WO2018109867A1 - Transparent conductive film with carrier film, and touch panel using transparent conductive film - Google Patents

Transparent conductive film with carrier film, and touch panel using transparent conductive film Download PDF

Info

Publication number
WO2018109867A1
WO2018109867A1 PCT/JP2016/087225 JP2016087225W WO2018109867A1 WO 2018109867 A1 WO2018109867 A1 WO 2018109867A1 JP 2016087225 W JP2016087225 W JP 2016087225W WO 2018109867 A1 WO2018109867 A1 WO 2018109867A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent conductive
conductive film
transparent
carrier
Prior art date
Application number
PCT/JP2016/087225
Other languages
French (fr)
Japanese (ja)
Inventor
和也 酒井
直樹 津野
基希 拝師
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020197016555A priority Critical patent/KR20190094172A/en
Priority to CN201680091549.3A priority patent/CN110088714B/en
Priority to PCT/JP2016/087225 priority patent/WO2018109867A1/en
Publication of WO2018109867A1 publication Critical patent/WO2018109867A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a transparent conductive film with a carrier film including a transparent conductive film and a carrier film, and a touch panel using the same, and is a technique particularly useful for preventing abnormal resistance values and film peeling.
  • Examples of a general touch panel method include a resistance film method and a capacitance method.
  • a resistance film method in the case of the electrostatic capacity method that has come to be widely used for touch panels, as a base film of a transparent conductive film, in addition to flexibility and workability, it has excellent impact resistance and is lightweight. From the advantage, polyethylene terephthalate (PET) is widely used.
  • PET polyethylene terephthalate
  • the need for is increasing.
  • PET is widely used as the surface protective film, like the base film.
  • Patent Document 1 discloses an amorphous transparent film in which a PET-based transparent conductive film and a PET-based protective film are laminated with a pressure-sensitive adhesive layer on the surface side where the transparent conductive layer is not formed.
  • a conductive laminate is disclosed.
  • Patent Document 2 discloses a laminate in which a protective film is laminated on a transparent conductive film using PET as a film base material.
  • ITO indium-tin composite oxide
  • the resistance is reduced by crystallizing the ITO by heating.
  • an indium-based composite oxide having a high ratio of tetravalent metal oxide is further deposited. Then, indium oxide or an indium composite oxide having a small ratio of tetravalent metal element oxide is deposited to lower the resistance of the ITO film.
  • the moisture can affect the crystallization of the transparent conductive film. That is, the moisture affects the crystal growth of the transparent conductive film, which not only slows the crystallization rate, but also increases or varies the resistance value, resulting in an abnormal resistance value of the transparent conductive film. Or the adhesiveness between the transparent conductive film and the substrate is lowered, and film peeling occurs at the interface. According to the study by the present inventors, the effect of the moisture content of such a film is not only the contribution of the substrate of the transparent conductive film, but also in the form in which the protective film is bonded to the transparent conductive film. It was found that the contribution of was particularly large.
  • the object of the present invention is to control the water content of the protective film of the transparent conductive film with a carrier film, thereby preventing abnormal resistance of the transparent conductive film and adhesion between the transparent conductive film and the substrate.
  • An object of the present invention is to provide a transparent conductive film with a carrier film and a touch panel using the same.
  • the transparent conductive film with a carrier film of the present invention is disposed on the side of the transparent conductive film including the transparent resin film and the transparent conductive film, and the surface of the transparent conductive film on which the transparent resin film is formed.
  • a transparent conductive film with a carrier film comprising a pressure-sensitive adhesive layer and a protective film, wherein the transparent conductive film is an indium-tin composite oxide, and the water content of the protective film is It is characterized by being 1.0 ⁇ 10 ⁇ 3 g or less per 10 mm ⁇ 10 mm.
  • the various physical property values in the present invention are values measured by the methods employed in Examples and the like.
  • the transparent conductive film with a carrier film of the present invention it is possible to prevent an abnormal resistance value of the transparent conductive film and to enhance the adhesion between the transparent conductive film and the substrate to prevent film peeling.
  • the resistance value abnormality and the film peeling mechanism are not clear, it is considered as follows.
  • About resistance value abnormality it is thought that the moisture content of a protective film influences especially. The reason for this is that the transparent resin film is composed of a substrate with less moisture and outgassing by annealing and degassing processes before the transparent conductive film is sputtered. It is thought that it is because the moisture of the protective film stuck in the process directly affects the prepared transparent conductive film.
  • the protective film contains a large amount of moisture, the transparent conductive film is not sufficiently crystallized and a desired resistance value cannot be obtained, and variations in the in-plane resistance value are deteriorated. This is considered to be because crystal growth is hindered because gas or the like generated when touching moisture or plasma adsorbed on the base material acts as an impurity.
  • film peeling adheresiveness
  • crystalline distortion change in lattice constant
  • the adhesion is lowered, and it is estimated that film peeling occurs. That is, it is considered that due to the influence of moisture, the oxidation progresses at the interface between the transparent conductive film and the substrate, whereby the adhesiveness is lowered and the film peeling occurs.
  • the transparent resin film in this invention has the 1st cured resin layer provided in the surface side of the said transparent conductive film, and the 2nd cured resin layer provided in the surface side opposite to the said transparent conductive film. It is preferable. Since the cured resin layer is formed on both surfaces of the transparent resin film, scratches are less likely to occur in each process such as formation of a transparent conductive film, patterning, or mounting on an electronic device.
  • the transparent conductive film with a carrier film of the present invention preferably further comprises one or more optical adjustment layers between the first cured resin layer and the transparent conductive film. Since the refractive index can be controlled by the optical adjustment layer, even when the ITO film is patterned, the difference in reflectance between the pattern forming portion and the pattern opening can be reduced, and the transparent conductive film pattern is difficult to see. Visibility is improved in a display device such as a touch panel.
  • the thickness of the protective film in the present invention is preferably 1 ⁇ m to 150 ⁇ m. As the thickness of the protective film is thinner, the moisture content of the protective film can be further suppressed, and the transparent conductive film is sufficiently crystallized, so that the resistance value abnormality of the transparent conductive film can be more reliably prevented. At the same time, it becomes possible to further improve the adhesion between the transparent conductive film and the substrate to prevent film peeling. Moreover, the ease of conveyance by a roll to roll manufacturing method can be improved by setting it as the said range.
  • the protective film in the present invention is preferably made of a cycloolefin resin or a polycarbonate resin.
  • a resin having a low water content can be used, the water content of the protective film can be further controlled, and the transparent conductive film is sufficiently crystallized. While preventing an abnormal resistance value, it is possible to further improve the adhesion between the transparent conductive film and the substrate to prevent film peeling.
  • the moisture content of the protective film in the present invention is preferably 0.50% by weight or less.
  • a protective film having a low water content can be used, the water content of the protective film can be further controlled, and the transparent conductive film is sufficiently crystallized. It is possible to prevent abnormal peeling of the film and to prevent the film from peeling off by further improving the adhesion between the transparent conductive film and the substrate.
  • a conductive layer is further provided on the surface of the protective film opposite to the surface on which the pressure-sensitive adhesive layer is formed. As a result, it is possible to prevent charging and to suppress unnecessary electrical influences.
  • the touch panel of the present invention preferably includes the transparent conductive film with a carrier film. As a result, it is possible to more reliably prevent abnormal resistance of the transparent conductive film and to improve adhesion between the transparent conductive film and the base material to prevent film peeling. A resolution pattern can be formed, and the quality of the touch panel display device such as visibility can be improved.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of a transparent conductive film with a carrier film of the present invention
  • FIG. 2 is a schematic diagram of a transparent conductive film with a carrier film according to another embodiment of the present invention.
  • the transparent conductive film with a carrier film of the present invention comprises a transparent conductive film 20 including a transparent resin film 3 and a transparent conductive film 4, and a transparent resin film 3 of the transparent conductive film 20.
  • a conductive layer can be further provided on the surface of the protective film 1 opposite to the surface on which the pressure-sensitive adhesive layer 2 is formed.
  • the transparent resin film 3 is provided on the surface side opposite to the first cured resin layer 6 provided on the surface side of the transparent conductive film 4 and the transparent conductive film 4.
  • the second cured resin layer 5 can also be provided, but it is also possible to have one of the cured resin layers only on one side.
  • the 1st cured resin layer 6 and the 2nd cured resin layer 5 include what functions as an antiblocking layer or a hard-coat layer.
  • One optical adjustment layer 7 can be further provided between the first cured resin layer 6 and the transparent conductive film 4, but two or more optical adjustment layers 7 can also be provided. In FIG.
  • the transparent conductive film 20 includes the second cured resin layer 5, the transparent resin film 3, the first cured resin layer 6, the optical adjustment layer 7, and the transparent conductive film 4. Although it has in order, it is the transparent conductive film 20 which has the 2nd cured resin layer 5, the transparent resin film 3, the 1st cured resin layer 6, and the transparent conductive film 4 in this order, for example, or a transparent resin
  • the transparent conductive film 20 having the film 3, the optical adjustment layer 7, and the transparent conductive film 4 in this order, or any combination can be used.
  • the ultimate resistance value (surface resistance value) upon completion of crystallization from amorphous to crystalline of the transparent conductive film with a carrier film is preferably 100 to 130 ⁇ / ⁇ , more preferably 100 to 120 ⁇ / ⁇ , More preferably, it is 100 to 110 ⁇ / ⁇ . Thereby, a stable high-sensitivity and high-resolution pattern can be formed.
  • the standard deviation of the reached resistance value (surface resistance value) when crystallization of the transparent conductive film with a carrier film from amorphous to crystalline is completed is preferably 30 ⁇ / ⁇ or less, more preferably 20 ⁇ / ⁇ or less. 10 ⁇ / ⁇ or less is more preferable. Thereby, a stable high-sensitivity and high-resolution pattern can be formed.
  • the transparent conductive film has a transparent resin film and a transparent conductive film.
  • the transparent conductive film has a first cured resin layer provided on the surface side of the transparent conductive film and a second cured resin layer provided on the surface side opposite to the transparent conductive film.
  • the transparent conductive film can further include one or more optical adjustment layers between the first cured resin layer and the transparent conductive film.
  • the thickness of the transparent conductive film is preferably within the range of 20 to 150 ⁇ m, more preferably within the range of 25 to 100 ⁇ m, and even more preferably within the range of 30 to 80 ⁇ m.
  • the thickness of the transparent conductive film is less than the lower limit of the above range, the mechanical strength is insufficient, and it becomes difficult to continuously form a cured resin layer or a transparent conductive film by making the film base into a roll shape. There is.
  • the thickness exceeds the upper limit of the above range, the scratch resistance of a transparent conductive film or the like, and the dot characteristics for touch panels may not be improved.
  • the transparent resin film is not particularly limited as long as it is transparent in the visible light region, but various plastic films having transparency are used.
  • the materials include polyester resins, cycloolefin resins, polycarbonate resins, acetate resins, polyethersulfone resins, polyamide resins, polyimide resins, polyolefin resins, (meth) acrylic resins, polychlorinated resins.
  • vinyl resins polyvinylidene chloride resins, polystyrene resins, polyvinyl alcohol resins, polyarylate resins, polyphenylene sulfide resins, and the like.
  • polyester-based resins, cycloolefin-based resins, and polycarbonate-based resins are more preferable, but from the viewpoints of high transparency, low water absorption, moisture barrier properties, thermal stability, isotropic properties, etc.
  • the polyester resin is preferably a polyethylene terephthalate resin, a polyethylene naphthalate resin, or the like in terms of mechanical properties and heat resistance.
  • the cycloolefin resin is not particularly limited as long as it is a resin having a monomer unit composed of a cyclic olefin (cycloolefin).
  • the cycloolefin resin used for the transparent resin film may be either a cycloolefin polymer (COP) or a cycloolefin copolymer (COC).
  • the cycloolefin copolymer refers to an amorphous cyclic olefin resin that is a copolymer of a cyclic olefin and an olefin such as ethylene.
  • cyclic olefin there are a polycyclic cyclic olefin and a monocyclic cyclic olefin.
  • polycyclic olefins include norbornene, methylnorbornene, dimethylnorbornene, ethylnorbornene, ethylidenenorbornene, butylnorbornene, dicyclopentadiene, dihydrodicyclopentadiene, methyldicyclopentadiene, dimethyldicyclopentadiene, tetracyclododecene.
  • Methyltetracyclododecene dimethylcyclotetradodecene, tricyclopentadiene, tetracyclopentadiene, and the like.
  • monocyclic olefins include cyclobutene, cyclopentene, cyclooctene, cyclooctadiene, cyclooctatriene, and cyclododecatriene.
  • Cycloolefin-based resins are also available as commercial products, such as “ZEONOR” manufactured by ZEON Corporation, “ARTON” manufactured by JSR, “TOPAS” manufactured by Polyplastics, “APEL” manufactured by Mitsui Chemicals, and the like. It is done.
  • the polycarbonate resin is not particularly limited, and examples thereof include aliphatic polycarbonate, aromatic polycarbonate, and aliphatic-aromatic polycarbonate. Specifically, for example, bisphenol A polycarbonate, branched bisphenol A polycarbonate, foamed polycarbonate, copolycarbonate, block copolycarbonate, polyester carbonate, polyphosphonate carbonate, diethylene glycol bisallyl carbonate (CR-) as polycarbonate (PC) using bisphenols 39).
  • Polycarbonate-based resins also include those blended with other components such as bisphenol A polycarbonate blends, polyester blends, ABS blends, polyolefin blends, styrene-maleic anhydride copolymer blends. Examples of commercially available polycarbonate resin include “OPCON” manufactured by Ewa Co., Ltd., “Panlite” manufactured by Teijin Limited, and “Iupilon (UV absorber-containing polycarbonate)” manufactured by Mitsubishi Gas Chemical.
  • the transparent resin film is preliminarily subjected to etching treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and undercoating treatment on the surface, and a cured resin layer formed on the transparent resin film or transparent You may make it improve adhesiveness with an electrically conductive film. Moreover, before forming a cured resin layer and a transparent conductive film, you may remove and clean the surface of a transparent resin film by solvent washing
  • the thickness of the transparent resin film should be in the range of 20 to 150 ⁇ m from the viewpoint of producing a transparent conductive film having high transparency and excellent appearance quality and improving the ease of conveyance in the roll-to-roll manufacturing method. Preferably, it is in the range of 25 to 100 ⁇ m, more preferably in the range of 30 to 80 ⁇ m.
  • the thickness of the transparent resin film is less than the lower limit of the above range, the mechanical strength is insufficient, and it may be difficult to continuously form a cured resin layer or a transparent conductive film by making the film base into a roll shape. is there.
  • the thickness exceeds the upper limit of the above range, the scratch resistance of a transparent conductive film or the like, and the dot characteristics for touch panels may not be improved.
  • the water content of the transparent resin film is preferably 5.0 ⁇ 10 ⁇ 3 g or less per 10 mm ⁇ 10 mm, more preferably 3.0 ⁇ 10 ⁇ 3 g or less per 10 mm ⁇ 10 mm, and 10 mm ⁇ 10 mm. More preferably, it is 1.0 ⁇ 10 ⁇ 3 g or less.
  • the water content of the transparent resin film can be further controlled, and the transparent conductive film is sufficiently crystallized. Therefore, the transparent conductive film can be more reliably prevented from having an abnormal resistance value and transparent conductive film. It becomes possible to further enhance the adhesion between the film and the base material and prevent film peeling.
  • the moisture content of the transparent resin film is preferably 0.50% by weight or less, more preferably 0.40% by weight or less, and further preferably 0.30% by weight or less.
  • the cured resin layer includes a first cured resin layer provided on the surface side of the transparent conductive film of the transparent resin film, and a second cured resin layer provided on the other surface side of the transparent conductive film. If the transparent resin film is fragile and easily damaged, scratches are likely to occur in each process such as formation of the transparent conductive film, patterning of the transparent conductive film, or mounting on an electronic device. It is preferable to form one cured resin layer and a second cured resin layer.
  • the cured resin layer is a layer obtained by curing a curable resin or the like.
  • the resin to be used those having sufficient strength as a film after forming the cured resin layer and having transparency can be used without particular limitation, but thermosetting resin, ultraviolet curable resin, electron beam curable resin, two-component Examples thereof include mixed resins.
  • thermosetting resin, ultraviolet curable resin, electron beam curable resin, two-component Examples thereof include mixed resins.
  • an ultraviolet curable resin that can efficiently form a cured resin layer by a simple processing operation by a curing treatment by ultraviolet irradiation is preferable.
  • the ultraviolet curable resin examples include polyesters, acrylics, urethanes, amides, silicones, epoxies, and the like, and ultraviolet curable monomers, oligomers, polymers, and the like are included.
  • the ultraviolet curable resin preferably used is an acrylic resin, an epoxy resin, or a urethane resin, and more preferably an acrylic resin or a urethane resin.
  • the cured resin layer may contain particles. By blending the particles in the cured resin layer, ridges can be formed on the surface of the cured resin layer, and blocking resistance can be suitably imparted to the transparent conductive film.
  • those having transparency such as various metal oxides, glass, and plastics can be used without particular limitation.
  • inorganic particles such as silica, alumina, titania, zirconia, calcium oxide, polymethyl methacrylate, polystyrene, polyurethane, acrylic resin, acrylic-styrene resin such as acrylic-styrene copolymer, benzoguanamine, melamine, polycarbonate, etc.
  • examples thereof include crosslinked or uncrosslinked organic particles and silicone particles composed of various polymers.
  • the particles can be used by appropriately selecting one type or two or more types, but organic particles are preferable.
  • the organic particles are preferably acrylic resins and acrylic-styrene resins from the viewpoint of refractive index.
  • the diameter of the particle can be appropriately set in consideration of the degree of protrusion of the cured resin layer and the thickness of the flat region other than the protrusion, and is not particularly limited. From the viewpoint of sufficiently imparting blocking resistance to the transparent conductive film and sufficiently suppressing increase in haze, the particle diameter is preferably 0.1 to 5 ⁇ m, more preferably 0.5 to 4 ⁇ m.
  • “diameter” refers to a particle size indicating a maximum value of particle distribution, and is determined using a flow type particle image analyzer (product name “FPTA-3000S” manufactured by Sysmex). It is calculated
  • the content of the particles is preferably 0.05 to 1.0 part by weight, more preferably 0.1 to 0.5 part by weight, based on 100 parts by weight of the solid content of the resin composition. More preferably, it is 1 to 0.2 parts by weight.
  • the content of the particles in the cured resin layer is small, there is a tendency that bulges sufficient to impart blocking resistance and slipperiness to the surface of the cured resin layer are hardly formed.
  • the content of the particles is too large, the haze of the transparent conductive film increases due to light scattering by the particles, and the visibility tends to decrease.
  • the cured resin layer is formed by applying a resin composition containing particles, a crosslinking agent, an initiator, a sensitizer and the like to be added to each curable resin as necessary on a transparent resin film, and the resin composition contains a solvent. Is obtained by drying the solvent and curing by application of either heat, active energy rays or both.
  • heat known means such as an air circulation oven or an IR heater can be used, but it is not limited to these methods.
  • active energy rays include, but are not limited to, ultraviolet rays, electron beams, and gamma rays.
  • the cured resin layer can be formed by using the above materials by a coating method such as a wet coating method, a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like.
  • a coating method such as a wet coating method, a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like.
  • ITO indium oxide
  • the crystallization time of the transparent conductive film can be shortened if the surface of the cured resin layer that is the base layer is smooth.
  • the cured resin layer is preferably formed by a wet coating method.
  • the thickness of the cured resin layer is preferably 0.5 ⁇ m to 5 ⁇ m, more preferably 0.7 ⁇ m to 3 ⁇ m, and most preferably 0.8 ⁇ m to 2 ⁇ m.
  • the thickness of the cured resin layer is within the above range, it is possible to prevent scratches and film wrinkles in the cured shrinkage of the cured resin layer, and it is possible to prevent the visibility of a touch panel and the like from being deteriorated.
  • One or more optical adjustment layers may be further included between the first cured resin layer and the transparent conductive film. In the case where the first cured resin layer is not formed, one or more optical adjustment layers can be included between the transparent resin film and the transparent conductive film.
  • the optical adjustment layer increases the transmittance of the transparent conductive film, or when the transparent conductive film is patterned, the transmittance difference or reflectance difference between the pattern part where the pattern remains and the opening part where the pattern does not remain. Is used to obtain a transparent conductive film excellent in visibility.
  • the optical adjustment layer preferably contains a binder resin and fine particles.
  • the binder resin included in the optical adjustment layer include acrylic resins, urethane resins, melamine resins, alkyd resins, siloxane polymers, and organic silane condensates, and ultraviolet curable resins including acrylic resins. preferable.
  • the refractive index of the optical adjustment layer is preferably 1.6 to 1.8, more preferably 1.61 to 1.78, and still more preferably 1.62 to 1.75. Thereby, the transmittance
  • the optical adjustment layer may have fine particles having an average particle diameter of 1 nm to 500 nm.
  • the content of fine particles in the optical adjustment layer is preferably 0.1% by weight to 90% by weight.
  • the average particle diameter of the fine particles used in the optical adjustment layer is preferably in the range of 1 nm to 500 nm, and more preferably 5 nm to 300 nm.
  • the content of the fine particles in the optical adjustment layer is more preferably 10% by weight to 80% by weight, and further preferably 20% by weight to 70% by weight.
  • inorganic oxides that form fine particles include fine particles of silicon oxide (silica), hollow nanosilica, titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, niobium oxide, and the like.
  • fine particles of silicon oxide (silica), titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide and niobium oxide are preferable, and zirconium oxide is more preferable. These may be used alone or in combination of two or more.
  • the optical adjustment layer can contain other inorganic substances.
  • the inorganic material NaF (1.3), Na 3 AlF 6 (1.35), LiF (1.36), MgF 2 (1.38), CaF 2 (1.4), BaF 2 (1.3 ), BaF 2 (1.3), LaF 3 (1.55), CeF (1.63), etc. (the numerical values in parentheses indicate the refractive index).
  • the optical adjustment layer can be formed using the above materials by a coating method such as a wet coating method, a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like.
  • a coating method such as a wet coating method, a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like.
  • ITO indium oxide
  • the crystallization time of the transparent conductive layer can be shortened if the surface of the optical adjustment layer that is the base layer is smooth.
  • the optical adjustment layer is preferably formed by a wet coating method.
  • the thickness of the optical adjustment layer is preferably 40 nm to 150 nm, more preferably 50 nm to 130 nm, and even more preferably 70 nm to 120 nm. If the thickness of the optical adjustment layer is too small, it is difficult to form a continuous film. Moreover, when the thickness of the optical adjustment layer is excessively large, the transparency of the transparent conductive film tends to be reduced or cracks tend to occur.
  • the transparent conductive film can be provided on the transparent resin film, but is preferably provided on the first cured resin layer or the optical adjustment layer provided on one surface side of the transparent resin film.
  • the constituent material of the transparent conductive film is not particularly limited as long as it contains an inorganic substance. From the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten A metal oxide of at least one selected metal is preferably used.
  • the metal oxide may further contain a metal atom shown in the above group, if necessary.
  • ITO indium / tin composite oxide
  • ATO tin oxide containing antimony
  • the thickness of the transparent conductive film is not particularly limited, but the thickness is preferably 10 nm or more in order to obtain a continuous film having good conductivity with a surface resistance of 1 ⁇ 10 3 ⁇ / ⁇ or less.
  • the film thickness is preferably 15 to 35 nm, more preferably in the range of 20 to 30 nm, since transparency is lowered when the film thickness becomes too thick.
  • the thickness of the transparent conductive film is less than 10 nm, the electrical resistance of the film surface increases and it becomes difficult to form a continuous film. Further, when the thickness of the transparent conductive film exceeds 35 nm, the transparency may be lowered.
  • the formation method of the transparent conductive film is not particularly limited, and a conventionally known method can be adopted. Specific examples include dry processes such as vacuum deposition, sputtering, and ion plating. In addition, an appropriate method can be adopted depending on the required film thickness.
  • the transparent conductive film can be crystallized by applying a heat annealing treatment (for example, at 80 to 150 ° C. for about 10 to 90 minutes in an air atmosphere) as necessary. By crystallizing the transparent conductive film, the transparency and durability are improved in addition to the resistance of the transparent conductive film being reduced.
  • the means for converting the amorphous transparent conductive film into crystalline is not particularly limited, and an air circulation oven, an IR heater, or the like is used.
  • a transparent conductive film in which a transparent conductive film is formed on a transparent resin film is immersed in hydrochloric acid having a concentration of 5% by weight at 20 ° C. for 15 minutes, then washed with water and dried for 15 mm.
  • hydrochloric acid having a concentration of 5% by weight at 20 ° C. for 15 minutes, then washed with water and dried for 15 mm.
  • the surface resistance value can be measured by the 4-terminal method according to JIS K7194.
  • the transparent conductive film may be patterned by etching or the like.
  • the patterning of the transparent conductive film can be performed using a conventionally known photolithography technique.
  • An acid is preferably used as the etching solution.
  • the acid include inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid, phosphoric acid, organic acids such as acetic acid, mixtures thereof, and aqueous solutions thereof.
  • the transparent conductive film is preferably patterned in a stripe shape.
  • the transparent conductive film is patterned by etching, if the transparent conductive film is first crystallized, patterning by etching may be difficult. Therefore, it is preferable to perform the annealing treatment of the transparent conductive film after patterning the transparent conductive film.
  • the carrier film includes a pressure-sensitive adhesive layer and a protective film disposed on the surface side of the transparent conductive film on which the transparent resin film is formed, and the transparent conductive film and the carrier film are bonded together to form a transparent with a carrier film.
  • a conductive film is formed.
  • the protective film is peeled off and discarded when it is laminated with other films such as a wave plate and a polarizing plate, but the protective film is formed in consideration of handling properties such as winding with a roll, water content, etc.
  • the material include the same materials as those of the transparent resin film described above. From the viewpoint of improving visibility, polyester-based resins, cycloolefin-based resins, and polycarbonate-based resins are more preferable, but from the viewpoints of high transparency, low water absorption, moisture barrier properties, thermal stability, isotropic properties, etc. A cycloolefin resin or polycarbonate resin, which is an amorphous resin, is particularly preferred.
  • polyester-based resin cycloolefin-based resin, and polycarbonate-based resin are as described in the above-described transparent resin film, and are selected in consideration of the moisture content.
  • a protective film having a low water content can be used, the water content of the protective film can be further controlled, and the transparent conductive film is sufficiently crystallized. It is possible to prevent abnormal peeling of the film and to prevent the film from peeling off by further improving the adhesion between the transparent conductive film and the substrate.
  • the protective film is subjected to an etching process such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and undercoating on the surface, and a pressure-sensitive adhesive layer on the protective film, etc. You may make it improve adhesiveness.
  • the surface of the protective film may be removed and cleaned by solvent cleaning or ultrasonic cleaning as necessary.
  • the moisture content of the protective film is preferably 1.0 ⁇ 10 ⁇ 3 g or less per 10 mm ⁇ 10 mm, more preferably 0.9 ⁇ 10 ⁇ 3 g or less per 10 mm ⁇ 10 mm, per 10 mm ⁇ 10 mm. More preferably, it is 0.5 ⁇ 10 ⁇ 3 g or less.
  • the amount of moisture here varies depending on the environment with respect to the actually measured value, and therefore it is preferable to satisfy the above-mentioned range at the time of being subjected to sputtering film formation or crystallization process. Thereby, while preventing resistance value abnormality of a transparent conductive film, the adhesiveness of a transparent conductive film and a base material can be improved and film peeling can be prevented. This also eliminates the need for degassing before film formation, such as passing through a heating step as a pretreatment for removing moisture, thus improving production efficiency.
  • the moisture content (water content) of the protective film is preferably 0.50% by weight or less, more preferably 0.40% by weight or less, and further preferably 0.30% by weight or less.
  • a protective film having a low water content can be used, the water content of the protective film can be further controlled, and the transparent conductive film is sufficiently crystallized. It is possible to prevent abnormal peeling of the film and to prevent the film from peeling off by further improving the adhesion between the transparent conductive film and the substrate.
  • the thickness of the protective film is preferably 1 to 150 ⁇ m, more preferably 2 to 120 ⁇ m, still more preferably 5 to 100 ⁇ m.
  • the thickness of the protective film is thinner, the moisture content of the protective film can be further suppressed, and the transparent conductive film is sufficiently crystallized, so that the resistance value abnormality of the transparent conductive film can be more reliably prevented.
  • the thickness of a protective film is more than the thickness of a transparent resin film from a viewpoint of preventing the fracture
  • a conductive layer is further provided on the surface of the protective film opposite to the surface on which the pressure-sensitive adhesive layer is formed.
  • the conductive layer can be preferably formed by applying a conductive composition containing a conductive polymer.
  • the conductive polymer contained in the conductive composition examples include a polyacetylene polymer, a polyparaphenylene polymer, a polyaniline polymer, a polythiophene polymer, a polyparaphenylene vinylene polymer, a polypyrrole polymer, a polyphenylene polymer, and an acrylic polymer.
  • polyester polymers modified with a polymer examples include polyester polymers modified with a polymer.
  • the conductive polymer includes at least one polymer selected from the group consisting of a polyacetylene polymer, a polyparaphenylene polymer, a polyaniline polymer, a polythiophene polymer, a polyparaphenylene vinylene polymer, and a polypyrrole polymer. .
  • a polythiophene polymer is used as the conductive polymer. If a polythiophene polymer is used, a conductive layer excellent in transparency and chemical stability can be formed.
  • the polythiophene polymer include polythiophene; poly (3-C 1-8 alkyl-thiophene) such as poly (3-hexylthiophene); poly (3,4-ethylenedioxythiophene) (PEDOT), poly ( 3,4-propylenedioxythiophene), poly [3,4- (1,2-cyclohexylene) dioxythiophene] and other poly (3,4- (cyclo) alkylenedioxythiophene); polythienylene vinylene and the like Is mentioned.
  • the conductive layer can be formed by any appropriate method.
  • the conductive composition is, for example, a dispersion liquid containing the conductive polymer and any appropriate solvent (for example, water), and the conductive polymer dispersed in the solvent.
  • the dispersion concentration of the conductive polymer in the dispersion is preferably 0.01 wt% to 50 wt%, more preferably 0.01 wt% to 30 wt%.
  • any appropriate method can be adopted as a method for applying the conductive composition. Examples thereof include a bar coating method, a roll coating method, a gravure coating method, a rod coating method, a slot orifice coating method, a curtain coating method, a fountain coating method, and a comma coating method.
  • the drying temperature is typically 50 ° C. or higher, preferably 90 ° C. or higher, more preferably 110 ° C. or higher.
  • the drying temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the drying time is preferably 1 minute to 1 hour, more preferably 1 minute to 30 minutes, and even more preferably 1 minute to 10 minutes.
  • the thickness of the conductive layer is preferably 1 nm to 500 nm, more preferably 1 nm to 400 nm, and still more preferably 1 nm to 300 nm. If it is such a range, the conductive layer which can control an electrical property favorably will be formed.
  • the conductive composition may further include any appropriate additive as necessary.
  • the additive include a dispersion stabilizer, a surfactant, and an antifoaming agent.
  • the kind and amount of the additive used can be appropriately set according to the purpose.
  • the pressure-sensitive adhesive layer can be used without particular limitation as long as it has transparency. Specifically, for example, acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl ethers, vinyl acetate / vinyl chloride copolymers, modified polyolefins, epoxy systems, fluorine systems, natural rubbers, rubbers such as synthetic rubbers, etc. Those having the above polymer as a base polymer can be appropriately selected and used.
  • an acrylic pressure-sensitive adhesive is preferably used from the viewpoint that it is excellent in optical transparency, exhibits adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and is excellent in weather resistance and heat resistance.
  • the method for forming the pressure-sensitive adhesive layer is not particularly limited.
  • the pressure-sensitive adhesive composition is applied to a release liner, dried and then transferred to a base film (transfer method), and the pressure-sensitive adhesive composition is directly applied to a protective film. And a drying method (direct copying method) and a co-extrusion method.
  • a tackifier, a plasticizer, a filler, an antioxidant, an ultraviolet absorber, a silane coupling agent, and the like can be appropriately used as the pressure-sensitive adhesive.
  • the preferable thickness of the pressure-sensitive adhesive layer is 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m, and more preferably 15 ⁇ m to 35 ⁇ m.
  • the transparent conductive film which peeled the carrier film or the protective film from the transparent conductive film with a carrier film can be suitably applied as a transparent electrode of an electronic device such as a capacitive touch panel or a resistive touch panel.
  • another base material such as glass or a polymer film can be bonded to one or both main surfaces of the transparent conductive film described above via a transparent adhesive layer.
  • a transparent adhesive layer For example, you may form the laminated body by which the transparent base
  • the transparent substrate may be composed of a single substrate film or may be a laminate of two or more substrate films (for example, laminated via a transparent adhesive layer).
  • a hard coat layer can also be provided on the outer surface of the transparent substrate to be bonded to the transparent conductive film.
  • the pressure-sensitive adhesive layer used for bonding the transparent conductive film and the substrate can be used without particular limitation as long as it has transparency.
  • ⁇ Evaluation> Measurement of thickness Thickness was measured with a micro gauge thickness meter (Mitutoyo Co., Ltd.) for those having a thickness of 1 ⁇ m or more. The thickness of less than 1 ⁇ m was measured with an instantaneous multi-photometry system (MCPD2000 manufactured by Otsuka Electronics Co., Ltd.). For nano-sized thicknesses such as the thickness of ITO films, etc., a sample for cross-sectional observation is prepared with FB-2000A (manufactured by Hitachi High-Technologies Corporation). Was used to measure the film thickness. The evaluation results are shown in Table 1.
  • the protective film was cut into a 10 mm x 10 mm square sample, placed in a heating vaporizer (Mitsubishi Chemical Analytech, model VA-200), and heated at 150 ° C. was introduced into a titration cell (Mitsubishi Chemical Analytech, CA-200 type), and the amount of water released during heating was measured by the Karl Fischer method (vaporization method) to determine the water content and moisture content.
  • the moisture content is the amount of moisture per gram, and can be calculated in the same manner as the moisture content.
  • the water content and moisture content were measured in the same manner as described above. The evaluation results are shown in Table 1.
  • The crystallization speed is the same as the reference value.
  • The crystallization speed is slower than the reference value.
  • Example 1 (Formation of cured resin layer) 100 parts by weight of an ultraviolet curable resin composition (trade name “UNIDIC (registered trademark) RS29-120” manufactured by DIC, urethane-based polyfunctional polyacrylate), and crosslinked acrylic / styrene-based spherical particles having a diameter of 3 ⁇ m (Sekisui Resin Co., Ltd.
  • an ultraviolet curable resin composition trade name “UNIDIC (registered trademark) RS29-120” manufactured by DIC, urethane-based polyfunctional polyacrylate
  • crosslinked acrylic / styrene-based spherical particles having a diameter of 3 ⁇ m (Sekisui Resin Co., Ltd.
  • SSX105 spherical particle-containing curable resin composition
  • a 50 ⁇ m-thick polycycloolefin film (trade name “ZEONOR (registered trademark) manufactured by Nippon Zeon, It was applied to one surface having a birefringence of 0.0001 and irradiated with ultraviolet rays from the surface to form a second cured resin layer having a thickness of 1 ⁇ m.
  • Spherical particles were formed on the other surface of the polycycloolefin film.
  • a first cured resin layer was formed by the same method as above except that the thickness was 1 ⁇ m.
  • a zirconia particle-containing ultraviolet curable composition having a refractive index of 1.62 as an optical adjustment layer on the first cured resin layer side of the polycycloolefin film having cured resin layers formed on both sides (trade name “OPSTA Z7412 manufactured by JSR Corporation”). Then, after drying at 80 ° C. for 3 minutes, immediately from the side on which the coating layer was formed with an ozone type high pressure mercury lamp (80 W / cm, 15 cm condensing type: integrated light quantity 300 mj) The coating layer was irradiated with ultraviolet rays to form an optical adjustment layer so that the thickness was 0.1 ⁇ m.
  • a parallel plate type take-up magnetron sputtering apparatus is equipped with a sintered compact target containing indium oxide and tin oxide in a weight ratio of 90:10, and the partial pressure of water is evacuated while conveying the substrate. was evacuated until the pressure became 5 ⁇ 10 ⁇ 4 Pa. Thereafter, the amounts of argon gas and oxygen gas introduced are adjusted, and the substrate is conveyed at a conveyance speed of 7.7 m / min and a conveyance tension of 40 to 120 N, and output to the optical adjustment layer surface (first cured resin layer). Film formation was performed by DC sputtering at 5 kW to form an ITO film having a thickness of 22 nm. The surface resistance of the obtained ITO was measured by the four probe method and found to be 300 ⁇ / ⁇ .
  • An acrylic pressure-sensitive adhesive was prepared by adding 6 parts by weight of an epoxy-based crosslinking agent (trade name “Tetrad C (registered trademark)” manufactured by Mitsubishi Gas Chemical) to 100 parts by weight of the acrylic polymer.
  • a polycycloolefin film having a thickness of 50 ⁇ m (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) is coated with the acrylic adhesive on one side and heated at 150 ° C. for 90 seconds to obtain a thickness.
  • a 10 ⁇ m pressure-sensitive adhesive layer was formed.
  • the surface of the pressure-sensitive adhesive layer was bonded with a silicone-treated surface of a PET release liner (thickness 25 ⁇ m) having a silicone treatment on one side and stored at 50 ° C. for 2 days to prepare a carrier film with a release liner. .
  • the release liner was removed and a carrier film was used.
  • Example 2 the transparent conductive film with a carrier film was produced by the same method as Example 1 except having changed the substrate and thickness of a transparent resin film and a protective film as shown in Table 1.
  • PET used the polyethylene terephthalate film (Mitsubishi Resin Co., Ltd. make, T612E25), PC used polycarbonate resin (Teijin brand name "Panlite").
  • Example 1 In Example 1, instead of using a polycycloolefin film as a protective film, a transparent conductive film with a carrier film was prepared in the same manner as in Example 1 except that a polyethylene terephthalate film (T612E25, manufactured by Mitsubishi Plastics, Inc.) was used. A conductive film was prepared.
  • a polyethylene terephthalate film T612E25, manufactured by Mitsubishi Plastics, Inc.
  • Example 2 the transparent conductive film with a carrier film was produced by the method similar to Example 1 except having changed the base material and thickness of the protective film as shown in Table 1.
  • PET used the polyethylene terephthalate film (Mitsubishi Resin Co., Ltd. make, T612E25), PC used polycarbonate resin (Teijin brand name "Pure Ace").
  • Example 1 In Example 1, only a transparent conductive film was produced without forming a carrier film.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are: a transparent conductive film that is provided with a carrier film, and that prevents resistance value abnormality of the transparent conductive film by controlling the water content of a protective film of the transparent conductive film with the carrier film, and also prevents film peeling by increasing adhesion between the transparent conductive film and a base material; and a touch panel using the transparent conductive film. A transparent conductive film with a carrier film according to the present invention includes: a transparent conductive film 20 including a transparent resin film 3 and a transparent conductive film 4; and a carrier film 10 including a protective film 1 and an adhesive layer 2 arranged on a surface side on which the transparent resin film 3 of the transparent conductive film 20 is formed, wherein the transparent conductive film 4 is an indium-tin complex oxide, and the water content of the protective film 1 is 1.0×10-3 g per 10mm×10mm.

Description

キャリアフィルム付き透明導電性フィルム及びそれを用いたタッチパネルTransparent conductive film with carrier film and touch panel using the same
 本発明は、透明導電性フィルムとキャリアフィルムとを含むキャリアフィルム付き透明導電性フィルム及びそれを用いたタッチパネルに関し、特に抵抗値異常及び膜剥がれの防止に有用な技術である。 The present invention relates to a transparent conductive film with a carrier film including a transparent conductive film and a carrier film, and a touch panel using the same, and is a technique particularly useful for preventing abnormal resistance values and film peeling.
 タッチパネル等の分野では、近年、益々その薄型化が求められ、それに伴い透明導電性フィルム自体の薄型化も要望されている。一般的なタッチパネルの方式としては、抵抗膜方式、静電容量方式等が挙げられる。近年、タッチパネルに多く採用されるようになった静電容量方式の場合、透明導電性フィルムの基材フィルムとして、可撓性、加工性に加えて、耐衝撃性に優れ、軽量である等の利点から、ポリエチレンテレフタレート(PET)が広く用いられている。 In the field of touch panels and the like, in recent years, there has been an increasing demand for thinning the transparent conductive film itself. Examples of a general touch panel method include a resistance film method and a capacitance method. In recent years, in the case of the electrostatic capacity method that has come to be widely used for touch panels, as a base film of a transparent conductive film, in addition to flexibility and workability, it has excellent impact resistance and is lightweight. From the advantage, polyethylene terephthalate (PET) is widely used.
 基材フィルム薄型化に伴い、製造工程段階における基材フィルムのハンドリング性を担保する目的で、基材フィルムの透明導電層とは反対の面側に粘着剤層を介して貼りあわされる表面保護フィルムの必要性が高まっている。表面保護フィルムは、一般的には基材フィルムと同様にPETが広く用いられている。 A surface protective film that is attached to the surface opposite to the transparent conductive layer of the base film via an adhesive layer for the purpose of ensuring the handling property of the base film in the manufacturing process stage as the base film becomes thinner. The need for is increasing. In general, PET is widely used as the surface protective film, like the base film.
 特許文献1には、PETを基材とした透明導電性フィルムに、PETを基材とした保護フィルムを、透明導電層が形成していない面側に粘着剤層で貼り合せて積層したアモルファス透明導電性積層体が開示されている。 Patent Document 1 discloses an amorphous transparent film in which a PET-based transparent conductive film and a PET-based protective film are laminated with a pressure-sensitive adhesive layer on the surface side where the transparent conductive layer is not formed. A conductive laminate is disclosed.
 一方、静電容量方式のタッチパネル電極用途に使用されるITO(インジウム・スズ複合酸化物)は高感度・高分解能のパターンを形成するため、低い表面抵抗値が必要とされる。特許文献2には、PETをフィルム基材とした透明導電性フィルムに、保護フィルムを積層した積層体が開示されている。透明導電体層としてITOを用いた場合、加熱によってITOを結晶化させることで低抵抗化させるが、かかる文献では、さらに、4価金属元素の酸化物の割合の大きいインジウム系複合酸化物を堆積させ、酸化インジウムまたは4価金属元素の酸化物の割合の小さいインジウム系複合酸化物を堆積させて、ITO膜を低抵抗化させている。 On the other hand, ITO (indium-tin composite oxide) used for capacitive touch panel electrode applications forms a pattern with high sensitivity and high resolution, and therefore requires a low surface resistance value. Patent Document 2 discloses a laminate in which a protective film is laminated on a transparent conductive film using PET as a film base material. When ITO is used as the transparent conductor layer, the resistance is reduced by crystallizing the ITO by heating. However, in this document, an indium-based composite oxide having a high ratio of tetravalent metal oxide is further deposited. Then, indium oxide or an indium composite oxide having a small ratio of tetravalent metal element oxide is deposited to lower the resistance of the ITO film.
WO2008-108255号公報WO2008-108255 特開2012-112031号公報JP 2012-112031 A
 しかし、PETフィルムは基材自体に水分を多く含んでいるため、その水分が影響して透明導電膜の結晶化を充分に行うことができなくなる。即ち、その水分が影響して透明導電膜の結晶成長が阻害されるため、結晶化速度が遅くなるだけでなく、抵抗値が上昇したり、ばらついたりと透明導電性フィルムの抵抗値異常が発生したり、透明導電膜と基材との密着性が低下して界面での膜剥がれが発生している。本発明者らの検討によると、このようなフィルムの水分量の影響は、透明導電性フィルムの基材の寄与だけでなく、透明導電性フィルムに保護フィルムが結合された形態においては、保護フィルムの寄与が特に大きいことが判明した。 However, since the PET film contains a large amount of moisture in the base material itself, the moisture can affect the crystallization of the transparent conductive film. That is, the moisture affects the crystal growth of the transparent conductive film, which not only slows the crystallization rate, but also increases or varies the resistance value, resulting in an abnormal resistance value of the transparent conductive film. Or the adhesiveness between the transparent conductive film and the substrate is lowered, and film peeling occurs at the interface. According to the study by the present inventors, the effect of the moisture content of such a film is not only the contribution of the substrate of the transparent conductive film, but also in the form in which the protective film is bonded to the transparent conductive film. It was found that the contribution of was particularly large.
 そこで、本発明の目的は、キャリアフィルム付き透明導電性フィルムの保護フィルムの含水量を制御することで、透明導電性フィルムの抵抗値異常を防止するとともに、透明導電膜と基材との密着性を高めて膜剥がれを防止するキャリアフィルム付き透明導電性フィルム及びそれを用いたタッチパネルを提供することにある。 Therefore, the object of the present invention is to control the water content of the protective film of the transparent conductive film with a carrier film, thereby preventing abnormal resistance of the transparent conductive film and adhesion between the transparent conductive film and the substrate. An object of the present invention is to provide a transparent conductive film with a carrier film and a touch panel using the same.
 本発明者らは、前記課題を解決すべく鋭意検討した結果、下記構成を採用することにより上記目的を達成し得ることを見出し本発明にいたった。 As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by adopting the following configuration, and have arrived at the present invention.
 すなわち、本発明のキャリアフィルム付き透明導電性フィルムは、透明樹脂フィルムと、透明導電膜とを含む透明導電性フィルムと、前記透明導電性フィルムの前記透明樹脂フィルムが形成された面側に配置された粘着剤層と保護フィルムとを含むキャリアフィルムと、を含むキャリアフィルム付き透明導電性フィルムであって、前記透明導電膜は、インジウム・スズ複合酸化物であり、前記保護フィルムの含水量は、10mm×10mm当たり1.0×10-3g以下であることを特徴とする。なお、本発明における各種の物性値は、特に断りのない限り実施例等において採用する方法により測定される値である。 That is, the transparent conductive film with a carrier film of the present invention is disposed on the side of the transparent conductive film including the transparent resin film and the transparent conductive film, and the surface of the transparent conductive film on which the transparent resin film is formed. A transparent conductive film with a carrier film comprising a pressure-sensitive adhesive layer and a protective film, wherein the transparent conductive film is an indium-tin composite oxide, and the water content of the protective film is It is characterized by being 1.0 × 10 −3 g or less per 10 mm × 10 mm. In addition, unless otherwise indicated, the various physical property values in the present invention are values measured by the methods employed in Examples and the like.
 本発明のキャリアフィルム付き透明導電性フィルムによると、透明導電性フィルムの抵抗値異常を防止するとともに、透明導電膜と基材との密着性を高めて膜剥がれを防止することができる。抵抗値異常及び膜剥がれのメカニズムは、定かではないものの下記の通りと考えられる。抵抗値異常については、特に、保護フィルムの含水量が影響すると考えられる。この理由としては、透明樹脂フィルムでは透明導電膜をスパッタする前のアニーリング、脱ガス過程によって基材の脱ガスが行われることで水分、出ガスが少ない状態で構成されるのに対して、後工程で貼る保護フィルムの水分は作製済みの透明導電膜に直接影響を与えるからであると考えられる。さらに、保護フィルムが水分を多く含むと、透明導電膜の結晶化が十分に行われず所望の抵抗値を得ることができないばかりでなく、面内抵抗値のバラつきを悪化させる。これは、基材に吸着している水分やプラズマ等に触れる際に発生するガス等が不純物として働くため、結晶成長が阻害されるからであると考えられる。膜剥がれ(密着性)については、透明導電膜と基材(透明樹脂フィルム等)との界面での酸化反応が進行することによって、界面付近で局所的に結晶性歪み(格子定数が変化)が生じることによって密着性が低下して、膜剥がれが発生すると推測される。即ち、水分の影響によって透明導電膜と基材との界面で酸化が進むことによって密着性が低下して、膜剥がれが発生すると考えられる。 According to the transparent conductive film with a carrier film of the present invention, it is possible to prevent an abnormal resistance value of the transparent conductive film and to enhance the adhesion between the transparent conductive film and the substrate to prevent film peeling. Although the resistance value abnormality and the film peeling mechanism are not clear, it is considered as follows. About resistance value abnormality, it is thought that the moisture content of a protective film influences especially. The reason for this is that the transparent resin film is composed of a substrate with less moisture and outgassing by annealing and degassing processes before the transparent conductive film is sputtered. It is thought that it is because the moisture of the protective film stuck in the process directly affects the prepared transparent conductive film. Furthermore, if the protective film contains a large amount of moisture, the transparent conductive film is not sufficiently crystallized and a desired resistance value cannot be obtained, and variations in the in-plane resistance value are deteriorated. This is considered to be because crystal growth is hindered because gas or the like generated when touching moisture or plasma adsorbed on the base material acts as an impurity. Regarding film peeling (adhesiveness), crystalline distortion (change in lattice constant) occurs locally near the interface as the oxidation reaction proceeds at the interface between the transparent conductive film and the substrate (transparent resin film, etc.). As a result, the adhesion is lowered, and it is estimated that film peeling occurs. That is, it is considered that due to the influence of moisture, the oxidation progresses at the interface between the transparent conductive film and the substrate, whereby the adhesiveness is lowered and the film peeling occurs.
 本発明における透明樹脂フィルムは、前記透明導電膜の面側に設けられた第1の硬化樹脂層と、前記透明導電膜とは反対の面側に設けられた第2の硬化樹脂層とを有することが好ましい。透明樹脂フィルムの両面に硬化樹脂層が形成されているため、透明導電膜の形成やパターン化又は電子機器への搭載などの各工程で傷が入りにくくなる。 The transparent resin film in this invention has the 1st cured resin layer provided in the surface side of the said transparent conductive film, and the 2nd cured resin layer provided in the surface side opposite to the said transparent conductive film. It is preferable. Since the cured resin layer is formed on both surfaces of the transparent resin film, scratches are less likely to occur in each process such as formation of a transparent conductive film, patterning, or mounting on an electronic device.
 本発明のキャリアフィルム付き透明導電性フィルムは、第1の硬化樹脂層と前記透明導電膜との間に更に1層以上の光学調整層を備えることが好ましい。光学調整層により屈折率を制御できるため、ITO膜をパターン化した際であっても、パターン形成部とパターン開口部との反射率差を低減することができ、透明導電膜パターンが見えにくく、タッチパネル等の表示装置において視認性が良好となる。 The transparent conductive film with a carrier film of the present invention preferably further comprises one or more optical adjustment layers between the first cured resin layer and the transparent conductive film. Since the refractive index can be controlled by the optical adjustment layer, even when the ITO film is patterned, the difference in reflectance between the pattern forming portion and the pattern opening can be reduced, and the transparent conductive film pattern is difficult to see. Visibility is improved in a display device such as a touch panel.
 本発明における保護フィルムの厚みは、1μm~150μmであることが好ましい。保護フィルムの厚みが薄いほど、保護フィルムの含水量をさらに抑制することができ、透明導電膜の結晶化が十分行われることになるため、より確実に透明導電性フィルムの抵抗値異常を防止するとともに、透明導電膜と基材との密着性をより高めて膜剥がれを防止することが可能となる。また、前記範囲とすることで、ロールtoロール製法での搬送容易性を高めることができる。 The thickness of the protective film in the present invention is preferably 1 μm to 150 μm. As the thickness of the protective film is thinner, the moisture content of the protective film can be further suppressed, and the transparent conductive film is sufficiently crystallized, so that the resistance value abnormality of the transparent conductive film can be more reliably prevented. At the same time, it becomes possible to further improve the adhesion between the transparent conductive film and the substrate to prevent film peeling. Moreover, the ease of conveyance by a roll to roll manufacturing method can be improved by setting it as the said range.
 本発明における保護フィルムは、シクロオレフィン系樹脂またはポリカーボネート系樹脂からなることが好ましい。これにより、含水率の低い樹脂を用いることができ、保護フィルムの含水量をさらに制御することができ、透明導電膜の結晶化が十分行われることになるため、より確実に透明導電性フィルムの抵抗値異常を防止するとともに、透明導電膜と基材との密着性をより高めて膜剥がれを防止することが可能となる。 The protective film in the present invention is preferably made of a cycloolefin resin or a polycarbonate resin. As a result, a resin having a low water content can be used, the water content of the protective film can be further controlled, and the transparent conductive film is sufficiently crystallized. While preventing an abnormal resistance value, it is possible to further improve the adhesion between the transparent conductive film and the substrate to prevent film peeling.
 本発明における保護フィルムの水分率は、0.50重量%以下であることが好ましい。これにより、含水率の低い保護フィルムを用いることができ、保護フィルムの含水量をさらに制御することができ、透明導電膜の結晶化が十分行われることになるため、より確実に透明導電性フィルムの抵抗値異常を防止するとともに、透明導電膜と基材との密着性をより高めて膜剥がれを防止することが可能となる。 The moisture content of the protective film in the present invention is preferably 0.50% by weight or less. As a result, a protective film having a low water content can be used, the water content of the protective film can be further controlled, and the transparent conductive film is sufficiently crystallized. It is possible to prevent abnormal peeling of the film and to prevent the film from peeling off by further improving the adhesion between the transparent conductive film and the substrate.
 本発明において、保護フィルムの前記粘着剤層が形成された面と反対の面側に、更に導電層を備えることが好ましい。これにより、帯電防止が可能となり、不要な電気的影響を抑制することができる。 In the present invention, it is preferable that a conductive layer is further provided on the surface of the protective film opposite to the surface on which the pressure-sensitive adhesive layer is formed. As a result, it is possible to prevent charging and to suppress unnecessary electrical influences.
 本発明のタッチパネルは、前記キャリアフィルム付き透明導電性フィルムを含むことが好ましい。これにより、より確実に透明導電性フィルムの抵抗値異常を防止するとともに、透明導電膜と基材との密着性を高めて膜剥がれを防止することが可能となるため、安定した高感度・高分解能のパターンを形成させることができるとともに、タッチパネルの表示装置の視認性等の品質を向上させることができる。 The touch panel of the present invention preferably includes the transparent conductive film with a carrier film. As a result, it is possible to more reliably prevent abnormal resistance of the transparent conductive film and to improve adhesion between the transparent conductive film and the base material to prevent film peeling. A resolution pattern can be formed, and the quality of the touch panel display device such as visibility can be improved.
本発明の一実施形態に係るキャリアフィルム付き透明導電性フィルムの模式的断面図である。It is a typical sectional view of a transparent conductive film with a carrier film concerning one embodiment of the present invention. 本発明の他の実施形態に係るキャリアフィルム付き透明導電性フィルムの模式的断面図である。It is typical sectional drawing of the transparent conductive film with a carrier film which concerns on other embodiment of this invention.
 本発明のキャリアフィルム付き透明導電性フィルムの実施形態について、図面を参照しながら以下に説明する。ただし、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大または縮小等して図示した部分がある。上下等の位置関係を示す用語は、単に説明を容易にするために用いられており、本発明の構成を限定する意図は一切ない。 Embodiments of the transparent conductive film with a carrier film of the present invention will be described below with reference to the drawings. However, in some or all of the drawings, parts unnecessary for the description are omitted, and there are parts shown enlarged or reduced for easy explanation. The terms indicating the positional relationship such as up and down are merely used for ease of explanation, and are not intended to limit the configuration of the present invention.
 <キャリアフィルム付き透明導電性フィルム>
 図1は、本発明のキャリアフィルム付き透明導電性フィルムの一実施形態を模式的に示す断面図であり、図2は、本発明の他の実施形態に係るキャリアフィルム付き透明導電性フィルムの模式的断面図である。本発明のキャリアフィルム付き透明導電性フィルムは、図1に示すように、透明樹脂フィルム3と、透明導電膜4とを含む透明導電性フィルム20と、透明導電性フィルム20の透明樹脂フィルム3が形成された面側に配置された粘着剤層2と保護フィルム1とを含むキャリアフィルム10と、を含むキャリアフィルム付き透明導電性フィルムである。なお、保護フィルム1の前記粘着剤層2が形成された面と反対の面側に、更に導電層を備えることができる。
<Transparent conductive film with carrier film>
FIG. 1 is a cross-sectional view schematically showing one embodiment of a transparent conductive film with a carrier film of the present invention, and FIG. 2 is a schematic diagram of a transparent conductive film with a carrier film according to another embodiment of the present invention. FIG. As shown in FIG. 1, the transparent conductive film with a carrier film of the present invention comprises a transparent conductive film 20 including a transparent resin film 3 and a transparent conductive film 4, and a transparent resin film 3 of the transparent conductive film 20. It is a transparent conductive film with a carrier film containing the adhesive film 2 and the carrier film 10 containing the protective film 1 arrange | positioned at the formed surface side. In addition, a conductive layer can be further provided on the surface of the protective film 1 opposite to the surface on which the pressure-sensitive adhesive layer 2 is formed.
 また、図2に示すように、透明樹脂フィルム3は、前記透明導電膜4の面側に設けられた第1の硬化樹脂層6と、前記透明導電膜4とは反対の面側に設けられた第2の硬化樹脂層5とを有することができるが、片面のみにいずれかの硬化樹脂層を有することも可能である。なお、第1の硬化樹脂層6と第2の硬化樹脂層5とは、アンチブロッキング層やハードコート層として機能するものを含む。第1の硬化樹脂層6と透明導電膜4との間に更に1層の光学調整層7を備えることができるが、2層以上の光学調整層7を備えることもできる。なお、図2では、透明導電性フィルム20は、第2の硬化樹脂層5と、透明樹脂フィルム3と、第1の硬化樹脂層6と、光学調整層7と、透明導電膜4とをこの順に有するが、例えば、第2の硬化樹脂層5と、透明樹脂フィルム3と、第1の硬化樹脂層6と、透明導電膜4とをこの順に有する透明導電性フィルム20であったり、透明樹脂フィルム3と、光学調整層7と、透明導電膜4とをこの順に有する透明導電性フィルム20であったり、任意の組み合わせとすることも可能である。 As shown in FIG. 2, the transparent resin film 3 is provided on the surface side opposite to the first cured resin layer 6 provided on the surface side of the transparent conductive film 4 and the transparent conductive film 4. The second cured resin layer 5 can also be provided, but it is also possible to have one of the cured resin layers only on one side. In addition, the 1st cured resin layer 6 and the 2nd cured resin layer 5 include what functions as an antiblocking layer or a hard-coat layer. One optical adjustment layer 7 can be further provided between the first cured resin layer 6 and the transparent conductive film 4, but two or more optical adjustment layers 7 can also be provided. In FIG. 2, the transparent conductive film 20 includes the second cured resin layer 5, the transparent resin film 3, the first cured resin layer 6, the optical adjustment layer 7, and the transparent conductive film 4. Although it has in order, it is the transparent conductive film 20 which has the 2nd cured resin layer 5, the transparent resin film 3, the 1st cured resin layer 6, and the transparent conductive film 4 in this order, for example, or a transparent resin The transparent conductive film 20 having the film 3, the optical adjustment layer 7, and the transparent conductive film 4 in this order, or any combination can be used.
 キャリアフィルム付き透明導電性フィルムの非晶質から結晶質へと結晶化が完了した際の到達抵抗値(表面抵抗値)は、100~130Ω/□が好ましく、100~120Ω/□がより好ましく、100~110Ω/□がさらに好ましい。これにより、安定した高感度・高分解能のパターンを形成することができる。 The ultimate resistance value (surface resistance value) upon completion of crystallization from amorphous to crystalline of the transparent conductive film with a carrier film is preferably 100 to 130Ω / □, more preferably 100 to 120Ω / □, More preferably, it is 100 to 110Ω / □. Thereby, a stable high-sensitivity and high-resolution pattern can be formed.
 キャリアフィルム付き透明導電性フィルムの非晶質から結晶質へと結晶化が完了した際の到達抵抗値(表面抵抗値)の標準偏差は、30Ω/□以下が好ましく、20Ω/□以下がより好ましく、10Ω/□以下がさらに好ましい。これにより、安定した高感度・高分解能のパターンを形成することができる。 The standard deviation of the reached resistance value (surface resistance value) when crystallization of the transparent conductive film with a carrier film from amorphous to crystalline is completed is preferably 30Ω / □ or less, more preferably 20Ω / □ or less. 10Ω / □ or less is more preferable. Thereby, a stable high-sensitivity and high-resolution pattern can be formed.
 <透明導電性フィルム>
 透明導電性フィルムは、透明樹脂フィルムと、透明導電膜とを有する。透明導電性フィルムは、前記透明導電膜の面側に設けられた第1の硬化樹脂層と、前記透明導電膜とは反対の面側に設けられた第2の硬化樹脂層とを有する透明樹脂フィルムを有することができる。透明導電性フィルムは、第1の硬化樹脂層と透明導電膜との間に、1層以上の光学調整層をさらに含むことも可能である。
<Transparent conductive film>
The transparent conductive film has a transparent resin film and a transparent conductive film. The transparent conductive film has a first cured resin layer provided on the surface side of the transparent conductive film and a second cured resin layer provided on the surface side opposite to the transparent conductive film. Can have a film. The transparent conductive film can further include one or more optical adjustment layers between the first cured resin layer and the transparent conductive film.
 透明導電性フィルムの厚みは、20~150μmの範囲内であることが好ましく、25~100μmの範囲内であることがより好ましく、30~80μmの範囲内であることが更に好ましい。透明導電性フィルムの厚みが上記範囲の下限未満であると、機械的強度が不足し、フィルム基材をロール状にして硬化樹脂層や透明導電膜を連続的に形成する操作が困難になる場合がある。一方、厚みが上記範囲の上限を超えると、透明導電性フィルム等の耐擦傷性やタッチパネル用としての打点特性の向上が図れない場合がある。 The thickness of the transparent conductive film is preferably within the range of 20 to 150 μm, more preferably within the range of 25 to 100 μm, and even more preferably within the range of 30 to 80 μm. When the thickness of the transparent conductive film is less than the lower limit of the above range, the mechanical strength is insufficient, and it becomes difficult to continuously form a cured resin layer or a transparent conductive film by making the film base into a roll shape. There is. On the other hand, if the thickness exceeds the upper limit of the above range, the scratch resistance of a transparent conductive film or the like, and the dot characteristics for touch panels may not be improved.
 (透明樹脂フィルム)
 透明樹脂フィルムとしては、可視光領域において透明であるものであれば特に制限されないが、透明性を有する各種のプラスチックフィルムが用いられる。例えば、その材料として、ポリエステル系樹脂、シクロオレフィン系樹脂、ポリカーボネート系樹脂、アセテート系樹脂、ポリエーテルスルホン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系樹脂等が挙げられる。視認性を良好にする点から、ポリエステル系樹脂、シクロオレフィン系樹脂、ポリカーボネート系樹脂がより好ましいが、高透明性、低吸水性、水分遮断性、熱安定性、等方性等の観点から、非晶性樹脂であるシクロオレフィン系樹脂又はポリカーボネート系樹脂が特に好ましい。
(Transparent resin film)
The transparent resin film is not particularly limited as long as it is transparent in the visible light region, but various plastic films having transparency are used. For example, the materials include polyester resins, cycloolefin resins, polycarbonate resins, acetate resins, polyethersulfone resins, polyamide resins, polyimide resins, polyolefin resins, (meth) acrylic resins, polychlorinated resins. Examples thereof include vinyl resins, polyvinylidene chloride resins, polystyrene resins, polyvinyl alcohol resins, polyarylate resins, polyphenylene sulfide resins, and the like. From the viewpoint of improving visibility, polyester-based resins, cycloolefin-based resins, and polycarbonate-based resins are more preferable, but from the viewpoints of high transparency, low water absorption, moisture barrier properties, thermal stability, isotropic properties, etc. A cycloolefin resin or polycarbonate resin, which is an amorphous resin, is particularly preferred.
 ポリエステル系樹脂は、機械的特性や耐熱性の点で、ポリエチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂等であることが好ましい。 The polyester resin is preferably a polyethylene terephthalate resin, a polyethylene naphthalate resin, or the like in terms of mechanical properties and heat resistance.
 シクロオレフィン系樹脂としては、環状オレフィン(シクロオレフィン)からなるモノマーのユニットを有する樹脂であれば特に限定されるものではない。透明樹脂フィルムに用いられるシクロオレフィン系樹脂としては、シクロオレフィンポリマー(COP)又はシクロオレフィンコポリマー(COC)のいずれであってもよい。シクロオレフィンコポリマーとは、環状オレフィンとエチレン等のオレフィンとの共重合体である非結晶性の環状オレフィン系樹脂のことをいう。 The cycloolefin resin is not particularly limited as long as it is a resin having a monomer unit composed of a cyclic olefin (cycloolefin). The cycloolefin resin used for the transparent resin film may be either a cycloolefin polymer (COP) or a cycloolefin copolymer (COC). The cycloolefin copolymer refers to an amorphous cyclic olefin resin that is a copolymer of a cyclic olefin and an olefin such as ethylene.
 上記環状オレフィンとしては、多環式の環状オレフィンと単環式の環状オレフィンとが存在している。かかる多環式の環状オレフィンとしては、ノルボルネン、メチルノルボルネン、ジメチルノルボルネン、エチルノルボルネン、エチリデンノルボルネン、ブチルノルボルネン、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、メチルジシクロペンタジエン、ジメチルジシクロペンタジエン、テトラシクロドデセン、メチルテトラシクロドデセン、ジメチルシクロテトラドデセン、トリシクロペンタジエン、テトラシクロペンタジエンなどが挙げられる。また、単環式の環状オレフィンとしては、シクロブテン、シクロペンテン、シクロオクテン、シクロオクタジエン、シクロオクタトリエン、シクロドデカトリエンなどが挙げられる。 As the cyclic olefin, there are a polycyclic cyclic olefin and a monocyclic cyclic olefin. Such polycyclic olefins include norbornene, methylnorbornene, dimethylnorbornene, ethylnorbornene, ethylidenenorbornene, butylnorbornene, dicyclopentadiene, dihydrodicyclopentadiene, methyldicyclopentadiene, dimethyldicyclopentadiene, tetracyclododecene. , Methyltetracyclododecene, dimethylcyclotetradodecene, tricyclopentadiene, tetracyclopentadiene, and the like. Examples of monocyclic olefins include cyclobutene, cyclopentene, cyclooctene, cyclooctadiene, cyclooctatriene, and cyclododecatriene.
 シクロオレフィン系樹脂は、市販品としても入手可能であり、例えば、日本ゼオン社製「ZEONOR」、JSR社製「ARTON」、ポリプラスチック社製「TOPAS」、三井化学社製「APEL」などが挙げられる。 Cycloolefin-based resins are also available as commercial products, such as “ZEONOR” manufactured by ZEON Corporation, “ARTON” manufactured by JSR, “TOPAS” manufactured by Polyplastics, “APEL” manufactured by Mitsui Chemicals, and the like. It is done.
 ポリカーボネート系樹脂は、特に限定されないが、例えば、脂肪族ポリカーボネート、芳香族ポリカーボネート、脂肪族-芳香族ポリカーボネートなどが挙げられる。具体的には、例えば、ビスフェノール類を用いたポリカーボネート(PC)としてビスフェノールAポリカーボネート、分岐ビスフェノールAポリカーボネート、発泡ポリカーボネート、コポリカーボネート、ブロックコポリカーボネート、ポリエステルカーボネート、ポリホスホネートカーボネート、ジエチレングリコールビスアリルカーボネート(CR-39)などが挙げられる。ポリカーボネート系樹脂には、ビスフェノールAポリカーボネートブレンド、ポリエステルブレンド、ABSブレンド、ポリオレフィンブレンド、スチレン―無水マレイン酸共重合体ブレンドのような他成分とブレンドしたものも含まれる。ポリカーボネート樹脂の市販品としては、恵和社製「オプコン」、帝人社製「パンライト」、三菱ガス化学製「ユーピロン(紫外線吸収剤含有ポリカーボネート)」等が挙げられる。 The polycarbonate resin is not particularly limited, and examples thereof include aliphatic polycarbonate, aromatic polycarbonate, and aliphatic-aromatic polycarbonate. Specifically, for example, bisphenol A polycarbonate, branched bisphenol A polycarbonate, foamed polycarbonate, copolycarbonate, block copolycarbonate, polyester carbonate, polyphosphonate carbonate, diethylene glycol bisallyl carbonate (CR-) as polycarbonate (PC) using bisphenols 39). Polycarbonate-based resins also include those blended with other components such as bisphenol A polycarbonate blends, polyester blends, ABS blends, polyolefin blends, styrene-maleic anhydride copolymer blends. Examples of commercially available polycarbonate resin include “OPCON” manufactured by Ewa Co., Ltd., “Panlite” manufactured by Teijin Limited, and “Iupilon (UV absorber-containing polycarbonate)” manufactured by Mitsubishi Gas Chemical.
 透明樹脂フィルムには、表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、透明樹脂フィルム上に形成される硬化樹脂層や透明導電膜等との密着性を向上させるようにしてもよい。また、硬化樹脂層や透明導電膜を形成する前に、必要に応じて溶剤洗浄や超音波洗浄などにより、透明樹脂フィルム表面を除塵、清浄化してもよい。 The transparent resin film is preliminarily subjected to etching treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and undercoating treatment on the surface, and a cured resin layer formed on the transparent resin film or transparent You may make it improve adhesiveness with an electrically conductive film. Moreover, before forming a cured resin layer and a transparent conductive film, you may remove and clean the surface of a transparent resin film by solvent washing | cleaning, ultrasonic washing | cleaning, etc. as needed.
 透明樹脂フィルムの厚みは、透明性が高く外観品位に優れる透明導電性フィルム等を製造させるとともに、ロールtoロール製法での搬送容易性を向上させる観点から、20~150μmの範囲内であることが好ましく、25~100μmの範囲内であることがより好ましく、30~80μmの範囲内であることが更に好ましい。透明樹脂フィルムの厚みが上記範囲の下限未満であると、機械的強度が不足し、フィルム基材をロール状にして硬化樹脂層や透明導電膜を連続的に形成する操作が困難になる場合がある。一方、厚みが上記範囲の上限を超えると、透明導電性フィルム等の耐擦傷性やタッチパネル用としての打点特性の向上が図れない場合がある。 The thickness of the transparent resin film should be in the range of 20 to 150 μm from the viewpoint of producing a transparent conductive film having high transparency and excellent appearance quality and improving the ease of conveyance in the roll-to-roll manufacturing method. Preferably, it is in the range of 25 to 100 μm, more preferably in the range of 30 to 80 μm. When the thickness of the transparent resin film is less than the lower limit of the above range, the mechanical strength is insufficient, and it may be difficult to continuously form a cured resin layer or a transparent conductive film by making the film base into a roll shape. is there. On the other hand, if the thickness exceeds the upper limit of the above range, the scratch resistance of a transparent conductive film or the like, and the dot characteristics for touch panels may not be improved.
 透明樹脂フィルムの含水量は、10mm×10mm当たり5.0×10-3g以下であることが好ましく、10mm×10mm当たり3.0×10-3g以下であることがより好ましく、10mm×10mm当たり1.0×10-3g以下であることが更に好ましい。これにより、透明樹脂フィルムの含水量をさらに制御することができ、透明導電膜の結晶化が十分行われることになるため、より確実に透明導電性フィルムの抵抗値異常を防止するとともに、透明導電膜と基材との密着性をより高めて膜剥がれを防止することが可能となる。 The water content of the transparent resin film is preferably 5.0 × 10 −3 g or less per 10 mm × 10 mm, more preferably 3.0 × 10 −3 g or less per 10 mm × 10 mm, and 10 mm × 10 mm. More preferably, it is 1.0 × 10 −3 g or less. As a result, the water content of the transparent resin film can be further controlled, and the transparent conductive film is sufficiently crystallized. Therefore, the transparent conductive film can be more reliably prevented from having an abnormal resistance value and transparent conductive film. It becomes possible to further enhance the adhesion between the film and the base material and prevent film peeling.
 透明樹脂フィルムの水分率は、0.50重量%以下であることが好ましく、0.40重量%以下であることがより好ましく、0.30重量%以下であることが更に好ましい。 The moisture content of the transparent resin film is preferably 0.50% by weight or less, more preferably 0.40% by weight or less, and further preferably 0.30% by weight or less.
 (硬化樹脂層)
 硬化樹脂層は、透明樹脂フィルムの透明導電膜の面側に設けられた第1の硬化樹脂層と、透明導電膜とは他方の面側に設けられた第2の硬化樹脂層とを含む。透明樹脂フィルムが脆く傷つきやすい場合、透明導電膜の形成や透明導電膜のパターン化または電子機器への搭載などの各工程で傷が入りやすいので、上記のように、透明樹脂フィルムの両面に第1の硬化樹脂層と第2の硬化樹脂層とを形成することが好ましい。
(Cured resin layer)
The cured resin layer includes a first cured resin layer provided on the surface side of the transparent conductive film of the transparent resin film, and a second cured resin layer provided on the other surface side of the transparent conductive film. If the transparent resin film is fragile and easily damaged, scratches are likely to occur in each process such as formation of the transparent conductive film, patterning of the transparent conductive film, or mounting on an electronic device. It is preferable to form one cured resin layer and a second cured resin layer.
 硬化樹脂層は、硬化型樹脂等を硬化させることにより得られる層である。用いる樹脂としては、硬化樹脂層形成後の皮膜として十分な強度を持ち、透明性のあるものを特に制限なく使用できるが、熱硬化型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂、二液混合型樹脂などがあげられる。これらのなかでも紫外線照射による硬化処理にて、簡単な加工操作にて効率よく硬化樹脂層を形成することができる紫外線硬化型樹脂が好適である。 The cured resin layer is a layer obtained by curing a curable resin or the like. As the resin to be used, those having sufficient strength as a film after forming the cured resin layer and having transparency can be used without particular limitation, but thermosetting resin, ultraviolet curable resin, electron beam curable resin, two-component Examples thereof include mixed resins. Among these, an ultraviolet curable resin that can efficiently form a cured resin layer by a simple processing operation by a curing treatment by ultraviolet irradiation is preferable.
 紫外線硬化型樹脂としては、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系等の各種のものがあげられ、紫外線硬化型のモノマー、オリゴマー、ポリマー等が含まれる。好ましく用いられる紫外線硬化型樹脂は、アクリル系樹脂やエポキシ系樹脂やウレタン系樹脂であり、より好ましくはアクリル系樹脂やウレタン系樹脂である。 Examples of the ultraviolet curable resin include polyesters, acrylics, urethanes, amides, silicones, epoxies, and the like, and ultraviolet curable monomers, oligomers, polymers, and the like are included. The ultraviolet curable resin preferably used is an acrylic resin, an epoxy resin, or a urethane resin, and more preferably an acrylic resin or a urethane resin.
 硬化樹脂層は粒子を含んでいてもよい。硬化樹脂層に粒子を配合することにより、硬化樹脂層の表面に隆起を形成することができ、透明導電性フィルムに耐ブロッキング性を好適に付与することができる。 The cured resin layer may contain particles. By blending the particles in the cured resin layer, ridges can be formed on the surface of the cured resin layer, and blocking resistance can be suitably imparted to the transparent conductive film.
 上記粒子としては、各種金属酸化物、ガラス、プラスチックなどの透明性を有するものを特に制限なく使用することができる。例えばシリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム等の無機系粒子、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル系樹脂、アクリル-スチレン共重合体のようなアクリル-スチレン系樹脂、ベンゾグアナミン、メラミン、ポリカーボネート等の各種ポリマーからなる架橋又は未架橋の有機系粒子やシリコーン系粒子などがあげられる。前記粒子は、1種または2種以上を適宜に選択して用いることができるが、有機系粒子が好ましい。有機系粒子としては、屈折率の観点から、アクリル系樹脂及びアクリル-スチレン系樹脂が好ましい。 As the above-mentioned particles, those having transparency such as various metal oxides, glass, and plastics can be used without particular limitation. For example, inorganic particles such as silica, alumina, titania, zirconia, calcium oxide, polymethyl methacrylate, polystyrene, polyurethane, acrylic resin, acrylic-styrene resin such as acrylic-styrene copolymer, benzoguanamine, melamine, polycarbonate, etc. Examples thereof include crosslinked or uncrosslinked organic particles and silicone particles composed of various polymers. The particles can be used by appropriately selecting one type or two or more types, but organic particles are preferable. The organic particles are preferably acrylic resins and acrylic-styrene resins from the viewpoint of refractive index.
 粒子の直径は、硬化樹脂層の隆起の突出度や隆起以外の平坦領域の厚みとの関係などを考慮して適宜設定することができ、特に限定されない。なお、透明導電性フィルムに耐ブロッキング性を十分に付与し、かつヘイズの上昇を十分に抑制するという観点から、粒子の直径は0.1~5μmが好ましく、0.5~4μmがより好ましい。なお、本明細書において、「直径」とは、粒子分布の極大値を示す粒径をいい、フロー式粒子像分析装置(Sysmex社製、製品名「FPTA-3000S」)を用いて、所定条件下(Sheath液:酢酸エチル、測定モード:HPF測定、測定方式:トータルカウント)で測定することによって求められる。測定試料は、粒子を酢酸エチルで1.0重量%に希釈し、超音波洗浄機を用いて均一に分散させたものを用いる。 The diameter of the particle can be appropriately set in consideration of the degree of protrusion of the cured resin layer and the thickness of the flat region other than the protrusion, and is not particularly limited. From the viewpoint of sufficiently imparting blocking resistance to the transparent conductive film and sufficiently suppressing increase in haze, the particle diameter is preferably 0.1 to 5 μm, more preferably 0.5 to 4 μm. In the present specification, “diameter” refers to a particle size indicating a maximum value of particle distribution, and is determined using a flow type particle image analyzer (product name “FPTA-3000S” manufactured by Sysmex). It is calculated | required by measuring under (Sheath liquid: Ethyl acetate, Measurement mode: HPF measurement, Measurement method: Total count). The measurement sample is prepared by diluting the particles to 1.0% by weight with ethyl acetate and uniformly dispersing the particles using an ultrasonic cleaner.
 粒子の含有量は、樹脂組成物の固形分100重量部に対して0.05~1.0重量部であることが好ましく、0.1~0.5重量部であることがより好ましく、0.1~0.2重量部であることがさらに好ましい。硬化樹脂層中の粒子の含有量が小さいと、硬化樹脂層の表面に耐ブロッキング性や易滑性を付与するのに十分な隆起が形成され難くなる傾向がある。一方、粒子の含有量が大きすぎると、粒子による光散乱に起因して透明導電性フィルムのヘイズが高くなり、視認性が低下する傾向がある。また、粒子の含有量が大きすぎると、硬化樹脂層の形成時(溶液の塗布時)に、スジが発生し、視認性が損なわれたり、透明導電膜の電気特性が不均一となったりする場合がある。 The content of the particles is preferably 0.05 to 1.0 part by weight, more preferably 0.1 to 0.5 part by weight, based on 100 parts by weight of the solid content of the resin composition. More preferably, it is 1 to 0.2 parts by weight. When the content of the particles in the cured resin layer is small, there is a tendency that bulges sufficient to impart blocking resistance and slipperiness to the surface of the cured resin layer are hardly formed. On the other hand, if the content of the particles is too large, the haze of the transparent conductive film increases due to light scattering by the particles, and the visibility tends to decrease. On the other hand, when the content of the particles is too large, streaks are generated during the formation of the cured resin layer (at the time of application of the solution), and the visibility may be impaired, or the electrical characteristics of the transparent conductive film may be uneven. There is a case.
 硬化樹脂層は、各硬化型樹脂と必要に応じて加える粒子、架橋剤、開始剤、増感剤などを含む樹脂組成物を透明樹脂フィルム上に塗布し、樹脂組成物が溶剤を含む場合には、溶剤の乾燥を行い、熱、活性エネルギー線またはその両方のいずれかの適用により硬化させることにより得られる。熱は空気循環式オーブンやIRヒーターなど公知の手段を用いることができるがこれらの方法に限定されない。活性エネルギー線の例としては紫外線、電子線、ガンマ線などがあるが特に限定されない。 The cured resin layer is formed by applying a resin composition containing particles, a crosslinking agent, an initiator, a sensitizer and the like to be added to each curable resin as necessary on a transparent resin film, and the resin composition contains a solvent. Is obtained by drying the solvent and curing by application of either heat, active energy rays or both. For the heat, known means such as an air circulation oven or an IR heater can be used, but it is not limited to these methods. Examples of active energy rays include, but are not limited to, ultraviolet rays, electron beams, and gamma rays.
 硬化樹脂層は、上記の材料を用いて、ウェットコーティング法、グラビアコート法やバーコート法などの塗工法、真空蒸着法、スパッタリング法、イオンプレーティング法などにより形成できる。例えば、透明導電膜として酸化スズを含有する酸化インジウム(ITO)を形成する場合、下地層である硬化樹脂層の表面が平滑であると、透明導電膜の結晶化時間を短縮することもできる。かかる観点から、硬化樹脂層はウェットコーティング法により製膜されることが好ましい。 The cured resin layer can be formed by using the above materials by a coating method such as a wet coating method, a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like. For example, in the case of forming indium oxide (ITO) containing tin oxide as the transparent conductive film, the crystallization time of the transparent conductive film can be shortened if the surface of the cured resin layer that is the base layer is smooth. From this point of view, the cured resin layer is preferably formed by a wet coating method.
 硬化樹脂層の厚みは、好ましくは0.5μm~5μmであり、より好ましくは0.7μm~3μmであり、最も好ましくは0.8μm~2μmである。硬化樹脂層の厚みが前記範囲にあると、傷付防止や硬化樹脂層の硬化収縮におけるフィルムシワを防止でき、タッチパネル等の視認性が悪化することを防ぐことができる。 The thickness of the cured resin layer is preferably 0.5 μm to 5 μm, more preferably 0.7 μm to 3 μm, and most preferably 0.8 μm to 2 μm. When the thickness of the cured resin layer is within the above range, it is possible to prevent scratches and film wrinkles in the cured shrinkage of the cured resin layer, and it is possible to prevent the visibility of a touch panel and the like from being deteriorated.
 (光学調整層)
 第1の硬化樹脂層と透明導電膜との間に、1層以上の光学調整層をさらに含むことができる。なお、第1の硬化樹脂層を形成していない場合には、透明樹脂フィルムと透明導電膜との間に、1層以上の光学調整層を含むことができる。光学調整層は、透明導電性フィルムの透過率の上昇や、透明導電膜がパターン化される場合には、パターンが残るパターン部とパターンが残らない開口部の間で透過率差や反射率差を低減でき、視認性に優れた透明導電性フィルムを得るために用いられる。
(Optical adjustment layer)
One or more optical adjustment layers may be further included between the first cured resin layer and the transparent conductive film. In the case where the first cured resin layer is not formed, one or more optical adjustment layers can be included between the transparent resin film and the transparent conductive film. The optical adjustment layer increases the transmittance of the transparent conductive film, or when the transparent conductive film is patterned, the transmittance difference or reflectance difference between the pattern part where the pattern remains and the opening part where the pattern does not remain. Is used to obtain a transparent conductive film excellent in visibility.
 光学調整層は、バインダー樹脂と微粒子とを含むことが好ましい。光学調整層に含まれるバインダー樹脂としては、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、アルキド系樹脂、シロキサン系ポリマー、有機シラン縮合物などが挙げられ、アクリル系樹脂を含む紫外線硬化型樹脂が好ましい。 The optical adjustment layer preferably contains a binder resin and fine particles. Examples of the binder resin included in the optical adjustment layer include acrylic resins, urethane resins, melamine resins, alkyd resins, siloxane polymers, and organic silane condensates, and ultraviolet curable resins including acrylic resins. preferable.
 光学調整層の屈折率は、1.6~1.8であることが好ましく、1.61~1.78であることがより好ましく、1.62~1.75であることが更に好ましい。これにより、透過率差や反射率差を低減でき、視認性に優れた透明導電性フィルムを得ることができる。 The refractive index of the optical adjustment layer is preferably 1.6 to 1.8, more preferably 1.61 to 1.78, and still more preferably 1.62 to 1.75. Thereby, the transmittance | permeability difference and the reflectance difference can be reduced, and the transparent conductive film excellent in visibility can be obtained.
 光学調整層は、平均粒径が1nm~500nmの微粒子を有していてもよい。光学調整層中の微粒子の含有量は0.1重量%~90重量%であることが好ましい。光学調整層に用いられる微粒子の平均粒径は、上述のように1nm~500nmの範囲であることが好ましく、5nm~300nmであることがより好ましい。また、光学調整層中の微粒子の含有量は10重量%~80重量%であることがより好ましく、20重量%~70重量%であることがさらに好ましい。光学調整層中に微粒子を含有することによって、光学調整層自体の屈折率の調整を容易に行うことができる。 The optical adjustment layer may have fine particles having an average particle diameter of 1 nm to 500 nm. The content of fine particles in the optical adjustment layer is preferably 0.1% by weight to 90% by weight. As described above, the average particle diameter of the fine particles used in the optical adjustment layer is preferably in the range of 1 nm to 500 nm, and more preferably 5 nm to 300 nm. Further, the content of the fine particles in the optical adjustment layer is more preferably 10% by weight to 80% by weight, and further preferably 20% by weight to 70% by weight. By containing fine particles in the optical adjustment layer, the refractive index of the optical adjustment layer itself can be easily adjusted.
 微粒子を形成する無機酸化物としては、例えば、酸化ケイ素(シリカ)、中空ナノシリカ、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化ニオブ等の微粒子があげられる。これらの中でも、酸化ケイ素(シリカ)、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化ニオブの微粒子が好ましく、酸化ジルコニウムがより好ましい。これらは1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of inorganic oxides that form fine particles include fine particles of silicon oxide (silica), hollow nanosilica, titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, niobium oxide, and the like. Among these, fine particles of silicon oxide (silica), titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide and niobium oxide are preferable, and zirconium oxide is more preferable. These may be used alone or in combination of two or more.
 光学調整層は、その他の無機物を含有することが可能である。無機物としては、NaF(1.3)、NaAlF(1.35)、LiF(1.36)、MgF(1.38)、CaF(1.4)、BaF(1.3)、BaF(1.3)、LaF(1.55)、CeF(1.63)など(括弧内の数値は屈折率を示す)が挙げられる。 The optical adjustment layer can contain other inorganic substances. The inorganic material, NaF (1.3), Na 3 AlF 6 (1.35), LiF (1.36), MgF 2 (1.38), CaF 2 (1.4), BaF 2 (1.3 ), BaF 2 (1.3), LaF 3 (1.55), CeF (1.63), etc. (the numerical values in parentheses indicate the refractive index).
 光学調整層は、上記の材料を用いて、ウェットコーティング法、グラビアコート法やバーコート法などの塗工法、真空蒸着法、スパッタリング法、イオンプレーティング法などにより形成できる。例えば、透明導電膜として酸化スズを含有する酸化インジウム(ITO)を形成する場合、下地層である光学調整層の表面が平滑であると、透明導電層の結晶化時間を短縮することもできる。かかる観点から、光学調整層はウェットコーティング法により製膜されることが好ましい。 The optical adjustment layer can be formed using the above materials by a coating method such as a wet coating method, a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like. For example, in the case where indium oxide (ITO) containing tin oxide is formed as the transparent conductive film, the crystallization time of the transparent conductive layer can be shortened if the surface of the optical adjustment layer that is the base layer is smooth. From this viewpoint, the optical adjustment layer is preferably formed by a wet coating method.
 光学調整層の厚みは、40nm~150nmであることが好ましく、50nm~130nmであることがより好ましく、70nm~120nmであることがさらに好ましい。光学調整層の厚みが過度に小さいと連続被膜となりにくい。また、光学調整層の厚みが過度に大きいと、透明導電性フィルムの透明性が低下したり、クラックが生じ易くなったりする傾向がある。 The thickness of the optical adjustment layer is preferably 40 nm to 150 nm, more preferably 50 nm to 130 nm, and even more preferably 70 nm to 120 nm. If the thickness of the optical adjustment layer is too small, it is difficult to form a continuous film. Moreover, when the thickness of the optical adjustment layer is excessively large, the transparency of the transparent conductive film tends to be reduced or cracks tend to occur.
 (透明導電膜)
 透明導電膜は、透明樹脂フィルム上に設けることもできるが、透明樹脂フィルムの一方の面側に設けられた第1の硬化樹脂層上又は光学調整層上に設けられることが好ましい。透明導電膜の構成材料は、無機物を含む限り特に限定されず、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステンからなる群より選択される少なくとも1種の金属の金属酸化物が好適に用いられる。当該金属酸化物には、必要に応じて、さらに上記群に示された金属原子を含んでいてもよい。例えば、インジウム・スズ複合酸化物(ITO)、アンチモンを含有する酸化スズ(ATO)などが好ましく用いられる。
(Transparent conductive film)
The transparent conductive film can be provided on the transparent resin film, but is preferably provided on the first cured resin layer or the optical adjustment layer provided on one surface side of the transparent resin film. The constituent material of the transparent conductive film is not particularly limited as long as it contains an inorganic substance. From the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten A metal oxide of at least one selected metal is preferably used. The metal oxide may further contain a metal atom shown in the above group, if necessary. For example, indium / tin composite oxide (ITO), tin oxide containing antimony (ATO), or the like is preferably used.
 透明導電膜の厚みは、特に制限されないが、その表面抵抗を1×10Ω/□以下の良好な導電性を有する連続被膜とするには、厚みを10nm以上とするのが好ましい。膜厚が、厚くなりすぎると透明性の低下などをきたすため、15~35nmであることが好ましく、より好ましくは20~30nmの範囲内である。透明導電膜の厚みが、10nm未満であると膜表面の電気抵抗が高くなり、かつ連続被膜になり難くなる。また、透明導電膜の厚みが、35nmを超えると透明性の低下などをきたす場合がある。 The thickness of the transparent conductive film is not particularly limited, but the thickness is preferably 10 nm or more in order to obtain a continuous film having good conductivity with a surface resistance of 1 × 10 3 Ω / □ or less. The film thickness is preferably 15 to 35 nm, more preferably in the range of 20 to 30 nm, since transparency is lowered when the film thickness becomes too thick. When the thickness of the transparent conductive film is less than 10 nm, the electrical resistance of the film surface increases and it becomes difficult to form a continuous film. Further, when the thickness of the transparent conductive film exceeds 35 nm, the transparency may be lowered.
 透明導電膜の形成方法は、特に限定されず、従来公知の方法を採用することができる。具体的には、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等のドライプロセスを例示できる。また、必要とする膜厚に応じて適宜の方法を採用することもできる。 The formation method of the transparent conductive film is not particularly limited, and a conventionally known method can be adopted. Specific examples include dry processes such as vacuum deposition, sputtering, and ion plating. In addition, an appropriate method can be adopted depending on the required film thickness.
 透明導電膜は、必要に応じて加熱アニール処理(例えば、大気雰囲気下、80~150℃で10~90分間程度)を施して結晶化することができる。透明導電膜を結晶化することで、透明導電膜が低抵抗化されることに加えて、透明性及び耐久性が向上する。非晶質の透明導電膜を結晶質に転化させる手段は、特に限定されないが、空気循環式オーブンやIRヒーターなどが用いられる。 The transparent conductive film can be crystallized by applying a heat annealing treatment (for example, at 80 to 150 ° C. for about 10 to 90 minutes in an air atmosphere) as necessary. By crystallizing the transparent conductive film, the transparency and durability are improved in addition to the resistance of the transparent conductive film being reduced. The means for converting the amorphous transparent conductive film into crystalline is not particularly limited, and an air circulation oven, an IR heater, or the like is used.
 「結晶質」の定義については、透明樹脂フィルム上に透明導電膜が形成された透明導電性フィルムを、20℃、濃度5重量%の塩酸に15分間浸漬した後、水洗・乾燥し、15mm間の端子間抵抗をテスタにて測定を行い、端子間抵抗が10kΩを超えない場合、ITO膜の結晶質への転化が完了したものとする。なお、表面抵抗値の測定は、JIS K7194に準じて、4端子法により測定できる。 Regarding the definition of “crystalline”, a transparent conductive film in which a transparent conductive film is formed on a transparent resin film is immersed in hydrochloric acid having a concentration of 5% by weight at 20 ° C. for 15 minutes, then washed with water and dried for 15 mm. When the inter-terminal resistance is measured with a tester and the inter-terminal resistance does not exceed 10 kΩ, it is assumed that the conversion of the ITO film to crystalline is completed. The surface resistance value can be measured by the 4-terminal method according to JIS K7194.
 また、透明導電膜は、エッチング等によりパターン化してもよい。透明導電膜のパターン化に関しては、従来公知のフォトリソグラフィの技術を用いて行うことができる。エッチング液としては、酸が好適に用いられる。酸としては、例えば、塩化水素、臭化水素、硫酸、硝酸、リン酸等の無機酸、酢酸等の有機酸、およびこれらの混合物、ならびにそれらの水溶液があげられる。例えば、静電容量方式のタッチパネルやマトリックス式の抵抗膜方式のタッチパネルに用いられる透明導電性フィルムにおいては、透明導電膜がストライプ状にパターン化されることが好ましい。なお、エッチングにより透明導電膜をパターン化する場合、先に透明導電膜の結晶化を行うと、エッチングによるパターン化が困難となる場合がある。そのため、透明導電膜のアニール処理は、透明導電膜をパターン化した後に行うことが好ましい。 Further, the transparent conductive film may be patterned by etching or the like. The patterning of the transparent conductive film can be performed using a conventionally known photolithography technique. An acid is preferably used as the etching solution. Examples of the acid include inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid, phosphoric acid, organic acids such as acetic acid, mixtures thereof, and aqueous solutions thereof. For example, in a transparent conductive film used for a capacitive touch panel or a matrix resistive touch panel, the transparent conductive film is preferably patterned in a stripe shape. Note that, when the transparent conductive film is patterned by etching, if the transparent conductive film is first crystallized, patterning by etching may be difficult. Therefore, it is preferable to perform the annealing treatment of the transparent conductive film after patterning the transparent conductive film.
 <キャリアフィルム>
 キャリアフィルムは、透明導電性フィルムの前記透明樹脂フィルムが形成された面側に配置された粘着剤層と保護フィルムとを含み、透明導電性フィルムとキャリアフィルムとを貼りあわせて、キャリアフィルム付き透明導電性フィルムを形成する。キャリアフィルムをキャリアフィルム付き透明導電性フィルムから剥離する際は、粘着剤層は保護フィルムとともに剥離されてもよいし、保護フィルムのみが剥離されてもよい。
<Carrier film>
The carrier film includes a pressure-sensitive adhesive layer and a protective film disposed on the surface side of the transparent conductive film on which the transparent resin film is formed, and the transparent conductive film and the carrier film are bonded together to form a transparent with a carrier film. A conductive film is formed. When peeling a carrier film from a transparent conductive film with a carrier film, an adhesive layer may be peeled with a protective film, or only a protective film may be peeled.
 (保護フィルム)
 保護フィルムは、波長板や偏光板などの他のフィルムと積層される際に剥がされて廃棄されるが、ロールによる巻き取りなどの取り扱い性、含水量等を考慮して、保護フィルムを形成する材料としては、例えば前述した透明樹脂フィルムの材料と同様のものが挙げられる。視認性を良好にする点から、ポリエステル系樹脂、シクロオレフィン系樹脂、ポリカーボネート系樹脂がより好ましいが、高透明性、低吸水性、水分遮断性、熱安定性、等方性等の観点から、非晶性樹脂であるシクロオレフィン系樹脂又はポリカーボネート系樹脂が特に好ましい。ポリエステル系樹脂、シクロオレフィン系樹脂、及びポリカーボネート系樹脂の具体例は、前述の透明樹脂フィルムで記載した通りであるが、その中から水分率を考慮して選択される。これにより、含水率の低い保護フィルムを用いることができ、保護フィルムの含水量をさらに制御することができ、透明導電膜の結晶化が十分行われることになるため、より確実に透明導電性フィルムの抵抗値異常を防止するとともに、透明導電膜と基材との密着性をより高めて膜剥がれを防止することが可能となる。
(Protective film)
The protective film is peeled off and discarded when it is laminated with other films such as a wave plate and a polarizing plate, but the protective film is formed in consideration of handling properties such as winding with a roll, water content, etc. Examples of the material include the same materials as those of the transparent resin film described above. From the viewpoint of improving visibility, polyester-based resins, cycloolefin-based resins, and polycarbonate-based resins are more preferable, but from the viewpoints of high transparency, low water absorption, moisture barrier properties, thermal stability, isotropic properties, etc. A cycloolefin resin or polycarbonate resin, which is an amorphous resin, is particularly preferred. Specific examples of the polyester-based resin, cycloolefin-based resin, and polycarbonate-based resin are as described in the above-described transparent resin film, and are selected in consideration of the moisture content. As a result, a protective film having a low water content can be used, the water content of the protective film can be further controlled, and the transparent conductive film is sufficiently crystallized. It is possible to prevent abnormal peeling of the film and to prevent the film from peeling off by further improving the adhesion between the transparent conductive film and the substrate.
 保護フィルムは、透明樹脂フィルムと同様に、表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、保護フィルム上の粘着剤層等との密着性を向上させるようにしてもよい。また、粘着剤層を形成する前に、必要に応じて溶剤洗浄や超音波洗浄などにより、保護フィルム表面を除塵、清浄化してもよい。 Like the transparent resin film, the protective film is subjected to an etching process such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and undercoating on the surface, and a pressure-sensitive adhesive layer on the protective film, etc. You may make it improve adhesiveness. In addition, before forming the pressure-sensitive adhesive layer, the surface of the protective film may be removed and cleaned by solvent cleaning or ultrasonic cleaning as necessary.
 保護フィルムの含水量は、10mm×10mm当たり1.0×10-3g以下であることが好ましく、10mm×10mm当たり0.9×10-3g以下であることがより好ましく、10mm×10mm当たり0.5×10-3g以下であることが更に好ましい。なお、ここでの水分量は実測値につき環境次第で変動するため、スパッタ製膜や結晶化工程に供する時点で前述の範囲を満たすことが好ましい。これにより、透明導電性フィルムの抵抗値異常を防止するとともに、透明導電膜と基材との密着性を高めて膜剥がれを防止することができる。また、これにより、水分除去のため、前処理として加熱工程に通す等の成膜前の脱ガス処理が不要となるため、生産効率が向上する。 The moisture content of the protective film is preferably 1.0 × 10 −3 g or less per 10 mm × 10 mm, more preferably 0.9 × 10 −3 g or less per 10 mm × 10 mm, per 10 mm × 10 mm. More preferably, it is 0.5 × 10 −3 g or less. Note that the amount of moisture here varies depending on the environment with respect to the actually measured value, and therefore it is preferable to satisfy the above-mentioned range at the time of being subjected to sputtering film formation or crystallization process. Thereby, while preventing resistance value abnormality of a transparent conductive film, the adhesiveness of a transparent conductive film and a base material can be improved and film peeling can be prevented. This also eliminates the need for degassing before film formation, such as passing through a heating step as a pretreatment for removing moisture, thus improving production efficiency.
 保護フィルムの水分率(含水率)は、0.50重量%以下であることが好ましく、0.40重量%以下であることがより好ましく、0.30重量%以下であることが更に好ましい。これにより、含水率の低い保護フィルムを用いることができ、保護フィルムの含水量をさらに制御することができ、透明導電膜の結晶化が十分行われることになるため、より確実に透明導電性フィルムの抵抗値異常を防止するとともに、透明導電膜と基材との密着性をより高めて膜剥がれを防止することが可能となる。 The moisture content (water content) of the protective film is preferably 0.50% by weight or less, more preferably 0.40% by weight or less, and further preferably 0.30% by weight or less. As a result, a protective film having a low water content can be used, the water content of the protective film can be further controlled, and the transparent conductive film is sufficiently crystallized. It is possible to prevent abnormal peeling of the film and to prevent the film from peeling off by further improving the adhesion between the transparent conductive film and the substrate.
 保護フィルムの厚みは、1~150μmが好ましく、2~120μmがより好ましく、5~100μmが更に好ましい。保護フィルムの厚みが薄いほど、保護フィルムの含水量をさらに抑制することができ、透明導電膜の結晶化が十分行われることになるため、より確実に透明導電性フィルムの抵抗値異常を防止するとともに、透明導電膜と基材との密着性をより高めて膜剥がれを防止することが可能となる。前記範囲とすることで、ロールtoロール製法での搬送容易性を高めることができる。また、ロールtoロール製法において透明導電性フィルム積層体の破断を防止する観点から、保護フィルムの厚みは透明樹脂フィルムの厚み以上であることが好ましい。 The thickness of the protective film is preferably 1 to 150 μm, more preferably 2 to 120 μm, still more preferably 5 to 100 μm. As the thickness of the protective film is thinner, the moisture content of the protective film can be further suppressed, and the transparent conductive film is sufficiently crystallized, so that the resistance value abnormality of the transparent conductive film can be more reliably prevented. At the same time, it becomes possible to further improve the adhesion between the transparent conductive film and the substrate to prevent film peeling. By setting it as the said range, the conveyance ease by the roll to roll manufacturing method can be improved. Moreover, it is preferable that the thickness of a protective film is more than the thickness of a transparent resin film from a viewpoint of preventing the fracture | rupture of a transparent conductive film laminated body in a roll to roll manufacturing method.
 (導電層)
 帯電防止の観点から、前記保護フィルムの前記粘着剤層が形成された面と反対の面側に、更に導電層を備えることが好ましい。導電層は、好ましくは導電性ポリマーを含む導電性組成物を塗工することにより形成させることができる。
(Conductive layer)
From the viewpoint of antistatic, it is preferable that a conductive layer is further provided on the surface of the protective film opposite to the surface on which the pressure-sensitive adhesive layer is formed. The conductive layer can be preferably formed by applying a conductive composition containing a conductive polymer.
 上記導電性組成物に含まれる導電性ポリマーとしては、例えば、ポリアセチレン系ポリマー、ポリパラフェニレン系ポリマー、ポリアニリン系ポリマー、ポリチオフェン系ポリマー、ポリパラフェニレンビニレン系ポリマー、ポリピロール系ポリマー、ポリフェニレン系ポリマー、アクリル系ポリマーで変性されたポリエステル系ポリマー等が挙げられる。好ましくは、導電性ポリマーは、ポリアセチレン系ポリマー、ポリパラフェニレン系ポリマー、ポリアニリン系ポリマー、ポリチオフェン系ポリマー、ポリパラフェニレンビニレン系ポリマーおよびポリピロール系ポリマーからなる群より選ばれた1種以上のポリマーを含む。 Examples of the conductive polymer contained in the conductive composition include a polyacetylene polymer, a polyparaphenylene polymer, a polyaniline polymer, a polythiophene polymer, a polyparaphenylene vinylene polymer, a polypyrrole polymer, a polyphenylene polymer, and an acrylic polymer. Examples thereof include polyester polymers modified with a polymer. Preferably, the conductive polymer includes at least one polymer selected from the group consisting of a polyacetylene polymer, a polyparaphenylene polymer, a polyaniline polymer, a polythiophene polymer, a polyparaphenylene vinylene polymer, and a polypyrrole polymer. .
 より好ましくは、上記導電性ポリマーとしてポリチオフェン系ポリマーが用いられる。ポリチオフェン系ポリマーを用いれば、透明性および化学的安定性に優れる導電層を形成することができる。ポリチオフェン系ポリマーの具体例としては、ポリチオフェン;ポリ(3-ヘキシルチオフェン)等のポリ(3-C1-8アルキル-チオフェン);ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ[3,4-(1,2-シクロヘキシレン)ジオキシチオフェン]等のポリ(3,4-(シクロ)アルキレンジオキシチオフェン);ポリチエニレンビニレン等が挙げられる。 More preferably, a polythiophene polymer is used as the conductive polymer. If a polythiophene polymer is used, a conductive layer excellent in transparency and chemical stability can be formed. Specific examples of the polythiophene polymer include polythiophene; poly (3-C 1-8 alkyl-thiophene) such as poly (3-hexylthiophene); poly (3,4-ethylenedioxythiophene) (PEDOT), poly ( 3,4-propylenedioxythiophene), poly [3,4- (1,2-cyclohexylene) dioxythiophene] and other poly (3,4- (cyclo) alkylenedioxythiophene); polythienylene vinylene and the like Is mentioned.
 上記導電層層は、任意の適切な方法により、形成され得る。導電性組成物は、例えば、上記導電性ポリマーと、任意の適切な溶媒(例えば、水)とを含み、該溶媒中に該導電性ポリマーが分散した分散液である。該分散液中の導電性ポリマーの分散濃度は、好ましくは0.01重量%~50重量%であり、より好ましくは0.01重量%~30重量%である。 The conductive layer can be formed by any appropriate method. The conductive composition is, for example, a dispersion liquid containing the conductive polymer and any appropriate solvent (for example, water), and the conductive polymer dispersed in the solvent. The dispersion concentration of the conductive polymer in the dispersion is preferably 0.01 wt% to 50 wt%, more preferably 0.01 wt% to 30 wt%.
 上記導電性組成物の塗布方法としては、任意の適切な方法を採用し得る。例えば、バーコート法、ロールコート法、グラビアコート法、ロッドコート法、スロットオリフィスコート法、カーテンコート法、ファウンテンコート法、コンマコート法が挙げられる。乾燥温度としては、代表的には50℃以上、好ましくは90℃以上、さらに好ましくは110℃以上である。乾燥温度は、好ましくは200℃以下、さらに好ましくは180℃以下である。乾燥時間は、好ましくは1分~1時間、より好ましくは1分~30分、さらに好ましくは1分~10分である。 Any appropriate method can be adopted as a method for applying the conductive composition. Examples thereof include a bar coating method, a roll coating method, a gravure coating method, a rod coating method, a slot orifice coating method, a curtain coating method, a fountain coating method, and a comma coating method. The drying temperature is typically 50 ° C. or higher, preferably 90 ° C. or higher, more preferably 110 ° C. or higher. The drying temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. The drying time is preferably 1 minute to 1 hour, more preferably 1 minute to 30 minutes, and even more preferably 1 minute to 10 minutes.
 上記導電層の厚みは、好ましくは1nm~500nmであり、より好ましくは1nm~400nmであり、さらに好ましくは1nm~300nmである。このような範囲であれば、良好に電気的特性を制御し得る導電層が形成される。 The thickness of the conductive layer is preferably 1 nm to 500 nm, more preferably 1 nm to 400 nm, and still more preferably 1 nm to 300 nm. If it is such a range, the conductive layer which can control an electrical property favorably will be formed.
 上記導電性組成物は、必要に応じて任意の適切な添加剤をさらに含み得る。添加剤の具体例としては、分散安定剤、界面活性剤、消泡剤等が挙げられる。使用される添加剤の種類および量は、目的に応じて適宜設定され得る。 The conductive composition may further include any appropriate additive as necessary. Specific examples of the additive include a dispersion stabilizer, a surfactant, and an antifoaming agent. The kind and amount of the additive used can be appropriately set according to the purpose.
  (粘着剤層)
 粘着剤層としては、透明性を有するものであれば特に制限なく使用できる。具体的には、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系、フッ素系、天然ゴム、合成ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、光学的透明性に優れ、適度な濡れ性、凝集性および接着性等の粘着特性を示し、耐候性や耐熱性等にも優れるという点からは、アクリル系粘着剤が好ましく用いられる。
(Adhesive layer)
The pressure-sensitive adhesive layer can be used without particular limitation as long as it has transparency. Specifically, for example, acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl ethers, vinyl acetate / vinyl chloride copolymers, modified polyolefins, epoxy systems, fluorine systems, natural rubbers, rubbers such as synthetic rubbers, etc. Those having the above polymer as a base polymer can be appropriately selected and used. In particular, an acrylic pressure-sensitive adhesive is preferably used from the viewpoint that it is excellent in optical transparency, exhibits adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and is excellent in weather resistance and heat resistance.
 粘着剤層の形成方法は特に制限されず、剥離ライナーに粘着剤組成物を塗布し、乾燥後、基材フィルムに転写する方法(転写法)、保護フィルムに、直接、粘着剤組成物を塗布、乾燥する方法(直写法)や共押出しによる方法等があげられる。なお粘着剤には、必要に応じて粘着付与剤、可塑剤、充填剤、酸化防止剤、紫外線吸収剤、シランカップリング剤等を適宜に使用することもできる。 The method for forming the pressure-sensitive adhesive layer is not particularly limited. The pressure-sensitive adhesive composition is applied to a release liner, dried and then transferred to a base film (transfer method), and the pressure-sensitive adhesive composition is directly applied to a protective film. And a drying method (direct copying method) and a co-extrusion method. In addition, a tackifier, a plasticizer, a filler, an antioxidant, an ultraviolet absorber, a silane coupling agent, and the like can be appropriately used as the pressure-sensitive adhesive.
 粘着剤層の好ましい厚みは5μm~100μmであり、より好ましくは10μm~50μmであり、より好ましくは15μmから35μmである。 The preferable thickness of the pressure-sensitive adhesive layer is 5 μm to 100 μm, more preferably 10 μm to 50 μm, and more preferably 15 μm to 35 μm.
 <タッチパネル>
 キャリアフィルム付き透明導電性フィルムからキャリアフィルム又は保護フィルムを剥離した透明導電性フィルムは、例えば、静電容量方式、抵抗膜方式などのタッチパネルなどの電子機器の透明電極として好適に適用できる。
<Touch panel>
The transparent conductive film which peeled the carrier film or the protective film from the transparent conductive film with a carrier film can be suitably applied as a transparent electrode of an electronic device such as a capacitive touch panel or a resistive touch panel.
 タッチパネルの形成に際しては、前述した透明導電性フィルムの一方または両方の主面に透明な粘着剤層を介して、ガラスや高分子フィルム等の他の基材等を貼り合わせることができる。例えば、透明導電性フィルムの透明導電膜が形成されていない側の面に透明な粘着剤層を介して透明基体が貼り合わせられた積層体を形成してもよい。透明基体は、1枚の基体フィルムからなっていてもよく、2枚以上の基体フィルムの積層体(例えば透明な粘着剤層を介して積層したもの)であってもよい。また、透明導電性フィルムに貼り合わせる透明基体の外表面にハードコート層を設けることもできる。透明導電性フィルムと基材との貼り合わせに用いられる粘着剤層としては、前述の通り、透明性を有するものであれば特に制限なく使用できる。 When forming the touch panel, another base material such as glass or a polymer film can be bonded to one or both main surfaces of the transparent conductive film described above via a transparent adhesive layer. For example, you may form the laminated body by which the transparent base | substrate was bonded together through the transparent adhesive layer on the surface by which the transparent conductive film of the transparent conductive film is not formed. The transparent substrate may be composed of a single substrate film or may be a laminate of two or more substrate films (for example, laminated via a transparent adhesive layer). A hard coat layer can also be provided on the outer surface of the transparent substrate to be bonded to the transparent conductive film. As described above, the pressure-sensitive adhesive layer used for bonding the transparent conductive film and the substrate can be used without particular limitation as long as it has transparency.
 以下、本発明に関して実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
 <評価>
 (1)厚みの測定
 厚みは、1μm以上の厚みを有するものに関しては、マイクロゲージ式厚み計(ミツトヨ社製)にて測定を行った。また、1μm未満の厚みは、瞬間マルチ測光システム(大塚電子社製 MCPD2000)で測定した。ITO膜等の厚みのようにナノサイズの厚みは、FB-2000A(株式会社日立ハイテクノロジーズ製)にて断面観察用サンプルを作製し、断面TEM観察はHF-2000(株式会社日立ハイテクノロジーズ製)を用いて膜厚を測定した。評価した結果を表1に示す。
<Evaluation>
(1) Measurement of thickness Thickness was measured with a micro gauge thickness meter (Mitutoyo Co., Ltd.) for those having a thickness of 1 μm or more. The thickness of less than 1 μm was measured with an instantaneous multi-photometry system (MCPD2000 manufactured by Otsuka Electronics Co., Ltd.). For nano-sized thicknesses such as the thickness of ITO films, etc., a sample for cross-sectional observation is prepared with FB-2000A (manufactured by Hitachi High-Technologies Corporation). Was used to measure the film thickness. The evaluation results are shown in Table 1.
 (2)含水量及び水分率(含水率)の測定
 保護フィルムを10mm×10mm□のサンプルに切り出し、加熱気化装置(三菱化学アナリテック,VA-200型)に入れ、150℃で加熱したキャリアガスを滴定セル内(三菱化学アナリテック, CA-200型)に導入し、カールフィッシャー法(気化法)により、加熱中の水分放出量を測定して、含水量及び水分率を測定した。なお、水分率とは1g当たりの水分量であり、含水量と同様に算出することが可能である。透明樹脂フィルムについても、前記と同様の方法で含水量及び水分率を測定した。評価した結果を表1に示す。
(2) Measurement of moisture content and moisture content (moisture content) The protective film was cut into a 10 mm x 10 mm square sample, placed in a heating vaporizer (Mitsubishi Chemical Analytech, model VA-200), and heated at 150 ° C. Was introduced into a titration cell (Mitsubishi Chemical Analytech, CA-200 type), and the amount of water released during heating was measured by the Karl Fischer method (vaporization method) to determine the water content and moisture content. The moisture content is the amount of moisture per gram, and can be calculated in the same manner as the moisture content. For the transparent resin film, the water content and moisture content were measured in the same manner as described above. The evaluation results are shown in Table 1.
 (3)到達抵抗値の測定
 キャリアフィルム付き透明導電性フィルムを熱風循環式オーブンにより120℃で20, 30, 40分間加熱処理を実施した際の到達抵抗値を測定した。表面抵抗は、JIS K7194に準じて、四端子法によって測定した。評価した結果を表1に示す。
(3) Measurement of ultimate resistance value The ultimate resistance value was measured when the transparent conductive film with a carrier film was subjected to heat treatment at 120 ° C. for 20, 30, and 40 minutes using a hot air circulation oven. The surface resistance was measured by the four probe method according to JIS K7194. The evaluation results are shown in Table 1.
 (4)表面抵抗値の標準偏差
 前記到達抵抗値の測定において、120℃で30分加熱処理を実施した際のキャリアフィルム付き透明導電性フィルムの表面抵抗値を、幅方向に15cm間隔で5点測定し、その標準偏差を求めた。評価した結果を表1に示す。
(4) Standard deviation of surface resistance value In the measurement of the ultimate resistance value, the surface resistance value of the transparent conductive film with a carrier film at the time of carrying out the heat treatment at 120 ° C. for 30 minutes is 5 points at intervals of 15 cm in the width direction. The standard deviation was measured. The evaluation results are shown in Table 1.
 (5)結晶化速度
 非晶質の透明導電膜が結晶化する結晶化速度は、前記到達抵抗値の推移により評価した。尚、ここでは保護フィルム無しの透明導電性フィルム(参考例1)を結晶化速度の基準値とした。評価した結果を表1に示す。
(5) Crystallization speed The crystallization speed at which the amorphous transparent conductive film crystallizes was evaluated by the transition of the ultimate resistance value. Here, the transparent conductive film without the protective film (Reference Example 1) was used as the reference value for the crystallization speed. The evaluation results are shown in Table 1.
   ○:結晶化速度が基準値と同じ程度
   ×:結晶化速度が基準値より遅い
○: The crystallization speed is the same as the reference value. ×: The crystallization speed is slower than the reference value.
 (6)密着性
 JIS K-5600に準拠して測定を行った。キャリアフィルム付き透明導電性フィルムを熱風循環式オーブンにより130℃で90分間加熱処理を実施した後、サンプルを5cm角に切り出し、透明導電膜(ITO)面を約1mm間隔で縦横11本づつカッターで傷付けて、100マスを作成した。その上にセロハンテープ(セキスイ社製、♯252)を貼り、ヘラで10往復させて圧着させた後、スナップをかけて急速にテープを剥がし、1マスの1/4以上の面積が剥がれた場合をカウントして、透明導電膜の剥れの有無を確認した。なお、ヘラ圧着及び剥がしは方向を変えて2回繰り返し、2回目の圧着はセロハンテープを90°回転させて行った。評価した結果を表1に示す。 
(6) Adhesiveness Measured according to JIS K-5600. After heat-treating the transparent conductive film with a carrier film at 130 ° C. for 90 minutes in a hot-air circulating oven, the sample is cut into 5 cm square, and the transparent conductive film (ITO) surface is cut by eleven vertical and horizontal cutters at about 1 mm intervals. Scratched to create 100 squares. When cellophane tape (Sekisui Co., Ltd., # 252) is applied on top of it, reciprocated 10 times with a spatula, and then snapped, the tape is peeled off rapidly and an area of 1/4 or more of one square is peeled off And the presence or absence of peeling of the transparent conductive film was confirmed. The spatula pressing and peeling were repeated twice while changing the direction, and the second pressing was performed by rotating the cellophane tape by 90 °. The evaluation results are shown in Table 1.
   ○:剥がれが無く(5/100以下)、密着性が良好
   ×:剥がれが有り(5/100より大きい)、密着性が悪い
○: No peeling (5/100 or less), good adhesion ×: Peeling (greater than 5/100), poor adhesion
 [実施例1]
 (硬化樹脂層の形成)
 紫外線硬化性樹脂組成物(DIC社製 商品名「UNIDIC(登録商標)RS29-120」、ウレタン系多官能ポリアクリレート)を100重量部と、直径が3μmである架橋アクリル・スチレン系球状粒子(積水樹脂社製 「SSX105」)を0.2重量部とを含む、球状粒子入り硬化性樹脂組成物を、厚み50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)、面内の複屈折率0.0001」の一方の面に塗布し、その表面から紫外線を照射して、厚み1μmの第2の硬化樹脂層を形成した。ポリシクロオレフィンフィルムの他方の面に、球状粒子を含まない以外は上記と同様の方法で、厚みが1μmとなる様に第1の硬化樹脂層を形成した。
[Example 1]
(Formation of cured resin layer)
100 parts by weight of an ultraviolet curable resin composition (trade name “UNIDIC (registered trademark) RS29-120” manufactured by DIC, urethane-based polyfunctional polyacrylate), and crosslinked acrylic / styrene-based spherical particles having a diameter of 3 μm (Sekisui Resin Co., Ltd. “SSX105”) containing 0.2 part by weight of a spherical particle-containing curable resin composition, a 50 μm-thick polycycloolefin film (trade name “ZEONOR (registered trademark) manufactured by Nippon Zeon, It was applied to one surface having a birefringence of 0.0001 and irradiated with ultraviolet rays from the surface to form a second cured resin layer having a thickness of 1 μm. Spherical particles were formed on the other surface of the polycycloolefin film. A first cured resin layer was formed by the same method as above except that the thickness was 1 μm.
 (光学調整層の形成)
 両面に硬化樹脂層が形成されたポリシクロオレフィンフィルムの第1の硬化樹脂層面側に光学調整層として屈折率1.62のジルコニア粒子含有紫外線硬化型組成物(JSR社製 商品名「オプスタ―Z7412」を塗布し、塗布層を形成した。次いで、80℃で3分間乾燥したのち、直ちに塗布層が形成された側からオゾンタイプ高圧水銀灯(80W/cm、15cm集光型:積算光量300mj)で塗布層に紫外線を照射して、厚みが0.1μmとなるように光学調整層を形成した。
(Formation of optical adjustment layer)
A zirconia particle-containing ultraviolet curable composition having a refractive index of 1.62 as an optical adjustment layer on the first cured resin layer side of the polycycloolefin film having cured resin layers formed on both sides (trade name “OPSTA Z7412 manufactured by JSR Corporation”). Then, after drying at 80 ° C. for 3 minutes, immediately from the side on which the coating layer was formed with an ozone type high pressure mercury lamp (80 W / cm, 15 cm condensing type: integrated light quantity 300 mj) The coating layer was irradiated with ultraviolet rays to form an optical adjustment layer so that the thickness was 0.1 μm.
 (透明導電膜の形成)
 平行平板型の巻取式マグネトロンスパッタ装置に酸化インジウムと酸化スズとを90:10の重量比で含有する焼結体ターゲットを装着し、基材を搬送しながら、真空排気により、水の分圧が5×10-4Paとなるまで真空排気を行った。その後、アルゴンガスおよび酸素ガスの導入量を調整し、搬送速度7.7m/分、搬送張力40~120Nで基材を搬送しながら、光学調整層面(第1の硬化樹脂層)に出力12.5kWでDCスパッタリングにより成膜を行い、厚み22nmのITO膜を形成した。得られたITOの表面抵抗を四端子法により測定したところ、300Ω/□であった。
(Formation of transparent conductive film)
A parallel plate type take-up magnetron sputtering apparatus is equipped with a sintered compact target containing indium oxide and tin oxide in a weight ratio of 90:10, and the partial pressure of water is evacuated while conveying the substrate. Was evacuated until the pressure became 5 × 10 −4 Pa. Thereafter, the amounts of argon gas and oxygen gas introduced are adjusted, and the substrate is conveyed at a conveyance speed of 7.7 m / min and a conveyance tension of 40 to 120 N, and output to the optical adjustment layer surface (first cured resin layer). Film formation was performed by DC sputtering at 5 kW to form an ITO film having a thickness of 22 nm. The surface resistance of the obtained ITO was measured by the four probe method and found to be 300Ω / □.
 (キャリアフィルムの形成)
 通常の溶液重合により、ブチルアクリレート/アクリル酸=100/6(重量比)にて重量平均分子量60万のアクリル系ポリマーを得た。このアクリル系ポリマー100重量部に対し、エポキシ系架橋剤(三菱瓦斯化学製 商品名「テトラッドC(登録商標)」)6重量部を加えてアクリル系粘着剤を準備した。保護フィルムとして厚さ50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)に、前記アクリル系粘着剤を片面に塗工し、150℃で90秒間加熱して、厚さ10μmの粘着剤層を形成した。次いで、前記粘着剤層の表面に、片面にシリコーン処理を施したPET剥離ライナー(厚さ25μm)のシリコーン処理面を貼り合わせ、50℃で2日間保存して、剥離ライナー付きキャリアフィルムを作製した。尚、使用時には、前記剥離ライナーは除去して、キャリアフィルムを使用した。
(Formation of carrier film)
By normal solution polymerization, an acrylic polymer having a weight average molecular weight of 600,000 was obtained with butyl acrylate / acrylic acid = 100/6 (weight ratio). An acrylic pressure-sensitive adhesive was prepared by adding 6 parts by weight of an epoxy-based crosslinking agent (trade name “Tetrad C (registered trademark)” manufactured by Mitsubishi Gas Chemical) to 100 parts by weight of the acrylic polymer. As a protective film, a polycycloolefin film having a thickness of 50 μm (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) is coated with the acrylic adhesive on one side and heated at 150 ° C. for 90 seconds to obtain a thickness. A 10 μm pressure-sensitive adhesive layer was formed. Next, the surface of the pressure-sensitive adhesive layer was bonded with a silicone-treated surface of a PET release liner (thickness 25 μm) having a silicone treatment on one side and stored at 50 ° C. for 2 days to prepare a carrier film with a release liner. . In use, the release liner was removed and a carrier film was used.
 (キャリアフィルム付き透明導電性フィルムの形成)
 透明導電性フィルムの透明導電膜が形成されていない面側に、キャリアフィルムの粘着剤層付き保護フィルムを積層し、キャリアフィルム付き透明導電性フィルムを作製した。
(Formation of transparent conductive film with carrier film)
A protective film with a pressure-sensitive adhesive layer of a carrier film was laminated on the surface side of the transparent conductive film where the transparent conductive film was not formed, to prepare a transparent conductive film with a carrier film.
 [実施例2~6]
 実施例1において、透明樹脂フィルム及び保護フィルムの基材及び厚みを表1のように変更したこと以外は、実施例1と同様の方法でキャリアフィルム付き透明導電性フィルムを作製した。なお、表1に記載された基材について、PETは、ポリエチレンテレフタレートフィルム(三菱樹脂株式会社製、T612E25)、PCは、ポリカーボネート樹脂(帝人製 商品名「パンライト」)を使用した。
[Examples 2 to 6]
In Example 1, the transparent conductive film with a carrier film was produced by the same method as Example 1 except having changed the substrate and thickness of a transparent resin film and a protective film as shown in Table 1. In addition, about the base material described in Table 1, PET used the polyethylene terephthalate film (Mitsubishi Resin Co., Ltd. make, T612E25), PC used polycarbonate resin (Teijin brand name "Panlite").
 [比較例1]
 実施例1において、保護フィルムとして、ポリシクロオレフィンフィルムを用いる代わりに、ポリエチレンテレフタレートフィルム(三菱樹脂株式会社製、T612E25)を用いたこと以外は、実施例1と同様の方法でキャリアフィルム付き透明導電性フィルムを作製した。
[Comparative Example 1]
In Example 1, instead of using a polycycloolefin film as a protective film, a transparent conductive film with a carrier film was prepared in the same manner as in Example 1 except that a polyethylene terephthalate film (T612E25, manufactured by Mitsubishi Plastics, Inc.) was used. A conductive film was prepared.
 [比較例2~3]
 実施例1において、保護フィルムの基材及び厚みを表1のように変更したこと以外は、実施例1と同様の方法でキャリアフィルム付き透明導電性フィルムを作製した。なお、表1に記載された基材について、PETは、ポリエチレンテレフタレートフィルム(三菱樹脂株式会社製、T612E25)、PCは、ポリカーボネート樹脂(帝人製 商品名「ピュアエース」)を使用した。
[Comparative Examples 2 to 3]
In Example 1, the transparent conductive film with a carrier film was produced by the method similar to Example 1 except having changed the base material and thickness of the protective film as shown in Table 1. In addition, about the base material described in Table 1, PET used the polyethylene terephthalate film (Mitsubishi Resin Co., Ltd. make, T612E25), PC used polycarbonate resin (Teijin brand name "Pure Ace").
 [参考例1]
 実施例1において、キャリアフィルムを形成せずに、透明導電性フィルムのみを作製した。
[Reference Example 1]
In Example 1, only a transparent conductive film was produced without forming a carrier film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (結果及び考察)
 実施例1~6のキャリアフィルム付き透明導電性フィルムでは、120℃で約20分間加熱後に非晶質から結晶質への結晶化が完了し、到達抵抗値(表面抵抗値)のバラつきも小さく、到達抵抗値は低かった。基準(参考例1)に対する結晶化速度も良好な結果が得られた。また、透明導電膜との密着性も高く膜剥がれが発生しなかった。一方、比較例1~3のキャリアフィルム付き透明導電性フィルムでは、120℃で約40分間加熱後であっても非晶質から結晶質への結晶化が完了していないものもあり、到達抵抗値(表面抵抗値)のバラつきも大きく、到達抵抗値は高かった。基準(参考例1)に対する結晶化速度も遅かった。また、透明導電膜との密着性も低く膜剥がれが発生した。
(Results and discussion)
In the transparent conductive film with a carrier film of Examples 1 to 6, crystallization from amorphous to crystalline was completed after heating at 120 ° C. for about 20 minutes, and the variation in ultimate resistance value (surface resistance value) was small, The ultimate resistance value was low. Good results were also obtained for the crystallization rate relative to the reference (Reference Example 1). Moreover, the adhesiveness with a transparent conductive film was also high, and film peeling did not occur. On the other hand, some of the transparent conductive films with carrier films of Comparative Examples 1 to 3 were not completely crystallized from amorphous to crystalline even after being heated at 120 ° C. for about 40 minutes. The value (surface resistance value) varied greatly and the ultimate resistance value was high. The crystallization rate relative to the reference (Reference Example 1) was also slow. Moreover, the adhesiveness with a transparent conductive film was also low, and film peeling occurred.
  1  保護フィルム
  2  粘着剤層
  3  透明樹脂フィルム
  4  透明導電膜
  5  第2の硬化樹脂層
  6  第1の硬化樹脂層
  7  光学調整層
  10  キャリアフィルム
  20  透明導電性フィルム
 
 
 
DESCRIPTION OF SYMBOLS 1 Protective film 2 Adhesive layer 3 Transparent resin film 4 Transparent electrically conductive film 5 2nd cured resin layer 6 1st cured resin layer 7 Optical adjustment layer 10 Carrier film 20 Transparent conductive film

Claims (8)

  1.  透明樹脂フィルムと、透明導電膜とを含む透明導電性フィルムと、
     前記透明導電性フィルムの前記透明樹脂フィルムが形成された面側に配置された粘着剤層と保護フィルムとを含むキャリアフィルムと、を含むキャリアフィルム付き透明導電性フィルムであって、
     前記透明導電膜は、インジウム・スズ複合酸化物であり、
     前記保護フィルムの含水量は、10mm×10mm当たり1.0×10-3g以下であるキャリアフィルム付き透明導電性フィルム。
    A transparent conductive film including a transparent resin film and a transparent conductive film;
    A transparent conductive film with a carrier film comprising a carrier film comprising a pressure-sensitive adhesive layer and a protective film disposed on the surface side of the transparent conductive film on which the transparent resin film is formed,
    The transparent conductive film is an indium-tin composite oxide,
    A transparent conductive film with a carrier film, wherein the water content of the protective film is 1.0 × 10 −3 g or less per 10 mm × 10 mm.
  2.  前記透明樹脂フィルムは、前記透明導電膜の面側に設けられた第1の硬化樹脂層と、前記透明導電膜とは反対の面側に設けられた第2の硬化樹脂層とを有する請求項1に記載のキャリアフィルム付き透明導電性フィルム。 The said transparent resin film has the 1st cured resin layer provided in the surface side of the said transparent conductive film, and the 2nd cured resin layer provided in the surface side opposite to the said transparent conductive film. The transparent conductive film with a carrier film of 1.
  3.  前記第1の硬化樹脂層と前記透明導電膜との間に更に1層以上の光学調整層を備える請求項2に記載のキャリアフィルム付き透明導電性フィルム。 The transparent conductive film with a carrier film according to claim 2, further comprising one or more optical adjustment layers between the first cured resin layer and the transparent conductive film.
  4.  前記保護フィルムの厚みは、1μm~150μmである請求項1~3いずれか1項に記載のキャリアフィルム付き透明導電性フィルム。 The transparent conductive film with a carrier film according to any one of claims 1 to 3, wherein the protective film has a thickness of 1 µm to 150 µm.
  5.  前記保護フィルムは、シクロオレフィン系樹脂またはポリカーボネート系樹脂からなる請求項1~4いずれか1項に記載のキャリアフィルム付き透明導電性フィルム。 The transparent conductive film with a carrier film according to any one of claims 1 to 4, wherein the protective film comprises a cycloolefin resin or a polycarbonate resin.
  6.  前記保護フィルムの水分率は、0.50重量%以下である請求項1~5いずれか1項に記載のキャリアフィルム付き透明導電性フィルム。 The transparent conductive film with a carrier film according to any one of claims 1 to 5, wherein the moisture content of the protective film is 0.50% by weight or less.
  7.  前記保護フィルムの前記粘着剤層が形成された面と反対の面側に、更に導電層を備える請求項1~6のいずれか1項に記載のキャリアフィルム付き透明導電性フィルム。 The transparent conductive film with a carrier film according to any one of claims 1 to 6, further comprising a conductive layer on the surface of the protective film opposite to the surface on which the pressure-sensitive adhesive layer is formed.
  8.  請求項1~7のいずれか1項に記載のキャリアフィルム付き透明導電性フィルムを含む、タッチパネル。 A touch panel comprising the transparent conductive film with a carrier film according to any one of claims 1 to 7.
PCT/JP2016/087225 2016-12-14 2016-12-14 Transparent conductive film with carrier film, and touch panel using transparent conductive film WO2018109867A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197016555A KR20190094172A (en) 2016-12-14 2016-12-14 Transparent conductive film with carrier film and touch panel using the same
CN201680091549.3A CN110088714B (en) 2016-12-14 2016-12-14 Transparent conductive film with carrier film and touch panel using the same
PCT/JP2016/087225 WO2018109867A1 (en) 2016-12-14 2016-12-14 Transparent conductive film with carrier film, and touch panel using transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/087225 WO2018109867A1 (en) 2016-12-14 2016-12-14 Transparent conductive film with carrier film, and touch panel using transparent conductive film

Publications (1)

Publication Number Publication Date
WO2018109867A1 true WO2018109867A1 (en) 2018-06-21

Family

ID=62558103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087225 WO2018109867A1 (en) 2016-12-14 2016-12-14 Transparent conductive film with carrier film, and touch panel using transparent conductive film

Country Status (3)

Country Link
KR (1) KR20190094172A (en)
CN (1) CN110088714B (en)
WO (1) WO2018109867A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136965A1 (en) * 2018-12-27 2020-07-02 コニカミノルタ株式会社 Multilayer film for supporting transparent conductive layer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102495564B1 (en) * 2019-10-18 2023-02-07 쇼와 덴코 가부시키가이샤 Transparent conductive film laminate and its processing method
CN113409994B (en) * 2021-08-20 2021-12-14 江苏软讯科技有限公司 Conductive film, touch structure and manufacturing method of touch structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089914A (en) * 1998-09-10 2000-03-31 Gunze Ltd Touch panel
JP2008055691A (en) * 2006-08-30 2008-03-13 Jsr Corp Optical film roll and its manufacturing method
JP2016107504A (en) * 2014-12-05 2016-06-20 日東電工株式会社 Transparent conductive film laminate and application of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5506011B2 (en) 2007-03-02 2014-05-28 日東電工株式会社 Transparent conductive film with pressure-sensitive adhesive layer and method for producing the same
JP5122670B2 (en) 2010-11-05 2013-01-16 日東電工株式会社 Method for producing transparent conductive film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089914A (en) * 1998-09-10 2000-03-31 Gunze Ltd Touch panel
JP2008055691A (en) * 2006-08-30 2008-03-13 Jsr Corp Optical film roll and its manufacturing method
JP2016107504A (en) * 2014-12-05 2016-06-20 日東電工株式会社 Transparent conductive film laminate and application of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136965A1 (en) * 2018-12-27 2020-07-02 コニカミノルタ株式会社 Multilayer film for supporting transparent conductive layer
CN113226744A (en) * 2018-12-27 2021-08-06 柯尼卡美能达株式会社 Laminated film for supporting transparent conductive layer
JPWO2020136965A1 (en) * 2018-12-27 2021-11-11 コニカミノルタ株式会社 Laminated film for supporting the transparent conductive layer
JP7238903B2 (en) 2018-12-27 2023-03-14 コニカミノルタ株式会社 Laminated film for supporting transparent conductive layers

Also Published As

Publication number Publication date
CN110088714A (en) 2019-08-02
CN110088714B (en) 2023-05-16
KR20190094172A (en) 2019-08-12

Similar Documents

Publication Publication Date Title
KR102002235B1 (en) Transparent conductive film laminate and use therefor
TWI690420B (en) Transparent conductive film laminate, touch panel using the same, and method for manufacturing transparent conductive film
JP6470040B2 (en) Transparent conductive film, transparent conductive film laminate, and touch panel
US10656468B2 (en) Display device with a capacitive touch panel
KR102401028B1 (en) Display device with capacitive touch panel
TWI482178B (en) Production method of transparent conductive film
KR102021214B1 (en) Transparent electroconductive film and touch sensor in which same is used
JP6234798B2 (en) Transparent conductive film and use thereof
WO2017051725A1 (en) Transparent conductive film and touch panel comprising same
KR20180089404A (en) A transparent conductive film laminate, and a touch panel
WO2018109867A1 (en) Transparent conductive film with carrier film, and touch panel using transparent conductive film
TWI633563B (en) Transparent conductive film with carrier film and touch panel using the same
JP2002316378A (en) Transparent conductive laminated body and touch panel using the same
JP6552099B2 (en) Transparent conductive film with carrier film and touch panel using the same
JP6971558B2 (en) Transparent conductive film and display device with touch function
JP6626996B2 (en) Transparent conductive film, transparent conductive film laminate, and touch panel
JP2017061069A (en) Transparent conductive film laminate and touch panel including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197016555

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP