WO2016092850A1 - 鍛造クランク軸の製造方法 - Google Patents

鍛造クランク軸の製造方法 Download PDF

Info

Publication number
WO2016092850A1
WO2016092850A1 PCT/JP2015/006155 JP2015006155W WO2016092850A1 WO 2016092850 A1 WO2016092850 A1 WO 2016092850A1 JP 2015006155 W JP2015006155 W JP 2015006155W WO 2016092850 A1 WO2016092850 A1 WO 2016092850A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
surplus
mold
crankshaft
journal
Prior art date
Application number
PCT/JP2015/006155
Other languages
English (en)
French (fr)
Inventor
憲司 田村
潤一 大久保
吉野 健
訓宏 薮野
黒川 宣幸
智久 山下
奨 高本
広一郎 石原
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to MX2017007542A priority Critical patent/MX2017007542A/es
Priority to EP15866476.3A priority patent/EP3231530B1/en
Priority to US15/531,788 priority patent/US10464120B2/en
Priority to JP2016563521A priority patent/JP6344485B2/ja
Priority to BR112017010674-4A priority patent/BR112017010674A2/pt
Priority to CN201580066949.4A priority patent/CN107000034B/zh
Publication of WO2016092850A1 publication Critical patent/WO2016092850A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts
    • B21K1/08Making machine elements axles or shafts crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts
    • F16C3/08Crankshafts made in one piece

Definitions

  • the present invention relates to a method of manufacturing a crankshaft by hot forging.
  • crankshaft In a reciprocating engine such as an automobile, a motorcycle, an agricultural machine, or a ship, a crankshaft is indispensable for converting the reciprocating motion of the piston into a rotational motion and taking out the power.
  • the crankshaft can be manufactured by die forging or casting.
  • a crankshaft manufactured by die forging hereinafter also referred to as “forged crankshaft”.
  • the raw material of the forged crankshaft is billet.
  • the cross section is round or square, and the cross-sectional area is constant over the entire length.
  • the manufacturing process of the forged crankshaft includes a preforming process, a die forging process, and a deburring process. If necessary, a shaping process may be performed after the deburring process.
  • the preforming process includes roll forming and bending processes
  • the die forging process includes roughing and finishing processes.
  • FIG. 1A to FIG. 1F are schematic views for explaining a manufacturing process of a conventional general forged crankshaft.
  • a crankshaft 1 illustrated in FIG. 1F is mounted on a 4-cylinder engine and is a 4-cylinder-8-counterweight crankshaft.
  • the crankshaft 1 includes five journal portions J1 to J5, four pin portions P1 to P4, a front portion Fr, a flange portion Fl, and eight crank arm portions (hereinafter also simply referred to as “arm portions”) A1.
  • the arm portions A1 to A8 connect the journal portions J1 to J5 and the pin portions P1 to P4, respectively.
  • all the eight arm portions A1 to A8 integrally have counterweight portions (hereinafter also simply referred to as “weight portions”) W1 to W8.
  • weight portions counterweight portions
  • journal portions J1 to J5 the pin portions P1 to P4, the arm portions A1 to A8, and the weight portions W1 to W8 are collectively referred to
  • the reference numerals are “J” for the journal portion and “P” for the pin portion.
  • “A” for the arm portion and “W” for the weight portion are “J” for the journal portion and “P” for the pin portion.
  • the forged crankshaft 1 is manufactured as follows. First, a billet 2 having a predetermined length as shown in FIG. 1A is heated by an induction heating furnace or a gas atmosphere heating furnace, and then roll forming is performed. In the roll forming step, for example, the billet 2 is rolled and squeezed using a perforated roll to distribute the volume in the longitudinal direction and form the roll waste land 3 as an intermediate material (see FIG. 1B). Next, in the bending step, the roll wasteland 3 is partially crushed from the direction perpendicular to the longitudinal direction. Thereby, the volume of the roll wasteland 3 is allocated and the bending wasteland 4 which is the further intermediate material is shape
  • molded (refer FIG. 1C).
  • the rough forged material 5 is obtained by press forging the bent rough ground 4 using a pair of dies up and down (see FIG. 1D).
  • the rough forged material 5 is formed into an approximate shape of a crankshaft (final product).
  • the finish punching process the rough forging material 5 is press-forged using a pair of upper and lower molds to obtain the finished forging material 6 (see FIG. 1E).
  • the finished forged material 6 is formed into a shape that matches the crankshaft of the final product.
  • surplus material flows out from between the mold splitting surfaces of the molds facing each other to form burrs. For this reason, in both the rough forged material 5 and the finished forged material 6, the burrs B are largely attached around the shape of the crankshaft.
  • the burrs B are punched out with a blade mold in a state where the finished forged material 6 with burrs is held between a pair of molds. Thereby, the burrs B are removed from the finished forged material 6. In this way, a forged material without burrs is obtained, and the forged material without burrs has substantially the same shape as the forged crankshaft 1 shown in FIG. 1F.
  • the key points of the burr-free forging material are slightly lowered from above and below with a mold, and the burr-free forging material is corrected to the dimensional shape of the final product.
  • the key points of the burr-free forged material are, for example, the journal portion J, the pin portion P, the shaft portion such as the front portion Fr and the flange portion Fl, and the arm portion A and the weight portion W.
  • the forged crankshaft 1 is manufactured.
  • FIGS. 1A to 1F can be applied to various crankshafts as well as the 4-cylinder-8-piece counterweight crankshaft shown in FIG. 1F.
  • the present invention can be applied to a crankshaft of a 4-cylinder-four-counterweight.
  • a weight portion W is integrally provided in a part of the eight arm portions A.
  • the weight portion W is integrally provided on the first first arm portion A1, the last eighth arm portion A8, and the two central arm portions (fourth arm portion A4 and fifth arm portion A5).
  • the remaining arm portions specifically, the second, third, sixth and seventh arm portions A2, A3, A6 and A7 have no weight portion, and the shape thereof is oval (oval). Shape).
  • an arm portion that does not have a weight portion is also referred to as an “unweighted arm portion”.
  • the manufacturing process is the same for crankshafts mounted on 3-cylinder engines, in-line 6-cylinder engines, V-type 6-cylinder engines, 8-cylinder engines, and the like.
  • a twist process is added after a deburring process.
  • the concave hollow portion extends in a direction perpendicular to the eccentric direction of the pin portion and extends to both side surfaces of the arm portion.
  • the depth of the bottom surface of the thinned portion gradually increases from the pin portion side to the journal portion side in at least the region on the pin portion side from the axial center of the journal portion in the thinned portion.
  • the bottom surface of the thinned portion is formed along the outer peripheral surface of the virtual cylinder.
  • the virtual cylinder extends from the joint surface between the pin portion and the arm portion (web) to the joint surface between the journal portion and the arm portion (web).
  • a thin portion is formed on the surface of the arm portion on the pin portion side, and the thin portion is recessed to the imaginary line on the journal portion side.
  • the imaginary line is a straight line passing through the axis of the journal part between the outer peripheral edge of the thrust receiving part of the pin part and the outer peripheral edge of the thrust receiving part of the journal part.
  • the thin portion extends in a direction perpendicular to the mold dividing surface, that is, a direction perpendicular to the eccentric direction of the pin portion, and extends to both side surfaces of the arm portion.
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2012-7726
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2010-230027
  • Patent Documents 3 and 4 describe an arm portion in which a hole is formed on the surface on the journal portion side, and also describe a method of manufacturing a crankshaft having this arm portion.
  • the hole part of the arm part is formed on a straight line connecting the axis center of the journal part and the axis part of the pin part (hereinafter also referred to as “arm part center line”), and is deeply recessed toward the pin part.
  • arm part center line the mass for the volume of a hole part can be reduced in weight.
  • the weight reduction of the arm portion leads to a reduction in the weight of the weight portion paired with the arm portion, and consequently to the weight reduction of the entire forged crankshaft.
  • the side part of an arm part means the side surface and the peripheral part of the width direction (direction perpendicular to the eccentric direction of a pin part) of an arm part.
  • the surface of the arm portion on the journal portion side is provided with a dent while maintaining the thickness of both side portions of the arm portion, it is possible to reduce the weight and ensure the rigidity at the same time.
  • the arm portion is formed small without forming a recess on the surface of the arm portion. And after a deburring process, a punch is pushed in on the surface of an arm part, and a dent is shape
  • Patent Document 5 describes a crankshaft of a 4-cylinder-8-counterweight with a flywheel attached to one end.
  • the thickness and the center of gravity of the arm portion and the mass of the weight portion are not the same in all the arm portions, but are different for each arm portion. Thereby, the minimum necessary rigidity can be ensured for each arm part, and the thickness can be reduced by the arm part having a low required rigidity, and as a result, weight reduction can be achieved.
  • Patent Document 6 describes a crankshaft for a multi-cylinder engine in which a flywheel is attached to one end.
  • the bending rigidity and torsional rigidity of the arm portion are higher as the distance from the flywheel is closer.
  • it is preferable that the bending rigidity and torsional rigidity of the arm part are different for each arm part. As a result, the weight can be reduced while reducing both bending vibration and torsional vibration.
  • the portion requiring rigidity in the arm portion changes depending on the shape. Specifically, it may be important to ensure rigidity near the pin portion of the arm portion. Alternatively, it may be important to ensure rigidity near the journal portion of the arm portion.
  • An object of the present invention is to provide a method for manufacturing a forged crankshaft that can easily obtain a forged crankshaft that simultaneously achieves weight reduction and rigidity.
  • a method of manufacturing a forged crankshaft includes a journal part serving as a rotation center, a pin part eccentric to the journal part, a crank arm part connecting the journal part and the pin part,
  • a forged crankshaft manufacturing method comprising: a counterweight part that all or part of a crank arm part integrally has.
  • the manufacturing method includes a die forging step for obtaining a forged material formed in the shape of a crankshaft by die forging, and a reduction step for reducing the forged material by a pair of first molds.
  • the forged material has a first surplus portion protruding from an outer periphery of a side portion in the vicinity of the journal portion on all or a part of the crank arm portion integrally including the counterweight portion.
  • the first surplus portion is squeezed and deformed by the first mold, and the first surplus portion is projected to the pin portion side.
  • the first mold includes an inclined surface facing the first surplus portion, and the first surplus portion is deformed along the inclined surface in the reduction step.
  • the manufacturing method includes a deburring process for removing burrs from the forged material.
  • the forged material with burrs is obtained, and in the deburring process, burrs are removed from the forged material with burrs. It is preferable to obtain a forged material having no burr and to reduce the forged material without the burr in the reduction step.
  • the pin portion side surface of the crank arm portion having the first surplus portion is near the journal portion. It is preferable to hold the surface excluding at least the side region by pressing the second mold.
  • the second mold is moved in the reduction direction of the first mold following the reduction of the first mold, and the crank arm portion is moved to the crank arm portion. It is preferable to maintain the pressing position of the second mold at a fixed position.
  • the first surplus portion preferably protrudes from both of the side portions in the vicinity of the journal portion.
  • the reduction step is preferably performed in a shaping step of correcting the shape of the crankshaft by reduction using a mold.
  • the forged material has a second surplus portion protruding from the outer periphery of the side portion in the vicinity of the pin portion on all or a part of the crank arm portion.
  • the second surplus portion is squeezed and deformed by the first mold, and the second surplus portion is projected to the journal portion side.
  • the second surplus portion protrudes from both of the side portions in the vicinity of the pin portion.
  • the first surplus portion protruding from the outer periphery of the side portion in the vicinity of the journal portion is formed in the arm portion of the forging material in the die forging step.
  • the thickness of the side part near the journal part of an arm part is made to increase by extending a 1st surplus part to the pin part side at a rolling-down process. For this reason, as compared with the case of simply providing a thinned portion, the rigidity can be ensured efficiently, and the weight can be reduced by the recess inside the side portion. Further, since no punch is used, it can be easily performed without requiring a great deal of force.
  • FIG. 1A is a schematic diagram showing a billet in a manufacturing process of a conventional general forged crankshaft.
  • FIG. 1B is a schematic diagram showing a rough roll in a conventional general forged crankshaft manufacturing process.
  • FIG. 1C is a schematic diagram showing a bending wasteland in a manufacturing process of a conventional general forged crankshaft.
  • FIG. 1D is a schematic diagram illustrating a rough forged material in a manufacturing process of a conventional general forged crankshaft.
  • FIG. 1E is a schematic diagram showing a finished forged material in a manufacturing process of a conventional general forged crankshaft.
  • FIG. 1F is a schematic diagram illustrating a crankshaft in a manufacturing process of a conventional general forged crankshaft.
  • FIG. 2A is a perspective view schematically showing a shape example of the surface of the arm portion on the pin portion side of the crankshaft according to the manufacturing method of the present invention.
  • FIG. 2B is a diagram illustrating a pin portion side surface of the arm portion illustrated in FIG. 2A.
  • 2C is a diagram illustrating a side surface of the arm unit illustrated in FIG. 2A.
  • 2D is a cross-sectional view taken along the line IID-IID in FIG. 2B.
  • FIG. 3A is a perspective view schematically showing an example of the shape of the journal portion side surface of the preferred arm portion for the crankshaft according to the manufacturing method of the present invention.
  • FIG. 3B is a diagram showing a journal part side surface of the arm part shown in FIG. 3A.
  • FIG. 3C is a cross-sectional view taken along the line IIIC-IIIC of FIG. 3B.
  • FIG. 4A is a diagram schematically showing a pin-side surface of a preferable example of a weightless arm portion for a crankshaft according to the manufacturing method of the present invention.
  • 4B is a cross-sectional view taken along the line IVB-IVB of FIG. 4A.
  • FIG. 5A is a schematic diagram illustrating a pin portion side surface of a shape example before a rolling-down process when the arm portion integrally includes a weight portion.
  • FIG. 5B is a diagram illustrating a side surface of the arm unit illustrated in FIG. 5A.
  • FIG. 5C is a sectional view taken along the line VC-VC in FIG. 5A.
  • FIG. 6A is a schematic diagram illustrating a journal part-side surface of a shape example before a rolling-down process when the arm part integrally includes a weight part.
  • 6B is a cross-sectional view taken along the line VIB-VIB of FIG. 6A.
  • FIG. 7A is a schematic diagram showing a pin-side surface of a shape example before a rolling-down process for an arm portion without weight.
  • 7B is a sectional view taken along the line VIIB-VIIB in FIG. 7A.
  • FIG. 8A shows a pin of the arm portion when pressing the second mold in the processing flow example (first processing flow example) of the reduction process when the first surplus portion is bent with respect to the arm portion integrally having the weight portion. It is a schematic diagram which shows the part side surface.
  • FIG. 8A shows a pin of the arm portion when pressing the second mold in the processing flow example (first processing flow example) of the reduction process when the first surplus portion is bent with respect to the arm portion integrally having the weight portion. It
  • FIG. 8B is a schematic diagram illustrating the pin portion side surface of the arm portion at the end of the reduction in the first processing flow example.
  • FIG. 9A is a schematic diagram illustrating a journal portion side surface of an arm portion when the second mold is pressed in the first processing flow example.
  • FIG. 9B is a schematic diagram illustrating the journal portion side surface of the arm portion at the end of the reduction in the first processing flow example.
  • FIG. 10A is a schematic diagram illustrating a side surface of the arm portion when the second mold is pressed in the first processing flow example.
  • FIG. 10B is a schematic diagram illustrating a side surface of the arm portion at the end of the reduction in the first processing flow example.
  • FIG. 11A is a cross-sectional view (cross-sectional view of XIA-XIA in FIG. 8A) in the vicinity of the journal portion when the second mold is pressed in the first processing flow example.
  • FIG. 11B is a cross-sectional view (XIB-XIB cross-sectional view of FIG. 8B) in the vicinity of the journal portion at the end of the reduction in the first processing flow example.
  • FIG. 12A is a cross-sectional view (XIIA-XIIA cross-sectional view in FIG. 9A) in the vicinity of the pin portion when the second mold is pressed in the first processing flow example.
  • FIG. 12B is a cross-sectional view (XIIB-XIIB cross-sectional view in FIG.
  • FIG. 13A is a cross-sectional view schematically showing a starting point of deformation of the surplus portion when no step is provided.
  • FIG. 13B is a cross-sectional view schematically showing a starting point of deformation of the surplus portion when a step is provided.
  • FIG. 14A is a perspective view schematically showing an example of the shape of the pin portion side surface of the arm portion when the first surplus portion is crushed.
  • FIG. 14B is a diagram illustrating a pin portion side surface of the arm portion illustrated in FIG. 14A.
  • FIG. 14C is a diagram illustrating a side surface of the arm unit illustrated in FIG. 14A.
  • FIG. 14D is a cross-sectional view of XIVD-XIVD in FIG. 14B.
  • FIG. 15A is a perspective view schematically showing a shape example of a journal side surface of a suitable arm portion when the first surplus portion is crushed.
  • FIG. 15B is a diagram showing the journal side surface of the arm shown in FIG. 15A.
  • 15C is a cross-sectional view taken along the line XVC-XVC in FIG. 15B.
  • FIG. 16A is a schematic diagram illustrating a pin-side surface of a shape example of a suitable weightless arm portion when the first surplus portion is crushed.
  • 16B is a cross-sectional view taken along the line XVIB-XVIB in FIG. 16A.
  • FIG. 17A is a cross-sectional view of the vicinity of a journal portion when the second mold is pressed in a processing flow example (second processing flow example) of a reduction process when the first surplus portion is crushed.
  • FIG. 17B is a cross-sectional view of the vicinity of the journal portion at the end of reduction in the second processing flow example.
  • FIG. 18A is a cross-sectional view of the vicinity of the pin portion when the second mold is pressed in the second processing flow example.
  • FIG. 18B is a cross-sectional view of the vicinity of the pin portion at the end of the reduction in the second processing flow example.
  • FIG. 19A is a schematic diagram showing the pin portion side surface of the arm portion before the reduction when the reduction direction of the first mold is not perpendicular to the eccentric direction of the pin portion.
  • FIG. 19B is a schematic diagram illustrating the pin portion side surface of the arm portion at the end of the reduction when the reduction direction of the first mold is not perpendicular to the eccentric direction of the pin portion.
  • the forged crankshaft targeted by the present embodiment includes a journal part serving as a rotation center, a pin part eccentric with respect to the journal part, an arm part connecting the journal part and the pin part, and an arm part And a weight part that all or a part of which has integrally.
  • a forged crankshaft for example, a forged crankshaft shown in FIGS. 2A to 4B can be employed.
  • FIG. 2A to 2D are schematic views showing an example of the shape of the surface on the pin portion side of the arm portion of the crankshaft according to the manufacturing method of the present invention
  • FIG. 2A is a perspective view
  • FIG. 2B is a view showing the surface on the pin portion side
  • 2C is a side view
  • FIG. 2D is a IID-IID sectional view.
  • 2A to 2D only one arm portion having an integral weight portion is extracted from the arm portions of the crankshaft.
  • 2C is a projection view from the direction indicated by the broken-line arrow in FIG. 2B.
  • the pin portion P side in the eccentric direction of the pin portion is referred to as a top side (see symbol T in FIG. 2B), and the weight portion W side is referred to as a bottom side (see symbol B in FIG. 2B).
  • the arm portion A having the weight portion W has a dent in the region At on both sides Ac and Ad near the journal portion J on the surface on the pin portion P side. Moreover, both side parts Ac and Ad in the vicinity of the journal part J project to the pin part P side, and the thicknesses of both side parts Ac and Ad are thicker than the thickness of the recess.
  • the side portion means the side surface in the width direction of the arm portion A (direction perpendicular to the eccentric direction of the pin portion) and its peripheral portion, in other words, the end portion in the width direction of the arm portion A. .
  • the thicknesses of both side parts Ac and Ad in the vicinity of the journal part J are maintained thick like the arm part having no lightening part.
  • a recess is formed on the surface of the pin portion P side.
  • the weight can be reduced by the dent on the surface of the arm portion A on the pin portion P side.
  • the thickness of both side portions Ac and Ad in the vicinity of the journal portion J of the arm portion A is maintained like an arm portion that does not have a thinned portion, thereby ensuring rigidity.
  • the thickness of both side portions Ac and Ad in the vicinity of the journal portion J of the arm portion A is thicker than the thickness of the dent, thereby ensuring rigidity.
  • the thickness of the inner region At has a small influence on the rigidity, but it is clear that the thicknesses of both side portions Ac and Ad in the width direction have a large influence on the rigidity. became.
  • the rigidity can be efficiently ensured as compared with the case where the thinned portion is simply provided, and the weight can be further reduced by expanding the recesses on both sides Ac and Ad. Can do.
  • the portions where the thicknesses of both side portions Ac and Ad near the journal portion J are thick include a range from the outer edge on the bottom side of the pin thrust portion (not shown) to the center of the journal portion from the viewpoint of efficiently ensuring rigidity. Is preferred.
  • the pin thrust part is a part that is provided on the pin part side surface of the arm part and restricts the movement of the connecting rod in the thrust direction.
  • the shape of the inner region At of the both side portions Ac and Ad in the vicinity of the journal portion J is preferably convex so that the center in the width direction swells as shown in FIG. 2D.
  • the thickness of the inner region At gradually decreases as the distance from the center in the width direction increases. Since the bottom shape of the dent is a convex shape in which the center in the width direction swells, the rigidity, particularly the bending rigidity can be further improved.
  • FIGS. 3A to 3C are schematic views showing examples of the shape of the journal side surface of the preferred arm part for the crankshaft according to the manufacturing method of the present invention
  • FIG. 3A is a perspective view
  • FIG. 3C is a sectional view taken along the line IIIC-IIIC.
  • the arm portion A having the weight portion W has a depression in the region As inside the both side portions Aa and Ab near the pin portion P on the surface on the journal portion J side. preferable. Further, both side portions Aa and Ab in the vicinity of the pin portion P project to the journal portion J side, and the thicknesses of both side portions Aa and Ab are preferably thicker than the thickness of the recess.
  • both side portions Aa and Ab near the pin portion P is maintained thick like an arm portion having no thinned portion.
  • a recess is formed on the surface of the journal portion J side.
  • rigidity can be ensured by maintaining the thickness of both side portions Aa and Ab near the pin portion P.
  • both side portions Aa and Ab near the pin portion P are thicker than the inner region As, rigidity can be ensured.
  • the weight can be further reduced by the depression on the surface of the journal portion J side.
  • the shape of the inner region As of the both side portions Aa and Ab in the vicinity of the pin portion P is preferably convex so that the center in the width direction swells as shown in FIG. 3C.
  • the thickness of the inner region As gradually decreases as the distance from the center in the width direction increases. Since the bottom shape of the dent is a convex shape in which the center in the width direction swells, the rigidity, particularly the bending rigidity can be further improved.
  • FIG. 4A and 4B are schematic views showing examples of the shape of a preferred arm portion without weight for the crankshaft according to the manufacturing method of the present invention
  • FIG. 4A is a view showing the surface of the pin portion side
  • FIG. 4B is IVB-IVB It is sectional drawing. 4A and 4B, only one arm portion without weight is extracted from the arm portions of the crankshaft.
  • the arm portion A without weight is similar to the arm portion integrally having the weight portion shown in FIGS. 2A to 2D, in the vicinity of the journal portion J of the surface on the pin portion P side. It is preferable to have a dent in the area
  • both side parts Ac and Ad in the vicinity of the journal part J of the arm part A are thicker than the recesses, rigidity can be ensured. Further, the weight can be further reduced by the depression on the surface of the arm portion A on the pin portion P side.
  • the shape (the shape of the bottom surface of the dent) of both side portions Ac in the vicinity of the journal portion J and the inner region At of the Ad is as shown in FIG. 4B. It is preferable that the convex shape has a bulging center in the width direction. Since the bottom shape of the dent is a convex shape in which the center in the width direction swells, the rigidity, particularly the bending rigidity can be further improved.
  • the weightless arm portion A is similar to the arm portion integrally having the weight portions shown in FIGS. 3A to 3C, on both sides in the vicinity of the pin portion P on the surface on the journal portion J side. It is preferable to have a recess in the region As inside the portions Aa and Ab. Further, both side portions Aa and Ab in the vicinity of the pin portion P project to the journal portion J side, and the thicknesses of both side portions Aa and Ab are preferably thicker than the thickness of the recess. In this case, rigidity can be ensured by maintaining the thickness of both side portions Aa and Ab in the vicinity of the pin portion P of the arm portion A like an arm portion having no thinned portion. In other words, since both side portions Aa and Ab near the pin portion P of the arm portion A are thicker than the inner region As, rigidity can be ensured. Further, the dent on the surface of the journal portion J of the arm portion A can further reduce the weight.
  • the shape (the shape of the bottom surface of the recess) of the inner region As of both side portions Aa and Ab in the vicinity of the pin portion P is also in the width direction. It is preferable that the center of the protrusion is convex. Since the bottom shape of the dent is a convex shape in which the center in the width direction swells, the rigidity, particularly the bending rigidity can be further improved.
  • the manufacturing method of the forged crankshaft of this embodiment increases the thickness of the side part near the journal part of the arm part integrally having the weight part in the reduction process of reducing the forged material. Moreover, you may further increase the thickness of the side part of the pin part vicinity of the arm part which has a weight part integrally in a rolling-down process. Further, in the reduction step, in the arm portion that does not have the weight portion, the thickness may be increased at one or both of the side portion near the pin portion and the side portion near the journal portion. Regarding the shape of the arm portion of the crankshaft before the reduction step, a case where the weight portion is integrally formed and a case where the weight portion is not provided will be described in order.
  • FIG. 5A to 5C are schematic views showing an example of the shape of the pin portion side surface before the rolling step when the arm portion integrally has a weight portion
  • FIG. 5A is a view showing the pin portion side surface
  • FIG. 5C is a sectional view taken along the line VC-VC. 5A to 5C, only one arm portion integrally including a weight portion is extracted from the arm portions of the crankshaft.
  • 5B is a projection view from the direction indicated by the broken-line arrow in FIG. 5A.
  • the arm portion A having the weight portion W is formed in the inner region At of the both side portions Ac and Ad in the vicinity of the journal portion J of the surface on the pin portion P side before the reduction step. It has a surface shape that matches the bottom shape of the dent after the rolling process. The surface shape smoothly spreads to the regions Ac and Ad on both sides near the journal portion J. Thereby, the thickness of both side parts Ac and Ad in the vicinity of the journal part J is thinner than the thickness after the reduction process.
  • the arm part A having the weight part W has first surplus parts Aca and Ada on the outer circumferences of both side parts Ac and Ad in the vicinity of the journal part J, respectively.
  • the first surplus portions Aca and Ada project along the width direction from the outer circumferences of both side portions Ac and Ad near the journal portion J.
  • the first surplus portions Aca and Ada shown in FIGS. 5A to 5C are plate-shaped, and are provided along the outer periphery of both side portions Ac and Ad in the vicinity of the journal portion J.
  • the thicknesses of the first surplus portions Aca and Ada are the same or thinner than the thicknesses of the both side portions Ac and Ad at the base.
  • FIG. 6A and 6B are schematic views showing an example of the shape of the journal part side surface before the reduction process in the case where the arm part integrally has a weight part
  • FIG. 6A is a diagram showing the journal part side surface
  • FIG. 6 is a VIB-VIB sectional view.
  • the arm portion A having the weight portion W it is preferable to increase the thickness of both side portions Aa and Ab near the pin portion P and to form a recess on the surface on the journal portion J side.
  • the arm portion A having the weight portion W has a bottom shape of the dent after the reduction process (final product) in the inner region of both side portions Aa and Ab near the pin portion P on the surface on the journal portion J side. Has a matching surface shape. The surface shape spreads smoothly to the regions of both side portions Aa and Ab near the pin portion P. Thereby, the thickness of both side parts Aa and Ab is thinner than the thickness after a reduction process.
  • second surplus portions Aaa and Aba protruding from the outer periphery are formed on both side portions Aa and Ab near the pin portion P.
  • the second surplus portions Aaa and Aba are plate-like and are provided along the outer peripheries of both side portions Aa and Ab near the pin portion P.
  • the thicknesses of the second surplus portions Aaa and Aba are approximately the same as or thinner than the thicknesses of both side portions Aa and Ab at the base.
  • FIG. 7A and 7B are schematic views showing an example of the shape of the surface of the pin portion side before the reduction process for the arm portion without weight
  • FIG. 7A is a view showing the surface of the pin portion side
  • FIG. 7B is a sectional view of VIIB-VIIB It is.
  • the weightless arm portion A it is preferable to increase the thickness of both side portions Ac and Ad in the vicinity of the journal portion J and to form a recess on the surface on the pin portion P side.
  • the unweighted arm portion A before the rolling process is similar to the arm portion A having the weight portion W in FIGS. 5A to 5C, on both sides Ac in the vicinity of the journal portion J of the surface on the pin portion P side.
  • the inner region At of Ad has a surface shape that matches the bottom shape of the dent after the reduction step.
  • the arm part A having no weight before the reduction process is applied to the inner region of both sides near the pin part P on the surface on the journal part J side after the reduction process, like the arm part A having the weight part W. It has a surface shape (not shown) that matches the bottom shape of the recess of the (final product).
  • the 2nd surplus part Aaa and Aba are outer peripheries of the both side parts Aa and Ab near the pin part P Protrude from.
  • the manufacturing method of the forged crankshaft of this embodiment includes a die forging step and a reduction step in that order.
  • a deburring process may be added between the die forging process and the rolling process.
  • the reduction step can be performed in the deburring step as in a third step example described later.
  • a preforming process can be added as a pre-process of the die forging process.
  • a deburring process is added between the die forging process and the reduction process, for example, a shaping process can be added as a subsequent process of the reduction process.
  • a reduction process can also be implemented in a shaping process.
  • a twist process is added between the deburring process and the shaping process. All of these steps are performed in a series of heat.
  • the preforming process can be composed of, for example, a roll forming process and a bending process.
  • the volume of the billet (raw material) is distributed and the bending waste is formed.
  • a forged material with burrs molded into the shape of the crankshaft is obtained.
  • the shapes of the journal portion J, the pin portion P, and the arm portion A are formed in the same manner as the burr-free forged material shown in FIGS. 5A to 5C.
  • the forged material has first surplus portions Aca and Ada protruding from the outer periphery of the side portions Ac and Ad in the vicinity of the journal portion J in the arm portion A integrally including the weight portion W.
  • the forged material may have second surplus parts Aaa and Aba protruding from the outer periphery of the side parts Aa and Ab near the pin part P.
  • the die forging process for obtaining such a forging material can be constituted by providing a roughing process and a finishing process in that order.
  • the die cutting gradient in the die forging step does not become a reverse gradient in any of the portions corresponding to the inner region At on both sides and the portions corresponding to the first surplus portions Aca and Ada on the surface of the pin portion P side of the arm portion. For this reason, both die forging and roughing can be performed without any trouble, and a forged material can be obtained.
  • the burrs are removed from the forging material by punching out the burrs while holding the forging material with burrs sandwiched between, for example, a pair of molds. Thereby, a burr-free forging material can be obtained.
  • the obtained burr-free forging material is reduced with a pair of first dies.
  • the 1st surplus part is bulged to the pin part side of an arm part by reducing and deforming the 1st surplus part with the 1st metallic mold. This increases the thickness at the side of the arm near the journal.
  • the second surplus portion is projected to the journal portion side of the arm portion during the reduction. Thereby, thickness is increased in the side part near the pin part of an arm part.
  • the forged material without burrs is reduced with a pair of molds and corrected to the dimensional shape of the final product.
  • the reduction process can be performed in the shaping process. Since the same manufacturing process as the conventional one can be employed, the reduction process is preferably performed in the shaping process.
  • a pre-forming process similar to the first process example can be added.
  • a forged material with burrs formed into the shape of the crankshaft is obtained.
  • the forged material has the 1st surplus part like the 1st process example.
  • the forged material may further have a second surplus portion.
  • the die forging process for obtaining such a forging material corresponds to the roughing process of the conventional manufacturing process.
  • the obtained forged material with burr is reduced with a pair of first dies.
  • the 1st surplus part is bulged to the pin part side of an arm part by reducing and deforming the 1st surplus part with the 1st metallic mold.
  • the second surplus portion is projected to the journal portion side of the arm portion during the reduction.
  • the forged material with burr is formed into a shape that matches the final product.
  • the reduction process in this case corresponds to the finishing process of the conventional manufacturing process.
  • the burr-free forging material is obtained by removing the burrs from the forging material after the reduction process in the same manner as in the first process example.
  • a shaping step may be performed after the deburring step.
  • the pin portion arrangement angle is adjusted in the twisting step after the deburring step (before the shaping step).
  • a pre-forming process similar to the first process example can be added.
  • a forged material with burrs formed into the shape of the crankshaft is obtained.
  • the die forging process can be configured by providing a roughing process and a finishing process in that order.
  • the forged material has the 1st surplus part like the 1st process example.
  • the forged material may further have a second surplus portion.
  • the forged material with burrs When carrying out the reduction process in the deburring process, the forged material with burrs is held between a pair of first molds. At that time, the forged material with burr is reduced and the first surplus portion is deformed to project the first surplus portion to the pin portion side of the arm portion. When the forged material has the second surplus portion, the second surplus portion is projected to the journal portion side of the arm portion. Subsequently, the burrs are removed from the forged material by punching out the burrs with a blade tool while the forged material is held by the pair of first molds. If necessary, a shaping step may be performed after the deburring step. When adjustment of the pin portion arrangement angle is necessary, the pin portion arrangement angle is adjusted in the twisting step after the deburring step (before the shaping step).
  • the first process flow example is a process flow of the reduction process in the first process example.
  • FIGS. 8A to 12B are schematic diagrams showing an example of a processing flow in the case where the first surplus portion is bent in the reduction process for the arm portion integrally including the weight portion.
  • 8A and 8B among them show the pin side surface of the arm part, FIG. 8A shows when the second mold is pressed, and FIG. 8B shows the end of reduction.
  • 9A and 9B show the journal side surface of the arm part, FIG. 9A shows when the second mold is pressed, and FIG. 9B shows the end of the reduction.
  • FIGS. 8A to 9B show a forged material 30 without burr and a pair of first molds 10 at the top and bottom, and in order to facilitate understanding of the drawings, a second mold, a third mold, and a jig described later are shown. Illustration of the ingredients is omitted.
  • FIG. 10A and FIG. 10B are views showing the side surface of the arm part, FIG. 10A shows when the second mold is pressed, and FIG. 10B shows the end of the reduction. 10A and 10B show a forged material 30 without burrs, a second mold 22 at the time of pressing, a third mold 23, and a jig 26. In order to facilitate understanding of the drawings, The illustration of one mold is omitted. In FIG. 10A, the second mold 22 during retraction is indicated by a two-dot chain line.
  • FIG. 11A and 11B are cross-sectional views of the vicinity of the journal portion
  • FIG. 11A is a cross-sectional view of XIA-XIA when the second mold is pressed (see FIG. 8A)
  • FIG. 11B is a cross-sectional view of XIB-XIB at the end of the reduction It is a figure (refer FIG. 8B).
  • 11A and 11B show a forged material 30 without burrs, a pair of first molds 11 and 12, and a second mold 22.
  • FIG. 12A and 12B are cross-sectional views in the vicinity of the pin portion
  • FIG. 12A is a cross-sectional view taken along the line XIIA-XIIA when the second mold is pressed (see FIG. 9A)
  • FIG. 12B is a cross-sectional view taken along the line XIIB-XIIB It is a figure (refer FIG. 9B).
  • 12A and 12B show a forged material 30 without burrs, a pair of first molds 11 and 12, and a third mold 23.
  • the first mold 10 includes an upper mold 11 and a lower mold 12, and a mold engraving portion is engraved on each of the upper mold 11 and the lower mold 12.
  • a part of the final product shape of the crankshaft is reflected in the mold engraving portion.
  • the first surplus portion Aca and Ada are bent, so that the shape in the vicinity of the journal portion is reflected in the mold engraving portion among both side portions of the arm portion.
  • mold engraving part has the inclined surfaces 11a and 12a facing a 1st surplus part.
  • the inclined surfaces 11a and 12a are inclined so as to guide the first surplus portion toward the pin portion side surface (see FIG. 11A).
  • the second surplus portion Aaa and Aba are further provided in the arm portion integrally having the weight portion
  • the shape in the vicinity of the pin portion of the both side portions of the arm portion is mold engraving in order to bend the second surplus portion. It is further reflected in the department.
  • mold engraving part has the inclined surfaces 11b and 12b facing a 2nd surplus part. The inclined surfaces 11b and 12b are inclined so as to guide the second surplus portion toward the journal portion side surface (see FIG. 12A).
  • mold engraving part has an inclined surface facing a 1st surplus part. The inclined surface is inclined so as to guide the first surplus portion toward the pin portion side surface.
  • the second surplus portion Aaa and Aba are further provided on the arm portion without weight, the second surplus portion is bent, so that the shape in the vicinity of the pin portion is further reflected in the mold engraving portion in both side portions of the arm portion.
  • mold engraving part has an inclined surface facing a 2nd surplus part. The inclined surface is inclined so as to guide the second surplus portion toward the journal portion side surface.
  • the shape of the arm part other than the both side parts described above is further reflected in the mold engraving part. Further, the shapes of the journal part and the pin part are also reflected in the mold engraving part.
  • portions corresponding to the inner regions At on both sides of the surface of the arm portion A on the pin portion P side are opened.
  • a mold engraving portion is engraved in the second mold 22, and the concave shape of the surface of the arm portion A on the pin portion P side is reflected in the mold engraving portion.
  • die 22 is independent from the 1st metal mold
  • die 22 is arrange
  • the second mold 22 is held by a guide member (not shown) so as to be movable along the guide direction (see the solid arrow in FIG. 10A).
  • die 22 is connected with the jig
  • the jig 26 is connected to a hydraulic cylinder or the like, and is movable along the eccentric direction of the pin portion (see the hatched arrow in FIG. 10A) in accordance with its operation.
  • the second mold 22 is retracted from the position at the time of pressing as the jig 26 moves along the eccentric direction of the pin portion. Is moved along the guide direction (see the solid line arrow in the figure). In that case, the 2nd metal mold
  • the second mold 22 may be movable in the downward direction of the first mold 10 in addition to the above-described advance / retreat movement.
  • the movement of the second mold 22 in the reduction direction is appropriately executed by means such as a spring or a hydraulic cylinder.
  • the means for moving in the downward direction is provided separately from the forward / backward drive source.
  • the second surplus part is provided in the arm part integrally having the weight part, in the first mold 10, as shown in FIGS. 12A and 12B, the inner region of both sides on the journal part J side surface of the arm part A The part corresponding to As is opened. You may accommodate the 3rd metal mold
  • a mold engraving portion is engraved in the third mold 23, and the concave shape of the surface of the arm portion A on the journal portion J side is reflected in the mold engraving portion.
  • the third mold 23 can move forward and backward, and the forward and backward movement is realized by the operation of a connected hydraulic cylinder or the like. Further, the third mold 23 may be movable in the downward direction of the first mold 10 in the same manner as the second mold.
  • the first molds 11 and 12 when the first surplus portion is provided in the arm portion having no weight, the first molds 11 and 12 have portions corresponding to the inner regions At on both sides on the surface of the pin portion P of the arm portion A. Opened.
  • a fourth mold similar to the above-described second mold 22 may be accommodated in the opened portion.
  • region As of the both sides in the journal part J side surface of the arm part A is open
  • a fifth mold similar to the above-described third mold 23 may be accommodated in the opened portion.
  • the upper mold 11 and the lower mold 12 of the first mold 10 are separated from each other, and the burr-free forging material 30 after removing the burr is disposed between the upper mold 11 and the lower mold 12 in this state.
  • the second to fifth dies are used, the second to fifth dies are retracted and retracted before the burr-free forging material 30 is disposed.
  • the first mold 10 is moved so that the upper mold 11 and the lower mold 12 are close to each other, and more specifically, the upper mold 11 is lowered to the bottom dead center.
  • the burr-free forging material 30 is reduced by the first mold 10.
  • the first surplus portions Aca and Ada are bent toward the pin portion P side surface of the arm portion A along the inclined surface of the mold engraving portion of the first mold 10.
  • the first surplus portion Aca and Ada are projected to the pin portion P side.
  • the thickness of both side parts Ac and Ad near the journal part J of the arm part increases. For this reason, the obtained crankshaft becomes thick at both side portions Ac and Ad in the vicinity of the journal portion J of the arm portion.
  • the second surplus part is provided in the arm part integrally having the weight part
  • the second surplus part Aaa and Aba are moved to the journal part J side surface of the arm part A by the first mold 10 during the reduction. Bend towards. Accordingly, the second surplus portions Aaa and Aba are projected to the journal portion J side, and the thickness is increased at both side portions Aa and Ab near the pin portion P.
  • the first surplus portion when the first surplus portion is provided in the arm portion without weight, the first surplus portion is bent toward the pin P side surface of the arm portion A by the first mold 10 during the reduction. . Thereby, the first surplus portion is projected to the pin portion P side, and the thickness is increased at both side portions of the arm portion in the vicinity of the journal portion J.
  • the second surplus portion when the second surplus portion is provided in the arm portion without weight, the second surplus portion is bent toward the journal portion J side surface of the arm portion A by the first mold 10 during the reduction. Thereby, the second surplus portion is projected to the journal portion J side, and the thickness is increased at both side portions in the vicinity of the pin portion P.
  • the shape of the crankshaft is further corrected during the reduction to obtain the final product shape.
  • the upper mold 11 and the lower mold 12 of the first mold are separated from each other, and more specifically, the upper mold 11 is raised to the top dead center.
  • the second mold to the fifth mold are used, the second mold to the fifth mold are retracted and retracted before the upper mold 11 and the lower mold 12 are separated from each other.
  • the processed burr-free forging material 30 is carried out.
  • the forged crankshaft manufacturing method of the present embodiment can manufacture a forged crankshaft that simultaneously achieves weight reduction and rigidity.
  • the first surplus portions Aca and Ada are bent by the first mold 10.
  • the first surplus portions Aca and Ada are crushed by the first mold 10.
  • the thickness of the side parts Ac and Ad near the journal part of the arm part is increased.
  • the manufacturing method of the forged crankshaft of this embodiment can be performed simply, without requiring a great force.
  • the range in which the dent is provided on the surface of the pin part P is the same as the range of the part where the thicknesses of both side parts Ac and Ad near the journal part J are thick.
  • the range means a range in the eccentric direction of the pin portion.
  • the range in which the dent is provided on the surface of the pin portion P side may be different from the range of the portion where the thickness of both side portions Ac and Ad near the journal portion J is thick. From the viewpoint of ensuring the bending, the dent on the surface of the pin portion P side is arranged so as to match the range of the thick portion according to the thick portion of the both side portions Ac and Ad in the vicinity of the journal portion J. Is preferred.
  • the angle ⁇ of the inclined surface is preferably 3 to 20 °.
  • the angle ⁇ of the inclined surface is an angle formed by the mold parting surface and the inclined surface.
  • the arm part before the reduction process has a deformation of the surplus part, that is, a starting point of bending.
  • FIGS. 13A and 13B are cross-sectional views schematically showing the starting point of bending
  • FIG. 13A shows a case where no step is provided at the starting point
  • FIG. 13B shows a case where a step is provided at the starting point.
  • 13A and 13B are cross-sectional views at positions corresponding to the VC-VC position in FIG. 5A.
  • 13A and 13B show a cross-sectional shape of the arm part A before the reduction process in the vicinity of the journal part J.
  • the arm part A shown in FIGS. 13A and 13B has a dent after the reduction process in the inner region At of both side parts Ac and Ad in the vicinity of the journal part J of the surface on the pin part P side before the reduction process. It has a surface shape that matches the bottom surface shape.
  • the gradient (°) in the inner region At continuously increases as the distance from the center plane of the arm portion (see symbol S in FIG. 13A) increases.
  • the surface shape extends to the areas of both side portions Ac and Ad near the journal portion J.
  • the gradient (°) in the regions of both side portions Ac and Ad is constant.
  • the gradient (refer to units: °, ⁇ a, and ⁇ b) is an angle that the surface of the arm part forms with a plane perpendicular to the axis of the journal part.
  • the arm part center plane is a plane including the axis of the journal part and the axis of the pin part.
  • the arm portion A shown in FIG. 13A has a starting point O on the surface on the pin portion P side.
  • the relationship between the distance from the center plane of the arm and the gradient is discontinuous.
  • a distance d1 (unit: mm, see FIG. 13A) from the arm center surface to the starting point O is a distance d2 (unit: mm) from the arm surface center surface to the roots (points B) of the first surplus portions Aca and Ada.
  • it is smaller than (see FIG. 13B).
  • the roots (point B) of the first surplus portions Aca and Ada are the roots of the first surplus portions Aca and Ada on the surface of the arm portion A on the journal portion J side, for example, the outer edge of the journal thrust portion.
  • the distance d2 is, for example, the radius (mm) of the journal thrust part.
  • the gradient ⁇ a (°) of the starting point O on the central surface side of the arm part is equal to or less than the gradient ⁇ b (°) of the starting point on the side surface side of the arm part.
  • a step may be formed by reducing the thickness stepwise. Also by this, only the part on the side of the arm portion from the starting point O can be easily bent, the bending can be promoted, and the dent shape can be prevented from being deformed during the bending.
  • FIGS. 14A to 14D are schematic views showing an example of the shape of the pin portion side surface of the arm portion when the first surplus portion is crushed
  • FIG. 14A is a perspective view
  • FIG. 14B is a view showing the pin portion side surface
  • 14C is a side view
  • FIG. 14D is a XIVD-XIVD cross-sectional view.
  • the shape of the surface of the arm part A on the pin part P side shown in FIGS. 14A to 14D is the same as that of the arm part A shown in FIGS. 2A to 2D.
  • the side surface of the arm portion A near the journal portion J is substantially parallel to the center surface of the arm portion without being inclined.
  • FIGS. 15A to 15C are schematic views showing examples of the shape of the journal side surface of the preferred arm part when the first surplus part is crushed
  • FIG. 15A is a perspective view
  • FIG. 15B is the journal side surface
  • FIG. 15C is a sectional view taken along line XVC-XVC.
  • the shape of the surface of the journal portion J side of the arm portion A shown in FIGS. 15A to 15C is the same as that of the arm portion A shown in FIGS. 3A to 3C.
  • the side surface of the arm portion A near the pin portion P is substantially parallel to the center surface of the arm portion without being inclined.
  • FIG. 16A and FIG. 16B are schematic views showing an example of the shape of a suitable arm portion without weight when the first surplus portion is crushed
  • FIG. 16A is a view showing the surface of the pin portion side
  • FIG. 16B is XVIB-XVIB It is sectional drawing.
  • the shape of the surface of the pin part P side of the arm part A shown in FIGS. 16A and 16B is the same as that of the arm part A shown in FIGS. 4A and 4B.
  • the side surface of the arm portion A near the journal portion J is substantially parallel to the arm portion center plane without being inclined.
  • the arm portion A without weight is similar to the arm portion integrally including the weight portion shown in FIGS. 15A to 15C, on both sides Aa and Ab near the pin portion P on the surface on the journal portion J side. It is preferable to have a recess in the inner region As. In the case of crushing, in the arm portion A with no weight, the side surface in the vicinity of the journal portion J is not inclined but is substantially parallel to the center surface of the arm portion.
  • the arm portion before the reduction process has a deformation of the surplus portion, that is, a crushing starting point.
  • the crushing starting point can adopt the same form as the bending starting point as shown in FIGS. 13A and 13B.
  • the gradient ⁇ a (°) of the starting point O on the arm portion center plane side is equal to or larger than the gradient ⁇ b (°) of the starting point on the side surface side of the arm portion (see FIG. 13A).
  • FIGS. 17A to 18B are schematic diagrams showing an example of a processing flow when the first surplus portion is crushed in the reduction process.
  • 17A and 17B are cross-sectional views of the vicinity of the journal portion, FIG. 17A shows when the second mold is pressed, and FIG. 17B shows the end of reduction.
  • FIG. 17A and FIG. 17B show a forged material 30 without burr, a pair of first molds 11 and 12, and a second mold 22.
  • FIG. 18A and 18B are cross-sectional views of the vicinity of the pin portion, FIG. 18A shows the time when the second mold is pressed, and FIG. 18B shows the time when the reduction is completed.
  • 18A and 18B show a forged material 30 without burrs, a pair of first molds 11 and 12, and a third mold 23.
  • FIG. 18A and 18B show a forged material 30 without burrs, a pair of first molds 11 and 12, and a third mold 23.
  • the second processing flow example in the case of crushing shown in FIGS. 17A to 18B has the same basic configuration as the above-described bending (first processing flow example). For this reason, in the example of the processing flow in the case of crushing, since the figure which shows the pin part side surface becomes the same as FIG. 8A and FIG. 8B, it abbreviate
  • FIG. 8A corresponds to a cross-sectional view at the position XIB-XIB in FIG. 8B.
  • 18A corresponds to a cross-sectional view at the position XIIA-XIIA in FIG. 9A
  • FIG. 18B corresponds to a cross-sectional view at the position XIIB-XIIB in FIG. 9B.
  • the second surplus part When the second surplus part is provided on the arm part integrally including the weight part, the second surplus part Aaa and Aba are crushed by the first mold 10 during the reduction. Accordingly, the second surplus portions Aaa and Aba are projected to the journal portion J side along the mold engraving portion of the first mold 10, and the thickness is increased at both side portions Aa and Ab near the pin portion P.
  • the first surplus portion when the first surplus portion is further provided in the arm portion without weight, the first surplus portion is crushed by the first mold 10 during the reduction. Thereby, the first surplus portion is projected to the pin portion P side, and the thickness is increased at both side portions of the arm portion in the vicinity of the journal portion J. Moreover, when providing a 2nd surplus part in an arm part without weight, the 2nd surplus part is crushed with the 1st metal mold
  • the range in which the dent is provided on the surface of the pin part P is the same as the range of the parts where the thicknesses of both side parts Ac and Ad near the journal part J are thick.
  • the range in which the dent is provided on the surface of the pin portion P side may be different from the range of the portion where the thickness of both side portions Ac and Ad near the journal portion J is thick.
  • the dent on the surface of the pin part P side matches the range of the thick part according to the thick part of both side parts Ac and Ad near the journal part J. It is preferable to arrange so as to. This is because, when crushing, the dents are present in the immediate vicinity of both side parts, so that only the side part side, more specifically, only both side parts and the first surplus part can be easily deformed.
  • crankshaft final product
  • crankshaft final product
  • arm portions with weights integrally having a weight portion
  • all of the arm portions with weight are the first surplus. May have a part, and a part of arm part with a weight may have a 1st surplus part.
  • the weighted arm portion for providing the first surplus portion can be appropriately determined based on, for example, a portion that requires bending rigidity, torsional rigidity, and rigidity required for the arm part.
  • a crankshaft (final product) having a plurality of weighted arm portions when the second surplus portion is provided on the forged material weighted arm portion, all of the forged material weighted arm portions have the second surplus portion. Alternatively, part of the weighted arm portion may have the second surplus portion. Further, as shown in FIG. 5A, the same weighted arm portion may have both the first surplus portion and the second surplus portion, and the weighted arm portion having the first surplus portion is different from the weight.
  • the attached arm portion may have a second surplus portion.
  • the weighted arm portion for providing the second surplus portion can be appropriately determined based on, for example, a portion requiring bending rigidity, torsional rigidity, and rigidity required for the arm section.
  • the forged material weightless arm portion in a crankshaft (final product) having an arm portion (weightless arm portion) that does not have a plurality of weight portions, when the first surplus portion is provided in the weightless arm portion of the forged material, the forged material weightless arm portion May have a first surplus part, and a part of the arm part without weight may have a first surplus part.
  • the weightless arm portion provided with the first surplus portion can be determined as appropriate based on, for example, a portion that requires bending rigidity, torsional rigidity, and rigidity required for the arm part.
  • the forged member has no second surplus portion.
  • a part of the arm portion without weight may have the second surplus portion.
  • the same weightless arm portion may have both the first surplus portion and the second surplus portion, and a weight different from the weightless arm portion having the first surplus portion.
  • the none arm part may have a second surplus part.
  • the weightless arm portion in which the second surplus portion is provided can be appropriately determined based on, for example, a portion that requires bending rigidity, torsional rigidity, and rigidity required for the arm part.
  • the weighted arm portion may have the first surplus portion (Aca, Ada) on both side portions (both side portions Ac and Ad) in the vicinity of the journal portion. Or you may have a 1st surplus part (Aca, Ada) in one side part (Ac or Ad) near a journal part. Even when the weighted arm portion has the first surplus portion on one side (Ac or Ad) near the journal portion, the first surplus portion is projected to the pin portion side to reduce the The thickness can be increased on one side of the arm after the process. For this reason, rigidity can be secured while reducing the weight.
  • the side part in the vicinity of the journal part in which the first surplus part is provided can be determined as appropriate based on, for example, a part requiring bending rigidity, torsional rigidity, and rigidity required for the arm part.
  • both side portions both side portions (both side portions) as in the shape example and the processing flow example described above.
  • Aa and Ab or may be on one side (Aa or Ab).
  • the second surplus portion is projected to the journal portion side so as to be reduced.
  • the thickness can be increased on one side of the arm after the process. For this reason, rigidity can be secured while reducing the weight.
  • the side portion in the vicinity of the pin portion where the second surplus portion is provided can be determined as appropriate based on, for example, a portion that requires bending rigidity, torsional rigidity, and rigidity required for the arm portion.
  • both side parts both side parts (both side parts) as in the shape example and the processing flow example described above.
  • Ac and Ad may be on one side (Ac or Ad).
  • the first surplus portion is projected to the pin portion side so as to be reduced.
  • the thickness can be increased on one side of the arm after the process. For this reason, rigidity can be secured while reducing the weight.
  • the side part in the vicinity of the journal part in which the first surplus part is provided can be determined as appropriate based on, for example, a part requiring bending rigidity, torsional rigidity, and rigidity required for the arm part.
  • both side portions both side portions (both side portions) as in the shape example and the processing flow example described above.
  • Aa and Ab or one side (Aa or Ab).
  • the second surplus portion is projected to the journal portion side so as to be reduced.
  • the thickness can be increased on one side of the arm after the process. For this reason, rigidity can be secured while reducing the weight.
  • the side portion in the vicinity of the pin portion where the second surplus portion is provided can be determined as appropriate based on, for example, a portion that requires bending rigidity, torsional rigidity, and rigidity required for the arm portion.
  • the arm part A having the weight part W may have the first surplus parts Aca and Ada on both side parts Ac and Ad in the vicinity of the journal part.
  • the areas of the both side parts Ac and Ad in the vicinity of the journal part J of the surface on the pin part P side are defined. It is preferable to hold at least the surface to be removed by pressing the second mold 22. Thereby, the recessed shape of the pin part P side surface of the arm part A can be finished precisely.
  • the second mold 22 cannot be applied.
  • the arm part A having the weight part W may have a first surplus part (Aca, Ada) on one of the side parts Ac and Ad in the vicinity of the journal part.
  • a first surplus part Aca, Ada
  • the surface on the pin portion P side of the arm portion A excluding at least the side region where the first surplus portion protrudes from the outer periphery of the both side portions Ac and Ad near the journal portion J is formed on the second mold 22. It is preferable to hold by pressing. Thereby, the recessed shape of the pin part P side surface of the arm part A can be finished precisely.
  • the second mold 22 When the second mold 22 is used in the reduction process, the second mold 22 is moved in the reduction direction of the first mold 10 following the reduction of the first mold 10, and the second mold to the arm part A is moved. It is preferable to maintain the 22 pressing position at a fixed position. Thereby, the recessed shape of the pin part P side surface can be finished still more precisely.
  • the second surplus part is further formed, and in the reduction process, the second surplus part is deformed by the first mold, and the vicinity of the pin part P is formed. It is preferred to increase the thickness at one or both of the sides (Aa and Ab). Thereby, further weight reduction can be achieved while securing rigidity.
  • the third mold cannot be applied.
  • the first surplus portion is further formed, and in the reduction step, the first surplus portion is deformed by the first mold, and the side portion (Ac) in the vicinity of the journal portion J is obtained.
  • Ad is preferably increased in thickness.
  • the fourth mold cannot be applied.
  • the second surplus portion described above is further formed in the die forging step, and the second surplus portion is deformed by the first die in the reduction step, and the side portion near the pin portion P is formed. It is preferred to increase the thickness at one or both of (Aa and Ab). Thereby, further weight reduction can be achieved while securing rigidity.
  • the fifth mold cannot be applied.
  • the second mold to the fifth mold When using the second mold to the fifth mold, the second mold to the fifth mold are pressed against each surface of the arm part A. Since the second to fifth dies only hold the respective surfaces of the arm part A and do not push in, the force required to press the second to fifth dies is small.
  • Both the first and second processing flow examples described above are directed to a crankshaft mounted on a four-cylinder engine, and the crankshaft shifts the eccentric direction of the pin portion at equal intervals of 180 ° for each arm portion. To do. When shifting to an equal interval of 180 ° in this way, all the arm portions are pressed down from the direction perpendicular to the eccentric direction of the pin portion by the first mold. In this case, the reduction direction of the first mold is also perpendicular to the axial direction of the crankshaft.
  • the reduction direction by the first mold is not limited to the direction perpendicular to the eccentric direction of the pin portion.
  • the eccentric direction of the pin portion is shifted at equal intervals of 120 ° or 60 ° for each arm portion.
  • the pin portion arrangement angle may be adjusted by adding a twisting process.
  • the arrangement angle of the pin portion may be adjusted by finishing. For example, when adjusting the arrangement angle of the pin part in the first process example in the twisting process, the reduction direction by the first mold in the reduction process is perpendicular to the eccentric direction of the pin part in some arm parts. Don't be. The situation in this case will be described below.
  • FIG. 19A and FIG. 19B are schematic views showing the surface of the arm portion on the pin part side when the reduction direction of the first mold is not perpendicular to the eccentric direction of the pin part, FIG. 19A shows before the reduction, and FIG. Indicates the end of reduction.
  • a crankshaft including the arm portion A shown in FIGS. 19A and 19B is a crankshaft mounted on a three-cylinder engine, and the arrangement angle of the pin portion P is shifted at equal intervals of 120 °. For this reason, in the rolling-down process, the eccentric direction of some pin portions P is inclined by 30 ° from the horizontal direction. Therefore, the reduction direction of the first mold 10 (the vertical direction in FIGS. 19A and 19B) is a direction that is shifted by 60 ° from the eccentric direction of the pin portion P.
  • the forged crankshaft manufacturing method of this embodiment can be applied. That is, by deforming the first surplus portion (Aca, Ada) or the second surplus portion (Aaa, Aba) with the first mold 10, the thickness of both side portions of the arm portion can be increased. Therefore, the direction of reduction by the first mold is such that the first mold 10 deforms the first surplus part (Aca, Ada) or the second surplus part (Aaa, Aba) to thereby reduce the thickness of both sides of the arm part. As long as it can be increased, it is not limited.
  • the present invention can be effectively used for manufacturing a forged crankshaft to be mounted on a reciprocating engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Forging (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

 型鍛造により、クランク軸の形状に成形された鍛造材を得る型鍛造工程と、一対の第1金型(10)により、鍛造材(30)を圧下する圧下工程と、を含む。鍛造材(30)は、ウエイト部(W)を一体で有するアーム部(A)のうちの全部または一部に、ジャーナル部(J)近傍の側部(Ac、Ad)の外周から突出する第1余肉部(Aca、Ada)を有する。圧下工程では、第1金型(10)により第1余肉部(Aca、Ada)を圧下して変形させ、第1余肉部(Aca、Ada)をピン部(P)側に張り出させる。これにより、軽量化と剛性確保を同時に図った鍛造クランク軸を簡便に得ることができる。

Description

鍛造クランク軸の製造方法
 本発明は、熱間鍛造によりクランク軸を製造する方法に関する。
 自動車、自動二輪車、農業機械または船舶等のレシプロエンジンにおいて、ピストンの往復運動を回転運動に変換して動力を取り出すために、クランク軸が不可欠である。クランク軸は、型鍛造または鋳造によって製造できる。特に、高強度と高剛性がクランク軸に要求される場合、型鍛造によって製造されたクランク軸(以下、「鍛造クランク軸」ともいう)が多用される。
 一般に、鍛造クランク軸の原材料は、ビレットである。そのビレットでは、横断面が丸形または角形であり、断面積が全長にわたって一定である。鍛造クランク軸の製造工程は、予備成形工程、型鍛造工程およびバリ抜き工程を含む。必要に応じ、バリ抜き工程の後に整形工程を行う場合もある。通常、予備成形工程は、ロール成形と曲げ打ちの各工程を含み、型鍛造工程は、荒打ちと仕上げ打ちの各工程を含む。
 図1A~図1Fは、従来の一般的な鍛造クランク軸の製造工程を説明するための模式図である。図1Fに例示するクランク軸1は、4気筒エンジンに搭載され、4気筒-8枚カウンターウエイトのクランク軸である。そのクランク軸1は、5つのジャーナル部J1~J5、4つのピン部P1~P4、フロント部Fr、フランジ部Fl、および、8枚のクランクアーム部(以下、単に「アーム部」ともいう)A1~A8から構成される。アーム部A1~A8は、ジャーナル部J1~J5とピン部P1~P4をそれぞれつなぐ。また、8枚の全部のアーム部A1~A8は、カウンターウエイト部(以下、単に「ウエイト部」ともいう)W1~W8を一体で有する。
 以下では、ジャーナル部J1~J5、ピン部P1~P4、アーム部A1~A8およびウエイト部W1~W8のそれぞれを総称するとき、その符号は、ジャーナル部で「J」、ピン部で「P」、アーム部で「A」、ウエイト部で「W」とも記す。
 図1A~図1Fに示す製造方法では、以下のようにして鍛造クランク軸1が製造される。先ず、図1Aに示すような所定の長さのビレット2を誘導加熱炉やガス雰囲気加熱炉によって加熱した後、ロール成形を行う。ロール成形工程では、例えば孔型ロールを用いてビレット2を圧延して絞ることにより、その体積を長手方向に配分し、中間素材であるロール荒地3を成形する(図1B参照)。次に、曲げ打ち工程では、ロール荒地3を長手方向と垂直な方向から部分的に圧下する。これにより、ロール荒地3の体積を配分し、更なる中間素材である曲げ荒地4を成形する(図1C参照)。
 続いて、荒打ち工程では、曲げ荒地4を上下に一対の金型を用いてプレス鍛造することにより、荒鍛造材5を得る(図1D参照)。その荒鍛造材5は、クランク軸(最終製品)のおおよその形状に成形されている。さらに、仕上げ打ち工程では、荒鍛造材5を上下に一対の金型を用いてプレス鍛造することにより、仕上げ鍛造材6を得る(図1E参照)。その仕上げ鍛造材6は、最終製品のクランク軸と合致する形状に成形されている。これら荒打ちおよび仕上げ打ちのとき、余材が、互いに対向する金型の型割面の間から流出してバリとなる。このため、荒鍛造材5および仕上げ鍛造材6のいずれにおいても、バリBがクランク軸の形状の周囲に大きく付いている。
 バリ抜き工程では、例えばバリ付きの仕上げ鍛造材6を一対の金型によって挟んで保持した状態で、刃物型によってバリBを打ち抜く。これにより、仕上げ鍛造材6からバリBを除去する。このようにしてバリ無し鍛造材が得られ、そのバリ無し鍛造材は、図1Fに示す鍛造クランク軸1とほぼ同じ形状である。
 整形工程では、バリ無し鍛造材の要所を上下から金型で僅かに圧下し、バリ無し鍛造材を最終製品の寸法形状に矯正する。ここで、バリ無し鍛造材の要所は、例えば、ジャーナル部J、ピン部P、フロント部Frおよびフランジ部Flなどといった軸部、さらにはアーム部Aおよびウエイト部Wである。こうして、鍛造クランク軸1が製造される。
 図1A~図1Fに示す製造工程は、図1Fに示す4気筒-8枚カウンターウエイトのクランク軸に限らず、様々なクランク軸に適用できる。例えば、4気筒-4枚カウンターウエイトのクランク軸にも適用できる。
 4気筒-4枚カウンターウエイトのクランク軸の場合、8枚のアーム部Aのうち、一部のアーム部にウエイト部Wが一体で設けられる。例えば先頭の第1アーム部A1、最後尾の第8アーム部A8および中央の2枚のアーム部(第4アーム部A4、第5アーム部A5)にウエイト部Wが一体で設けられる。また、残りのアーム部、具体的には、第2、第3、第6および第7のアーム部A2、A3、A6およびA7は、ウエイト部を有さず、その形状が小判状(長円状)となる。以下では、ウエイト部を有さないアーム部を、「ウエイト無しアーム部」ともいう。
 その他に、3気筒エンジン、直列6気筒エンジン、V型6気筒エンジンおよび8気筒エンジン等に搭載されるクランク軸であっても、製造工程は同様である。なお、ピン部の配置角度の調整が必要な場合は、バリ抜き工程の後に、捩り工程が追加される。
 近年、特に自動車用のレシプロエンジンには、燃費の向上のために軽量化が求められる。このため、レシプロエンジンに搭載されるクランク軸にも、軽量化の要求が著しくなっている。
 鍛造クランク軸の軽量化を図る従来技術として、ウエイト部を一体で有するアーム部において、そのピン部側の表面に肉抜き部を設ける技術がある。その凹状の肉抜き部は、型鍛造によって成形されることから、金型の分割面と垂直な方向、すなわち、ピン部の偏心方向と垂直な方向に伸び、アーム部の両側面まで広がる。この技術は、特開2009-197929号公報(特許文献1)および特開2010-255834号公報(特許文献2)に開示される。
 特許文献1に提案されるクランク軸では、凹状の肉抜き部が、ピン部の偏心方向と垂直な方向に伸び、アーム部の両側面まで広がる。その肉抜き部のうちで少なくともジャーナル部の軸心よりピン部側の領域において、肉抜き部の底面の深さが、ピン部側からジャーナル部側へ漸次増加する。また、その肉抜き部の底面は、仮想円柱の外周面に沿うように形成される。ここで、仮想円柱は、ピン部とアーム部(ウェブ)の接合面からジャーナル部とアーム部(ウェブ)の接合面まで伸びる。これにより、クランク軸の剛性を低下させることなく、質量を低減できるとしている。
 特許文献2に提案されるクランク軸では、薄肉部がアーム部のピン部側の表面に形成され、その薄肉部は、ジャーナル部側に仮想線内まで窪む。ここで、仮想線は、ピン部のスラスト受け部の外周縁と、ジャーナル部のスラスト受け部の外周縁との間でジャーナル部の軸線を通過する直線である。薄肉部は金型の分割面と垂直な方向、すなわち、ピン部の偏心方向と垂直な方向に伸び、アーム部の両側面まで広がる。このような薄肉部を設けることにより、ピストンの往復動作によってピン部に荷重が加わった際に、アーム部自体が撓むことにより応力を分散させることが可能となり、ピン部の長寿命化が図れるとしている。特許文献2では、肉抜き部をさらに設ければ、質量も軽減できるとしている。
 また、鍛造クランク軸の軽量化を図る従来技術として、パンチによって穴部を成形する技術がある。この技術は、特開2012-7726号公報(特許文献3)および特開2010-230027号公報(特許文献4)に開示される。
 特許文献3および4には、ジャーナル部側の表面に穴部が成形されたアーム部が記載され、このアーム部を有するクランク軸の製造方法も記載されている。アーム部の穴部は、ジャーナル部の軸心とピン部の軸心とを結ぶ直線(以下、「アーム部中心線」ともいう)上に成形され、ピン部に向けて大きく深く窪む。このようなアーム部によれば、穴部の体積分の質量を軽量化できる。アーム部の軽量化は、アーム部と対をなすウエイト部の質量軽減につながり、ひいては鍛造クランク軸全体の軽量化につながる。また、アーム部のピン部近傍の両側部において、厚みが厚く維持されているので、剛性(ねじり剛性および曲げ剛性)も確保される。ここで、アーム部の側部とは、アーム部の幅方向(ピン部の偏心方向と垂直な方向)の側面およびその周辺部分を意味する。
 このように、アーム部の両側部の厚みを厚く維持しつつ、アーム部のジャーナル部側の表面に凹みを持たせれば、軽量化と剛性確保を同時に図ることができる。
 ただし、そのような独特な形状のアーム部を有する鍛造クランク軸は、従来の製造方法では製造することが困難である。型鍛造工程において、アーム部表面に凹みを成形しようとすれば、金型の型抜き勾配が凹み部位で逆勾配になり、成形された鍛造材が金型から抜けなくなる事態が生じるからである。
 そのような事態に対処するため、特許文献3および4に記載された製造方法では、型鍛造工程において、アーム部表面に凹みを成形することなくアーム部を小さく成形する。そして、バリ抜き工程の後に、アーム部の表面にパンチを押し込み、そのパンチの痕跡によって凹みを成形する。
 なお、図1Fに示すクランク軸では、アーム部Aおよびそれと一体のウエイト部Wの形状が、全て同じである。実際には、必要に応じ、アーム部Aごとに、アーム部Aおよびそれと一体のウエイト部Wの形状を異ならせる場合がある。この技術は、特開2007-71227号公報(特許文献5)および特開2014-40856号公報(特許文献6)に開示される。
 特許文献5には、一端にフライホイールが装着される4気筒-8枚カウンターウエイトのクランク軸が記載される。そのクランク軸では、アーム部の厚さおよび重心、並びに、ウエイト部の質量が、全部のアーム部で同じでなく、アーム部ごとに異なる。これにより、アーム部ごとに必要最小限の剛性を確保でき、必要な剛性が低いアーム部で肉厚を薄くでき、その結果、軽量化を達成できるとしている。
 特許文献6には、一端にフライホイールが装着される多気筒エンジン用のクランク軸が記載される。そのクランク軸では、アーム部の曲げ剛性およびねじり剛性がフライホイールに近いほど高い。また、アーム部の曲げ剛性およびねじり剛性がアーム部ごとに異なるのが好ましいとしている。これにより、曲げ振動およびねじり振動のいずれも軽減しつつ、軽量化を図ることができるとしている。
 このようにアーム部ごとに、アーム部およびそれと一体のウエイト部の形状が異なる場合、その形状に応じ、アーム部内で剛性が必要な部位が変化する。具体的には、アーム部のピン部近傍で剛性を確保することが重要となる場合がある。あるいは、アーム部のジャーナル部近傍で剛性を確保することが重要となる場合もある。
特開2009-197929号公報 特開2010-255834号公報 特開2012-7726号公報 特開2010-230027号公報 特開2007-71227号公報 特開2014-40856号公報
 前述の特許文献1および2に記載されるような肉抜き部をアーム部のピン部側の表面に設ければ、質量を低減できるが、剛性が低下する。このため、単純な肉抜き部による軽量化は、剛性を確保する観点から限界があり、さらなる軽量化の要求に応じることが困難である。
 また、前述の特許文献3および4に記載されるように、アーム部の表面にパンチによって穴部を成形すれば、軽量化と剛性確保を同時に図った鍛造クランク軸を製造することができる。しかし、この製造方法では、アーム部表面に穴部を成形する際にアーム部表面にパンチを強く押し込んでアーム部全体を変形させることから、パンチの押し込みに多大な力を要する。このため、パンチに多大な力を付与するための格別な設備と金型が必要であり、パンチの耐久性に関しても配慮が必要となる。
 本発明の目的は、軽量化と剛性確保を同時に図った鍛造クランク軸を簡便に得ることができる鍛造クランク軸の製造方法を提供することにある。
 本発明の一実施形態による鍛造クランク軸の製造方法は、回転中心となるジャーナル部と、そのジャーナル部に対して偏心したピン部と、前記ジャーナル部と前記ピン部をつなぐクランクアーム部と、前記クランクアーム部のうちの全部または一部が一体で有するカウンターウエイト部と、を備える鍛造クランク軸の製造方法である。当該製造方法は、型鍛造により、クランク軸の形状に成形された鍛造材を得る型鍛造工程と、一対の第1金型により、前記鍛造材を圧下する圧下工程と、を含む。前記鍛造材は、前記カウンターウエイト部を一体で有する前記クランクアーム部のうちの全部または一部に、前記ジャーナル部近傍の側部の外周から突出する第1余肉部を有する。前記圧下工程では、前記第1金型により前記第1余肉部を圧下して変形させ、前記第1余肉部を前記ピン部側に張り出させる。
 前記第1金型は、前記第1余肉部と対向する傾斜面を備え、前記圧下工程では、前記第1余肉部を前記傾斜面に沿って変形させるのが好ましい。
 当該製造方法は、前記鍛造材からバリを除去するバリ抜き工程を含み、前記型鍛造工程では、バリ付きの前記鍛造材を得て、前記バリ抜き工程では、前記バリ付きの前記鍛造材からバリ無しの鍛造材を得て、前記圧下工程では、前記バリ無しの前記鍛造材を圧下するのが好ましい。
 前記圧下工程で、前記バリ無しの前記鍛造材を圧下する場合、前記圧下工程では、前記第1余肉部を有する前記クランクアーム部の前記ピン部側の表面のうちで前記ジャーナル部近傍の前記側部の領域を少なくとも除く表面を、第2金型の押し当てにより保持するのが好ましい。
 前記第2金型を用いる場合、前記圧下工程では、前記第1金型の圧下に追従して前記第2金型を前記第1金型の圧下方向に移動させ、前記クランクアーム部への前記第2金型の押し当て位置を一定の位置に維持するのが好ましい。
 前記第1余肉部は、前記ジャーナル部近傍の前記側部の両方からそれぞれ突出するのが好ましい。
 前記圧下工程は、金型を用いた圧下によりクランク軸の形状を矯正する整形工程で実施するのが好ましい。
 前記鍛造材は、前記クランクアーム部のうちの全部または一部に、前記ピン部近傍の側部の外周から突出する第2余肉部を有するのが好ましい。この場合、前記圧下工程では、前記第1金型により前記第2余肉部を圧下して変形させ、前記第2余肉部を前記ジャーナル部側に張り出させる。
 前記第2余肉部は、前記ピン部近傍の前記側部の両方からそれぞれ突出するのが好ましい。
 本発明の鍛造クランク軸の製造方法は、型鍛造工程で、ジャーナル部近傍の側部の外周から突出する第1余肉部を鍛造材のアーム部に成形する。また、圧下工程で、第1余肉部をピン部側に張り出させることにより、アーム部のジャーナル部近傍の側部の厚みを増加させる。このため、単に肉抜き部を設ける場合と比べ、剛性を効率的に確保できるとともに、その側部の内側の凹みによって軽量化を図ることができる。また、パンチを用いることがないので、多大な力を要することなく簡便に行える。
図1Aは、従来の一般的な鍛造クランク軸の製造工程におけるビレットを示す模式図である。 図1Bは、従来の一般的な鍛造クランク軸の製造工程におけるロール荒地を示す模式図である。 図1Cは、従来の一般的な鍛造クランク軸の製造工程における曲げ荒地を示す模式図である。 図1Dは、従来の一般的な鍛造クランク軸の製造工程における荒鍛造材を示す模式図である。 図1Eは、従来の一般的な鍛造クランク軸の製造工程における仕上げ鍛造材を示す模式図である。 図1Fは、従来の一般的な鍛造クランク軸の製造工程におけるクランク軸を示す模式図である。 図2Aは、本発明の製造方法によるクランク軸について、アーム部のピン部側表面の形状例を模式的に示す斜視図である。 図2Bは、図2Aに示すアーム部のピン部側表面を示す図である。 図2Cは、図2Aに示すアーム部の側面を示す図である。 図2Dは、図2BのIID-IID断面図である。 図3Aは、本発明の製造方法によるクランク軸について、好適なアーム部のジャーナル部側表面の形状例を模式的に示す斜視図である。 図3Bは、図3Aに示すアーム部のジャーナル部側表面を示す図である。 図3Cは、図3BのIIIC-IIIC断面図である。 図4Aは、本発明の製造方法によるクランク軸について、好適なウエイト無しアーム部の形状例のピン部側表面を模式的に示す図である。 図4Bは、図4AのIVB-IVB断面図である。 図5Aは、アーム部がウエイト部を一体で有する場合について、圧下工程前の形状例のピン部側表面を示す模式図である。 図5Bは、図5Aに示すアーム部の側面を示す図である。 図5Cは、図5AのVC-VC断面図である。 図6Aは、アーム部がウエイト部を一体で有する場合について、圧下工程前の形状例のジャーナル部側表面を示す模式図である。 図6Bは、図6AのVIB-VIB断面図である。 図7Aは、ウエイト無しアーム部について、圧下工程前の形状例のピン部側表面を示す模式図である。 図7Bは、図7AのVIIB-VIIB断面図である。 図8Aは、ウエイト部を一体で有するアーム部について、第1余肉部を折り曲げる場合の圧下工程の処理フロー例(第1処理フロー例)における第2金型の押し当て時のアーム部のピン部側表面を示す模式図である。 図8Bは、第1処理フロー例における圧下終了時のアーム部のピン部側表面を示す模式図である。 図9Aは、第1処理フロー例における第2金型の押し当て時のアーム部のジャーナル部側表面を示す模式図である。 図9Bは、第1処理フロー例における圧下終了時のアーム部のジャーナル部側表面を示す模式図である。 図10Aは、第1処理フロー例における第2金型の押し当て時のアーム部の側面を示す模式図である。 図10Bは、第1処理フロー例における圧下終了時のアーム部の側面を示す模式図である。 図11Aは、第1処理フロー例における第2金型の押し当て時のジャーナル部近傍の断面図(図8AのXIA-XIA断面図)である。 図11Bは、第1処理フロー例における圧下終了時のジャーナル部近傍の断面図(図8BのXIB-XIB断面図)である。 図12Aは、第1処理フロー例における第2金型の押し当て時のピン部近傍の断面図(図9AのXIIA-XIIA断面図)である。 図12Bは、第1処理フロー例における圧下終了時のピン部近傍の断面図(図9BのXIIB-XIIB断面図)である。 図13Aは、段差を設けない場合の余肉部の変形の起点を模式的に示す断面図である。 図13Bは、段差を設ける場合の余肉部の変形の起点を模式的に示す断面図である。 図14Aは、第1余肉部を押し潰す場合におけるアーム部のピン部側表面の形状例を模式的に示す斜視図である。 図14Bは、図14Aに示すアーム部のピン部側表面を示す図である。 図14Cは、図14Aに示すアーム部の側面を示す図である。 図14Dは、図14BのXIVD-XIVD断面図である。 図15Aは、第1余肉部を押し潰す場合における好適なアーム部のジャーナル部側表面の形状例を模式的に示す斜視図である。 図15Bは、図15Aに示すアーム部のジャーナル部側表面を示す図である。 図15Cは、図15BのXVC-XVC断面図である。 図16Aは、第1余肉部を押し潰す場合における好適なウエイト無しアーム部の形状例のピン部側表面を示す模式図である。 図16Bは、図16AのXVIB-XVIB断面図である。 図17Aは、第1余肉部を押し潰す場合の圧下工程の処理フロー例(第2処理フロー例)における第2金型の押し当て時のジャーナル部近傍の断面図である。 図17Bは、第2処理フロー例における圧下終了時のジャーナル部近傍の断面図である。 図18Aは、第2処理フロー例における第2金型の押し当て時のピン部近傍の断面図である。 図18Bは、第2処理フロー例における圧下終了時のピン部近傍の断面図である。 図19Aは、第1金型の圧下方向がピン部の偏心方向と垂直でない場合について、圧下前のアーム部のピン部側表面を示す模式図である。 図19Bは、第1金型の圧下方向がピン部の偏心方向と垂直でない場合について、圧下終了時のアーム部のピン部側表面を示す模式図である。
 以下に、本実施形態の鍛造クランク軸の製造方法について、図面を参照しながら説明する。
1.クランク軸の形状
 本実施形態が対象とする鍛造クランク軸は、回転中心となるジャーナル部と、そのジャーナル部に対して偏心したピン部と、ジャーナル部とピン部をつなぐアーム部と、アーム部のうちの全部または一部が一体で有するウエイト部と、を備える。このような鍛造クランク軸として、例えば、図2A~図4Bに示す鍛造クランク軸を採用できる。
 図2A~図2Dは、本発明の製造方法によるクランク軸について、アーム部のピン部側表面の形状例を示す模式図であり、図2Aは斜視図、図2Bはピン部側表面を示す図、図2Cは側面を示す図、図2DはIID-IID断面図である。図2A~図2Dでは、クランク軸のアーム部のうちで、ウエイト部を一体で有するアーム部を1つだけ抽出して示す。なお、図2Cは、図2Bの破線矢印で示す方向からの投影図である。また、本発明において、ピン部の偏心方向のうちのピン部P側をトップ側(図2Bの符号T参照)、ウエイト部W側をボトム側(図2Bの符号B参照)という。
 ウエイト部Wを有するアーム部Aは、図2A~図2Dに示すように、ピン部P側の表面のうち、ジャーナル部J近傍の両側部AcおよびAdの内側の領域Atに、凹みを有する。また、ジャーナル部J近傍の両側部AcおよびAdがピン部P側に張り出し、それらの両側部AcおよびAdの厚みは、凹みの厚みと比べ、厚肉である。ここで、側部とは、アーム部Aの幅方向(ピン部の偏心方向と垂直な方向)の側面およびその周辺部分を意味し、換言すると、アーム部Aの幅方向の端部を意味する。
 このようなアーム部Aは、肉抜き部を有さないアーム部のように、ジャーナル部J近傍の両側部AcおよびAdの厚みが厚く維持される。また、結果的にピン部P側の表面に凹みが形成されている。そのアーム部Aを備えるクランク軸では、アーム部Aのピン部P側表面の凹みによって軽量化を図ることができる。加えて、アーム部Aのジャーナル部J近傍の両側部AcおよびAdの厚みが、肉抜き部を有さないアーム部のように維持されることにより、剛性の確保を図ることができる。換言すると、アーム部Aのジャーナル部J近傍の両側部AcおよびAdの厚みが、凹みの厚みと比べ、厚肉であることにより、剛性の確保を図ることができる。
 ここで、本発明者らが、剛性について検討したところ、内側領域Atの厚みは剛性への影響が小さいが、幅方向の両側部AcおよびAdの厚みは剛性への影響が大きいことが明らかになった。
 具体的には、前述の特許文献1および2に記載されるような肉抜き部をアーム部のピン部側の表面に設ける場合、凹状の肉抜き部が幅方向の両側面まで広がる。このため、幅方向の両側部AcおよびAdの厚みも薄くなるので、剛性が低下する。これに対し、本実施形態に係るクランク軸は、ピン部P側表面の凹みが両側部の中間にのみ設けられる。さらに、幅方向の両側部AcおよびAdの厚みが肉抜き部を有さないアーム部のように厚く維持されるので、剛性の低下を抑制できる。その結果、本実施形態に係るクランク軸によれば、単に肉抜き部を設ける場合と比べ、剛性を効率的に確保でき、両側部AcおよびAdの内側の凹みの拡大によってさらなる軽量化を図ることができる。
 ジャーナル部J近傍の両側部AcおよびAdの厚みが厚い部位は、剛性を効率的に確保する観点から、ピンスラスト部(図示なし)のボトム側の外縁からジャーナル部の中心に至る範囲を含むのが好ましい。ここで、ピンスラスト部とは、アーム部のピン部側表面に設けられ、コネクティングロッドのスラスト方向の移動を制限する部位である。
 ジャーナル部J近傍の両側部AcおよびAdの内側領域Atの形状(凹みの底面形状)は、図2Dに示すように、幅方向の中央が膨らむような凸状であるのが好ましい。換言すると、内側領域Atの厚みは、幅方向の中央から遠ざかるに従って漸次減少するのが好ましい。凹みの底面形状は幅方向の中央が膨らむような凸状であるため、剛性、特に曲げ剛性をより向上できる。
 続いて、ウエイト部を一体で有するアーム部Aにおけるジャーナル部J側表面の形状について、その好ましい態様を説明する。
 図3A~図3Cは、本発明の製造方法によるクランク軸について、好適なアーム部のジャーナル部側表面の形状例を示す模式図であり、図3Aは斜視図、図3Bはジャーナル部側表面を示す図、図3CはIIIC-IIIC断面図である。
 ウエイト部Wを有するアーム部Aは、図3A~図3Cに示すように、ジャーナル部J側の表面のうち、ピン部P近傍の両側部AaおよびAbの内側の領域Asに凹みを有するのが好ましい。また、ピン部P近傍の両側部AaおよびAbがジャーナル部J側に張り出し、それらの両側部AaおよびAbの厚みは、凹みの厚みと比べ、厚肉であるのが好ましい。
 これにより、ピン部P近傍の両側部AaおよびAbの厚みが、肉抜き部を有さないアーム部のように、厚く維持される。また、結果的にジャーナル部J側の表面に凹みが形成されている。このため、ピン部P近傍の両側部AaおよびAbの厚み維持によって剛性を確保できる。換言すると、ピン部P近傍の両側部AaおよびAbが内側領域Asより厚肉であることにより、剛性を確保できる。また、ジャーナル部J側表面の凹みによってさらに軽量化を図ることができる。
 ピン部P近傍の両側部AaおよびAbの内側領域Asの形状(凹みの底面形状)は、図3Cに示すように、幅方向の中央が膨らむような凸状であるのが好ましい。換言すると、内側領域Asの厚みは、幅方向の中央から遠ざかるに従って漸次減少するのが好ましい。凹みの底面形状は幅方向の中央が膨らむような凸状であるため、剛性、特に曲げ剛性をより向上できる。
 続いて、ウエイト部を有さないアーム部、すなわち、ウエイト無しアーム部について、その好ましい態様を説明する。
 図4Aおよび図4Bは、本発明の製造方法によるクランク軸について、好適なウエイト無しアーム部の形状例を示す模式図であり、図4Aはピン部側表面を示す図、図4BはIVB-IVB断面図である。図4Aおよび図4Bでは、クランク軸のアーム部のうちで、ウエイト無しアーム部を1つだけ抽出して示す。
 図4Aおよび図4Bに示すように、ウエイト無しアーム部Aは、前記図2A~図2Dに示すウエイト部を一体で有するアーム部と同様に、ピン部P側の表面のうち、ジャーナル部J近傍の両側部AcおよびAdの内側の領域Atに、凹みを有するのが好ましい。また、ジャーナル部J近傍の両側部AcおよびAdがピン部P側に張り出し、それらの両側部AcおよびAdの厚みは、凹みの厚みと比べ、厚肉であるのが好ましい。この場合、アーム部Aのジャーナル部J近傍の両側部AcおよびAdの厚みを、従来の肉抜き部を有さないアーム部のように維持することにより、剛性を確保できる。換言すると、アーム部Aのジャーナル部J近傍の両側部AcおよびAdが凹みより厚肉であることにより、剛性を確保できる。また、アーム部Aのピン部P側表面の凹みによってさらに軽量化を図ることができる。
 ウエイト部を一体で有するアーム部と同様に、ウエイト無しアーム部Aにおいても、ジャーナル部J近傍の両側部AcおよびAdの内側領域Atの形状(凹みの底面形状)は、図4Bに示すように、幅方向の中央が膨らむような凸状であるのが好ましい。凹みの底面形状は幅方向の中央が膨らむような凸状であるため、剛性、特に曲げ剛性をより向上できる。
 また、図示を省略するが、ウエイト無しアーム部Aは、前記図3A~図3Cに示すウエイト部を一体で有するアーム部と同様に、ジャーナル部J側の表面のうち、ピン部P近傍の両側部AaおよびAbの内側の領域Asに凹みを有するのが好ましい。また、ピン部P近傍の両側部AaおよびAbがジャーナル部J側に張り出し、それらの両側部AaおよびAbの厚みは、凹みの厚みと比べ、厚肉であるのが好ましい。この場合、アーム部Aのピン部P近傍の両側部AaおよびAbの厚みを、肉抜き部を有さないアーム部のように維持することにより、剛性を確保できる。換言すると、アーム部Aのピン部P近傍の両側部AaおよびAbがその内側領域Asより厚肉であることにより、剛性を確保できる。また、アーム部Aのジャーナル部J側表面の凹みによってさらに軽量化を図ることができる。
 図3Cに示すウエイト部を一体で有するアーム部のように、ウエイト無しアーム部Aにおいても、ピン部P近傍の両側部AaおよびAbの内側領域Asの形状(凹みの底面形状)は、幅方向の中央が膨らむような凸状であるのが好ましい。凹みの底面形状は幅方向の中央が膨らむような凸状であるため、剛性、特に曲げ剛性をより向上できる。
 本実施形態の鍛造クランク軸の製造方法は、鍛造材を圧下する圧下工程で、ウエイト部を一体で有するアーム部のジャーナル部近傍の側部の厚みを増加させる。また、圧下工程で、ウエイト部を一体で有するアーム部のピン部近傍の側部の厚みをさらに増加させてもよい。また、圧下工程で、ウエイト部を有さないアーム部において、ピン部近傍の側部およびジャーナル部近傍の側部のいずれか一方または両方で厚みを増加させてもよい。その圧下工程前のクランク軸のアーム部形状について、ウエイト部を一体で有する場合と、ウエイト部を有さない場合とを順に説明する。
 図5A~図5Cは、アーム部がウエイト部を一体で有する場合について、圧下工程前のピン部側表面の形状例を示す模式図であり、図5Aはピン部側表面を示す図、図5Bは側面を示す図、図5CはVC-VC断面図である。図5A~図5Cでは、クランク軸のアーム部のうちで、ウエイト部を一体で有するアーム部を1つだけ抽出して示す。なお、図5Bは、図5Aの破線矢印で示す方向からの投影図である。
 図5A~図5Cに示すように、ウエイト部Wを有するアーム部Aは、圧下工程前に、ピン部P側の表面のうち、ジャーナル部J近傍の両側部AcおよびAdの内側領域Atに、圧下工程後の凹みの底面形状と合致する表面形状を持つ。その表面形状はジャーナル部J近傍の両側部AcおよびAdの領域まで滑らかに広がる。これにより、ジャーナル部J近傍の両側部AcおよびAdの厚みは、圧下工程後の厚みよりも薄い。
 また、ウエイト部Wを有するアーム部Aは、ジャーナル部J近傍の両側部AcおよびAdの外周にそれぞれ第1余肉部AcaおよびAdaを有する。その第1余肉部AcaおよびAdaは、ジャーナル部J近傍の両側部AcおよびAdの外周から幅方向に沿って突出する。図5A~図5Cに示す第1余肉部AcaおよびAdaは、板状であり、ジャーナル部J近傍の両側部AcおよびAdの外周に沿って設けられる。第1余肉部AcaおよびAdaの厚みは、その根元の両側部AcおよびAdの厚みと比べ、同程度であるかまたは薄い。
 図6Aおよび図6Bは、アーム部がウエイト部を一体で有する場合について、圧下工程前のジャーナル部側表面の形状例を示す模式図であり、図6Aはジャーナル部側表面を示す図、図6BはVIB-VIB断面図である。
 前述の通り、ウエイト部Wを有するアーム部Aにおいて、ピン部P近傍の両側部AaおよびAbの厚みを厚くするとともに、ジャーナル部J側の表面に凹みを形成するのが好ましい。この場合、ウエイト部Wを有するアーム部Aは、ジャーナル部J側の表面のうち、ピン部P近傍の両側部AaおよびAbの内側領域に、圧下工程後(最終製品)の凹みの底面形状と合致する表面形状を持つ。その表面形状はピン部P近傍の両側部AaおよびAbの領域まで滑らかに広がる。これにより、両側部AaおよびAbの厚みは、圧下工程後の厚みよりも薄い。
 また、ピン部P近傍の両側部AaおよびAbには、それぞれの外周から突出する第2余肉部AaaおよびAbaが成形される。この第2余肉部AaaおよびAbaは、板状であり、ピン部P近傍の両側部AaおよびAbの外周に沿って設けられる。第2余肉部AaaおよびAbaの厚みは、その根元の両側部AaおよびAbの厚みと比べ、同程度であるかまたは薄い。
 図7Aおよび図7Bは、ウエイト無しアーム部について、圧下工程前のピン部側表面の形状例を示す模式図であり、図7Aはピン部側表面を示す図、図7BはVIIB-VIIB断面図である。
 前述の通り、ウエイト無しアーム部Aにおいて、ジャーナル部J近傍の両側部AcおよびAdの厚みを厚くするとともに、ピン部P側の表面に凹みを形成するのが好ましい。この場合、圧下工程前のウエイト無しアーム部Aは、前記図5A~図5Cのウエイト部Wを有するアーム部Aと同様に、ピン部P側の表面のうち、ジャーナル部J近傍の両側部AcおよびAdの内側領域Atに、圧下工程後の凹みの底面形状と合致する表面形状を持つ。また、ジャーナル部J近傍の両側部AcおよびAdの外周にそれぞれ第1余肉部AcaおよびAdaを有し、その第1余肉部AcaおよびAdaは、ジャーナル部J近傍の両側部AcおよびAdの外周から突出する。
 前述の通り、ウエイト無しアーム部Aにおいて、ピン部P近傍の両側部AaおよびAbの厚みを厚くするとともに、ジャーナル部J側の表面に凹みを形成するのが好ましい。この場合、圧下工程前のウエイト無しアーム部Aは、ウエイト部Wを有するアーム部Aと同様に、ジャーナル部J側の表面のうち、ピン部P近傍の両側部の内側領域に、圧下工程後(最終製品)の凹部の底面形状と合致する表面形状を持つ(図示なし)。また、ピン部P近傍の両側部AaおよびAbの外周に第2余肉部AaaおよびAbaを有し、その第2余肉部AaaおよびAbaは、ピン部P近傍の両側部AaおよびAbの外周から突出する。
2.鍛造クランク軸の製造方法
 本実施形態の鍛造クランク軸の製造方法は、型鍛造工程と、圧下工程とをその順で含む。後述の第1工程例のように、型鍛造工程と圧下工程の間に、バリ抜き工程を追加してもよい。あるいは、後述の第2工程例のように、圧下工程の後工程として、バリ抜き工程を追加してもよい。あるいは、後述の第3工程例のように、バリ抜き工程において、圧下工程を実施することもできる。
 型鍛造工程の前工程として、例えば、予備成形工程を追加できる。型鍛造工程と圧下工程の間に、バリ抜き工程を追加する場合、圧下工程の後工程として、例えば、整形工程を追加できる。あるいは、整形工程において、圧下工程を実施することもできる。なお、ピン部の配置角度の調整が必要な場合は、バリ抜き工程と整形工程の間に、捩り工程が追加される。これらの工程は、いずれも、熱間で一連に行われる。
[第1工程例]
 型鍛造工程と圧下工程の間にバリ抜き工程を追加する場合の工程例について、以下に説明する。
 予備成形工程は、例えば、ロール成形工程と曲げ打ち工程とで構成できる。ロール成形工程および曲げ打ち工程では、ビレット(原材料)の体積を配分し、曲げ荒地を成形する。
 型鍛造工程では、クランク軸の形状に成形されたバリ付きの鍛造材を得る。その鍛造材には、例えば、前記図5A~図5Cに示すバリ無し鍛造材と同様に、ジャーナル部J、ピン部Pおよびアーム部Aの形状が成形されている。また、鍛造材は、ウエイト部Wを一体で有するアーム部Aにおいて、ジャーナル部J近傍の側部AcおよびAdの外周から突出する第1余肉部AcaおよびAdaを有する。鍛造材は、アーム部Aにおいて、ピン部P近傍の側部AaおよびAbの外周から突出する第2余肉部AaaおよびAbaを有してもよい。
 このような鍛造材を得る型鍛造工程は、荒打ち工程および仕上げ打ち工程をその順で設けることによって構成できる。
 型鍛造工程の型抜き勾配は、アーム部のピン部P側表面における両側部の内側領域Atに対応する部位および第1余肉部Aca、Adaに対応する部位のいずれでも、逆勾配にならない。このため、荒打ちと仕上げ打ちのいずれの型鍛造も、支障なく行え、鍛造材を得ることができる。
 同様の理由により、前記図3A~図3Cまたは図6Aおよび図6Bに示すように、ウエイト部Wを有するアーム部Aにおいて、ピン部P近傍の両側部AaおよびAbの厚みを厚くするとともに、ジャーナル部J側の表面に凹みを形成する場合も、逆勾配が生じない。また、ウエイト無しアーム部Aにおいて、ジャーナル部J近傍の両側部AcおよびAdの厚みを厚くするとともに、ピン部P側の表面に凹みを形成する場合も、逆勾配が生じない。さらに、ウエイト無しアーム部Aにおいて、ピン部P近傍の両側部AaおよびAbの厚みを厚くするとともに、ジャーナル部J側の表面に凹みを形成する場合も、逆勾配が生じない。これらの場合も、荒打ちと仕上げ打ちのいずれの型鍛造も、支障なく行える。
 バリ抜き工程では、バリ付きの鍛造材を例えば一対の金型によって挟んで保持した状態で、バリを打ち抜くことにより、鍛造材からバリを除去する。これにより、バリ無し鍛造材を得ることができる。
 圧下工程では、得られたバリ無し鍛造材を一対の第1金型で圧下する。その際、第1余肉部を第1金型で圧下して変形させることにより、第1余肉部をアーム部のピン部側に張り出させる。これにより、アーム部のジャーナル部近傍の側部において、厚みを増加させる。また、バリ無し鍛造材が第2余肉部を有する場合、圧下の際に、第2余肉部をアーム部のジャーナル部側に張り出させる。これにより、アーム部のピン部近傍の側部において、厚みを増加させる。圧下工程の処理フローについては、後述する。
 また、整形工程では、バリ無し鍛造材を一対の金型で圧下し、最終製品の寸法形状に矯正する。前述の通り、圧下工程は、整形工程で実施できる。従来と同様の製造工程を採用できるので、圧下工程は、整形工程で実施するのが好ましい。
 ピン部の配置角度の調整が必要な場合は、バリ抜き工程の後(整形工程の前)に、捩り工程でピン部の配置角度を調整する。このような工程により、本実施形態の鍛造クランク軸の製造方法では、鍛造クランク軸を得る。
[第2工程例]
 圧下工程の後工程として、バリ抜き工程を追加する場合の工程例について、以下に説明する。
 型鍛造工程の前工程として、第1工程例と同様の予備成形工程を追加できる。型鍛造工程では、クランク軸の形状に成形されたバリ付きの鍛造材を得る。その鍛造材は、第1工程例と同様に、第1余肉部を有している。鍛造材は、さらに、第2余肉部を有してもよい。このような鍛造材を得る型鍛造工程は、従来の製造工程の荒打ち工程に相当する。
 圧下工程では、得られたバリ付き鍛造材を一対の第1金型で圧下する。その際、第1余肉部を第1金型で圧下して変形させることにより、第1余肉部をアーム部のピン部側に張り出させる。また、鍛造材が第2余肉部を有する場合、圧下の際に、第2余肉部をアーム部のジャーナル部側に張り出させる。加えて、第1金型で圧下する際に、バリ付き鍛造材を最終製品と合致する形状に成形する。この場合の圧下工程は、従来の製造工程の仕上げ打ち工程に相当する。
 続くバリ抜き工程では、圧下工程後の鍛造材から、第1工程例と同様にバリを除去することにより、バリ無し鍛造材を得る。必要に応じ、バリ抜き工程の後に、整形工程を実施してもよい。また、ピン部の配置角度の調整が必要な場合は、バリ抜き工程の後(整形工程の前)に、捩り工程でピン部の配置角度を調整する。
[第3工程例]
 バリ抜き工程において、圧下工程を実施する場合の工程例について、以下に説明する。
 型鍛造工程の前工程として、第1工程例と同様の予備成形工程を追加できる。型鍛造工程では、第1工程例と同様に、クランク軸の形状に成形されたバリ付きの鍛造材を得る。型鍛造工程は、荒打ち工程および仕上げ打ち工程をその順で設けることによって構成できる。その鍛造材は、第1工程例と同様に、第1余肉部を有している。鍛造材は、さらに、第2余肉部を有してもよい。
 バリ抜き工程で圧下工程を実施する場合、バリ付きの鍛造材を一対の第1金型によって挟んで保持する。その際、バリ付きの鍛造材を圧下し、第1余肉部を変形させることにより、第1余肉部をアーム部のピン部側に張り出させる。また、鍛造材が第2余肉部を有する場合、併せて、第2余肉部をアーム部のジャーナル部側に張り出させる。続いて、鍛造材を一対の第1金型で保持した状態で、刃物型でバリを打ち抜くことにより、鍛造材からバリを除去する。必要に応じ、バリ抜き工程の後に、整形工程を実施してもよい。また、ピン部の配置角度の調整が必要な場合は、バリ抜き工程の後(整形工程の前)に、捩り工程でピン部の配置角度を調整する。
3.圧下工程の処理フロー例
 圧下工程では、前述の通り、余肉部を第1金型で圧下することにより、アーム部の側部で厚みを増加させる。この余肉部の変形態様は、折り曲げまたは押し潰しとなる。
[第1処理フロー例]
 先ず、圧下工程で余肉部を折り曲げる場合の処理フロー例(第1処理フロー例)を説明する。なお、第1処理フロー例は、前記第1工程例での圧下工程の処理フローである。
 図8A~12Bは、ウエイト部を一体で有するアーム部について、圧下工程で第1余肉部を折り曲げる場合の処理フロー例を示す模式図である。そのうちの図8Aおよび図8Bは、アーム部のピン部側表面を示し、図8Aは第2金型の押し当て時、図8Bは圧下終了時を示す。また、図9Aおよび図9Bは、アーム部のジャーナル部側表面を示し、図9Aは第2金型の押し当て時、図9Bは圧下終了時を示す。図8A~図9Bには、バリ無し鍛造材30と、上下で一対の第1金型10とを示し、図面の理解を容易にするため、後述する第2金型、第3金型および治具の図示を省略する。
 図10Aおよび図10Bは、アーム部の側面を示す図であり、図10Aは第2金型の押し当て時、図10Bは圧下終了時をそれぞれ示す。図10Aおよび図10Bには、バリ無し鍛造材30と、押し当て時の第2金型22と、第3金型23と、治具26とを示し、図面の理解を容易にするため、第1金型の図示を省略する。また、図10Aには、退避時の第2金型22を二点鎖線で示す。
 図11Aおよび図11Bは、ジャーナル部近傍の断面図であり、図11Aは第2金型の押し当て時のXIA-XIA断面図(図8A参照)、図11Bは圧下終了時のXIB-XIB断面図(図8B参照)である。図11Aおよび図11Bには、バリ無し鍛造材30と、一対の第1金型11および12と、第2金型22とを示す。
 図12Aおよび図12Bは、ピン部近傍の断面図であり、図12Aは第2金型の押し当て時のXIIA-XIIA断面図(図9A参照)、図12Bは圧下終了時のXIIB-XIIB断面図(図9B参照)である。図12Aおよび図12Bには、バリ無し鍛造材30と、一対の第1金型11および12と、第3金型23とを示す。
 圧下工程では、一対の第1金型10を用いる。第1金型10は、上型11と下型12とで構成され、上型11および下型12には、それぞれ型彫刻部が彫り込まれている。その型彫刻部には、クランク軸の最終製品形状のうちの一部が反映される。具体的には、ウエイト部を一体で有するアーム部において、第1余肉部AcaおよびAdaを折り曲げるため、アーム部の両側部のうちでジャーナル部近傍の形状が型彫刻部に反映される。また、型彫刻部のうちで第1余肉部の折り曲げに寄与する部位は、第1余肉部と対向する傾斜面11aおよび12aを有する。その傾斜面11aおよび12aは、第1余肉部をピン部側表面に向けて案内するように傾斜する(図11A参照)。
 また、ウエイト部を一体で有するアーム部に第2余肉部AaaおよびAbaをさらに設ける場合、その第2余肉部を折り曲げるため、アーム部の両側部のうちでピン部近傍の形状が型彫刻部にさらに反映される。また、型彫刻部のうちで第2余肉部の折り曲げに寄与する部位は、第2余肉部と対向する傾斜面11bおよび12bを有する。その傾斜面11bおよび12bは、第2余肉部をジャーナル部側表面に向けて案内するように傾斜する(図12A参照)。
 図示を省略するが、ウエイト無しアーム部に第1余肉部AcaおよびAdaをさらに設ける場合、その第1余肉部を折り曲げるため、アーム部の両側部のうちでジャーナル部近傍の形状が型彫刻部にさらに反映される。また、型彫刻部のうちで第1余肉部の折り曲げに寄与する部位は、第1余肉部と対向する傾斜面を有する。その傾斜面は、第1余肉部をピン部側表面に向けて案内するように傾斜する。
 ウエイト無しアーム部に第2余肉部AaaおよびAbaをさらに設ける場合、その第2余肉部を折り曲げるため、アーム部の両側部のうちでピン部近傍の形状が型彫刻部にさらに反映される。また、型彫刻部のうちで第2余肉部の折り曲げに寄与する部位は、第2余肉部と対向する傾斜面を有する。その傾斜面は、第2余肉部をジャーナル部側表面に向けて案内するように傾斜する。
 圧下工程を整形工程で実施する場合、上述の両側部以外のアーム部形状がさらに型彫刻部に反映される。また、ジャーナル部およびピン部等の形状も型彫刻部に反映される。
 ただし、図11Aおよび図11Bに示すように、第1金型11および12では、アーム部Aのピン部P側表面における両側部の内側領域Atに対応する部位が開放される。この開放された部分には、第2金型22を収容してもよい。第2金型22には、型彫刻部が彫り込まれており、その型彫刻部には、アーム部Aのピン部P側表面の凹み形状が反映される。また、第2金型22は、第1金型10から独立し、アーム部表面における両側部の内側領域Atに対して接触したり離間したりするように進退移動が可能である。
 ここで、第2金型22は、隣り合うアーム部の間に配置され、その配置スペースは狭小となる。そこで、第2金型22は、図10Aおよび図10Bに示すように、ピン部の偏心方向に沿って移動可能な治具26と連結する構成を採用してもよい。この構成について、以下に詳述する。
 第2金型22の進退移動を実現するため、第2金型22は、案内部材(図示なし)によって案内方向(図10Aの実線矢印参照)に沿って移動可能に保持される。また、第2金型22は、スライド方向(図10Aの破線矢印参照)に沿ってスライド可能な状態で治具26と連結される。治具26は、油圧シリンダ等と連結され、その動作に伴ってピン部の偏心方向(図10Aのハッチングを施した矢印参照)に沿って移動可能である。
 このように治具26と第2金型22とを連結すれば、治具26がピン部の偏心方向に沿って移動するのに伴い、第2金型22が押し当て時の位置から退避時の位置に至る区間を案内方向(同図の実線矢印参照)に沿って移動する。その際、第2金型22は、治具26に対してスライド方向(同図の破線矢印参照)に相対移動する。
 第2金型22は、上述の進退移動に加えて、第1金型10の圧下方向に移動可能としてもよい。第2金型22の圧下方向への移動は、スプリングまたは油圧シリンダ等の手段によって適宜実行される。その圧下方向へ移動させる手段は、進退移動の駆動源とは別個に設けられる。
 ウエイト部を一体で有するアーム部に第2余肉部を設ける場合、第1金型10では、図12Aおよび図12Bに示すように、アーム部Aのジャーナル部J側表面における両側部の内側領域Asに対応する部位が開放される。この開放された部分には、第3金型23を収容してもよい。第3金型23には、型彫刻部が彫り込まれており、その型彫刻部には、アーム部Aのジャーナル部J側表面の凹み形状が反映される。この第3金型23は、進退移動が可能であり、その進退移動は連結される油圧シリンダ等の動作によって実現される。また、第3金型23は、第2金型と同様に、第1金型10の圧下方向に移動可能としてもよい。
 図示を省略するが、ウエイト無しアーム部に第1余肉部を設ける場合、第1金型11および12では、アーム部Aのピン部P側表面における両側部の内側領域Atに対応する部位が開放される。この開放された部分には、前述の第2金型22と同様の第4金型を収容してもよい。また、ウエイト無しアーム部に第2余肉部を設ける場合、第1金型11および12では、アーム部Aのジャーナル部J側表面における両側部の内側領域Asに対応する部位が開放される。この開放された部分には、前述の第3金型23と同様の第5金型を収容してもよい。
 このような第1金型10を用いる本実施形態の圧下工程の処理フロー例を説明する。先ず、第1金型10の上型11と下型12とを離間させ、その状態でバリ除去後のバリ無し鍛造材30を上型11と下型12の間に配置する。第2金型~第5金型を用いる場合、バリ無し鍛造材30を配置する前に、第2金型~第5金型を後退させて退避させる。
 次いで、第2金型~第5金型を用いる場合、第2金型~第5金型をそれぞれ進出させ、図10A、図11Aおよび図12Aに示すように、アーム部Aの各表面に押し付ける。これにより、アーム部Aの各表面をそれぞれ保持する。ただし、アーム部の表面のうちで、第1余肉部AcaおよびAdaが設けられたジャーナル部近傍の両側部の領域と、第2余肉部AaaおよびAbaが設けられたピン部近傍の両側部の領域とについては、第2金型~第5金型のいずれも押し当てない(図11Aおよび図12A参照)。それらの領域に金型を押し当てて保持すると、ジャーナル部近傍およびピン部近傍の両側部で厚みを増加させることが不可能となるからである。
 この状態で、第1金型10の上型11と下型12とが近接するように移動させ、より具体的には、上型11を下死点まで下降させる。これにより、バリ無し鍛造材30が第1金型10によって圧下される。その圧下の際に、図11Bに示すように、第1余肉部AcaおよびAdaを第1金型10の型彫刻部の傾斜面に沿ってアーム部Aのピン部P側表面に向けて折り曲げ、第1余肉部AcaおよびAdaをピン部P側に張り出させる。その結果、アーム部のジャーナル部J近傍の両側部AcおよびAdの厚みが増加する。このため、得られるクランク軸は、アーム部のジャーナル部J近傍の両側部AcおよびAdで厚みが厚くなる。
 同様に、ウエイト部を一体で有するアーム部に第2余肉部を設ける場合、圧下の際に、第1金型10で第2余肉部AaaおよびAbaをアーム部Aのジャーナル部J側表面に向けて折り曲げる。これにより、第2余肉部AaaおよびAbaをジャーナル部J側に張り出させ、ピン部P近傍の両側部AaおよびAbで厚みを増加させる。
 図示を省略するが、ウエイト無しアーム部に第1余肉部を設ける場合、圧下の際に、第1金型10で第1余肉部をアーム部Aのピン部P側表面に向けて折り曲げる。これにより、第1余肉部をピン部P側に張り出させ、アーム部のジャーナル部J近傍の両側部で厚みを増加させる。また、ウエイト無しアーム部に第2余肉部を設ける場合、圧下の際に、第1金型10で第2余肉部をアーム部Aのジャーナル部J側表面に向けて折り曲げる。これにより、第2余肉部をジャーナル部J側に張り出させ、ピン部P近傍の両側部で厚みを増加させる。
 圧下工程を整形工程で実施する場合、圧下の際にクランク軸の形状をさらに矯正し、最終製品形状とする。
 続いて、第1金型の上型11と下型12とを離間させ、より具体的には、上型11を上死点まで上昇させる。第2金型~第5金型を用いる場合、上型11と下型12とを離間させさせる前に、第2金型~第5金型をそれぞれ後退させて退避させる。上型11と下型12とを離間させた状態で、加工済みのバリ無し鍛造材30を搬出する。
 このような本実施形態の鍛造クランク軸の製造方法によれば、ウエイト部を一体で有するアーム部Aにおいて、ジャーナル部J近傍の側部AcおよびAdの厚みを厚くしながら、ピン部P側の表面に凹みを設けることが可能となる。このため、本実施形態の鍛造クランク軸の製造方法は、軽量化と剛性確保を同時に図った鍛造クランク軸を製造することができる。
 また、本実施形態の鍛造クランク軸の製造方法は、第1金型10によって第1余肉部AcaおよびAdaを折り曲げる。または、後述するように、第1金型10によって第1余肉部AcaおよびAdaを押し潰す。これにより、アーム部のジャーナル部近傍の側部AcおよびAdの厚みを増加させる。このため、本実施形態の鍛造クランク軸の製造方法は、多大な力を要することなく簡便に行える。
 図2A~図2Dに示すアーム部Aでは、ピン部P側表面に凹みを設ける範囲は、ジャーナル部J近傍の両側部AcおよびAdの厚みが厚い部位の範囲と同じである。ここで、範囲は、ピン部の偏心方向の範囲を意味する。ピン部P側表面に凹みを設ける範囲は、ジャーナル部J近傍の両側部AcおよびAdの厚みが厚い部位の範囲と、異なってもよい。折り曲げを確実に行う観点から、ピン部P側表面の凹みは、ジャーナル部J近傍の両側部AcおよびAdの厚みが厚い部位に応じ、その厚みが厚い部位の範囲と一致するように配置するのが好ましい。
 第1金型10が余肉部Aaa、Aba、AcaおよびAdaと当接する傾斜面を有する場合、傾斜面の角度α(図11A参照)は、3~20°とするのが好ましい。ここで、傾斜面の角度αは、型割面と傾斜面がなす角度である。傾斜面の角度αを3°以上とすることにより、折り曲げを促進でき、折り曲げの際に凹み形状が変形するのを抑制できる。また、傾斜面の角度αを20°以下とすることにより、折り曲げによってアーム部の両側部の厚みを容易に確保でき、剛性の確保と軽量化を促進できる。
 折り曲げを促進する観点から、圧下工程前のアーム部は、余肉部の変形、すなわち折り曲げの起点を有するのが好ましい。
 図13Aおよび図13Bは、折り曲げの起点を模式的に示す断面図であり、図13Aは起点に段差を設けない場合、図13Bは起点に段差を設ける場合を示す。図13Aおよび図13Bは、いずれも、図5AのVC-VC位置に相当する位置での断面図である。図13Aおよび図13Bには、ジャーナル部J近傍における圧下工程前のアーム部Aの断面形状を示す。図13Aおよび図13Bに示すアーム部Aは、いずれも、圧下工程前に、ピン部P側の表面のうち、ジャーナル部J近傍の両側部AcおよびAdの内側領域Atに、圧下工程後の凹みの底面形状と合致する表面形状を持つ。その内側領域Atにおける勾配(°)は、アーム部中心面(図13Aの符号S参照)から遠ざかるのに従って連続的に大きくなる。その表面形状はジャーナル部J近傍の両側部AcおよびAdの領域まで広がる。その両側部AcおよびAdの領域における勾配(°)は一定である。
 ここで、勾配(単位:°、θaおよびθb参照)は、アーム部の表面が、ジャーナル部の軸心と垂直な平面となす角度である。また、アーム部中心面は、ジャーナル部の軸心とピン部の軸心とを含む平面である。
 図13Aに示すアーム部Aは、ピン部P側の表面に起点Oを有する。その起点Oでは、アーム部中心面からの距離と勾配の関係が不連続となる。このような起点Oを有すれば、起点Oで第1余肉部AcaおよびAdaが折り曲がりやすくなり、折り曲げを促進でき、折り曲げの際に凹み形状が変形するのを抑制できる。
 アーム部中心面から起点Oまでの距離d1(単位:mm、図13A参照)は、アーム部中心面から第1余肉部AcaおよびAdaの根元(点B)までの距離d2(単位:mm、図13B参照)より小さいのが好ましい。これにより、起点Oよりアーム部の側面側の部位のみが折れ曲がりやすくなり、折り曲げの際に凹み形状が変形するのを抑制できる。ここで、第1余肉部AcaおよびAdaの根元(点B)は、アーム部Aのジャーナル部J側の表面における第1余肉部AcaおよびAdaの根元であり、例えば、ジャーナルスラスト部の外縁に設定できる。この場合、距離d2は、例えば、ジャーナルスラスト部の半径(mm)となる。
 アーム部中心面側における起点Oの勾配θa(°)は、アーム部の側面側における起点の勾配θb(°)以下であるのが好ましい。これにより、第1余肉部の厚みが薄くなるので、起点Oよりアーム部中心面側の部位が変形し難くなる。このため、起点Oよりアーム部の側面側の部位のみが折れ曲がりやすくなり、折り曲げを促進でき、折り曲げの際に凹み形状が変形するのを抑制できる。
 折り曲げの起点Oにおいて、図13Bに示すように、厚さを階段状に薄くすることによって段差を形成してもよい。これによっても、起点Oよりアーム部の側面側の部位のみが折れ曲がりやすくなり、折り曲げを促進でき、折り曲げの際に凹み形状が変形するのを抑制できる。
[第2処理フロー例]
 圧下工程で第1余肉部の変形を押し潰しで行う場合について、クランク軸の形状および処理フロー例(第2処理フロー例)を以下に説明する。押し潰す場合のクランク軸の形状および処理フロー例は、前述の折り曲げる場合と基本構成が同じであるので、共通する部分の説明を適宜省略し、異なる部分について主に説明する。
 第1余肉部を押し潰す場合、アーム部の側面の形状が、折り曲げる場合と比べ、異なる。このことを図面を参照しながら以下に説明する。
 図14A~図14Dは、第1余肉部を押し潰す場合におけるアーム部のピン部側表面の形状例を示す模式図であり、図14Aは斜視図、図14Bはピン部側表面を示す図、図14Cは側面を示す図、図14DはXIVD-XIVD断面図である。図14A~図14Dに示すアーム部Aのピン部P側表面の形状は、前記図2A~図2Dに示すアーム部Aと同じである。押し潰す場合、図14Dに示すように、アーム部Aのうちでジャーナル部J近傍の側面が、傾斜することなく、アーム部中心面とほぼ平行である。
 図15A~図15Cは、第1余肉部を押し潰す場合における好適なアーム部のジャーナル部側表面の形状例を示す模式図であり、図15Aは斜視図、図15Bはジャーナル部側表面を示す図、図15CはXVC-XVC断面図である。図15A~図15Cに示すアーム部Aのジャーナル部J側表面の形状は、前記図3A~図3Cに示すアーム部Aと同じである。押し潰す場合、図15Cに示すように、アーム部Aのうちのピン部P近傍の側面が、傾斜することなく、アーム部中心面とほぼ平行である。
 図16Aおよび図16Bは、第1余肉部を押し潰す場合における好適なウエイト無しアーム部の形状例を示す模式図であり、図16Aはピン部側表面を示す図、図16BはXVIB-XVIB断面図である。図16Aおよび図16Bに示すアーム部Aのピン部P側表面の形状は、図4Aおよび図4Bに示すアーム部Aと同じである。押し潰す場合、図16Bに示すように、アーム部Aのうちのジャーナル部J近傍の側面が、傾斜することなく、アーム部中心面とほぼ平行である。
 前述の通り、ウエイト無しアーム部Aは、前記図15A~図15Cに示すウエイト部を一体で有するアーム部と同様に、ジャーナル部J側の表面のうち、ピン部P近傍の両側部AaおよびAbの内側領域Asに凹みを有するのが好ましい。押し潰しの場合、ウエイト無しアーム部Aにおいて、ジャーナル部J近傍の側面は、傾斜することなく、アーム部中心面とほぼ平行となる。
 押し潰しの際に第1余肉部の変形を促進する観点から、圧下工程前のアーム部は、余肉部の変形、すなわち押し潰しの起点を有するのが好ましい。押し潰しの起点は、前記図13Aおよび図13Bに示すような折り曲げの起点と、同様の形態を採用できる。
 押し潰しの場合には、アーム部中心面側における起点Oの勾配θa(°)は、アーム部の側面側における起点の勾配θb(°)以上であるのが好ましい(前記図13A参照)。これにより、第1余肉部の厚みが厚くなるので、起点Oよりアーム部側面側の部位がジャーナル部側に変形し難くなる。このため、起点Oよりアーム部の側面側の部位を安定してピン部側に張り出させることができる。
 図17A~図18Bは、圧下工程で第1余肉部を押し潰す場合の処理フロー例を示す模式図である。そのうちの図17Aおよび図17Bは、ジャーナル部近傍の断面図であり、図17Aは第2金型の押し当て時、図17Bは圧下終了時を示す。図17Aおよび図17Bには、バリ無し鍛造材30と、一対の第1金型11および12と、第2金型22とを示す。
 図18Aおよび図18Bは、ピン部近傍の断面図であり、図18Aは第2金型の押し当て時、図18Bは圧下終了時を示す。図18Aおよび図18Bには、バリ無し鍛造材30と、一対の第1金型11および12と、第3金型23とを示す。
 図17A~図18Bに示す押し潰す場合の第2処理フロー例は、前述の折り曲げる場合(第1処理フロー例)と、基本構成が同じである。このため、潰す場合の処理フロー例において、ピン部側表面を示す図は、図8Aおよび図8Bと同じとなることから、省略する。また、ジャーナル部側表面を示す図は、図9Aおよび図9Bと同じとなることから、省略する。アーム部の側面を示す図も、図10Aおよび図10Bと同じとなることから、省略する。なお、図17Aは、図8AのXIA-XIA位置の断面図に相当し、図17Bは、図8BのXIB-XIB位置の断面図に相当する。また、図18Aは、図9AのXIIA-XIIA位置の断面図に相当し、図18Bは、図9BのXIIB-XIIB位置の断面図に相当する。
 押し潰す場合でも、第1金型10を構成する上型11と下型12には、それぞれ型彫刻部が彫り込まれる。また、ウエイト部を一体で有するアーム部において、第1余肉部を押し潰すため、アーム部の両側部のうちでジャーナル部近傍の形状が型彫刻部に反映される。型彫刻部のうちで第1余肉部の押し潰しに寄与する部位は、傾斜することなく、型割面とほぼ平行である。ウエイト部を一体で有するアーム部にさらに第2余肉部を設ける場合、ウエイト無しアーム部に第1余肉部を設ける場合、および、ウエイト無しアーム部に第2余肉部を設ける場合のいずれでも、押し潰しに寄与する部位は、傾斜することなく、型割面とほぼ平行である。
 バリ無し鍛造材30を第1金型10によって圧下する際、図17Bに示すように、第1余肉部AcaおよびAdaを押し潰す。これに伴い、第1余肉部AcaおよびAdaを第1金型10の型彫刻部に沿う形状に変形させ、第1余肉部AcaおよびAdaをピン部P側に張り出させる。その結果、アーム部のジャーナル部J近傍の両側部AcおよびAdの厚みが増加する。このため、得られるクランク軸は、アーム部のジャーナル部J近傍の両側部AcおよびAdで厚みが厚くなる。
 ウエイト部を一体で有するアーム部に第2余肉部を設ける場合、圧下の際に、第1金型10で第2余肉部AaaおよびAbaを押し潰す。これにより、第2余肉部AaaおよびAbaを第1金型10の型彫刻部に沿ってジャーナル部J側に張り出させ、ピン部P近傍の両側部AaおよびAbで厚みを増加させる。
 図示を省略するが、ウエイト無しアーム部に第1余肉部をさらに設ける場合、圧下の際に、第1金型10で第1余肉部を押し潰す。これにより、第1余肉部をピン部P側に張り出させ、アーム部のジャーナル部J近傍の両側部で厚みを増加させる。また、ウエイト無しアーム部に第2余肉部をさらに設ける場合、圧下の際に、第1金型10で第2余肉部を押し潰す。これにより、第2余肉部AaaおよびAbaをジャーナル部J側に張り出させ、ピン部P近傍の両側部で厚みを増加させる。
 図14A~図14Dに示すアーム部Aでは、ピン部P側表面に凹みを設ける範囲は、ジャーナル部J近傍の両側部AcおよびAdの厚みが厚い部位の範囲と同じである。ピン部P側表面に凹みを設ける範囲は、ジャーナル部J近傍の両側部AcおよびAdの厚みが厚い部位の範囲と、異なってもよい。押し潰し時の変形の安定性を確保する観点から、ピン部P側表面の凹みは、ジャーナル部J近傍の両側部AcおよびAdの厚みが厚い部位に応じ、その厚みが厚い部位の範囲と一致するように配置するのが好ましい。押し潰しの際に両側部の直近に凹みが存在することで凹みより側部側のみが、具体的には、両側部および第1余肉部のみが容易に変形可能となるためである。
4.好ましい態様等
 クランク軸(最終製品)がウエイト部を一体で有するアーム部(以下、「ウエイト付きアーム部」ともいう)を複数備える場合、鍛造材において、ウエイト付きアーム部の全部が第1余肉部を有してもよく、ウエイト付きアーム部の一部が第1余肉部を有してもよい。第1余肉部を設けるウエイト付きアーム部は、例えば、アーム部に要求される曲げ剛性やねじり剛性、剛性が必要な部位に基づいて、適宜決定できる。
 複数のウエイト付きアーム部を備えるクランク軸(最終製品)において、鍛造材のウエイト付きアーム部に第2余肉部を設ける場合、鍛造材のウエイト付きアーム部の全部が第2余肉部を有してもよく、ウエイト付きアーム部の一部が第2余肉部を有してもよい。また、図5Aに示すように、同一のウエイト付きアーム部が第1余肉部および第2余肉部をともに有してもよく、第1余肉部を有するウエイト付きアーム部と別のウエイト付きアーム部が第2余肉部を有してもよい。第2余肉部を設けるウエイト付きアーム部は、例えば、アーム部に要求される曲げ剛性やねじり剛性、剛性が必要な部位に基づいて、適宜決定できる。
 複数のウエイト部を有さないアーム部(ウエイト無しアーム部)を備えるクランク軸(最終製品)において、鍛造材のウエイト無しアーム部に第1余肉部を設ける場合、鍛造材のウエイト無しアーム部の全部が第1余肉部を有してもよく、ウエイト無しアーム部の一部が第1余肉部を有してもよい。第1余肉部を設けるウエイト無しアーム部は、例えば、アーム部に要求される曲げ剛性やねじり剛性、剛性が必要な部位に基づいて、適宜決定できる。
 複数のウエイト無しアーム部を備えるクランク軸(最終製品)において、鍛造材のウエイト無しアーム部に第2余肉部を設ける場合、鍛造材のウエイト無しアーム部の全部が第2余肉部を有してもよく、ウエイト無しアーム部の一部が第2余肉部を有してもよい。また、図7Aに示すように、同一のウエイト無しアーム部が第1余肉部および第2余肉部をともに有してもよく、第1余肉部を有するウエイト無しアーム部と別のウエイト無しアーム部が第2余肉部を有してもよい。第2余肉部を設けるウエイト無しアーム部は、例えば、アーム部に要求される曲げ剛性やねじり剛性、剛性が必要な部位に基づいて、適宜決定できる。
 前述の形状例および処理フロー例のように、ウエイト付きアーム部は、第1余肉部(Aca、Ada)をジャーナル部近傍の両方の側部(両側部AcおよびAd)に有してもよく、あるいは、第1余肉部(Aca、Ada)をジャーナル部近傍の一方の側部(AcまたはAd)に有してもよい。ウエイト付きアーム部が第1余肉部をジャーナル部近傍の一方の側部(AcまたはAd)に有する場合であっても、その第1余肉部をピン部側に張り出させることにより、圧下工程後のアーム部の一方の側部で厚みを増加できる。このため、軽量化しつつ、剛性を確保できる。第1余肉部を設けるジャーナル部近傍の側部は、例えば、アーム部に要求される曲げ剛性やねじり剛性、剛性が必要な部位に基づいて、適宜決定できる。
 ウエイト付きアーム部がピン部近傍の側部(Aa、Ab)に第2余肉部(Aaa、Aba)を有する場合、前述の形状例および処理フロー例のように、両方の側部(両側部AaおよびAb)に有してもよく、あるいは、一方の側部(AaまたはAb)に有してもよい。ウエイト付きアーム部が第2余肉部をピン部近傍の一方の側部(AaまたはAb)に有する場合であっても、その第2余肉部をジャーナル部側に張り出させることにより、圧下工程後のアーム部の一方の側部で厚みを増加できる。このため、軽量化しつつ、剛性を確保できる。第2余肉部を設けるピン部近傍の側部は、例えば、アーム部に要求される曲げ剛性やねじり剛性、剛性が必要な部位に基づいて、適宜決定できる。
 ウエイト無しアーム部のジャーナル部近傍の側部(Ac、Ad)に第1余肉部(Aca、Ada)を有する場合、前述の形状例および処理フロー例のように、両方の側部(両側部AcおよびAd)に有してもよく、あるいは、一方の側部(AcまたはAd)に有してもよい。ウエイト無しアーム部が第1余肉部をジャーナル部近傍の一方の側部(AcまたはAd)に有する場合であっても、その第1余肉部をピン部側に張り出させることにより、圧下工程後のアーム部の一方の側部で厚みを増加できる。このため、軽量化しつつ、剛性を確保できる。第1余肉部を設けるジャーナル部近傍の側部は、例えば、アーム部に要求される曲げ剛性やねじり剛性、剛性が必要な部位に基づいて、適宜決定できる。
 ウエイト無しアーム部のピン部近傍の側部(Aa、Ab)に第2余肉部(Aaa、Aba)を有する場合、前述の形状例および処理フロー例のように、両方の側部(両側部AaおよびAb)に有してもよく、一方の側部(AaまたはAb)に有してもよい。ウエイト無しアーム部が第2余肉部をピン部近傍の一方の側部(AaまたはAb)に有する場合であっても、その第2余肉部をジャーナル部側に張り出させることにより、圧下工程後のアーム部の一方の側部で厚みを増加できる。このため、軽量化しつつ、剛性を確保できる。第2余肉部を設けるピン部近傍の側部は、例えば、アーム部に要求される曲げ剛性やねじり剛性、剛性が必要な部位に基づいて、適宜決定できる。
 前述の通り、ウエイト部Wを有するアーム部Aは、第1余肉部AcaおよびAdaをジャーナル部近傍の両側部AcおよびAdに有してもよい。この場合、圧下工程では、図10A~図11Bに示すように、ウエイト部Wを有するアーム部Aについて、そのピン部P側の表面のうちでジャーナル部J近傍の両側部AcおよびAdの領域を少なくとも除く表面を、第2金型22の押し当てにより保持するのが好ましい。これにより、アーム部Aのピン部P側表面の凹み形状を精密に仕上げることができる。ただし、第2および第3工程例のように、圧下工程に供される鍛造材にバリが付いている場合、第2金型22は適用できない。
 また、ウエイト部Wを有するアーム部Aは、第1余肉部(Aca、Ada)をジャーナル部近傍の側部AcおよびAdの一方に有してもよい。この場合、ジャーナル部J近傍の両側部AcおよびAdのうちで外周から第1余肉部が突出する側部の領域を少なくとも除くアーム部Aのピン部P側の表面を、第2金型22の押し当てにより保持するのが好ましい。これにより、アーム部Aのピン部P側表面の凹み形状を精密に仕上げることができる。
 圧下工程で第2金型22を用いる場合、第1金型10の圧下に追従して第2金型22を第1金型10の圧下方向に移動させ、アーム部Aへの第2金型22の押し当て位置を一定の位置に維持するのが好ましい。これにより、ピン部P側表面の凹み形状をさらに精密に仕上げることができる。
 ウエイト部を一体で有するアーム部において、型鍛造工程では、前述の第2余肉部をさらに成形し、圧下工程では、第1金型で第2余肉部を変形させ、ピン部P近傍の側部(AaおよびAb)の一方または両方で厚みを増加させるのが好ましい。これにより、剛性を確保しながら、さらに軽量化を図ることができる。この場合、ジャーナル部J側表面の凹み形状を精密に仕上げる観点から、前述の第3金型を用いるのが好ましい。ただし、第2および第3工程例のように、圧下工程に供される鍛造材にバリが付いている場合、第3金型は適用できない。
 ウエイト無しアーム部において、型鍛造工程では、前述の第1余肉部をさらに成形し、圧下工程では、第1金型で第1余肉部を変形させ、ジャーナル部J近傍の側部(AcおよびAd)の一方または両方で厚みを増加させるのが好ましい。これにより、剛性を確保しながら、さらに軽量化を図ることができる。この場合、ピン部P側表面の凹み形状を精密に仕上げる観点から、前述の第4金型を用いるのが好ましい。ただし、第2および第3工程例のように、圧下工程に供される鍛造材にバリが付いている場合、第4金型は適用できない。
 また、ウエイト無しアーム部において、型鍛造工程では、前述の第2余肉部をさらに成形し、圧下工程では、第1金型で第2余肉部を変形させ、ピン部P近傍の側部(AaおよびAb)の一方または両方で厚みを増加させるのが好ましい。これにより、剛性を確保しながら、さらに軽量化を図ることができる。この場合、ジャーナル部J側表面の凹み形状を精密に仕上げる観点から、前述の第5金型を用いるのが好ましい。ただし、第2および第3工程例のように、圧下工程に供される鍛造材にバリが付いている場合、第5金型は適用できない。
 第2金型~第5金型を用いる場合、アーム部Aの各表面に第2金型~第5金型を押し当てる。第2金型~第5金型は、アーム部Aの各表面を保持するのみで、押し込むことがないので、第2金型~第5金型の押し当てに要する力は小さくて済む。
 前述の第1および第2処理フロー例は、いずれも、4気筒エンジンに搭載されるクランク軸を対象とし、そのクランク軸は、ピン部の偏心方向がアーム部ごとに180°の等間隔にシフトする。このように180°の等間隔にシフトする場合、いずれのアーム部も、第1金型によってピン部の偏心方向と垂直な方向から圧下される。この場合、第1金型の圧下方向は、クランク軸の軸方向とも垂直である。
 ただし、第1金型による圧下方向は、ピン部の偏心方向と垂直な方向に限定されない。例えば、3気筒エンジンに搭載されるクランク軸の場合、ピン部の偏心方向がアーム部ごとに120°または60°の等間隔にシフトする。このように180°の等間隔にシフトしないクランク軸の製造では、捩り工程を追加することによってピン部の配置角度を調整する場合がある。また、ピン部の配置角度を仕上げ打ちで調整する場合もある。例えば、第1工程例でピン部の配置角度の調整を捩り工程で行う場合、圧下工程での第1金型による圧下方向は、一部のアーム部でピン部の偏心方向と垂直な方向にならない。この場合の状況を以下に説明する。
 図19Aおよび図19Bは、第1金型の圧下方向がピン部の偏心方向と垂直でない場合のアーム部のピン部側表面を示す模式図であり、図19Aは圧下前を示し、図19Bは圧下終了時を示す。図19Aおよび図19Bに示すアーム部Aを備えるクランク軸は、3気筒エンジンに搭載されるクランク軸であり、ピン部Pの配置角度が120°の等間隔にシフトする。このため、圧下工程では、一部のピン部Pの偏心方向は、水平方向から30°傾斜する。したがって、第1金型10の圧下方向(図19Aおよび図19Bでは上下方向)は、ピン部Pの偏心方向から60°ずれた方向となる。
 このように第1金型10による圧下方向がピン部Pの偏心方向と垂直な方向にならない場合であっても、本実施形態の鍛造クランク軸の製造方法を適用できる。すなわち、第1金型10で第1余肉部(Aca、Ada)または第2余肉部(Aaa、Aba)を変形させることにより、アーム部の両側部の厚みを増加させることができる。したがって、第1金型による圧下方向は、第1金型10で第1余肉部(Aca、Ada)または第2余肉部(Aaa、Aba)を変形させることによってアーム部の両側部の厚みを増加させることができる限り、限定されない。
 本発明は、レシプロエンジンに搭載される鍛造クランク軸の製造に有効に利用できる。
 1:鍛造クランク軸、 J、J1~J5:ジャーナル部、
 P、P1~P4:ピン部、 Fr:フロント部、
 Fl:フランジ部、 A、A1~A8:クランクアーム部、
 W、W1~W8:カウンターウエイト部、
 Aa、Ab:アーム部のピン部近傍の側部、
 Aaa、Aba:第2余肉部、
 Ac、Ad:アーム部のジャーナル部近傍の側部、
 Aca、Ada:第1余肉部、
 As:アーム部のジャーナル部側表面における両側部の内側領域、
 At:アーム部のピン部側表面における両側部の内側領域、
 10:第1金型、 11:上型、 11a、11b:傾斜面、
 12:下型、 12a、12b:傾斜面、 22:第2金型、
 23:第3金型、 26:治具、 30:バリ無し鍛造材

Claims (9)

  1.  回転中心となるジャーナル部と、そのジャーナル部に対して偏心したピン部と、前記ジャーナル部と前記ピン部をつなぐクランクアーム部と、前記クランクアーム部のうちの全部または一部が一体で有するカウンターウエイト部と、を備える鍛造クランク軸の製造方法であって、
     当該製造方法は、
     型鍛造により、クランク軸の形状に成形された鍛造材を得る型鍛造工程と、
     一対の第1金型により、前記鍛造材を圧下する圧下工程と、を含み、
     前記鍛造材は、前記カウンターウエイト部を一体で有する前記クランクアーム部のうちの全部または一部に、前記ジャーナル部近傍の側部の外周から突出する第1余肉部を有し、
     前記圧下工程では、前記第1金型により前記第1余肉部を圧下して変形させ、前記第1余肉部を前記ピン部側に張り出させる、鍛造クランク軸の製造方法。
  2.  請求項1に記載の鍛造クランク軸の製造方法において、
     前記第1金型は、前記第1余肉部と対向する傾斜面を備え、
     前記圧下工程では、前記第1余肉部を前記傾斜面に沿って変形させる、鍛造クランク軸の製造方法。
  3.  請求項1または2に記載の鍛造クランク軸の製造方法において、
     当該製造方法は、前記鍛造材からバリを除去するバリ抜き工程を含み、
     前記型鍛造工程では、バリ付きの前記鍛造材を得て、
     前記バリ抜き工程では、前記バリ付きの前記鍛造材からバリ無しの鍛造材を得て、
     前記圧下工程では、前記バリ無しの前記鍛造材を圧下する、鍛造クランク軸の製造方法。
  4.  請求項3に記載の鍛造クランク軸の製造方法において、
     前記圧下工程では、前記第1余肉部を有する前記クランクアーム部の前記ピン部側の表面のうちで前記ジャーナル部近傍の前記側部の領域を少なくとも除く表面を、第2金型の押し当てにより保持する、鍛造クランク軸の製造方法。
  5.  請求項4に記載の鍛造クランク軸の製造方法において、
     前記圧下工程では、前記第1金型の圧下に追従して前記第2金型を前記第1金型の圧下方向に移動させ、前記クランクアーム部への前記第2金型の押し当て位置を一定の位置に維持する、鍛造クランク軸の製造方法。
  6.  請求項1~5のいずれか1項に記載の鍛造クランク軸の製造方法において、
     前記第1余肉部は、前記ジャーナル部近傍の前記側部の両方からそれぞれ突出する、鍛造クランク軸の製造方法。
  7.  請求項1~6のいずれか1項に記載の鍛造クランク軸の製造方法において、
     前記圧下工程は、金型を用いた圧下によりクランク軸の形状を矯正する整形工程で実施する、鍛造クランク軸の製造方法。
  8.  請求項1~7のいずれか1項に記載の鍛造クランク軸の製造方法において、
     前記鍛造材は、前記クランクアーム部のうちの全部または一部に、前記ピン部近傍の側部の外周から突出する第2余肉部を有し、
     前記圧下工程では、前記第1金型により前記第2余肉部を圧下して変形させ、前記第2余肉部を前記ジャーナル部側に張り出させる、鍛造クランク軸の製造方法。
  9.  請求項8に記載の鍛造クランク軸の製造方法において、
     前記第2余肉部は、前記ピン部近傍の前記側部の両方からそれぞれ突出する、鍛造クランク軸の製造方法。
PCT/JP2015/006155 2014-12-10 2015-12-10 鍛造クランク軸の製造方法 WO2016092850A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2017007542A MX2017007542A (es) 2014-12-10 2015-12-10 Metodo para producir un cigüeñal forjado.
EP15866476.3A EP3231530B1 (en) 2014-12-10 2015-12-10 Method for producing forged crankshaft
US15/531,788 US10464120B2 (en) 2014-12-10 2015-12-10 Method for producing forged crankshaft
JP2016563521A JP6344485B2 (ja) 2014-12-10 2015-12-10 鍛造クランク軸の製造方法
BR112017010674-4A BR112017010674A2 (pt) 2014-12-10 2015-12-10 método para produção de virabrequim forjado
CN201580066949.4A CN107000034B (zh) 2014-12-10 2015-12-10 锻造曲轴的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014250396 2014-12-10
JP2014-250396 2014-12-10
JP2014263640 2014-12-25
JP2014-263640 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016092850A1 true WO2016092850A1 (ja) 2016-06-16

Family

ID=56107062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006155 WO2016092850A1 (ja) 2014-12-10 2015-12-10 鍛造クランク軸の製造方法

Country Status (7)

Country Link
US (1) US10464120B2 (ja)
EP (1) EP3231530B1 (ja)
JP (1) JP6344485B2 (ja)
CN (1) CN107000034B (ja)
BR (1) BR112017010674A2 (ja)
MX (1) MX2017007542A (ja)
WO (1) WO2016092850A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110073A1 (ja) * 2016-12-15 2018-06-21 新日鐵住金株式会社 鍛造クランク軸の製造方法
JP7385132B2 (ja) 2020-04-03 2023-11-22 日本製鉄株式会社 クランク軸の製造方法
JP7385131B2 (ja) 2020-04-03 2023-11-22 日本製鉄株式会社 クランク軸の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417967B2 (ja) * 2015-01-27 2018-11-07 新日鐵住金株式会社 鍛造クランク軸の製造方法
BR112017019569A2 (ja) * 2015-04-03 2018-05-02 Nippon Steel & Sumitomo Metal Corporation A manufacturing method of a forge crankshaft
WO2016159246A1 (ja) * 2015-04-03 2016-10-06 新日鐵住金株式会社 鍛造クランク軸の製造方法
CN107530764B (zh) * 2015-05-14 2019-05-31 新日铁住金株式会社 锻造曲轴的制造装置
MX2017015894A (es) 2015-06-12 2018-05-07 Nippon Steel & Sumitomo Metal Corp Cigüeñal para motor reciprocante.
US11253910B2 (en) * 2017-08-21 2022-02-22 Nippon Steel Corporation Method for producing forged crankshaft
KR102259041B1 (ko) * 2018-10-26 2021-06-02 니탄 밸브 가부시키가이샤 엔진 밸브의 보스부가 있는 중간품의 제조 방법
CN109622848B (zh) * 2018-12-29 2020-07-17 中钢集团邢台机械轧辊有限公司 一种电池极片轧辊镦粗方法
KR102107933B1 (ko) * 2019-06-12 2020-05-07 임상홍 피니언샤프트의 선삭 가공방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180336A (ja) * 1987-01-23 1988-07-25 Honda Motor Co Ltd クランクシヤフトの製造方法
WO2006057593A1 (en) * 2004-11-23 2006-06-01 Scania Cv Ab (Publ) Crankshaft and method for manufacturing such a crankshaft
JP2010230027A (ja) * 2009-03-26 2010-10-14 Honda Motor Co Ltd クランクシャフトおよびその製造方法
WO2015075940A1 (ja) * 2013-11-21 2015-05-28 新日鐵住金株式会社 鍛造クランク軸の製造方法
WO2015075934A1 (ja) * 2013-11-21 2015-05-28 新日鐵住金株式会社 鍛造クランク軸の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378686A (en) * 1942-08-31 1945-06-19 Smith Corp A O Electric welded crankshaft
FR1220746A (fr) * 1958-04-24 1960-05-27 Daimler Benz Ag Vilebrequin, en particulier vilebrequin fabriqué à la forge et coudé plusieurs fois pour moteurs à combustion interne
JPS62289384A (ja) * 1986-06-06 1987-12-16 Kobe Steel Ltd クランク軸の製造方法
JP2002273541A (ja) 2001-03-19 2002-09-25 Aichi Steel Works Ltd クランクシャフト鍛造品のバリ取り装置及びバリ取り方法
JP2006291310A (ja) * 2005-04-12 2006-10-26 Daido Steel Co Ltd クランクシャフト及びその製造方法
JP2007071227A (ja) 2005-09-02 2007-03-22 Toyota Motor Corp 直列4気筒エンジンのクランクシャフト
JP4998233B2 (ja) * 2007-11-28 2012-08-15 住友金属工業株式会社 多気筒エンジン用クランクシャフト
JP2009197929A (ja) 2008-02-22 2009-09-03 Honda Motor Co Ltd クランク軸
DE102008047551A1 (de) * 2008-09-16 2010-04-15 Fev Motorentechnik Gmbh Gewichtserleichterung an einer gegossenen Kurbelwelle
WO2010110133A1 (ja) * 2009-03-26 2010-09-30 本田技研工業株式会社 クランクシャフトおよびその製造方法
JP2010255834A (ja) 2009-04-28 2010-11-11 Honda Motor Co Ltd クランクシャフト
JP2012007726A (ja) 2010-05-21 2012-01-12 Honda Motor Co Ltd クランクシャフトおよびその製造方法
JP5436331B2 (ja) * 2010-05-21 2014-03-05 本田技研工業株式会社 クランクシャフトの製造方法
DE102010061610A1 (de) * 2010-12-29 2012-07-05 Fev Gmbh Asymmetrische Kurbelwange
JP2014040856A (ja) 2012-08-21 2014-03-06 Nippon Steel & Sumitomo Metal 多気筒エンジンのクランク軸、およびそのクランク軸の設計方法
EP2893991B1 (en) 2012-09-07 2017-04-19 Nippon Steel & Sumitomo Metal Corporation Device for forming a crankshaft pre-forged billet into a crankshaft finish forging billet
WO2014091738A1 (ja) 2012-12-12 2014-06-19 新日鐵住金株式会社 鍛造クランク軸およびその製造方法
BR112017019569A2 (ja) * 2015-04-03 2018-05-02 Nippon Steel & Sumitomo Metal Corporation A manufacturing method of a forge crankshaft
WO2016159246A1 (ja) * 2015-04-03 2016-10-06 新日鐵住金株式会社 鍛造クランク軸の製造方法
JP6469856B2 (ja) * 2015-05-19 2019-02-13 新日鐵住金株式会社 鍛造クランク軸の製造装置および製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180336A (ja) * 1987-01-23 1988-07-25 Honda Motor Co Ltd クランクシヤフトの製造方法
WO2006057593A1 (en) * 2004-11-23 2006-06-01 Scania Cv Ab (Publ) Crankshaft and method for manufacturing such a crankshaft
JP2010230027A (ja) * 2009-03-26 2010-10-14 Honda Motor Co Ltd クランクシャフトおよびその製造方法
WO2015075940A1 (ja) * 2013-11-21 2015-05-28 新日鐵住金株式会社 鍛造クランク軸の製造方法
WO2015075934A1 (ja) * 2013-11-21 2015-05-28 新日鐵住金株式会社 鍛造クランク軸の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3231530A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110073A1 (ja) * 2016-12-15 2018-06-21 新日鐵住金株式会社 鍛造クランク軸の製造方法
CN110087795A (zh) * 2016-12-15 2019-08-02 日本制铁株式会社 锻造曲轴的制造方法
JP7385132B2 (ja) 2020-04-03 2023-11-22 日本製鉄株式会社 クランク軸の製造方法
JP7385131B2 (ja) 2020-04-03 2023-11-22 日本製鉄株式会社 クランク軸の製造方法

Also Published As

Publication number Publication date
CN107000034B (zh) 2018-09-21
JP6344485B2 (ja) 2018-06-20
EP3231530B1 (en) 2019-02-06
US10464120B2 (en) 2019-11-05
BR112017010674A2 (pt) 2018-01-09
CN107000034A (zh) 2017-08-01
EP3231530A4 (en) 2018-09-05
MX2017007542A (es) 2017-08-22
JPWO2016092850A1 (ja) 2017-09-28
EP3231530A1 (en) 2017-10-18
US20180078994A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
JP6344485B2 (ja) 鍛造クランク軸の製造方法
JP6132030B2 (ja) 鍛造クランク軸の製造方法
JP6024832B2 (ja) 鍛造クランク軸の製造方法
JP6037049B2 (ja) 鍛造クランク軸の製造方法
JP6245369B2 (ja) 鍛造クランク軸の製造方法
JP6493516B2 (ja) 鍛造クランク軸の製造方法
JP6561576B2 (ja) 鍛造クランク軸の製造方法
JP6561575B2 (ja) 鍛造クランク軸の製造方法
JP6561577B2 (ja) 鍛造クランク軸の製造方法
JP6287631B2 (ja) 鍛造クランク軸の製造方法
JP6439863B2 (ja) 鍛造クランク軸の製造方法
WO2016186165A1 (ja) 鍛造クランク軸の製造装置および製造方法
JP6380670B2 (ja) 鍛造クランク軸の製造装置
JP6424643B2 (ja) 鍛造クランク軸の製造方法
JP6417967B2 (ja) 鍛造クランク軸の製造方法
JP6447117B2 (ja) 鍛造クランク軸の製造方法
JP6550919B2 (ja) 鍛造クランク軸の製造装置
WO2018110073A1 (ja) 鍛造クランク軸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563521

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017010674

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15531788

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/007542

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015866476

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112017010674

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170522