WO2016093120A1 - 粘着剤層付き透明導電性フィルム - Google Patents

粘着剤層付き透明導電性フィルム Download PDF

Info

Publication number
WO2016093120A1
WO2016093120A1 PCT/JP2015/083859 JP2015083859W WO2016093120A1 WO 2016093120 A1 WO2016093120 A1 WO 2016093120A1 JP 2015083859 W JP2015083859 W JP 2015083859W WO 2016093120 A1 WO2016093120 A1 WO 2016093120A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
pressure
conductive film
sensitive adhesive
adhesive layer
Prior art date
Application number
PCT/JP2015/083859
Other languages
English (en)
French (fr)
Inventor
寛 友久
祥一 松田
普史 形見
崇弘 野中
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015195949A external-priority patent/JP6890920B2/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016093120A1 publication Critical patent/WO2016093120A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers

Definitions

  • the present invention relates to a transparent conductive film with an adhesive layer.
  • a transparent conductive film in which a metal oxide layer such as an indium / tin composite oxide layer (ITO layer) is formed on a transparent resin film is often used as a transparent conductive film used for an electrode of a touch sensor. Yes.
  • the transparent conductive film on which the metal oxide layer is formed has insufficient flexibility, so that it is difficult to use it for applications that require flexibility, such as a flexible display.
  • a transparent conductive film including metal nanowires or metal mesh using silver or copper has been proposed. Although such a transparent conductive film is excellent in flexibility, it has insufficient resistance to corrosive gas, and contact with the corrosive gas causes a significant decrease in conductivity and a significant decrease in light transmittance. There's a problem.
  • Patent Document 1 As a means for preventing corrosion of a transparent conductive film containing metal nanowires or metal meshes, a method of protecting a conductive layer composed of metal nanowires or metal meshes with a polymer matrix is known (for example, Patent Document 1).
  • Patent Document 1 a method of protecting a conductive layer composed of metal nanowires or metal meshes with a polymer matrix.
  • Patent Document 1 a method of protecting a conductive layer composed of metal nanowires or metal meshes with a polymer matrix.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a transparent conductive film having excellent flexibility and high environmental durability.
  • the transparent conductive film with a pressure-sensitive adhesive layer of the present invention comprises a transparent substrate, a transparent conductive layer, and a pressure-sensitive adhesive layer in this order, and the transparent conductive layer includes a metal nanowire or a metal mesh, and the pressure-sensitive adhesive layer Is formed from a pressure-sensitive adhesive composition containing a compound containing a thiol group and a pressure-sensitive adhesive material, and in the pressure-sensitive adhesive composition, the compounding amount of the compound containing a thiol group is the pressure-sensitive adhesive material in the pressure-sensitive adhesive composition. The amount is 0.01 to 1 part by weight per 100 parts by weight.
  • the compound containing the thiol group is represented by the general formula (1); HS-R (1)
  • R is an aliphatic hydrocarbon group or an aromatic hydrocarbon group having 1 to 30 carbon atoms.
  • the metal nanowire is composed of one or more metals selected from the group consisting of gold, platinum, silver, and copper.
  • the metal mesh is composed of one or more metals selected from the group consisting of gold, platinum, silver, and copper.
  • the transparent conductive layer further includes a polymer matrix. In one embodiment, the transparent conductive layer has a thickness of 10 nm to 1000 nm. In one embodiment, a part of the metal nanowire protrudes from the transparent conductive layer.
  • an electronic device is provided. This electronic device includes the transparent conductive film with the pressure-sensitive adhesive layer.
  • a conductive layer containing metal nanowires or a metal mesh and a pressure-sensitive adhesive layer formed from a pressure-sensitive adhesive composition containing a compound containing a thiol group, it has excellent flexibility and environmental durability. It is in providing a transparent conductive film with high property.
  • FIG. 1 is a schematic cross-sectional view of a transparent conductive film with an adhesive layer according to one embodiment of the present invention.
  • the transparent conductive film 100 with an adhesive layer includes the transparent base material 10, the transparent conductive layer 20, and the adhesive layer 30 in this order.
  • the transparent conductive layer includes metal nanowires or metal mesh. 1 shows an example in which the transparent conductive layer 20 includes metal nanowires 21.
  • the pressure-sensitive adhesive layer 30 is formed from a pressure-sensitive adhesive composition containing a compound containing a thiol group.
  • the “transparent conductive film with an adhesive layer” is also simply referred to as a transparent conductive film.
  • the transparent conductive layer 20 is formed from a polymer matrix 22.
  • metal nanowires 21 or metal mesh are present in the polymer matrix 22.
  • a part of the metal nanowire 21 may protrude from the transparent conductive layer 20. More specifically, a part of the metal nanowire 21 may protrude from the transparent conductive layer 20 to the pressure-sensitive adhesive layer 30 side. Furthermore, a part of the metal nanowire 21 may protrude outward from the pressure-sensitive adhesive layer 30. If the metal nanowires 21 are arranged so as to protrude from the transparent conductive layer 20, a transparent conductive film having good conduction can be obtained. In the present invention, even if a part of the metal nanowire protrudes from the transparent conductive layer, corrosion of the metal nanowire can be prevented.
  • a metal-based transparent conductive film may bring about a significant decrease in conductivity and a significant decrease in light transmittance due to contact with corrosive gas in the atmosphere.
  • the transparent conductive film of the present invention comprises a pressure-sensitive adhesive layer formed from a pressure-sensitive adhesive composition containing a compound containing a thiol group, and a compound containing a thiol group in the pressure-sensitive adhesive layer (or a structural unit derived from the compound) Can be easily bonded to the metal body by forming a protective film on the metal surface.
  • the compound containing a thiol group functions as a corrosion inhibitor, corrosion of the metal nanowire or metal mesh in the transparent conductive layer is prevented. That is, in the present invention, the metal nanowire or the metal mesh is used as the material constituting the transparent conductive layer, but corrosion of the material is prevented, so that the transparent conductive film has excellent flexibility and high environmental durability. Can be obtained.
  • the transparent conductive layer is composed of a polymer matrix and a corrosion inhibitor is added to the polymer matrix, the corrosion inhibitor forms a stable composite on the metal surface, and is formed at the interface between the metal and the polymer matrix. There is a tendency to form a barrier, and as a result, problems such as deterioration of the appearance of the transparent conductive layer and inhibition of curing may occur.
  • the thickness of the transparent conductive film with an adhesive layer is preferably 10 ⁇ m to 500 ⁇ m, more preferably 15 ⁇ m to 300 ⁇ m, and still more preferably 20 ⁇ m to 200 ⁇ m.
  • the total light transmittance of the transparent conductive film with an adhesive layer is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more.
  • the surface resistance value of the transparent conductive film with the pressure-sensitive adhesive layer is preferably 0.1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 0.5 ⁇ / ⁇ to 500 ⁇ / ⁇ , and particularly preferably 1 ⁇ / ⁇ . ⁇ 250 ⁇ / ⁇ .
  • the said adhesive layer is formed from the adhesive composition containing the compound containing a thiol group. More specifically, the pressure-sensitive adhesive composition includes a compound containing a thiol group as an additive and a pressure-sensitive adhesive material, and the pressure-sensitive adhesive layer is formed by drying or polymerizing the pressure-sensitive adhesive composition.
  • the pressure-sensitive adhesive material is a concept including a base polymer and a monomer and a prepolymer (A) as a precursor of the base polymer. These base polymer, monomer and prepolymer (A) may be used in combination.
  • a pressure-sensitive adhesive layer is formed by polymerizing the pressure-sensitive adhesive composition.
  • the base polymer in the pressure-sensitive adhesive layer may or may not contain a structural unit derived from a compound containing the thiol group.
  • the compound containing the thiol group may be incorporated in the base polymer in the pressure-sensitive adhesive layer by reacting with the pressure-sensitive adhesive material, or may coexist with the base polymer in the pressure-sensitive adhesive layer.
  • the base polymer does not include a structural unit derived from a compound containing the thiol group.
  • the compound containing the thiol group is added in a state of being incorporated in the prepolymer (B).
  • the prepolymer (B) -forming monomer and the compound containing a thiol group are reacted to form the prepolymer (B)
  • the prepolymer and the pressure-sensitive adhesive material are mixed to form a pressure-sensitive adhesive.
  • An agent composition is prepared.
  • the compounding amount of the compound containing a thiol group is 0.01 part by weight to 1 part by weight, preferably 0.01 part by weight to 0.00 part by weight with respect to 100 parts by weight of the pressure sensitive adhesive material in the pressure sensitive adhesive composition. 5 parts by weight, more preferably 0.01 parts by weight to 0.3 parts by weight, and still more preferably 0.1 parts by weight to 0.2 parts by weight. If it is such a range, corrosion of the metal nanowire or metal mesh in a transparent conductive layer will be prevented.
  • the compounding quantity of the compound containing a thiol group is the prepolymer (B in the adhesive composition).
  • the prepolymer (B) Means the amount of the compound containing the thiol group introduced.
  • the prepolymer (B) is not included in the adhesive material.
  • R is an aliphatic hydrocarbon group or an aromatic hydrocarbon group having 1 to 30 carbon atoms, preferably an aliphatic hydrocarbon group or an aromatic hydrocarbon group having 1 to 20 carbon atoms. It is. R may be linear or branched. R may contain a double bond and / or a triple bond at any suitable position. R may have any appropriate substituent. Examples of the substituent include an SH group, a hydroxyl group, an NH 2 group, an alkyl ester group, a carboxyl group, an allyl group, and a halogen group. R may have a substituent containing an element such as N, S, O, Si, or P.
  • the compound containing a thiol group examples include ⁇ -thioglycerol, aminoethanethiol, thioglycolic acid, methyl thioglycolate, ethyl thioglycolate, propyl thioglycolate, butyl thioglycolate, and t-butyl thioglycolate.
  • Examples of the monomer contained in the pressure-sensitive adhesive composition include (meth) acrylic monomers, silicon monomers, urethane monomers, epoxy monomers, and the like. Among these, (meth) acrylic monomers are preferable from the viewpoint of transparency and durability.
  • Examples of the base polymer or prepolymer contained in the pressure-sensitive adhesive composition include base polymers or prepolymers composed of (meth) acrylic monomers, silicon monomers, urethane monomers, epoxy monomers, and the like.
  • Examples of the (meth) acrylic monomer include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, (meth) Isobutyl acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-Methylhexyl acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth)
  • (meth) acrylic acid alkyl esters having a linear or branched alkyl group having 4 to 18 carbon atoms can be preferably used.
  • the content ratio of the (meth) acrylic acid alkyl ester is preferably 60 parts by weight or more, more preferably 80 parts by weight or more with respect to 100 parts by weight of the total monomers in the pressure-sensitive adhesive composition.
  • the pressure-sensitive adhesive composition may further contain another monomer.
  • the monomer copolymerizable with the said (meth) acrylic-acid alkylester is mentioned, for example.
  • Specific examples of such monomers include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride, itaconic anhydride, and the like Acid anhydride monomer: hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxyhexyl (meth) acrylate, hydroxyoctyl (meth) acrylate, (meth) acrylic Hydroxyl group-containing monomers such as hydroxydecyl acid, hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclo
  • the prepolymer (B) having a structural unit derived from a compound containing a thiol group can be obtained by reacting a monomer for forming the prepolymer (B) with a compound containing a thiol group.
  • a monomer for forming the prepolymer (B) the above-mentioned monomers can be used.
  • a (meth) acrylic monomer having a tricyclic or higher alicyclic structure is used as the monomer for forming the prepolymer (B). If a (meth) acrylic monomer having a tricyclic or higher alicyclic structure is used, a pressure-sensitive adhesive layer excellent in durability and adhesiveness (particularly durability and adhesiveness at high temperatures) can be formed.
  • Examples of (meth) acrylic monomers having a tricyclic or higher alicyclic structure include dicyclopentanyl methacrylate, dicyclopentanyl acrylate, dicyclopentanyloxyethyl methacrylate, dicyclopentanyloxyethyl acrylate, Cyclopentanyl methacrylate, tricyclopentanyl acrylate, 1-adamantyl methacrylate, 1-adamantyl acrylate, 2-methyl-2-adamantyl methacrylate, 2-methyl-2-adamantyl acrylate, 2-ethyl-2-adamantyl methacrylate, 2- And ethyl-2-adamantyl acrylate.
  • the content of the structural unit derived from the (meth) acrylic monomer having an alicyclic structure of three or more rings is preferably 40 parts by weight with respect to 100 parts by weight of the prepolymer (B). -80 parts by weight, more preferably 50 parts by weight to 70 parts by weight.
  • the weight average molecular weight of the prepolymer (B) is preferably 100 to 50000, more preferably 1000 to 10000.
  • the weight average molecular weight can be measured by GPC (solvent: THF).
  • the above-mentioned pressure-sensitive adhesive composition may further contain any appropriate additive as required.
  • the additive include an initiator, a tackifier, a plasticizer, a pigment, a dye, a filler, an anti-aging agent, a conductive material, an ultraviolet absorber, a light stabilizer, a release modifier, a softener, and a surfactant. , Flame retardants, antioxidants and the like.
  • the type, number and amount of additives used can be appropriately set according to the purpose.
  • the pressure-sensitive adhesive layer may be formed by applying the pressure-sensitive adhesive composition onto the transparent conductive layer and then polymerizing the coating layer.
  • the pressure-sensitive adhesive composition may be applied onto the transparent conductive layer, and the coating layer may be further polymerized. Any appropriate method can be adopted as the polymerization method. Preferably, photopolymerization is employed. Moreover, you may transfer the adhesive layer formed by superposition
  • the coating liquid is applied onto the transparent conductive layer, and dried as necessary, so that the pressure-sensitive adhesive An agent layer is formed.
  • a pressure-sensitive adhesive composition containing a base polymer is applied onto the transparent conductive layer and dried as necessary to form the pressure-sensitive adhesive layer.
  • the weight average molecular weight of the base polymer in the pressure-sensitive adhesive layer is preferably 200000 to 4000000, and more preferably 400000 to 2000000.
  • the content ratio of the structural unit derived from the compound containing a thiol group in the pressure-sensitive adhesive layer is preferably 0 with respect to 100 parts by weight of the base polymer. 0.01 parts by weight to 1 part by weight, more preferably 0.01 parts by weight to 0.5 parts by weight, still more preferably 0.01 parts by weight to 0.3 parts by weight, and particularly preferably 0. 1 to 0.2 parts by weight. If it is such a range, corrosion of the metal nanowire or metal mesh in a transparent conductive layer will be prevented.
  • the base polymer does not contain a structural unit derived from a compound containing the thiol group, that is, when the base polymer and the compound containing a thiol group coexist in the adhesive layer, the thiol in the adhesive layer
  • the content of the compound containing a group is preferably 0.01 to 1 part by weight, more preferably 0.01 to 0.5 part by weight with respect to 100 parts by weight of the total solid content in the pressure-sensitive adhesive layer. Parts by weight, more preferably 0.01 parts by weight to 0.3 parts by weight, and particularly preferably 0.1 parts by weight to 0.2 parts by weight. If it is such a range, corrosion of the metal nanowire or metal mesh in a transparent conductive layer will be prevented.
  • the thickness of the pressure-sensitive adhesive layer is preferably 1 ⁇ m to 500 ⁇ m, more preferably 2 ⁇ m to 300 ⁇ m.
  • the transparent conductive layer includes a metal nanowire or a metal mesh. If a transparent conductive layer containing a metal nanowire or a metal mesh is formed, a transparent conductive film having excellent flexibility and excellent light transmittance can be obtained.
  • the transparent conductive layer further comprises a polymer matrix.
  • metal nanowires or metal meshes are protected by the polymer matrix. As a result, corrosion of the metal nanowire or metal mesh is prevented, and a transparent conductive film that is superior in durability can be obtained.
  • the thickness of the transparent conductive layer is preferably 10 nm to 1000 nm, more preferably 20 nm to 500 nm.
  • the thickness of the transparent conductive layer corresponds to the thickness of the polymer matrix.
  • the transparent conductive layer is patterned. Any appropriate method can be adopted as a patterning method depending on the form of the transparent conductive layer.
  • the shape of the pattern of the transparent conductive layer may be any appropriate shape depending on the application. For example, the patterns described in JP-T-2011-511357, JP-A-2010-164938, JP-A-2008-310550, JP-T-2003-511799, and JP-T-2010-541109 are exemplified.
  • the transparent conductive layer After the transparent conductive layer is formed on the transparent substrate, it can be patterned using any appropriate method depending on the form of the transparent conductive layer.
  • the total light transmittance of the transparent conductive layer is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
  • a metal nanowire is a conductive material having a metal material, a needle shape or a thread shape, and a diameter of nanometer.
  • the metal nanowire may be linear or curved. If a transparent conductive layer composed of metal nanowires is used, the metal nanowires can be formed into a mesh shape, so that even with a small amount of metal nanowires, a good electrical conduction path can be formed, and transparent with low electrical resistance. A conductive film can be obtained. Furthermore, when the metal nanowire has a mesh shape, an opening is formed in the mesh space, and a transparent conductive film having high light transmittance can be obtained.
  • the ratio between the thickness d and the length L of the metal nanowire is preferably 10 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 100,000. 10,000. If metal nanowires having a large aspect ratio are used in this way, the metal nanowires can cross well and high conductivity can be expressed by a small amount of metal nanowires. As a result, a transparent conductive film having a high light transmittance can be obtained.
  • the “thickness of the metal nanowire” means the diameter when the cross section of the metal nanowire is circular, and the short diameter when the cross section of the metal nanowire is elliptical. In some cases it means the longest diagonal. The thickness and length of the metal nanowire can be confirmed by a scanning electron microscope or a transmission electron microscope.
  • the thickness of the metal nanowire is preferably less than 500 nm, more preferably less than 200 nm, particularly preferably 10 nm to 100 nm, and most preferably 10 nm to 50 nm. If it is such a range, a transparent conductive layer with high light transmittance can be formed.
  • the length of the metal nanowire is preferably 2.5 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m to 500 ⁇ m, and particularly preferably 20 ⁇ m to 100 ⁇ m. If it is such a range, a highly conductive transparent conductive film can be obtained.
  • any appropriate metal can be used as long as it is a highly conductive metal.
  • a metal which comprises the said metal nanowire silver, gold
  • the metal nanowire is preferably composed of one or more metals selected from the group consisting of gold, platinum, silver and copper.
  • any appropriate method can be adopted as a method for producing the metal nanowire.
  • a method of reducing silver nitrate in a solution a method in which an applied voltage or current is applied to the precursor surface from the tip of the probe, a metal nanowire is drawn out at the probe tip, and the metal nanowire is continuously formed, etc.
  • silver nanowires can be synthesized by liquid phase reduction of a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone. Uniformly sized silver nanowires are described in, for example, Xia, Y. et al. etal. , Chem. Mater. (2002), 14, 4736-4745, Xia, Y. et al. etal. , Nano letters (2003) 3 (7), 955-960, mass production is possible.
  • the transparent conductive layer containing the metal nanowires can be formed by applying a dispersion liquid in which the metal nanowires are dispersed in a solvent on the transparent substrate, and then drying the coating layer.
  • the solvent examples include water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, aromatic solvents and the like. From the viewpoint of reducing the environmental load, it is preferable to use water.
  • the dispersion concentration of the metal nanowires in the metal nanowire dispersion liquid is preferably 0.1% by weight to 1% by weight. If it is such a range, the transparent conductive layer excellent in electroconductivity and light transmittance can be formed.
  • the metal nanowire dispersion may further contain any appropriate additive depending on the purpose.
  • the additive include a corrosion inhibitor that prevents corrosion of the metal nanowires, and a surfactant that prevents aggregation of the metal nanowires.
  • the type, number and amount of additives used can be appropriately set according to the purpose.
  • any appropriate method can be adopted as a method of applying the metal nanowire dispersion.
  • the coating method include spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, letterpress printing method, intaglio printing method, and gravure printing method.
  • Any appropriate drying method (for example, natural drying, air drying, heat drying) can be adopted as a method for drying the coating layer.
  • the drying temperature is typically 50 to 200 ° C.
  • the drying time is typically 1 to 10 minutes.
  • the content ratio of the metal nanowires in the transparent conductive layer is preferably 30% by weight to 90% by weight and more preferably 45% by weight to 80% by weight with respect to the total weight of the transparent conductive layer. If it is such a range, the transparent conductive film excellent in electroconductivity and light transmittance can be obtained.
  • the density of the transparent conductive layer is preferably 1.3 g / cm 3 to 10.5 g / cm 3 , more preferably 1.5 g / cm 3 to 3.0 g / cm 3. 3 . If it is such a range, the transparent conductive film excellent in electroconductivity and light transmittance can be obtained.
  • the transparent conductive layer including a metal mesh is formed by forming fine metal wires in a lattice pattern on the transparent substrate or the resin layer. Any appropriate metal can be used as the metal constituting the metal mesh as long as it is a highly conductive metal. As a metal which comprises the said metal mesh, silver, gold
  • the metal mesh is preferably composed of one or more metals selected from the group consisting of gold, platinum, silver and copper.
  • the transparent conductive layer containing a metal mesh can be formed by any appropriate method.
  • the transparent conductive layer is formed by, for example, applying a photosensitive composition (a composition for forming a transparent conductive layer) containing a silver salt on the transparent base material, and then performing an exposure process and a development process, so that a fine metal wire is formed in a predetermined manner. It can be obtained by forming a pattern.
  • the transparent conductive layer can also be obtained by printing a paste containing metal fine particles in a predetermined pattern. Details of such a transparent conductive layer and a method for forming the transparent conductive layer are described in, for example, Japanese Patent Application Laid-Open No. 2012-18634, and the description thereof is incorporated herein by reference.
  • Another example of the transparent conductive layer composed of a metal mesh and a method for forming the transparent conductive layer includes the transparent conductive layer and the method for forming the same described in JP-A-2003-331654.
  • Polymer matrix Any appropriate polymer can be used as the polymer constituting the polymer matrix.
  • the polymer include acrylic polymers; polyester polymers such as polyethylene terephthalate; aromatic polymers such as polystyrene, polyvinyl toluene, polyvinyl xylene, polyimide, polyamide, and polyamide imide; polyurethane polymers; epoxy polymers;
  • the polymer include acrylonitrile-butadiene-styrene copolymer (ABS); cellulose; silicon-based polymer; polyvinyl chloride; polyacetate; polynorbornene; synthetic rubber;
  • polyfunctionality such as pentaerythritol triacrylate (PETA), neopentyl glycol diacrylate (NPGDA), dipentaerythritol hexaacrylate (DPHA), dipentaerythritol pentaacrylate (DPPA), trimethylolpropane triacrylate (TMPTA
  • the polymer matrix does not contain a metal corrosion inhibitor. If a transparent conductive layer not containing a metal corrosion inhibitor is formed, a transparent conductive film excellent in appearance can be obtained.
  • the polymer matrix is formed by forming a layer made of metal nanowires or a metal mesh on a transparent substrate, and then applying a polymer solution on the layer, and then drying or curing the coating layer. Can be done. By this operation, a transparent conductive layer having metal nanowires or metal meshes in the polymer matrix is formed.
  • the polymer solution contains a polymer constituting the polymer matrix or a precursor of the polymer (a monomer constituting the polymer).
  • the polymer solution may contain a solvent.
  • the solvent contained in the polymer solution include alcohol solvents, ketone solvents, tetrahydrofuran, hydrocarbon solvents, aromatic solvents, and the like.
  • the solvent is volatile.
  • the boiling point of the solvent is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, and further preferably 100 ° C. or lower.
  • the thickness of the transparent substrate is preferably 8 ⁇ m to 500 ⁇ m, more preferably 10 ⁇ m to 250 ⁇ m, still more preferably 10 ⁇ m to 150 ⁇ m, and particularly preferably 15 ⁇ m to 100 ⁇ m.
  • the total light transmittance of the transparent substrate is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more. If it is such a range, a transparent conductive film suitable as a transparent conductive film with which a touch panel etc. are equipped can be obtained.
  • any appropriate resin can be used as long as the effects of the present invention can be obtained.
  • the resin constituting the transparent substrate include cycloolefin resins, polyimide resins, polyvinylidene chloride resins, polyvinyl chloride resins, polyethylene terephthalate resins, polyethylene naphthalate resins, and the like.
  • it is a cycloolefin resin. If a cycloolefin resin is used, a transparent substrate having a high moisture barrier property can be obtained at a low cost.
  • a transparent conductive film useful as a transparent conductive film provided in a piezoelectric element including a piezoelectric film having low moisture resistance (for example, an aliphatic polyester resin film) is obtained. Can do.
  • polynorbornene As the cycloolefin resin, for example, polynorbornene can be preferably used.
  • the polynorbornene is a (co) polymer obtained by using a norbornene-based monomer having a norbornene ring as a part or all of a starting material (monomer).
  • polynorbornene Various products are commercially available as the polynorbornene. Specific examples include trade names “ZEONEX” and “ZEONOR” manufactured by ZEON CORPORATION, “Arton” manufactured by JSR, “TOPAS” trade name manufactured by TICONA, and trade names manufactured by Mitsui Chemicals, Inc. “APEL” may be mentioned.
  • the glass transition temperature of the resin constituting the transparent substrate is preferably 50 ° C. to 200 ° C., more preferably 60 ° C. to 180 ° C., and further preferably 70 ° C. to 160 ° C. If it is a transparent base material which has the glass transition temperature of such a range, degradation at the time of forming a transparent conductive layer may be prevented.
  • the transparent substrate may further contain any appropriate additive as necessary.
  • additives include plasticizers, heat stabilizers, light stabilizers, lubricants, antioxidants, ultraviolet absorbers, flame retardants, colorants, antistatic agents, compatibilizers, crosslinking agents, and thickeners. Etc. The kind and amount of the additive used can be appropriately set according to the purpose.
  • any suitable molding method is used, for example, compression molding method, transfer molding method, injection molding method, extrusion molding method, blow molding method, powder molding method, FRP molding method. , And a solvent casting method and the like can be appropriately selected.
  • an extrusion molding method or a solvent casting method is preferably used. This is because the smoothness of the obtained transparent substrate can be improved and good optical uniformity can be obtained.
  • the molding conditions can be appropriately set according to the composition and type of the resin used.
  • the transparent substrate may be various surface treatments.
  • any appropriate method is adopted depending on the purpose. For example, low-pressure plasma treatment, ultraviolet irradiation treatment, corona treatment, flame treatment, acid or alkali treatment may be mentioned.
  • the transparent base material is surface-treated to hydrophilize the transparent base material surface. If the transparent substrate is hydrophilized, the processability when applying a transparent conductive layer forming composition (described later) prepared with an aqueous solvent is excellent. Moreover, the transparent conductive film which is excellent in the adhesiveness of a transparent base material and a transparent conductive layer can be obtained.
  • the conductive film can be suitably used for electronic devices such as image display devices. More specifically, the conductive film can be used as, for example, an electrode used for a touch panel or the like; an electromagnetic wave shield that blocks electromagnetic waves that cause malfunction of electronic devices.
  • Example 1 Synthesis of silver nanowire and preparation of silver nanowire dispersion
  • a reaction vessel equipped with a stirrer at 160 ° C., 5 ml of anhydrous ethylene glycol and 0.5 ml of an anhydrous ethylene glycol solution of PtCl 2 (concentration: 1.5 ⁇ 10 ⁇ 4 mol / L) were added. After 4 minutes, the obtained solution was mixed with 2.5 ml of an anhydrous ethylene glycol solution (concentration: 0.12 mol / l) of AgNO 3 and an anhydrous ethylene glycol solution (concentration: 0.36 mol) of polyvinylpyrrolidone (MW: 55000). / L) 5 ml was added dropwise simultaneously over 6 minutes.
  • the reaction was carried out until the AgNO 3 is completely reduced to produce a silver nanowire. Then, acetone is added to the reaction mixture containing silver nanowires obtained as described above until the volume of the reaction mixture becomes 5 times, and then the reaction mixture is centrifuged (2000 rpm, 20 minutes), Silver nanowires were obtained.
  • the obtained silver nanowire had a minor axis of 30 nm to 40 nm, a major axis of 30 nm to 50 nm, and a length of 5 ⁇ m to 50 ⁇ m.
  • the silver nanowire dispersion (I) was prepared by dispersing the silver nanowire (concentration: 0.2 wt%) and pentaethylene glycol dodecyl ether (concentration: 0.1 wt%) in pure water.
  • a norbornene-based cycloolefin film (manufactured by Nippon Zeon Co., Ltd., trade name “ZEONOR”) was used as a transparent substrate.
  • the silver nanowire dispersion A is applied using a bar coater (product name “Bar Coater No. 10” manufactured by Daiichi Rika Co., Ltd.), and dried in a blow dryer at 120 ° C. for 2 minutes. It was. Thereafter, the polymer solution I was applied with a slot die at a wet film thickness of 6 ⁇ m, and dried for 2 minutes in a blow dryer at 120 ° C.
  • the polymer solution I was cured by irradiating with ultraviolet light having an integrated illuminance of 210 mJ / cm 2 with an ultraviolet light irradiation apparatus (Fusion UV Systems) having an oxygen concentration of 100 ppm to form a transparent conductive layer.
  • the surface resistance of the laminate composed of the transparent substrate and the transparent conductive layer was 161 ⁇ / ⁇ , the total light transmittance was 91.6%, and the haze was 2.0%. .
  • an adhesive composition I containing an acrylic polymer and ⁇ -thioglycerol (manufactured by Nitto Denko Corporation, trade name “CS9862U”, blending ratio of ⁇ -thioglycerol: 100 weight of acrylic polymer) 0.01 parts by weight) was applied to form a pressure-sensitive adhesive layer.
  • a transparent conductive film with an adhesive layer composed of a transparent substrate (thickness: 100 ⁇ m) / transparent conductive layer (thickness 0.1 ⁇ m) / adhesive layer (thickness: 50 ⁇ m) was obtained.
  • the obtained transparent conductive film with an adhesive layer was subjected to the evaluation of (3) above. The results are shown in Table 1.
  • Example 2 instead of the pressure-sensitive adhesive composition I, pressure-sensitive adhesive composition II (manufactured by Nitto Denko Corporation, trade name “CS9912U”; containing acrylic polymer and ⁇ -thioglycerol, blending ratio of ⁇ -thioglycerol: acrylic polymer 100
  • CS9912U trade name
  • a transparent conductive film was obtained in the same manner as in Example 1 except that 0.15 parts by weight) was used.
  • the obtained transparent conductive film with an adhesive layer was subjected to the evaluation of (3) above. The results are shown in Table 1.
  • Example 3 (Preparation of prepolymer (b1)) 60 parts by weight of dicyclopentanyl metalylate, 40 parts by weight of methyl methacrylate, 3.5 parts by weight of ⁇ -thioglycerol and 100 parts by weight of toluene as a polymerization solvent were put into a four-necked flask, and these were placed in a nitrogen atmosphere. And stirred at 70 ° C. for 1 hour. Next, 0.2 part by weight of 2,2′-azobisisobutyronitrile as a polymerization initiator is put into a four-necked flask and reacted at 70 ° C. for 2 hours, followed by reaction at 80 ° C. for 2 hours. I let you.
  • the reaction solution was put in a 130 ° C. temperature atmosphere, and toluene and unreacted monomers were removed by drying to obtain a solid acrylic prepolymer (b1).
  • the weight average molecular weight (Mw) of the acrylic prepolymer (b1) was 5.1 ⁇ 10 3 .
  • the content of the structural unit derived from ⁇ -thioglycerol was 0.3 parts by weight with respect to 100 parts by weight of the acrylic prepolymer.
  • a precursor composition containing an adhesive material (including a monomer and a partial polymer having a polymerization rate of 10%) was obtained by partial photopolymerization by exposure to ultraviolet rays in a nitrogen atmosphere.
  • an adhesive composition III After adding 5 parts by weight of the acrylic prepolymer (b1) and 0.02 parts by weight of trimethylolpropane triacrylate to the obtained precursor composition (including 100 parts by weight of the pressure-sensitive adhesive material), these were uniformly mixed To prepare an adhesive composition III.
  • the compounding amount of the compound containing a thiol group is 0.015 parts by weight with respect to 100 parts by weight of the pressure-sensitive adhesive material.
  • a pressure-sensitive adhesive composition III is applied to a thickness of 100 ⁇ m on a surface of a 75 ⁇ m-thick polyester film that has been peeled on one side with silicone, and a coating layer is formed on the surface.
  • the lamp height was adjusted so that the intensity of the irradiated surface immediately below the lamp from the surface on the polyester film side having a thickness of 38 ⁇ m was 5 mW / cm 2 .
  • Ultraviolet rays were irradiated with a black light.
  • a transparent conductive layer was formed on a transparent substrate. Furthermore, the pressure-sensitive adhesive layer is transferred onto the transparent conductive layer, and is composed of a transparent substrate (thickness: 100 ⁇ m) / transparent conductive layer (thickness 0.1 ⁇ m) / pressure-sensitive adhesive layer (thickness: 150 ⁇ m). A transparent conductive film with an agent layer was obtained. The obtained transparent conductive film with an adhesive layer was subjected to the evaluation of (3) above. The results are shown in Table 1.
  • Example 4 (Preparation of prepolymer (b2)) An acrylic prepolymer (b2) was obtained in the same manner as in Example 3 except that 3.5 parts by weight of thioglycolic acid was used instead of 3.5 parts by weight of ⁇ -thioglycerol.
  • the weight average molecular weight (Mw) of the acrylic prepolymer (b2) was 5.4 ⁇ 10 3 .
  • the content rate of the structural unit derived from thioglycolic acid in acrylic type prepolymer (b2) was 0.33 weight part with respect to 100 weight part of acrylic prepolymers.
  • An adhesive composition IV was prepared in the same manner as in Example 3 except that 5 parts by weight of the acrylic prepolymer (b2) was used instead of 5 parts by weight of the acrylic prepolymer (b1).
  • the compounding amount of the compound containing a thiol group is 0.0165 parts by weight with respect to 100 parts by weight of the pressure-sensitive adhesive material.
  • Transparent substrate (thickness: 100 ⁇ m) / transparent conductive layer (thickness 0.1 ⁇ m) / pressure-sensitive adhesive layer in the same manner as in Example 3 except that pressure-sensitive adhesive composition IV was used instead of pressure-sensitive adhesive composition III
  • a transparent conductive film with an adhesive layer composed of (thickness: 150 ⁇ m) was obtained.
  • the obtained transparent conductive film with an adhesive layer was subjected to the evaluation of (3) above. The results are shown in Table 1.
  • Example 5 (Preparation of prepolymer (b3)) An acrylic prepolymer (b3) was obtained in the same manner as in Example 3 except that 3.5 parts by weight of aminoethanethiol was used instead of 3.5 parts by weight of ⁇ -thioglycerol.
  • the weight average molecular weight (Mw) of the acrylic prepolymer (b3) was 4.9 ⁇ 10 3 .
  • the content rate of the structural unit derived from thioglycolic acid in acrylic type prepolymer (b3) was 0.32 weight part with respect to 100 weight part of acrylic prepolymers.
  • Example 6 A norbornene-based cycloolefin film (manufactured by Nippon Zeon Co., Ltd., trade name “ZEONOR”) was used as a transparent substrate. This norbornene-based cycloolefin film was subjected to corona treatment to make the surface hydrophilic. Thereafter, a metal mesh was formed on the norbornene-based cycloolefin film by a screen printing method using a silver paste (trade name “RA FS 039” manufactured by Toyochem Co., Ltd.) (line width: 8.5 ⁇ m, pitch 300 ⁇ m). Lattice) and sintered at 120 ° C. for 10 minutes to form a transparent conductive layer.
  • a silver paste trade name “RA FS 039” manufactured by Toyochem Co., Ltd.
  • the surface resistance of the laminate composed of the transparent substrate and the transparent conductive layer was 155 ⁇ / ⁇ , the total light transmittance was 98.1%, and the haze was 7.0%. .
  • the pressure-sensitive adhesive composition I used in Example 1 that is, the pressure-sensitive adhesive composition I containing an acrylic polymer and ⁇ -thioglycerol (product name “CS9862U” manufactured by Nitto Denko Corporation)
  • the blending ratio of ⁇ -thioglycerol: 0.01 parts by weight with respect to 100 parts by weight of the acrylic polymer) was applied to form an adhesive layer.
  • a transparent conductive film with an adhesive layer composed of a transparent substrate (thickness: 100 ⁇ m) / transparent conductive layer (thickness 0.1 ⁇ m) / adhesive layer (thickness: 50 ⁇ m) was obtained.
  • the obtained transparent conductive film with an adhesive layer was subjected to the evaluation of (3) above. The results are shown in Table 1.
  • Example 7 instead of the pressure-sensitive adhesive composition I, pressure-sensitive adhesive composition II (manufactured by Nitto Denko Corporation, trade name “CS9912U”; containing acrylic polymer and ⁇ -thioglycerol, blending ratio of ⁇ -thioglycerol: acrylic polymer 100
  • CS9912U trade name
  • a transparent conductive film was obtained in the same manner as in Example 6 except that 0.15 parts by weight) was used.
  • the obtained transparent conductive film with an adhesive layer was subjected to the evaluation of (3) above. The results are shown in Table 1.
  • Example 8 In the same manner as in Example 3, a pressure-sensitive adhesive composition III was prepared, and a pressure-sensitive adhesive layer was further obtained. In the same manner as in Example 6, a transparent conductive layer was formed on the transparent substrate. Further, the pressure-sensitive adhesive layer is transferred onto the transparent conductive layer, and is composed of a transparent substrate (thickness: 100 ⁇ m) / transparent conductive layer (thickness 0.1 ⁇ m) / pressure-sensitive adhesive layer (thickness: 150 ⁇ m). A transparent conductive film with a layer was obtained. The obtained transparent conductive film with an adhesive layer was subjected to the evaluation of (3) above. The results are shown in Table 1.
  • Example 9 In the same manner as in Example 4, a pressure-sensitive adhesive composition IV was prepared, and a pressure-sensitive adhesive layer was obtained. In the same manner as in Example 6, a transparent conductive layer was formed on the transparent substrate. Further, the pressure-sensitive adhesive layer is transferred onto the transparent conductive layer, and is composed of a transparent substrate (thickness: 100 ⁇ m) / transparent conductive layer (thickness 0.1 ⁇ m) / pressure-sensitive adhesive layer (thickness: 150 ⁇ m). A transparent conductive film with a layer was obtained. The obtained transparent conductive film with an adhesive layer was subjected to the evaluation of (3) above. The results are shown in Table 1.
  • Example 10 In the same manner as in Example 5, a pressure-sensitive adhesive composition V was prepared, and a pressure-sensitive adhesive layer was further obtained. In the same manner as in Example 6, a transparent conductive layer was formed on the transparent substrate. Further, the pressure-sensitive adhesive layer is transferred onto the transparent conductive layer, and is composed of a transparent substrate (thickness: 100 ⁇ m) / transparent conductive layer (thickness 0.1 ⁇ m) / pressure-sensitive adhesive layer (thickness: 150 ⁇ m). A transparent conductive film with a layer was obtained. The obtained transparent conductive film with an adhesive layer was subjected to the evaluation of (3) above. The results are shown in Table 1.
  • Transparent substrate (thickness: 100 ⁇ m) / transparent conductive layer (thickness 0.1 ⁇ m) / pressure-sensitive adhesive layer in the same manner as in Example 3 except that pressure-sensitive adhesive composition VIII was used instead of pressure-sensitive adhesive composition III
  • a transparent conductive film with an adhesive layer composed of (thickness: 150 ⁇ m) was obtained.
  • the obtained transparent conductive film with an adhesive layer was subjected to the evaluation of (3) above. The results are shown in Table 1.
  • Example 5 Implemented except that instead of the pressure-sensitive adhesive composition I, the pressure-sensitive adhesive composition VII (manufactured by Nitto Denko Corporation, trade name “CS9922U”; composed of an acrylic polymer and not including a compound containing a thiol group) was used. In the same manner as in Example 6, a transparent conductive film was obtained.
  • the pressure-sensitive adhesive composition VII manufactured by Nitto Denko Corporation, trade name “CS9922U”; composed of an acrylic polymer and not including a compound containing a thiol group
  • the surface conductive value change rate before and after the heating test is reduced in the transparent conductive film with the pressure-sensitive adhesive layer of the present invention.
  • the compound containing thiol group in the pressure-sensitive adhesive layer can be easily bonded to the metal body as a corrosion inhibitor, forming a protective film on the metal surface and suppressing the corrosion of the metal It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 屈曲性に優れ、かつ、環境耐久性の高い透明導電性フィルムを提供する。 本発明の粘着剤層付き透明導電性フィルムは、透明基材と、透明導電層と、粘着剤層とをこの順に備え、該透明導電層が、金属ナノワイヤまたは金属メッシュを含み、該粘着剤層が、チオール基を含む化合物と粘着剤材料とを含む粘着剤組成物から形成され、該チオール基を含む化合物の配合量が、該粘着剤組成物中の粘着剤材料100重量部に対して、0.01重量部~1重量部である。

Description

粘着剤層付き透明導電性フィルム
 本発明は、粘着剤層付き透明導電性フィルムに関する。
 従来、タッチセンサーの電極等に用いられる透明導電性フィルムとして、透明樹脂フィルム上にインジウム・スズ複合酸化物層(ITO層)等の金属酸化物層が形成された透明導電性フィルムが多用されている。しかし、金属酸化物層が形成された透明導電性フィルムは、屈曲性が不十分であるため、フレキシブルディスプレイなどの屈曲性が必要とされる用途には使用し難い。
 また、透明導電性フィルムとして、銀や銅などを用いた金属ナノワイヤまたは金属メッシュを含む透明導電性フィルムが提案されている。このような透明導電性フィルムは屈曲性に優れるものの、腐食性ガスに対する耐性が不十分であり、腐食性ガスの接触により、大幅な導電率の低下、および大幅な光透過性の低下をもたらすという問題がある。
 金属ナノワイヤまたは金属メッシュを含む透明導電性フィルムの腐食を防止する手段として、金属ナノワイヤまたは金属メッシュから構成される導電層をポリマーマトリックスで保護する方法が知られている(例えば、特許文献1)。しかし、透明導電性フィルムを電極として使用するためには導電層表面から導通をとる必要があり、そのため、ポリマーマトリックスの厚みが制限され、金属ナノワイヤまたは金属メッシュをポリマーマトリックスで十分に被覆することができないので、依然、腐食防止効果が十分である。
特表2009-505358号公報
 本発明は上記の課題を解決するためになされたものであり、その目的とするところは、屈曲性に優れ、かつ、環境耐久性の高い透明導電性フィルムを提供することにある。
 本発明の粘着剤層付き透明導電性フィルムは、透明基材と、透明導電層と、粘着剤層とをこの順に備え、該透明導電層が、金属ナノワイヤまたは金属メッシュを含み、該粘着剤層が、チオール基を含む化合物と粘着剤材料とを含む粘着剤組成物から形成され、該粘着剤組成物において、該チオール基を含む化合物の配合量が、該粘着剤組成物中の粘着剤材料100重量部に対して、0.01重量部~1重量部である。
 1つの実施形態においては、上記チオール基を含む化合物が、一般式(1)で表される;
  HS-R ・・・(1)
 式(1)中、Rは、炭素数が1~30の脂肪族炭化水素基または芳香族炭化水素基である。
 1つの実施形態においては、上記金属ナノワイヤが、金、白金、銀および銅からなる群より選ばれた1種以上の金属により構成される。
 1つの実施形態においては、上記金属メッシュが、金、白金、銀および銅からなる群より選ばれた1種以上の金属により構成される。
 1つの実施形態においては、上記透明導電層がポリマーマトリックスをさらに含む。
 1つの実施形態においては、上記透明導電層の厚みが10nm~1000nmである。
 1つの実施形態においては、上記金属ナノワイヤの一部が、前記透明導電層から突出している。
 本発明の別の局面によれば、電子機器が提供される。この電子機器は、上記粘着剤層付き透明導電性フィルムを含む。
 本発明によれば、金属ナノワイヤまたは金属メッシュを含む導電層と、チオール基を含む化合物を含む粘着剤組成物から形成された粘着剤層とを備えることにより、屈曲性に優れ、かつ、環境耐久性の高い透明導電性フィルムを提供することにある。
本発明の1つの実施形態による粘着剤層付き透明導電性フィルムの概略断面図である。
A.粘着剤層付き透明導電性フィルムの全体構成
 図1は、本発明の1つの実施形態による粘着剤層付き透明導電性フィルムの概略断面図である。粘着剤層付き透明導電性フィルム100は、透明基材10と、透明導電層20と、粘着剤層30とをこの順に備える。透明導電層は、金属ナノワイヤまたは金属メッシュを含む。なお、図1においては、透明導電層20が、金属ナノワイヤ21を含む例を示している。粘着剤層30は、チオール基を含む化合物を含む粘着剤組成物から形成される。以下、「粘着剤層付き透明導電性フィルム」を単に、透明導電性フィルムとも言う。
 1つの実施形態においては、透明導電層20は、ポリマーマトリックス22から形成されている。この実施形態においては、ポリマーマトリックス22中に金属ナノワイヤ21または金属メッシュが存在する。
 金属ナノワイヤ21の一部は、透明導電層20から突出していてもよい。より具体的には、金属ナノワイヤ21の一部は、透明導電層20から粘着剤層30側に突出していてもよい。さらに、金属ナノワイヤ21の一部は、粘着剤層30から外側に突出してもよい。透明導電層20から突出するようにして金属ナノワイヤ21を配置すれば、導通が良好に確保された透明導電性フィルムを得ることができる。本発明においては、金属ナノワイヤの一部が透明導電層から突出していても、金属ナノワイヤの腐食が防止され得る。
 一般的に金属系の透明導電性フィルムは、大気中の腐食性ガスが接触することにより導電層の大幅な導電率低下、および大幅な光透過性低下をもたらす可能性がある。本発明の透明導電性フィルムは、チオール基を含む化合物を含む粘着剤組成物から形成された粘着剤層を備え、該粘着剤層中のチオール基を含む化合物(あるいは、該化合物由来の構成単位を有するポリマー)が、金属表面に保護膜を形成するようにして、金属体に容易に結合し得る。このように、チオール基を含む化合物(あるいは、該化合物由来の構成単位を有するポリマー)が腐食防止剤として機能するため、透明導電層中の金属ナノワイヤまたは金属メッシュの腐食が防止される。すなわち、本発明においては、透明導電層を構成する材料として金属ナノワイヤまたは金属メッシュを用いながらも、該材料の腐食が防止さるため、屈曲性に優れ、かつ、環境耐久性の高い透明導電性フィルムを得ることができる。なお、透明導電層をポリマーマトリックスにより構成し、該ポリマーマトリックス中に腐食防止剤を添加した場合には、腐食防止剤が金属表面上に安定複合体を形成し、金属とポリマーマトリックスとの界面に障壁を形成する傾向があり、その結果、透明導電層の外観悪化、硬化阻害等の問題が生じるおそれがある。
 上記粘着剤層付き透明導電性フィルムの厚みは、好ましくは10μm~500μmであり、より好ましくは15μm~300μmであり、さらに好ましくは20μm~200μmである。
 上記粘着剤層付き透明導電性フィルムの全光線透過率は、好ましくは80%以上であり、より好ましくは85%以上であり、特に好ましくは90%以上である。
 上記粘着剤層付き透明導電性フィルムの表面抵抗値は、好ましくは0.1Ω/□~1000Ω/□であり、より好ましくは0.5Ω/□~500Ω/□であり、特に好ましくは1Ω/□~250Ω/□である。
B.粘着剤層
 上記粘着剤層は、チオール基を含む化合物を含む粘着剤組成物から形成される。より詳細には、粘着剤組成物は、添加剤としてのチオール基を含む化合物と、粘着剤材料とを含み、粘着剤層は、該粘着剤組成物を乾燥または重合することにより形成される。なお、粘着剤材料とは、ベースポリマー、ならびに、ベースポリマーの前駆体としてのモノマーおよびプレポリマー(A)を含む概念である。これらのベースポリマー、モノマーおよびプレポリマー(A)は混合して用いてもよい。ベースポリマーの前駆体としてのモノマーおよび/またはプレポリマー(A)を含む粘着剤組成物を用いる場合には、該粘着剤組成物を重合することにより粘着剤層が形成され、該粘着剤層は、該モノマーおよび/またはプレポリマー(A)から構成されるベースポリマーを含む。粘着剤層中のベースポリマーは、上記チオール基を含む化合物由来の構成単位を含んでいてもよく、含んでいなくてもよい。言い換えれば、上記チオール基を含む化合物は、上記粘着剤材料と反応して粘着剤層中のベースポリマー中に取り込まれていてもよく、粘着剤層中でベースポリマーと併存していてもよい。1つの実施形態においては、上記ベースポリマーは、上記チオール基を含む化合物由来の構成単位を含まない。
 1つの実施形態においては、上記チオール基を含む化合物は、プレポリマー(B)に取り込まれた状態で添加される。この実施形態においては、プレポリマー(B)形成用のモノマーとチオール基を含む化合物とを反応させてプレポリマー(B)を形成した後に、該プレポリマーと粘着剤材料とを混合して、粘着剤組成物を調製する。
 上記チオール基を含む化合物の配合量は、上記粘着剤組成物中の粘着剤材料100重量部に対して、0.01重量部~1重量部であり、好ましくは0.01重量部~0.5重量部であり、より好ましくは0.01重量部~0.3重量部であり、さらに好ましくは0.1重量部~0.2重量部である。このような範囲であれば、透明導電層中の金属ナノワイヤまたは金属メッシュの腐食が防止される。なお、上記のように、チオール基を含む化合物由来の構成単位を有するプレポリマー(B)を用いる場合、「チオール基を含む化合物の配合量」とは、粘着剤組成物中のプレポリマー(B)に導入されたチオール基を含む化合物の量を意味する。また、粘着剤材料にプレポリマー(B)は含まれない。
 上記チオール基を含む化合物としては、例えば、一般式(1)で表される化合物が挙げられる。
  HS-R ・・・(1)
 式(1)中、Rは、炭素数が1~30の脂肪族炭化水素基または芳香族炭化水素基であり、好ましくは炭素数が1~20の脂肪族炭化水素基または芳香族炭化水素基である。Rは、直鎖状であってもよく、分岐状であってもよい。また、Rは、二重結合および/または三重結合を任意の適切な位置に含んでいてもよい。また、Rは、任意の適切な置換基を有していてもよい。置換基としては、例えば、SH基、水酸基、NH基、アルキルエステル基、カルボキシル基、アリル基、ハロゲン基等が挙げられる。また、Rは、N、S、O、Si、P等の元素を含む置換基を有していてもよい。
 チオール基を含む化合物の具体例としては、α-チオグリセロール、アミノエタンチオール、チオグリコール酸、チオグリコール酸メチル、チオグリコール酸エチル、チオグリコール酸プロピル、チオグリコール酸ブチル、チオグリコール酸t-ブチル、チオグリコール酸2-エチルヘキシル、チオグリコール酸オクチル、チオグリコール酸イソオクチル、チオグリコール酸デシル、チオグリコール酸ドデシル、エチレングリコールのチオグリコール酸エステル、ネオペンチルグリコールのチオグリコール酸エステル、ペンタエリスリトールのチオグリコール酸エステル等が挙げられる。なかでも好ましくは、α-チオグリセロール、チオグリコール酸、アミノエタンチオール、チオグリコール酸メチル、チオグリコール酸エチル、チオグリコール酸プロピル、チオグリコール酸ブチル、チオグリコール酸t-ブチル、チオグリコール酸2-エチルヘキシル、チオグリコール酸オクチル、チオグリコール酸イソオクチルである。これらのチオール基を含む化合物を用いれば、金属ナノワイヤまたは金属メッシュの腐食を防止する効果が顕著となる。
 上記粘着剤組成物に含まれるモノマーとしては、例えば、(メタ)アクリル系モノマー、シリコン系モノマー、ウレタン系モノマー、エポキシ系モノマー等が挙げられる。なかでも好ましくは、透明性および耐久性の観点から、(メタ)アクリル系モノマーである。上記粘着剤組成物に含まれるベースポリマーまたはプレポリマーとしては、例えば、(メタ)アクリル系モノマー、シリコン系モノマー、ウレタン系モノマー、エポキシ系モノマー等から構成されるベースポリマーまたはプレポリマーが挙げられる。
 上記(メタ)アクリル系モノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸イソステアリル、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸エイコシル等の(メタ)アクリル酸アルキルエステルが挙げられる。なかでも、炭素数が4~18の直鎖状もしくは分岐状のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましく用いられ得る。(メタ)アクリル酸アルキルエステルの含有割合は、粘着剤組成物中の全モノマー100重量部に対して、好ましくは60重量部以上であり、より好ましくは80重量部以上である。
 上記粘着剤組成物は、別のモノマーをさらに含み得る。別のモノマーとしては、例えば、上記(メタ)アクリル酸アルキルエステルと共重合可能なモノマーが挙げられる。該モノマーの具体例としては、例えば、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸等のカルボキシル基含有モノマー;無水マレイン酸、無水イコタン酸等の酸無水物モノマー;(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ヒドロキシヘキシル、(メタ)アクリル酸ヒドロキシオクチル、(メタ)アクリル酸ヒドロキシデシル、(メタ)アクリル酸ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチルメタクリレート等のヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸等のスルホン酸基含有モノマー等が挙げられる。また、酢酸ビニル、プロピオン酸ビニル、N-ビニルピロリドン、メチルビニルピロリドン、ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリン、N-ビニルカルボン酸アミド類、スチレン、α-メチルスチレン、N-ビニルカプロラクタムなどのビニル系モノマー;アクリロニトリル、メタクリロニトリルなどのシアノアクリレート系モノマー;(メタ)アクリル酸グリシジルなどのエポキシ基含有アクリル系モノマー;(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコール、(メタ)アクリル酸メトキシエチレングリコール、(メタ)アクリル酸メトキシポリプロピレングリコールなどのグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフルフリル、フッ素(メタ)アクリレート、シリコーン(メタ)アクリレートや2-メトキシエチルアクリレートなどのアクリル酸エステル系モノマー等が挙げられる。
 上記チオール基を含む化合物由来の構成単位を有するプレポリマー(B)は、プレポリマー(B)形成用のモノマーとチオール基を含む化合物とを反応させて得ることができる。プレポリマー(B)形成用のモノマーとしては、上述のモノマーが用いられ得る。
 1つの実施形態においては、上記プレポリマー(B)形成用のモノマーとして、三環以上の脂環式構造を有する(メタ)アクリル系モノマーが用いられる。三環以上の脂環式構造を有する(メタ)アクリル系モノマーを用いれば、耐久性および接着性(特に、高温下における耐久性および接着性)に優れる粘着剤層を形成することができる。三環以上の脂環式構造を有する(メタ)アクリル系モノマーとしては、例えば、ジシクロペンタニルメタクリレート、ジシクロペンタニルアクリレート、ジシクロペンタニルオキシエチルメタクリレート、ジシクロペンタニルオキシエチルアクリレート、トリシクロペンタニルメタクリレート、トリシクロペンタニルアクリレート、1-アダマンチルメタクリレート、1-アダマンチルアクリレート、2-メチル-2-アダマンチルメタクリレート、2-メチル-2-アダマンチルアクリレート、2-エチル-2-アダマンチルメタクリレート、2-エチル-2-アダマンチルアクリレート等が挙げられる。
 上記プレポリマー(B)において、三環以上の脂環式構造を有する(メタ)アクリル系モノマー由来の構成単位の含有割合は、プレポリマー(B)100重量部に対して、好ましくは40重量部~80重量部であり、より好ましくは50重量部~70重量部である。
 上記プレポリマー(B)の重量平均分子量は、好ましくは100~50000であり、より好ましくは1000~10000である。重量平均分子量は、GPC(溶媒:THF)により測定され得る。
 上記粘着剤組成物は、必要に応じて、任意の適切な添加剤をさらに含み得る。該添加剤としては、例えば、開始剤、粘着付与剤、可塑剤、顔料、染料、充填剤、老化防止剤、導電材、紫外線吸収剤、光安定剤、剥離調整剤、軟化剤、界面活性剤、難燃剤、酸化防止剤等が挙げられる。使用される添加剤の種類、数および量は、目的に応じて適切に設定され得る。
 1つの実施形態においては、上記粘着剤層は、上記粘着剤組成物を上記透明導電層上に塗布した後、塗布層を重合して形成され得る。この実施形態においては、粘着剤組成物中のモノマーを部分重合させた後に、該粘着剤組成物を上記透明導電層上に塗布し、塗布層をさらに重合させてもよい。重合方法としては、任意の適切な方法が採用され得る。好ましくは、光重合が採用される。また、別の基材上で重合により形成した粘着剤層を、透明導電層上に転写してもよい。
 別の実施形態においては、粘着剤組成物中のモノマーを重合させて塗工液を調製した後、該塗工液を上記透明導電層上に塗布し、必要に応じて乾燥して、上記粘着剤層を形成する。
 さらに別の実施形態においては、ベースポリマーを含む粘着剤組成物を上記透明導電層上に塗布し、必要に応じて乾燥して、上記粘着剤層を形成する。
 上記粘着剤層中のベースポリマーの重量平均分子量は、好ましくは200000~4000000であり、より好ましくは400000~2000000である。
 上記ベースポリマーが、上記チオール基を含む化合物由来の構成単位を含む場合、粘着剤層中におけるチオール基を含む化合物由来の構成単位の含有割合は、ベースポリマー100重量部に対して、好ましくは0.01重量部~1重量部であり、より好ましくは0.01重量部~0.5重量部であり、さらに好ましくは0.01重量部~0.3重量部であり、特に好ましくは0.1重量部~0.2重量部である。このような範囲であれば、透明導電層中の金属ナノワイヤまたは金属メッシュの腐食が防止される。
 上記ベースポリマーが、上記チオール基を含む化合物由来の構成単位を含まない場合、すなわち、上記ベースポリマーとチオール基を含む化合物とが粘着剤層中で併存している場合、粘着剤層中におけるチオール基を含む化合物の含有割合は、粘着剤層中の全固形分100重量部に対して、好ましくは0.01重量部~1重量部であり、より好ましくは0.01重量部~0.5重量部であり、さらに好ましくは0.01重量部~0.3重量部であり、特に好ましくは0.1重量部~0.2重量部である。このような範囲であれば、透明導電層中の金属ナノワイヤまたは金属メッシュの腐食が防止される。
 上記粘着剤層の厚みは、好ましくは1μm~500μmであり、より好ましくは2μm~300μmである。
C.透明導電層
 上記透明導電層は、金属ナノワイヤまたは金属メッシュを含む。金属ナノワイヤまたは金属メッシュを含む透明導電層を形成すれば、屈曲性に優れ、かつ、光透過率に優れる透明導電性フィルムを得ることができる。
 1つの実施形態においては、透明導電層は、ポリマーマトリックスをさらに含む。この実施形態においては、ポリマーマトリックス中に、金属ナノワイヤまたは金属メッシュが存在する。ポリマーマトリックスから構成される透明導電層においては、ポリマーマトリックスにより金属ナノワイヤまたは金属メッシュが保護される。その結果、金属ナノワイヤまたは金属メッシュの腐食が防止され、耐久性により優れる透明導電性フィルムを得ることができる。
 上記透明導電層の厚みは、好ましくは10nm~1000nmであり、より好ましくは20nm~500nmである。なお、透明導電層がポリマーマトリックスを含む場合は、該透明導電層の厚みはポリマーマトリックスの厚みに相当する。
 1つの実施形態においては、上記透明導電層はパターン化されている。パターン化の方法としては、透明導電層の形態に応じて、任意の適切な方法が採用され得る。透明導電層のパターンの形状は、用途に応じて任意の適切な形状であり得る。例えば、特表2011-511357号公報、特開2010-164938号公報、特開2008-310550号公報、特表2003-511799号公報、特表2010-541109号公報に記載のパターンが挙げられる。透明導電層は透明基材上に形成された後、透明導電層の形態に応じて、任意の適切な方法を用いてパターン化することができる。
 上記透明導電層の全光線透過率は、好ましくは85%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上である。
(金属ナノワイヤを含む透明導電層)
 金属ナノワイヤとは、材質が金属であり、形状が針状または糸状であり、径がナノメートルサイズの導電性物質をいう。金属ナノワイヤは直線状であってもよく、曲線状であってもよい。金属ナノワイヤで構成された透明導電層を用いれば、金属ナノワイヤが網の目状となることにより、少量の金属ナノワイヤであっても良好な電気伝導経路を形成することができ、電気抵抗の小さい透明導電性フィルムを得ることができる。さらに、金属ナノワイヤが網の目状となることにより、網の目の隙間に開口部を形成して、光透過率の高い透明導電性フィルムを得ることができる。
 上記金属ナノワイヤの太さdと長さLとの比(アスペクト比:L/d)は、好ましくは10~100,000であり、より好ましくは50~100,000であり、特に好ましくは100~10,000である。このようにアスペクト比の大きい金属ナノワイヤを用いれば、金属ナノワイヤが良好に交差して、少量の金属ナノワイヤにより高い導電性を発現させることができる。その結果、光透過率の高い透明導電性フィルムを得ることができる。なお、本明細書において、「金属ナノワイヤの太さ」とは、金属ナノワイヤの断面が円状である場合はその直径を意味し、楕円状である場合はその短径を意味し、多角形である場合は最も長い対角線を意味する。金属ナノワイヤの太さおよび長さは、走査型電子顕微鏡または透過型電子顕微鏡によって確認することができる。
 上記金属ナノワイヤの太さは、好ましくは500nm未満であり、より好ましくは200nm未満であり、特に好ましくは10nm~100nmであり、最も好ましくは10nm~50nmである。このような範囲であれば、光透過率の高い透明導電層を形成することができる。
 上記金属ナノワイヤの長さは、好ましくは2.5μm~1000μmであり、より好ましくは10μm~500μmであり、特に好ましくは20μm~100μmである。このような範囲であれば、導電性の高い透明導電性フィルムを得ることができる。
 上記金属ナノワイヤを構成する金属としては、導電性の高い金属である限り、任意の適切な金属が用いられ得る。上記金属ナノワイヤを構成する金属としては、例えば、銀、金、銅、ニッケル等が挙げられる。また、これらの金属にメッキ処理(例えば、金メッキ処理)を行った材料を用いてもよい。金属ナノワイヤは、金、白金、銀および銅からなる群より選ばれた1種以上の金属により構成されることが好ましい。
 上記金属ナノワイヤの製造方法としては、任意の適切な方法が採用され得る。例えば溶液中で硝酸銀を還元する方法、前駆体表面にプローブの先端部から印可電圧又は電流を作用させ、プローブ先端部で金属ナノワイヤを引き出し、該金属ナノワイヤを連続的に形成する方法等が挙げられる。溶液中で硝酸銀を還元する方法においては、エチレングリコール等のポリオール、およびポリビニルピロリドンの存在下で、硝酸銀等の銀塩の液相還元することにより、銀ナノワイヤが合成され得る。均一サイズの銀ナノワイヤは、例えば、Xia,Y.etal.,Chem.Mater.(2002)、14、4736-4745 、Xia, Y.etal., Nano letters(2003)3(7)、955-960 に記載される方法に準じて、大量生産が可能である。
 上記金属ナノワイヤを含む透明導電層は、溶媒中に上記金属ナノワイヤを分散させた分散液を、上記透明基材上に塗布した後、塗布層を乾燥させて、形成することができる。
 上記溶媒としては、水、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、炭化水素系溶媒、芳香族系溶媒等が挙げられる。環境負荷低減の観点から、水を用いることが好ましい。
 上記金属ナノワイヤ分散液中の金属ナノワイヤの分散濃度は、好ましくは0.1重量%~1重量%である。このような範囲であれば、導電性および光透過性に優れる透明導電層を形成することができる。
 上記金属ナノワイヤ分散液は、目的に応じて任意の適切な添加剤をさらに含有し得る。上記添加剤としては、例えば、金属ナノワイヤの腐食を防止する腐食防止材、金属ナノワイヤの凝集を防止する界面活性剤等が挙げられる。使用される添加剤の種類、数および量は、目的に応じて適切に設定され得る。
 上記金属ナノワイヤ分散液の塗布方法としては、任意の適切な方法が採用され得る。塗布方法としては、例えば、スプレーコート、バーコート、ロールコート、ダイコート、インクジェットコート、スクリーンコート、ディップコート、凸版印刷法、凹版印刷法、グラビア印刷法等が挙げられる。塗布層の乾燥方法としては、任意の適切な乾燥方法(例えば、自然乾燥、送風乾燥、加熱乾燥)が採用され得る。例えば、加熱乾燥の場合には、乾燥温度は代表的には50℃~200℃であり、乾燥時間は代表的には1~10分である。
 上記透明導電層における金属ナノワイヤの含有割合は、透明導電層の全重量に対して、好ましくは30重量%~90重量%であり、より好ましくは45重量%~80重量%である。このような範囲であれば、導電性および光透過性に優れる透明導電性フィルムを得ることができる。
 上記金属ナノワイヤが銀ナノワイヤである場合、透明導電層の密度は、好ましくは1.3g/cm~10.5g/cmであり、より好ましくは1.5g/cm~3.0g/cmである。このような範囲であれば、導電性および光透過性に優れる透明導電性フィルムを得ることができる。
(金属メッシュを含む透明導電層)
 金属メッシュを含む透明導電層は、上記透明基材または樹脂層上に、金属細線が格子状のパターンに形成されてなる。金属メッシュを構成する金属としては、導電性の高い金属である限り、任意の適切な金属が用いられ得る。上記金属メッシュを構成する金属としては、例えば、銀、金、銅、ニッケル等が挙げられる。また、これらの金属にメッキ処理(例えば、金メッキ処理)を行った材料を用いてもよい。金属メッシュは、金、白金、銀および銅からなる群より選ばれた1種以上の金属により構成されることが好ましい。
 金属メッシュを含む透明導電層は、任意の適切な方法により形成させることができる。該透明導電層は、例えば、銀塩を含む感光性組成物(透明導電層形成用組成物)を上記透明基材上に塗布し、その後、露光処理および現像処理を行い、金属細線を所定のパターンに形成することにより得ることができる。また、該透明導電層は、金属微粒子を含むペーストを所定のパターンに印刷して得ることもできる。このような透明導電層およびその形成方法の詳細は、例えば、特開2012-18634号公報に記載されており、その記載は本明細書に参考として援用される。また、金属メッシュから構成される透明導電層およびその形成方法の別の例としては、特開2003-331654号公報に記載の透明導電層およびその形成方法が挙げられる。
(ポリマーマトリックス)
 上記ポリマーマトリックスを構成するポリマーとしては、任意の適切なポリマーが用いられ得る。該ポリマーとしては、例えば、アクリル系ポリマー;ポリエチレンテレフタレート等のポリエステル系ポリマー;ポリスチレン、ポリビニルトルエン、ポリビニルキシレン、ポリイミド、ポリアミド、ポリアミドイミド等の芳香族系ポリマー;ポリウレタン系ポリマー;エポキシ系ポリマー;ポリオレフィン系ポリマー;アクリロニトリル-ブタジエン-スチレン共重合体(ABS);セルロース;シリコン系ポリマー;ポリ塩化ビニル;ポリアセテート;ポリノルボルネン;合成ゴム;フッ素系ポリマー等が挙げられる。好ましくは、ペンタエリスリトールトリアクリレート(PETA)、ネオペンチルグリコールジアクリレート(NPGDA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ジペンタエリスリトールペンタアクリレート(DPPA)、トリメチロールプロパントリアクリレート(TMPTA)等の多官能アクリレートから構成される硬化型樹脂(好ましくは紫外線硬化型樹脂)が用いられる。
 好ましくは、上記ポリマーマトリックスは、金属腐食防止材を含まない。金属腐食防止材を含まない透明導電層を形成すれば、外観に優れる透明導電性フィルムを得ることができる。
 上記ポリマーマトリックスは、上記のとおり、透明基材上に金属ナノワイヤまたは金属メッシュからなる層を形成した後、該層上に、ポリマー溶液を塗布し、その後、塗布層を乾燥または硬化させて、形成され得る。この操作により、ポリマーマトリックス中に金属ナノワイヤまたは金属メッシュが存在した透明導電層が形成される。
 上記ポリマー溶液は、上記ポリマーマトリックスを構成するポリマー、または該ポリマーの前駆体(該ポリマーを構成するモノマー)を含む。
 上記ポリマー溶液は溶剤を含み得る。上記ポリマー溶液に含まれる溶剤としては、例えば、アルコール系溶剤、ケトン系溶剤、テトラヒドロフラン、炭化水素系溶剤、または芳香族系溶剤等が挙げられる。好ましくは、該溶剤は、揮発性である。該溶剤の沸点は、好ましくは200℃以下であり、より好ましくは150℃以下であり、さらに好ましくは100℃以下である。
D.透明基材
 上記透明基材の厚みは、好ましくは8μm~500μmであり、より好ましくは10μm~250μmであり、さらに好ましくは10μm~150μmであり、特に好ましくは15μm~100μmである。
 上記透明基材の全光線透過率は、好ましくは80%以上であり、より好ましくは85%以上であり、特に好ましくは90%以上である。このような範囲であれば、タッチパネル等に備えられる透明導電性フィルムとして好適な透明導電性フィルムを得ることができる。
 上記透明基材を構成する樹脂としては、本発明の効果が得られる限り、任意の適切な樹脂が用いられ得る。透明基材を構成する樹脂としては、例えば、シクロオレフィン系樹脂、ポリイミド系樹脂、ポリ塩化ビニリデン系樹脂、ポリ塩化ビニル系樹脂、ポリエチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂等が挙げられる。好ましくは、シクロオレフィン系樹脂である。シクロオレフィン系樹脂を用いれば、高い水分バリア性を有する透明基材を安価に得ることができる。高い水分バリア性を有する透明基材を用いれば、耐湿性の低い圧電フィルム(例えば、脂肪族ポリエステル系樹脂フィルム)を備える圧電素子に備えられる透明導電性フィルムとして有用な透明導電性フィルムを得ることができる。
 上記シクロオレフィン系樹脂として、例えば、ポリノルボルネンが好ましく用いられ得る。ポリノルボルネンとは、出発原料(モノマー)の一部または全部に、ノルボルネン環を有するノルボルネン系モノマーを用いて得られる(共)重合体をいう。
 上記ポリノルボルネンとしては、種々の製品が市販されている。具体例としては、日本ゼオン社製の商品名「ゼオネックス」、「ゼオノア」、JSR社製の商品名「アートン(Arton)」、TICONA社製の商品名「トーパス」、三井化学社製の商品名「APEL」が挙げられる。
 上記透明基材を構成する樹脂のガラス転移温度は、好ましくは50℃~200℃であり、より好ましくは60℃~180℃であり、さらに好ましくは70℃~160℃である。
このような範囲のガラス転移温度を有する透明基材であれば、透明導電層を形成する際の劣化が防止され得る。
 上記透明基材は、必要に応じて任意の適切な添加剤をさらに含み得る。添加剤の具体例としては、可塑剤、熱安定剤、光安定剤、滑剤、抗酸化剤、紫外線吸収剤、難燃剤、着色剤、帯電防止剤、相溶化剤、架橋剤、および増粘剤等が挙げられる。使用される添加剤の種類および量は、目的に応じて適宜設定され得る。
 上記透明基材を得る方法としては、任意の適切な成形加工法が用いられ、例えば、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、およびソルベントキャスティング法等から適宜、適切なものが選択され得る。これらの製法の中でも好ましくは、押出成形法またはソルベントキャスティング法が用いられる。得られる透明基材の平滑性を高め、良好な光学的均一性を得ることができるからである。成形条件は、使用される樹脂の組成や種類等に応じて適宜設定され得る。
 必要に応じて、上記透明基材に対して各種表面処理を行ってもよい。表面処理は目的に応じて任意の適切な方法が採用される。例えば、低圧プラズマ処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理が挙げられる。1つの実施形態においては、透明基材を表面処理して、透明基材表面を親水化させる。透明基材を親水化させれば、水系溶媒により調製された透明導電層形成用組成物(後述)を塗工する際の加工性が優れる。また、透明基材と透明導電層との密着性に優れる透明導電性フィルムを得ることができる。
E.用途
 上記導電性フィルムは、画像表示装置等の電子機器に好適に用いられ得る。より具体的には、導電性フィルムは、例えば、タッチパネル等に用いられる電極;電子機器の誤作動の原因となる電磁波を遮断する電磁波シールド等として用いられ得る。
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。実施例および比較例における評価方法は以下のとおりである。
(1)表面抵抗値
 NAPSON製 商品名「EC-80」を用いて測定した。測定温度は23℃とした。
(2)全光線透過率、ヘイズ
 株式会社村上色彩研究所製の商品名「HR-100」を用いて測定した。測定温度は23℃とした。繰り返し回数3回の平均値を、測定値とした。
(3)加熱試験
 透明導電性フィルムを、縦5cm×横4.5cmに裁断し、透明導電性フィルムにガラス板を貼り合せて得られた積層体を、温度90℃の恒温装置(エスペック社製、製品名「PH-3KT」)に投入して240時間放置した。
加熱前後の表面抵抗値を上記(1)の方法で測定し、その変化率(加熱後/加熱前)により、透明導電性フィルムの耐久性を評価した。
[実施例1]
(銀ナノワイヤの合成および銀ナノワイヤ分散液の調製)
 攪拌装置を備えた反応容器中、160℃下で、無水エチレングリコール5ml、PtCl2の無水エチレングリコール溶液(濃度:1.5×10-4mol/L)0.5mlを加えた。4分経過後、得られた溶液に、AgNOの無水エチレングリコール溶液(濃度:0.12mol/l)2.5mlと、ポリビニルピロリドン(MW:55000)の無水エチレングリコール溶液(濃度:0.36mol/l)5mlとを同時に、6分かけて滴下した。この滴下後、160℃に加熱し1時間以上かけて、AgNOが完全に還元されるまで反応を行い、銀ナノワイヤを生成した。次いで、上記のようにして得られた銀ナノワイヤを含む反応混合物に、該反応混合物の体積が5倍になるまでアセトンを加えた後、該反応混合物を遠心分離して(2000rpm、20分)、銀ナノワイヤを得た。
 得られた銀ナノワイヤは、短径が30nm~40nmであり、長径が30nm~50nmであり、長さは5μm~50μmであった。
 純水中に、該銀ナノワイヤ(濃度:0.2重量%)、およびペンタエチレングリコールドデシルエーテル(濃度:0.1重量%)を分散させ、銀ナノワイヤ分散液Iを調製した。
(導電層形成用のポリマー溶液の調製)
 イソプロピルアルコール(和光純薬工業株式会社製)、ダイアセトンアルコール(和光純薬工業株式会社製)を重量比1:1で混合したものを溶媒として用いた。該溶媒に、ジペンタエリスリトールヘキサアクリレート(DPHA)(新中村化学社製、商品名「A-DPH」)1.6重量%、および光反応開始剤(チバ・ジャパン社製、製品名「イルガキュア907」)が0.09重量%を投入して、ポリマー溶液Iを調製した。
(透明導電性フィルムの作製)
 透明基材としてノルボルネン系シクロオレフィンフィルム(日本ゼオン株式会社製、商品名「ゼオノア」)を用いた。
 この透明基材上に、バーコーター(第一理科株式会社製 製品名「バーコーター No.10」)を用いて上記銀ナノワイヤ分散液Aを塗布し、120℃の送風乾燥機内で2分間乾燥させた。その後、上記ポリマー溶液IをWet膜厚6μmでスロットダイにて塗布し、120℃の送風乾燥機内で2分間乾燥させた。次いで、酸素濃度100ppm環境とした紫外光照射装置(Fusion UV Systems社製)で積算照度210mJ/cmの紫外光を照射してポリマー溶液Iを硬化させて、透明導電層を形成した。透明基材と透明導電層から構成される積層体の表面抵抗値は、表面抵抗値は161Ω/□であり、全光線透過率は91.6%であり、ヘイズは2.0%であった。
 さらに、上記透明導電層上に、アクリル系ポリマーとα-チオグリセロールとを含む粘着剤組成物I(日東電工社製、商品名「CS9862U」、α-チオグリセロールの配合割合:アクリル系ポリマー100重量部に対して0.01重量部)を塗布して、粘着剤層を形成した。
 上記のようにして、透明基材(厚み:100μm)/透明導電層(厚み0.1μm)/粘着剤層(厚み:50μm)から構成される粘着剤層付き透明導電性フィルムを得た。得られた粘着剤層付き透明導電性フィルムを上記(3)の評価に供した。結果を表1に示す。
[実施例2]
 粘着剤組成物Iに代えて、粘着剤組成物II(日東電工社製、商品名「CS9912U」;アクリル系ポリマーとα-チオグリセロールとを含み、α-チオグリセロールの配合割合:アクリル系ポリマー100重量部に対して0.15重量部)を用いたこと以外は、実施例1と同様にして、透明導電性フィルムを得た。得られた粘着剤層付き透明導電性フィルムを上記(3)の評価に供した。結果を表1に示す。
[実施例3]
(プレポリマー(b1)の作製)
 ジシクロペンタニルメタリレート60重量部、メチルメタクリレート40重量部、α-チオグリセロール3.5重量部および重合溶媒としてのトルエン100重量部を、4つ口フラスコに投入し、これらを窒素雰囲気下にて70℃で1時間撹拌した。次に、重合開始剤としての2,2´-アゾビスイソブチロニトリル0.2重量部を4つ口フラスコに投入し、70℃で2時間反応させ、続いて、80℃で2時間反応させた。その後、反応液を130℃温度雰囲気下に投入し、トルエンおよび未反応モノマーを乾燥除去させ、固形状のアクリル系プレポリマー(b1)を得た。アクリル系プレポリマー(b1)の重量平均分子量(Mw)は5.1×10であった。また、アクリル系プレポリマー(b1)中、α-チオグリセロール由来の構成単位の含有割合は、アクリル系プレポリマー100重量部に対して、0.3重量部であった。
(粘着剤組成物IIIの調製)
 モノマーとして、イソステアリルアクリレート40.5重量部と、2-エチルヘキシルアクリレート40.5重量部と、N-ビニルピロリドン18重量部と、4-ヒドロキシブチルアクリレート1重量部とを用いた。これらのモノマー(全量:100重量部)と、開始剤としての1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製、商品名「イルガキュア184」)0.1重量部とを4つ口フラスコに投入し、窒素雰囲気下で紫外線に曝露して部分的に光重合することによって、粘着剤材料(モノマーと、重合率10%の部分重合物とを含む)を含む前駆組成物を得た。得られた前駆組成物(粘着剤材料100重量部を含む)に、上記アクリル系プレポリマー(b1)5重量部と、トリメチロールプロパントリアクリレート0.02重量部とを添加した後、これらを均一に混合して粘着剤組成物IIIを調製した。この粘着剤組成物IIIにおいて、チオール基を含む化合物の配合量は、粘着剤材料100重量部に対して、0.015重量部である。
(粘着剤層付き透明導電性フィルムの作製)
 片面をシリコーンで剥離処理した厚み75μmのポリエステルフィルムの剥離処理面に、粘着剤組成物IIIを厚み100μmになるように塗布して塗布層を形成し、該塗布層上に、片面をシリコーン剥離処理した厚みが38μmのポリエステルフィルムの剥離処理面を貼り合わせてから、厚み38μmのポリエステルフィルム側の面上からランプ直下での照射面の強度が5mW/cmになるようにランプ高さを調節したブラックライトにより、紫外線を照射した。光量で3000mJ/cm照射されるまで重合を行い、厚み150μmの粘着剤層を得た。
 実施例1と同様にして、透明基材上に透明導電層を形成させた。さらに、上記透明導電層上に、上記粘着剤層を転写して、透明基材(厚み:100μm)/透明導電層(厚み0.1μm)/粘着剤層(厚み:150μm)から構成される粘着剤層付き透明導電性フィルムを得た。得られた粘着剤層付き透明導電性フィルムを上記(3)の評価に供した。結果を表1に示す。
[実施例4]
(プレポリマー(b2)の作製)
 α-チオグリセロール3.5重量部に代えて、チオグリコール酸3.5重量部を用いた以外は実施例3と同様にして、アクリル系プレポリマー(b2)を得た。アクリル系プレポリマー(b2)の重量平均分子量(Mw)は5.4×10であった。また、アクリル系プレポリマー(b2)中、チオグリコール酸由来の構成単位の含有割合は、アクリル系プレポリマー100重量部に対して、0.33重量部であった。
(粘着剤組成物IVの調製)
 アクリル系プレポリマー(b1)5重量部に代えて、アクリル系プレポリマー(b2)5重量部を用いた以外は、実施例3と同様にして、粘着剤組成物IVを調製した。この粘着剤組成物IVにおいて、チオール基を含む化合物の配合量は、粘着剤材料100重量部に対して、0.0165重量部である。
(粘着剤層付き透明導電性フィルムの作製)
 粘着剤組成物IIIに代えて、粘着剤組成物IVを用いた以外は、実施例3と同様にして、透明基材(厚み:100μm)/透明導電層(厚み0.1μm)/粘着剤層(厚み:150μm)から構成される粘着剤層付き透明導電性フィルムを得た。得られた粘着剤層付き透明導電性フィルムを上記(3)の評価に供した。結果を表1に示す。
[実施例5]
(プレポリマー(b3)の作製)
 α-チオグリセロール3.5重量部に代えて、アミノエタンチオール3.5重量部を用いた以外は実施例3と同様にして、アクリル系プレポリマー(b3)を得た。アクリル系プレポリマー(b3)の重量平均分子量(Mw)は4.9×10であった。また、アクリル系プレポリマー(b3)中、チオグリコール酸由来の構成単位の含有割合は、アクリル系プレポリマー100重量部に対して、0.32重量部であった。
(粘着剤組成物Vの調製)
 アクリル系プレポリマー(b1)5重量部に代えて、アクリル系プレポリマー(b3)5重量部を用いた以外は、実施例3と同様にして、粘着剤組成物Vを調製した。この粘着剤組成物Vにおいて、チオール基を含む化合物の配合量は、粘着剤材料100重量部に対して、0.016重量部である。
(粘着剤層付き透明導電性フィルムの作製)
 粘着剤組成物IIIに代えて、粘着剤組成物Vを用いた以外は、実施例3と同様にして、透明基材(厚み:100μm)/透明導電層(厚み0.1μm)/粘着剤層(厚み:150μm)から構成される粘着剤層付き透明導電性フィルムを得た。得られた粘着剤層付き透明導電性フィルムを上記(3)の評価に供した。結果を表1に示す。
[実施例6]
 透明基材としてノルボルネン系シクロオレフィンフィルム(日本ゼオン株式会社製、商品名「ゼオノア」)を用いた。
 このノルボルネン系シクロオレフィンフィルムをコロナ処理し、表面を親水化した。その後、ノルボルネン系シクロオレフィンフィルム上に、銀ペースト(トーヨーケム株式会社製、商品名「RA FS 039」)を用いてスクリーン印刷法にて金属メッシュを形成し(線幅:8.5μm、ピッチ300μmの格子)、120℃で10分間焼結して透明導電層を形成した。透明基材と透明導電層から構成される積層体の表面抵抗値は、表面抵抗値は155Ω/□であり、全光線透過率は98.1%であり、ヘイズは7.0%であった。
 さらに、上記透明導電層上に、実施例1で用いた粘着剤組成物I、すなわち、アクリル系ポリマーとα-チオグリセロールとを含む粘着剤組成物I(日東電工社製、商品名「CS9862U」、α-チオグリセロールの配合割合:アクリル系ポリマー100重量部に対して0.01重量部)を塗布して、粘着剤層を形成した。
 上記のようにして、透明基材(厚み:100μm)/透明導電層(厚み0.1μm)/粘着剤層(厚み:50μm)から構成される粘着剤層付き透明導電性フィルムを得た。得られた粘着剤層付き透明導電性フィルムを上記(3)の評価に供した。結果を表1に示す。
[実施例7]
 粘着剤組成物Iに代えて、粘着剤組成物II(日東電工社製、商品名「CS9912U」;アクリル系ポリマーとα-チオグリセロールとを含み、α-チオグリセロールの配合割合:アクリル系ポリマー100重量部に対して0.15重量部)を用いたこと以外は、実施例6と同様にして、透明導電性フィルムを得た。得られた粘着剤層付き透明導電性フィルムを上記(3)の評価に供した。結果を表1に示す。
[実施例8]
 実施例3と同様にして、粘着剤組成物IIIを調製し、さらに、粘着剤層を得た。
 実施例6と同様にして、透明基材上に透明導電層を形成させた。さらに、透明導電層上に、上記粘着剤層を転写して、透明基材(厚み:100μm)/透明導電層(厚み0.1μm)/粘着剤層(厚み:150μm)から構成される粘着剤層付き透明導電性フィルムを得た。得られた粘着剤層付き透明導電性フィルムを上記(3)の評価に供した。結果を表1に示す。
[実施例9]
 実施例4と同様にして、粘着剤組成物IVを調製し、さらに、粘着剤層を得た。
 実施例6と同様にして、透明基材上に透明導電層を形成させた。さらに、透明導電層上に、上記粘着剤層を転写して、透明基材(厚み:100μm)/透明導電層(厚み0.1μm)/粘着剤層(厚み:150μm)から構成される粘着剤層付き透明導電性フィルムを得た。得られた粘着剤層付き透明導電性フィルムを上記(3)の評価に供した。結果を表1に示す。
[実施例10]
 実施例5と同様にして、粘着剤組成物Vを調製し、さらに、粘着剤層を得た。
 実施例6と同様にして、透明基材上に透明導電層を形成させた。さらに、透明導電層上に、上記粘着剤層を転写して、透明基材(厚み:100μm)/透明導電層(厚み0.1μm)/粘着剤層(厚み:150μm)から構成される粘着剤層付き透明導電性フィルムを得た。得られた粘着剤層付き透明導電性フィルムを上記(3)の評価に供した。結果を表1に示す。
[比較例1]
 粘着剤組成物Iに代えて、粘着剤組成物VI(日東電工社製、商品名「CS9892U」;アクリル系ポリマーから構成され、チオール基を含む化合物を含まない)を用いたこと以外は、実施例1と同様にして、透明導電性フィルムを得た。
[比較例2]
 粘着剤組成物Iに代えて、粘着剤組成物VII(日東電工社製、商品名「CS9922U」;アクリル系ポリマーから構成され、チオール基を含む化合物を含まない)を用いたこと以外は、実施例1と同様にして、透明導電性フィルムを得た。
[比較例3]
(粘着剤組成物VIIIの調製)
 アクリル系プレポリマー(b1)5重量部に代えて、アクリル系プレポリマー(b1)0.05重量部を用いた以外は、実施例3と同様にして、粘着剤組成物VIIIを調製した。この粘着剤組成物VIIIにおいて、チオール基を含む化合物の配合量は、粘着剤材料100重量部に対して、0.00015重量部である。
(粘着剤層付き透明導電性フィルムの作製)
 粘着剤組成物IIIに代えて、粘着剤組成物VIIIを用いた以外は、実施例3と同様にして、透明基材(厚み:100μm)/透明導電層(厚み0.1μm)/粘着剤層(厚み:150μm)から構成される粘着剤層付き透明導電性フィルムを得た。得られた粘着剤層付き透明導電性フィルムを上記(3)の評価に供した。結果を表1に示す。
[比較例4]
 粘着剤組成物Iに代えて、粘着剤組成物VI(日東電工社製、商品名「CS9892U」;アクリル系ポリマーから構成され、チオール基を含む化合物を含まない)を用いたこと以外は、実施例6と同様にして、透明導電性フィルムを得た。
[比較例5]
 粘着剤組成物Iに代えて、粘着剤組成物VII(日東電工社製、商品名「CS9922U」;アクリル系ポリマーから構成され、チオール基を含む化合物を含まない)を用いたこと以外は、実施例6と同様にして、透明導電性フィルムを得た。
[比較例6]
 比較例3と同様にして、粘着剤組成物VIIIを調製し、さらに、粘着剤層を得た。
 実施例6と同様にして、透明基材上に透明導電層を形成させた。さらに、透明導電層上に、上記粘着剤層を転写して、透明基材(厚み:100μm)/透明導電層(厚み0.1μm)/粘着剤層(厚み:150μm)から構成される粘着剤層付き透明導電性フィルムを得た。得られた粘着剤層付き透明導電性フィルムを上記(3)の評価に供した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1から明らかなように、本発明の粘着剤層付き透明導電性フィルムは、加熱試験前後の表面抵抗値変化率が低減される。このような透明導電性フィルムは、粘着剤層中のチオール基を含む化合物が腐食防止剤として金属体に容易に結合し、金属表面において保護膜を形成し、金属の腐食を抑制することが可能である。
 10      透明基材
 20      透明導電層
 21      金属ナノワイヤ
 22      ポリマーマトリックス
 30      粘着剤層
 100     粘着剤層付き透明導電性フィルム

Claims (8)

  1.  透明基材と、透明導電層と、粘着剤層とをこの順に備え、
     該透明導電層が、金属ナノワイヤまたは金属メッシュを含み、
     該粘着剤層が、チオール基を含む化合物と粘着剤材料とを含む粘着剤組成物から形成され、
     該粘着剤組成物において、該チオール基を含む化合物の配合量が、該粘着剤組成物中の粘着剤材料100重量部に対して、0.01重量部~1重量部である、
     粘着剤層付き透明導電性フィルム。
  2.  前記チオール基を含む化合物が、一般式(1)で表される請求項1に記載の粘着剤層付き透明導電性フィルム;
      HS-R ・・・(1)
     式(1)中、Rは、炭素数が1~30の脂肪族炭化水素基または芳香族炭化水素基である。
  3.  前記金属ナノワイヤが、金、白金、銀および銅からなる群より選ばれた1種以上の金属により構成される請求項1または2に記載の粘着剤層付き透明導電性フィルム。
  4.  前記金属メッシュが、金、白金、銀および銅からなる群より選ばれた1種以上の金属により構成される請求項1または2に記載の粘着剤層付き透明導電性フィルム。
  5.  前記透明導電層がポリマーマトリックスをさらに含む、請求項1から4のいずれかに記載の粘着剤層付き透明導電性フィルム。
  6.  前記透明導電層の厚みが10nm~1000nmである請求項5に記載の粘着剤層付き透明導電性フィルム。
  7.  前記金属ナノワイヤの一部が、前記透明導電層から突出している、請求項5または6に記載の粘着剤層付き透明導電性フィルム。
  8.  請求項1から7のいずれかに記載の粘着剤層付き透明導電性フィルムを含む、電子機器。
PCT/JP2015/083859 2014-12-08 2015-12-02 粘着剤層付き透明導電性フィルム WO2016093120A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-247539 2014-12-08
JP2014247539 2014-12-08
JP2015-195949 2015-10-01
JP2015195949A JP6890920B2 (ja) 2014-12-08 2015-10-01 粘着剤層付き透明導電性フィルム

Publications (1)

Publication Number Publication Date
WO2016093120A1 true WO2016093120A1 (ja) 2016-06-16

Family

ID=56107309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083859 WO2016093120A1 (ja) 2014-12-08 2015-12-02 粘着剤層付き透明導電性フィルム

Country Status (1)

Country Link
WO (1) WO2016093120A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230622A1 (ja) * 2021-04-28 2022-11-03 株式会社クレハ 圧電積層フィルム、および圧電積層フィルムの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505358A (ja) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション ナノワイヤに基づく透明導電体
JP2011018636A (ja) * 2009-06-09 2011-01-27 Fujifilm Corp 導電性組成物、並びに透明導電膜、表示素子及び集積型太陽電池
JP2011148930A (ja) * 2010-01-22 2011-08-04 Nitto Denko Corp 粘着シート
JP2012011637A (ja) * 2010-06-30 2012-01-19 Dic Corp 両面粘着シートを用いた透明導電膜積層体およびタッチパネル装置
JP2013224397A (ja) * 2012-02-28 2013-10-31 Fujifilm Corp 銀イオン拡散抑制層形成用組成物、銀イオン拡散抑制層用フィルム、配線基板、電子機器、導電膜積層体、およびタッチパネル
JP2014529642A (ja) * 2011-08-12 2014-11-13 スリーエム イノベイティブプロパティズカンパニー 光学的に透明な導電性接着剤及びそれから製造される物品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505358A (ja) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション ナノワイヤに基づく透明導電体
JP2011018636A (ja) * 2009-06-09 2011-01-27 Fujifilm Corp 導電性組成物、並びに透明導電膜、表示素子及び集積型太陽電池
JP2011148930A (ja) * 2010-01-22 2011-08-04 Nitto Denko Corp 粘着シート
JP2012011637A (ja) * 2010-06-30 2012-01-19 Dic Corp 両面粘着シートを用いた透明導電膜積層体およびタッチパネル装置
JP2014529642A (ja) * 2011-08-12 2014-11-13 スリーエム イノベイティブプロパティズカンパニー 光学的に透明な導電性接着剤及びそれから製造される物品
JP2013224397A (ja) * 2012-02-28 2013-10-31 Fujifilm Corp 銀イオン拡散抑制層形成用組成物、銀イオン拡散抑制層用フィルム、配線基板、電子機器、導電膜積層体、およびタッチパネル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230622A1 (ja) * 2021-04-28 2022-11-03 株式会社クレハ 圧電積層フィルム、および圧電積層フィルムの製造方法

Similar Documents

Publication Publication Date Title
JP6938714B2 (ja) 粘着剤層付き透明導電性フィルム
JP6057600B2 (ja) 粘着剤、粘着剤層、および粘着シート
JP5533530B2 (ja) 両面粘着シートを用いた透明導電膜積層体およびタッチパネル装置
JP2012041456A (ja) タッチパネル用粘着剤組成物に用いるアクリル系高分子化合物
KR102325707B1 (ko) (메타)아크릴계 도전성 재료
TWI673543B (zh) 內置型液晶面板及液晶顯示裝置
KR20140064842A (ko) 광학적으로 투명한 도전성 접착제 및 그 용품
KR20130107219A (ko) 투명 도전막 형성에 사용할 수 있는 도막 형성용 조성물
CN102754055A (zh) 导电性层叠体及使用其的触摸面板
WO2014088058A1 (ja) 積層体および該積層体を用いた透明導電性フィルム
KR20150061580A (ko) 도전성 점착 테이프, 전자 부재 및 점착제
KR101668259B1 (ko) 피착물 표면의 산화를 방지하는 환경 친화형 양면 도전성 점착 테이프
KR101768302B1 (ko) 점착필름 및 이를 포함하는 디스플레이 부재
TWI508104B (zh) A method for producing a transparent conductive film and a transparent conductive film
TWI686454B (zh) 黏著片、雙面黏著片及光學構件
KR101675887B1 (ko) 플렉서블 투명전극용 다층시트 및 그 제조방법
JP6238655B2 (ja) 接続構造体、及び異方性導電接着剤
WO2016093120A1 (ja) 粘着剤層付き透明導電性フィルム
KR102004026B1 (ko) 투명 도전체 및 이를 포함하는 디스플레이 장치
KR20180108223A (ko) 그래핀을 이용한 도전성 기판, 이의 제조 방법, 및 이를 포함하는 디바이스
KR20130000803A (ko) 인쇄용 도전성 잉크 및 그 제조방법
TW202116950A (zh) 附黏著劑層之偏光薄膜積層體、及使用該附黏著劑層之偏光薄膜積層體之光學顯示面板
JP7439815B2 (ja) 配線基板及びその製造方法
JP7572153B2 (ja) フレキシブル画像表示装置内の積層体に用いる粘着シート、フレキシブル画像表示装置に用いる積層体、及びフレキシブル画像表示装置
TW202402529A (zh) 附保護膜之透明導電性膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866465

Country of ref document: EP

Kind code of ref document: A1