WO2016088809A1 - Transparent conductive film laminate and use therefor - Google Patents

Transparent conductive film laminate and use therefor Download PDF

Info

Publication number
WO2016088809A1
WO2016088809A1 PCT/JP2015/083903 JP2015083903W WO2016088809A1 WO 2016088809 A1 WO2016088809 A1 WO 2016088809A1 JP 2015083903 W JP2015083903 W JP 2015083903W WO 2016088809 A1 WO2016088809 A1 WO 2016088809A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
film
resin
layer
Prior art date
Application number
PCT/JP2015/083903
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 津野
基希 拝師
細川 和人
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56091749&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016088809(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020177016930A priority Critical patent/KR102002235B1/en
Priority to CN201580065788.7A priority patent/CN107000409B/en
Publication of WO2016088809A1 publication Critical patent/WO2016088809A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens

Definitions

  • the present invention relates to a transparent conductive film laminate and its use, and is a technique particularly useful for preventing film breakage.
  • Patent Document 1 proposes a transparent conductive film using a cycloolefin resin as a low retardation substrate film.
  • a cycloolefin resin is used for the substrate film, the substrate is very brittle and easily damaged. Therefore, in order to convey by a roll to roll manufacturing method, a hard coat process is required for the base film.
  • Patent Document 2 discloses a laminate in which a protective film is laminated on a transparent conductive film in order to prevent breakage of the film and improve handling properties.
  • Such a document discloses a laminate in which a cycloolefin-based resin film is used as a base film of a transparent conductive film and a PET base material is used as a surface protection film, and is laminated via an adhesive layer.
  • the antiblocking layer which has antiblocking property and scratch resistance can be formed by apply
  • the film is easily broken, and this increases the risk that the entire laminate is broken by the roll-to-roll manufacturing method.
  • the object of the present invention is to prevent the transparent resin film from being scratched when a cycloolefin resin or a polycarbonate resin is used as the base material of the transparent conductive film. It is to provide a transparent conductive film laminate capable of securing the subsequent process yield and its application without causing breakage in the transparent conductive film laminate even when the tension is applied.
  • the transparent conductive film laminate of the present invention includes a carrier film having an adhesive layer on one surface side of the protective film, and a transparent conductive film laminated so as to be peelable through the adhesive layer.
  • a transparent conductive film laminate wherein the transparent conductive film has a transparent conductive film, a first cured resin layer, a transparent resin film, and a second cured resin layer in this order, and the transparent conductive film
  • the resin film is made of cycloolefin resin or polycarbonate resin, the thickness of the transparent conductive film is 20 ⁇ m to 150 ⁇ m, and the carrier film is formed with the second cured resin layer of the transparent conductive film.
  • the protective film is made of an amorphous resin, and the arithmetic average surface of the surface side of the protective film that does not have the adhesive layer Roughness Ra is 0.01 ⁇ m or more, and the transparent conductive film laminate does not break when the transparent conductive film laminate is subjected to a 180 ° bending test. It is characterized by being.
  • the various physical property values in the present invention are values measured by the methods employed in Examples and the like.
  • both the anti-breaking property and the anti-blocking property are achieved by providing the arithmetic average surface roughness Ra to the surface of the protective film itself without separately providing an anti-blocking layer.
  • the break of the transparent conductive film laminate is transparent when the long transparent conductive film laminate meanders due to the influence of the heating roll in the apparatus and the heat weight during sputtering during conveyance by the roll-to-roll manufacturing method.
  • Measures such as correcting the meandering by applying tension to the conductive film laminate are often caused by this measure.
  • the tension is applied for the meandering correction, the cured resin layer is broken, and the long transparent conductive film laminate is broken due to the crack.
  • vacuum film-forming methods such as sputtering, it is necessary to form the film in an atmosphere from which impurities such as resin components and water vapor have been removed, but once the transparent conductive film laminate breaks in the vacuum film-forming device Then, it is necessary to open the sputter film formation chamber to the atmosphere and perform from the re-installation of the transparent conductive film laminate to the cleaning, resulting in a significant deterioration in productivity.
  • a transparent conductive film laminate comprising a carrier film having a pressure-sensitive adhesive layer on one surface side of the protective film, and a transparent conductive film laminated releasably via the pressure-sensitive adhesive layer.
  • the transparent conductive film laminate of the present invention is preferably embossed on the surface of the protective film that does not have the pressure-sensitive adhesive layer.
  • embossing one side of the protective film as in the present invention antiblocking properties can be imparted without providing an antiblocking layer that tends to be the starting point of fracture.
  • the protective film in the present invention is preferably made of a melt-extruded polycarbonate resin or a melt-extruded cycloolefin resin. Since processing such as embossing can be performed on one side of the protective film with a satin roll during melt extrusion, antiblocking properties can be efficiently imparted without providing an antiblocking layer that tends to be the starting point of fracture.
  • the thickness of the protective film in the present invention is preferably 20 ⁇ m to 150 ⁇ m.
  • the transparent conductive film laminate of the present invention preferably further includes one or more optical adjustment layers between the first cured resin layer and the transparent conductive film. Since the refractive index can be controlled by the optical adjustment layer, even when the transparent conductive film is patterned, the difference in reflectance between the pattern forming portion and the pattern opening can be reduced, the transparent conductive film pattern is difficult to see, and the touch panel, etc. Visibility is improved in the display device.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of the transparent conductive film laminate of the present invention
  • FIG. 2 is a schematic cross section of the transparent conductive film laminate according to another embodiment of the present invention.
  • the transparent conductive film laminate includes a carrier film 10 having a pressure-sensitive adhesive layer 2 on one surface side of the protective film 1 and a transparent conductive film 20 laminated so as to be peelable via the pressure-sensitive adhesive layer 2.
  • the said transparent conductive film 20 has the transparent conductive film 6, the 1st cured resin layer 5, the transparent resin film 4, and the 2nd cured resin layer 3 in this order.
  • FIG. 6 has the transparent conductive film 6, the 1st cured resin layer 5, the transparent resin film 4, and the 2nd cured resin layer 3 in this order.
  • one optical adjustment layer 7 can be further provided between the first cured resin layer 5 and the transparent conductive film 6, but two or more optical adjustment layers 7 are provided. Can also be provided.
  • the 1st cured resin layer 5 and the 2nd cured resin layer 3 include what functions as an antiblocking layer or a hard-coat layer.
  • the carrier film 10 is laminated
  • the transparent conductive film has a transparent conductive film, a first cured resin layer, a transparent resin film, and a second cured resin layer in this order.
  • the transparent conductive film can further include one or more optical adjustment layers between the first cured resin layer and the transparent conductive film.
  • the thickness of the transparent conductive film is preferably in the range of 20 to 150 ⁇ m, more preferably in the range of 25 to 100 ⁇ m, and still more preferably in the range of 30 to 80 ⁇ m.
  • the thickness of the transparent conductive film is less than the lower limit of the above range, the mechanical strength is insufficient, and it becomes difficult to continuously form a cured resin layer or a transparent conductive film by making the film base into a roll shape. There is.
  • the thickness exceeds the upper limit of the above range, the scratch resistance of the transparent conductive film and the dot characteristics for touch panels may not be improved.
  • the transparent resin film is formed of a cycloolefin resin or a polycarbonate resin, and has high transparency and low water absorption characteristics. By adopting the cycloolefin resin or the polycarbonate resin, it becomes possible to control the optical characteristics of the transparent conductive film used in the transparent conductive film laminate.
  • the cycloolefin resin is not particularly limited as long as it is a resin having a monomer unit composed of a cyclic olefin (cycloolefin).
  • the cycloolefin resin used for the transparent resin film may be either a cycloolefin polymer (COP) or a cycloolefin copolymer (COC).
  • the cycloolefin copolymer refers to an amorphous cyclic olefin resin that is a copolymer of a cyclic olefin and an olefin such as ethylene.
  • cyclic olefin there are a polycyclic cyclic olefin and a monocyclic cyclic olefin.
  • polycyclic olefins include norbornene, methylnorbornene, dimethylnorbornene, ethylnorbornene, ethylidenenorbornene, butylnorbornene, dicyclopentadiene, dihydrodicyclopentadiene, methyldicyclopentadiene, dimethyldicyclopentadiene, tetracyclododecene.
  • Methyltetracyclododecene dimethylcyclotetradodecene, tricyclopentadiene, tetracyclopentadiene, and the like.
  • monocyclic olefins include cyclobutene, cyclopentene, cyclooctene, cyclooctadiene, cyclooctatriene, and cyclododecatriene.
  • Cycloolefin-based resins are also available as commercial products, such as “ZEONOR” manufactured by ZEON Corporation, “ARTON” manufactured by JSR, “TOPAS” manufactured by Polyplastics, “APEL” manufactured by Mitsui Chemicals, and the like. It is done.
  • the polycarbonate resin is not particularly limited, and examples thereof include aliphatic polycarbonate, aromatic polycarbonate, and aliphatic-aromatic polycarbonate. Specifically, for example, bisphenol A polycarbonate, branched bisphenol A polycarbonate, foamed polycarbonate, copolycarbonate, block copolycarbonate, polyester carbonate, polyphosphonate carbonate, diethylene glycol bisallyl carbonate (CR-) as polycarbonate (PC) using bisphenols 39).
  • Polycarbonate-based resins also include those blended with other components such as bisphenol A polycarbonate blends, polyester blends, ABS blends, polyolefin blends, styrene-maleic anhydride copolymer blends. Examples of commercially available polycarbonate resin include “OPCON” manufactured by Ewa Co., Ltd., “Panlite” manufactured by Teijin Limited, and “Iupilon (UV absorber-containing polycarbonate)” manufactured by Mitsubishi Gas Chemical.
  • the transparent resin film is preliminarily subjected to etching treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and undercoating treatment on the surface, and a cured resin layer formed on the transparent resin film or transparent You may make it improve adhesiveness with an electrically conductive film. Moreover, before forming a cured resin layer and a transparent conductive film, you may remove and clean the surface of a transparent resin film by solvent washing
  • the thickness of the transparent resin film is preferably in the range of 20 to 150 ⁇ m, more preferably in the range of 25 to 100 ⁇ m, and still more preferably in the range of 30 to 80 ⁇ m.
  • the glass transition temperature of the cycloolefin resin or polycarbonate resin forming the transparent resin film is preferably 130 ° C. or higher, and more preferably 140 ° C. or higher.
  • the transparent resin film can be easily a low retardation film having an in-plane retardation (R0) of 0 nm to 10 nm or a ⁇ / 4 film having an in-plane retardation of about 80 nm to 150 nm. When used together, the visibility can be improved.
  • the in-plane retardation (R0) refers to an in-plane retardation value measured with light having a wavelength of 589 nm at 23 ° C.
  • the cured resin layer includes a first cured resin layer provided on one surface side of the transparent resin film and a second cured resin layer provided on the other surface side.
  • the transparent resin film formed of cycloolefin resin or polycarbonate resin is easily scratched in each process such as formation of a transparent conductive film, patterning of a transparent conductive film, or mounting on an electronic device.
  • the first cured resin layer and the second cured resin layer are formed on both sides of the transparent resin film.
  • the cured resin layer is a layer obtained by curing a curable resin.
  • the resin to be used those having sufficient strength as a film after forming the cured resin layer and having transparency can be used without particular limitation, but thermosetting resin, ultraviolet curable resin, electron beam curable resin, two-component Examples thereof include mixed resins.
  • thermosetting resin, ultraviolet curable resin, electron beam curable resin, two-component Examples thereof include mixed resins.
  • an ultraviolet curable resin that can efficiently form a cured resin layer by a simple processing operation by a curing treatment by ultraviolet irradiation is preferable.
  • the ultraviolet curable resin examples include polyesters, acrylics, urethanes, amides, silicones, epoxies, and the like, and ultraviolet curable monomers, oligomers, polymers, and the like are included.
  • the ultraviolet curable resin preferably used is an acrylic resin or an epoxy resin, more preferably an acrylic resin.
  • the cured resin layer may contain particles. By blending the particles in the cured resin layer, ridges can be formed on the surface of the cured resin layer, and blocking resistance can be suitably imparted to the transparent conductive film.
  • inorganic particles such as silica, alumina, titania, zirconia, calcium oxide, polymethyl methacrylate, polystyrene, polyurethane, acrylic resin, acryl-styrene copolymer, benzoguanamine, melamine, polycarbonate, and other cross-linked or uncrosslinked polymers.
  • examples include crosslinked organic particles and silicone particles.
  • the particles can be used by appropriately selecting one type or two or more types, but organic particles are preferable.
  • the organic particles are preferably acrylic resins from the viewpoint of refractive index.
  • the mode particle diameter of the particles can be appropriately set in consideration of the degree of protrusion of the cured resin layer and the thickness of a flat region other than the protrusion, and is not particularly limited. From the viewpoint of sufficiently imparting blocking resistance to the transparent conductive film and sufficiently suppressing increase in haze, the mode particle diameter of the particles is within the range of ⁇ 50% of the thickness of the cured resin layer. It is preferable to use a diameter.
  • “mode particle size” means a particle size showing the maximum value of the particle distribution, and a flow type particle image analyzer (product name “FPTA-3000S” manufactured by Sysmex) is used.
  • the measurement sample is prepared by diluting the particles to 1.0% by weight with ethyl acetate and uniformly dispersing the particles using an ultrasonic cleaner.
  • the content of the particles is preferably 0.05 to 1.0 part by weight, more preferably 0.1 to 0.5 part by weight, based on 100 parts by weight of the solid content of the resin composition. More preferably, it is 1 to 0.2 parts by weight.
  • the content of the particles in the cured resin layer is small, there is a tendency that bulges sufficient to impart blocking resistance and slipperiness to the surface of the cured resin layer are hardly formed.
  • the content of the particles is too large, the haze of the transparent conductive film increases due to light scattering by the particles, and the visibility tends to decrease.
  • the cured resin layer is formed by applying a resin composition containing particles, a crosslinking agent, an initiator, a sensitizer and the like to be added to each curable resin as necessary on a transparent resin film, and the resin composition contains a solvent. Is obtained by drying the solvent and curing by application of either heat, active energy rays or both.
  • heat known means such as an air circulation oven or an IR heater can be used, but it is not limited to these methods.
  • active energy rays include, but are not limited to, ultraviolet rays, electron beams, and gamma rays.
  • the cured resin layer can be formed by a wet coating method (coating method) or the like using the above materials.
  • a wet coating method coating method
  • the crystallization time of the transparent conductive film can be shortened if the surface of the cured resin layer that is the base layer is smooth.
  • the cured resin layer is preferably formed by a wet coating method.
  • the thickness of the cured resin layer is preferably 0.5 ⁇ m to 5 ⁇ m, more preferably 0.7 ⁇ m to 3 ⁇ m, and most preferably 0.8 ⁇ m to 2 ⁇ m.
  • the thickness of the cured resin layer is within the above range, it is possible to prevent scratching and film wrinkles in the cured shrinkage of the cured resin layer, and to prevent the visibility of a touch panel and the like from being deteriorated.
  • Transparent conductive film It is preferable that a transparent conductive film is provided on the 1st cured resin layer provided in the one surface side of the transparent resin film.
  • the constituent material of the transparent conductive film is not particularly limited as long as it contains an inorganic substance. From the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten A metal oxide of at least one selected metal is preferably used.
  • the metal oxide may further contain a metal atom shown in the above group, if necessary.
  • ITO indium oxide
  • ATO tin oxide
  • the thickness of the transparent conductive film is not particularly limited, but the thickness is preferably 10 nm or more in order to obtain a continuous film having good conductivity with a surface resistance of 1 ⁇ 10 3 ⁇ / ⁇ or less.
  • the film thickness is preferably 15 to 35 nm, more preferably in the range of 20 to 30 nm, since transparency is lowered when the film thickness becomes too thick.
  • the thickness of the transparent conductive film is less than 10 nm, the electrical resistance of the film surface increases and it becomes difficult to form a continuous film. Further, when the thickness of the transparent conductive film exceeds 35 nm, the transparency may be lowered.
  • the formation method of the transparent conductive film is not particularly limited, and a conventionally known method can be adopted. Specific examples include dry processes such as vacuum deposition, sputtering, and ion plating. In addition, an appropriate method can be adopted depending on the required film thickness.
  • dry processes such as vacuum deposition, sputtering, and ion plating.
  • an appropriate method can be adopted depending on the required film thickness.
  • the transparent conductive film is formed by dry processes, such as sputtering method, the surface of a transparent conductive film is the 1st hardening which is the foundation layer The surface shape of the resin layer is substantially maintained. Therefore, when a protrusion exists in the 1st cured resin layer, blocking resistance and slipperiness can be suitably given also to the transparent conductive film surface.
  • the transparent conductive film can be crystallized by performing a heat annealing treatment (for example, at 80 to 150 ° C. for about 30 to 90 minutes in an air atmosphere) as necessary. By crystallizing the transparent conductive film, the transparency and durability are improved in addition to the resistance of the transparent conductive film being reduced.
  • the means for converting the amorphous transparent conductive film into crystalline is not particularly limited, and an air circulation oven, an IR heater, or the like is used.
  • a transparent conductive film in which a transparent conductive film is formed on a transparent resin film is immersed in hydrochloric acid having a concentration of 5% by weight at 20 ° C. for 15 minutes, then washed with water and dried for 15 mm.
  • hydrochloric acid having a concentration of 5% by weight at 20 ° C. for 15 minutes, then washed with water and dried for 15 mm.
  • the surface resistance value can be measured by the 4-terminal method according to JIS K7194.
  • the transparent conductive film may be patterned by etching or the like.
  • the patterning of the transparent conductive film can be performed using a conventionally known photolithography technique.
  • An acid is preferably used as the etching solution.
  • the acid include inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid, phosphoric acid, organic acids such as acetic acid, mixtures thereof, and aqueous solutions thereof.
  • the transparent conductive film is preferably patterned in a stripe shape.
  • the transparent conductive film is patterned by etching, if the transparent conductive film is first crystallized, patterning by etching may be difficult. Therefore, it is preferable to perform the annealing treatment of the transparent conductive film after patterning the transparent conductive film.
  • the transparent conductive film when the transparent conductive film is formed by a dry process such as a sputtering method, a transparent resin film formed on both surfaces of the first cured resin layer and the second cured resin layer is formed on a protective film described later. It is preferable to laminate
  • the transparent conductive film is preferably annealed continuously as a long transparent conductive film laminate while being conveyed by a roll-to-roll manufacturing method.
  • the transparent conductive film may include metal nanowires.
  • a metal nanowire is a conductive material having a metal material, a needle shape or a thread shape, and a diameter of nanometer.
  • the metal nanowire may be linear or curved. If a transparent conductive layer composed of metal nanowires is used, the metal nanowires can be formed into a mesh shape, so that even with a small amount of metal nanowires, a good electrical conduction path can be formed, and transparent with low electrical resistance. A conductive film can be obtained. Furthermore, when the metal nanowire has a mesh shape, an opening is formed in the mesh space, and a transparent conductive film having high light transmittance can be obtained.
  • any appropriate metal can be used as long as it is a highly conductive metal.
  • a metal which comprises the said metal nanowire silver, gold
  • silver, copper, or gold is preferable from the viewpoint of conductivity, and silver is more preferable.
  • optical adjustment layer One or more optical adjustment layers may be further included between the first cured resin layer and the transparent conductive film.
  • the optical adjustment layer increases the transmittance of the transparent conductive film, or when the transparent conductive film is patterned, the transmittance difference or reflectance difference between the pattern part where the pattern remains and the opening part where the pattern does not remain. Is used to obtain a transparent conductive film excellent in visibility.
  • the optical adjustment layer is formed of an inorganic material, an organic material, or a mixture of an inorganic material and an organic material.
  • a material for forming the optical adjustment layer NaF, Na 3 AlF 6 , LiF, MgF 2 , CaF 2, SiO 2 , LaF 3 , CeF 3 , Al 2 O 3 , TiO 2 , Ta 2 O 5 , ZrO 2 .
  • inorganic substances such as ZnO, ZnS, and SiO x (x is 1.5 or more and less than 2)
  • organic substances such as acrylic resins, epoxy resins, urethane resins, melamine resins, alkyd resins, and siloxane polymers.
  • thermosetting resin made of a mixture of a melamine resin, an alkyd resin, and an organic silane condensate as the organic substance.
  • the optical adjustment layer can be formed using the above materials by a coating method such as a wet method, a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like.
  • the optical adjustment layer may have nanoparticles having an average particle diameter of 1 nm to 500 nm.
  • the content of the nanoparticles in the optical adjustment layer is preferably 0.1% by weight to 90% by weight.
  • the average particle diameter of the nanoparticles used in the optical adjustment layer is preferably in the range of 1 nm to 500 nm, and more preferably 5 nm to 300 nm.
  • the content of the nanoparticles in the optical adjustment layer is more preferably 10% by weight to 80% by weight, and further preferably 20% by weight to 70% by weight.
  • Examples of the inorganic oxide forming the nano fine particles include fine particles such as silicon oxide (silica), hollow nano silica, titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, and niobium oxide.
  • fine particles of silicon oxide (silica), titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, and niobium oxide are preferable. These may be used alone or in combination of two or more.
  • the thickness of the optical adjustment layer is preferably 10 nm to 200 nm, more preferably 20 nm to 150 nm, and even more preferably 30 nm to 130 nm. If the thickness of the optical adjustment layer is too small, it is difficult to form a continuous film. Moreover, when the thickness of the optical adjustment layer is excessively large, the transparency of the transparent conductive film tends to be reduced or cracks tend to occur.
  • the metal wiring can be formed by etching after forming the metal layer on the transparent conductive film.
  • a photosensitive metal paste as follows. That is, after the transparent conductive film is patterned, the metal wiring is formed by applying a photosensitive conductive paste described later on the transparent resin film or the transparent conductive film, forming a photosensitive metal paste layer, and forming a photomask. The photosensitive metal paste layer is exposed through a photomask after being laminated or brought close to each other, then developed and patterned to obtain a drying process. That is, the metal wiring pattern can be formed by a known photolithography method or the like.
  • the photosensitive conductive paste preferably contains conductive particles such as metal powder and a photosensitive organic component.
  • the material of the conductive particles of the metal powder preferably contains at least one selected from the group consisting of Ag, Au, Pd, Ni, Cu, Al, and Pt, and more preferably Ag.
  • the volume average particle diameter of the conductive particles of the metal powder is preferably 0.1 ⁇ m to 2.5 ⁇ m.
  • the conductive particles other than the metal powder may be metal-coated resin particles in which the resin particle surfaces are coated with metal.
  • the material of the resin particles the above-mentioned particles are included, but an acrylic resin is preferable.
  • the metal-coated resin particles are obtained by reacting the surface of the resin particles with a silane coupling agent and coating the surface with metal. By using the silane coupling agent, the dispersion of the resin component is stabilized, and uniform metal-coated resin particles can be formed.
  • the photosensitive conductive paste may further contain glass frit.
  • the glass frit preferably has a volume average particle size of 0.1 to 1.4 ⁇ m, a 90% particle size of 1 to 2 ⁇ m, and a top size of 4.5 ⁇ m or less.
  • the composition of the glass frit is not particularly limited, but Bi 2 O 3 is preferably blended in the range of 30 wt% to 70 wt% with respect to the whole.
  • Examples of the oxide that may be contained in addition to Bi 2 O 3 may include SiO 2 , B 2 O 3 , ZrO 2 , and Al 2 O 3 .
  • Na 2 O, K 2 O, and Li 2 O are preferably alkali-free glass frit that is substantially free of them.
  • the photosensitive organic component preferably contains a photosensitive polymer and / or a photosensitive monomer.
  • Photosensitive polymers include polymers of components selected from compounds having carbon-carbon double bonds such as methyl (meth) acrylate and ethyl (meth) acrylate, and side chains or molecules of acrylic resins comprising these copolymers. Those having a photoreactive group added to the terminal are preferably used.
  • Preferred photoreactive groups include ethylenically unsaturated groups such as vinyl, allyl, acrylic and methacrylic groups.
  • the content of the photosensitive polymer is preferably 1 to 30% by weight and 2 to 30% by weight.
  • photosensitive monomer examples include (meth) acrylate monomers such as methacryl acrylate and ethyl acrylate, ⁇ -methacryloxypropyltrimethoxysilane, and 1-vinyl-2-pyrrolidone. can do.
  • the photosensitive organic component is preferably contained in an amount of 5 to 40% by weight with respect to 100 parts by weight of the metal powder in terms of light sensitivity, and more preferably 10 to 30 parts by weight.
  • the photosensitive conductive paste of the present invention preferably uses a photopolymerization initiator, a sensitizer, a polymerization inhibitor, and an organic solvent as necessary.
  • the thickness of the metal layer is not particularly limited.
  • the thickness of the metal layer is appropriately set so that the formed pattern wiring has a desired resistance value. Therefore, the thickness of the metal layer is preferably 0.01 to 200 ⁇ m, and more preferably 0.05 to 100 ⁇ m.
  • the resistance of the pattern wiring does not become too high, and the power consumption of the device does not increase.
  • the production efficiency of the metal layer is increased, the integrated heat amount during the film formation is reduced, and the film is less likely to be thermally wrinkled.
  • the transparent conductive film is a transparent conductive film for a touch panel used in combination with a display
  • the portion corresponding to the display portion is formed by a patterned transparent conductive film, and a metal wiring made from a photosensitive conductive paste Is used for the wiring part of the non-display part (for example, peripheral part).
  • the transparent conductive film may be used even in a non-display portion, and in that case, metal wiring may be formed on the transparent conductive film.
  • the carrier film has an adhesive layer on one surface side of the protective film.
  • the carrier film forms a transparent conductive film laminate by laminating the transparent conductive film that can be peeled off through the adhesive layer and the surface side on which the second cured resin layer of the transparent conductive film is formed. To do.
  • an adhesive layer may be peeled with a protective film, and only a protective film may be peeled.
  • the protective film is peeled off and discarded when laminated with other films such as a wave plate and a polarizing plate.
  • the material for forming the protective film is An amorphous resin is preferred.
  • the amorphous resin is not particularly limited, but is preferably excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy, and the like.
  • the glass transition temperature of the amorphous resin forming the protective film is preferably 130 ° C. or higher, and more preferably 140 ° C. or higher.
  • the protective film is subjected to an etching process such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and undercoating on the surface, and a pressure-sensitive adhesive layer on the protective film, etc. You may make it improve adhesiveness.
  • the surface of the protective film may be removed and cleaned by solvent cleaning or ultrasonic cleaning as necessary.
  • the protective film of the present invention is preferably produced by melt extrusion molding, and particularly preferably made of melt-extruded polycarbonate resin or melt-extruded cycloolefin resin. Thereby, it is easy to emboss after melt extrusion molding, and embossing can be performed efficiently.
  • a method of supplying a polycarbonate resin or the like to one extruder connected to a T die, melt-kneading, extruding, taking out by cooling with water, and forming a protective film can be exemplified.
  • the screw type of the extruder used for melting may be uniaxial or biaxial, and additives such as a plasticizer or an antioxidant optimal for the resin may be added.
  • the molding temperature can be appropriately set, but when the glass transition temperature of the resin is Tg (° C.), (Tg + 80) ° C. to (Tg + 150) ° C. is preferable, and (Tg + 100) ° C. to (Tg + 130) ° C. is more preferable. If the molding temperature is too low, the resin does not have fluidity and may not be molded. If the molding temperature is too high, the resin viscosity will be low, and there may be a problem in production stability such as uneven thickness of the molded product. In the case of a multilayer molded product, it is preferable to set a resin having a higher glass transition temperature.
  • the thickness of the protective film is preferably 20 to 150 ⁇ m, more preferably 30 to 100 ⁇ m, still more preferably 40 to 80 ⁇ m. Moreover, it is preferable that the thickness of a protective film is more than the thickness of a transparent resin film from a viewpoint of preventing the fracture
  • the arithmetic average surface roughness Ra of the surface of the protective film not having the pressure-sensitive adhesive layer is preferably 0.01 ⁇ m or more, more preferably 0.01 to 5 ⁇ m, and more preferably 0.05 to 2 ⁇ m. Is more preferable, and 0.1 to 1 ⁇ m is particularly preferable. When it is in the above range, anti-blocking properties can be imparted, and conveyance by a roll-to-roll manufacturing method is facilitated, and subsequent process yields can be ensured.
  • the pressure-sensitive adhesive layer can be used without particular limitation as long as it has transparency. Specifically, for example, acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl ethers, vinyl acetate / vinyl chloride copolymers, modified polyolefins, epoxy systems, fluorine systems, natural rubbers, rubbers such as synthetic rubbers, etc. Those having the above polymer as a base polymer can be appropriately selected and used.
  • an acrylic pressure-sensitive adhesive is preferably used from the viewpoint that it is excellent in optical transparency, exhibits adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and is excellent in weather resistance and heat resistance.
  • the method for forming the pressure-sensitive adhesive layer is not particularly limited.
  • the pressure-sensitive adhesive composition is applied to a release liner, dried and then transferred to a base film (transfer method), and the pressure-sensitive adhesive composition is directly applied to a protective film. And a drying method (direct copying method) and a co-extrusion method.
  • a tackifier, a plasticizer, a filler, an antioxidant, an ultraviolet absorber, a silane coupling agent, and the like can be appropriately used as the pressure-sensitive adhesive.
  • the preferable thickness of the pressure-sensitive adhesive layer is 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m, and more preferably 15 ⁇ m to 35 ⁇ m.
  • a transparent conductive film laminated body contains the carrier film which has an adhesive layer on the one surface side of a protective film, and the transparent conductive film laminated
  • the carrier film is laminated
  • the transparent conductive film laminate does not break. Thereby, it is possible to prevent the transparent resin film from being scratched, and even when a tension is applied during transportation of the transparent conductive film laminate, the transparent conductive film laminate does not break, and the subsequent process yield can be secured.
  • “rupture of the transparent conductive film laminate” means a state where at least a part of the transparent conductive film laminate is cut over the entire thickness direction.
  • the transparent conductive film which peeled the carrier film or the protective film from the transparent conductive film laminated body can be suitably applied as a transparent electrode of an electronic device such as a touch panel such as a capacitance method or a resistance film method.
  • another base material such as glass or a polymer film can be bonded to one or both main surfaces of the transparent conductive film described above via a transparent adhesive layer.
  • a transparent adhesive layer For example, you may form the laminated body by which the transparent base
  • the transparent substrate may be composed of a single substrate film or may be a laminate of two or more substrate films (for example, laminated via a transparent adhesive layer).
  • a hard coat layer can also be provided on the outer surface of the transparent substrate to be bonded to the transparent conductive film.
  • the pressure-sensitive adhesive layer used for bonding the transparent conductive film and the substrate can be used without particular limitation as long as it has transparency.
  • the amount and direction of curling after a heating process such as drying can be controlled, which facilitates transport of the transparent conductive film laminate and handling during touch panel formation. Excellent in properties. Therefore, a touch panel excellent in transparency and visibility can be manufactured with high productivity. If it is other than a touch panel use, it can be used for the shield use which shields the electromagnetic waves and noise which are emitted from an electronic device.
  • Example 1 (Preparation of curable resin composition containing spherical particles) Acrylic spherical particles (trade name “MX-180TA” manufactured by Soken Chemical Co., Ltd.) having 100 parts by weight of an ultraviolet curable resin composition (trade name “OPSTA-Z7540” manufactured by JSR) and a mode particle diameter of 1.9 ⁇ m. ) Containing 0.2 parts by weight of a curable resin composition containing spherical particles.
  • Acrylic spherical particles (trade name “MX-180TA” manufactured by Soken Chemical Co., Ltd.) having 100 parts by weight of an ultraviolet curable resin composition (trade name “OPSTA-Z7540” manufactured by JSR) and a mode particle diameter of 1.9 ⁇ m. ) Containing 0.2 parts by weight of a curable resin composition containing spherical particles.
  • the prepared curable resin composition containing spherical particles was subjected to corona treatment on one surface of a polycycloolefin film (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) having a thickness of 35 ⁇ m and a glass transition temperature of 165 ° C. After coating, a coating layer was formed. Subsequently, the coating layer was irradiated with ultraviolet rays from the side on which the coating layer was formed, and a second cured resin layer was formed so as to have a thickness of 2.0 ⁇ m. A first cured resin layer was formed on the other surface of the polycycloolefin film by the same method except that spherical particles were not added, so that the thickness was 2.0 ⁇ m.
  • a zirconia particle-containing ultraviolet curable composition having a refractive index of 1.62 as an optical adjustment layer on the first cured resin layer side of the polycycloolefin film having cured resin layers formed on both sides (trade name “OPSTA Z7412 manufactured by JSR Corporation”). was applied to form a coating layer. Then, the coating layer was irradiated with ultraviolet rays from the side where the coating layer was formed, and an optical adjustment layer was formed so that the thickness was 100 nm.
  • the polycycloolefin film on which the optical adjustment layer is formed is put into a take-up sputtering apparatus, and an amorphous indium tin oxide layer (composition: SnO) having a thickness of 27 nm is formed on the surface of the optical adjustment layer. 2 10 wt%).
  • SnO amorphous indium tin oxide layer
  • An acrylic pressure-sensitive adhesive was prepared by adding 6 parts by weight of an epoxy-based crosslinking agent (trade name “Tetrad C (registered trademark)” manufactured by Mitsubishi Gas Chemical) to 100 parts by weight of the acrylic polymer.
  • the acrylic pressure-sensitive adhesive obtained as described above was applied onto the release-treated surface of the release-treated PET film, and heated at 120 ° C. for 60 seconds to form a pressure-sensitive adhesive layer having a thickness of 20 ⁇ m.
  • a PET film is adhered to the surface of the unembossed side of a single layer polycarbonate resin film (trade name “OPCON PC” manufactured by Keiwa) with a thickness of 75 ⁇ m, a glass transition temperature of 145 ° C., and embossed on one side. It bonded together through the agent layer. Thereafter, the release-treated PET film was peeled off to prepare a carrier film having an adhesive layer on one surface of the protective film.
  • OPCON PC manufactured by Keiwa
  • Example 2 a transparent conductive film was prepared in the same manner as in Example 1, except that a polycycloolefin film having a thickness of 50 ⁇ m (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) was used as the transparent resin film. A film laminate was prepared.
  • Example 3 In Example 1, a transparent conductive film was prepared in the same manner as in Example 1 except that a polycycloolefin film having a thickness of 75 ⁇ m (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) was used as the transparent resin film. A film laminate was prepared.
  • a polycycloolefin film having a thickness of 75 ⁇ m trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.
  • Example 4 In Example 1, as the transparent resin film, Example 1 except that a polycycloolefin film having a thickness of 50 ⁇ m and a glass transition temperature of 136 ° C. (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) was used. A transparent conductive film laminate was produced in the same manner.
  • a polycycloolefin film having a thickness of 50 ⁇ m and a glass transition temperature of 136 ° C. trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.
  • Example 5 In Example 1, a transparent conductive film was prepared in the same manner as in Example 1 except that a polycarbonate resin having a thickness of 75 ⁇ m and a glass transition temperature of 141 ° C. (trade name “Panlite” manufactured by Teijin) was used as the transparent resin film. A conductive film laminate was produced.
  • a polycarbonate resin having a thickness of 75 ⁇ m and a glass transition temperature of 141 ° C. (trade name “Panlite” manufactured by Teijin) was used as the transparent resin film.
  • a conductive film laminate was produced.
  • Example 6 In Example 1, as a protective film, a single-layer polycycloolefin film having a thickness of 50 ⁇ m and a glass transition temperature of 165 ° C. embossed on one side (trade name “ZEONOR (registered trademark) (ZF16)” manufactured by ZEON) A transparent conductive film laminate was produced in the same manner as in Example 1 except that was used.
  • ZEONOR registered trademark
  • Example 1 a transparent conductive film laminate was produced in the same manner as in Example 1 except that the following protective film was used instead of the embossed protective film.
  • a protective film that has not been embossed a surface of the protective film on which the adhesive layer is not formed using a polycarbonate resin film having a thickness of 75 ⁇ m and a glass transition temperature of 145 ° C. (trade name “OPCON” manufactured by Keiwa)
  • the curable resin composition containing spherical particles prepared as described above was applied to form a coating layer.
  • the coating layer was irradiated with ultraviolet rays from the side on which the coating layer was formed, and a protective film having an anti-blocking layer formed on the protective film so as to have a thickness of 2.0 ⁇ m was produced.
  • Example 5 In Example 5, the following protective film was used instead of the embossed protective film, and a polycarbonate resin having a glass transition temperature of 145 ° C. (trade name “Panlite” manufactured by Teijin) was used as the transparent resin film. Except for this, a transparent conductive film laminate was produced in the same manner as in Example 5. That is, as an unembossed protective film, a polycycloolefin film having a thickness of 75 ⁇ m and a glass transition temperature of 165 ° C. (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) is used.
  • ZEONOR registered trademark
  • the spherical particle-containing curable resin composition prepared as described above was applied to form a coating layer. Subsequently, the coating layer was irradiated with ultraviolet rays from the side on which the coating layer was formed, and a protective film having an anti-blocking layer formed on the protective film so as to have a thickness of 2.0 ⁇ m was produced.
  • the transparent conductive film laminates of Examples 1 to 6 does not break in the 180 ° bending test, and the roll does not break the transparent conductive film laminate when used in an actual machine. It could be transported by the to-roll manufacturing method.
  • the transparent conductive film laminates of Comparative Examples 1 and 2 were broken in the 180 ° bending test of the transparent conductive film laminates and could not be transported by the actual machine. As for the occurrence of breakage in the actual machine test, it is estimated that film wrinkles occur after passing through the heating roll, local bending occurs in the film, and breakage occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Provided are: a transparent conductive film laminate capable of preventing transparent resin film damage, preventing breakage of the transparent conductive film laminate even when stress is applied thereto during transport thereof, and ensuring the yield of a subsequent step, when using a cycloolefin resin or a polycarbonate resin in the substrate of a transparent conductive film; and a use therefor. A transparent conductive film laminate according to the present invention, wherein a transparent resin film 4 comprises a cycloolefin resin or a polycarbonate resin, a protective film 1 comprises an amorphous resin, the arithmetic mean surface roughness Ra of the surface of the protective film 1 on the side thereof not having an adhesive layer 2 is 0.01μm or higher, and there is no breakage to the transparent conductive film laminate when subjecting the same to a 180°C bend test.

Description

透明導電性フィルム積層体及びその用途Transparent conductive film laminate and use thereof
 本発明は、透明導電性フィルム積層体及びその用途に関し、特にフィルムの破断防止に有用な技術である。 The present invention relates to a transparent conductive film laminate and its use, and is a technique particularly useful for preventing film breakage.
 従来、静電容量タイプのタッチパネル構成においては透明導電性フィルムの基材フィルムとしてポリエチレンテレフタレート(PET)が広く用いられている。しかし、PETフィルムは延伸製膜されており、高い位相差を有しているため、偏光板のもとで使用することが困難である。そのため、特許文献1では、低位相差用基材フィルムとしてシクロオレフィン系樹脂を用いた透明導電性フィルムが提案されている。このように基材フィルムにシクロオレフィン系樹脂を用いた場合、基材が非常に脆く傷が付きやすい。従って、ロールtoロール製法で搬送するには、基材フィルムにハードコート処理が必要となる。 Conventionally, in a capacitive touch panel configuration, polyethylene terephthalate (PET) has been widely used as a base film of a transparent conductive film. However, since a PET film is stretched and has a high retardation, it is difficult to use it under a polarizing plate. Therefore, Patent Document 1 proposes a transparent conductive film using a cycloolefin resin as a low retardation substrate film. Thus, when a cycloolefin resin is used for the substrate film, the substrate is very brittle and easily damaged. Therefore, in order to convey by a roll to roll manufacturing method, a hard coat process is required for the base film.
 特許文献2には、フィルムの破断防止やハンドリング性向上のため、透明導電性フィルムに保護フィルムを積層した積層体が開示されている。かかる文献では、透明導電性フィルムの基材フィルムとしてシクロオレフィン系樹脂フィルムを用いて、表面保護フィルムとしてPET基材を用いて粘着剤層を介して積層された積層体が開示されている。 Patent Document 2 discloses a laminate in which a protective film is laminated on a transparent conductive film in order to prevent breakage of the film and improve handling properties. Such a document discloses a laminate in which a cycloolefin-based resin film is used as a base film of a transparent conductive film and a PET base material is used as a surface protection film, and is laminated via an adhesive layer.
 かかる積層体をロールtoロール製法で搬送するためには、ブロッキング(フィルムを巻き取った際のフィルム同士の貼りつき)防止のため、保護フィルムにアンチブロッキング層を付与することが必要となる。例えば、保護フィルム表面上に任意の粒子を添加した樹脂を塗布して硬化樹脂層を形成することで、アンチブロッキング性と耐傷性とを有するアンチブロッキング層を形成できる。しかし、このような方法でアンチブロッキング層を形成すると、フィルムが破断しやすく、これが起点となってロールtoロール製法で積層体全体が破断するリスクが非常に高くなる。 In order to transport such a laminate by a roll-to-roll manufacturing method, it is necessary to provide an anti-blocking layer on the protective film in order to prevent blocking (sticking between films when the film is wound). For example, the antiblocking layer which has antiblocking property and scratch resistance can be formed by apply | coating resin which added arbitrary particle | grains on the protective film surface, and forming a cured resin layer. However, when the anti-blocking layer is formed by such a method, the film is easily broken, and this increases the risk that the entire laminate is broken by the roll-to-roll manufacturing method.
特開2013-114344号公報JP 2013-114344 A 特開2003-205567号公報JP 2003-205567 A
 そこで、本発明の目的は、透明導電性フィルムの基材にシクロオレフィン系樹脂又はポリカーボネート系樹脂を用いた場合において、透明樹脂フィルムの傷付きを防止可能であり、透明導電性フィルム積層体搬送時の張力の印加でも透明導電性フィルム積層体に破断が発生せず、その後の工程歩留まりを確保可能な透明導電性フィルム積層体及びその用途を提供することにある。  Therefore, the object of the present invention is to prevent the transparent resin film from being scratched when a cycloolefin resin or a polycarbonate resin is used as the base material of the transparent conductive film. It is to provide a transparent conductive film laminate capable of securing the subsequent process yield and its application without causing breakage in the transparent conductive film laminate even when the tension is applied. *
 本発明者らは、前記課題を解決すべく鋭意検討した結果、下記構成を採用することにより上記目的を達成し得ることを見出し本発明にいたった。 As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by adopting the following configuration, and have arrived at the present invention.
 すなわち、本発明の透明導電性フィルム積層体は、保護フィルムの一方の面側に粘着剤層を有するキャリアフィルムと、前記粘着剤層を介して剥離可能に積層した透明導電性フィルムと、を含む透明導電性フィルム積層体であって、前記透明導電性フィルムは、透明導電膜と、第1の硬化樹脂層と、透明樹脂フィルムと、第2の硬化樹脂層とをこの順に有し、前記透明樹脂フィルムは、シクロオレフィン系樹脂又はポリカーボネート系樹脂からなり、前記透明導電性フィルムの厚みは、20μm~150μmであり、前記キャリアフィルムは、前記透明導電性フィルムの第2の硬化樹脂層が形成された面側に積層されており、前記保護フィルムは、非晶性樹脂からなり、前記保護フィルムの前記粘着剤層を有しない面側の表面の算術平均表面粗さRaは、0.01μm以上であり、前記透明導電性フィルム積層体に対して180°折り曲げ試験を行った際に、前記透明導電性フィルム積層体の破断が発生しない透明導電性フィルム積層体であることを特徴とする。なお、本発明における各種の物性値は、特に断りのない限り実施例等において採用する方法により測定される値である。 That is, the transparent conductive film laminate of the present invention includes a carrier film having an adhesive layer on one surface side of the protective film, and a transparent conductive film laminated so as to be peelable through the adhesive layer. A transparent conductive film laminate, wherein the transparent conductive film has a transparent conductive film, a first cured resin layer, a transparent resin film, and a second cured resin layer in this order, and the transparent conductive film The resin film is made of cycloolefin resin or polycarbonate resin, the thickness of the transparent conductive film is 20 μm to 150 μm, and the carrier film is formed with the second cured resin layer of the transparent conductive film. The protective film is made of an amorphous resin, and the arithmetic average surface of the surface side of the protective film that does not have the adhesive layer Roughness Ra is 0.01 μm or more, and the transparent conductive film laminate does not break when the transparent conductive film laminate is subjected to a 180 ° bending test. It is characterized by being. In addition, unless otherwise indicated, the various physical property values in the present invention are values measured by the methods employed in Examples and the like.
 一般的に紫外線硬化型のバインダーに粒子を添加して保護フィルムの粘着剤層を有しない面側にアンチブロッキング層を形成した場合、フィルムが180°折り曲げ試験で破断しやすくなり、ロールtoロール製法での破断のリスクが非常に高くなる。そこで、本発明では、アンチブロッキング層を別途設けることなく、保護フィルム自体の表面に算術平均表面粗さRaを付与することで破断防止性とアンチブロッキング性とを両立させた。透明導電性フィルム積層体の破断は、ロールtoロール製法による搬送中に装置内の加熱ロールやスパッタ時の熱ごもりの影響で長尺状の透明導電性フィルム積層体が蛇行した場合には透明導電性フィルム積層体に張力を印加して蛇行を修正する等の措置がとられるが、この措置に起因することが多い。この蛇行修正措置のための張力印加の際に硬化樹脂層が割れてしまい、その割れに起因して長尺状の透明導電性フィルム積層体に破断が発生するというものである。スパッタ法など真空成膜法においては、樹脂成分や水蒸気などの不純物が除去された雰囲気で成膜される必要があるが、一旦、真空成膜装置内で透明導電性フィルム積層体の破断が発生すると、スパッタ成膜室を大気解放して透明導電性フィルム積層体の再設置から清掃までを行う必要があり、著しく生産性を悪化させる結果となる。そこで、本発明では、保護フィルムの一方の面側に粘着剤層を有するキャリアフィルムと、前記粘着剤層を介して剥離可能に積層した透明導電性フィルムと、を含む透明導電性フィルム積層体であって、透明導電性フィルム積層体に対して180°折り曲げ試験を行った際に、前記透明導電性フィルム積層体の破断が発生しないようにすることで、透明樹脂フィルムの傷付きを防止可能であり、透明導電性フィルム積層体搬送時の張力の印加でも透明導電性フィルム積層体に破断が発生せず、その後の工程歩留まりを確保できる。 In general, when an anti-blocking layer is formed on the side of a protective film that does not have a pressure-sensitive adhesive layer by adding particles to an ultraviolet curable binder, the film tends to break in a 180 ° bending test, and a roll-to-roll manufacturing method The risk of breakage at is very high. Therefore, in the present invention, both the anti-breaking property and the anti-blocking property are achieved by providing the arithmetic average surface roughness Ra to the surface of the protective film itself without separately providing an anti-blocking layer. The break of the transparent conductive film laminate is transparent when the long transparent conductive film laminate meanders due to the influence of the heating roll in the apparatus and the heat weight during sputtering during conveyance by the roll-to-roll manufacturing method. Measures such as correcting the meandering by applying tension to the conductive film laminate are often caused by this measure. When the tension is applied for the meandering correction, the cured resin layer is broken, and the long transparent conductive film laminate is broken due to the crack. In vacuum film-forming methods such as sputtering, it is necessary to form the film in an atmosphere from which impurities such as resin components and water vapor have been removed, but once the transparent conductive film laminate breaks in the vacuum film-forming device Then, it is necessary to open the sputter film formation chamber to the atmosphere and perform from the re-installation of the transparent conductive film laminate to the cleaning, resulting in a significant deterioration in productivity. Therefore, in the present invention, a transparent conductive film laminate comprising a carrier film having a pressure-sensitive adhesive layer on one surface side of the protective film, and a transparent conductive film laminated releasably via the pressure-sensitive adhesive layer. When the transparent conductive film laminate is subjected to a 180 ° bending test, the transparent conductive film laminate can be prevented from being damaged, thereby preventing the transparent resin film from being damaged. There is no breakage in the transparent conductive film laminate even when a tension is applied during conveyance of the transparent conductive film laminate, and the subsequent process yield can be secured.
 本発明の透明導電性フィルム積層体は、前記保護フィルムの前記粘着剤層を有しない面側の表面にエンボス加工が施されていることが好ましい。本発明のように保護フィルムの片面にエンボス加工を施すことにより、破断の起点となりやすいアンチブロッキング層を設けることなく、アンチブロッキング性を付与することができる。また、透明導電性フィルム積層体に簡便に微細凹凸を付与することが可能となる。その結果、透明導電性フィルム積層体破断を防止することができ、透明導電性フィルム積層体搬送時の張力の印加でも透明導電性フィルム積層体に破断が発生せず、その後の工程歩留まりを確保できる。 The transparent conductive film laminate of the present invention is preferably embossed on the surface of the protective film that does not have the pressure-sensitive adhesive layer. By embossing one side of the protective film as in the present invention, antiblocking properties can be imparted without providing an antiblocking layer that tends to be the starting point of fracture. Moreover, it becomes possible to easily give fine irregularities to the transparent conductive film laminate. As a result, it is possible to prevent the transparent conductive film laminate from being broken, and the transparent conductive film laminate is not broken even when a tension is applied during transportation of the transparent conductive film laminate, and the subsequent process yield can be secured. .
 本発明における保護フィルムは、溶融押出しポリカーボネート系樹脂または溶融押出しシクロオレフィン系樹脂からなることが好ましい。溶融押出し時に梨地ロールにより保護フィルムの片面にエンボス加工等の加工を施すことができるので、破断の起点となりやすいアンチブロッキング層を設けることなく、効率よくアンチブロッキング性が付与できる。 The protective film in the present invention is preferably made of a melt-extruded polycarbonate resin or a melt-extruded cycloolefin resin. Since processing such as embossing can be performed on one side of the protective film with a satin roll during melt extrusion, antiblocking properties can be efficiently imparted without providing an antiblocking layer that tends to be the starting point of fracture.
 本発明における保護フィルムの厚みは、20μm~150μmであることが好ましい。これにより、ロールtoロール製法にて透明導電性フィルム積層体を搬送した際にも、透明導電性フィルム積層体の破断が生じず、その後の工程歩留まりを確保できる。 The thickness of the protective film in the present invention is preferably 20 μm to 150 μm. Thereby, also when a transparent conductive film laminated body is conveyed with the roll to roll manufacturing method, the fracture | rupture of a transparent conductive film laminated body does not arise, but it can ensure the subsequent process yield.
 本発明の透明導電性フィルム積層体は、前記第1の硬化樹脂層と前記透明導電膜との間に更に1層以上の光学調整層を備えることが好ましい。光学調整層により屈折率を制御できるため、透明導電膜をパターン化した場合でも、パターン形成部とパターン開口部との反射率差を低減することができ、透明導電膜パターンが見えにくく、タッチパネル等の表示装置において視認性が良好になる。 The transparent conductive film laminate of the present invention preferably further includes one or more optical adjustment layers between the first cured resin layer and the transparent conductive film. Since the refractive index can be controlled by the optical adjustment layer, even when the transparent conductive film is patterned, the difference in reflectance between the pattern forming portion and the pattern opening can be reduced, the transparent conductive film pattern is difficult to see, and the touch panel, etc. Visibility is improved in the display device.
本発明の一実施形態に係る透明導電性フィルム積層体の模式的断面図である。It is a typical sectional view of the transparent conductive film layered product concerning one embodiment of the present invention. 本発明の他の実施形態に係る透明導電性フィルム積層体の模式的断面図である。It is typical sectional drawing of the transparent conductive film laminated body which concerns on other embodiment of this invention. 180°折り曲げ試験の手順を説明するための模式的側面図である。It is a typical side view for demonstrating the procedure of a 180 degree bending test.
 本発明の透明導電性フィルム積層体の実施形態について、図面を参照しながら以下に説明する。ただし、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大または縮小等して図示した部分がある。上下等の位置関係を示す用語は、単に説明を容易にするために用いられており、本発明の構成を限定する意図は一切ない。 Embodiments of the transparent conductive film laminate of the present invention will be described below with reference to the drawings. However, in some or all of the drawings, parts unnecessary for the description are omitted, and there are parts shown enlarged or reduced for easy explanation. The terms indicating the positional relationship such as up and down are merely used for ease of explanation, and are not intended to limit the configuration of the present invention.
 <積層体の構造>
 図1は、本発明の透明導電性フィルム積層体の一実施形態を模式的に示す断面図であり、図2は、本発明の他の実施形態に係る透明導電性フィルム積層体の模式的断面図である。透明導電性フィルム積層体は、保護フィルム1の一方の面側に粘着剤層2を有するキャリアフィルム10と、粘着剤層2を介して剥離可能に積層した透明導電性フィルム20とを含む。前記透明導電性フィルム20は、透明導電膜6と、第1の硬化樹脂層5と、透明樹脂フィルム4と、第2の硬化樹脂層3とをこの順に有する。また、図2に示すように、前記第1の硬化樹脂層5と前記透明導電膜6との間に更に1層の光学調整層7を備えることができるが、2層以上の光学調整層7を備えることもできる。第1の硬化樹脂層5と第2の硬化樹脂層3とは、アンチブロッキング層やハードコート層として機能するものを含む。なお、キャリアフィルム10は、透明導電性フィルム20の第2の硬化樹脂層3が形成されている面側に積層されている。
<Structure of laminate>
FIG. 1 is a cross-sectional view schematically showing one embodiment of the transparent conductive film laminate of the present invention, and FIG. 2 is a schematic cross section of the transparent conductive film laminate according to another embodiment of the present invention. FIG. The transparent conductive film laminate includes a carrier film 10 having a pressure-sensitive adhesive layer 2 on one surface side of the protective film 1 and a transparent conductive film 20 laminated so as to be peelable via the pressure-sensitive adhesive layer 2. The said transparent conductive film 20 has the transparent conductive film 6, the 1st cured resin layer 5, the transparent resin film 4, and the 2nd cured resin layer 3 in this order. In addition, as shown in FIG. 2, one optical adjustment layer 7 can be further provided between the first cured resin layer 5 and the transparent conductive film 6, but two or more optical adjustment layers 7 are provided. Can also be provided. The 1st cured resin layer 5 and the 2nd cured resin layer 3 include what functions as an antiblocking layer or a hard-coat layer. In addition, the carrier film 10 is laminated | stacked on the surface side in which the 2nd cured resin layer 3 of the transparent conductive film 20 is formed.
 <透明導電性フィルム>
 透明導電性フィルムは、透明導電膜と、第1の硬化樹脂層と、透明樹脂フィルムと、第2の硬化樹脂層とをこの順に有する。透明導電性フィルムは、第1の硬化樹脂層と透明導電膜との間に、1層以上の光学調整層をさらに含むことも可能である。透明導電性フィルムの厚みは、20~150μmの範囲内であることが好ましく、25~100μmの範囲内であることがより好ましく、30~80μmの範囲内であることが更に好ましい。透明導電性フィルムの厚みが上記範囲の下限未満であると、機械的強度が不足し、フィルム基材をロール状にして硬化樹脂層や透明導電膜を連続的に形成する操作が困難になる場合がある。一方、厚みが上記範囲の上限を超えると、透明導電膜の耐擦傷性やタッチパネル用としての打点特性の向上が図れない場合がある。
<Transparent conductive film>
The transparent conductive film has a transparent conductive film, a first cured resin layer, a transparent resin film, and a second cured resin layer in this order. The transparent conductive film can further include one or more optical adjustment layers between the first cured resin layer and the transparent conductive film. The thickness of the transparent conductive film is preferably in the range of 20 to 150 μm, more preferably in the range of 25 to 100 μm, and still more preferably in the range of 30 to 80 μm. When the thickness of the transparent conductive film is less than the lower limit of the above range, the mechanical strength is insufficient, and it becomes difficult to continuously form a cured resin layer or a transparent conductive film by making the film base into a roll shape. There is. On the other hand, if the thickness exceeds the upper limit of the above range, the scratch resistance of the transparent conductive film and the dot characteristics for touch panels may not be improved.
 (透明樹脂フィルム)
 透明樹脂フィルムは、シクロオレフィン系樹脂又はポリカーボネート系樹脂により形成されており、高透明性及び低吸水性の特性を有する。シクロオレフィン系樹脂又はポリカーボネート系樹脂の採用により透明導電性フィルム積層体に用いられる透明導電性フィルムの光学特性の制御が可能となる。
(Transparent resin film)
The transparent resin film is formed of a cycloolefin resin or a polycarbonate resin, and has high transparency and low water absorption characteristics. By adopting the cycloolefin resin or the polycarbonate resin, it becomes possible to control the optical characteristics of the transparent conductive film used in the transparent conductive film laminate.
 シクロオレフィン系樹脂としては、環状オレフィン(シクロオレフィン)からなるモノマーのユニットを有する樹脂であれば特に限定されるものではない。透明樹脂フィルムに用いられるシクロオレフィン系樹脂としては、シクロオレフィンポリマー(COP)又はシクロオレフィンコポリマー(COC)のいずれであってもよい。シクロオレフィンコポリマーとは、環状オレフィンとエチレン等のオレフィンとの共重合体である非結晶性の環状オレフィン系樹脂のことをいう。 The cycloolefin resin is not particularly limited as long as it is a resin having a monomer unit composed of a cyclic olefin (cycloolefin). The cycloolefin resin used for the transparent resin film may be either a cycloolefin polymer (COP) or a cycloolefin copolymer (COC). The cycloolefin copolymer refers to an amorphous cyclic olefin resin that is a copolymer of a cyclic olefin and an olefin such as ethylene.
 上記環状オレフィンとしては、多環式の環状オレフィンと単環式の環状オレフィンとが存在している。かかる多環式の環状オレフィンとしては、ノルボルネン、メチルノルボルネン、ジメチルノルボルネン、エチルノルボルネン、エチリデンノルボルネン、ブチルノルボルネン、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、メチルジシクロペンタジエン、ジメチルジシクロペンタジエン、テトラシクロドデセン、メチルテトラシクロドデセン、ジメチルシクロテトラドデセン、トリシクロペンタジエン、テトラシクロペンタジエンなどが挙げられる。また、単環式の環状オレフィンとしては、シクロブテン、シクロペンテン、シクロオクテン、シクロオクタジエン、シクロオクタトリエン、シクロドデカトリエンなどが挙げられる。 As the cyclic olefin, there are a polycyclic cyclic olefin and a monocyclic cyclic olefin. Such polycyclic olefins include norbornene, methylnorbornene, dimethylnorbornene, ethylnorbornene, ethylidenenorbornene, butylnorbornene, dicyclopentadiene, dihydrodicyclopentadiene, methyldicyclopentadiene, dimethyldicyclopentadiene, tetracyclododecene. , Methyltetracyclododecene, dimethylcyclotetradodecene, tricyclopentadiene, tetracyclopentadiene, and the like. Examples of monocyclic olefins include cyclobutene, cyclopentene, cyclooctene, cyclooctadiene, cyclooctatriene, and cyclododecatriene.
 シクロオレフィン系樹脂は、市販品としても入手可能であり、例えば、日本ゼオン社製「ZEONOR」、JSR社製「ARTON」、ポリプラスチック社製「TOPAS」、三井化学社製「APEL」などが挙げられる。 Cycloolefin-based resins are also available as commercial products, such as “ZEONOR” manufactured by ZEON Corporation, “ARTON” manufactured by JSR, “TOPAS” manufactured by Polyplastics, “APEL” manufactured by Mitsui Chemicals, and the like. It is done.
 ポリカーボネート系樹脂は、特に限定されないが、例えば、脂肪族ポリカーボネート、芳香族ポリカーボネート、脂肪族-芳香族ポリカーボネートなどが挙げられる。具体的には、例えば、ビスフェノール類を用いたポリカーボネート(PC)としてビスフェノールAポリカーボネート、分岐ビスフェノールAポリカーボネート、発砲ポリカーボネート、コポリカーボネート、ブロックコポリカーボネート、ポリエステルカーボネート、ポリホスホネートカーボネート、ジエチレングリコールビスアリルカーボネート(CR-39)などが挙げられる。ポリカーボネート系樹脂には、ビスフェノールAポリカーボネートブレンド、ポリエステルブレンド、ABSブレンド、ポリオレフィンブレンド、スチレン―無水マレイン酸共重合体ブレンドのような他成分とブレンドしたものも含まれる。ポリカーボネート樹脂の市販品としては、恵和社製「オプコン」、帝人社製「パンライト」、三菱ガス化学製「ユーピロン(紫外線吸収剤含有ポリカーボネート)」等が挙げられる。 The polycarbonate resin is not particularly limited, and examples thereof include aliphatic polycarbonate, aromatic polycarbonate, and aliphatic-aromatic polycarbonate. Specifically, for example, bisphenol A polycarbonate, branched bisphenol A polycarbonate, foamed polycarbonate, copolycarbonate, block copolycarbonate, polyester carbonate, polyphosphonate carbonate, diethylene glycol bisallyl carbonate (CR-) as polycarbonate (PC) using bisphenols 39). Polycarbonate-based resins also include those blended with other components such as bisphenol A polycarbonate blends, polyester blends, ABS blends, polyolefin blends, styrene-maleic anhydride copolymer blends. Examples of commercially available polycarbonate resin include “OPCON” manufactured by Ewa Co., Ltd., “Panlite” manufactured by Teijin Limited, and “Iupilon (UV absorber-containing polycarbonate)” manufactured by Mitsubishi Gas Chemical.
 透明樹脂フィルムには、表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、透明樹脂フィルム上に形成される硬化樹脂層や透明導電膜等との密着性を向上させるようにしてもよい。また、硬化樹脂層や透明導電膜を形成する前に、必要に応じて溶剤洗浄や超音波洗浄などにより、透明樹脂フィルム表面を除塵、清浄化してもよい。 The transparent resin film is preliminarily subjected to etching treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and undercoating treatment on the surface, and a cured resin layer formed on the transparent resin film or transparent You may make it improve adhesiveness with an electrically conductive film. Moreover, before forming a cured resin layer and a transparent conductive film, you may remove and clean the surface of a transparent resin film by solvent washing | cleaning, ultrasonic washing | cleaning, etc. as needed.
 透明樹脂フィルムの厚みは、20~150μmの範囲内であることが好ましく、25~100μmの範囲内であることがより好ましく、30~80μmの範囲内であることが更に好ましい。透明樹脂フィルムの厚みが上記範囲の下限未満であると、機械的強度が不足し、フィルム基材をロール状にして硬化樹脂層や透明導電膜を連続的に形成する操作が困難になる場合がある。一方、厚みが上記範囲の上限を超えると、透明導電膜の耐擦傷性やタッチパネル用としての打点特性の向上が図れない場合がある。
 透明樹脂フィルムを形成するシクロオレフィン系樹脂又はポリカーボネート系樹脂のガラス転移温度は、130℃以上であることが好ましく、140℃以上であることがより好ましい。これにより、熱処理工程後のカール発生を抑制し、寸法安定性を向上させ、その後の工程歩留りを確保可能である。
The thickness of the transparent resin film is preferably in the range of 20 to 150 μm, more preferably in the range of 25 to 100 μm, and still more preferably in the range of 30 to 80 μm. When the thickness of the transparent resin film is less than the lower limit of the above range, the mechanical strength is insufficient, and it may be difficult to continuously form a cured resin layer or a transparent conductive film by making the film base into a roll shape. is there. On the other hand, if the thickness exceeds the upper limit of the above range, the scratch resistance of the transparent conductive film and the dot characteristics for touch panels may not be improved.
The glass transition temperature of the cycloolefin resin or polycarbonate resin forming the transparent resin film is preferably 130 ° C. or higher, and more preferably 140 ° C. or higher. As a result, the occurrence of curling after the heat treatment step can be suppressed, the dimensional stability can be improved, and the subsequent process yield can be ensured.
 上記透明樹脂フィルムは、面内方向の位相差(R0)が0nm~10nmmの低位相差のフィルムや面内方向の位相差が80nm~150nm程度のλ/4フィルムとすることが容易で、偏光板とともに使用される場合においては、視認性を良好にすることが可能となる。なお、面内位相差(R0)は、23℃において波長589nmの光で測定した位相差フィルム(層)面内の位相差値をいう。 The transparent resin film can be easily a low retardation film having an in-plane retardation (R0) of 0 nm to 10 nm or a λ / 4 film having an in-plane retardation of about 80 nm to 150 nm. When used together, the visibility can be improved. The in-plane retardation (R0) refers to an in-plane retardation value measured with light having a wavelength of 589 nm at 23 ° C.
 (硬化樹脂層)
 硬化樹脂層は、透明樹脂フィルムの一方面側に設けられた第1の硬化樹脂層と、他方の面側に設けられた第2の硬化樹脂層とを含む。シクロオレフィン系樹脂又はポリカーボネート系樹脂で形成された透明樹脂フィルムは、透明導電膜の形成や透明導電膜のパターン化または電子機器への搭載などの各工程で傷が入りやすいので、上記のように、透明樹脂フィルムの両面に第1の硬化樹脂層と第2の硬化樹脂層とを形成する。
(Cured resin layer)
The cured resin layer includes a first cured resin layer provided on one surface side of the transparent resin film and a second cured resin layer provided on the other surface side. As described above, the transparent resin film formed of cycloolefin resin or polycarbonate resin is easily scratched in each process such as formation of a transparent conductive film, patterning of a transparent conductive film, or mounting on an electronic device. The first cured resin layer and the second cured resin layer are formed on both sides of the transparent resin film.
 硬化樹脂層は、硬化型樹脂を硬化させることにより得られた層である。用いる樹脂としては、硬化樹脂層形成後の皮膜として十分な強度を持ち、透明性のあるものを特に制限なく使用できるが、熱硬化型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂、二液混合型樹脂などがあげられる。これらのなかでも紫外線照射による硬化処理にて、簡単な加工操作にて効率よく硬化樹脂層を形成することができる紫外線硬化型樹脂が好適である。 The cured resin layer is a layer obtained by curing a curable resin. As the resin to be used, those having sufficient strength as a film after forming the cured resin layer and having transparency can be used without particular limitation, but thermosetting resin, ultraviolet curable resin, electron beam curable resin, two-component Examples thereof include mixed resins. Among these, an ultraviolet curable resin that can efficiently form a cured resin layer by a simple processing operation by a curing treatment by ultraviolet irradiation is preferable.
 紫外線硬化型樹脂としては、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系等の各種のものがあげられ、紫外線硬化型のモノマー、オリゴマー、ポリマー等が含まれる。好ましく用いられる紫外線硬化型樹脂は、アクリル系樹脂やエポキシ系樹脂であり、より好ましくはアクリル系樹脂である。 Examples of the ultraviolet curable resin include polyesters, acrylics, urethanes, amides, silicones, epoxies, and the like, and ultraviolet curable monomers, oligomers, polymers, and the like are included. The ultraviolet curable resin preferably used is an acrylic resin or an epoxy resin, more preferably an acrylic resin.
 硬化樹脂層は粒子を含んでいてもよい。硬化樹脂層に粒子を配合することにより、硬化樹脂層の表面に隆起を形成することができ、透明導電性フィルムに耐ブロッキング性を好適に付与することができる。 The cured resin layer may contain particles. By blending the particles in the cured resin layer, ridges can be formed on the surface of the cured resin layer, and blocking resistance can be suitably imparted to the transparent conductive film.
 上記粒子としては、各種金属酸化物、ガラス、プラスチックなどの透明性を有するものを特に制限なく使用することができる。例えばシリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム等の無機系粒子、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル系樹脂、アクリル-スチレン共重合体、ベンゾグアナミン、メラミン、ポリカーボネート等の各種ポリマーからなる架橋又は未架橋の有機系粒子やシリコーン系粒子などがあげられる。前記粒子は、1種または2種以上を適宜に選択して用いることができるが、有機系粒子が好ましい。有機系粒子としては、屈折率の観点から、アクリル系樹脂が好ましい。 As the above-mentioned particles, those having transparency such as various metal oxides, glass, and plastics can be used without particular limitation. For example, inorganic particles such as silica, alumina, titania, zirconia, calcium oxide, polymethyl methacrylate, polystyrene, polyurethane, acrylic resin, acryl-styrene copolymer, benzoguanamine, melamine, polycarbonate, and other cross-linked or uncrosslinked polymers. Examples include crosslinked organic particles and silicone particles. The particles can be used by appropriately selecting one type or two or more types, but organic particles are preferable. The organic particles are preferably acrylic resins from the viewpoint of refractive index.
 粒子の最頻粒子径は、硬化樹脂層の隆起の突出度や隆起以外の平坦領域の厚みとの関係などを考慮して適宜設定することができ、特に限定されない。なお、透明導電性フィルムに耐ブロッキング性を十分に付与し、かつヘイズの上昇を十分に抑制するという観点から、粒子の最頻粒子径は硬化樹脂層の厚みの±50%の範囲内の粒子径を用いることが好ましい。なお、本明細書において、「最頻粒子径」とは、粒子分布の極大値を示す粒径をいい、フロー式粒子像分析装置(Sysmex社製、製品名「FPTA-3000S」)を用いて、所定条件下(Sheath液:酢酸エチル、測定モード:HPF測定、測定方式:トータルカウント)で測定することによって求められる。測定試料は、粒子を酢酸エチルで1.0重量%に希釈し、超音波洗浄機を用いて均一に分散させたものを用いる。 The mode particle diameter of the particles can be appropriately set in consideration of the degree of protrusion of the cured resin layer and the thickness of a flat region other than the protrusion, and is not particularly limited. From the viewpoint of sufficiently imparting blocking resistance to the transparent conductive film and sufficiently suppressing increase in haze, the mode particle diameter of the particles is within the range of ± 50% of the thickness of the cured resin layer. It is preferable to use a diameter. In the present specification, “mode particle size” means a particle size showing the maximum value of the particle distribution, and a flow type particle image analyzer (product name “FPTA-3000S” manufactured by Sysmex) is used. , By measuring under predetermined conditions (Sheath solution: ethyl acetate, measurement mode: HPF measurement, measurement method: total count). The measurement sample is prepared by diluting the particles to 1.0% by weight with ethyl acetate and uniformly dispersing the particles using an ultrasonic cleaner.
 粒子の含有量は、樹脂組成物の固形分100重量部に対して0.05~1.0重量部であることが好ましく、0.1~0.5重量部であることがより好ましく、0.1~0.2重量部であることがさらに好ましい。硬化樹脂層中の粒子の含有量が小さいと、硬化樹脂層の表面に耐ブロッキング性や易滑性を付与するのに十分な隆起が形成され難くなる傾向がある。一方、粒子の含有量が大きすぎると、粒子による光散乱に起因して透明導電性フィルムのヘイズが高くなり、視認性が低下する傾向がある。また、粒子の含有量が大きすぎると、硬化樹脂層の形成時(溶液の塗布時)に、スジが発生し、視認性が損なわれたり、透明導電膜の電気特性が不均一となったりする場合がある。 The content of the particles is preferably 0.05 to 1.0 part by weight, more preferably 0.1 to 0.5 part by weight, based on 100 parts by weight of the solid content of the resin composition. More preferably, it is 1 to 0.2 parts by weight. When the content of the particles in the cured resin layer is small, there is a tendency that bulges sufficient to impart blocking resistance and slipperiness to the surface of the cured resin layer are hardly formed. On the other hand, if the content of the particles is too large, the haze of the transparent conductive film increases due to light scattering by the particles, and the visibility tends to decrease. On the other hand, when the content of the particles is too large, streaks are generated during the formation of the cured resin layer (at the time of application of the solution), and the visibility may be impaired, or the electrical characteristics of the transparent conductive film may be uneven. There is a case.
 硬化樹脂層は、各硬化型樹脂と必要に応じて加える粒子、架橋剤、開始剤、増感剤などを含む樹脂組成物を透明樹脂フィルム上に塗布し、樹脂組成物が溶剤を含む場合には、溶剤の乾燥を行い、熱、活性エネルギー線またはその両方のいずれかの適用により硬化させることにより得られる。熱は空気循環式オーブンやIRヒーターなど公知の手段を用いることができるがこれらの方法に限定されない。活性エネルギー線の例としては紫外線、電子線、ガンマ線などがあるが特に限定されない。 The cured resin layer is formed by applying a resin composition containing particles, a crosslinking agent, an initiator, a sensitizer and the like to be added to each curable resin as necessary on a transparent resin film, and the resin composition contains a solvent. Is obtained by drying the solvent and curing by application of either heat, active energy rays or both. For the heat, known means such as an air circulation oven or an IR heater can be used, but it is not limited to these methods. Examples of active energy rays include, but are not limited to, ultraviolet rays, electron beams, and gamma rays.
 硬化樹脂層は、上記の材料を用いて、ウェットコーティング法(塗工法)等により製膜できる。例えば、透明導電膜として酸化スズを含有する酸化インジウム(ITO)を形成する場合、下地層である硬化樹脂層の表面が平滑であると、透明導電膜の結晶化時間を短縮することもできる。かかる観点から、硬化樹脂層はウェットコーティング法により製膜されることが好ましい。 The cured resin layer can be formed by a wet coating method (coating method) or the like using the above materials. For example, in the case of forming indium oxide (ITO) containing tin oxide as the transparent conductive film, the crystallization time of the transparent conductive film can be shortened if the surface of the cured resin layer that is the base layer is smooth. From this point of view, the cured resin layer is preferably formed by a wet coating method.
 硬化樹脂層の厚みは、好ましくは0.5μm~5μmであり、より好ましくは0.7μm~3μmであり、最も好ましくは0.8μm~2μmである。硬化樹脂層の厚みが前記範囲にあると、傷付防止や硬化樹脂層の硬化収縮におけるフィルムシワを抑制でき、タッチパネル等の視認性が悪化することを防ぐことができる。 The thickness of the cured resin layer is preferably 0.5 μm to 5 μm, more preferably 0.7 μm to 3 μm, and most preferably 0.8 μm to 2 μm. When the thickness of the cured resin layer is within the above range, it is possible to prevent scratching and film wrinkles in the cured shrinkage of the cured resin layer, and to prevent the visibility of a touch panel and the like from being deteriorated.
 (透明導電膜)
 透明導電膜は、透明樹脂フィルムの一方の面側に設けられた第1の硬化樹脂層上に設けられることが好ましい。透明導電膜の構成材料は、無機物を含む限り特に限定されず、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステンからなる群より選択される少なくとも1種の金属の金属酸化物が好適に用いられる。当該金属酸化物には、必要に応じて、さらに上記群に示された金属原子を含んでいてもよい。例えば酸化スズを含有する酸化インジウム(ITO)、アンチモンを含有する酸化スズ(ATO)などが好ましく用いられる。
(Transparent conductive film)
It is preferable that a transparent conductive film is provided on the 1st cured resin layer provided in the one surface side of the transparent resin film. The constituent material of the transparent conductive film is not particularly limited as long as it contains an inorganic substance. From the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten A metal oxide of at least one selected metal is preferably used. The metal oxide may further contain a metal atom shown in the above group, if necessary. For example, indium oxide (ITO) containing tin oxide and tin oxide (ATO) containing antimony are preferably used.
 透明導電膜の厚みは、特に制限されないが、その表面抵抗を1×10Ω/□以下の良好な導電性を有する連続被膜とするには、厚みを10nm以上とするのが好ましい。膜厚が、厚くなりすぎると透明性の低下などをきたすため、15~35nmであることが好ましく、より好ましくは20~30nmの範囲内である。透明導電膜の厚みが、10nm未満であると膜表面の電気抵抗が高くなり、かつ連続被膜になり難くなる。また、透明導電膜の厚みが、35nmを超えると透明性の低下などをきたす場合がある。 The thickness of the transparent conductive film is not particularly limited, but the thickness is preferably 10 nm or more in order to obtain a continuous film having good conductivity with a surface resistance of 1 × 10 3 Ω / □ or less. The film thickness is preferably 15 to 35 nm, more preferably in the range of 20 to 30 nm, since transparency is lowered when the film thickness becomes too thick. When the thickness of the transparent conductive film is less than 10 nm, the electrical resistance of the film surface increases and it becomes difficult to form a continuous film. Further, when the thickness of the transparent conductive film exceeds 35 nm, the transparency may be lowered.
 透明導電膜の形成方法は、特に限定されず、従来公知の方法を採用することができる。具体的には、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等のドライプロセスを例示できる。また、必要とする膜厚に応じて適宜の方法を採用することもできる。なお、第1の硬化樹脂層上に透明導電膜を形成する場合、透明導電膜がスパッタリング法等のドライプロセスによって形成されれば、透明導電膜の表面は、その下地層である第1の硬化樹脂層表面形状をほぼ維持する。そのため、第1の硬化樹脂層に隆起が存在する場合には、透明導電膜表面にも耐ブロッキング性及び易滑性を好適に付与することができる。 The formation method of the transparent conductive film is not particularly limited, and a conventionally known method can be adopted. Specific examples include dry processes such as vacuum deposition, sputtering, and ion plating. In addition, an appropriate method can be adopted depending on the required film thickness. In addition, when forming a transparent conductive film on the 1st hardening resin layer, if the transparent conductive film is formed by dry processes, such as sputtering method, the surface of a transparent conductive film is the 1st hardening which is the foundation layer The surface shape of the resin layer is substantially maintained. Therefore, when a protrusion exists in the 1st cured resin layer, blocking resistance and slipperiness can be suitably given also to the transparent conductive film surface.
 透明導電膜は、必要に応じて加熱アニール処理(例えば、大気雰囲気下、80~150℃で30~90分間程度)を施して結晶化することができる。透明導電膜を結晶化することで、透明導電膜が低抵抗化されることに加えて、透明性及び耐久性が向上する。非晶質の透明導電膜を結晶質に転化させる手段は、特に限定されないが、空気循環式オーブンやIRヒーターなどが用いられる。 The transparent conductive film can be crystallized by performing a heat annealing treatment (for example, at 80 to 150 ° C. for about 30 to 90 minutes in an air atmosphere) as necessary. By crystallizing the transparent conductive film, the transparency and durability are improved in addition to the resistance of the transparent conductive film being reduced. The means for converting the amorphous transparent conductive film into crystalline is not particularly limited, and an air circulation oven, an IR heater, or the like is used.
 「結晶質」の定義については、透明樹脂フィルム上に透明導電膜が形成された透明導電性フィルムを、20℃、濃度5重量%の塩酸に15分間浸漬した後、水洗・乾燥し、15mm間の端子間抵抗をテスタにて測定を行い、端子間抵抗が10kΩを超えない場合、ITO膜の結晶質への転化が完了したものとする。なお、表面抵抗値の測定は、JIS K7194に準じて、4端子法により測定できる。 Regarding the definition of “crystalline”, a transparent conductive film in which a transparent conductive film is formed on a transparent resin film is immersed in hydrochloric acid having a concentration of 5% by weight at 20 ° C. for 15 minutes, then washed with water and dried for 15 mm. When the inter-terminal resistance is measured with a tester and the inter-terminal resistance does not exceed 10 kΩ, it is assumed that the conversion of the ITO film to crystalline is completed. The surface resistance value can be measured by the 4-terminal method according to JIS K7194.
 また、透明導電膜は、エッチング等によりパターン化してもよい。透明導電膜のパターン化に関しては、従来公知のフォトリソグラフィの技術を用いて行うことができる。エッチング液としては、酸が好適に用いられる。酸としては、例えば、塩化水素、臭化水素、硫酸、硝酸、リン酸等の無機酸、酢酸等の有機酸、およびこれらの混合物、ならびにそれらの水溶液があげられる。例えば、静電容量方式のタッチパネルやマトリックス式の抵抗膜方式のタッチパネルに用いられる透明導電性フィルムにおいては、透明導電膜がストライプ状にパターン化されることが好ましい。なお、エッチングにより透明導電膜をパターン化する場合、先に透明導電膜の結晶化を行うと、エッチングによるパターン化が困難となる場合がある。そのため、透明導電膜のアニール処理は、透明導電膜をパターン化した後に行うことが好ましい。 Further, the transparent conductive film may be patterned by etching or the like. The patterning of the transparent conductive film can be performed using a conventionally known photolithography technique. An acid is preferably used as the etching solution. Examples of the acid include inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid, phosphoric acid, organic acids such as acetic acid, mixtures thereof, and aqueous solutions thereof. For example, in a transparent conductive film used for a capacitive touch panel or a matrix resistive touch panel, the transparent conductive film is preferably patterned in a stripe shape. Note that, when the transparent conductive film is patterned by etching, if the transparent conductive film is first crystallized, patterning by etching may be difficult. Therefore, it is preferable to perform the annealing treatment of the transparent conductive film after patterning the transparent conductive film.
 ロールtoロール製法において、透明導電膜がスパッタリング法等のドライプロセスによって形成される場合、第1の硬化樹脂層と第2の硬化樹脂層とが両面に形成した透明樹脂フィルムを後述の保護フィルム上に粘着剤層を介して積層することが好ましい。また、透明導電膜のアニール処理等も同様に長尺状の透明導電性フィルム積層体として、ロールtoロール製法で搬送しながら連続的に処理することが好ましい。透明導電性フィルム積層体とすることで、ロールtoロール製法において、透明導電性フィルム積層体の破断を防止することができ、その後の工程歩留りを確保できる。 In the roll-to-roll manufacturing method, when the transparent conductive film is formed by a dry process such as a sputtering method, a transparent resin film formed on both surfaces of the first cured resin layer and the second cured resin layer is formed on a protective film described later. It is preferable to laminate | stack through an adhesive layer. Similarly, the transparent conductive film is preferably annealed continuously as a long transparent conductive film laminate while being conveyed by a roll-to-roll manufacturing method. By setting it as a transparent conductive film laminated body, in a roll to roll manufacturing method, the fracture | rupture of a transparent conductive film laminated body can be prevented, and the subsequent process yield can be ensured.
 (金属ナノワイヤ)
 前記透明導電膜は、金属ナノワイヤを含むことができる。金属ナノワイヤとは、材質が金属であり、形状が針状または糸状であり、径がナノメートルサイズの導電性物質をいう。金属ナノワイヤは直線状であってもよく、曲線状であってもよい。金属ナノワイヤで構成された透明導電層を用いれば、金属ナノワイヤが網の目状となることにより、少量の金属ナノワイヤであっても良好な電気伝導経路を形成することができ、電気抵抗の小さい透明導電性フィルムを得ることができる。さらに、金属ナノワイヤが網の目状となることにより、網の目の隙間に開口部を形成して、光透過率の高い透明導電性フィルムを得ることができる。 
(Metal nanowires)
The transparent conductive film may include metal nanowires. A metal nanowire is a conductive material having a metal material, a needle shape or a thread shape, and a diameter of nanometer. The metal nanowire may be linear or curved. If a transparent conductive layer composed of metal nanowires is used, the metal nanowires can be formed into a mesh shape, so that even with a small amount of metal nanowires, a good electrical conduction path can be formed, and transparent with low electrical resistance. A conductive film can be obtained. Furthermore, when the metal nanowire has a mesh shape, an opening is formed in the mesh space, and a transparent conductive film having high light transmittance can be obtained.
 前記金属ナノワイヤを構成する金属としては、導電性の高い金属である限り、任意の適切な金属が用いられ得る。前記金属ナノワイヤを構成する金属としては、例えば、銀、金、銅、ニッケル等が挙げられる。また、これらの金属にメッキ処理(例えば、金メッキ処理)を行った材料を用いてもよい。なかでも好ましくは、導電性の観点から、銀、銅または金であり、より好ましくは銀である。 As the metal constituting the metal nanowire, any appropriate metal can be used as long as it is a highly conductive metal. As a metal which comprises the said metal nanowire, silver, gold | metal | money, copper, nickel etc. are mentioned, for example. Moreover, you may use the material which performed the plating process (for example, gold plating process) to these metals. Among these, silver, copper, or gold is preferable from the viewpoint of conductivity, and silver is more preferable.
 (光学調整層)
 第1の硬化樹脂層と透明導電膜との間に、1層以上の光学調整層をさらに含むことができる。光学調整層は、透明導電性フィルムの透過率の上昇や、透明導電膜がパターン化される場合には、パターンが残るパターン部とパターンが残らない開口部の間で透過率差や反射率差を低減でき、視認性に優れた透明導電性フィルムを得るために用いられる。
(Optical adjustment layer)
One or more optical adjustment layers may be further included between the first cured resin layer and the transparent conductive film. The optical adjustment layer increases the transmittance of the transparent conductive film, or when the transparent conductive film is patterned, the transmittance difference or reflectance difference between the pattern part where the pattern remains and the opening part where the pattern does not remain. Is used to obtain a transparent conductive film excellent in visibility.
 光学調整層は、無機物、有機物、あるいは無機物と有機物との混合物により形成される。光学調整層を形成する材料としては、NaF、NaAlF、LiF、MgF、CaF2、SiO、LaF、CeF、Al、TiO、Ta、ZrO、ZnO、ZnS、SiO(xは1.5以上2未満)などの無機物や、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマーなどの有機物が挙げられる。特に、有機物として、メラミン樹脂とアルキド樹脂と有機シラン縮合物の混合物からなる熱硬化型樹脂を使用することが好ましい。光学調整層は、上記の材料を用いて、ウエット法、グラビアコート法やバーコート法などの塗工法、真空蒸着法、スパッタリング法、イオンプレーティング法などにより形成できる。 The optical adjustment layer is formed of an inorganic material, an organic material, or a mixture of an inorganic material and an organic material. As a material for forming the optical adjustment layer, NaF, Na 3 AlF 6 , LiF, MgF 2 , CaF 2, SiO 2 , LaF 3 , CeF 3 , Al 2 O 3 , TiO 2 , Ta 2 O 5 , ZrO 2 , Examples thereof include inorganic substances such as ZnO, ZnS, and SiO x (x is 1.5 or more and less than 2), and organic substances such as acrylic resins, epoxy resins, urethane resins, melamine resins, alkyd resins, and siloxane polymers. In particular, it is preferable to use a thermosetting resin made of a mixture of a melamine resin, an alkyd resin, and an organic silane condensate as the organic substance. The optical adjustment layer can be formed using the above materials by a coating method such as a wet method, a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like.
 光学調整層は、平均粒径が1nm~500nmのナノ微粒子を有していてもよい。光学調整層中のナノ微粒子の含有量は0.1重量%~90重量%であることが好ましい。光学調整層に用いられるナノ微粒子の平均粒径は、上述のように1nm~500nmの範囲であることが好ましく、5nm~300nmであることがより好ましい。また、光学調整層中のナノ微粒子の含有量は10重量%~80重量%であることがより好ましく、20重量%~70重量%であることがさらに好ましい。光学調整層中にナノ微粒子を含有することによって、光学調整層自体の屈折率の調整を容易に行うことができる。 The optical adjustment layer may have nanoparticles having an average particle diameter of 1 nm to 500 nm. The content of the nanoparticles in the optical adjustment layer is preferably 0.1% by weight to 90% by weight. As described above, the average particle diameter of the nanoparticles used in the optical adjustment layer is preferably in the range of 1 nm to 500 nm, and more preferably 5 nm to 300 nm. Further, the content of the nanoparticles in the optical adjustment layer is more preferably 10% by weight to 80% by weight, and further preferably 20% by weight to 70% by weight. By containing nanoparticles in the optical adjustment layer, the refractive index of the optical adjustment layer itself can be easily adjusted.
 ナノ微粒子を形成する無機酸化物としては、例えば、酸化ケイ素(シリカ)、中空ナノシリカ、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化ニオブ等の微粒子があげられる。これらの中でも、酸化ケイ素(シリカ)、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化ニオブの微粒子が好ましい。これらは1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of the inorganic oxide forming the nano fine particles include fine particles such as silicon oxide (silica), hollow nano silica, titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, and niobium oxide. Among these, fine particles of silicon oxide (silica), titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, and niobium oxide are preferable. These may be used alone or in combination of two or more.
 光学調整層の厚みは、10nm~200nmであることが好ましく、20nm~150nmであることがより好ましく、30nm~130nmであることがさらに好ましい。光学調整層の厚みが過度に小さいと連続被膜となりにくい。また、光学調整層の厚みが過度に大きいと、透明導電性フィルムの透明性が低下したり、クラックが生じ易くなったりする傾向がある。 The thickness of the optical adjustment layer is preferably 10 nm to 200 nm, more preferably 20 nm to 150 nm, and even more preferably 30 nm to 130 nm. If the thickness of the optical adjustment layer is too small, it is difficult to form a continuous film. Moreover, when the thickness of the optical adjustment layer is excessively large, the transparency of the transparent conductive film tends to be reduced or cracks tend to occur.
 (金属配線)
 金属配線は、金属層を透明導電膜上に形成した後、エッチングにより形成することも可能であるが、以下のように感光性金属ペーストを用いて形成するのが好ましい。即ち、金属配線は、透明導電膜がパターン化された後に、後述の感光性導電ペーストを前記透明樹脂フィルム上または前記透明導電膜上に塗布し、感光性金属ペースト層を形成し、フォトマスクを積層または近接させフォトマスクを介して感光性金属ペースト層に露光を行い、次いで現像を行い、パターン形成した後、乾燥工程を経て得られる。つまり、公知のフォトリソグラフィ法等により、金属配線のパターン形成が可能である。
(Metal wiring)
The metal wiring can be formed by etching after forming the metal layer on the transparent conductive film. However, it is preferable to form the metal wiring using a photosensitive metal paste as follows. That is, after the transparent conductive film is patterned, the metal wiring is formed by applying a photosensitive conductive paste described later on the transparent resin film or the transparent conductive film, forming a photosensitive metal paste layer, and forming a photomask. The photosensitive metal paste layer is exposed through a photomask after being laminated or brought close to each other, then developed and patterned to obtain a drying process. That is, the metal wiring pattern can be formed by a known photolithography method or the like.
 前記感光性導電ペーストは、金属粉末などの導電性粒子と感光性有機成分とを含むことが好ましい。金属粉末の導電性粒子の材料としては、Ag、Au、Pd、Ni、Cu、AlおよびPtの群から選択される少なくとも1種を含むものであることが好ましく、より好ましくはAgである。金属粉末の導電性粒子の体積平均粒子径は0.1μm~2.5μmであることが好ましい。 The photosensitive conductive paste preferably contains conductive particles such as metal powder and a photosensitive organic component. The material of the conductive particles of the metal powder preferably contains at least one selected from the group consisting of Ag, Au, Pd, Ni, Cu, Al, and Pt, and more preferably Ag. The volume average particle diameter of the conductive particles of the metal powder is preferably 0.1 μm to 2.5 μm.
 金属粉末以外の導電性粒子としては、樹脂粒子表面を金属で被覆した金属被覆樹脂粒子でもよい。樹脂粒子の材料としては、前述のような粒子が含まれるが、アクリル系樹脂が好ましい。金属被覆樹脂粒子は樹脂粒子の表面にシランカップリング剤を反応させ、さらにその表面に金属で被覆することにより得られる。シランカップリング剤を用いることにより、樹脂成分の分散が安定化して、均一な金属被覆樹脂粒子を形成することができる。 The conductive particles other than the metal powder may be metal-coated resin particles in which the resin particle surfaces are coated with metal. As the material of the resin particles, the above-mentioned particles are included, but an acrylic resin is preferable. The metal-coated resin particles are obtained by reacting the surface of the resin particles with a silane coupling agent and coating the surface with metal. By using the silane coupling agent, the dispersion of the resin component is stabilized, and uniform metal-coated resin particles can be formed.
 感光性導電ペーストはさらにガラスフリットを含んでいてもよい。ガラスフリットは、体積平均粒子径が0.1μm~1.4μmであることが好ましく、90%粒子径が1~2μmおよびトップサイズが4.5μm以下であることが好ましい。ガラスフリットの組成としては、特に限定されないが、Biが全体に対して30重量%~70重量%の範囲で配合されることが好ましい。Bi以外に含んでいてよい酸化物としては、SiO、B、ZrO、Alを含んでよい。NaO、KO、LiOは実質的に含まないアルカリフリーのガラスフリットであることが好ましい。 The photosensitive conductive paste may further contain glass frit. The glass frit preferably has a volume average particle size of 0.1 to 1.4 μm, a 90% particle size of 1 to 2 μm, and a top size of 4.5 μm or less. The composition of the glass frit is not particularly limited, but Bi 2 O 3 is preferably blended in the range of 30 wt% to 70 wt% with respect to the whole. Examples of the oxide that may be contained in addition to Bi 2 O 3 may include SiO 2 , B 2 O 3 , ZrO 2 , and Al 2 O 3 . Na 2 O, K 2 O, and Li 2 O are preferably alkali-free glass frit that is substantially free of them.
 感光性有機成分は、感光性ポリマーおよび/または感光性モノマーを含むことが好ましい。感光性ポリマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート等の炭素-炭素二重結合有する化合物から選択された成分の重合体やこれらの共重合体からなるアクリル樹脂の側鎖または分子末端に光反応性基を付加したもの等が好適に用いられる。好ましい光反応性基としてはビニル基、アリル基、アクリル基、メタクリル基などのエチレン性不飽和基が挙げられる。感光性ポリマーの含有量は、1~30重量%、2~30重量%であることが好ましい。 The photosensitive organic component preferably contains a photosensitive polymer and / or a photosensitive monomer. Photosensitive polymers include polymers of components selected from compounds having carbon-carbon double bonds such as methyl (meth) acrylate and ethyl (meth) acrylate, and side chains or molecules of acrylic resins comprising these copolymers. Those having a photoreactive group added to the terminal are preferably used. Preferred photoreactive groups include ethylenically unsaturated groups such as vinyl, allyl, acrylic and methacrylic groups. The content of the photosensitive polymer is preferably 1 to 30% by weight and 2 to 30% by weight.
 感光性モノマーとしては、メタクリルアクリレート、エチルアクリレートなどの(メタ)アクリレート系モノマーや、γ-メタクリロキシプロピルトリメトキシシラン、1-ビニル-2-ピロリドンなどが挙げられ、1種または2種以上を使用することができる。 Examples of the photosensitive monomer include (meth) acrylate monomers such as methacryl acrylate and ethyl acrylate, γ-methacryloxypropyltrimethoxysilane, and 1-vinyl-2-pyrrolidone. can do.
 感光性導電ペーストにおいては、感光性有機成分が金属粉末100重量部に対して、5~40重量%含むことが光の感度の点で好ましく、より好ましくは10重量部~30重量部である。また、本発明の感光性導電ペーストは必要により光重合開始剤、増感剤、重合禁止剤、有機溶媒を用いることが好ましい。 In the photosensitive conductive paste, the photosensitive organic component is preferably contained in an amount of 5 to 40% by weight with respect to 100 parts by weight of the metal powder in terms of light sensitivity, and more preferably 10 to 30 parts by weight. The photosensitive conductive paste of the present invention preferably uses a photopolymerization initiator, a sensitizer, a polymerization inhibitor, and an organic solvent as necessary.
 金属層の厚みは、特に制限されない。例えば、金属層の面内の一部をエッチング等により除去してパターン配線を形成する場合は、形成後のパターン配線が所望の抵抗値を有するように金属層の厚みが適宜に設定される。そのため、金属層の厚みは、0.01~200μmであることが好ましく、0.05~100μmであることがより好ましい。金属層の厚みが上記範囲であると、パターン配線の抵抗が高くなりすぎず、デバイスの消費電力が大きくならない。また、金属層の成膜の生産効率が上がり、成膜時の積算熱量が小さくなり、フィルムに熱シワが生じにくくなる。 The thickness of the metal layer is not particularly limited. For example, when the pattern wiring is formed by removing a part of the surface of the metal layer by etching or the like, the thickness of the metal layer is appropriately set so that the formed pattern wiring has a desired resistance value. Therefore, the thickness of the metal layer is preferably 0.01 to 200 μm, and more preferably 0.05 to 100 μm. When the thickness of the metal layer is within the above range, the resistance of the pattern wiring does not become too high, and the power consumption of the device does not increase. In addition, the production efficiency of the metal layer is increased, the integrated heat amount during the film formation is reduced, and the film is less likely to be thermally wrinkled.
 透明導電性フィルムがディスプレイと組合せて使用するタッチパネル用の透明導電性フィルムである場合、表示部分に対応した部分はパターン化された透明導電膜により形成され、感光性導電ペーストから作製された金属配線は非表示部(例えば周縁部)の配線部分に用いられる。透明導電膜は非表示部でも用いられてよく、その場合は金属配線が透明導電膜上に形成されていてもよい。 When the transparent conductive film is a transparent conductive film for a touch panel used in combination with a display, the portion corresponding to the display portion is formed by a patterned transparent conductive film, and a metal wiring made from a photosensitive conductive paste Is used for the wiring part of the non-display part (for example, peripheral part). The transparent conductive film may be used even in a non-display portion, and in that case, metal wiring may be formed on the transparent conductive film.
 <キャリアフィルム>
 キャリアフィルムは、保護フィルムの一方の面側に粘着剤層を有する。キャリアフィルムは、粘着剤層を介して剥離可能な透明導電性フィルムと、透明導電性フィルムの第2の硬化樹脂層が形成されている面側を貼りあわせて、透明導電性フィルム積層体を形成する。キャリアフィルムを透明導電性フィルム積層体から剥離する際は、粘着剤層は保護フィルムとともに剥離されてもよいし、保護フィルムのみが剥離されてもよい。
<Carrier film>
The carrier film has an adhesive layer on one surface side of the protective film. The carrier film forms a transparent conductive film laminate by laminating the transparent conductive film that can be peeled off through the adhesive layer and the surface side on which the second cured resin layer of the transparent conductive film is formed. To do. When peeling a carrier film from a transparent conductive film laminated body, an adhesive layer may be peeled with a protective film, and only a protective film may be peeled.
 (保護フィルム)
 保護フィルムは、波長板や偏光板などの他のフィルムと積層される際に剥がされて廃棄されるが、ロールによる巻き取りなどの取り扱い性等を考慮して、保護フィルムを形成する材料としては、非晶性樹脂であることが好ましい。非晶性樹脂としては、特に限定されるものではないが、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましく、ポリカーボネート、シクロオレフィン、ポリ塩化ビニル、ポリメチルメタクリレートなどのアクリル系樹脂、ポリスチレン、ポリメチルメタクリレートスチレン共重合体、ポリアクリロニトリル、ポリアクリロニトリルスチレン共重合体、ハイインパクトポリスチレン(HIPS)、アクリロニトルブタジエンスチレン共重合体(ABS樹脂)、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンエーテル等が挙げられる。熱処理工程後のカール発生を抑制し、寸法安定性を向上させる観点から、前述した透明樹脂フィルムのようなシクロオレフィン系樹脂やポリカーボネート系樹脂などが好ましい。
(Protective film)
The protective film is peeled off and discarded when laminated with other films such as a wave plate and a polarizing plate. In consideration of handling properties such as winding by a roll, the material for forming the protective film is An amorphous resin is preferred. The amorphous resin is not particularly limited, but is preferably excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy, and the like. Polycarbonate, cycloolefin, polyvinyl chloride, Acrylic resins such as polymethyl methacrylate, polystyrene, polymethyl methacrylate styrene copolymer, polyacrylonitrile, polyacrylonitrile styrene copolymer, high impact polystyrene (HIPS), acrylonitrile butadiene styrene copolymer (ABS resin), poly Examples include arylate, polysulfone, polyethersulfone, and polyphenylene ether. From the viewpoint of suppressing the occurrence of curling after the heat treatment step and improving the dimensional stability, cycloolefin resins and polycarbonate resins such as the transparent resin film described above are preferable.
 保護フィルムを形成する非晶性樹脂のガラス転移温度は、130℃以上であることが好ましく、140℃以上であることがより好ましい。これにより、熱処理工程後のカール発生を抑制し、寸法安定性を向上させ、その後の工程歩留りを確保可能である。 The glass transition temperature of the amorphous resin forming the protective film is preferably 130 ° C. or higher, and more preferably 140 ° C. or higher. As a result, the occurrence of curling after the heat treatment step can be suppressed, the dimensional stability can be improved, and the subsequent process yield can be ensured.
 保護フィルムは、透明樹脂フィルムと同様に、表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、保護フィルム上の粘着剤層等との密着性を向上させるようにしてもよい。また、粘着剤層を形成する前に、必要に応じて溶剤洗浄や超音波洗浄などにより、保護フィルム表面を除塵、清浄化してもよい。 Like the transparent resin film, the protective film is subjected to an etching process such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and undercoating on the surface, and a pressure-sensitive adhesive layer on the protective film, etc. You may make it improve adhesiveness. In addition, before forming the pressure-sensitive adhesive layer, the surface of the protective film may be removed and cleaned by solvent cleaning or ultrasonic cleaning as necessary.
 保護フィルムの前記粘着剤層を有しない面側の表面には、アンチブロッキング性を付与する観点から、サンドブラストやエンボス加工、化学的粗面化処理等により微細凹凸構造を付与する表面粗面化処理が施されることが好ましい。生産効率良くアンチブロッキング性を付与する点から、エンボス加工が施されるのが好ましい。保護フィルムは、別途アンチブロッキング層を設けることなく、単層でエンボス加工が施されていることが好ましい。 Surface roughening treatment that imparts a fine concavo-convex structure to the surface of the protective film that does not have the pressure-sensitive adhesive layer from the viewpoint of imparting anti-blocking properties by sandblasting, embossing, chemical roughening treatment, etc. Is preferably applied. From the viewpoint of imparting anti-blocking properties with high production efficiency, embossing is preferably performed. It is preferable that the protective film is embossed as a single layer without separately providing an anti-blocking layer.
 本発明の保護フィルムは、溶融押出し成形されて作製されたものであることが好ましく、特に溶融押出しポリカーボネート系樹脂または溶融押出しシクロオレフィン系樹脂からなることが好ましい。これにより、溶融押出し成形された後にエンボス加工を施しやすく、効率的にエンボス加工を実施できる。具体的には、Tダイに連結した1台の押出し機にポリカーボネート系樹脂等を供給し、溶融混練後、押出し、水冷して引き取り、保護フィルムを成形する方法を例示できる。溶融に用いる押出し機のスクリュータイプは単軸または2軸であってもよく、樹脂に最適な可塑剤または酸化防止剤などの添加剤を添加してもよい。 The protective film of the present invention is preferably produced by melt extrusion molding, and particularly preferably made of melt-extruded polycarbonate resin or melt-extruded cycloolefin resin. Thereby, it is easy to emboss after melt extrusion molding, and embossing can be performed efficiently. Specifically, a method of supplying a polycarbonate resin or the like to one extruder connected to a T die, melt-kneading, extruding, taking out by cooling with water, and forming a protective film can be exemplified. The screw type of the extruder used for melting may be uniaxial or biaxial, and additives such as a plasticizer or an antioxidant optimal for the resin may be added.
 成形温度は適宜設定できるが、樹脂のガラス転移温度をTg(℃)とした場合、(Tg+80)℃~(Tg+150)℃が好ましく、(Tg+100)℃~(Tg+130)℃がより好ましい。成形温度が低すぎると、樹脂の流動性がなく、成形できなくなるおそれがある。成形温度が高すぎると、樹脂粘度が低くなり、成形物の厚み不均一等の生産安定性に問題が生じるおそれがある。多層成形物の場合、よりガラス転移温度の高い樹脂に設定するのが好ましい。 The molding temperature can be appropriately set, but when the glass transition temperature of the resin is Tg (° C.), (Tg + 80) ° C. to (Tg + 150) ° C. is preferable, and (Tg + 100) ° C. to (Tg + 130) ° C. is more preferable. If the molding temperature is too low, the resin does not have fluidity and may not be molded. If the molding temperature is too high, the resin viscosity will be low, and there may be a problem in production stability such as uneven thickness of the molded product. In the case of a multilayer molded product, it is preferable to set a resin having a higher glass transition temperature.
 保護フィルムの厚みは、20~150μmが好ましく、30~100μmがより好ましく、40~80μmが更に好ましい。また、ロールtoロール製法において透明導電性フィルム積層体の破断を防止する観点から、保護フィルムの厚みは透明樹脂フィルムの厚み以上であることが好ましい。 The thickness of the protective film is preferably 20 to 150 μm, more preferably 30 to 100 μm, still more preferably 40 to 80 μm. Moreover, it is preferable that the thickness of a protective film is more than the thickness of a transparent resin film from a viewpoint of preventing the fracture | rupture of a transparent conductive film laminated body in a roll to roll manufacturing method.
 保護フィルムの前記粘着剤層を有しない面側の表面の算術平均表面粗さRaは、0.01μm以上が好ましく、0.01~5μmであることがより好ましく、0.05~2μmであることが更に好ましく、0.1~1μmであることが特に好ましい。前記範囲にあると、アンチブロッキング性を付与することができ、ロールtoロール製法での搬送が容易となり、その後の工程歩留りを確保することが可能となる。 The arithmetic average surface roughness Ra of the surface of the protective film not having the pressure-sensitive adhesive layer is preferably 0.01 μm or more, more preferably 0.01 to 5 μm, and more preferably 0.05 to 2 μm. Is more preferable, and 0.1 to 1 μm is particularly preferable. When it is in the above range, anti-blocking properties can be imparted, and conveyance by a roll-to-roll manufacturing method is facilitated, and subsequent process yields can be ensured.
  (粘着剤層)
 粘着剤層としては、透明性を有するものであれば特に制限なく使用できる。具体的には、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系、フッ素系、天然ゴム、合成ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、光学的透明性に優れ、適度な濡れ性、凝集性および接着性等の粘着特性を示し、耐候性や耐熱性等にも優れるという点からは、アクリル系粘着剤が好ましく用いられる。
(Adhesive layer)
The pressure-sensitive adhesive layer can be used without particular limitation as long as it has transparency. Specifically, for example, acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl ethers, vinyl acetate / vinyl chloride copolymers, modified polyolefins, epoxy systems, fluorine systems, natural rubbers, rubbers such as synthetic rubbers, etc. Those having the above polymer as a base polymer can be appropriately selected and used. In particular, an acrylic pressure-sensitive adhesive is preferably used from the viewpoint that it is excellent in optical transparency, exhibits adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and is excellent in weather resistance and heat resistance.
 粘着剤層の形成方法は特に制限されず、剥離ライナーに粘着剤組成物を塗布し、乾燥後、基材フィルムに転写する方法(転写法)、保護フィルムに、直接、粘着剤組成物を塗布、乾燥する方法(直写法)や共押出しによる方法等があげられる。なお粘着剤には、必要に応じて粘着付与剤、可塑剤、充填剤、酸化防止剤、紫外線吸収剤、シランカップリング剤等を適宜に使用することもできる。 The method for forming the pressure-sensitive adhesive layer is not particularly limited. The pressure-sensitive adhesive composition is applied to a release liner, dried and then transferred to a base film (transfer method), and the pressure-sensitive adhesive composition is directly applied to a protective film. And a drying method (direct copying method) and a co-extrusion method. In addition, a tackifier, a plasticizer, a filler, an antioxidant, an ultraviolet absorber, a silane coupling agent, and the like can be appropriately used as the pressure-sensitive adhesive.
 粘着剤層の好ましい厚みは5μm~100μmであり、より好ましくは10μm~50μmであり、より好ましくは15μmから35μmである。 The preferable thickness of the pressure-sensitive adhesive layer is 5 μm to 100 μm, more preferably 10 μm to 50 μm, and more preferably 15 μm to 35 μm.
 <透明導電性フィルム積層体>
 透明導電性フィルム積層体は、保護フィルムの一方の面側に粘着剤層を有するキャリアフィルムと、前記粘着剤層を介して剥離可能に積層した透明導電性フィルムと、を含む。なお、キャリアフィルムは、透明導電性フィルムの第2の硬化樹脂層が形成されている面側に積層されている。透明導電性フィルム積層体は、180°折り曲げ試験を行った際に、前記透明導電性フィルム積層体の破断が発生しない。これにより、透明樹脂フィルムの傷付きを防止可能であり、透明導電性フィルム積層体搬送時の張力の印加でも透明導電性フィルム積層体に破断が発生せず、その後の工程歩留まりを確保可能となる。本発明において、「透明導電性フィルム積層体の破断」とは、透明導電性フィルム積層体の少なくとも一部で厚さ方向全体にわたって切断されている状態をいう。
<Transparent conductive film laminate>
A transparent conductive film laminated body contains the carrier film which has an adhesive layer on the one surface side of a protective film, and the transparent conductive film laminated | stacked through the said adhesive layer so that peeling was possible. In addition, the carrier film is laminated | stacked on the surface side in which the 2nd cured resin layer of the transparent conductive film is formed. When the transparent conductive film laminate is subjected to a 180 ° bending test, the transparent conductive film laminate does not break. Thereby, it is possible to prevent the transparent resin film from being scratched, and even when a tension is applied during transportation of the transparent conductive film laminate, the transparent conductive film laminate does not break, and the subsequent process yield can be secured. . In the present invention, “rupture of the transparent conductive film laminate” means a state where at least a part of the transparent conductive film laminate is cut over the entire thickness direction.
 <タッチパネル>
 透明導電性フィルム積層体からキャリアフィルム又は保護フィルムを剥離した透明導電性フィルムは、例えば、静電容量方式、抵抗膜方式などのタッチパネルなどの電子機器の透明電極として好適に適用できる。
<Touch panel>
The transparent conductive film which peeled the carrier film or the protective film from the transparent conductive film laminated body can be suitably applied as a transparent electrode of an electronic device such as a touch panel such as a capacitance method or a resistance film method.
 タッチパネルの形成に際しては、前述した透明導電性フィルムの一方または両方の主面に透明な粘着剤層を介して、ガラスや高分子フィルム等の他の基材等を貼り合わせることができる。例えば、透明導電性フィルムの透明導電膜が形成されていない側の面に透明な粘着剤層を介して透明基体が貼り合わせられた積層体を形成してもよい。透明基体は、1枚の基体フィルムからなっていてもよく、2枚以上の基体フィルムの積層体(例えば透明な粘着剤層を介して積層したもの)であってもよい。また、透明導電性フィルムに貼り合わせる透明基体の外表面にハードコート層を設けることもできる。透明導電性フィルムと基材との貼り合わせに用いられる粘着剤層としては、前述の通り、透明性を有するものであれば特に制限なく使用できる。 When forming the touch panel, another base material such as glass or a polymer film can be bonded to one or both main surfaces of the transparent conductive film described above via a transparent adhesive layer. For example, you may form the laminated body by which the transparent base | substrate was bonded together through the transparent adhesive layer on the surface by which the transparent conductive film of the transparent conductive film is not formed. The transparent substrate may be composed of a single substrate film or may be a laminate of two or more substrate films (for example, laminated via a transparent adhesive layer). A hard coat layer can also be provided on the outer surface of the transparent substrate to be bonded to the transparent conductive film. As described above, the pressure-sensitive adhesive layer used for bonding the transparent conductive film and the substrate can be used without particular limitation as long as it has transparency.
 上記の透明導電性フィルムをタッチパネルの形成に用いた場合、乾燥等の加熱工程後におけるカールの発生量や向きが制御できるため、透明導電性フィルム積層体の搬送が容易となり、タッチパネル形成時のハンドリング性に優れる。そのため、透明性及び視認性に優れたタッチパネルを生産性高く製造することが可能である。タッチパネル用途以外であれば、電子機器から発せられる電磁波やノイズをシールドするシールド用途に用いることができる。 When the above transparent conductive film is used to form a touch panel, the amount and direction of curling after a heating process such as drying can be controlled, which facilitates transport of the transparent conductive film laminate and handling during touch panel formation. Excellent in properties. Therefore, a touch panel excellent in transparency and visibility can be manufactured with high productivity. If it is other than a touch panel use, it can be used for the shield use which shields the electromagnetic waves and noise which are emitted from an electronic device.
 以下、本発明に関して実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
 [実施例1]
 (球状粒子入り硬化性樹脂組成物の調製)
 紫外線硬化性樹脂組成物(JSR社製 商品名「オプスタ-Z7540」)を100重量部と、最頻粒子径が1.9μmであるアクリル系球状粒子(綜研化学社製 商品名「MX-180TA」)を0.2重量部とを含む、球状粒子入り硬化性樹脂組成物を準備した。
[Example 1]
(Preparation of curable resin composition containing spherical particles)
Acrylic spherical particles (trade name “MX-180TA” manufactured by Soken Chemical Co., Ltd.) having 100 parts by weight of an ultraviolet curable resin composition (trade name “OPSTA-Z7540” manufactured by JSR) and a mode particle diameter of 1.9 μm. ) Containing 0.2 parts by weight of a curable resin composition containing spherical particles.
 (硬化樹脂層の形成)
 準備した球状粒子入り硬化性樹脂組成物を厚みが35μmでガラス転移温度が165℃のポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)の一方の面にコロナ処理を実施した後塗布し、塗布層を形成した。次いで、塗布層が形成された側から塗布層に紫外線を照射して、厚みが2.0μmとなる様に第2の硬化樹脂層を形成した。ポリシクロオレフィンフィルムの他方の面に、上記とは球状粒子を添加しないこと以外は同様の方法で、厚みが2.0μmとなる様に第1の硬化樹脂層を形成した。
(Formation of cured resin layer)
The prepared curable resin composition containing spherical particles was subjected to corona treatment on one surface of a polycycloolefin film (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) having a thickness of 35 μm and a glass transition temperature of 165 ° C. After coating, a coating layer was formed. Subsequently, the coating layer was irradiated with ultraviolet rays from the side on which the coating layer was formed, and a second cured resin layer was formed so as to have a thickness of 2.0 μm. A first cured resin layer was formed on the other surface of the polycycloolefin film by the same method except that spherical particles were not added, so that the thickness was 2.0 μm.
 (光学調整層の形成)
 両面に硬化樹脂層が形成されたポリシクロオレフィンフィルムの第1の硬化樹脂層面側に光学調整層として屈折率1.62のジルコニア粒子含有紫外線硬化型組成物(JSR社製 商品名「オプスタ―Z7412」を塗布し、塗布層を形成した。次いで、塗布層が形成された側から塗布層に紫外線を照射して、厚みが100nmとなるように光学調整層を形成した。
(Formation of optical adjustment layer)
A zirconia particle-containing ultraviolet curable composition having a refractive index of 1.62 as an optical adjustment layer on the first cured resin layer side of the polycycloolefin film having cured resin layers formed on both sides (trade name “OPSTA Z7412 manufactured by JSR Corporation”). Was applied to form a coating layer. Then, the coating layer was irradiated with ultraviolet rays from the side where the coating layer was formed, and an optical adjustment layer was formed so that the thickness was 100 nm.
 (透明導電膜の形成)
 次に、光学調整層が形成されたポリシクロオレフィンフィルムを、巻き取り式スパッタ装置に投入し、光学調整層の表面に、厚みが27nmの非晶質のインジウム・スズ酸化物層(組成:SnO 10wt%)を形成した。
(Formation of transparent conductive film)
Next, the polycycloolefin film on which the optical adjustment layer is formed is put into a take-up sputtering apparatus, and an amorphous indium tin oxide layer (composition: SnO) having a thickness of 27 nm is formed on the surface of the optical adjustment layer. 2 10 wt%).
 (キャリアフィルムの形成)
 通常の溶液重合により、ブチルアクリレート/アクリル酸=100/6(重量比)にて重量平均分子量60万のアクリル系ポリマーを得た。このアクリル系ポリマー100重量部に対し、エポキシ系架橋剤(三菱瓦斯化学製 商品名「テトラッドC(登録商標)」)6重量部を加えてアクリル系粘着剤を準備した。離型処理されたPETフィルムの離型処理面上に前記のようにして得たアクリル系粘着剤を塗布し、120℃で60秒加熱して、厚み20μmの粘着剤層を形成した。次いで、厚みが75μm、ガラス転移温度145℃、片側にエンボス加工がされた単層のポリカーボネート樹脂フィルム(恵和製 商品名「オプコンPC」)のエンボス加工がされていない側の面にPETフィルムを粘着剤層を介して貼りあわせた。その後、離型処理されたPETフィルムを剥がし、保護フィルムの一方の面に粘着剤層を有するキャリアフィルムを作製した。
(Formation of carrier film)
By normal solution polymerization, an acrylic polymer having a weight average molecular weight of 600,000 was obtained with butyl acrylate / acrylic acid = 100/6 (weight ratio). An acrylic pressure-sensitive adhesive was prepared by adding 6 parts by weight of an epoxy-based crosslinking agent (trade name “Tetrad C (registered trademark)” manufactured by Mitsubishi Gas Chemical) to 100 parts by weight of the acrylic polymer. The acrylic pressure-sensitive adhesive obtained as described above was applied onto the release-treated surface of the release-treated PET film, and heated at 120 ° C. for 60 seconds to form a pressure-sensitive adhesive layer having a thickness of 20 μm. Next, a PET film is adhered to the surface of the unembossed side of a single layer polycarbonate resin film (trade name “OPCON PC” manufactured by Keiwa) with a thickness of 75 μm, a glass transition temperature of 145 ° C., and embossed on one side. It bonded together through the agent layer. Thereafter, the release-treated PET film was peeled off to prepare a carrier film having an adhesive layer on one surface of the protective film.
 (透明導電性フィルム積層体の形成)
 透明導電性フィルムの透明導電膜が形成されていない面側に、キャリアフィルムの粘着剤層を積層し、透明導電性フィルム積層体を形成した。
[実施例2]
 実施例1において、透明樹脂フィルムとして、厚みが50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと以外は、実施例1と同様の方法で透明導電性フィルム積層体を作製した。
(Formation of transparent conductive film laminate)
The pressure-sensitive adhesive layer of the carrier film was laminated on the side of the transparent conductive film where the transparent conductive film was not formed to form a transparent conductive film laminate.
[Example 2]
In Example 1, a transparent conductive film was prepared in the same manner as in Example 1, except that a polycycloolefin film having a thickness of 50 μm (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) was used as the transparent resin film. A film laminate was prepared.
 [実施例3]
 実施例1において、透明樹脂フィルムとして、厚みが75μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと以外は、実施例1と同様の方法で透明導電性フィルム積層体を作製した。
[Example 3]
In Example 1, a transparent conductive film was prepared in the same manner as in Example 1 except that a polycycloolefin film having a thickness of 75 μm (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) was used as the transparent resin film. A film laminate was prepared.
 [実施例4]
 実施例1において、透明樹脂フィルムとして、厚みが50μmでガラス転移温度が136℃のポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと以外は、実施例1と同様の方法で透明導電性フィルム積層体を作製した。
[Example 4]
In Example 1, as the transparent resin film, Example 1 except that a polycycloolefin film having a thickness of 50 μm and a glass transition temperature of 136 ° C. (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) was used. A transparent conductive film laminate was produced in the same manner.
 [実施例5]
 実施例1において、透明樹脂フィルムとして、厚みが75μmでガラス転移温度が141℃のポリカーボネート樹脂(帝人製 商品名「パンライト」)を使用したこと以外は、実施例1と同様の方法で透明導電性フィルム積層体を作製した。
[Example 5]
In Example 1, a transparent conductive film was prepared in the same manner as in Example 1 except that a polycarbonate resin having a thickness of 75 μm and a glass transition temperature of 141 ° C. (trade name “Panlite” manufactured by Teijin) was used as the transparent resin film. A conductive film laminate was produced.
 [実施例6]
 実施例1において、保護フィルムとして、厚みが50μmでガラス転移温度が165℃の片面がエンボス加工された単層のポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)(ZF16)」)を使用したこと以外は、実施例1と同様の方法で透明導電性フィルム積層体を作製した。
[Example 6]
In Example 1, as a protective film, a single-layer polycycloolefin film having a thickness of 50 μm and a glass transition temperature of 165 ° C. embossed on one side (trade name “ZEONOR (registered trademark) (ZF16)” manufactured by ZEON) A transparent conductive film laminate was produced in the same manner as in Example 1 except that was used.
 [比較例1]
 実施例1において、エンボス加工された保護フィルムの代わりに次の保護フィルムを用いること以外は、実施例1と同様の方法で透明導電性フィルム積層体を作製した。即ち、エンボス加工していない保護フィルムとして、厚みが75μmでガラス転移温度が145℃のポリカーボネート樹脂フィルム(恵和製 商品名「オプコン」)を用いて、保護フィルムの粘着剤層を形成しない側の面にコロナ処理を実施した後、前述のようにして調製した球状粒子入り硬化性樹脂組成物を塗布し、塗布層を形成した。次いで、塗布層が形成された側から塗布層に紫外線を照射して、厚みが2.0μmとなる様に保護フィルム上にアンチブロッキング層を形成した保護フィルムを作製した。
[Comparative Example 1]
In Example 1, a transparent conductive film laminate was produced in the same manner as in Example 1 except that the following protective film was used instead of the embossed protective film. In other words, as a protective film that has not been embossed, a surface of the protective film on which the adhesive layer is not formed using a polycarbonate resin film having a thickness of 75 μm and a glass transition temperature of 145 ° C. (trade name “OPCON” manufactured by Keiwa) After the corona treatment, the curable resin composition containing spherical particles prepared as described above was applied to form a coating layer. Subsequently, the coating layer was irradiated with ultraviolet rays from the side on which the coating layer was formed, and a protective film having an anti-blocking layer formed on the protective film so as to have a thickness of 2.0 μm was produced.
 [比較例2]
 実施例5において、エンボス加工された保護フィルムの代わりに次の保護フィルムを用いること、及び透明樹脂フィルムとして、ガラス転移温度が145℃のポリカーボネート樹脂(帝人製 商品名「パンライト」)を使用したこと以外は、実施例5と同様の方法で透明導電性フィルム積層体を作製した。即ち、エンボス加工していない保護フィルムとして、厚みが75μmでガラス転移温度が165℃のポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を用いて、保護フィルムの粘着剤層を形成しない側の面にコロナ処理を実施した後、前述のようにして調製した球状粒子入り硬化性樹脂組成物を塗布し、塗布層を形成した。次いで、塗布層が形成された側から塗布層に紫外線を照射して、厚みが2.0μmとなる様に保護フィルム上にアンチブロッキング層を形成した保護フィルムを作製した。
[Comparative Example 2]
In Example 5, the following protective film was used instead of the embossed protective film, and a polycarbonate resin having a glass transition temperature of 145 ° C. (trade name “Panlite” manufactured by Teijin) was used as the transparent resin film. Except for this, a transparent conductive film laminate was produced in the same manner as in Example 5. That is, as an unembossed protective film, a polycycloolefin film having a thickness of 75 μm and a glass transition temperature of 165 ° C. (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) is used. After the corona treatment was performed on the surface on which no film was formed, the spherical particle-containing curable resin composition prepared as described above was applied to form a coating layer. Subsequently, the coating layer was irradiated with ultraviolet rays from the side on which the coating layer was formed, and a protective film having an anti-blocking layer formed on the protective film so as to have a thickness of 2.0 μm was produced.
 <評価>
 (1)厚みの測定
 厚みは、1μm以上の厚みを有するものに関しては、マイクロゲージ式厚み計(ミツトヨ社製)にて測定を行った。また、1μm未満の厚みを有するものに関しては、瞬間マルチ測光システム(大塚電子社製 MCPD2000)を用い、干渉スペクトルの波形を基礎に算出した。評価した結果を表1に示す。
<Evaluation>
(1) Measurement of thickness Thickness was measured with a micro gauge thickness meter (Mitutoyo Co., Ltd.) for those having a thickness of 1 μm or more. For those having a thickness of less than 1 μm, an instantaneous multi-photometry system (MCPD2000 manufactured by Otsuka Electronics Co., Ltd.) was used to calculate based on the interference spectrum waveform. The evaluation results are shown in Table 1.
 (2)180°折り曲げ試験
 上記で作製した透明導電性フィルム及び透明導電性フィルム積層体から幅50mm×長さ100mmのサンプルを切り出した。次に、図3に示すように、透明導電膜が内側になるようにサンプルSを2つ折りにし、端部同士を市販の粘着テープで貼り合わせ、これを基台Bに載置した。2つ折りにより得られる幅50mm×長さ50mmの面に、底面が直径50mmの円形のおもりW(500g)を静置し、その際に透明導電性フィルム及び透明導電性フィルム積層体の破断が生じるか否かを確認した。透明導電性フィルム及び透明導電性フィルム積層体の破断が生じなかった場合を「OK」、破断が生じた場合を「NG」として評価した。評価した結果を表1に示す。
(2) 180 ° bending test A sample having a width of 50 mm and a length of 100 mm was cut out from the transparent conductive film and the transparent conductive film laminate produced above. Next, as shown in FIG. 3, the sample S was folded in half so that the transparent conductive film was on the inside, and the ends were bonded together with a commercially available adhesive tape, and placed on the base B. A circular weight W (500 g) having a bottom surface of 50 mm in diameter is allowed to stand on a 50 mm wide × 50 mm long surface obtained by folding in half, and the transparent conductive film and the transparent conductive film laminate are broken at that time. Confirmed whether or not. The case where the transparent conductive film and the transparent conductive film laminate were not ruptured was evaluated as “OK”, and the case where the rupture occurred was evaluated as “NG”. The evaluation results are shown in Table 1.
 (3)算術平均表面粗さRaの測定
 3次元表面粗さ計(株式会社小坂研究所製、surfcorder ET4000)を用いて、4mm幅を測定し算術平均表面粗Raを計測した。評価した結果を表1に示す。
(3) Measurement of arithmetic average surface roughness Ra Using a three-dimensional surface roughness meter (manufactured by Kosaka Laboratory, surfcorder ET4000), the width of 4 mm was measured to measure the arithmetic average surface roughness Ra. The evaluation results are shown in Table 1.
 (4)ガラス転移温度(Tg)の測定
 ガラス転移温度(Tg)は、JIS K7121の規定に準拠して求めた。評価した結果を表1に示す。
(4) Measurement of glass transition temperature (Tg) Glass transition temperature (Tg) was calculated | required based on prescription | regulation of JISK7121. The evaluation results are shown in Table 1.
 (5)実機試験での搬送性
 小型バッチロールtoロールスパッタ装置(最少径100mm、張力150N)を用いて、ロールtoロール製法にて加熱ロールを120℃に設定し300m透明導電膜を処理した際に、透明導電性フィルム積層体を破断が生じることなく搬送できた場合は「○」を、破断が生じ搬送できなかった場合は「×」として評価した。評価した結果を表1に示す。
(5) Transportability in actual machine test Using a small batch roll-to-roll sputtering device (minimum diameter 100 mm, tension 150 N), when the heating roll is set to 120 ° C. by the roll-to-roll manufacturing method and the 300 m transparent conductive film is processed In addition, “◯” was evaluated when the transparent conductive film laminate could be transported without causing breakage, and “X” was evaluated when breakage occurred and could not be transported. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (結果及び考察)
 実施例1~6の透明導電性フィルム積層体では、透明導電性フィルム積層体の180°折り曲げ試験で破断が生じず、実機で使用した際も透明導電性フィルム積層体の破断を生じることなくロールtoロール製法にて搬送できた。一方、比較例1~2の透明導電性フィルム積層体では、透明導電性フィルム積層体の180°折り曲げ試験で破断が生じ、実機で搬送できなかった。実機試験での破断発生としては、加熱ロール通過後にフィルムシワが発生し、フィルムに局所的な屈曲が発生し、破断が発生すると推測される。
(Results and discussion)
In the transparent conductive film laminates of Examples 1 to 6, the transparent conductive film laminate does not break in the 180 ° bending test, and the roll does not break the transparent conductive film laminate when used in an actual machine. It could be transported by the to-roll manufacturing method. On the other hand, the transparent conductive film laminates of Comparative Examples 1 and 2 were broken in the 180 ° bending test of the transparent conductive film laminates and could not be transported by the actual machine. As for the occurrence of breakage in the actual machine test, it is estimated that film wrinkles occur after passing through the heating roll, local bending occurs in the film, and breakage occurs.
  1  保護フィルム
  2  粘着剤層
  3  第2の硬化樹脂層
  4  透明樹脂フィルム
  5  第1の硬化樹脂層
  6  透明導電膜
  7  光学調整層
  10  キャリアフィルム
  20  透明導電性フィルム
 
DESCRIPTION OF SYMBOLS 1 Protective film 2 Adhesive layer 3 2nd cured resin layer 4 Transparent resin film 5 1st cured resin layer 6 Transparent conductive film 7 Optical adjustment layer 10 Carrier film 20 Transparent conductive film

Claims (5)

  1.  保護フィルムの一方の面側に粘着剤層を有するキャリアフィルムと、前記粘着剤層を介して剥離可能に積層した透明導電性フィルムと、を含む透明導電性フィルム積層体であって、
     前記透明導電性フィルムは、透明導電膜と、第1の硬化樹脂層と、透明樹脂フィルムと、第2の硬化樹脂層とをこの順に有し、
     前記透明樹脂フィルムは、シクロオレフィン系樹脂又はポリカーボネート系樹脂からなり、
     前記透明導電性フィルムの厚みは、20μm~150μmであり、
     前記キャリアフィルムは、前記透明導電性フィルムの前記第2の硬化樹脂層が形成されている面側に積層されており、
     前記保護フィルムは、非晶性樹脂からなり、
     前記保護フィルムの前記粘着剤層を有しない面側の表面の算術平均表面粗さRaは、0.01μm以上であり、
     前記透明導電性フィルム積層体に対して180°折り曲げ試験を行った際に、前記透明導電性フィルム積層体の破断が発生しない透明導電性フィルム積層体。
    A transparent conductive film laminate comprising a carrier film having a pressure-sensitive adhesive layer on one surface side of the protective film, and a transparent conductive film laminated releasably via the pressure-sensitive adhesive layer,
    The transparent conductive film has a transparent conductive film, a first cured resin layer, a transparent resin film, and a second cured resin layer in this order,
    The transparent resin film is made of a cycloolefin resin or a polycarbonate resin,
    The transparent conductive film has a thickness of 20 μm to 150 μm,
    The carrier film is laminated on the surface side on which the second cured resin layer of the transparent conductive film is formed,
    The protective film is made of an amorphous resin,
    The arithmetic average surface roughness Ra of the surface side of the protective film not having the pressure-sensitive adhesive layer is 0.01 μm or more,
    A transparent conductive film laminate in which breakage of the transparent conductive film laminate does not occur when a 180 ° bending test is performed on the transparent conductive film laminate.
  2.  前記保護フィルムの前記粘着剤層を有しない面側の表面にエンボス加工が施されている請求項1に記載の透明導電性フィルム積層体。 The transparent conductive film laminate according to claim 1, wherein an embossing is applied to a surface side of the protective film that does not have the pressure-sensitive adhesive layer.
  3.  前記保護フィルムは、溶融押出しポリカーボネート系樹脂または溶融押出しシクロオレフィン系樹脂からなる請求項1又は2に記載の透明導電性フィルム積層体。 The transparent conductive film laminate according to claim 1 or 2, wherein the protective film is made of a melt-extruded polycarbonate resin or a melt-extruded cycloolefin resin.
  4.  前記保護フィルムの厚みは、20μm~150μmである請求項1~3いずれか1項に記載の透明導電性フィルム積層体。 The transparent conductive film laminate according to any one of claims 1 to 3, wherein the protective film has a thickness of 20 袖 m to 150 袖 m.
  5.  前記第1の硬化樹脂層と前記透明導電膜との間に更に1層以上の光学調整層を備える請求項1~4いずれか1項に記載の透明導電性フィルム積層体。
     
    The transparent conductive film laminate according to any one of claims 1 to 4, further comprising one or more optical adjustment layers between the first cured resin layer and the transparent conductive film.
PCT/JP2015/083903 2014-12-05 2015-12-02 Transparent conductive film laminate and use therefor WO2016088809A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177016930A KR102002235B1 (en) 2014-12-05 2015-12-02 Transparent conductive film laminate and use therefor
CN201580065788.7A CN107000409B (en) 2014-12-05 2015-12-02 Transparent conductivity film laminated body and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014247040A JP6512804B2 (en) 2014-12-05 2014-12-05 Transparent conductive film laminate and use thereof
JP2014-247040 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088809A1 true WO2016088809A1 (en) 2016-06-09

Family

ID=56091749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083903 WO2016088809A1 (en) 2014-12-05 2015-12-02 Transparent conductive film laminate and use therefor

Country Status (5)

Country Link
JP (1) JP6512804B2 (en)
KR (1) KR102002235B1 (en)
CN (1) CN107000409B (en)
TW (1) TWI680056B (en)
WO (1) WO2016088809A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186412A1 (en) * 2017-04-07 2018-10-11 積水化学工業株式会社 Method for analyzing visualization of light-transmissive conductive film, and light-transmissive conductive film
CN114555366A (en) * 2019-10-18 2022-05-27 昭和电工株式会社 Transparent conductive film laminate and method for processing same
EP3988299A4 (en) * 2019-06-20 2023-06-14 Resonac Corporation Transparent electroconductive film laminate and method for processing same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6552099B2 (en) * 2015-08-24 2019-07-31 日東電工株式会社 Transparent conductive film with carrier film and touch panel using the same
CN110088714B (en) * 2016-12-14 2023-05-16 日东电工株式会社 Transparent conductive film with carrier film and touch panel using the same
JP6953170B2 (en) * 2017-04-19 2021-10-27 日東電工株式会社 Conductive film and touch panel
JP7097359B2 (en) * 2017-06-30 2022-07-07 リンテック株式会社 Functional film
JP6997590B2 (en) * 2017-10-24 2022-01-17 日東電工株式会社 Transparent conductive film
CN107993747B (en) * 2017-11-23 2020-11-20 清华大学深圳研究生院 Transparent conductive film, conductive structure and preparation method thereof
JP6450048B1 (en) * 2018-02-14 2019-01-09 住友化学株式会社 Laminate
JP7357434B2 (en) * 2018-02-27 2023-10-06 日東電工株式会社 Transparent conductive film laminate and method for producing transparent conductive film
JP7430480B2 (en) * 2018-04-27 2024-02-13 日東電工株式会社 Conductive film with protective film
JP7129830B2 (en) * 2018-06-19 2022-09-02 日東電工株式会社 Method for producing resin film, conductive film and laminated film
JP6859376B2 (en) * 2019-01-22 2021-04-14 グンゼ株式会社 Cover film
JP7150628B2 (en) * 2019-01-31 2022-10-11 日東電工株式会社 Transparent conductive film laminate
JP7223586B2 (en) * 2019-01-31 2023-02-16 日東電工株式会社 Transparent conductive film laminate
CN112996957A (en) * 2019-09-05 2021-06-18 株式会社大木工艺 Yarn material, yarn, fabric, and method for producing yarn material
CN111026293A (en) * 2019-12-26 2020-04-17 业成科技(成都)有限公司 Touch panel and preparation method thereof
JP6956926B1 (en) * 2020-01-07 2021-11-02 タツタ電線株式会社 Electromagnetic wave shield film
JP2022167035A (en) * 2021-04-22 2022-11-04 凸版印刷株式会社 Transparent substrate for liquid crystal devices and dimmer sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123532A (en) * 2007-11-15 2009-06-04 Konica Minolta Holdings Inc Organic electroluminescent element, its manufacturing method, and protection film
JP2013020120A (en) * 2011-07-12 2013-01-31 Keiwa Inc Hard coat film and touch panel
JP2014105223A (en) * 2012-11-23 2014-06-09 Dexerials Corp Photo-curable composition
JP2014177014A (en) * 2013-03-14 2014-09-25 Nitto Denko Corp Method for producing multilayer laminated film
JP2015115171A (en) * 2013-12-11 2015-06-22 日東電工株式会社 Transparent conductive film and usage of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776754B2 (en) * 2000-05-22 2011-09-21 日東電工株式会社 Transparent conductive film with protective film and method of using the same
JP4151821B2 (en) 2002-01-11 2008-09-17 日東電工株式会社 Surface protective film for transparent conductive film and transparent conductive film
JP4342775B2 (en) * 2002-07-31 2009-10-14 日東電工株式会社 Surface protective film for transparent conductive film, method for producing the same, and transparent conductive film with surface protective film
JP5264979B2 (en) 2011-11-25 2013-08-14 日東電工株式会社 Touch panel sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123532A (en) * 2007-11-15 2009-06-04 Konica Minolta Holdings Inc Organic electroluminescent element, its manufacturing method, and protection film
JP2013020120A (en) * 2011-07-12 2013-01-31 Keiwa Inc Hard coat film and touch panel
JP2014105223A (en) * 2012-11-23 2014-06-09 Dexerials Corp Photo-curable composition
JP2014177014A (en) * 2013-03-14 2014-09-25 Nitto Denko Corp Method for producing multilayer laminated film
JP2015115171A (en) * 2013-12-11 2015-06-22 日東電工株式会社 Transparent conductive film and usage of the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186412A1 (en) * 2017-04-07 2018-10-11 積水化学工業株式会社 Method for analyzing visualization of light-transmissive conductive film, and light-transmissive conductive film
JPWO2018186412A1 (en) * 2017-04-07 2020-02-20 積水化学工業株式会社 Analysis method for visualizing light-transmitting conductive film, and light-transmitting conductive film
JP7176950B2 (en) 2017-04-07 2022-11-22 積水化学工業株式会社 Analysis method for visualization of light-transmitting conductive film, and light-transmitting conductive film
EP3988299A4 (en) * 2019-06-20 2023-06-14 Resonac Corporation Transparent electroconductive film laminate and method for processing same
US11710581B2 (en) 2019-06-20 2023-07-25 Showa Denko K.K. Transparent conducting film laminate and processing method thereof
CN114555366A (en) * 2019-10-18 2022-05-27 昭和电工株式会社 Transparent conductive film laminate and method for processing same
US20220371310A1 (en) * 2019-10-18 2022-11-24 Showa Denko K.K. Transparent conducting film laminate and processing method thereof
CN114555366B (en) * 2019-10-18 2023-03-24 昭和电工株式会社 Transparent conductive film laminate and method for processing same
EP4047622A4 (en) * 2019-10-18 2023-11-15 Resonac Corporation Transparent electroconductive film laminate and method for processing same

Also Published As

Publication number Publication date
KR102002235B1 (en) 2019-07-19
JP6512804B2 (en) 2019-05-15
CN107000409A (en) 2017-08-01
TW201636217A (en) 2016-10-16
KR20170086092A (en) 2017-07-25
TWI680056B (en) 2019-12-21
CN107000409B (en) 2019-06-04
JP2016107504A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
WO2016088809A1 (en) Transparent conductive film laminate and use therefor
JP6495635B2 (en) Transparent conductive film laminate, touch panel obtained using the same, and method for producing transparent conductive film
JP6470040B2 (en) Transparent conductive film, transparent conductive film laminate, and touch panel
JP6328984B2 (en) Double-sided transparent conductive film and touch panel
KR102021214B1 (en) Transparent electroconductive film and touch sensor in which same is used
JP6433707B2 (en) Transparent conductive laminate and method for producing the same, method for producing transparent conductive film, and method for producing transparent conductive film roll
JP6234798B2 (en) Transparent conductive film and use thereof
WO2017051725A1 (en) Transparent conductive film and touch panel comprising same
WO2017099125A1 (en) Transparent conductive film laminate, and touch panel including same
KR20240042397A (en) Transparent conductive film laminate and method for producing transparent conductive film
WO2018109867A1 (en) Transparent conductive film with carrier film, and touch panel using transparent conductive film
JP6971558B2 (en) Transparent conductive film and display device with touch function
TW201824298A (en) Transparent conductive film attached with carrier film and touch panel using the same capable of preventing a resistance value of the transparent conductive film from becoming abnormal by controlling a moisture content of a protective film
JP6552099B2 (en) Transparent conductive film with carrier film and touch panel using the same
JP6626996B2 (en) Transparent conductive film, transparent conductive film laminate, and touch panel
JP2017061069A (en) Transparent conductive film laminate and touch panel including the same
JP5821207B2 (en) Hard coat film and method for producing hard coat film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177016930

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15864320

Country of ref document: EP

Kind code of ref document: A1