WO2016093078A1 - 圧電アクチュエータ、圧電アクチュエータの製造方法、液滴吐出ヘッド、液滴吐出ヘッドの製造方法、液滴吐出装置および液滴吐出装置の製造方法 - Google Patents

圧電アクチュエータ、圧電アクチュエータの製造方法、液滴吐出ヘッド、液滴吐出ヘッドの製造方法、液滴吐出装置および液滴吐出装置の製造方法 Download PDF

Info

Publication number
WO2016093078A1
WO2016093078A1 PCT/JP2015/083318 JP2015083318W WO2016093078A1 WO 2016093078 A1 WO2016093078 A1 WO 2016093078A1 JP 2015083318 W JP2015083318 W JP 2015083318W WO 2016093078 A1 WO2016093078 A1 WO 2016093078A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric layer
piezoelectric
layer
manufacturing
site
Prior art date
Application number
PCT/JP2015/083318
Other languages
English (en)
French (fr)
Inventor
和樹 渋谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016563612A priority Critical patent/JPWO2016093078A1/ja
Publication of WO2016093078A1 publication Critical patent/WO2016093078A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/082Shaping or machining of piezoelectric or electrostrictive bodies by etching, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Definitions

  • the present invention relates to a piezoelectric actuator having a lower electrode, a piezoelectric layer, and an upper electrode in this order from the substrate side and a manufacturing method thereof, a droplet discharge head including the piezoelectric actuator, a manufacturing method thereof, and the droplet discharge head.
  • the present invention relates to a provided droplet discharge device and a method for manufacturing the same.
  • piezoelectric bodies including PZT (lead zirconate titanate) have been used for devices such as actuators and sensors.
  • PZT lead zirconate titanate
  • As a piezoelectric body a bulk piezoelectric body is known, but in recent years, it has become necessary to reduce the size and thickness of the piezoelectric body in order to meet the needs for smaller and thinner devices. .
  • PZT lead zirconate titanate
  • a thin film piezoelectric body cannot be formed by itself, but must be formed on a substrate by using various film forming processes such as a sputtering method and a sol-gel method.
  • the piezoelectric layer is affected by the material and stress of the underlayer including the substrate, the crystal structure, the surface roughness, and the like. For this reason, by reducing the thickness of the piezoelectric body, the characteristics of the piezoelectric material itself cannot be extracted, and a characteristic called a piezoelectric constant becomes smaller than that of the bulk piezoelectric body.
  • the d 31 mode is a method in which the piezoelectric layer is driven using two in-plane strains perpendicular to the thickness direction of the piezoelectric layer by sandwiching the piezoelectric layer between two electrodes in the thickness direction.
  • the base of the piezoelectric layer includes one of the two electrodes sandwiching the piezoelectric layer, that is, the lower electrode.
  • the orientation of the lower electrode is controlled while the conductivity of the underlying lower electrode is ensured, or an orientation control layer is provided between the lower electrode and the piezoelectric layer.
  • the lower electrode is the base of the piezoelectric layer
  • the lower electrode is also required to have adhesion such that no peeling occurs between the lower electrode and the lower layer (including the substrate) when the piezoelectric layer is driven.
  • a method of peeling the piezoelectric layer from the dummy substrate (1) a method of forming a piezoelectric layer to be transferred on the dummy substrate via a sacrificial layer and then removing the sacrificial layer by etching; (2) A method of irradiating the separation layer as a sacrificial layer from the dummy substrate side to cause peeling in the layer or interface of the separation layer, (3) A method of eliminating (disappearing) the dummy substrate itself by wet etching or dry etching There is.
  • the method (2) is disclosed in, for example, Patent Document 1
  • the method (3) is disclosed in, for example, Patent Document 2.
  • Japanese Patent Laid-Open No. 10-125931 see claim 1, paragraphs [0011], [0118] to [0133], FIG. 5)
  • Japanese Patent Laying-Open No. 2011-71467 (refer to claim 1, paragraphs [0049] to [0051], FIG. 1, etc.)
  • the etching rate of the sacrificial layer must be higher than the piezoelectric layer to be transferred, or the piezoelectric layer to be transferred is not etched when the sacrificial layer is etched. It will be necessary. For this reason, it is necessary to select a material for the sacrificial layer so that the piezoelectric layer formed on the sacrificial layer has good crystal growth and is easily etched by itself. Limited. That is, in the above method, when the piezoelectric layer is formed on the electrode, the restrictions such as conductivity and orientation required for the electrode are good for crystal growth of the piezoelectric layer, and more than the piezoelectric layer.
  • the original advantage of forming the piezoelectric layer by transfer that is, the underlying layer that is advantageous for crystal growth of the piezoelectric layer, has been replaced by the restriction that the sacrificial layer must be formed of a material that is easily etched.
  • the advantage of being able to select a wide range is not obtained.
  • the sacrificial layer and the dummy substrate need to have a difference in light absorptance, and the material of the sacrificial layer is further limited in relation to the dummy substrate.
  • the dummy substrate itself becomes a consumable item, it is necessary to prepare a dummy substrate for each production of the piezoelectric actuator, and the productivity of the piezoelectric actuator is lowered.
  • the productivity of the piezoelectric actuator is lowered.
  • the above-described decrease in productivity becomes significant from the viewpoint of cost.
  • the present invention has been made to solve the above-described problems, and its purpose is to form a piezoelectric layer on a dummy substrate even when a method of forming a piezoelectric layer on the dummy substrate and then transferring it onto the lower electrode is adopted.
  • the piezoelectric actuator capable of improving the productivity by reusing the dummy substrate, the manufacturing method thereof, and the piezoelectric
  • An object of the present invention is to provide a droplet discharge head including an actuator and a manufacturing method thereof, a droplet discharge apparatus including the droplet discharge head, and a manufacturing method thereof.
  • a piezoelectric actuator is a piezoelectric actuator having a lower electrode, a piezoelectric layer, and an upper electrode in this order from the substrate side, and each of the piezoelectric layers has a perovskite structure and is added There are two piezoelectric layers having different additive amounts, and of the two piezoelectric layers to be laminated, the piezoelectric layer having a relatively large additive amount is defined as the first piezoelectric layer.
  • the area of the second piezoelectric layer is larger than the area of the first piezoelectric layer in a plane perpendicular to the thickness direction of the piezoelectric layer. small.
  • a droplet discharge head includes the above piezoelectric actuator and a nozzle plate having a nozzle hole for discharging a liquid as a droplet, and the substrate of the piezoelectric actuator includes the liquid Is formed, and the nozzle hole of the nozzle plate communicates with the pressure chamber.
  • a droplet discharge apparatus includes the above-described droplet discharge head and a support member that supports the droplet discharge head.
  • the method for manufacturing a piezoelectric actuator includes a step of forming a lower electrode on a base including a device substrate, a step of forming a piezoelectric layer on the lower electrode, and the piezoelectric body.
  • a piezoelectric layer on the layer wherein the step of forming the piezoelectric layer has a perovskite structure as the piezoelectric layer on a dummy substrate different from the device substrate, and A laminating step of laminating two piezoelectric layers having different additive amounts, a peeling step of etching the piezoelectric layer and peeling it from the dummy substrate, and the peeled piezoelectric layer on the lower electrode
  • the second piezoelectric layer and the first piezoelectric layer are laminated in this order on the dummy substrate, and in the peeling step, in a plane perpendicular to the thickness direction of the piezoelectric layer, The piezoelectric layer is separated from the dummy substrate by etching and separating the second piezoelectric layer as a sacrificial layer so that the area of the second piezoelectric layer is smaller than the area of the first piezoelectric layer.
  • a method for manufacturing a droplet discharge head is a method for manufacturing a droplet discharge head using the above-described method for manufacturing a piezoelectric actuator.
  • a step of forming a pressure chamber for storing a liquid in the device substrate, and a nozzle plate communicating with the pressure chamber and having nozzle holes for discharging the liquid as droplets are attached to the device substrate. Process.
  • a method for manufacturing a droplet discharge device wherein the droplet discharge device is manufactured using the droplet discharge head manufacturing method.
  • the piezoelectric layer is formed on the dummy substrate and then transferred onto the lower electrode, the piezoelectric characteristics can be maintained while avoiding the material of the layer functioning as a sacrificial layer on the dummy substrate being significantly restricted.
  • the productivity can be improved by reusing the dummy substrate.
  • FIG. 2B is a cross-sectional view taken along line A-A ′ in the plan view of FIG. 2A.
  • FIG. 2B is a cross-sectional view taken along line A-A ′ in the plan view of FIG. 2A.
  • FIG. 2B is a cross-sectional view taken along line A-A ′ in the plan view of FIG. 2A.
  • It is sectional drawing which shows the structure of the said inkjet head.
  • It is explanatory drawing which shows typically the crystal structure of PZT which has a perovskite structure.
  • It is a flowchart which shows the flow of the manufacturing process of the said inkjet printer.
  • the numerical value range includes the values of the lower limit A and the upper limit B.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an inkjet printer 1 which is an example of a droplet discharge device of the present embodiment.
  • the ink jet printer 1 is a so-called line head type ink jet recording apparatus in which an ink jet head 21 is provided in a line shape in the width direction of a recording medium in the ink jet head unit 2.
  • the ink jet printer 1 includes an ink jet head unit 2, a feed roll 3, a take-up roll 4, two back rolls 5 and 5, an intermediate tank 6, a liquid feed pump 7, a storage tank 8, and a fixing tank. And a mechanism 9.
  • the ink jet head unit 2 ejects ink from the ink jet head 21 toward the recording medium P, and performs image formation (drawing) based on image data, and is supported so as to be positioned in the vicinity of one back roll 5. It is supported by the member 12. Details of the inkjet head 21 will be described later.
  • the feeding roll 3, the take-up roll 4 and the back rolls 5 are members each having a cylindrical shape that can rotate around its axis.
  • the feeding roll 3 is a roll that feeds the long recording medium P wound around the circumferential surface toward the position facing the inkjet head unit 2.
  • the feeding roll 3 is rotated by driving means (not shown) such as a motor, thereby feeding the recording medium P in the X direction in FIG.
  • the take-up roll 4 is taken out from the take-out roll 3 and takes up the recording medium P on which the ink is ejected by the inkjet head unit 2 around the circumferential surface.
  • Each back roll 5 is disposed between the feed roll 3 and the take-up roll 4.
  • One back roll 5 located on the upstream side in the conveyance direction of the recording medium P is opposed to the inkjet head unit 2 while winding the recording medium P fed by the feeding roll 3 around and supporting the recording medium P.
  • Transport toward The other back roll 5 conveys the recording medium P from a position facing the inkjet head unit 2 toward the take-up roll 4 while being wound around and supported by a part of the peripheral surface.
  • the intermediate tank 6 temporarily stores the ink supplied from the storage tank 8.
  • the intermediate tank 6 is connected to a plurality of ink tubes 10, adjusts the back pressure of ink in each inkjet head 21, and supplies ink to each inkjet head 21.
  • the liquid feed pump 7 supplies the ink stored in the storage tank 8 to the intermediate tank 6, and is arranged in the middle of the supply pipe 11.
  • the ink stored in the storage tank 8 is pumped up by the liquid feed pump 7 and supplied to the intermediate tank 6 through the supply pipe 11.
  • the fixing mechanism 9 fixes the ink ejected to the recording medium P by the inkjet head unit 2 on the recording medium P.
  • the fixing mechanism 9 includes a heater for heat-fixing the discharged ink on the recording medium P, a UV lamp for curing the ink by irradiating the discharged ink with UV (ultraviolet light), and the like. Yes.
  • the recording medium P fed from the feeding roll 3 is conveyed to the position facing the inkjet head unit 2 by the back roll 5, and ink is ejected from the inkjet head unit 2 to the recording medium P. Thereafter, the ink ejected onto the recording medium P is fixed by the fixing mechanism 9, and the recording medium P after ink fixing is taken up by the take-up roll 4.
  • the line head type inkjet printer 1 ink is ejected while the recording medium P is conveyed while the inkjet head unit 2 is stationary, and an image is formed on the recording medium P.
  • the ink jet printer 1 may be configured to form an image on a recording medium by a serial head method.
  • the serial head method is a method of forming an image by ejecting ink by moving an inkjet head in a direction orthogonal to the transport direction while transporting a recording medium.
  • the recording medium P in addition to the long one, a sheet-like one that has been cut into a predetermined size (shape) in advance may be used.
  • FIG. 2A is a plan view showing a schematic configuration of an actuator 21a (piezoelectric actuator) of the inkjet head 21, and FIG. 2B is a cross-sectional view taken along line AA ′ in the plan view.
  • FIG. 3 is a cross-sectional view showing a configuration of the inkjet head 21 in which the nozzle plate 31 is joined to the actuator 21a of FIGS. 2A and 2B.
  • the inkjet head 21 (droplet discharge head) includes a thermal oxide film 23, a lower electrode 24, a piezoelectric layer 25, and an upper electrode 26 on a substrate 22 (device substrate) having a plurality of pressure chambers 22a (openings). Have in this order.
  • the substrate 22 and the thermal oxide film 23 form a base body on which the lower electrode 24 is formed, but the structure of the base body is not limited to these.
  • the thermal oxide film 23 may be omitted, and the base body may be configured with only the substrate 22.
  • the substrate 22 is composed of a semiconductor substrate made of a single crystal Si (silicon) simple substance having a thickness of about 100 to 300 ⁇ m, for example, or an SOI (Silicon On Insulator) substrate.
  • a substrate having a thickness of about 300 to 750 ⁇ m is prepared and the substrate 22 is made to have a thickness of 100 to 300 ⁇ m by a polishing process or the like.
  • FIG. 2 shows a case where the substrate 22 is configured by an SOI substrate.
  • the SOI substrate is obtained by bonding two Si substrates through an oxide film.
  • An upper wall of the pressure chamber 22a in the substrate 22 (a wall positioned on the side where the piezoelectric layer 25 is formed with respect to the pressure chamber 22a) constitutes a vibration plate 22b serving as a driven film. ) Is displaced (vibrated) to apply pressure to the ink in the pressure chamber 22a.
  • the thermal oxide film 23 is made of, for example, SiO 2 (silicon oxide) having a thickness of about 0.1 ⁇ m, and is formed for the purpose of protecting and insulating the substrate 22.
  • the lower electrode 24 is a common electrode provided in common to the plurality of pressure chambers 22a, and is configured by laminating a Ti (titanium) layer and a Pt (platinum) layer.
  • the Ti layer is formed in order to improve the adhesion between the thermal oxide film 23 and the Pt layer.
  • the thickness of the Ti layer is, for example, about 0.02 ⁇ m, and the thickness of the Pt layer is, for example, about 0.1 ⁇ m.
  • a layer made of titanium oxide (TiOx) may be formed instead of the Ti layer.
  • the Ti layer for improving the adhesion may be omitted, and the lower electrode 24 may be composed of only the Pt layer.
  • the piezoelectric layer 25 is configured by laminating two piezoelectric layers having a perovskite structure, details of which will be described later.
  • the film thickness of the piezoelectric layer 25 can be, for example, 1 ⁇ m or more and 10 ⁇ m or less, but as a piezoelectric actuator for an ink jet head, it is 2 ⁇ m or more and 6 ⁇ m or less so that ink can be reliably discharged with a thin film configuration. Desirable from a viewpoint.
  • the upper electrode 26 is an individual electrode provided corresponding to each pressure chamber 22a, and is configured by laminating a Ti layer and a Pt layer.
  • the Ti layer is formed in order to improve the adhesion between the piezoelectric layer 25 and the Pt layer.
  • the thickness of the Ti layer is, for example, about 0.02 ⁇ m, and the thickness of the Pt layer is, for example, about 0.1 to 0.2 ⁇ m.
  • the upper electrode 26 is provided so as to sandwich the piezoelectric layer 25 from the film thickness direction with the lower electrode 24.
  • a layer made of gold (Au) may be formed instead of the Pt layer.
  • the lower electrode 24, the piezoelectric layer 25, and the upper electrode 26 constitute a thin film piezoelectric element 27 for discharging the ink in the pressure chamber 22a to the outside.
  • the piezoelectric element 27 is driven based on a voltage (drive signal) applied from the drive circuit 28 to the lower electrode 24 and the upper electrode 26.
  • the inkjet head 21 is formed by arranging the piezoelectric element 27 and the pressure chamber 22a vertically and horizontally.
  • the nozzle plate 31 is joined to the opposite side of the pressure chamber 22a to the diaphragm 22b.
  • the nozzle plate 31 is formed with an ink discharge hole (nozzle hole) 31a that communicates with the pressure chamber 22a and discharges ink stored in the pressure chamber 22a to the outside as ink droplets. Ink supplied from the intermediate tank 6 is stored in the pressure chamber 22a.
  • the piezoelectric layer 25 when a voltage is applied from the drive circuit 28 to the lower electrode 24 and the upper electrode 26, the piezoelectric layer 25 is in a direction perpendicular to the thickness direction according to the potential difference between the lower electrode 24 and the upper electrode 26 ( It expands and contracts in a direction parallel to the surface of the substrate 22. Then, due to the difference in length between the piezoelectric layer 25 and the diaphragm 22b, a curvature is generated in the diaphragm 22b, and the diaphragm 22b is displaced (curved or vibrated) in the thickness direction.
  • the pressure wave is propagated to the ink in the pressure chamber 22a due to the vibration of the vibration plate 22b described above, and the ink in the pressure chamber 22a is transferred from the ink discharge hole 31a to the ink. It is discharged to the outside as a drop.
  • FIG. 4 is a cross-sectional view showing a detailed configuration of the inkjet head 21. In FIG. 4, the formation of the thermal oxide film 23 is omitted.
  • the piezoelectric layer 25 is formed by laminating a first piezoelectric layer 25a and a second piezoelectric layer 25b.
  • the first piezoelectric layer 25a and the second piezoelectric layer 25b are each a piezoelectric layer having a perovskite structure and having different additive amounts.
  • FIG. 5 schematically shows a crystal structure of PZT as an example of a piezoelectric body having a perovskite structure.
  • the perovskite structure ideally has a cubic unit cell, and is arranged at a metal (for example, Pb) arranged at each vertex (A site) of the cubic crystal and at a body center (B site).
  • It is an ABO 3 type crystal structure composed of a metal (for example, zirconium (Zr) or titanium (Ti)) and oxygen (O) arranged at each face center of a cubic crystal.
  • Crystals having a perovskite structure include tetragonal crystals, orthorhombic crystals, rhombohedral crystals and the like in which cubic crystals are distorted.
  • the first piezoelectric layer 25a and the second piezoelectric layer 25b have PZT as a common composition. That is, the first piezoelectric layer 25a and the second piezoelectric layer 25b both have a crystal structure containing Pb at the A site and Zr at the B site, Pb at the A site, and Ti at the B site. And a crystal structure including The first piezoelectric layer 25a further has a crystal structure including lanthanum (La) as an additive at the A site.
  • the first piezoelectric layer 25a is composed of lead lanthanum zirconate titanate (PLZT) having a perovskite structure.
  • the crystal structure of the second piezoelectric layer 25b is entirely La-free, and the second piezoelectric layer 25b is composed of PZT.
  • the piezoelectric layer in which the additive amount is relatively large is the first piezoelectric layer 25a, and the additive amount is relatively small.
  • the piezoelectric layer (including the case where the addition amount is zero) is the second piezoelectric layer 25b.
  • the area of the second piezoelectric layer 25b is smaller than the area of the first piezoelectric layer 25a. Thereby, the method of manufacturing the actuator 21a by the transfer of the piezoelectric layer 25 described later can be employed.
  • the second piezoelectric layer 25b is thinner than the first piezoelectric layer 25a and is located closer to the substrate 22 than the first piezoelectric layer 25a.
  • FIG. 6 is a flowchart showing the flow of the manufacturing process of the inkjet printer 1.
  • the manufacturing method of the ink jet printer 1 includes a lower electrode forming step (S1), a piezoelectric layer forming step (S2), an upper electrode forming step (S3), a pressure chamber forming step (S4), a nozzle plate attaching step (S5), and a head.
  • An installation step (S6) is included.
  • the steps S1 to S5 correspond to the manufacturing process of the inkjet head 21, and the steps S1 to S3 correspond to the manufacturing process of the actuator 21a.
  • step S1 may be performed up to a transfer step S2-3, which will be described later in S2, and may be performed at any time as long as it is up to the transfer step S2-3 (necessary to be performed before S2. Not) Details of each step will be described below with reference to FIGS. 7 to 9 are cross-sectional views showing the manufacturing process of the inkjet head 21.
  • FIGS. 7 to 9 are cross-sectional views showing the manufacturing process of the inkjet head 21.
  • a Pt film is formed on a substrate including a device substrate 22 made of Si by sputtering to form a lower electrode 24 (S1).
  • the base body may be composed of only the substrate 22 or may be formed by forming a thermal oxide film on the substrate 22.
  • the piezoelectric layer 25 is transferred and formed on the lower electrode 24 (S2). More details are as follows.
  • a dummy substrate 41 made of magnesium oxide (MgO) is prepared as a single crystal substrate.
  • a PZT film is formed on the dummy substrate 41 by sputtering, and the second piezoelectric layer 25b having a thickness of 0.5 ⁇ m is formed as a sacrificial layer.
  • a PLZT film is formed on the second piezoelectric layer 25b by sputtering to form a first piezoelectric layer 25a having a thickness of 3 ⁇ m.
  • two piezoelectric layers (first piezoelectric layer 25a and second piezoelectric layer 25b) each having a perovskite structure on the dummy substrate 41 and having different additive amounts are added. This corresponds to the stacking step (S2-1).
  • a resist 42 is applied on the first piezoelectric layer 25a and patterned.
  • the first piezoelectric layer 25a is etched with hydrofluoric acid. At the same time, the first piezoelectric layer 25a is processed into a device shape.
  • the second piezoelectric layer 25b made of PZT has an additive amount (here, La) of zero, and the additive amount of the additive is smaller than that of the first piezoelectric layer 25a made of PLZT.
  • La additive amount of the additive
  • the etching rate increases, and as a result, the area in the plane perpendicular to the thickness direction becomes smaller than that of the first piezoelectric layer 25a.
  • a PDMS (polydimethylsiloxane) sheet 44 which is a kind of adhesive sheet, is attached to the first piezoelectric layer 25a, and the first piezoelectric layer 25a is transferred to the PDMS sheet 44.
  • the second piezoelectric layer 25b is separated in the thickness direction, and a part (separated portion) of the second piezoelectric layer 25b is transferred to the PDMS sheet 44 together with the first piezoelectric layer 25a.
  • the piezoelectric layer 25 composed of the first piezoelectric layer 25 a and the second piezoelectric layer 25 b is peeled from the dummy substrate 41.
  • the steps (5) to (11) correspond to the peeling step (S2-2) in which the piezoelectric layer 25 is etched and peeled from the dummy substrate 41.
  • the piezoelectric layer 25 is formed on the lower electrode 24 by transferring the piezoelectric layer 25 including the first piezoelectric layer 25 a and the second piezoelectric layer 25 b onto the lower electrode 24 of the device substrate 22. (S2-3). At this time, the peeled piezoelectric layer 25 is transferred onto the lower electrode 24 so that the second piezoelectric layer 25b is positioned closer to the substrate 22 than the first piezoelectric layer 25a. Thereafter, the PDMS sheet 44 is peeled off.
  • the back side of the substrate 22 is patterned to form a pressure chamber 22a (S4). At this time, an ink flow path and the like are simultaneously formed on the substrate 22. Thereby, the actuator 21a is completed.
  • the nozzle plate 31 is attached to the back side of the substrate 22 (S5). Thereby, the inkjet head 21 is completed. Finally, the inkjet printer 1 is obtained by supporting the inkjet head 21 with the support member 12 (see FIG. 1) (S6).
  • the first piezoelectric layer 25a and the second piezoelectric layer 25b are formed of PLZT and PZT having a perovskite structure, respectively. These layers can be easily realized by using PZT having a perovskite structure in common and adjusting the amount of La added to PZT.
  • the material of the dummy substrate 41 is considered (considering only the composition of the first piezoelectric layer 25a). )
  • the material of the second piezoelectric layer 25b to be a sacrificial layer and the additive amount of La can be set.
  • a material having the same composition as that of the first piezoelectric layer 25a can be used as the material of the second piezoelectric layer 25b, improving the crystal growth of the first piezoelectric layer 25a, and itself There is no need to search for a material having a completely different composition from that of the first piezoelectric layer 25a that is easily etched.
  • the second piezoelectric layer 25b has a perovskite structure
  • the first piezoelectric layer 25a can be favorably grown with a perovskite structure on the second piezoelectric layer 25b so as to inherit the crystallinity of the second piezoelectric layer 25b. Therefore, the piezoelectric characteristics of the first piezoelectric layer 25a and thus the entire piezoelectric layer 25 can be improved.
  • the actuator 21a when the actuator 21a is manufactured by forming the piezoelectric layer 25 by transfer as described above, the material of the layer (second piezoelectric layer 25b) that functions as a sacrificial layer on the dummy substrate 41 is significantly limited. Thus, the piezoelectric characteristics can be improved. Therefore, the advantage by transfer that the range of selection of the material of the base layer (second piezoelectric layer 25b) advantageous for crystal growth of the first piezoelectric layer 25a is widened is also ensured. Moreover, since the piezoelectric layer 25 can be peeled from the dummy substrate 41 by etching the second piezoelectric layer 25b, the peeled dummy substrate 41 can be reused, thereby improving the productivity of the actuator 21a. be able to. Furthermore, unlike Patent Document 1, the actuator 21a can be easily manufactured without requiring a large-scale device for light irradiation.
  • the first piezoelectric layer 25a and the second piezoelectric layer 25b include the same element (for example, Pb) at the A site of the ABO 3 type perovskite structure and include the same element (for example, Zr or Ti) at the B site. Yes. Accordingly, the first piezoelectric layer 25a and the second piezoelectric layer 25b having different etching rates can be easily obtained by adding an additive (for example, La) to the first piezoelectric layer 25a and not adding the additive to the second piezoelectric layer 25b. Can be realized.
  • the second piezoelectric layer 25b is made of a material (for example, PZT) having an etching rate larger than that of the first piezoelectric layer 25a (for example, PLZT).
  • the etching of the second piezoelectric layer 25b proceeds faster than the first piezoelectric layer 25a, the area of the second piezoelectric layer 25b is made smaller than that of the first piezoelectric layer 25a in the plane perpendicular to the thickness direction. It becomes easy to separate the two piezoelectric layers 25b in the thickness direction, which makes it easy to peel the piezoelectric layer 25 from the dummy substrate 41.
  • the first piezoelectric layer 25a and the second piezoelectric layer 25b both have a crystal structure containing Pb at the A site and Zr at the B site, Pb at the A site, and Ti at the B site. And a crystal structure including As described above, since both the first piezoelectric layer 25a and the second piezoelectric layer 25b contain Pb, Zr, and Ti, two kinds of piezoelectrics having different etching rates can be obtained by adjusting the additive amount.
  • the layers (first piezoelectric layer 25a, second piezoelectric layer 25b) can be easily realized.
  • the second piezoelectric layer 25b is made of PZT without addition of La, so that the first piezoelectric layer 25a has a higher etching rate than the first piezoelectric layer 25a.
  • the two piezoelectric layers 25b can be easily realized. Then, in the configuration in which the first piezoelectric layer 25a and the second piezoelectric layer 25b are PLZT and PZT, respectively, the effect of the present embodiment described above can be obtained.
  • FIG. 10 is a cross-sectional view showing another configuration of the inkjet head 21.
  • the second piezoelectric layer 25b on the lower electrode 24 may be thicker than the first piezoelectric layer 25a.
  • the drive (expansion / contraction) of the first piezoelectric layer 25a can be efficiently transmitted to the lower layer including the lower electrode 24.
  • the first piezoelectric layer 25a is supported on the lower electrode 24 so as to be in contact with the lower electrode 24 at a portion other than the contact portion with the second piezoelectric layer 25b (in FIG.
  • the first piezoelectric layer 25a in the first piezoelectric layer 25a).
  • the portion other than the contact portion with the second piezoelectric layer 25b is illustrated as being separated from the lower electrode 24.
  • the first piezoelectric layer 25a 2 It is almost in contact with the lower electrode 24 at a portion other than the contact portion with the piezoelectric layer 25b). For this reason, the drive of the first piezoelectric layer 25a can be efficiently transmitted to the substrate 22 (the diaphragm 22b) via the lower electrode 24, and the diaphragm 22b can be vibrated efficiently.
  • FIG. 11 is a cross-sectional view showing still another configuration of the inkjet head 21.
  • the second piezoelectric layer 25b may be located on the opposite side of the substrate 22 with respect to the first piezoelectric layer 25a.
  • the piezoelectric layer 25 is further transferred to the opposite side (the second side).
  • the piezoelectric layer 25b side) is attached to another adhesive sheet and retransferred, and the piezoelectric layer 25 is transferred onto the lower electrode 24 so that the first piezoelectric layer 25a side becomes the lower electrode 24 side. It can be easily realized. Even with such a configuration, it is possible to obtain the effects of the above-described embodiment, such as improving the piezoelectric characteristics while avoiding that the material of the second piezoelectric layer 25b serving as the sacrificial layer is significantly limited. .
  • the second piezoelectric layer 25b as the sacrificial layer is composed of PZT without any additive, but an additive may be added to the second piezoelectric layer 25b.
  • the additive is also added to the sacrificial layer, and the first piezoelectric layer 25a Further, the piezoelectric characteristics can be further improved by bringing the lattice constant close to each other with the second piezoelectric layer 25b.
  • the second piezoelectric layer 25b is similarly formed of PZT.
  • the difference in lattice constant between the first piezoelectric layer 25a and the second piezoelectric layer 25b can be reduced, and the piezoelectric characteristics can be further improved.
  • the etching rate of the second piezoelectric layer 25b is made larger than that of the first piezoelectric layer 25a, and the area of the second piezoelectric layer 25b in the plane perpendicular to the thickness direction is made smaller than that of the first piezoelectric layer 25a.
  • the amount of La added needs to be smaller in the second piezoelectric layer 25b than in the first piezoelectric layer 25a.
  • the first piezoelectric layer 25a is composed of PLZT in which 7% La is added to PZT
  • the second piezoelectric layer 25b is composed of PLZT in which 1% La is added to PZT. Even if the components are the same as those of the second piezoelectric layer 25b, the etching rate of the second piezoelectric layer 25b can be made larger than that of the first piezoelectric layer 25a.
  • the second piezoelectric layer 25b has a crystal structure including La at the A site of PZT, and the amount of La added to the first piezoelectric layer 25a is larger than the amount of La added to the second piezoelectric layer 25b. It can be said.
  • the combination of the materials constituting the first piezoelectric layer 25a and the second piezoelectric layer 25b is not limited to PLZT and PZT, PLZT (large La addition amount) and PLZT (low La addition amount). Even if an additive is added, any combination of materials having the same perovskite structure and a higher etching rate of the second piezoelectric layer 25b than the first piezoelectric layer 25a may be used.
  • PNZT lead niobium zirconate titanate
  • Nb niobium
  • PZT and PZT or PNZT (large Nb addition amount) and PNZT (low Nb addition amount) may be employed. Even in this case, the same effect as the above-described embodiment can be obtained.
  • the first piezoelectric layer 25a may have a crystal structure including Nb at the B site of PZT, and the crystal structure of the second piezoelectric layer 25b may be all PZT without addition of Nb.
  • the second piezoelectric layer 25b has a crystal structure including Nb at the B site of PZT, and both the first piezoelectric layer 25a and the second piezoelectric layer 25b are composed of PNZT, Nb of the first piezoelectric layer 25a It can be said that the added amount of may be larger than the added amount of Nb in the second piezoelectric layer 25b.
  • the piezoelectric material of the ABO 3 type perovskite structure constituting the first piezoelectric layer 25a and the second piezoelectric layer 25b is not limited to the above PZT, PLZT, and PNZT.
  • Elements at the A site are lead (Pb), barium (Ba), lanthanum (La), strontium (Sr), bismuth (Bi), lithium (Li), sodium (Na), calcium (Ca), cadmium (Cd). And at least one of magnesium (Mg) and potassium (K).
  • the elements at the B site are zirconium (Zr), titanium (Ti), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese ( Mn), scandium (Sc), cobalt (Co), copper (Cu), indium (In), tin (Sn), gallium (Ga), cadmium (Cd), iron (Fe), nickel (Ni) As long as it contains one.
  • the first piezoelectric layer 25a and the second piezoelectric layer 25b have the same basic composition (elements at the A site and B site), and the amount of additive added to the A site or B site is different.
  • the additive may be different between the first piezoelectric layer 25a and the second piezoelectric layer 25b.
  • the base layer (for example, the dummy substrate 41) used when forming the sacrificial layer (second piezoelectric layer 25b) has a lattice constant close to that of the first piezoelectric layer 25a and the sacrificial layer, and the first piezoelectric layer 25a and A material that improves the crystal growth of the sacrificial layer may be selected.
  • the underlying layer may be formed as an orientation control layer on the dummy substrate 41, or may be the dummy substrate 41 itself as in this embodiment.
  • the formation method of the first piezoelectric layer 25a, the second piezoelectric layer 25b, the upper electrode 26, the lower electrode 24, and the like is not limited to the above-described sputtering method, but is a CVD method (Chemical Vapor Deposition), a sol-gel method.
  • the PLD method Pulse Laser Deposition
  • the PLD method may be used.
  • the piezoelectric layer 25 when the second piezoelectric layer 25b is etched and the piezoelectric layer 25 is peeled off from the dummy substrate 41, the piezoelectric layer 25 is processed into the shape of a device (actuator) by the same etching. However, the piezoelectric layer 25 may be processed into a desired shape after the piezoelectric layer 25 is transferred onto the lower electrode 24.
  • the dummy substrate 41 made of MgO single crystal is etched with hydrofluoric acid used for etching the piezoelectric layer 25 and is a relatively expensive material, and it is desired to reuse it as much as possible. Therefore, in this embodiment, the etching protection film 43 is formed on the back surface of the dummy substrate 41.
  • the method of protecting the dummy substrate 41 is not limited to this, and the back surface of the dummy substrate 41 may be covered with a jig other than providing the etching protection film 43.
  • the etchant used for etching the piezoelectric layer 25 is not limited to hydrofluoric acid.
  • the first piezoelectric layer 25a and the second piezoelectric layer 25b can be appropriately selected according to the material, composition, additive concentration, and the like.
  • the concentration of the chemical solution (etching solution) is a parameter for controlling the selection ratio (the etching rate of the first piezoelectric layer 25a and the second piezoelectric layer 25b). What is necessary is just to set suitably by sheath shape.
  • the pressure-sensitive adhesive sheet used for transfer is not limited to the PDMS sheet 44. Since the adhesiveness differs depending on the combination of the first piezoelectric layer 25a, the second piezoelectric layer 25b, and the electrode layer (for example, the lower electrode 24) on the device substrate 22, an adhesive sheet suitable for transfer may be appropriately selected.
  • the upper electrode 26 is formed on the transferred piezoelectric layer 25.
  • the upper electrode 26 is formed by the piezoelectric body. It may be before the transfer of the layer 25 onto the lower electrode 24, that is, after the first piezoelectric layer 25 a is formed on the dummy substrate 41.
  • the first before transfer is performed.
  • the electrode formed on the piezoelectric layer 25 a is joined to the lower electrode 24. At this time, since the electrodes (metals) are joined, adhesion is improved.
  • the adhesion layer for improving the adhesion between the Pt layer constituting the lower electrode 24 and the underlying layer is not formed. May be formed. Further, an oxide film or the like may be added as necessary.
  • ink for drawing an image on a recording medium is used as a liquid, and this ink is ejected as a droplet from the inkjet head 21 or the inkjet printer 1.
  • the liquid to be used is not limited to the above ink for image drawing as long as it can be ejected as droplets.
  • a processing resist used in a photolithography technique can be used as a liquid and discharged onto an object.
  • the piezoelectric actuator of the present embodiment described above is a piezoelectric actuator having a lower electrode, a piezoelectric layer and an upper electrode in this order from the substrate side, and each of the piezoelectric layers has a perovskite structure, and A piezoelectric layer having two piezoelectric layers having different additive amounts and having a relatively large additive amount of the two piezoelectric layers to be laminated is defined as a first piezoelectric layer.
  • the second piezoelectric layer is a piezoelectric layer with a relatively small amount of added, the area of the second piezoelectric layer is larger than the area of the first piezoelectric layer in a plane perpendicular to the thickness direction of the piezoelectric layer. Is also small.
  • the piezoelectric layer has two piezoelectric layers (a first piezoelectric layer and a second piezoelectric layer) having different additive amounts.
  • the area of the second piezoelectric layer with a relatively small amount of additive added is smaller than the area of the first piezoelectric layer with a relatively large amount of additive added.
  • a second piezoelectric layer and a first piezoelectric layer are formed in this order as a piezoelectric layer on a dummy substrate different from a device substrate, and the sacrificial layer is formed using the second piezoelectric layer as a sacrificial layer.
  • the piezoelectric layer is etched to peel off the piezoelectric layer from the dummy substrate, the peeled piezoelectric layer is transferred onto the lower electrode formed on the device substrate, and the upper electrode is formed on the piezoelectric layer.
  • a piezoelectric actuator having a lower electrode, a piezoelectric layer, and an upper electrode in this order can be manufactured from the device substrate side.
  • the second piezoelectric layer Since the additive amount of the additive is relatively smaller in the second piezoelectric layer than in the first piezoelectric layer, the second piezoelectric layer has a relatively higher etching rate, resulting in an in-plane perpendicular to the thickness direction. The area at is smaller than that of the first piezoelectric layer.
  • each of the first piezoelectric layer and the second piezoelectric layer has a perovskite structure and the additive amount of the additive is different from each other. Therefore, a piezoelectric material (for example, PZT) having a perovskite structure is used, and an additive (for example, lanthanum or The first piezoelectric layer and the second piezoelectric layer can be easily realized simply by adjusting the addition amount of niobium.
  • the adjustment of the addition amount includes making the addition amount zero.
  • the material of the layer functioning as a sacrificial layer and the amount of additive added can be set. That is, as the material of the second piezoelectric layer, a material having at least a part of the composition in common with the first piezoelectric layer can be used, and the crystal growth property of the first piezoelectric layer is good and the material itself is easily etched. It is not necessary to search for a material having a completely different composition from that of the first piezoelectric layer.
  • the upper piezoelectric layer (for example, the first piezoelectric layer) is made to take over the crystallinity of the lower piezoelectric layer (for example, the second piezoelectric layer having a perovskite structure) out of the first piezoelectric layer and the second piezoelectric layer. Since the perovskite structure can be grown satisfactorily, the piezoelectric characteristics of the upper piezoelectric layer and thus the entire piezoelectric layer can be improved.
  • the material of the layer functioning as a sacrificial layer (second piezoelectric layer) on the dummy substrate is avoided from being significantly limited.
  • the piezoelectric characteristics can be improved without narrowing the selection range of the material of the underlayer (second piezoelectric layer) that is advantageous for crystal growth of the first piezoelectric layer.
  • the piezoelectric layer can be peeled from the dummy substrate, so that the peeled dummy substrate can be reused, thereby improving the productivity of the piezoelectric actuator. it can.
  • the manufacturing method of the piezoelectric actuator of the present embodiment described above includes a step of forming a lower electrode on a base including a device substrate, a step of forming a piezoelectric layer on the lower electrode, and the piezoelectric layer
  • An upper electrode forming step, and the step of forming the piezoelectric layer has a perovskite structure as a piezoelectric layer on a dummy substrate different from the device substrate, and is added
  • a piezoelectric layer having a relatively large amount of additive added is defined as a first piezoelectric layer
  • a piezoelectric layer having a relatively small amount of additive added is defined as a second piezoelectric layer.
  • the second piezoelectric layer and the first piezoelectric layer are stacked in this order on the dummy substrate, and in the peeling step, in a plane perpendicular to the thickness direction of the piezoelectric layer, The piezoelectric layer is separated from the dummy substrate by etching and separating the second piezoelectric layer as a sacrificial layer so that the area of the second piezoelectric layer is smaller than the area of the first piezoelectric layer.
  • the second piezoelectric layer and the first piezoelectric layer as the piezoelectric layer are stacked in this order on the dummy substrate, the second piezoelectric layer is etched and separated as a sacrificial layer, and the piezoelectric body is separated.
  • the layer is peeled from the dummy substrate. Then, the peeled piezoelectric layer is transferred onto the lower electrode formed on the device substrate, and the upper electrode is formed on the piezoelectric layer, whereby the piezoelectric actuator is manufactured.
  • the second piezoelectric layer Since the additive amount of the additive is relatively smaller in the second piezoelectric layer than in the first piezoelectric layer, the second piezoelectric layer has a relatively higher etching rate, resulting in an in-plane perpendicular to the thickness direction. The area at is smaller than that of the first piezoelectric layer.
  • each of the first piezoelectric layer and the second piezoelectric layer has a perovskite structure and the additive amount of the additive is different from each other. Therefore, a piezoelectric material (for example, PZT) having a perovskite structure is used, and an additive (for example, lanthanum or The first piezoelectric layer and the second piezoelectric layer can be easily realized simply by adjusting the addition amount of niobium.
  • the adjustment of the addition amount includes making the addition amount zero.
  • the addition of the material and additives of the second piezoelectric layer serving as the sacrificial layer is independent of the material of the dummy substrate. You can set the amount. That is, as the material of the second piezoelectric layer, a material having at least a part of the composition in common with the first piezoelectric layer can be used, and the crystal growth property of the first piezoelectric layer is good and the material itself is easily etched. It is not necessary to search for a material having a completely different composition from that of the first piezoelectric layer.
  • the second piezoelectric layer has a perovskite structure
  • the first piezoelectric layer can be favorably grown on the second piezoelectric layer with the perovskite structure so as to inherit the crystallinity of the second piezoelectric layer. It is possible to improve the piezoelectric characteristics of one piezoelectric layer and thus the entire piezoelectric layer.
  • the material of the layer functioning as a sacrificial layer (second piezoelectric layer) on the dummy substrate is avoided from being significantly limited.
  • the piezoelectric characteristics can be improved (without narrowing the range of selection of the material of the second piezoelectric layer that is advantageous for crystal growth of the first piezoelectric layer).
  • the piezoelectric layer can be peeled from the dummy substrate by etching the second piezoelectric layer, the peeled dummy substrate can be reused, and thereby the productivity of the piezoelectric actuator can be improved.
  • the second piezoelectric layer (on the lower electrode) is thinner than the first piezoelectric layer.
  • the remaining piezoelectric layer is transferred onto the lower electrode from the lower electrode side so that the second piezoelectric layer and the first piezoelectric layer are stacked.
  • the first piezoelectric layer can be held in a state of being substantially in contact with the lower electrode. Thereby, the drive (extension / contraction) of the first piezoelectric layer can be efficiently transmitted to the lower layer including the lower electrode.
  • the second piezoelectric layer may be located closer to the substrate than the first piezoelectric layer.
  • a piezoelectric actuator having the lower electrode, the second piezoelectric layer, the first piezoelectric layer, and the upper electrode in this order from the substrate side can be realized.
  • the first piezoelectric layer and the second piezoelectric layer include the same element at the A site of the ABO 3 type perovskite structure, and include the same element at the B site.
  • the two piezoelectric layers may be made of a material having an etching rate larger than that of the first piezoelectric layer.
  • the first piezoelectric layer and the second piezoelectric layer having different etching rates can be easily realized only by adjusting the amount of the additive added to the A site or the B site.
  • the second piezoelectric layer can be easily separated by etching, and the piezoelectric layer can be easily peeled from the dummy substrate.
  • both the first piezoelectric layer and the second piezoelectric layer may have a crystal structure containing lead at the A site.
  • the first piezoelectric layer and the second piezoelectric layer have a lead-based perovskite structure, the above-described effects can be obtained.
  • both the first piezoelectric layer and the second piezoelectric layer may have a crystal structure containing zirconium at the B site and a crystal structure containing titanium at the B site. Good.
  • the first piezoelectric layer and the second piezoelectric layer have lead zirconate titanate (PZT) as a basic crystal structure. Therefore, it is possible to realize two types of piezoelectric layers, that is, the first piezoelectric layer and the second piezoelectric layer, by varying the amount of additive added to PZT.
  • PZT lead zirconate titanate
  • the first piezoelectric layer may further have a crystal structure containing lanthanum at the A site. Since the first piezoelectric layer is composed of lead lanthanum zirconate titanate (PLZT), the second piezoelectric layer can be easily realized by adjusting the amount of lanthanum (La) added to PZT.
  • PZT lead lanthanum zirconate titanate
  • the crystal structure of the second piezoelectric layer may all be lanthanum-free.
  • the first piezoelectric layer is PLZT and the second piezoelectric layer is PZT, the above-described effects can be obtained.
  • the second piezoelectric layer further has a crystal structure containing lanthanum at an A site, and the amount of lanthanum added to the first piezoelectric layer is the amount of lanthanum added to the second piezoelectric layer. It may be greater than the amount.
  • the first piezoelectric layer is PLZT with a large La addition amount
  • the second piezoelectric layer is PLZT with a small La addition amount
  • the first piezoelectric layer may further have a crystal structure containing niobium at the B site. Since the first piezoelectric layer is composed of lead niobium zirconate titanate (PNZT), the second piezoelectric layer can be easily realized by adjusting the amount of niobium (Nb) added to PZT.
  • PNZT lead niobium zirconate titanate
  • the crystal structure of the second piezoelectric layer may be all free of niobium.
  • the above-described effect can be obtained in a configuration in which the first piezoelectric layer is PNZT and the second piezoelectric layer is PZT.
  • the second piezoelectric layer further has a crystal structure containing niobium at a B site, and the amount of niobium added to the first piezoelectric layer is the amount of niobium added to the second piezoelectric layer. It may be greater than the amount.
  • the above-described effects can be obtained in a configuration in which the first piezoelectric layer is PNZT with a large amount of Nb added and the second piezoelectric layer is PNZT with a small amount of Nb added.
  • the droplet discharge head of the present embodiment described above includes the above-described piezoelectric actuator and a nozzle plate having nozzle holes for discharging liquid as droplets, and the substrate of the piezoelectric actuator includes the liquid Is formed, and the nozzle hole of the nozzle plate communicates with the pressure chamber.
  • the method for manufacturing a droplet discharge head according to the present embodiment described above is a method for manufacturing a droplet discharge head using the above-described method for manufacturing a piezoelectric actuator.
  • a step of forming a pressure chamber for storing a liquid in the device substrate, and a nozzle plate communicating with the pressure chamber and having nozzle holes for discharging the liquid as droplets are attached to the device substrate. Process.
  • the piezoelectric characteristics can be improved and the productivity of the piezoelectric actuator can be improved. Therefore, according to the droplet discharge head including the piezoelectric actuator and the manufacturing method thereof, the droplet discharge characteristics can be improved and the productivity of the droplet discharge head can be improved.
  • the liquid accommodated in the pressure chamber may be ink for drawing an image.
  • the droplet discharge head can be used as an inkjet head.
  • the droplet discharge device of the present embodiment described above includes the above-described droplet discharge head and a support member that supports the droplet discharge head.
  • the method for manufacturing a droplet discharge device according to the present embodiment described above is a method for manufacturing a droplet discharge device using the above-described method for manufacturing a droplet discharge head. A step of installing the droplet discharge head on the support member.
  • the droplet can be discharged from the droplet discharge head supported by the support member to discharge the droplet onto the object.
  • the droplet discharge device is used as an ink jet printer that discharges ink onto the recording medium to form an image. Can do.
  • the piezoelectric actuator of the present invention can be used for a droplet discharge head and a droplet discharge device such as an inkjet head and an inkjet printer.
  • Inkjet printer (droplet ejection device) 12 Support member 21 Inkjet head (droplet ejection head) 21a Actuator (piezoelectric actuator) 22 Substrate (Device substrate) 22a Pressure chamber 24 Lower electrode 25 Piezoelectric layer 25a First piezoelectric layer 25b Second piezoelectric layer 26 Upper electrode 31 Nozzle plate 31a Nozzle hole 41 Dummy substrate P Recording medium

Abstract

 アクチュエータ(21a)は、基板(22)側から、下部電極(24)、圧電体層(25)および上部電極(26)をこの順で有する。圧電体層(25)は、ペロブスカイト構造をそれぞれ持ち、かつ、添加物の添加量が互いに異なる2つの圧電層を有している。積層される2つの圧電層のうち、添加物の添加量が相対的に多い圧電層を第1圧電層(25a)とし、添加物の添加量が相対的に少ない圧電層を第2圧電層(25b)としたとき、圧電体層(25)の厚み方向に垂直な面内において、第2圧電層(25b)の面積は、第1圧電層(25a)の面積よりも小さい。

Description

圧電アクチュエータ、圧電アクチュエータの製造方法、液滴吐出ヘッド、液滴吐出ヘッドの製造方法、液滴吐出装置および液滴吐出装置の製造方法
 本発明は、基板側から、下部電極、圧電体層および上部電極をこの順で有する圧電アクチュエータおよびその製造方法、上記圧電アクチュエータを備えた液滴吐出ヘッドおよびその製造方法、上記液滴吐出ヘッドを備えた液滴吐出装置およびその製造方法に関するものである。
 従来から、アクチュエータやセンサなどのデバイスに、PZT(チタン酸ジルコン酸鉛)をはじめとする種々の圧電体が用いられている。圧電体としては、バルク状の圧電体が知られているが、近年では、デバイスの小型化、薄型化のニーズに応えるべく、圧電体を小型化、薄膜化することが必要となってきている。特に、インクジェットヘッドのアクチュエータに圧電体を適用する場合には、印刷画像の高精細化のためにノズルを高密度に搭載する必要があるため、圧電体を小型、薄膜で形成することが重要である。
 薄膜の圧電体は、それ単体で形成することはできず、基板上に、スパッタリング法やゾルゲル法など、各種の成膜プロセスを用いて成膜しなければならない。基板上に、下部電極、圧電体層、上部電極を順次積層していく場合、圧電体層は、基板を含む下地層の材料や応力、結晶構造、表面のラフネス等の影響を受ける。このため、圧電体を薄膜化することで、圧電材料そのものの特性を引き出せず、圧電定数と呼ばれる特性が、バルク状の圧電体と比べて小さくなってしまう。
 特に、圧電体層をアクチュエータまたはセンサ等に適用する場合、圧電体層をd31モードで駆動することが多い。d31モードとは、圧電体層を厚さ方向において2つの電極で挟み、圧電体層の厚さ方向に垂直な面内方向の歪みを利用して圧電体層を駆動する方式である。この駆動方式を採用する場合、圧電体層の下地には、圧電体層を挟む2つの電極の一方、すなわち、下部電極が含まれる。圧電体層の特性を向上させる方法として、その下地となる下部電極の導電性を確保したまま、下部電極の配向性を制御したり、下部電極と圧電体層との間に配向制御層を設けるなどの様々な方法が用いられてはいるが、それでも、薄膜とバルク状とで、圧電体の圧電定数に大きな差がある。なお、下部電極が圧電体層の下地となる場合、下部電極には、圧電体層の駆動時にその下層(基板を含む)との間で剥離が生じないような密着性も要求される。
 そのため、デバイス用の基板上に、圧電体層を含む各層を順次積層していく方法ではなく、ダミー基板上に圧電体層を成膜し、これをデバイス用の基板に貼り付ける、いわゆる「転写」という技術が研究されている。この転写による方法では、ダミー基板上に電極を形成する必要が無いため、上記電極に要求される制約(上述した導電性、配向性、下層との密着性など)を考えなくても済み、デバイス用の基板上に各層を順次積層する場合に比べて、圧電体層の結晶成長に有利な下地層(材料)を幅広く選択できるという利点がある。しかし、その反面、ダミー基板から圧電体層をどのようにして剥離し、転写するかという点が問題となる。
 圧電体層をダミー基板から剥離する方法としては、(1)転写させたい圧電体層を、犠牲層を介してダミー基板上に形成した後、その犠牲層をエッチングで除去する方法、(2)犠牲層としての分離層にダミー基板側から光を照射して、分離層の層内または界面において剥離を生じさせる方法、(3)ダミー基板そのものをウェットエッチングまたはドライエッチングによって無くす(消滅させる)方法がある。上記(2)の方法については、例えば特許文献1に開示されており、上記(3)の方法については、例えば特許文献2に開示されている。
特開平10-125931号公報(請求項1、段落〔0011〕、〔0118〕~〔0133〕、図5等参照) 特開2011-71467号公報(請求項1、段落〔0049〕~〔0051〕、図1等参照)
 ところが、上記(1)の方法では、転写させたい圧電体層よりも犠牲層のエッチングレートが大きくなければならない、あるいは犠牲層のエッチングの際に、転写させたい圧電体層がエッチングされないようにすることが必要となる。このため、犠牲層の材料として、その上に形成される圧電体層の結晶成長性がよく、かつ、自身もエッチングされやすくなるような材料を選ぶ必要があり、犠牲層として使用できる材料が著しく制限される。つまり、上記の方法では、電極上に圧電体層を形成する場合に上記電極に求められていた導電性や配向性といった制約が、圧電体層の結晶成長性がよく、かつ、圧電体層よりもエッチングされやすい材料で犠牲層を形成しなければならないといった制約に置き換わっただけであり、圧電体層を転写で形成することによる本来の利点、つまり、圧電体層の結晶成長に有利な下地層を幅広く選択できるという利点が得られることにはならない。
 また、上記(2)の方法では、犠牲層とダミー基板とで光の吸収率に差を持たせなければならないという条件が加わり、ダミー基板との関係で犠牲層の材料がさらに制限される。上記(3)の方法では、ダミー基板そのものが消耗品となるため、圧電アクチュエータの生産ごとにダミー基板を用意することが必要となり、圧電アクチュエータの生産性が低くなる。特に、ダミー基板として高価な基板を使用する場合、コスト面から、上記の生産性の低下が顕著となる。
 本発明は、上記の問題点を解決するためになされたもので、その目的は、圧電体層をダミー基板上に形成してから下部電極上に転写する方法を採用する場合でも、ダミー基板上で犠牲層として機能する層の材料が著しく制限されるのを回避しながら圧電特性を向上させるとともに、ダミー基板を再利用して生産性を向上させることができる圧電アクチュエータおよびその製造方法、上記圧電アクチュエータを備えた液滴吐出ヘッドおよびその製造方法、上記液滴吐出ヘッドを備えた液滴吐出装置およびその製造方法を提供することにある。
 本発明の一側面に係る圧電アクチュエータは、基板側から、下部電極、圧電体層および上部電極をこの順で有する圧電アクチュエータであって、前記圧電体層は、ペロブスカイト構造をそれぞれ持ち、かつ、添加物の添加量が互いに異なる2つの圧電層を有しており、積層される前記2つの圧電層のうち、添加物の添加量が相対的に多い圧電層を第1圧電層とし、添加物の添加量が相対的に少ない圧電層を第2圧電層としたとき、前記圧電体層の厚み方向に垂直な面内において、前記第2圧電層の面積は、前記第1圧電層の面積よりも小さい。
 本発明の他の側面に係る液滴吐出ヘッドは、上記の圧電アクチュエータと、液体を液滴として吐出するためのノズル孔を有するノズルプレートとを備え、前記圧電アクチュエータの前記基板には、前記液体を収容する圧力室が形成されており、前記ノズルプレートの前記ノズル孔は、前記圧力室と連通している。
 本発明の他の側面に係る液滴吐出装置は、上記の液滴吐出ヘッドと、前記液滴吐出ヘッドを支持する支持部材とを備えている。
 本発明のさらに他の側面に係る圧電アクチュエータの製造方法は、デバイス用基板を含む基体上に下部電極を形成する工程と、前記下部電極上に、圧電体層を形成する工程と、前記圧電体層上に、上部電極を形成する工程とを含み、前記圧電体層を形成する工程は、前記デバイス用基板とは異なるダミー基板上に、前記圧電体層として、ペロブスカイト構造をそれぞれ持ち、かつ、添加物の添加量が互いに異なる2つの圧電層を積層する積層工程と、前記圧電体層をエッチングして前記ダミー基板から剥離する剥離工程と、剥離された前記圧電体層を前記下部電極上に転写する転写工程とを含み、前記2つの圧電層のうち、添加物の添加量が相対的に多い圧電層を第1圧電層とし、添加物の添加量が相対的に少ない圧電層を第2圧電層としたとき、前記積層工程では、前記ダミー基板上に、前記第2圧電層および前記第1圧電層をこの順で積層し、前記剥離工程では、前記圧電体層の厚み方向に垂直な面内で、前記第2圧電層の面積が、前記第1圧電層の面積よりも小さくなるように、前記第2圧電層を犠牲層としてエッチングして分離することにより、前記圧電体層を前記ダミー基板から剥離する。
 本発明のさらに他の側面に係る液滴吐出ヘッドの製造方法は、上記圧電アクチュエータの製造方法を用いて、液滴吐出ヘッドを製造する液滴吐出ヘッドの製造方法であって、前記圧電アクチュエータの前記デバイス用基板に、液体を収容する圧力室を形成する工程と、前記圧力室と連通し、前記液体を液滴として吐出するためのノズル孔を有するノズルプレートを、前記デバイス用基板に貼り付ける工程とを有している。
 本発明のさらに他の側面に係る液滴吐出装置の製造方法は、上記液滴吐出ヘッドの製造方法を用いて、液滴吐出装置を製造する液滴吐出装置の製造方法であって、前記液滴吐出ヘッドを支持部材に設置する工程を有している。
 圧電体層をダミー基板上に形成してから下部電極上に転写する方法を採用する場合でも、ダミー基板上で犠牲層として機能する層の材料が著しく制限されるのを回避しながら圧電特性を向上させるとともに、ダミー基板を再利用して生産性を向上させることができる。
本発明の実施の一形態に係る液滴吐出装置の一例であるインクジェットプリンタの概略の構成を示す説明図である。 上記インクジェットプリンタが備えるインクジェットヘッドのアクチュエータの概略の構成を示す平面図である。 図2Aの平面図におけるA-A’線矢視断面図である。 上記インクジェットヘッドの構成を示す断面図である。 上記インクジェットヘッドの詳細な構成を示す断面図である。 ペロブスカイト構造を持つPZTの結晶構造を模式的に示す説明図である。 上記インクジェットプリンタの製造工程の流れを示すフローチャートである。 上記インクジェットヘッドの製造工程を示す断面図である。 上記インクジェットヘッドの、図7に続く製造工程を示す断面図である。 上記インクジェットヘッドの、図8に続く製造工程を示す断面図である。 上記インクジェットヘッドの他の構成を示す断面図である。 上記インクジェットヘッドのさらに他の構成を示す断面図である。
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、本明細書において、数値範囲をA~Bと表記した場合、その数値範囲に下限Aおよび上限Bの値は含まれるものとする。
 〔インクジェットプリンタの構成〕
 図1は、本実施形態の液滴吐出装置の一例であるインクジェットプリンタ1の概略の構成を示す説明図である。インクジェットプリンタ1は、インクジェットヘッド部2において、インクジェットヘッド21が記録媒体の幅方向にライン状に設けられた、いわゆるラインヘッド方式のインクジェット記録装置である。
 インクジェットプリンタ1は、上記のインクジェットヘッド部2と、繰り出しロール3と、巻き取りロール4と、2つのバックロール5・5と、中間タンク6と、送液ポンプ7と、貯留タンク8と、定着機構9とを備えている。
 インクジェットヘッド部2は、インクジェットヘッド21から記録媒体Pに向けてインクを吐出させ、画像データに基づく画像形成(描画)を行うものであり、一方のバックロール5の近傍に位置するように、支持部材12によって支持されている。なお、インクジェットヘッド21の詳細については後述する。
 繰り出しロール3、巻き取りロール4および各バックロール5は、軸回りに回転可能な円柱形状からなる部材である。繰り出しロール3は、周面に幾重にも亘って巻回された長尺状の記録媒体Pを、インクジェットヘッド部2との対向位置に向けて繰り出すロールである。この繰り出しロール3は、モータ等の図示しない駆動手段によって回転することで、記録媒体Pを図1のX方向へ繰り出して搬送する。
 巻き取りロール4は、繰り出しロール3より繰り出されて、インクジェットヘッド部2によってインクが吐出された記録媒体Pを周面に巻き取る。
 各バックロール5は、繰り出しロール3と巻き取りロール4との間に配設されている。記録媒体Pの搬送方向上流側に位置する一方のバックロール5は、繰り出しロール3によって繰り出された記録媒体Pを、周面の一部に巻き付けて支持しながら、インクジェットヘッド部2との対向位置に向けて搬送する。他方のバックロール5は、インクジェットヘッド部2との対向位置から巻き取りロール4に向けて、記録媒体Pを周面の一部に巻き付けて支持しながら搬送する。
 中間タンク6は、貯留タンク8より供給されるインクを一時的に貯留する。また、中間タンク6は、複数のインクチューブ10と接続され、各インクジェットヘッド21におけるインクの背圧を調整して、各インクジェットヘッド21にインクを供給する。
 送液ポンプ7は、貯留タンク8に貯留されたインクを中間タンク6に供給するものであり、供給管11の途中に配設されている。貯留タンク8に貯留されたインクは、送液ポンプ7によって汲み上げられ、供給管11を介して中間タンク6に供給される。
 定着機構9は、インクジェットヘッド部2によって記録媒体Pに吐出されたインクを当該記録媒体Pに定着させる。この定着機構9は、吐出されたインクを記録媒体Pに加熱定着するためのヒータや、吐出されたインクにUV(紫外線)を照射することによりインクを硬化させるためのUVランプ等で構成されている。
 上記の構成において、繰り出しロール3から繰り出される記録媒体Pは、バックロール5により、インクジェットヘッド部2との対向位置に搬送され、インクジェットヘッド部2から記録媒体Pに対してインクが吐出される。その後、記録媒体Pに吐出されたインクは定着機構9によって定着され、インク定着後の記録媒体Pが巻き取りロール4によって巻き取られる。このようにラインヘッド方式のインクジェットプリンタ1では、インクジェットヘッド部2を静止させた状態で、記録媒体Pを搬送しながらインクが吐出され、記録媒体Pに画像が形成される。
 なお、インクジェットプリンタ1は、シリアルヘッド方式で記録媒体に画像を形成する構成であってもよい。シリアルヘッド方式とは、記録媒体を搬送しながら、その搬送方向と直交する方向にインクジェットヘッドを移動させてインクを吐出し、画像を形成する方式である。また、記録媒体Pとしては、長尺状のもの以外にも、予め所定の大きさ(形状)に裁断されたシート状のものを用いてもよい。
 〔インクジェットヘッドの構成〕
 次に、上記したインクジェットヘッド21の構成について説明する。図2Aは、インクジェットヘッド21のアクチュエータ21a(圧電アクチュエータ)の概略の構成を示す平面図であり、図2Bは、その平面図におけるA-A’線矢視断面図である。また、図3は、図2Aおよび図2Bのアクチュエータ21aにノズルプレート31を接合してなるインクジェットヘッド21の構成を示す断面図である。
 インクジェットヘッド21(液滴吐出ヘッド)は、複数の圧力室22a(開口部)を有する基板22(デバイス用基板)上に、熱酸化膜23、下部電極24、圧電体層25、上部電極26をこの順で有している。基板22および熱酸化膜23は、下部電極24が形成される下地となる基体を構成しているが、基体の構成はこれらに限定されるわけではない。例えば、熱酸化膜23を省略して、基板22のみで基体を構成することもできる。また、熱酸化膜23の代わりに窒化膜を設けて、基板22と窒化膜とで基体を構成することもできる。
 基板22は、厚さが例えば100~300μm程度の単結晶Si(シリコン)単体からなる半導体基板またはSOI(Silicon  on  Insulator)基板で構成されている。この基板22は、例えば厚さが300~750μm程度の基板を準備し、研磨処理等により100~300μmの厚みにしたものである。なお、図2では、基板22をSOI基板で構成した場合を示している。SOI基板は、酸化膜を介して2枚のSi基板を接合したものである。基板22における圧力室22aの上壁(圧力室22aよりも圧電体層25の形成側に位置する壁)は、従動膜となる振動板22bを構成しており、圧電体層25の駆動(伸縮)に伴って変位(振動)し、圧力室22a内のインクに圧力を付与する。
 熱酸化膜23は、例えば厚さが0.1μm程度のSiO2(酸化シリコン)からなり、基板22の保護および絶縁の目的で形成されている。
 下部電極24は、複数の圧力室22aに共通して設けられるコモン電極であり、Ti(チタン)層とPt(白金)層とを積層して構成されている。Ti層は、熱酸化膜23とPt層との密着性を向上させるために形成されている。Ti層の厚さは例えば0.02μm程度であり、Pt層の厚さは例えば0.1μm程度である。なお、Ti層の代わりに酸化チタン(TiOx)からなる層を形成してもよい。また、密着性を向上させるためのTi層を省略し、Pt層のみで下部電極24を構成してもよい。
 圧電体層25は、ペロブスカイト構造を有する2つの圧電層を積層することで構成されているが、その詳細については後述する。圧電体層25の膜厚は、例えば1μm以上10μm以下とすることができるが、インクジェットヘッド用の圧電アクチュエータとしては、2μm以上6μm以下であることが、薄膜の構成でインクの吐出を確実に行える観点から望ましい。
 上部電極26は、各圧力室22aに対応して設けられる個別電極であり、Ti層とPt層とを積層して構成されている。Ti層は、圧電体層25とPt層との密着性を向上させるために形成されている。Ti層の厚さは例えば0.02μm程度であり、Pt層の厚さは例えば0.1~0.2μm程度である。上部電極26は、下部電極24との間で圧電体層25を膜厚方向から挟むように設けられている。なお、Pt層の代わりに、金(Au)からなる層を形成してもよい。また、密着性を高めるためのTi層を省略してもよい。
 下部電極24、圧電体層25および上部電極26は、圧力室22a内のインクを外部に吐出させるための薄膜の圧電素子27を構成している。この圧電素子27は、駆動回路28から下部電極24および上部電極26に印加される電圧(駆動信号)に基づいて駆動される。インクジェットヘッド21は、圧電素子27および圧力室22aを縦横に並べることにより形成される。
 圧力室22aの振動板22bとは反対側には、ノズルプレート31が接合されている。ノズルプレート31には、圧力室22aと連通し、圧力室22aに収容されるインクをインク滴として外部に吐出するためのインク吐出孔(ノズル孔)31aが形成されている。圧力室22aには、中間タンク6より供給されるインクが収容される。
 上記の構成において、駆動回路28から下部電極24および上部電極26に電圧を印加すると、圧電体層25が、下部電極24と上部電極26との電位差に応じて、厚さ方向に垂直な方向(基板22の面に平行な方向)に伸縮する。そして、圧電体層25と振動板22bとの長さの違いにより、振動板22bに曲率が生じ、振動板22bが厚さ方向に変位(湾曲、振動)する。
 したがって、圧力室22a内にインクを収容しておけば、上述した振動板22bの振動により、圧力室22a内のインクに圧力波が伝搬され、圧力室22a内のインクがインク吐出孔31aからインク滴として外部に吐出される。
 〔圧電体層の詳細〕
 次に、上記した圧電体層25の詳細について説明する。図4は、インクジェットヘッド21の詳細な構成を示す断面図である。なお、図4では、熱酸化膜23の形成を省略している。
 圧電体層25は、第1圧電層25aと、第2圧電層25bとを積層して構成されている。第1圧電層25aおよび第2圧電層25bは、それぞれ、ペロブスカイト構造を持ち、かつ、添加物の添加量が互いに異なる圧電層である。
 ここで、図5は、ペロブスカイト構造を持つ圧電体の一例として、PZTの結晶構造を模式的に示している。ペロブスカイト構造とは、理想的には立方晶系の単位格子を有しており、立方晶の各頂点(Aサイト)に配置される金属(例えばPb)、体心(Bサイト)に配置される金属(例えばジルコニウム(Zr)またはチタン(Ti))、立方晶の各面心に配置される酸素(O)とから構成されるABO3型の結晶構造のことである。ペロブスカイト構造の結晶には、立方晶が歪んだ正方晶、斜方晶、菱面体晶等も含まれるものとする。
 本実施形態では、第1圧電層25aおよび第2圧電層25bは、PZTを共通の組成としている。つまり、第1圧電層25aおよび第2圧電層25bは、両方とも、AサイトにPbを含み、かつ、BサイトにZrを含む結晶構造と、AサイトにPbを含み、かつ、BサイトにTiを含む結晶構造とを持つ。そして、第1圧電層25aは、Aサイトに添加物としてランタン(La)を含む結晶構造をさらに持つ。これにより、第1圧電層25aは、ペロブスカイト構造のチタン酸ジルコン酸ランタン鉛(PLZT)で構成されることになる。一方、第2圧電層25bが持つ結晶構造は、全て、La無添加であり、第2圧電層25bはPZTで構成されることになる。
 このように、本実施形態では、積層される2つの圧電層のうち、添加物の添加量が相対的に多い圧電層が第1圧電層25aであり、添加物の添加量が相対的に少ない(添加量がゼロの場合を含む)圧電層が第2圧電層25bである。
 圧電体層25の厚み方向に垂直な面内において、第2圧電層25bの面積は、第1圧電層25aの面積よりも小さい。これにより、後述する圧電体層25の転写によって、アクチュエータ21aを製造する方法を採用することができる。また、本実施形態では、第2圧電層25bは、第1圧電層25aよりも厚さが薄く、第1圧電層25aよりも基板22側に位置している。
 〔インクジェットプリンタの製造方法〕
 次に、インクジェットプリンタ1の製造方法について説明する。図6は、インクジェットプリンタ1の製造工程の流れを示すフローチャートである。インクジェットプリンタ1の製造方法は、下部電極形成工程(S1)、圧電体層形成工程(S2)、上部電極形成工程(S3)、圧力室形成工程(S4)、ノズルプレート貼付工程(S5)、ヘッド設置工程(S6)を含む。このうち、S1~S5の工程が、インクジェットヘッド21の製造工程に対応し、S1~S3の工程が、アクチュエータ21aの製造工程に対応する。なお、S1の工程は、S2の後述する転写工程S2-3までに行われればよく、転写工程S2-3までであれば、どの時点で行われてもよい(必ずしもS2の前に行われる必要はない)。以下、各工程の詳細について、図7~図9に基づいて説明する。図7~図9は、インクジェットヘッド21の製造工程を示す断面図である。
 (1)まず、Siからなるデバイス用の基板22を含む基体上に、Ptをスパッタリングにより成膜し、下部電極24を形成する(S1)。なお、上記基体は、基板22のみで構成されてもよく、基板22上に熱酸化膜を形成して構成されてもよい。
 次に、下部電極24上に、圧電体層25を転写して形成する(S2)。より詳しくは、以下の通りである。
 (2)まず、単結晶基板として、酸化マグネシウム(MgO)からなるダミー基板41を用意する。
 (3)ダミー基板41上に、スパッタリングによりPZTを成膜し、厚さ0.5μmの第2圧電層25bを犠牲層として形成する。
 (4)第2圧電層25b上に、スパッタリングによりPLZTを成膜し、厚さ3μmの第1圧電層25aを形成する。上記(2)~(4)の工程が、ダミー基板41上に、ペロブスカイト構造をそれぞれ持ち、かつ、添加物の添加量が互いに異なる2つの圧電層(第1圧電層25a、第2圧電層25b)を積層する積層工程(S2-1)に対応する。
 (5)第1圧電層25a上に、レジスト42を塗布し、パターニングする。
 (6)ダミー基板41の裏面(第1圧電層25aとは反対側の面)に、次工程で使用するエッチング液(フッ硝酸)によってダミー基板41がエッチングされるのを防止するため、エッチング保護膜43を形成する。
 (7)第1圧電層25aをフッ硝酸によってエッチングする。このとき、同時に、第1圧電層25aをデバイスの形状に加工する。
 (8)第1圧電層25aのエッチングが第2圧電層25bまで進むと、そのまま第2圧電層25bもエッチングする。
 (9)第2圧電層25bが完全に切り離される前に、エッチングを止める。PZTからなる第2圧電層25bは、添加物(ここではLa)の添加量がゼロであり、PLZTからなる第1圧電層25aよりも添加物の添加量が少ないため、第1圧電層25aよりもエッチングレートが大きくなり、結果として、厚み方向に垂直な面内での面積が、第1圧電層25aよりも小さくなる。
 (10)レジスト42を除去する。
 (11)粘着シートの一種であるPDMS(ポリジメチルシロキサン)シート44を第1圧電層25aに貼り付けて、PDMSシート44に第1圧電層25aを転写する。このとき、第2圧電層25bが厚み方向に分離され、その一部(分離された部分)が第1圧電層25aとともにPDMSシート44に転写される。これにより、第1圧電層25aおよび第2圧電層25bからなる圧電体層25がダミー基板41から剥離されることになる。上記(5)~(11)の工程が、圧電体層25をエッチングしてダミー基板41から剥離する剥離工程(S2-2)に対応する。
 (12)デバイス用の基板22の下部電極24上に、第1圧電層25aおよび第2圧電層25bからなる圧電体層25を転写することにより、下部電極24上に圧電体層25を形成する(S2-3)。このとき、第2圧電層25bが第1圧電層25aよりも基板22側に位置するように、剥離された圧電体層25を下部電極24上に転写する。その後、PDMSシート44を剥がす。
 (13)第1圧電層25a上に、スパッタリングによりPtを成膜し、上部電極26を形成する(S3)。
 (14)基板22の裏面側をパターニングし、圧力室22aを形成する(S4)。このとき、インク流路等も同時に基板22に形成する。これにより、アクチュエータ21aが完成する。
 (15)基板22の裏面側に、ノズルプレート31を貼り付ける(S5)。これにより、インクジェットヘッド21が完成する。最後に、インクジェットヘッド21を支持部材12(図1参照)で支持することにより、インクジェットプリンタ1が得られる(S6)。
 以上のように、第1圧電層25aおよび第2圧電層25bは、ペロブスカイト構造を持つPLZTおよびPZTでそれぞれ形成されている。これらの層は、ペロブスカイト構造のPZTを共通して用い、PZTに対してLaの添加量を調整することで、容易に実現できる。しかも、犠牲層となる第2圧電層25bとダミー基板41とで光吸収率を異ならせる必要がないため、ダミー基板41の材料とは無関係に(第1圧電層25aの組成だけを考慮して)、犠牲層となる第2圧電層25bの材料およびLaの添加量を設定できる。つまり、第2圧電層25bの材料として、第1圧電層25aと組成が共通する材料(上記の例ではPZT)を使用でき、第1圧電層25aの結晶成長性を向上させ、かつ、自身もエッチングされやすくなるような、第1圧電層25aとは組成の全く異なる材料を一から探さなくても済む。
 また、第2圧電層25bはペロブスカイト構造を持ち、第2圧電層25bの結晶性を引き継ぐようにして、第2圧電層25bの上に第1圧電層25aをペロブスカイト構造で良好に成長させることができるため、第1圧電層25aひいては圧電体層25全体の圧電特性を向上させることができる。
 したがって、圧電体層25を上記のように転写で形成してアクチュエータ21aを製造する際に、ダミー基板41上で犠牲層として機能する層(第2圧電層25b)の材料が著しく制限されるのを回避しながら、圧電特性を向上させることができる。よって、第1圧電層25aの結晶成長に有利な下地層(第2圧電層25b)の材料の選択の幅が広がるという転写による利点も確保される。また、第2圧電層25bをエッチングすることで、圧電体層25をダミー基板41から剥離できるため、剥離したダミー基板41を再利用することができ、これによって、アクチュエータ21aの生産性を向上させることができる。さらに、特許文献1のように、光照射のために大がかりな装置を必要とすることもなく、アクチュエータ21aを容易に製造することができる。
 また、第1圧電層25aおよび第2圧電層25bは、ABO3型のペロブスカイト構造のAサイトに同じ元素(例えばPb)を含み、かつ、Bサイトに同じ元素(例えばZrまたはTi)を含んでいる。これにより、第1圧電層25aに添加物(例えばLa)を加え、第2圧電層25bに添加物を加えないことで、エッチングレートの異なる第1圧電層25aおよび第2圧電層25bを容易に実現することができる。また、第2圧電層25bは、第1圧電層25a(例えばPLZT)よりもエッチングレートが大きい材料(例えばPZT)で構成されている。この場合、第1圧電層25aよりも第2圧電層25bのエッチングが速く進むため、厚み方向に垂直な面内で第1圧電層25aよりも第2圧電層25bの面積を小さくして、第2圧電層25bを厚み方向に分離することが容易となり、これによって、圧電体層25をダミー基板41から剥離することが容易となる。
 また、第1圧電層25aおよび第2圧電層25bは、両方とも、AサイトにPbを含み、かつ、BサイトにZrを含む結晶構造と、AサイトにPbを含み、かつ、BサイトにTiを含む結晶構造とを持つ。このように、第1圧電層25aおよび第2圧電層25bは、両方とも、Pb、Zr、Tiを含んでいるため、添加物の添加量を調整することで、エッチングレートの異なる2種の圧電層(第1圧電層25a、第2圧電層25b)を容易に実現することができる。
 特に、第1圧電層25aは、AサイトにLaを含む結晶構造をさらに持つため、第2圧電層25bをLa無添加のPZTとすることで、第1圧電層25aよりもエッチングレートの大きい第2圧電層25bを容易に実現することができる。そして、第1圧電層25aと第2圧電層25bとが、それぞれPLZTとPZTである構成において、上述した本実施形態の効果を得ることができる。
 図10は、インクジェットヘッド21の他の構成を示す断面図である。同図のように、下部電極24上の第2圧電層25bは、第1圧電層25aよりも厚さが厚くてもよい。ただし、図4等のように、第1圧電層25aよりも第2圧電層25bの厚さが薄いほうが、第1圧電層25aの駆動(伸縮)を効率よく下部電極24を含む下層に伝達できる点で望ましい。つまり、第1圧電層25aは、第2圧電層25bとの接触部以外の部分で下部電極24と接触するように、下部電極24上で支持される(図4では、第1圧電層25aにおける第2圧電層25bとの接触部以外の部分は下部電極24と離間するように図示されているが、実際は第2圧電層25bの厚さは1μm以下と薄いため、第1圧電層25aは第2圧電層25bとの接触部以外の部分で下部電極24とほとんど接触する)。このため、第1圧電層25aの駆動を効率よく下部電極24を介して基板22(振動板22b)に伝達することができ、振動板22bを効率よく振動させることができる。
 図11は、インクジェットヘッド21のさらに他の構成を示す断面図である。同図のように、第2圧電層25bは、第1圧電層25aに対して基板22とは反対側に位置していてもよい。このような構成は、上記した(11)の工程にて、PDMSシート44を第1圧電層25aに貼り付けて圧電体層25を転写した後、さらに、圧電体層25の反対側(第2圧電層25b側)を別の粘着シートに貼り付けて再転写を行い、第1圧電層25a側が下部電極24側となるようにして、圧電体層25を下部電極24上に転写することにより、容易に実現することができる。このような構成であっても、犠牲層となる第2圧電層25bの材料が著しく制限されるのを回避しながら、圧電特性を向上させるなど、上述した本実施形態の効果を得ることができる。
 〔補足〕
 (a)本実施形態では、犠牲層としての第2圧電層25bは、添加物無添加のPZTで構成されているが、第2圧電層25bに添加物が添加されていてもよい。第1圧電層25aに添加物を入れたことによって、第1圧電層25aと第2圧電層25bとで格子定数に差が生じる場合、犠牲層にも添加物を入れて、第1圧電層25aと第2圧電層25bとで格子定数を近づけることにより、圧電特性のさらなる向上も可能である。
 したがって、本実施形態のように、第1圧電層25aが、ABO3型のペロブスカイト構造のPZTのAサイトにLaを添加したPLZTで構成される場合、第2圧電層25bも同様に、PZTのAサイトにLaを添加したPLZTとすることで、第1圧電層25aと第2圧電層25bとの格子定数の差を小さくして、圧電特性をさらに向上させることができる。このとき、第1圧電層25aよりも第2圧電層25bのエッチングレートを大きくして、厚み方向に垂直な面内での第2圧電層25bの面積を第1圧電層25aよりも小さくするため、La添加量は、第1圧電層25aよりも第2圧電層25bのほうを少なくすることが必要である。例えば、第1圧電層25aを、PZTにLaを7%添加したPLZTで構成し、第2圧電層25bを、PZTにLaを1%添加したPLZTで構成することで、第1圧電層25aと第2圧電層25bとで成分は同じであっても、第1圧電層25aよりも第2圧電層25bのエッチングレートを大きくすることができる。
 このことから、第2圧電層25bは、PZTのAサイトにLaを含む結晶構造を持ち、第1圧電層25aのLaの添加量は、第2圧電層25bのLaの添加量よりも多い構成であってもよいと言える。
 (b)第1圧電層25aおよび第2圧電層25bを構成する材料の組み合わせは、PLZTとPZT、PLZT(La添加量大)とPLZT(La添加量小)には限定されない。添加物を添加しても同じペロブスカイト構造を採り、第1圧電層25aよりも第2圧電層25bのエッチングレートが大きくなる材料の組み合わせであればよい。例えば、ABO3型のペロブスカイト構造のPZTのBサイトにニオブ(Nb)を添加したチタン酸ジルコン酸ニオブ鉛(PNZT)を用い、第1圧電層25aおよび第2圧電層25bを構成する材料の組み合わせとして、PNZTとPZT、または、PNZT(Nb添加量大)とPNZT(Nb添加量小)を採用してもよい。この場合でも、上述した本実施形態の同様の効果を得ることができる。
 このことから、第1圧電層25aは、PZTのBサイトにNbを含む結晶構造を持ち、第2圧電層25bが持つ結晶構造は、全て、Nb無添加のPZTであってもよいと言える。また、第2圧電層25bが、PZTのBサイトにNbを含む結晶構造を持ち、第1圧電層25aおよび第2圧電層25bがともにPNZTで構成される場合において、第1圧電層25aのNbの添加量は、第2圧電層25bのNbの添加量よりも多くてもよいと言える。
 (c)第1圧電層25aおよび第2圧電層25bを構成するABO3型のペロブスカイト構造の圧電材料は、上記のPZT、PLZT、PNZTに限定されるわけではない。Aサイトの元素は、鉛(Pb)、バリウム(Ba)、ランタン(La)、ストロンチウム(Sr)、ビスマス(Bi)、リチウム(Li)、ナトリウム(Na)、カルシウム(Ca)、カドミウム(Cd)、マグネシウム(Mg)、カリウム(K)の少なくとも1つを含んでいればよい。また、Bサイトの元素は、ジルコニウム(Zr)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、マンガン(Mn)、スカンジウム(Sc)、コバルト(Co)、銅(Cu)、インジウム(In)、スズ(Sn)、ガリウム(Ga)、カドミウム(Cd)、鉄(Fe)、ニッケル(Ni)の少なくとも1つを含んでいればよい。いずれにしても、第1圧電層25aと第2圧電層25bとで基本となる組成(AサイトおよびBサイトの元素)を同じとし、AサイトまたはBサイトへの添加物の添加量を異ならせることで、エッチングレートの異なる第1圧電層25aおよび第2圧電層25bを容易に実現することができる。また、第1圧電層25aと第2圧電層25bとで、添加物は異なっていてもよい。
 (d)犠牲層(第2圧電層25b)を成膜するときの下地となる層(例えばダミー基板41)は、第1圧電層25aおよび犠牲層と格子定数が近く、第1圧電層25aおよび犠牲層の結晶成長性を向上させるものを選べばよい。上記の下地となる層は、ダミー基板41上に配向制御層として形成してもよいし、本実施形態のように、ダミー基板41そのものであってもよい。
 (e)本実施形態では、上部電極26および下部電極24を、例えばPt等の金属で形成した場合について説明したが、このような金属に限定されるわけではなく、導電性酸化物等で形成してもよい。
 (f)第1圧電層25a、第2圧電層25b、上部電極26、下部電極24等の形成方法は、上述したスパッタリング法に限定されるわけではなく、CVD法(Chemical Vapor  Deposition  )、ゾルゲル法、PLD法(Pulse  Laser Deposition)などであってもよい。
 (g)本実施形態では、第2圧電層25bをエッチングして、圧電体層25をダミー基板41から剥離する際に、同じエッチングによって圧電体層25をデバイス(アクチュエータ)の形状に加工しているが、圧電体層25を所望の形状に加工するのは、圧電体層25を下部電極24上に転写した後であってもよい。
 (h)MgO単結晶からなるダミー基板41は、圧電体層25をエッチングするときに用いるフッ硝酸でエッチングされる上、比較的高価な材料であり、できるだけ再利用したい。そのため、本実施形態では、ダミー基板41の裏面にエッチング保護膜43を形成している。しかし、ダミー基板41の保護の仕方はこれに限定されるわけではなく、エッチング保護膜43を設ける以外にも、ダミー基板41の裏面を治具で覆うようにしてもよい。
 (i)圧電体層25のエッチングに用いるエッチング液は、フッ硝酸に限定されるわけではない。第1圧電層25aおよび第2圧電層25bの材料、組成、添加物濃度等に応じて適宜選択することが可能である。また、薬液(エッチング液)の濃度も、添加物濃度と同様に、選択比(第1圧電層25aおよび第2圧電層25bのエッチングレート)をコントロールするパラメータとなるので、圧電体層25の厚さや形状等によって適宜設定すればよい。
 (j)転写に用いる粘着シートは、PDMSシート44に限定されるわけではない。第1圧電層25a、第2圧電層25b、デバイス用の基板22上の電極層(例えば下部電極24)との組み合わせによって密着性が異なるため、転写に好適な粘着シートを適宜選択すればよい。
 (k)本実施形態では、圧電体層25の下部電極24上への転写後、転写された圧電体層25上に上部電極26を形成しているが、上部電極26の形成は、圧電体層25の下部電極24上への転写前、つまり、ダミー基板41上に第1圧電層25aを形成した後であっても構わない。なお、圧電体層25の下部電極24上への転写の際に、第1圧電層25aが第2圧電層25bよりも下部電極24側となるように転写を行う場合は、転写前の第1圧電層25a上に形成した電極は、下部電極24と接合される。このとき、電極同士(金属同士)の接合となるため、密着性が向上する。
 (l)本実施形態では、圧電体層25の下部電極24上への転写後、デバイス用の基板22に圧力室22aを形成する加工を行っているが、この加工は圧電体層25の転写前に行ってもよい。
 (m)図6~図9に基づいて説明した製造方法では、下部電極24を構成するPt層とその下地層との密着性を高めるための密着層を形成していないが、勿論、密着層を形成してもよい。また、必要に応じて、酸化膜等を追加してもよい。
 (n)本実施形態では、記録媒体上に画像を描画するためのインクを液体として使用し、このインクを液滴として、インクジェットヘッド21またはインクジェットプリンタ1から吐出するようにしている。使用する液体は、液滴として吐出できるものであればよく、画像描画用の上記インクには限定されない。例えば、フォトリソグラフィー技術で用いられる加工用のレジストなどを液体として用いて、対象物に吐出する構成とすることもできる。
 以上で説明した本実施形態の圧電アクチュエータは、基板側から、下部電極、圧電体層および上部電極をこの順で有する圧電アクチュエータであって、前記圧電体層は、ペロブスカイト構造をそれぞれ持ち、かつ、添加物の添加量が互いに異なる2つの圧電層を有しており、積層される前記2つの圧電層のうち、添加物の添加量が相対的に多い圧電層を第1圧電層とし、添加物の添加量が相対的に少ない圧電層を第2圧電層としたとき、前記圧電体層の厚み方向に垂直な面内において、前記第2圧電層の面積は、前記第1圧電層の面積よりも小さい。
 上記の構成によれば、圧電体層は、添加物の添加量が互いに異なる2つの圧電層(第1圧電層、第2圧電層)を有している。圧電体層の厚み方向に垂直な面内において、添加物の添加量の相対的に少ない第2圧電層の面積は、添加物の添加量の相対的に多い第1圧電層の面積よりも小さい。このような2つの圧電層を積層して圧電体層を構成することにより、圧電アクチュエータの製造方法として、圧電体層を転写によって形成する方法を採用することができる。
 つまり、例えば、デバイス用の基板とは異なるダミー基板上に、圧電体層として第2圧電層および第1圧電層をこの順で形成し、上記第2圧電層を犠牲層として用い、犠牲層を含む圧電体層をエッチングしてダミー基板から圧電体層を剥離し、剥離した圧電体層を、デバイス用の基板上に形成された下部電極上に転写し、圧電体層上に上部電極を形成することで、デバイス用の基板側から、下部電極、圧電体層、上部電極をこの順で有する圧電アクチュエータを製造することができる。添加物の添加量が第1圧電層よりも第2圧電層のほうが相対的に少ないため、第2圧電層のほうが、エッチングレートが相対的に大きくなり、結果として、厚み方向に垂直な面内での面積が第1圧電層よりも小さくなる。
 ここで、第1圧電層および第2圧電層は、ペロブスカイト構造をそれぞれ持ち、添加物の添加量が互いに異なっているので、ペロブスカイト構造の圧電材料(例えばPZT)を用い、添加物(例えばランタンやニオブ)の添加量を調整するだけで、第1圧電層および第2圧電層を容易に実現することができる。なお、添加量の調整には、添加量をゼロにすることも含まれる。しかも、従来のように、圧電体層のうち犠牲層として機能する層(例えば第2圧電層)とダミー基板とで光吸収率を異ならせる必要がないため、ダミー基板の材料とは無関係に、犠牲層として機能する層の材料および添加物の添加量を設定できる。つまり、第2圧電層の材料として、第1圧電層と組成の少なくとも一部が共通する材料を使用でき、第1圧電層の結晶成長性がよく、かつ、自身もエッチングされやすくなるような、第1圧電層とは組成の全く異なる材料を探さなくても済む。
 また、第1圧電層および第2圧電層のうち、下層の圧電層(例えばペロブスカイト構造を持つ第2圧電層)の結晶性を引き継ぐようにして、上層の圧電層(例えば第1圧電層)をペロブスカイト構造で良好に成長させることができるため、上層の圧電層ひいては圧電体層全体の圧電特性を向上させることができる。
 したがって、圧電体層を上記のように転写で形成して圧電アクチュエータを製造する際に、ダミー基板上で犠牲層として機能する層(第2圧電層)の材料が著しく制限されるのを回避しながら、つまり、第1圧電層の結晶成長に有利な下地層(第2圧電層)の材料の選択の幅を狭めることなく、圧電特性を向上させることができる。また、犠牲層として機能する層をエッチングすることで、圧電体層をダミー基板から剥離できるため、剥離したダミー基板を再利用することができ、これによって、圧電アクチュエータの生産性を向上させることができる。
 以上で説明した本実施形態の圧電アクチュエータの製造方法は、デバイス用基板を含む基体上に下部電極を形成する工程と、前記下部電極上に、圧電体層を形成する工程と、前記圧電体層上に、上部電極を形成する工程とを含み、前記圧電体層を形成する工程は、前記デバイス用基板とは異なるダミー基板上に、前記圧電体層として、ペロブスカイト構造をそれぞれ持ち、かつ、添加物の添加量が互いに異なる2つの圧電層を積層する積層工程と、前記圧電体層をエッチングして前記ダミー基板から剥離する剥離工程と、剥離された前記圧電体層を前記下部電極上に転写する転写工程とを含み、前記2つの圧電層のうち、添加物の添加量が相対的に多い圧電層を第1圧電層とし、添加物の添加量が相対的に少ない圧電層を第2圧電層としたとき、前記積層工程では、前記ダミー基板上に、前記第2圧電層および前記第1圧電層をこの順で積層し、前記剥離工程では、前記圧電体層の厚み方向に垂直な面内で、前記第2圧電層の面積が、前記第1圧電層の面積よりも小さくなるように、前記第2圧電層を犠牲層としてエッチングして分離することにより、前記圧電体層を前記ダミー基板から剥離する。
 上記の製造方法によれば、圧電体層としての第2圧電層および第1圧電層をダミー基板上にこの順で積層した後、第2圧電層を犠牲層としてエッチングして分離し、圧電体層をダミー基板から剥離する。そして、剥離した圧電体層を、デバイス用基板上に形成された下部電極上に転写し、圧電体層の上に上部電極を形成することで、圧電アクチュエータが製造される。添加物の添加量が第1圧電層よりも第2圧電層のほうが相対的に少ないため、第2圧電層のほうが、エッチングレートが相対的に大きくなり、結果として、厚み方向に垂直な面内での面積が第1圧電層よりも小さくなる。
 ここで、第1圧電層および第2圧電層は、ペロブスカイト構造をそれぞれ持ち、添加物の添加量が互いに異なっているので、ペロブスカイト構造の圧電材料(例えばPZT)を用い、添加物(例えばランタンやニオブ)の添加量を調整するだけで、第1圧電層および第2圧電層を容易に実現することができる。なお、添加量の調整には、添加量をゼロにすることも含まれる。しかも、犠牲層となる第2圧電層とダミー基板とで光吸収率を異ならせる必要がないため、ダミー基板の材料とは無関係に、犠牲層となる第2圧電層の材料および添加物の添加量を設定できる。つまり、第2圧電層の材料として、第1圧電層と組成の少なくとも一部が共通する材料を使用でき、第1圧電層の結晶成長性がよく、かつ、自身もエッチングされやすくなるような、第1圧電層とは組成の全く異なる材料を探さなくても済む。
 また、第2圧電層はペロブスカイト構造を持ち、第2圧電層の結晶性を引き継ぐようにして、第2圧電層の上に第1圧電層をペロブスカイト構造で良好に成長させることができるため、第1圧電層ひいては圧電体層全体の圧電特性を向上させることができる。
 したがって、圧電体層を上記のように転写で形成して圧電アクチュエータを製造する際に、ダミー基板上で犠牲層として機能する層(第2圧電層)の材料が著しく制限されるのを回避しながら(第1圧電層の結晶成長に有利な第2圧電層の材料の選択の幅を狭めることなく)、圧電特性を向上させることができる。また、第2圧電層をエッチングすることで、圧電体層をダミー基板から剥離できるため、剥離したダミー基板を再利用することができ、これによって、圧電アクチュエータの生産性を向上させることができる。
 上記の圧電アクチュエータおよびその製造方法において、(前記下部電極上において、)前記第2圧電層は、前記第1圧電層よりも厚さが薄いことが望ましい。この構成では、第2圧電層を犠牲層としてエッチングした後に、残った圧電体層を、下部電極側から第2圧電層、第1圧電層の積層順となるように、下部電極上に転写した場合に、第1圧電層を下部電極にほぼ接触するような状態で保持することができる。これにより、第1圧電層の駆動(伸縮)を、下部電極を含む下層に効率よく伝達することができる。
 上記の圧電アクチュエータにおいて、前記第2圧電層は、前記第1圧電層よりも前記基板側に位置していてもよい。この場合、基板側から、下部電極、第2圧電層、第1圧電層、上部電極をこの順で有する圧電アクチュエータを実現できる。
 上記の圧電アクチュエータおよびその製造方法において、前記第1圧電層および前記第2圧電層は、ABO3型のペロブスカイト構造のAサイトに同じ元素を含み、かつ、Bサイトに同じ元素を含み、前記第2圧電層は、前記第1圧電層よりもエッチングレートが大きい材料で構成されていてもよい。この構成では、AサイトまたはBサイトへの添加物の添加量を調整するだけで、エッチングレートの異なる第1圧電層および第2圧電層を容易に実現することができる。また、第1圧電層よりも第2圧電層のエッチングが速く進むため、第2圧電層をエッチングによって分離することが容易となり、圧電体層をダミー基板から容易に剥離することが可能となる。
 上記の圧電アクチュエータおよびその製造方法において、前記第1圧電層および前記第2圧電層は、両方とも、Aサイトに鉛を含む結晶構造を持っていてもよい。第1圧電層および第2圧電層が、鉛系のペロブスカイト構造を有する構成において、上述の効果を得ることができる。
 上記の圧電アクチュエータおよびその製造方法において、前記第1圧電層および前記第2圧電層は、両方とも、Bサイトにジルコニウムを含む結晶構造と、Bサイトにチタンを含む結晶構造とを持っていてもよい。第1圧電層および第2圧電層は、チタン酸ジルコン酸鉛(PZT)を基本の結晶構造として持つ。したがって、PZTに対する添加物の添加量を異ならせることで、2種の圧電層、つまり、第1圧電層および第2圧電層を実現することができる。
 上記の圧電アクチュエータおよびその製造方法において、前記第1圧電層は、Aサイトにランタンを含む結晶構造をさらに持っていてもよい。第1圧電層は、チタン酸ジルコン酸ランタン鉛(PLZT)で構成されるため、PZTに対するランタン(La)の添加量を調整することで、第2圧電層を容易に実現することができる。
 上記の圧電アクチュエータおよびその製造方法において、前記第2圧電層が持つ結晶構造は、全て、ランタン無添加であってもよい。この場合、第1圧電層がPLZTであり、第2圧電層がPZTである構成において、上述の効果を得ることができる。
 上記の圧電アクチュエータおよびその製造方法において、前記第2圧電層は、Aサイトにランタンを含む結晶構造をさらに持ち、前記第1圧電層のランタンの添加量は、前記第2圧電層のランタンの添加量よりも多くてもよい。この場合、第1圧電層がLa添加量の多いPLZTであり、第2圧電層がLa添加量の少ないPLZTである構成において、上述の効果を得ることができる。
 上記の圧電アクチュエータおよびその製造方法において、前記第1圧電層は、Bサイトにニオブを含む結晶構造をさらに持っていてもよい。第1圧電層は、チタン酸ジルコン酸ニオブ鉛(PNZT)で構成されるため、PZTに対するニオブ(Nb)の添加量を調整することで、第2圧電層を容易に実現することができる。
 上記の圧電アクチュエータおよびその製造方法において、前記第2圧電層が持つ結晶構造は、全て、ニオブ無添加であってもよい。この場合、第1圧電層がPNZTであり、第2圧電層がPZTである構成において、上述の効果を得ることができる。
 上記の圧電アクチュエータおよびその製造方法において、前記第2圧電層は、Bサイトにニオブを含む結晶構造をさらに持ち、前記第1圧電層のニオブの添加量は、前記第2圧電層のニオブの添加量よりも多くてもよい。この場合、第1圧電層がNb添加量の多いPNZTであり、第2圧電層がNb添加量の少ないPNZTである構成において、上述の効果を得ることができる。
 以上で説明した本実施形態の液滴吐出ヘッドは、上述した圧電アクチュエータと、液体を液滴として吐出するためのノズル孔を有するノズルプレートとを備え、前記圧電アクチュエータの前記基板には、前記液体を収容する圧力室が形成されており、前記ノズルプレートの前記ノズル孔は、前記圧力室と連通している。
 以上で説明した本実施形態の液滴吐出ヘッドの製造方法は、上述した圧電アクチュエータの製造方法を用いて、液滴吐出ヘッドを製造する液滴吐出ヘッドの製造方法であって、前記圧電アクチュエータの前記デバイス用基板に、液体を収容する圧力室を形成する工程と、前記圧力室と連通し、前記液体を液滴として吐出するためのノズル孔を有するノズルプレートを、前記デバイス用基板に貼り付ける工程とを有している。
 上述した圧電アクチュエータおよびその製造方法によれば、圧電特性を向上させるとともに、圧電アクチュエータの生産性を向上させることができる。したがって、その圧電アクチュータを備えた液滴吐出ヘッドおよびその製造方法によれば、液滴の吐出特性を向上させるとともに、液滴吐出ヘッドの生産性を向上させることができる。
 上記の液滴吐出ヘッドおよびその製造方法において、前記圧力室内に収容される前記液体は、画像を描画するためのインクであってもよい。この場合、液滴吐出ヘッドをインクジェットヘッドとして用いることができる。
 以上で説明した本実施形態の液滴吐出装置は、上述の液滴吐出ヘッドと、前記液滴吐出ヘッドを支持する支持部材とを備えている。
 以上で説明した本実施形態の液滴吐出装置の製造方法は、上述した液滴吐出ヘッドの製造方法を用いて、液滴吐出装置を製造する液滴吐出装置の製造方法であって、前記液滴吐出ヘッドを支持部材に設置する工程を有している。
 上記の液滴吐出装置およびその製造方法によれば、支持部材にて支持された液滴吐出ヘッドから液滴を吐出して、対象物に液滴を吐出することができる。例えば、対象物が用紙などの記録媒体であり、圧力室に収容される液体がインクであれば、インクを記録媒体上に吐出して画像を形成するインクジェットプリンタとして液滴吐出装置を使用することができる。
 本発明の圧電アクチュエータは、インクジェットヘッドおよびインクジェットプリンタなどの液滴吐出ヘッドおよび液滴吐出装置に利用可能である。
   1   インクジェットプリンタ(液滴吐出装置)
  12   支持部材
  21   インクジェットヘッド(液滴吐出ヘッド)
  21a  アクチュエータ(圧電アクチュエータ)
  22   基板(デバイス用基板)
  22a  圧力室
  24   下部電極
  25   圧電体層
  25a  第1圧電層
  25b  第2圧電層
  26   上部電極
  31   ノズルプレート
  31a  ノズル孔
  41   ダミー基板
   P   記録媒体

Claims (30)

  1.  基板側から、下部電極、圧電体層および上部電極をこの順で有する圧電アクチュエータであって、
     前記圧電体層は、ペロブスカイト構造をそれぞれ持ち、かつ、添加物の添加量が互いに異なる2つの圧電層を有しており、
     積層される前記2つの圧電層のうち、添加物の添加量が相対的に多い圧電層を第1圧電層とし、添加物の添加量が相対的に少ない圧電層を第2圧電層としたとき、
     前記圧電体層の厚み方向に垂直な面内において、前記第2圧電層の面積は、前記第1圧電層の面積よりも小さいことを特徴とする圧電アクチュエータ。
  2.  前記第2圧電層は、前記第1圧電層よりも厚さが薄いことを特徴とする請求項1に記載の圧電アクチュエータ。
  3.  前記第2圧電層は、前記第1圧電層よりも前記基板側に位置していることを特徴とする請求項1または2に記載の圧電アクチュエータ。
  4.  前記第1圧電層および前記第2圧電層は、ABO3型のペロブスカイト構造のAサイトに同じ元素を含み、かつ、Bサイトに同じ元素を含み、
     前記第2圧電層は、前記第1圧電層よりもエッチングレートが大きい材料で構成されていることを特徴とする請求項1から3のいずれかに記載の圧電アクチュエータ。
  5.  前記第1圧電層および前記第2圧電層は、両方とも、Aサイトに鉛を含む結晶構造を持つことを特徴とする請求項4に記載の圧電アクチュエータ。
  6.  前記第1圧電層および前記第2圧電層は、両方とも、Bサイトにジルコニウムを含む結晶構造と、Bサイトにチタンを含む結晶構造とを持つことを特徴とする請求項5に記載の圧電アクチュエータ。
  7.  前記第1圧電層は、Aサイトにランタンを含む結晶構造をさらに持つことを特徴とする請求項6に記載の圧電アクチュエータ。
  8.  前記第2圧電層が持つ結晶構造は、全て、ランタン無添加であることを特徴とする請求項7に記載の圧電アクチュエータ。
  9.  前記第2圧電層は、Aサイトにランタンを含む結晶構造をさらに持ち、
     前記第1圧電層のランタンの添加量は、前記第2圧電層のランタンの添加量よりも多いことを特徴とする請求項7に記載の圧電アクチュエータ。
  10.  前記第1圧電層は、Bサイトにニオブを含む結晶構造をさらに持つことを特徴とする請求項6に記載の圧電アクチュエータ。
  11.  前記第2圧電層が持つ結晶構造は、全て、ニオブ無添加であることを特徴とする請求項10に記載の圧電アクチュエータ。
  12.  前記第2圧電層は、Bサイトにニオブを含む結晶構造をさらに持ち、
     前記第1圧電層のニオブの添加量は、前記第2圧電層のニオブの添加量よりも多いことを特徴とする請求項10に記載の圧電アクチュエータ。
  13.  請求項1から12のいずれかに記載の圧電アクチュエータと、
     液体を液滴として吐出するためのノズル孔を有するノズルプレートとを備え、
     前記圧電アクチュエータの前記基板には、前記液体を収容する圧力室が形成されており、
     前記ノズルプレートの前記ノズル孔は、前記圧力室と連通していることを特徴とする液滴吐出ヘッド。
  14.  前記圧力室内に収容される前記液体は、画像を描画するためのインクであることを特徴とする請求項13に記載の液滴吐出ヘッド。
  15.  請求項13または14に記載の液滴吐出ヘッドと、
     前記液滴吐出ヘッドを支持する支持部材とを備えていることを特徴とする液滴吐出装置。
  16.  デバイス用基板を含む基体上に下部電極を形成する工程と、
     前記下部電極上に、圧電体層を形成する工程と、
     前記圧電体層上に、上部電極を形成する工程とを含み、
     前記圧電体層を形成する工程は、
     前記デバイス用基板とは異なるダミー基板上に、前記圧電体層として、ペロブスカイト構造をそれぞれ持ち、かつ、添加物の添加量が互いに異なる2つの圧電層を積層する積層工程と、
     前記圧電体層をエッチングして前記ダミー基板から剥離する剥離工程と、
     剥離された前記圧電体層を前記下部電極上に転写する転写工程とを含み、
     前記2つの圧電層のうち、添加物の添加量が相対的に多い圧電層を第1圧電層とし、添加物の添加量が相対的に少ない圧電層を第2圧電層としたとき、
     前記積層工程では、前記ダミー基板上に、前記第2圧電層および前記第1圧電層をこの順で積層し、
     前記剥離工程では、前記圧電体層の厚み方向に垂直な面内で、前記第2圧電層の面積が、前記第1圧電層の面積よりも小さくなるように、前記第2圧電層を犠牲層としてエッチングして分離することにより、前記圧電体層を前記ダミー基板から剥離することを特徴とする圧電アクチュエータの製造方法。
  17.  前記下部電極上において、前記第2圧電層は、前記第1圧電層よりも厚さが薄いことを特徴とする請求項16に記載の圧電アクチュエータの製造方法。
  18.  前記転写工程では、前記第2圧電層が前記第1圧電層よりも前記デバイス用基板側に位置するように、剥離された前記圧電体層を前記下部電極上に転写することを特徴とする請求項16または17に記載の圧電アクチュエータの製造方法。
  19.  前記第1圧電層および前記第2圧電層は、ABO3型のペロブスカイト構造のAサイトに同じ元素を含み、かつ、Bサイトに同じ元素を含み、
     前記第2圧電層は、前記第1圧電層よりもエッチングレートが大きい材料で構成されていることを特徴とする請求項16から18のいずれかに記載の圧電アクチュエータの製造方法。
  20.  前記第1圧電層および前記第2圧電層は、両方とも、Aサイトに鉛を含む結晶構造を持つことを特徴とする請求項19に記載の圧電アクチュエータの製造方法。
  21.  前記第1圧電層および前記第2圧電層は、両方とも、Bサイトにジルコニウムを含む結晶構造と、Bサイトにチタンを含む結晶構造とを持つことを特徴とする請求項20に記載の圧電アクチュエータの製造方法。
  22.  前記第1圧電層は、Aサイトにランタンを含む結晶構造をさらに持つことを特徴とする請求項21に記載の圧電アクチュエータの製造方法。
  23.  前記第2圧電層が持つ結晶構造は、全て、ランタン無添加であることを特徴とする請求項22に記載の圧電アクチュエータの製造方法。
  24.  前記第2圧電層は、Aサイトにランタンを含む結晶構造をさらに持ち、
     前記第1圧電層のランタンの添加量は、前記第2圧電層のランタンの添加量よりも多いことを特徴とする請求項22に記載の圧電アクチュエータの製造方法。
  25.  前記第1圧電層は、Bサイトにニオブを含む結晶構造をさらに持つことを特徴とする請求項21に記載の圧電アクチュエータの製造方法。
  26.  前記第2圧電層が持つ結晶構造は、全て、ニオブ無添加であることを特徴とする請求項25に記載の圧電アクチュエータの製造方法。
  27.  前記第2圧電層は、Bサイトにニオブを含む結晶構造をさらに持ち、
     前記第1圧電層のニオブの添加量は、前記第2圧電層のニオブの添加量よりも多いことを特徴とする請求項25に記載の圧電アクチュエータの製造方法。
  28.  請求項16から27のいずれかに記載の圧電アクチュエータの製造方法を用いて、液滴吐出ヘッドを製造する液滴吐出ヘッドの製造方法であって、
     前記圧電アクチュエータの前記デバイス用基板に、液体を収容する圧力室を形成する工程と、
     前記圧力室と連通し、前記液体を液滴として吐出するためのノズル孔を有するノズルプレートを、前記デバイス用基板に貼り付ける工程とを有していることを特徴とする液滴吐出ヘッドの製造方法。
  29.  前記圧力室内に収容される前記液体は、画像を描画するためのインクであることを特徴とする請求項28に記載の液滴吐出ヘッドの製造方法。
  30.  請求項28または29に記載の液滴吐出ヘッドの製造方法を用いて、液滴吐出装置を製造する液滴吐出装置の製造方法であって、
     前記液滴吐出ヘッドを支持部材に設置する工程を有していることを特徴とする液滴吐出装置の製造方法。
PCT/JP2015/083318 2014-12-10 2015-11-27 圧電アクチュエータ、圧電アクチュエータの製造方法、液滴吐出ヘッド、液滴吐出ヘッドの製造方法、液滴吐出装置および液滴吐出装置の製造方法 WO2016093078A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016563612A JPWO2016093078A1 (ja) 2014-12-10 2015-11-27 圧電アクチュエータ、圧電アクチュエータの製造方法、液滴吐出ヘッド、液滴吐出ヘッドの製造方法、液滴吐出装置および液滴吐出装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014249978 2014-12-10
JP2014-249978 2014-12-10

Publications (1)

Publication Number Publication Date
WO2016093078A1 true WO2016093078A1 (ja) 2016-06-16

Family

ID=56107268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083318 WO2016093078A1 (ja) 2014-12-10 2015-11-27 圧電アクチュエータ、圧電アクチュエータの製造方法、液滴吐出ヘッド、液滴吐出ヘッドの製造方法、液滴吐出装置および液滴吐出装置の製造方法

Country Status (2)

Country Link
JP (1) JPWO2016093078A1 (ja)
WO (1) WO2016093078A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110483A1 (ja) * 2016-12-12 2018-06-21 パナソニックIpマネジメント株式会社 圧電機能膜、アクチュエータおよびインクジェットヘッド

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041921A (ja) * 2006-08-07 2008-02-21 Matsushita Electric Ind Co Ltd 圧電薄膜素子およびその製造方法、ならびにインクジェットヘッドおよびインクジェット式記録装置
JP2011093307A (ja) * 2009-09-30 2011-05-12 Seiko Epson Corp 液滴噴射ヘッド、液滴噴射装置および圧電素子
WO2012063642A1 (ja) * 2010-11-10 2012-05-18 コニカミノルタホールディングス株式会社 強誘電体薄膜、強誘電体薄膜の製造方法、圧電体素子の製造方法
JP2013080887A (ja) * 2011-10-04 2013-05-02 Fujifilm Corp 圧電体素子及びその製造方法、並びに液体吐出ヘッド
JP2014195495A (ja) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 超音波トランスデューサー装置およびプローブ並びに電子機器および超音波画像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041921A (ja) * 2006-08-07 2008-02-21 Matsushita Electric Ind Co Ltd 圧電薄膜素子およびその製造方法、ならびにインクジェットヘッドおよびインクジェット式記録装置
JP2011093307A (ja) * 2009-09-30 2011-05-12 Seiko Epson Corp 液滴噴射ヘッド、液滴噴射装置および圧電素子
WO2012063642A1 (ja) * 2010-11-10 2012-05-18 コニカミノルタホールディングス株式会社 強誘電体薄膜、強誘電体薄膜の製造方法、圧電体素子の製造方法
JP2013080887A (ja) * 2011-10-04 2013-05-02 Fujifilm Corp 圧電体素子及びその製造方法、並びに液体吐出ヘッド
JP2014195495A (ja) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 超音波トランスデューサー装置およびプローブ並びに電子機器および超音波画像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110483A1 (ja) * 2016-12-12 2018-06-21 パナソニックIpマネジメント株式会社 圧電機能膜、アクチュエータおよびインクジェットヘッド
JP6417549B1 (ja) * 2016-12-12 2018-11-07 パナソニックIpマネジメント株式会社 圧電機能膜、アクチュエータおよびインクジェットヘッド

Also Published As

Publication number Publication date
JPWO2016093078A1 (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
JP5251031B2 (ja) 圧電素子、液体噴射ヘッド、液体噴射装置、センサー
EP3375611B1 (en) Ink jet head and method for manufacturing same, and ink jet recording apparatus
JP6699662B2 (ja) 圧電薄膜、圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび圧電アクチュエータの製造方法
JP6720973B2 (ja) 圧電素子、インクジェットヘッド、インクジェットプリンタ、および圧電素子の製造方法
JP6314992B2 (ja) 圧電素子、インクジェットヘッド、インクジェットプリンタおよび圧電素子の製造方法
JP2011171335A (ja) 圧電アクチュエーターの製造方法、圧電アクチュエーター、液体噴射ヘッド及び液体噴射装置
JP2010228266A (ja) 液体噴射ヘッド及び液体噴射装置並びにアクチュエーター
WO2015125520A1 (ja) 強誘電体薄膜、圧電薄膜付き基板、圧電アクチュエータ、インクジェットヘッド、インクジェットプリンタおよび強誘電体薄膜の製造方法
JP6481686B2 (ja) 強誘電体薄膜、圧電薄膜付き基板、圧電アクチュエータ、インクジェットヘッドおよびインクジェットプリンタ
WO2016093078A1 (ja) 圧電アクチュエータ、圧電アクチュエータの製造方法、液滴吐出ヘッド、液滴吐出ヘッドの製造方法、液滴吐出装置および液滴吐出装置の製造方法
JP2010241021A (ja) 液体噴射ヘッド及び液体噴射装置並びにアクチュエーター
JP7003916B2 (ja) 圧電素子の製造方法およびインクジェットヘッドの製造方法
JP6274308B2 (ja) 圧電素子、圧電素子の製造方法、圧電アクチュエータ、インクジェットヘッドおよびインクジェットプリンタ
JP6365347B2 (ja) 圧電デバイス、圧電デバイスの製造方法、インクジェットヘッド、インクジェットヘッドの製造方法およびインクジェットプリンタ
JP2012253087A (ja) 圧電アクチュエータの製造方法、圧電アクチュエータ、液滴吐出ヘッド、画像形成装置、及び、マイクロポンプ
WO2017090445A1 (ja) 圧電素子、圧電素子の製造方法、圧電アクチュエータ、インクジェットヘッドおよびインクジェットプリンタ
JP2016115702A (ja) 圧電アクチュエータ、圧電アクチュエータの製造方法、インクジェットヘッドおよびインクジェットプリンタ
WO2017169470A1 (ja) インクジェットヘッドおよびインクジェットプリンタ
WO2015182228A1 (ja) 圧電アクチュエータ、圧電アクチュエータの製造方法、インクジェットヘッドおよびインクジェットプリンタ
JP6468881B2 (ja) 圧電薄膜、圧電薄膜の製造方法、圧電薄膜付き基板、圧電アクチュエータ、圧電センサ、インクジェットヘッドおよびインクジェットプリンタ
JP2010131920A (ja) 液体噴射ヘッド及び液体噴射装置並びに圧電素子
JP2007059817A (ja) アクチュエータ装置の製造方法及びアクチュエータ装置並びに液体噴射ヘッド及び液体噴射装置
JP2015214127A (ja) インクジェットヘッドおよびその製造方法と、インクジェットプリンタ
JP2012035593A (ja) 圧電アクチュエーター、液体噴射ヘッドおよび液体噴射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866616

Country of ref document: EP

Kind code of ref document: A1