配置することによって、出射口1211から各ミラーブロック600に放射される光量を容易に均一化することができる。
 放電区間1260のうち空間1210に内包される部分の中心1300は、望ましくは、空間1210のうち出射口1211を通して3つの反射領域の何れかが見える領域から外れている。
 出射口1211は、放電区間1260から見て管軸1310から離れる管径方向1320にある。放電区間1260は、望ましくは、中心軸1230の方向、すなわち軸方向1330と垂直をなし、被照明面1050と平行をなす面内で延設される。なお、放電区間1260の中心1300が、中心軸1230上にあってもよい。また、LED光源も面光源であるので、光放射機構1190に代えて、LED光源が用いられてもよい。
 <6.反射機構>
 図9、図10の模式図は、照明機構1032の一部の構成を示す上面図と斜視図である。
 反射機構1191は、法線1120を取り囲むように光放射機構1190と被照明面1050との間に設けられている。反射機構1191は、光放射機構1190から照射された光1044を照明光1042として被照明面1050に向けて反射する。
 反射機構1191は、3つ以上(図示の例では3つ)のミラーブロック600を備えて構成されている。各ミラーブロック600は、法線1120を取り囲む仮想円筒面K1に沿って、その周方向1350に分散して配置されている。各ミラーブロック600は、仮想円筒面K1に沿う部分円筒状の板状部材である。各ミラーブロック600の法線1120方向の両端面からは、法線1120方向に突起部N1(図5)が突設されている。当該両端面の少なくとも一方の端面には、複数の突起部N1が設けられる。
 測定機構1010は、法線1120を軸心してそれぞれ設けられる円筒部材810、820をさらに備えている。
 円筒部材810、反射機構1191、円筒部材820は、この並び順に、被照明面1050側から設けられている。円筒部材810、820、および反射機構1191は、被照明面1050と、光放射機構1190との間に位置している。円筒部材810、820と、仮想円筒面K1とのそれぞれの径は互いに等しい。
 円筒部材820は、法線1120を中心軸とする円筒状の側壁823と、側壁823の光放射機構1190側の開口部を閉じる円板状の蓋部822とを備える。蓋部822の中央部分には、法線1120を中心とする丸孔状の開口部821が形成されている。開口部821は、積分球1201の出射口1211よりも径が大きい。積分球1201の空間1210と、円筒部材820の内部空間とは、出射口1211と、開口部821とを介して連通している。
 円筒部材810の両端面のうち光放射機構1190側の一端面と、各ミラーブロック600の法線1120方向の両端面のうち被照明面1050側の他端面とは、互いに当接している。円筒部材810の一端面には、ミラーブロック600の他端面に設けられた突起部N1と嵌合可能な穴部が設けられている。この穴部と、ミラーブロック600の突起部N1とが嵌合することで、円筒部材810とミラーブロック600とは互いに固定されている。
 各ミラーブロック600の両端面のうち光放射機構1190側の一端面と、円筒部材820の側壁823の両端面のうち被照明面1050側の他端面とは互いに当接している。側壁823の他端面には、ミラーブロック600の一端面に設けられた突起部N1と嵌合可能な穴部が設けられている。この穴部と突起部N1とが嵌合することで、ミラーブロック600と円筒部材820とは互いに固定されている。
 ミラーブロック600の内周面、すなわち、法線1120に対向する面は、光1044を被照明面1050に向けて反射する反射領域500である。また、3つ以上のミラーブロック600のうち隣り合うミラーブロック600同士は、仮想円筒面K1に沿って、互いに間隔を隔てて設けられている。隣り合うミラーブロック600同士の間の部分は、光1044を被照明面1050に向けて反射しない非反射領域502である。
 すなわち、反射機構1191には、3つ以上(図示の例では3つ)の反射領域500と3つ以上(図示の例では3つ)の非反射領域502とが配置されている。反射領域500と非反射領域502とは、法線1120を取り囲む仮想円筒面K1に沿ってその周方向1350に交互に配置されている。
 各反射領域500は、仮想円筒面K1に沿う部分円筒状の領域であり、3つ以上の非反射領域502は、法線1120を取り囲むように仮想円筒面K1に沿って、その周方向1350に分散して配置されている。従って、3つ以上の反射領域500も、法線1120を取り囲むように仮想円筒面K1に沿って、周方向1350に分散して配置されている。3つ以上の非反射領域502は、好ましくは、周方向1350に等間隔に配置される。反射機構1191における複数の反射領域500の形状は、好ましくは、中心軸1230を回転軸とする3回以上(図9の例では、3回)の回転対称性を有する。
 各ミラーブロック600の各反射領域500には、光1044を被照明面1050に向けてそれぞれ反射する複数(図示の例では4個)の反射面1340が設けられている。当該複数の反射面1340は、仮想円筒面K1に沿ってその周方向1350に並んでいる。
 各反射面1340は、鏡面であり、光1044を反射する。各反射面1340は、法線1120方向に延在する曲面状に形成されており、法線1120に垂直な断面は、法線1120側に凸の弧状の曲線である。当該断面が法線1120の反対側に凸の弧状の曲線であってもよい。また、各反射面1340は、平面状の反射面であってもよい。
 各反射面1340は、中心軸1230に近づく径方向内側を向く。各反射面1340は、光1044が入射光となり反射光が照明光1042となるように配置される。照明光1042は、照明角45°の方向から被照明面1050に入射する。照明角45°の方向は、被照明面1050の法線1120と45°をなす方向である。
 光放射機構1190の鉛直配光特性がランバートのコサイン則に従い、出射口1211から中心軸1230と45°をなす方向に出射する光1044が照明角45°の方向から被照明面1050に入射する照明光になる場合は、被照明面1050が基準位置から軸方向1330に移動した場合でも照度が大きく変動せず、測色の安定性が向上する。
 各ミラーブロック600は、周方向1350に一列に並ぶ板状の複数(図示の例では5個)の部材340を備えている。すなわち、反射機構1191は、複数の反射領域500のそれぞれについて、周方向1350に一列に並ぶ複数の部材340を備えている。複数の部材340のそれぞれは、法線1120に対向する対向面を有している。複数の反射面1340は、複数の部材340のうち少なくとも一部(図示の例では4個)の部材340における対向面に形成されている。複数の部材340のうち隣り合う部材同士は、好ましくは、複数の反射面1340のそれぞれの向きが相互に固定されるように互いに結合される。複数の部材340が、このように結合されることによってミラーブロック600が形成されている。
 3つ以上の反射領域500のそれぞれの一部には、好ましくは、光1044を被照明面1050に向けて反射しない非反射部分1342が配置される。すなわち、反射機構1191には、3つ以上の非反射部分1342が配置される。各非反射部分1342は、例えば、反射領域500の一部に、黒色塗装、あるいは植毛紙の貼り付けがされること等によって形成される。また、反射領域500の一部に貫通孔等を設けて当該貫通孔によって非反射部分1342を実現してもよい。3つ以上の非反射部分1342は、法線1120を取り囲むように周方向1350に分散して配置されている。3つ以上の非反射部分1342は、好ましくは、周方向1350に等間隔に配置される。
 各非反射部分1342は、好ましくは、各反射領域500の複数の反射面1340のうち1つの反射面が反射領域500において占める範囲以上の大きさの範囲を反射領域500において占める。
 反射領域500のうち非反射部分1342以外の部分は、好ましくは、非反射部分1342よりも大きくなるように設けられる。
 非反射部分1342には、上述したように黒色塗装した部分や、あるいは植毛紙の貼り付けられた部分なども含まれる。この場合の非反射部分の反射率は、例えば、好ましくは10%以下、より好ましくは5%以下に設定される。反射率が10%~30%程度の低反射部分が非反射部分1342に代えて採用されるとしても本発明の有用性を損なうものではない。また、反射領域500に含まれる各部材340の内周面が全て反射面1340であるとしても本発明の有用性を損なうものではない。
 また、図示の例では非反射領域502は、隣り合うミラーブロック600同士の間の空間における領域であることが好ましい。しかし、反射率が、反射率10%以下、より好ましくは5%以下になるように部分円筒状の板材の内周面に対して黒色塗装や、植毛紙の貼り付けがなされた領域によって非反射領域502が実現されたとしても本発明の有用性を損なうものではない。非反射領域502に代えて、光1044を被照明面1050に向けて反射する反射率が反射領域500よりも低い低反射領域が採用されてもよい。当該低反射領域の反射率は、例えば、10%~30%である。
 <7.測色用の受光機構>
 図2から図4までに示される測色用の受光機構1033は、図4に示されるように、ミラー1360、レンズ1361、分光測定機構1362及び鏡筒1363を備える。ミラー1360、レンズ1361は、鏡筒1363の内壁によって保持され、分光測定機構1362は、鏡筒1363の端部に取り付けられている。ミラー1360は、反射光1043を反射する。レンズ1361は、反射光1043の光線束を収束させる。分光測定機構1362は、反射光1043の各波長成分の光量に応じた信号を出力する。
 ミラー1360は、法線1120上にある。ミラー1360の反射面1380は、被照明面1050へ向かう方向と分光測定機構1362へ向かう方向との中間の方向を向く。レンズ1361は、反射面1380と分光測定機構1362との間にある。
 反射光1043は、光軸1112に沿って進む。反射光1043は、被照明面1050が照明光1042を反射することにより生成され、被照明面1050から受光角0°の方向に出射し、ミラー1360に反射され、レンズ1361を通過し、分光測定機構1362に受光される。受光角0°の方向は、被照明面1050の法線1120と0°をなす方向である。分光測定機構1362は、反射光1043の各波長成分の光量に応じた信号を出力する。分光測定機構1362が出力する信号は、反射光1043に対する測定の結果になる。反射光1043がミラー1360に反射されることにより、光軸1112が屈曲させられる。反射光1043がレンズ1361を通過することにより、反射光1043の光線束が収束させられる。
 反射光1043は、光軸1112に沿って被照明面1050から反射面1380まで、受光角0°の方向に進み、反射面1380に反射される。反射された反射光1043は、反射面1380から光軸1112に沿って進み、レンズ1361を経て分光測定機構1362に到達する。
 ミラー1360が他の種類の屈曲光学素子に置き換えられてもよい。例えば、ミラー1360がプリズムに置き換えられてもよい。ミラー1360以外の屈曲光学素子が追加され、光軸1112がさらに屈曲されてもよい。ミラー1360及びレンズ1361からなる光学系が光軸1112を屈曲させ反射光1043の光線束を収束させる他の種類の光学系に置き換えられてもよい。例えば、ミラー1360及びレンズ1361からなる光学系が凹面反射面を執するミラーからなる光学系に置き換えられてもよい。測色計1000が備える分光測色計が色彩計に変更される場合は、分光測定機構1362が三刺激値を測定する機構に置き換えられてもよい。
 <8.補正用の受光機構>
 図2及び図4に示される補正用の受光機構1034は、図4に示されるように、ミラー1390、光ファイバー1391及び分光測定機構1392を備える。分光測定機構1392は、分光測定機構1362と共通化される。
 光1045は、光軸1113に沿って進む。光1045は、出射口1211から中心軸1230と0°をなす方向に出射し、ミラー1390に反射され、光ファイバー1391に導かれ、分光測定機構1392に受光される。分光測定機構1392は、光1045の各波長成分の光量に応じた信号を出力する。
 ミラー1390が他の種類の屈曲光学素子に置き換えられてもよい。例えば、ミラー1390がプリズムに置き換えられてもよい。ミラー1390以外の屈曲光学素子が追加されてもよい。光ファイバー1391が他の種類の導光機構に置き換えられてもよい。例えば、光ファイバー1391が屈曲光学素子に置き換えられてもよい。光ファイバー1391が省略され、光1045が反射面1400から分光測定機構1392まで直進してもよい。
 出射口1211から中心軸1230と0°をなす方向に出射する光1045に対して補正のための測定が行われる場合は、補正のための測定が行われる光を得るために出射口1211とは別の出射口を積分球1201に形成する必要がなく、光放射機構1190の効率が向上する。
 <9.コントローラー>
 図1に示されるコントローラー1011は、組み込みコンピューター、制御回路等を備え、ファームウェアを組み込みコンピューターに実行させる。組み込みコンピューターによる処理の全部又は一部がプログラムを実行しないハードウェアにより実現されてもよい。
 コントローラー1011は、測定機構1010を制御する。コントローラー1011は、直管形のキセノンランプ1200の点灯を制御し、分光測定機構1362及び分光測定機構1392から測定の結果を取得する。コントローラー1011は、分光測定機構1362から取得した測定の結果から測色情報を求める。コントローラー1011は、測色情報を求める場合に分光測定機構1392から取得した測定の結果を反映させる補正を行う。これにより、光放射機構1190が放射する光の変動が測色情報に与える影響が緩和される。測色情報は、分光スペクトル、色彩値等である。
 <10.反射特性に方向性を有する被照明面から反射される反射光>
 以下に、図11~図18を参照しつつ、反射特性に方向性を有する被照明面1050から反射される反射光1043の変動等について説明する。
 図11は、照明光1042の各方位θにおける照明光の光量の変動の一例をグラフ形式で模式的に示す図である。照明光の光量の変動は、各方位θを変数とする周期信号F(θ)として示されている。方位θは、被照明面1050の法線1120を一辺とする参照平面を所定の基準位置から、法線1120を回転中心として回転させるときの回転角度θに相当する。周期信号F(θ)は、照明光1042のうち参照平面に沿って反射機構1191から被照明面1050に照射される光量の変動を、0~1の範囲に正規化して示す信号である。
 方位θの参照平面が反射面1340と交差する場合には、周期信号F(θ)の値は1、交差しない場合には、周期信号F(θ)の値は0となる。
 図12は、各方位θにおける参照平面に沿って被照明面1050に照明光1042が照射されるときに、被照明面1050から受光角0°方向に反射される光の反射率の変動を、方位θを変数とする周期ノイズN(θ-φ)として模式的に示す。各方位から照射される光量が一定であれば、当該反射率の変動は、反射光量の変動として与えられる。周期ノイズN(θ-φ)は、0~1に正規化して示される。被照明面1050の向きφは、法線1120を中心に被照明面1050が回転するときの回転角度に相当する。向きφは、定数である。周期ノイズN(θ-φ)の周期は、例えば、被照明面1050におけるシボの形状および深さなどによって決まる。図12では、周期ノイズN(θ-φ)は、理想的にコサイン関数によって示されている。図12に示されるグラフでは、周期ノイズN(θ-φ)の周期は、180°である。この周期ノイズN(θ-φ)の変動パターンは、被照明面1050におけるしわ模様やシボが2回の回転対称性を有する場合の変動パターンである。被照明面1050の向きφが基準の0°から60°ずらされた場合には、周期ノイズN(θ-φ)は、60°の位相差に応じてずれている。
 方向性を持つ被照明面1050を照明機構1032に対してφの角度に配置した時の反射光量は、被照明面(試料面)の周期ノイズN(θ-φ)と照明光の周期信号F(θ)の相互相関関数で表すことができる。さらに、図12に示されるグラフのように、周期ノイズN(θ-φ)を理想的に周期(「ノイズ周期」)νのコサイン関数で表すことができるとすると、得られる反射光量Eν(φ)は式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 図13は、反射光量Eν(φ)を示す式(1)における被照明面の周期ノイズN(θ)と照明光の周期信号F(θ)との積の変動を、方位θに対してグラフ形式で示す図である。照明光の周期信号F(θ)として、図11の周期信号F(θ)が採用されている。被照明面の周期ノイズN(θ)として、図12の周期ノイズが採用されている。
 図14は、受光角0°方向への反射光量Eν(φ)の変動の一例を被照明面の向きφに対してグラフ形式で示す図である。照明光の周期信号F(θ)として、図11に示される信号が採用されている。被照明面の周期ノイズN(θ-φ)として、図12の例と同様に、理想的にコサイン関数で示される信号が採用されている。周期ノイズの周期νとして、180°と、120°とが採用されている。
 周期信号の周期は、180°であるため、図14に示されるように、周期ノイズの周期も180°である場合には、被照明面の向きに応じて、反射光量Eν(φ)が大きく変動している。一方、周期ノイズの周期が120°である場合には、被照明面の向きφに拘わらず反射光量は、一定になっている。
 実際の被照明面(試料面)に対する周期ノイズN(θ-φ)は、複数のノイズ周期を持っている場合が多い。その場合の周期ノイズは、各周期νの周期ノイズの足し合わせで表すことができる。
 一方で、実際に測定される被照明面の周期ノイズは、180度、120度、90度などの長周期成分が多いことが実験により確かめられた。より詳細には、周期ノイズの周期が180度である場合が最も多い。また、他の周期のノイズを含む場合でも、多くの場合、180度の周期のノイズも含まれている。逆に、周期が30度、60度である場合は殆ど無い。また、周期信号F(θ)を与える光放射機構の構成を種々に変更して式(1)で計算される反射光量を求めることによって、被照明面1050の向き(角度)φに依る反射光量の変動を抑制可能な光放射機構の構成を求めることもできる。
 図15~図18は、受光角0°方向への反射光量の振幅の変動例をグラフ形式で示す図である。図15~図18では、反射光量の振幅の変動が、グラフ1~4として示されている。
 反射機構における非反射領域の設置間隔、あるいは非反射領域の幅(仮想円筒面K1に沿った周方向の長さ)が変化すると、照明光の周期信号も変化する。グラフ1~4では、上記の設置間隔と幅とがそれぞれ変更されている。グラフ1~4では、非反射領域の設置間隔は、60°、120°、180°、360°(非反射領域502の個数が1つのみ)にそれぞれ設定されている。また、非反射領域の幅は、それぞれ15°、30°、45°、90°にそれぞれ設定されている。
 グラフ1における反射光量の振幅は、周期ノイズの周期が30°、60°である場合に大きなピーク値を取っているが、周期ノイズの周期が60°よりも長周期になると小さな値になっている。すなわち、周期ノイズの周期が、180°より大きい場合には、反射特性に方向性を有する被照明面から反射される光量の変動を良好に抑制できる。実際の被照明面の周期ノイズの周期は、多くの場合、180°よりも大きくなる。
 グラフ2における反射光量の振幅は、周期ノイズの周期が60°と120°である場合に大きなピーク値を取るが、90°と180°では小さな値となっている。このため、多くの被照明面から反射される光量の変動を良好に抑制できる。
 グラフ3における反射光量の振幅は、周期ノイズの周期が90°と180°である場合に大きな値を取っている。このため、多くの被照明面から反射される光量の変動を良好に抑制することは困難である。
 グラフ4における反射光量の振幅は、周期ノイズの周期が90度では0であるが、周期ノイズの周期が長くなるほど、反射光量の振幅が大きくなっている。このため、多くの被照明面から反射される光量の変動を良好に抑制することは困難である。
 以上のように構成された本実施形態に係る照明機構によれば、3つ以上の非反射領域502は、被照明面1050の法線を取り囲む仮想円筒面K1の周方向1350に分散して配置されている。従って、3つ以上の反射領域500も当該周方向1350に分散して配置される。これに対して被照明面1050のしわ模様や筋模様は、多くの場合、2回の回転対称性を有している。このため、被照明面1050の反射率の低い全ての方位から照明光1042が照射され、かつ、反射率の高い全方位からは照明光1042が照射されないことによって反射光量が極端に少なくなるケースの発生が抑制される。また、反射率の低い全ての方位から照明光が照射されず、かつ、反射率の高い全ての方位から照明光1042が照射されることによって反射光量が極端に多くなるケースの発生も抑制される。従って、反射機構1191から反射特性に方向性(「異方性」とも称する)を有する被照明面1050に照射されて被照明面1050から反射される反射光1043の光量の変動を抑制できる。すなわち、複数の反射領域500が、被照明面1050のしわ模様等の回転対称の回数と同じ回数の回転対称性を有していない場合には、被照明面1050の反射率が高い方位と照明光1042の入射光量が大きい方位とがぴったり一致することが抑制されるとともに、反射率が低い方位と入射光量が小さい方位とがぴったり一致することも抑制される。これにより、反射光1043の光量の変動が抑制される。
 また、3つ以上の反射領域500のそれぞれは、仮想円筒面K1に沿う部分円筒状の領域であるので、光放射機構1190から出射される光線束のうち各反射領域500から反射された光線束を効率よく被照明面1050に向けて反射することができる。これにより、当該光線束の利用効率を改善できる。
 また、以上のように構成された本実施形態に係る照明機構によれば、3つ以上の非反射領域502は、被照明面1050の法線を取り囲む仮想円筒面K1の周方向1350に等間隔に配置されているので、反射特性に方向性を有する被照明面1050から反射される光量の変動をさらに抑制できる。
 また、以上のように構成された本実施形態に係る照明機構によれば、3つ以上の反射領域500のそれぞれに、複数の反射面1340が設けられており、複数の反射面1340は、仮想円筒面K1に沿ってその周方向1350に並んでいる。従って、複数の反射面1340のそれぞれの向きを調整することによって、光放射機構1190から出射される光線束の利用効率をさらに改善できる。
 また、以上のように構成された本実施形態に係る照明機構によれば、複数の反射面1340のそれぞれは、平面状の反射面であるので、各反射面の製作が容易になり、性能のバラつきが小さい照明装置の製作が容易になる。
 また、以上のように構成された本実施形態に係る照明機構によれば、複数の反射面1340のそれぞれは、法線方向に延在する曲面状の反射面であり、法線に垂直な断面が法線側またはその反対側に凸の弧状の曲線であるので、各反射面1340から反射される光による照明領域を広げたり、狭めたりすることができる。
 また、以上のように構成された本実施形態に係る照明機構によれば、反射機構1191は、複数の反射領域500のそれぞれについて、仮想円筒面K1の周方向1350に並ぶ複数の部材340を備えており、複数の反射面1340は、複数の部材340のうち少なくとも一部の部材における当該対向面に形成されており、複数の反射面1340のそれぞれの向きが相互に固定されるように、複数の部材340のうち隣り合う部材同士が、互いに結合されている。従って、反射機構1191を構成する部品数を削減し、照明装置の製造コストを低減できる。
 また、以上のように構成された本実施形態に係る照明機構によれば、3つ以上の反射領域500にそれぞれ配置された3つ以上の非反射部分は、仮想円筒面K1の周方向1350に分散して配置されている。被照明面1050の反射率の低い全ての方位から照明光1042が照射され、かつ、反射率の高い全方位からは照明光1042が照射されないことによって反射光量が極端に少なくなるケースの発生がさらに抑制される。また、反射率の低い全ての方位から照明光1042が照射されず、かつ、反射率の高い全ての方位から照明光1042が照射されることによって反射光量が極端に多くなるケースの発生もさらに抑制される。従って、反射特性に方向性を有する被照明面1050から反射される光量の変動をさらに抑制できる。
 また、以上のように構成された本実施形態に係る照明機構によれば、3つ以上の非反射部分は、仮想円筒面K1の周方向1350に等間隔に配置されている。従って、反射特性に方向性を有する被照明面1050から反射される光量の変動をさらに抑制できる。
 また、以上のように構成された本実施形態に係る照明機構によれば、非反射部分は、複数の反射面1340のうち1つの反射面1340が反射領域500において占める範囲以上の大きさの範囲を反射領域500において占めている。従って、非反射領域502が、極端に小さくなることを抑制できるので、反射特性に方向性を有する被照明面1050から反射される光量の変動をさらに抑制できる。
 また、以上のように構成された本実施形態に係る照明機構によれば、反射領域500のうち非反射部分以外の部分が非反射部分よりも大きいので、反射領域500から被照明面1050に向けて反射される光の光量の低下を抑制できる。
 また、以上のように構成された本実施形態に係る照明機構によれば、キセノンランプ1200から照射される光が拡散反射面1245に拡散反射された後に丸孔状の出射口から出射し、光放射機構1190から出射する光が均一になり、光放射機構1190が実質的にランバートのコサイン則に従う鉛直配光特性を有するようになる。従って、被照明面1050がその法線方向に移動した場合でも照度の変動を抑制することができる。
 また、以上のように構成された本実施形態に係る照明機構1032によれば、面光源は、LED光源であるので、面光源を小型化し、照明装置全体のサイズを小さく抑えることができる。
 また、以上のように構成された本実施形態に係る測定機構によれば、反射特性に方向性を有する被照明面1050が測定される場合でも、被照明面1050から反射される反射光1043の光量の変動を抑制できるので、安定した測定値を得ることができる。
 また、以上のように構成された本実施形態に係る照明機構によれば、3つ以上の非反射領域は、被照明面1050の法線を取り囲む仮想円筒面K1の周方向1350に分散して配置されている。従って、3つ以上の低反射領域も当該周方向1350に分散して配置される。反射機構1191から反射特性に方向性を有する被照明面1050に照射されて被照明面1050から反射される光量の変動を抑制できる。また、3つ以上の反射領域のそれぞれは、仮想円筒面K1に沿う部分円筒状の領域であるので、光放射機構1190から出射される光線束のうち各反射領域から反射された光線束を効率よく被照明面1050に向けて反射することができるので、光線束の利用効率を改善できる。
 本発明は詳細に示され記述されたが、上記の記述は全ての態様において例示であって限定的ではない。したがって、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。
 1000 測色計
 1010 測定機構(反射特性測定装置)
 1011 コントローラー
 1032 測色用の照明機構(照明装置)
 1033 測色用の受光機構(受光機構)
 1034 補正用の受光機構
 1340 反射面
 1342 非反射部分
 1050 被照明面
 1120 法線
 1190 光放射機構(面光源)
 1191 反射機構
 1200 直管形のキセノンランプ
 1201 積分球
 1202 バッフル
 500 反射領域
 502 非反射領域
 600 ミラーブロック
 K1 仮想円筒面

Claims (15)

  1.  被照明面を照明する照明装置であって、
     前記被照明面の法線上に配置される面光源と、
     前記法線を取り囲むように前記面光源と前記被照明面との間に設けられ、前記面光源から照射された光を前記被照明面に向けて反射する反射機構と、
    を備え、
     前記反射機構には、
     前記光を前記被照明面に向けて反射する反射領域と、前記光を前記被照明面に向けて反射しない非反射領域とが、前記法線を取り囲む仮想円筒面に沿ってその周方向に交互に配置されることによって、3つ以上の反射領域と3つ以上の非反射領域とが配置されており、
     前記3つ以上の反射領域のそれぞれは、前記仮想円筒面に沿う部分円筒状の領域であり、
     前記3つ以上の非反射領域は、前記法線を取り囲むように前記周方向に分散して配置されている、照明装置。
  2.  請求項1に記載の照明装置であって、
     前記3つ以上の非反射領域は、前記周方向に等間隔に配置されている、照明装置。
  3.  請求項1または請求項2に記載の照明装置であって、
     前記3つ以上の反射領域のそれぞれに、前記光を前記被照明面に向けてそれぞれ反射する複数の反射面が設けられており、
     前記複数の反射面は、前記仮想円筒面に沿って前記周方向に並んでいる、照明装置。
  4.  請求項3に記載の照明装置であって、
     前記複数の反射面のそれぞれは、平面状の反射面である、照明装置。
  5.  請求項3に記載の照明装置であって、
     前記複数の反射面のそれぞれは、前記法線方向に延在する曲面状の反射面であり、前記法線に垂直な断面が前記法線側またはその反対側に凸の弧状の曲線である、照明装置。
  6.  請求項3から請求項5の何れか1つの請求項に記載の照明装置であって、
     前記反射機構は、前記複数の反射領域のそれぞれについて、前記仮想円筒面の周方向に並ぶ複数の部材を備えており、
     前記複数の部材のそれぞれは、前記法線に対向する対向面を有しており、
     前記複数の反射面は、前記複数の部材のうち少なくとも一部の部材における前記対向面に形成されており、
     前記複数の反射面のそれぞれの向きが相互に固定されるように、前記複数の部材のうち隣り合う部材同士が、互いに結合されている、照明装置。
  7.  請求項3から請求項6の何れか1つの請求項に記載の照明装置であって、
     前記3つ以上の反射領域のそれぞれの一部には、前記光を前記被照明面に向けて反射しない非反射部分が配置されており、
     前記3つ以上の反射領域にそれぞれ配置された3つ以上の非反射部分は、前記法線を取り囲むように前記仮想円筒面の周方向に分散して配置されている、照明装置。
  8.  請求項7に記載の照明装置であって、
     前記3つ以上の非反射部分は、前記周方向に等間隔に配置されている、照明装置。
  9.  請求項7または請求項8に記載の照明装置であって、
     前記非反射部分は、前記複数の反射面のうち1つの反射面が前記反射領域において占める範囲以上の大きさの範囲を前記反射領域において占めている、照明装置。
  10.  請求項7から請求項9の何れか1つの請求項に記載の照明装置であって、
     前記反射領域のうち前記非反射部分以外の部分が前記非反射部分よりも大きい、照明装置。
  11.  請求項1から請求項10の何れか1つの請求項に記載の照明装置であって、
     前記面光源は、
     球状の空間及び丸孔状の出射口が形成され、前記空間を規定する内面を有し、前記内面が拡散反射面を有し、前記出射口が前記空間と外部とを連絡し、前記空間及び前記出射口が前記法線を共通の中心軸として有する積分球と、
     前記空間を横断して管軸方向に延設され、放電区間を有する直管形光源と、
    を備える光放射機構である、照明装置。
  12.  請求項1から請求項10の何れか1つの請求項に記載の照明装置であって、
     前記面光源は、LED光源である、照明装置。
  13.  請求項1から請求項12の何れか1つの請求項に記載の照明装置と、
     前記反射機構が反射した前記光を前記被照明面が反射することにより生成される反射光を受光し、前記反射光に対する測定の結果を出力する受光機構と、
    を備える反射特性測定装置。
  14.  被照明面を照明する照明装置であって、
     前記被照明面の法線上に配置される面光源と、
     前記法線を取り囲むように前記面光源と前記被照明面との間に設けられ、前記面光源から照射された光を前記被照明面に向けて反射する反射機構と、
    を備え、
     前記反射機構には、
     前記光を前記被照明面に向けて反射する反射領域と、前記光を前記被照明面に向けて反射する反射率が前記反射領域よりも低い低反射領域とが、前記法線を取り囲む仮想円筒面に沿ってその周方向に交互に配置されることによって、3つ以上の反射領域と3つ以上の低反射領域とが配置されており、
     前記3つ以上の反射領域のそれぞれは、前記仮想円筒面に沿う部分円筒状の領域であり、
     前記3つ以上の低反射領域は、前記法線を取り囲むように前記周方向に分散して配置されている、照明装置。
  15.  請求項14に記載の照明装置と、
     前記反射機構が反射した前記光を前記被照明面が反射することにより生成される反射光を受光し、前記反射光に対する測定の結果を出力する受光機構と、
    を備える反射特性測定装置。
PCT/JP2015/083944 2014-12-10 2015-12-03 照明装置及び反射特性測定装置 WO2016093131A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15866940.8A EP3232171A4 (en) 2014-12-10 2015-12-03 Illumination device and reflection characteristics measurement device
JP2016563643A JP6790828B2 (ja) 2014-12-10 2015-12-03 照明装置及び反射特性測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014249708 2014-12-10
JP2014-249708 2014-12-10

Publications (1)

Publication Number Publication Date
WO2016093131A1 true WO2016093131A1 (ja) 2016-06-16

Family

ID=56107320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083944 WO2016093131A1 (ja) 2014-12-10 2015-12-03 照明装置及び反射特性測定装置

Country Status (3)

Country Link
EP (1) EP3232171A4 (ja)
JP (1) JP6790828B2 (ja)
WO (1) WO2016093131A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504655A (ja) * 1995-06-12 1998-05-06 メジャレックス コーポレーション 標準光源をシミュレーションするカラーセンサ
WO2014192554A1 (ja) * 2013-05-29 2014-12-04 コニカミノルタ株式会社 照明装置及び反射特性測定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183602U (ja) * 1981-05-19 1982-11-20
JP2531532Y2 (ja) * 1989-06-06 1997-04-02 シャープ株式会社 レーザ走査装置の多面鏡装置
US5268749A (en) * 1991-07-26 1993-12-07 Kollmorgen Corporation Apparatus and method for providing uniform illumination of a sample plane
JPH06150701A (ja) * 1992-11-06 1994-05-31 Fujitsu General Ltd 投写用光源装置
US6424413B1 (en) * 1998-06-12 2002-07-23 Gretagmacbeth Llc Multi-channel integrating sphere
JP2005009987A (ja) * 2003-06-18 2005-01-13 Minolta Co Ltd マルチアングル測色計
JP2010281808A (ja) * 2009-05-01 2010-12-16 Konica Minolta Sensing Inc 照明装置およびそれを用いる反射特性測定装置
JP5954424B2 (ja) * 2012-10-16 2016-07-20 コニカミノルタ株式会社 光学特性測定装置
WO2014192523A1 (ja) * 2013-05-27 2014-12-04 コニカミノルタ株式会社 照明装置および反射特性測定装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504655A (ja) * 1995-06-12 1998-05-06 メジャレックス コーポレーション 標準光源をシミュレーションするカラーセンサ
WO2014192554A1 (ja) * 2013-05-29 2014-12-04 コニカミノルタ株式会社 照明装置及び反射特性測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3232171A4 *

Also Published As

Publication number Publication date
JP6790828B2 (ja) 2020-11-25
JPWO2016093131A1 (ja) 2017-09-14
EP3232171A4 (en) 2018-11-07
EP3232171A1 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP4216314B2 (ja) 光学測定装置
JPS62142465A (ja) 光源ユニツト
US7369244B2 (en) Optical measuring apparatus, illumination system, and light detecting system
US20130141791A1 (en) Variable monochromatic uniform calibration source
JP5643983B2 (ja) 光学測定装置、光学測定システムおよびファイバ結合器
US10180352B2 (en) Measuring light source, and measuring system for detecting a reflection spectrum
WO2011132360A1 (ja) 測定用光学系ならびにそれを用いた色彩輝度計および色彩計
JP6060444B2 (ja) 測色計
JP2008292497A (ja) 光学測定装置
JP6330480B2 (ja) 光放射機構、照明機構及び反射特性測定装置
WO2016093131A1 (ja) 照明装置及び反射特性測定装置
WO2016093130A1 (ja) 照明装置及び反射特性測定装置
TWI728177B (zh) 分光測定裝置
CN209326939U (zh) 一种聚焦反射镜积分球均匀光源结构
JP2015215296A (ja) 表面特性測定装置
CN114295558A (zh) 便携式光谱仪
JP5424826B2 (ja) 測定装置
CN109738159A (zh) 一种聚焦反射镜积分球均匀光源
WO2007139310A1 (en) Three dimensional light measuring apparatus
KR20020086522A (ko) 콜리메이터 렌즈
JP2016218000A (ja) 積分球及びマスクの組、測色計並びにマスク
WO2017163891A1 (ja) 反射特性測定装置および反射特性を測定する方法
EP2406598B1 (en) Large-angle uniform radiance source
JP2005227197A (ja) 反射光測定装置及び反射光測定方法
JP2008286530A (ja) 反射特性測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563643

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015866940

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE