JP6626996B2 - Transparent conductive film, transparent conductive film laminate, and touch panel - Google Patents
Transparent conductive film, transparent conductive film laminate, and touch panel Download PDFInfo
- Publication number
- JP6626996B2 JP6626996B2 JP2019005607A JP2019005607A JP6626996B2 JP 6626996 B2 JP6626996 B2 JP 6626996B2 JP 2019005607 A JP2019005607 A JP 2019005607A JP 2019005607 A JP2019005607 A JP 2019005607A JP 6626996 B2 JP6626996 B2 JP 6626996B2
- Authority
- JP
- Japan
- Prior art keywords
- transparent conductive
- conductive film
- film
- thickness
- transparent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920005989 resin Polymers 0.000 claims description 174
- 239000011347 resin Substances 0.000 claims description 174
- 239000010410 layer Substances 0.000 claims description 151
- 239000011521 glass Substances 0.000 claims description 44
- 238000010438 heat treatment Methods 0.000 claims description 43
- 239000002245 particle Substances 0.000 claims description 42
- 239000000758 substrate Substances 0.000 claims description 41
- 230000003287 optical effect Effects 0.000 claims description 40
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims description 17
- 239000010419 fine particle Substances 0.000 claims description 12
- 229920006127 amorphous resin Polymers 0.000 claims description 11
- 150000001925 cycloalkenes Chemical class 0.000 claims description 10
- 230000009477 glass transition Effects 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 2
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 description 39
- 239000002184 metal Substances 0.000 description 39
- 238000000034 method Methods 0.000 description 26
- 238000001035 drying Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 12
- -1 polyethylene terephthalate Polymers 0.000 description 12
- 239000012790 adhesive layer Substances 0.000 description 10
- 229920000515 polycarbonate Polymers 0.000 description 10
- 239000004417 polycarbonate Substances 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 239000004925 Acrylic resin Substances 0.000 description 9
- 229920000178 Acrylic resin Polymers 0.000 description 9
- 229920003050 poly-cycloolefin Polymers 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000011342 resin composition Substances 0.000 description 6
- 239000012798 spherical particle Substances 0.000 description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 6
- 229910001887 tin oxide Inorganic materials 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000006087 Silane Coupling Agent Substances 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229920000402 bisphenol A polycarbonate polymer Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910003437 indium oxide Inorganic materials 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000011146 organic particle Substances 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920005668 polycarbonate resin Polymers 0.000 description 3
- 239000004431 polycarbonate resin Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- 229910016036 BaF 2 Inorganic materials 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229920005669 high impact polystyrene Polymers 0.000 description 2
- 239000004797 high-impact polystyrene Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 229910000484 niobium oxide Inorganic materials 0.000 description 2
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- RRKODOZNUZCUBN-CCAGOZQPSA-N (1z,3z)-cycloocta-1,3-diene Chemical compound C1CC\C=C/C=C\C1 RRKODOZNUZCUBN-CCAGOZQPSA-N 0.000 description 1
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 1
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- LSIXBBPOJBJQHN-UHFFFAOYSA-N 2,3-Dimethylbicyclo[2.2.1]hept-2-ene Chemical compound C1CC2C(C)=C(C)C1C2 LSIXBBPOJBJQHN-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- CVEPFOUZABPRMK-UHFFFAOYSA-N 2-methylprop-2-enoic acid;styrene Chemical compound CC(=C)C(O)=O.C=CC1=CC=CC=C1 CVEPFOUZABPRMK-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- VEEKCIOFMIAGSF-UHFFFAOYSA-N 4-butylbicyclo[2.2.1]hept-2-ene Chemical compound C1CC2C=CC1(CCCC)C2 VEEKCIOFMIAGSF-UHFFFAOYSA-N 0.000 description 1
- WXOFQPMQHAHBKI-UHFFFAOYSA-N 4-ethylbicyclo[2.2.1]hept-2-ene Chemical compound C1CC2C=CC1(CC)C2 WXOFQPMQHAHBKI-UHFFFAOYSA-N 0.000 description 1
- RMDKEBZUCHXUER-UHFFFAOYSA-N 4-methylbicyclo[2.2.1]hept-2-ene Chemical compound C1CC2C=CC1(C)C2 RMDKEBZUCHXUER-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 239000004420 Iupilon Substances 0.000 description 1
- 229910017768 LaF 3 Inorganic materials 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- DJDFFEBSKJCGHC-UHFFFAOYSA-N Naphazoline Chemical compound Cl.C=1C=CC2=CC=CC=C2C=1CC1=NCCN1 DJDFFEBSKJCGHC-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004419 Panlite Substances 0.000 description 1
- 206010034960 Photophobia Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 101150059062 apln gene Proteins 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- SYFOAKAXGNMQAX-UHFFFAOYSA-N bis(prop-2-enyl) carbonate;2-(2-hydroxyethoxy)ethanol Chemical compound OCCOCCO.C=CCOC(=O)OCC=C SYFOAKAXGNMQAX-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- CFBGXYDUODCMNS-UHFFFAOYSA-N cyclobutene Chemical compound C1CC=C1 CFBGXYDUODCMNS-UHFFFAOYSA-N 0.000 description 1
- ZOLLIQAKMYWTBR-RYMQXAEESA-N cyclododecatriene Chemical compound C/1C\C=C\CC\C=C/CC\C=C\1 ZOLLIQAKMYWTBR-RYMQXAEESA-N 0.000 description 1
- ICPMUWPXCAVOOQ-UHFFFAOYSA-N cycloocta-1,3,5-triene Chemical compound C1CC=CC=CC=C1 ICPMUWPXCAVOOQ-UHFFFAOYSA-N 0.000 description 1
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 description 1
- 239000004913 cyclooctene Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- HANKSFAYJLDDKP-UHFFFAOYSA-N dihydrodicyclopentadiene Chemical compound C12CC=CC2C2CCC1C2 HANKSFAYJLDDKP-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- GUOAPVPPPVLIQQ-UHFFFAOYSA-N dimethyldicyclopentadiene Chemical compound C1=CC2CC1C1C2C(C)C(C)=C1 GUOAPVPPPVLIQQ-UHFFFAOYSA-N 0.000 description 1
- 238000010017 direct printing Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000001227 electron beam curing Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- UCQHUEOREKHIBP-UHFFFAOYSA-N heptacyclo[9.6.1.14,7.113,16.02,10.03,8.012,17]icosa-5,14-diene Chemical compound C1C(C23)C4C(C=C5)CC5C4C1C3CC1C2C2C=CC1C2 UCQHUEOREKHIBP-UHFFFAOYSA-N 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- VXLYKKNIXGIKAE-UHFFFAOYSA-N prop-2-enoyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(=O)C=C VXLYKKNIXGIKAE-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XBFJAVXCNXDMBH-UHFFFAOYSA-N tetracyclo[6.2.1.1(3,6).0(2,7)]dodec-4-ene Chemical compound C1C(C23)C=CC1C3C1CC2CC1 XBFJAVXCNXDMBH-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
Description
本発明は、透明導電性フィルム、透明導電性フィルム積層体及びタッチパネルに関し、特にカールの発生の制御に有用な技術である。 The present invention relates to a transparent conductive film, a transparent conductive film laminate, and a touch panel, and is a technique particularly useful for controlling the occurrence of curling.
従来、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ、タッチパネル等の基板としては、ガラスを基板とするものが多く使われてきた。近年では、ディスプレイの薄型化に伴い、透明性、表面平滑性、耐熱性等に優れるガラス基板での薄型化が注目されている。 Conventionally, as a substrate for a liquid crystal display, an organic electroluminescence display, a touch panel, or the like, a glass substrate is often used. In recent years, with a reduction in thickness of a display, attention has been paid to a reduction in thickness of a glass substrate having excellent transparency, surface smoothness, heat resistance, and the like.
一方、静電容量タイプのタッチパネル構成においては透明導電性フィルムの基材フィルムとしてポリエチレンテレフタレート(PET)が広く用いられている。しかし、PETフィルムは延伸製膜されており、高い位相差を有しているため、偏光板のもとで使用することが困難である。そのため、特許文献1では、低位相差用基材フィルムとして非晶性樹脂であるシクロオレフィン系樹脂を用いた透明導電性フィルムが提案されている。 On the other hand, in a capacitance type touch panel configuration, polyethylene terephthalate (PET) is widely used as a base film of a transparent conductive film. However, since the PET film is formed by stretching and has a high retardation, it is difficult to use the PET film under a polarizing plate. Therefore, Patent Document 1 proposes a transparent conductive film using a cycloolefin-based resin as an amorphous resin as a base film for low retardation.
特許文献2では、液晶ディスプレイ等の偏光板の下で使用できるλ/4位相差フィルムとしてポリカーボネートや非晶性のポリオレフィンフィルム上に透明導電膜を形成した透明導電性フィルムが開示されており、この透明導電性フィルムをガラス基板上に積層した積層体や、全面フレキシブルカバーガラスにタッチパネル機能を付与した液晶表示装置が提案されている。
透明導電性フィルムを薄型のガラス基板に貼り合せ透明導電性フィルム積層体とした後に、透明導電膜の結晶化を行ったり、額縁配線用の金属配線加工を行ったりする場合は、130℃以上の加熱工程を経由することが多い。かかる場合、ガラス基板が薄いため加熱時の影響を受けやすく、また樹脂とガラスとで熱収縮率等が異なるため、積層体がカールして、次の工程に搬送できなかったり、金属配線のアライメント調整が困難となり金属配線の加工ができなかったりして、安定かつ連続して生産を行うことが困難となる。 After laminating the transparent conductive film to a thin glass substrate to form a transparent conductive film laminate, or when performing crystallization of the transparent conductive film or performing metal wiring processing for frame wiring, a temperature of 130 ° C. or more Often through a heating step. In such a case, the thin glass substrate is susceptible to the influence of heating, and since the resin and the glass have different heat shrinkage ratios, the laminate is curled and cannot be transported to the next step, or the metal wiring is not aligned. Adjustment is difficult and metal wiring cannot be processed, making it difficult to perform stable and continuous production.
そこで、本発明の目的は、透明導電性フィルムに薄型のガラス基板を貼り合せた透明導電性フィルム積層体において、加熱工程後もカールの発生を抑制でき、その後の工程歩留まりを確保可能な透明導電性フィルム、透明導電性フィルム積層体及びタッチパネルを提供することにある。 Accordingly, an object of the present invention is to provide a transparent conductive film laminate in which a thin glass substrate is bonded to a transparent conductive film, in which a curl can be suppressed even after a heating step, and a transparent conductive film capable of ensuring a subsequent process yield. An object of the present invention is to provide a conductive film, a transparent conductive film laminate, and a touch panel.
本発明者らは、前記課題を解決すべく鋭意検討した結果、透明導電性フィルム積層体が透明導電膜を上にした場合大きく凹方向にカールしたため、透明導電性フィルムの透明導電膜を下にした場合に予め大きく凹方向にカールするように透明導電性フィルムを設計することで、上記目的を達成し得ることを見出し本発明にいたった。 The present inventors have conducted intensive studies to solve the above-described problems, and as a result, when the transparent conductive film laminate curled greatly in the concave direction when the transparent conductive film was placed on top, the transparent conductive film of the transparent conductive film was placed below. The present inventors have found that the above object can be achieved by designing the transparent conductive film so as to curl largely in the concave direction in advance in the case where the present invention is performed.
すなわち、本発明の透明導電性フィルムは、透明樹脂フィルムの一方の面側に第1の硬化樹脂層と、透明導電膜とがこの順に形成され、前記透明樹脂フィルムの他方の面側に第2の硬化樹脂層が形成された透明導電性フィルムであって、前記透明樹脂フィルムは、非晶性樹脂からなり、前記透明導電性フィルムを50cm×50cmにカットし、透明導電膜を下面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A−B)が、5mm以上である透明導電性フィルムであることを特徴とする。なお、本発明における各種の物性値は、特に断りのない限り、実施例等において採用する方法により測定される値である。 That is, in the transparent conductive film of the present invention, the first cured resin layer and the transparent conductive film are formed in this order on one surface side of the transparent resin film, and the second cured resin layer is formed on the other surface side of the transparent resin film. A transparent resin film having a cured resin layer formed thereon, wherein the transparent resin film is made of an amorphous resin, and the transparent conductive film is cut into 50 cm × 50 cm, and the transparent conductive film is placed on the lower surface at 130 ° C. The transparent conductive film is characterized in that the difference (A−B) between the average curl value A at the four corners and the curl value B at the central part after heating for 90 minutes at (A−B) is 5 mm or more. In addition, various physical property values in the present invention are values measured by a method adopted in Examples and the like, unless otherwise specified.
透明樹脂フィルムを形成する非晶性樹脂は、一般に押出し工程やキャスト製膜工程を経て製膜され、必ず残留応力が残っており、加熱により収縮応力が発生する。一方、薄ガラスは、130℃程度の加熱では圧倒的に収縮応力が小さい。そのため、透明導電性フィルムに薄ガラスを貼り合せた透明導電性フィルム積層体において、透明導電性フィルムを上にして加熱した場合凹方向にカールが発生してしまう。また、透明導電性フィルムにおいては、無機物である透明導電膜と有機物である透明樹脂フィルム等との熱収縮率や線膨張係数等が違うため、加熱によるカールが発生する。そこで、本発明では、透明導電性フィルムの透明導電膜を下にした場合予め大きく凹方向にカールするように設計することで、薄ガラスを貼り合せた透明導電性フィルム積層体において加熱工程後のカールの発生をきわめて小さくできることを見出した。すなわち、透明導電性フィルムを50cm×50cmにカットし、透明導電膜を下面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A−B)が、5mm以上とすることで、従来のガラス基板に積層した積層体で生じたであろう収縮力と、透明導電性フィルムに生じた収縮力とで打ち消しあうことができ、薄型のガラス基板と貼り合せた後の透明導電性フィルム積層体において加熱工程後のカールをきわめて小さくできる。これにより、透明導電膜の結晶化や金属配線加工等による加熱後のカールを抑えることが可能となり、安定かつ連続して加工搬送することができ、その後の工程歩留りを確保可能となる。 The amorphous resin forming the transparent resin film is generally formed through an extrusion process or a cast film forming process, and a residual stress always remains, and shrinkage stress is generated by heating. On the other hand, thin glass has overwhelmingly small shrinkage stress when heated to about 130 ° C. Therefore, in a transparent conductive film laminate in which thin glass is adhered to a transparent conductive film, when the transparent conductive film is heated with the transparent conductive film facing upward, curl occurs in a concave direction. Further, in the transparent conductive film, curl due to heating occurs because the transparent conductive film, which is an inorganic substance, and the transparent resin film, which is an organic substance, have different thermal contraction rates and linear expansion coefficients. Therefore, in the present invention, the transparent conductive film of the transparent conductive film is designed so as to curl largely in the concave direction in advance when the transparent conductive film is placed on the lower side. It has been found that curling can be extremely reduced. That is, the difference between the average curl value A at the four corners and the curl value B at the center after the transparent conductive film was cut into 50 cm × 50 cm and heated at 130 ° C. for 90 minutes with the transparent conductive film on the lower surface (A− When B) is at least 5 mm, the shrinkage force that would have been generated in the laminate laminated on the conventional glass substrate and the shrinkage force generated in the transparent conductive film can be canceled each other, and the thin glass The curl after the heating step can be extremely reduced in the transparent conductive film laminate after being bonded to the substrate. This makes it possible to suppress curling after heating due to crystallization of the transparent conductive film, metal wiring processing, or the like, and it is possible to stably and continuously process and carry, and to secure the subsequent process yield.
本発明の透明導電性フィルムにおいて、前記第1の硬化樹脂層の厚みと前記第2の硬化樹脂層の厚みとは、いずれも2μm以下であり、前記第2の硬化樹脂層の厚みは前記第1の硬化樹脂層の厚みと同じかそれより薄いことが好ましい。第1の硬化樹脂層の厚みと第2の硬化樹脂層の厚みとが上記のように薄い範囲であると、硬化樹脂層に起因する収縮力の影響を小さくすることができ、透明樹脂フィルムが加熱時の影響を受けやすくなり、カールがより発生しやすくなる。また、第2の硬化樹脂層の厚みを前記第1の硬化樹脂層の厚みと同じかそれより薄くすると、さらに透明樹脂フィルムが加熱時の影響を受けやすくなり、カールがより発生しやすくなるように透明導電性フィルムを設計できる。 In the transparent conductive film of the present invention, the thickness of the first cured resin layer and the thickness of the second cured resin layer are each 2 μm or less, and the thickness of the second cured resin layer is It is preferable that the thickness is equal to or smaller than the thickness of the cured resin layer. When the thickness of the first cured resin layer and the thickness of the second cured resin layer are as thin as described above, the effect of the shrinkage caused by the cured resin layer can be reduced, and the transparent resin film is It is more susceptible to the effects of heating and curling is more likely to occur. Further, when the thickness of the second cured resin layer is the same as or smaller than the thickness of the first cured resin layer, the transparent resin film is more susceptible to the influence of heating, and the curl is more likely to occur. A transparent conductive film can be designed.
本発明の透明導電性フィルムは、前記第1の硬化樹脂層と前記透明導電膜との間に更に1層以上の光学調整層を備えることが好ましい。光学調整層により屈折率を制御できるため、透明導電膜をパターン化した場合でも、パターン形成部とパターン開口部との反射率差を低減することができ、透明導電膜パターンが見えにくく、タッチパネル等の表示装置において視認性が良好になる。
光学調整層塗工後にフィルムにアニール工程を通すことで、MD方向とTD方向の基材熱収縮差調整および基材の収縮力を小さくすることで、カール量がより発生しやすくなるように透明導電性フィルムを設計できる。
The transparent conductive film of the present invention preferably further comprises one or more optical adjustment layers between the first cured resin layer and the transparent conductive film. Since the refractive index can be controlled by the optical adjustment layer, even when the transparent conductive film is patterned, the difference in reflectance between the pattern forming portion and the pattern opening can be reduced, and the transparent conductive film pattern is difficult to see, and the The visibility is improved in the display device.
After applying the optical adjustment layer, the film is passed through an annealing step to adjust the difference in the substrate thermal shrinkage in the MD and TD directions and to reduce the shrinkage force of the substrate, so that the curl amount is more easily generated. Conductive films can be designed.
本発明における第2の硬化樹脂層は、樹脂と粒子とを含むことが好ましい。これにより、ロールtoロール製法に耐えうるアンチブロッキング性をより確実に実現でき、搬送容易性を向上させることができる。 The second cured resin layer in the invention preferably contains a resin and particles. Thereby, the anti-blocking property that can withstand the roll-to-roll manufacturing method can be more reliably realized, and the transportability can be improved.
本発明における透明樹脂フィルムにおいて、非晶性樹脂がシクロオレフィン系樹脂であり、厚みが20〜75μmであり、ガラス転移温度が130℃以上であり、前記透明導電性フィルムにおいて、130℃で90分間の加熱した後の熱収縮率がMDおよびTD方向で0.2%未満であることが好ましい。透明樹脂フィルムの厚みが比較的薄い範囲にあるため、より加熱時の影響を受けやすく、カールを発生させやすいように透明導電性フィルムを設計できる。また、ガラス転移温度が高いシクロオレフィン系樹脂を用いて、熱収縮率が小さい透明導電性フィルムを用いることで、加熱工程後の過剰な熱収縮を抑制することができ、より高いレベルでカールの発生をコントロールできる。 In the transparent resin film according to the present invention, the amorphous resin is a cycloolefin-based resin, the thickness is 20 to 75 μm, the glass transition temperature is 130 ° C. or higher, and the transparent conductive film is at 130 ° C. for 90 minutes. Is preferably less than 0.2% in the MD and TD directions after heating. Since the thickness of the transparent resin film is in a relatively thin range, the transparent conductive film can be designed so as to be more susceptible to the influence of heating and to cause curling. In addition, by using a cycloolefin resin having a high glass transition temperature and using a transparent conductive film having a small heat shrinkage, excessive heat shrinkage after the heating step can be suppressed, and curling at a higher level can be suppressed. Can control the occurrence.
本発明における光学調整層は、バインダー樹脂と微粒子とを含み、屈折率が1.6〜1.8であり、厚みが40〜150nmであることが好ましい。光学調整層に微粒子を含むことによって光学調整層自体の屈折率の調整を容易に行うことができる。また、光学調整層の厚みを前記範囲とすることで、連続被膜となりやすく、透明性を確保できるとともに、カール発生に大きな影響を与えないように制御できる。 The optical adjustment layer in the invention preferably contains a binder resin and fine particles, has a refractive index of 1.6 to 1.8, and has a thickness of 40 to 150 nm. By including the fine particles in the optical adjustment layer, the refractive index of the optical adjustment layer itself can be easily adjusted. Further, by setting the thickness of the optical adjustment layer within the above range, a continuous film can be easily formed, transparency can be ensured, and control can be performed so as not to greatly affect the occurrence of curling.
本発明における透明導電膜は、インジウム・スズ複合酸化物(ITO)からなり、厚みが10〜35nmであることが好ましい。これにより、透明性を確保でき、タッチパネル等に使用時も視認性を向上させることができるとともに、カール発生の向きや量を設計できる。 The transparent conductive film in the present invention is made of indium-tin composite oxide (ITO), and preferably has a thickness of 10 to 35 nm. Thereby, transparency can be secured, visibility can be improved even when used for a touch panel or the like, and the direction and amount of curl generation can be designed.
本発明の透明導電性フィルム積層体は、前記透明導電性フィルムの透明導電膜とは反対の面側に粘着剤層を介してガラス基板を積層した透明導電性フィルム積層体であることが好ましい。本発明の透明導電性フィルムは、透明導電膜を下にした場合予め大きく凹方向にカールするように設計しているため、薄ガラスを貼り合せた透明導電性フィルム積層体において加熱工程後のカールの発生を抑制でき、その後の工程歩留まりを確保可能である。 The transparent conductive film laminate of the present invention is preferably a transparent conductive film laminate in which a glass substrate is laminated via an adhesive layer on the surface of the transparent conductive film opposite to the transparent conductive film. Since the transparent conductive film of the present invention is designed so as to curl largely in the concave direction in advance when the transparent conductive film is placed on the lower side, the curl after the heating step is applied to the transparent conductive film laminate laminated with thin glass. Can be suppressed, and the subsequent process yield can be ensured.
本発明の透明導電性フィルム積層体を210mm×260mmにカットし、透明導電膜を上面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A−B)が、2.0mm以下であることが好ましい。これにより、加熱工程後もカールの発生を抑制でき、その後の工程歩留まりを確保可能となる。 The difference between the average curl value A at the four corners and the curl value B at the center after the transparent conductive film laminate of the present invention was cut into 210 mm × 260 mm and heated at 130 ° C. for 90 minutes with the transparent conductive film on the upper surface. (AB) is preferably 2.0 mm or less. Thereby, the occurrence of curl can be suppressed even after the heating step, and the subsequent process yield can be secured.
本発明のタッチパネルは、前記透明導電性フィルム積層体を用いて得られることが好ましい。前記透明導電性フィルム積層体を用いると、乾燥等の加熱工程後のカール発生を抑制することができるため、透明導電性フィルム積層体の加工搬送が容易となり、作業効率が向上する。 The touch panel of the present invention is preferably obtained using the transparent conductive film laminate. When the transparent conductive film laminate is used, curling after a heating step such as drying can be suppressed, so that the processing and conveyance of the transparent conductive film laminate are facilitated, and the working efficiency is improved.
本発明の透明導電性フィルム積層体の実施形態について、図面を参照しながら以下に説明する。ただし、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大または縮小等して図示した部分がある。上下等の位置関係を示す用語は、単に説明を容易にするために用いられており、本発明の構成を限定する意図は一切ない。 An embodiment of the transparent conductive film laminate of the present invention will be described below with reference to the drawings. However, in some or all of the drawings, portions unnecessary for description are omitted, and some portions are illustrated in an enlarged or reduced manner for easy description. Terms indicating a positional relationship such as up and down are used merely for ease of explanation, and there is no intention to limit the configuration of the present invention.
<透明導電性フィルム及び積層体の構造>
図1は、本発明の透明導電性フィルムの一実施形態を模式的に示す断面図であり、図2は、本発明の透明導電性フィルムの他の実施形態を模式的に示す断面図であり、図3は、本発明の透明導電性フィルム積層体の一実施形態を模式的に示す断面図である。図1〜2に示す透明導電性フィルム10は、透明樹脂フィルム1の一方の面側に第1の硬化樹脂層2と、透明導電膜3とがこの順に形成され、前記透明樹脂フィルム1の他方の面側に第2の硬化樹脂層4が形成されている。図2に示すように、前記第1の硬化樹脂層2と前記透明導電膜3との間に更に1層の光学調整層5を備えることができるが、2層以上の光学調整層5を備えることもできる。第1の硬化樹脂層2と第2の硬化樹脂層4とは、アンチブロッキング層やハードコート層として機能するものを含む。また、図3に示すように、透明導電性フィルム積層体は、透明導電性フィルム10の透明導電膜3とは反対の面側に粘着剤層7を介してガラス基板6を積層する。
<Structure of transparent conductive film and laminate>
FIG. 1 is a cross-sectional view schematically illustrating one embodiment of the transparent conductive film of the present invention, and FIG. 2 is a cross-sectional view schematically illustrating another embodiment of the transparent conductive film of the present invention. FIG. 3 is a cross-sectional view schematically showing one embodiment of the transparent conductive film laminate of the present invention. The transparent
<透明導電性フィルム>
透明導電性フィルムは、透明樹脂フィルムの一方の面側に第1の硬化樹脂層と、透明導電膜とがこの順に形成され、前記透明樹脂フィルムの他方の面側に第2の硬化樹脂層が形成されている。第1の硬化樹脂層と透明導電膜との間に、1層以上の光学調整層をさらに含むことができる。透明導電性フィルムにおいて、130℃で90分間加熱した際のMD方向及びTD方向の熱収縮率は、0.2%未満であることが好ましく、0.2%以下であることがより好ましく、0.15%以下であることが更に好ましく、0.1%以下であることが特に好ましい。下限値は特に制限されないが、0.01%以上であることが好ましい。これにより、加工性、透明性等に優れた透明導電性フィルムとなり、乾燥等の加熱工程後におけるカールの発生量や向きが制御できるため、透明導電性フィルム積層体の加工搬送が容易となる。
<Transparent conductive film>
In the transparent conductive film, a first cured resin layer and a transparent conductive film are formed in this order on one surface side of the transparent resin film, and a second cured resin layer is formed on the other surface side of the transparent resin film. Is formed. One or more optical adjustment layers may be further included between the first cured resin layer and the transparent conductive film. In the transparent conductive film, the heat shrinkage in the MD and TD directions when heated at 130 ° C. for 90 minutes is preferably less than 0.2%, more preferably 0.2% or less, and 0%. .15% or less, more preferably 0.1% or less. The lower limit is not particularly limited, but is preferably 0.01% or more. As a result, a transparent conductive film having excellent workability and transparency can be obtained, and the amount and direction of curl after a heating step such as drying can be controlled, so that the processing and transport of the transparent conductive film laminate are facilitated.
透明導電性フィルムを50cm×50cmにカットし、透明導電膜を下面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A−B)が、5mm以上であることが好ましく、8mm以上であることがより好ましく、10mm以上であることが更に好ましい。上限値は特に制限されないが、50mm以下であることが好ましく、40mm以下であることがより好ましく、30mm以下であることが更に好ましい。このように透明導電性フィルムのカール量を大きく設定すると、薄型のガラス基板と貼り合せた後の透明導電性フィルム積層体において加熱工程後のカールをきわめて小さくできる。これにより、透明導電膜の結晶化や金属配線加工等による加熱後のカールを抑えることが可能となり、安定かつ連続して加工搬送することができ、その後の工程歩留りを確保可能となる。 The difference between the average curl value A at the four corners and the curl value B at the center after the transparent conductive film was cut into 50 cm × 50 cm and heated at 130 ° C. for 90 minutes with the transparent conductive film on the lower surface (AB). Is preferably at least 5 mm, more preferably at least 8 mm, even more preferably at least 10 mm. The upper limit is not particularly limited, but is preferably 50 mm or less, more preferably 40 mm or less, and still more preferably 30 mm or less. When the curl amount of the transparent conductive film is set to be large as described above, the curl after the heating step in the transparent conductive film laminate after being bonded to the thin glass substrate can be extremely reduced. This makes it possible to suppress curling after heating due to crystallization of the transparent conductive film, metal wiring processing, or the like, and it is possible to stably and continuously process and carry, and to secure the subsequent process yield.
(透明樹脂フィルム)
透明樹脂フィルムは、非晶性樹脂により形成されており、高透明性及び低吸水性の特性を有する。非晶性樹脂の採用により透明導電性フィルムの光学特性の制御が可能となる。非晶性樹脂としては、特に限定されるものではないが、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましく、ポリカーボネート、シクロオレフィン、ポリ塩化ビニル、ポリメチルメタクリレートなどのアクリル系樹脂、ポリスチレン、ポリメチルメタクリレートスチレン共重合体、ポリアクリロニトリル、ポリアクリロニトリルスチレン共重合体、ハイインパクトポリスチレン(HIPS)、アクリロニトルブタジエンスチレン共重合体(ABS樹脂)、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンエーテル等が挙げられる。高透明性、低吸水性、耐熱性等の観点から、シクロオレフィン系樹脂やポリカーボネート系樹脂などが好ましい。
(Transparent resin film)
The transparent resin film is formed of an amorphous resin and has high transparency and low water absorption properties. The use of the amorphous resin makes it possible to control the optical properties of the transparent conductive film. The amorphous resin is not particularly limited, but preferably has excellent transparency, mechanical strength, heat stability, moisture barrier properties, isotropy, and the like, and includes polycarbonate, cycloolefin, polyvinyl chloride, and the like. Acrylic resin such as polymethyl methacrylate, polystyrene, polymethyl methacrylate styrene copolymer, polyacrylonitrile, polyacrylonitrile styrene copolymer, high impact polystyrene (HIPS), acrylonitrile butadiene styrene copolymer (ABS resin), poly Arylate, polysulfone, polyethersulfone, polyphenylene ether and the like can be mentioned. From the viewpoints of high transparency, low water absorption, heat resistance, and the like, cycloolefin-based resins and polycarbonate-based resins are preferred.
シクロオレフィン系樹脂としては、環状オレフィン(シクロオレフィン)からなるモノマーのユニットを有する樹脂であれば特に限定されるものではない。透明樹脂フィルムに用いられるシクロオレフィン系樹脂としては、シクロオレフィンポリマー(COP)又はシクロオレフィンコポリマー(COC)のいずれであってもよい。シクロオレフィンコポリマーとは、環状オレフィンとエチレン等のオレフィンとの共重合体である非結晶性の環状オレフィン系樹脂のことをいう。 The cycloolefin-based resin is not particularly limited as long as it has a monomer unit composed of a cyclic olefin (cycloolefin). The cycloolefin resin used for the transparent resin film may be either a cycloolefin polymer (COP) or a cycloolefin copolymer (COC). The cycloolefin copolymer refers to a non-crystalline cyclic olefin resin which is a copolymer of a cyclic olefin and an olefin such as ethylene.
上記環状オレフィンとしては、多環式の環状オレフィンと単環式の環状オレフィンとが存在している。かかる多環式の環状オレフィンとしては、ノルボルネン、メチルノルボルネン、ジメチルノルボルネン、エチルノルボルネン、エチリデンノルボルネン、ブチルノルボルネン、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、メチルジシクロペンタジエン、ジメチルジシクロペンタジエン、テトラシクロドデセン、メチルテトラシクロドデセン、ジメチルシクロテトラドデセン、トリシクロペンタジエン、テトラシクロペンタジエンなどが挙げられる。また、単環式の環状オレフィンとしては、シクロブテン、シクロペンテン、シクロオクテン、シクロオクタジエン、シクロオクタトリエン、シクロドデカトリエンなどが挙げられる。 The cyclic olefin includes a polycyclic cyclic olefin and a monocyclic cyclic olefin. Examples of such polycyclic olefins include norbornene, methylnorbornene, dimethylnorbornene, ethylnorbornene, ethylidene norbornene, butylnorbornene, dicyclopentadiene, dihydrodicyclopentadiene, methyldicyclopentadiene, dimethyldicyclopentadiene, and tetracyclododecene. , Methyltetracyclododecene, dimethylcyclotetradodecene, tricyclopentadiene, tetracyclopentadiene and the like. In addition, examples of the monocyclic olefin include cyclobutene, cyclopentene, cyclooctene, cyclooctadiene, cyclooctatriene, and cyclododecatriene.
シクロオレフィン系樹脂は、市販品としても入手可能であり、例えば、日本ゼオン社製「ZEONOR」、JSR社製「ARTON」、ポリプラスチック社製「TOPAS」、三井化学社製「APEL」などが挙げられる。 The cycloolefin-based resin is also available as a commercial product, and examples thereof include "ZEONOR" manufactured by Zeon Corporation, "ARTON" manufactured by JSR, "TOPAS" manufactured by Polyplastics, and "APEL" manufactured by Mitsui Chemicals. Can be
ポリカーボネート系樹脂は、特に限定されないが、例えば、脂肪族ポリカーボネート、芳香族ポリカーボネート、脂肪族−芳香族ポリカーボネートなどが挙げられる。具体的には、例えば、ビスフェノール類を用いたポリカーボネート(PC)としてビスフェノールAポリカーボネート、分岐ビスフェノールAポリカーボネート、発砲ポリカーボネート、コポリカーボネート、ブロックコポリカーボネート、ポリエステルカーボネート、ポリホスホネートカーボネート、ジエチレングリコールビスアリルカーボネート(CR−39)などが挙げられる。ポリカーボネート系樹脂には、ビスフェノールAポリカーボネートブレンド、ポリエステルブレンド、ABSブレンド、ポリオレフィンブレンド、スチレン―無水マレイン酸共重合体ブレンドのような他成分とブレンドしたものも含まれる。ポリカーボネート樹脂の市販品としては、恵和社製「オプコン」、帝人社製「パンライト」、三菱ガス化学製「ユーピロン(紫外線吸収剤含有ポリカーボネート)」等が挙げられる。 The polycarbonate resin is not particularly limited, and examples thereof include aliphatic polycarbonate, aromatic polycarbonate, and aliphatic-aromatic polycarbonate. Specifically, for example, as a polycarbonate (PC) using bisphenols, bisphenol A polycarbonate, branched bisphenol A polycarbonate, foamed polycarbonate, copolycarbonate, block copolycarbonate, polyester carbonate, polyphosphonate carbonate, diethylene glycol bisallyl carbonate (CR- 39). Polycarbonate resins also include those blended with other components such as bisphenol A polycarbonate blends, polyester blends, ABS blends, polyolefin blends, styrene-maleic anhydride copolymer blends. Commercially available polycarbonate resins include "Opcon" manufactured by Keiwasha, "Panlite" manufactured by Teijin Limited, and "Iupilon (polycarbonate containing an ultraviolet absorber)" manufactured by Mitsubishi Gas Chemical.
透明樹脂フィルムには、表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、透明樹脂フィルム上に形成される硬化樹脂層や透明導電膜等との密着性を向上させるようにしてもよい。また、硬化樹脂層や透明導電膜を形成する前に、必要に応じて溶剤洗浄や超音波洗浄などにより、透明樹脂フィルム表面を除塵、清浄化してもよい。 The transparent resin film is subjected to etching or undercoating treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, etc. on the surface in advance, so that the cured resin layer or transparent layer formed on the transparent resin film You may make it improve the adhesiveness with a conductive film etc. Before forming the cured resin layer or the transparent conductive film, the surface of the transparent resin film may be dust-removed and cleaned by solvent cleaning or ultrasonic cleaning as necessary.
透明樹脂フィルムの厚みは、20〜75μmの範囲内であることが好ましく、25〜70μmの範囲内であることがより好ましく、30〜65μmの範囲内であることが更に好ましい。透明樹脂フィルムの厚みが上記範囲の下限未満であると、機械的強度が不足し、フィルム基材をロール状にして透明導電膜を連続的に形成する操作が困難になる場合がある。一方、厚みが上記範囲の上限を超えると、透明導電膜の耐擦傷性やタッチパネル用としての打点特性の向上が図れない場合がある。また、厚みが上記範囲内であると、より加熱時の影響を受けやすくなるため、透明導電性フィルムの透明導電膜を下にした場合予め大きく凹方向にカールするように設計でき、薄ガラスを貼り合せて透明導電性フィルム積層体とした際に加熱工程後のカール発生を抑制できる。 The thickness of the transparent resin film is preferably in the range of 20 to 75 μm, more preferably in the range of 25 to 70 μm, and even more preferably in the range of 30 to 65 μm. When the thickness of the transparent resin film is less than the lower limit of the above range, the mechanical strength is insufficient, and it may be difficult to form a roll of the film substrate and continuously form the transparent conductive film. On the other hand, if the thickness exceeds the upper limit of the above range, the scratch resistance of the transparent conductive film and the hitting characteristics for touch panels may not be improved. Also, if the thickness is within the above range, it is more susceptible to the effect of heating, so when the transparent conductive film of the transparent conductive film is placed down, it can be designed to curl largely in the concave direction in advance, and thin glass can be formed. Curling after the heating step can be suppressed when the transparent conductive film laminate is laminated.
上記透明樹脂フィルムの非晶性樹脂のガラス転移温度(Tg)は、特に限定されないが、130℃以上が好ましく、150℃以上がより好ましく、160℃以上が更に好ましい。これにより、透明導電性フィルム積層体とした時に乾燥等の加熱工程後におけるカールの発生を抑制できるため、透明導電性フィルム積層体の加工搬送が容易となる。 The glass transition temperature (Tg) of the amorphous resin of the transparent resin film is not particularly limited, but is preferably 130 ° C. or higher, more preferably 150 ° C. or higher, even more preferably 160 ° C. or higher. This makes it possible to suppress the occurrence of curling after a heating step such as drying when forming the transparent conductive film laminate, thereby facilitating the processing and transport of the transparent conductive film laminate.
透明樹脂フィルムを形成する樹脂フィルム原反(硬化樹脂層を積層する前の、加熱処理等を施す前のフィルム)の130℃で90分間加熱した際のMD方向及びTD方向の熱収縮率は、0.3%以下であることが好ましく、0.2%以下であることがより好ましく、0.1%以下であることが更に好ましい。これにより、加工性、透明性、加熱時の寸法安定性等に優れた透明樹脂フィルムとなる。また、透明導電性フィルム積層体とした時に乾燥等の加熱工程後におけるカールの発生を抑制できるため、透明導電性フィルム積層体の加工搬送が容易となる。 The heat shrinkage in the MD direction and the TD direction when the resin film raw material forming the transparent resin film (the film before the heat treatment or the like before laminating the cured resin layer) is heated at 130 ° C. for 90 minutes, It is preferably at most 0.3%, more preferably at most 0.2%, even more preferably at most 0.1%. As a result, a transparent resin film having excellent workability, transparency, dimensional stability during heating, and the like is obtained. Further, when the transparent conductive film laminate is formed, curling after a heating step such as drying can be suppressed, so that the processing and transport of the transparent conductive film laminate are facilitated.
上記透明樹脂フィルムは、面内方向の位相差(R0)が0nm〜10nmmの低位相差のフィルムや面内方向の位相差が80nm〜150nm程度のλ/4フィルムとすることが容易で、偏光板とともに使用される場合においては、視認性を良好にすることが可能となる。なお、面内位相差(R0)は、23℃において波長589nmの光で測定した位相差フィルム(層)面内の位相差値をいう。 The transparent resin film can be easily formed into a low retardation film having an in-plane retardation (R0) of 0 nm to 10 nm or a λ / 4 film having an in-plane retardation of about 80 nm to 150 nm. When used together, it is possible to improve visibility. The in-plane retardation (R0) refers to an in-plane retardation value of a retardation film (layer) measured at 23 ° C. with light having a wavelength of 589 nm.
(硬化樹脂層)
硬化樹脂層は、透明樹脂フィルムの一方の面側に形成された第1の硬化樹脂層と、他方の面側に形成された第2の硬化樹脂層とを含む。非晶性樹脂で形成された透明樹脂フィルムは、透明導電膜の形成や透明導電膜のパターン化または電子機器への搭載などの各工程で傷が入りやすいので、上記のように、透明樹脂フィルムの両面に第1の硬化樹脂層と第2の硬化樹脂層とを形成する。
(Cured resin layer)
The cured resin layer includes a first cured resin layer formed on one side of the transparent resin film, and a second cured resin layer formed on the other side. A transparent resin film formed of an amorphous resin is easily damaged in each step such as formation of a transparent conductive film, patterning of the transparent conductive film or mounting on an electronic device. A first cured resin layer and a second cured resin layer are formed on both surfaces of the substrate.
硬化樹脂層は、硬化型樹脂を硬化させることにより得られた層である。硬化樹脂層は、樹脂と粒子とを含むことが好ましい。用いる樹脂としては、硬化樹脂層形成後の皮膜として十分な強度を持ち、透明性のあるものを特に制限なく使用できるが、熱硬化型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂、二液混合型樹脂などがあげられる。これらのなかでも紫外線照射による硬化処理にて、簡単な加工操作にて効率よく硬化樹脂層を形成することができる紫外線硬化型樹脂が好適である。 The cured resin layer is a layer obtained by curing a curable resin. The cured resin layer preferably contains a resin and particles. As the resin to be used, a resin having sufficient strength as a film after the formation of the cured resin layer and having transparency can be used without particular limitation, but a thermosetting resin, an ultraviolet curing resin, an electron beam curing resin, a two-component resin, Mixed type resins and the like can be mentioned. Among these, a UV-curable resin that can efficiently form a cured resin layer with a simple processing operation by a curing treatment by UV irradiation is preferable.
紫外線硬化型樹脂としては、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系等の各種のものがあげられ、紫外線硬化型のモノマー、オリゴマー、ポリマー等が含まれる。好ましく用いられる紫外線硬化型樹脂は、アクリル系樹脂やエポキシ系樹脂であり、より好ましくはアクリル系樹脂である。 Examples of the UV-curable resin include various resins such as polyester, acrylic, urethane, amide, silicone, and epoxy resins, and include UV-curable monomers, oligomers, and polymers. The UV-curable resin preferably used is an acrylic resin or an epoxy resin, and more preferably an acrylic resin.
硬化樹脂層は粒子を含んでいてもよい。硬化樹脂層に粒子を配合することにより、硬化樹脂層の表面に隆起を形成することができ、透明導電性フィルムに耐ブロッキング性を好適に付与することができる。 The cured resin layer may include particles. By incorporating particles into the cured resin layer, a bump can be formed on the surface of the cured resin layer, and the transparent conductive film can be suitably provided with blocking resistance.
上記粒子としては、各種金属酸化物、ガラス、プラスチックなどの透明性を有するものを特に制限なく使用することができる。例えばシリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム等の無機系粒子、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル系樹脂、アクリル−スチレン共重合体、ベンゾグアナミン、メラミン、ポリカーボネート等の各種ポリマーからなる架橋又は未架橋の有機系粒子やシリコーン系粒子などがあげられる。前記粒子は、1種または2種以上を適宜に選択して用いることができるが、有機系粒子が好ましい。有機系粒子としては、屈折率の観点から、アクリル系樹脂が好ましい。 As the particles, those having transparency, such as various metal oxides, glass, and plastics, can be used without particular limitation. For example, silica, alumina, titania, zirconia, inorganic particles such as calcium oxide, polymethyl methacrylate, polystyrene, polyurethane, acrylic resin, acrylic-styrene copolymer, benzoguanamine, melamine, cross-linked or not formed of various polymers such as polycarbonate. Examples include crosslinked organic particles and silicone particles. One or more kinds of the particles can be appropriately selected and used, but organic particles are preferable. As the organic particles, an acrylic resin is preferable from the viewpoint of the refractive index.
粒子の最頻粒子径は、硬化樹脂層の隆起の突出度や隆起以外の平坦領域の厚みとの関係などを考慮して適宜設定することができ、特に限定されない。なお、透明導電性フィルムに耐ブロッキング性を十分に付与し、かつヘイズの上昇を十分に抑制するという観点から、粒子の最頻粒子径は、0.5〜5μmであることが好ましく、1.0〜2μmであることがより好ましい。なお、本明細書において、「最頻粒子径」とは、粒子分布の極大値を示す粒径をいい、フロー式粒子像分析装置(Sysmex社製、製品名「FPTA−3000S」)を用いて、所定条件下(Sheath液:酢酸エチル、測定モード:HPF測定、測定方式:トータルカウント)で測定することによって求められる。測定試料は、粒子を酢酸エチルで1.0重量%に希釈し、超音波洗浄機を用いて均一に分散させたものを用いる。 The mode particle size of the particles can be appropriately set in consideration of the degree of protrusion of the protrusion of the cured resin layer and the thickness of the flat region other than the protrusion, and is not particularly limited. In addition, the mode particle diameter of the particles is preferably 0.5 to 5 μm, from the viewpoint of sufficiently imparting blocking resistance to the transparent conductive film and sufficiently suppressing the increase in haze. More preferably, it is 0 to 2 μm. In this specification, the “mode particle size” refers to a particle size showing the maximum value of the particle distribution, and is measured using a flow type particle image analyzer (manufactured by Sysmex, product name “FPTA-3000S”). Under a predetermined condition (Sheath liquid: ethyl acetate, measurement mode: HPF measurement, measurement method: total count). As a measurement sample, one obtained by diluting particles to 1.0% by weight with ethyl acetate and uniformly dispersing the diluted particles using an ultrasonic cleaner is used.
粒子の含有量は、樹脂固形分100重量部に対して0.05〜1.0重量部であることが好ましく、0.1〜0.5重量部であることがより好ましく、0.2〜0.3重量部であることがさらに好ましい。硬化樹脂層中の粒子の含有量が小さいと、硬化樹脂層の表面に耐ブロッキング性や易滑性を付与するのに十分な隆起が形成され難くなる傾向がある。一方、粒子の含有量が大きすぎると、粒子による光散乱に起因して透明導電性フィルムのヘイズが高くなり、視認性が低下する傾向がある。また、粒子の含有量が大きすぎると、硬化樹脂層の形成時(溶液の塗布時)に、スジが発生し、視認性が損なわれたり、透明導電膜の電気特性が不均一となったりする場合がある。 The content of the particles is preferably 0.05 to 1.0 part by weight, more preferably 0.1 to 0.5 part by weight, and more preferably 0.2 to 0.5 part by weight based on 100 parts by weight of the resin solid content. More preferably, it is 0.3 parts by weight. When the content of the particles in the cured resin layer is small, it is difficult to form a sufficient bump on the surface of the cured resin layer to impart anti-blocking properties and slipperiness. On the other hand, when the content of the particles is too large, the haze of the transparent conductive film is increased due to light scattering by the particles, and the visibility tends to decrease. On the other hand, if the content of the particles is too large, streaks are generated at the time of forming the cured resin layer (at the time of applying the solution), and the visibility is impaired, and the electrical characteristics of the transparent conductive film become uneven. There are cases.
硬化樹脂層は、各硬化型樹脂と必要に応じて加える粒子、架橋剤、開始剤、増感剤などを含む樹脂組成物を透明樹脂フィルム上に塗布し、樹脂組成物が溶剤を含む場合には、溶剤の乾燥を行い、熱、活性エネルギー線またはその両方のいずれかの適用により硬化させることにより得られる。熱は空気循環式オーブンやIRヒーターなど公知の手段を用いることができるがこれらの方法に限定されない。活性エネルギー線の例としては紫外線、電子線、ガンマ線などがあるが特に限定されない。 The cured resin layer is a resin composition containing particles, a crosslinking agent, an initiator, a sensitizer, etc., added to each of the curable resins and, if necessary, a transparent resin film, and when the resin composition contains a solvent. Is obtained by drying the solvent and curing it by applying either heat, active energy rays or both. For the heat, known means such as an air circulation oven and an IR heater can be used, but the method is not limited to these methods. Examples of the active energy ray include, but are not particularly limited to, ultraviolet rays, electron beams, and gamma rays.
硬化樹脂層は、上記の材料を用いて、ウェットコーティング法(塗工法)等により製膜できる。例えば、透明導電膜として酸化スズを含有する酸化インジウム(ITO)を形成する場合、下地層である硬化樹脂層の表面が平滑であると、透明導電膜の結晶化時間を短縮することもできる。かかる観点から、硬化樹脂層はウェットコーティング法により製膜されることが好ましい。 The cured resin layer can be formed from the above-mentioned materials by a wet coating method (coating method) or the like. For example, in the case where indium oxide (ITO) containing tin oxide is formed as the transparent conductive film, the crystallization time of the transparent conductive film can be reduced if the surface of the cured resin layer as the underlayer is smooth. From such a viewpoint, the cured resin layer is preferably formed by a wet coating method.
第1の硬化樹脂層の厚みと第2の硬化樹脂層の厚みとは、いずれも2μm以下であることが好ましく、より好ましくは0.1μm〜1.5μmであり、更に好ましくは0.3μm〜1.2μmである。また、第2の硬化樹脂層の厚みは第1の硬化樹脂層の厚みと同じかそれより薄いことが好ましい。即ち、第2の硬化樹脂層の厚みは、第1の硬化樹脂層の厚みの10〜100%であることが好ましく、20〜90%であることがより好ましく、30〜80%であることが更に好ましい。これにより、ロールtoロール製法にて搬送した際透明樹脂フィルムの傷つきが防止できる。また、硬化樹脂層の厚みが前記範囲にあると、タッチパネル等の視認性が悪化することを防ぐことができるとともに、透明導電性フィルムの透明導電膜を下にした場合予め大きく凹方向にカールするように設計できるため、薄ガラスを貼り合せて透明導電性フィルム積層体とした際に加熱工程後のカール発生を抑制できる。 Each of the thickness of the first cured resin layer and the thickness of the second cured resin layer is preferably 2 μm or less, more preferably 0.1 μm to 1.5 μm, and still more preferably 0.3 μm to 1.2 μm. The thickness of the second cured resin layer is preferably equal to or smaller than the thickness of the first cured resin layer. That is, the thickness of the second cured resin layer is preferably 10 to 100%, more preferably 20 to 90%, and more preferably 30 to 80% of the thickness of the first cured resin layer. More preferred. This can prevent the transparent resin film from being damaged when transported by the roll-to-roll manufacturing method. Further, when the thickness of the cured resin layer is within the above range, it is possible to prevent the visibility of the touch panel or the like from being deteriorated, and to curl largely in the concave direction in advance when the transparent conductive film of the transparent conductive film is placed below. Therefore, when thin glass is laminated to form a transparent conductive film laminate, curling after the heating step can be suppressed.
(透明導電膜)
透明導電膜は、透明樹脂フィルム上に設けることができるが、透明樹脂フィルムの一方の面側に設けられた第1の硬化樹脂層上に設けられることが好ましい。透明導電膜の構成材料は、無機物を含む限り特に限定されず、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステンからなる群より選択される少なくとも1種の金属の金属酸化物が好適に用いられる。当該金属酸化物には、必要に応じて、さらに上記群に示された金属原子を含んでいてもよい。例えば酸化スズを含有する酸化インジウム(ITO)、アンチモンを含有する酸化スズ(ATO)などが好ましく用いられる。
(Transparent conductive film)
The transparent conductive film can be provided on the transparent resin film, but is preferably provided on the first cured resin layer provided on one surface side of the transparent resin film. The constituent material of the transparent conductive film is not particularly limited as long as it contains an inorganic substance, and is formed from a group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium and tungsten. A metal oxide of at least one selected metal is preferably used. The metal oxide may further contain the metal atom shown in the above group, if necessary. For example, indium oxide containing tin oxide (ITO), tin oxide containing antimony (ATO), and the like are preferably used.
透明導電膜の厚みは、特に制限されないが、その表面抵抗を1×103Ω/□以下の良好な導電性を有する連続被膜とするには、厚みを10〜35nmとするのが好ましい。膜厚が、厚くなりすぎると透明性の低下などをきたすため、15〜35nmであることがより好ましく、更に好ましくは20〜30nmの範囲内である。透明導電膜の厚みが、10nm未満であると膜表面の電気抵抗が高くなり、かつ連続被膜になり難くなる。一方、透明導電膜の厚みが、35nmを超えると透明性の低下などをきたす場合がある。また、透明導電膜を第1の硬化樹脂層上に前記厚みで形成することで、透明導電性フィルムの透明導電膜を下にした場合予め大きく凹方向にカールするように設計できる。 Although the thickness of the transparent conductive film is not particularly limited, it is preferable that the thickness be 10 to 35 nm in order to form a continuous film having a good surface conductivity of 1 × 10 3 Ω / □ or less. When the film thickness is too large, the transparency is lowered. For example, the film thickness is preferably 15 to 35 nm, and more preferably 20 to 30 nm. When the thickness of the transparent conductive film is less than 10 nm, the electric resistance of the film surface increases, and it is difficult to form a continuous film. On the other hand, if the thickness of the transparent conductive film exceeds 35 nm, the transparency may be reduced. In addition, by forming the transparent conductive film with the above thickness on the first cured resin layer, the transparent conductive film can be designed so as to curl largely in the concave direction in advance when the transparent conductive film is placed below.
透明導電膜の形成方法は、特に限定されず、従来公知の方法を採用することができる。具体的には、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等のドライプロセスを例示できる。また、必要とする膜厚に応じて適宜の方法を採用することもできる。 The method for forming the transparent conductive film is not particularly limited, and a conventionally known method can be employed. Specifically, a dry process such as a vacuum deposition method, a sputtering method, and an ion plating method can be exemplified. Further, an appropriate method can be adopted according to a required film thickness.
透明導電膜は、必要に応じて加熱アニール処理(例えば、大気雰囲気下、80〜150℃で30〜90分間程度)を施して結晶化することができる。透明導電膜を結晶化することで、透明導電膜が低抵抗化されることに加えて、透明性及び耐久性が向上する。非晶質の透明導電膜を結晶質に転化させる手段は、特に限定されないが、空気循環式オーブンやIRヒーターなどが用いられる。 The transparent conductive film can be crystallized by performing a heat annealing treatment (for example, at 80 to 150 ° C. for about 30 to 90 minutes in an air atmosphere) as necessary. By crystallizing the transparent conductive film, the resistance and the transparency of the transparent conductive film are improved, and the transparency and durability are improved. The means for converting the amorphous transparent conductive film to crystalline is not particularly limited, but an air circulation oven, an IR heater, or the like is used.
「結晶質」の定義については、透明樹脂フィルム上に透明導電膜が形成された透明導電性フィルムを、20℃、濃度5重量%の塩酸に15分間浸漬した後、水洗・乾燥し、15mm間の端子間抵抗をテスタにて測定を行い、端子間抵抗が10kΩを超えない場合、ITO膜の結晶質への転化が完了したものとする。なお、表面抵抗値の測定は、JIS K7194に準じて、4端子法により測定できる。 Regarding the definition of “crystalline”, a transparent conductive film having a transparent conductive film formed on a transparent resin film is immersed in hydrochloric acid having a concentration of 5% by weight at 20 ° C. for 15 minutes, washed with water and dried, and dried for 15 mm. Is measured by a tester. If the inter-terminal resistance does not exceed 10 kΩ, it is assumed that the conversion of the ITO film to crystalline has been completed. The surface resistance can be measured by a four-terminal method according to JIS K7194.
また、透明導電膜は、エッチング等によりパターン化してもよい。透明導電膜のパターン化に関しては、従来公知のフォトリソグラフィの技術を用いて行うことができる。エッチング液としては、酸が好適に用いられる。酸としては、例えば、塩化水素、臭化水素、硫酸、硝酸、リン酸等の無機酸、酢酸等の有機酸、およびこれらの混合物、ならびにそれらの水溶液があげられる。例えば、静電容量方式のタッチパネルやマトリックス式の抵抗膜方式のタッチパネルに用いられる透明導電性フィルムにおいては、透明導電膜がストライプ状にパターン化されることが好ましい。なお、エッチングにより透明導電膜をパターン化する場合、先に透明導電膜の結晶化を行うと、エッチングによるパターン化が困難となる場合がある。そのため、透明導電膜のアニール処理は、透明導電膜をパターン化した後に行うことが好ましい。 Further, the transparent conductive film may be patterned by etching or the like. The patterning of the transparent conductive film can be performed using a conventionally known photolithography technique. An acid is preferably used as an etching solution. Examples of the acid include an inorganic acid such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid, and phosphoric acid, an organic acid such as acetic acid, a mixture thereof, and an aqueous solution thereof. For example, in a transparent conductive film used for a capacitance type touch panel or a matrix type resistance film type touch panel, it is preferable that the transparent conductive film is patterned in a stripe shape. In the case where the transparent conductive film is patterned by etching, if the transparent conductive film is first crystallized, patterning by etching may be difficult. Therefore, the annealing of the transparent conductive film is preferably performed after patterning the transparent conductive film.
(光学調整層)
第1の硬化樹脂層と透明導電膜との間に、1層以上の光学調整層をさらに含むことができる。光学調整層は、透明導電性フィルムの透過率の上昇や、透明導電膜がパターン化される場合には、パターンが残るパターン部とパターンが残らない開口部の間で透過率差や反射率差を低減でき、視認性に優れた透明導電性フィルムを得るために用いられる。
(Optical adjustment layer)
One or more optical adjustment layers may be further included between the first cured resin layer and the transparent conductive film. The optical adjustment layer increases the transmittance of the transparent conductive film, and when the transparent conductive film is patterned, the transmittance difference and the reflectance difference between the pattern portion where the pattern remains and the opening where the pattern does not remain. And can be used to obtain a transparent conductive film having excellent visibility.
光学調整層は、バインダー樹脂と微粒子とを含むことが好ましい。光学調整層に含まれるバインダー樹脂としては、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、アルキド系樹脂、シロキサン系ポリマー、有機シラン縮合物などが挙げられ、アクリル系樹脂を含む紫外線硬化型樹脂が好ましい。 The optical adjustment layer preferably contains a binder resin and fine particles. Examples of the binder resin contained in the optical adjustment layer include an acrylic resin, a urethane resin, a melamine resin, an alkyd resin, a siloxane polymer, an organic silane condensate, and the like, and an ultraviolet curable resin including an acrylic resin. preferable.
光学調整層の屈折率は、1.6〜1.8であることが好ましく、1.62〜1.78であることがより好ましく、1.65〜1.75であることが更に好ましい。これにより、透過率差や反射率差を低減でき、視認性に優れた透明導電性フィルムを得ることができる。 The refractive index of the optical adjustment layer is preferably from 1.6 to 1.8, more preferably from 1.62 to 1.78, even more preferably from 1.65 to 1.75. Thereby, a difference in transmittance and a difference in reflectance can be reduced, and a transparent conductive film excellent in visibility can be obtained.
光学調整層は、平均粒径が1nm〜500nmの微粒子を有していてもよい。光学調整層中の微粒子の含有量は0.1重量%〜90重量%であることが好ましい。光学調整層に用いられる微粒子の平均粒径は、上述のように1nm〜500nmの範囲であることが好ましく、5nm〜300nmであることがより好ましい。また、光学調整層中の微粒子の含有量は10重量%〜80重量%であることがより好ましく、20重量%〜70重量%であることがさらに好ましい。光学調整層中に微粒子を含有することによって、光学調整層自体の屈折率の調整を容易に行うことができる。 The optical adjustment layer may have fine particles having an average particle size of 1 nm to 500 nm. The content of the fine particles in the optical adjustment layer is preferably from 0.1% by weight to 90% by weight. The average particle diameter of the fine particles used for the optical adjustment layer is preferably in the range of 1 nm to 500 nm, and more preferably 5 nm to 300 nm, as described above. Further, the content of the fine particles in the optical adjustment layer is more preferably from 10% by weight to 80% by weight, and further preferably from 20% by weight to 70% by weight. By including fine particles in the optical adjustment layer, the refractive index of the optical adjustment layer itself can be easily adjusted.
微粒子を形成する無機酸化物としては、例えば、酸化ケイ素(シリカ)、中空ナノシリカ、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化ニオブ等の微粒子があげられる。これらの中でも、酸化ケイ素(シリカ)、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化ニオブの微粒子が好ましく、酸化ジルコニウムがより好ましい。これらは1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of the inorganic oxide forming fine particles include fine particles such as silicon oxide (silica), hollow nanosilica, titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, and niobium oxide. Among them, fine particles of silicon oxide (silica), titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, and niobium oxide are preferable, and zirconium oxide is more preferable. These may be used alone or in combination of two or more.
光学調整層は、その他の無機物を含有することが可能である。無機物としては、NaF
(1.3)、Na3AlF6(1.35)、LiF(1.36)、MgF2(1.38)、CaF2(1.4)、BaF2(1.3)、BaF2(1.3)、LaF3(1.55)、CeF(1.63)など(括弧内の数値は屈折率を示す)が挙げられる。
The optical adjustment layer can contain other inorganic substances. As an inorganic substance, NaF
(1.3), Na 3 AlF 6 (1.35), LiF (1.36), MgF 2 (1.38), CaF 2 (1.4), BaF 2 (1.3), BaF 2 ( 1.3), LaF 3 (1.55), CeF (1.63), and the like (numerical values in parentheses indicate a refractive index).
光学調整層は、上記の材料を用いて、ウェットコーティング法、グラビアコート法やバーコート法などの塗工法、真空蒸着法、スパッタリング法、イオンプレーティング法などにより形成できる。例えば、透明導電膜として酸化スズを含有する酸化インジウム(ITO)を形成する場合、下地層である樹脂層の表面が平滑であると、透明導電層の結晶化時間を短縮することもできる。かかる観点から、樹脂層はウェットコーティング法により製膜されることが好ましい。 The optical adjustment layer can be formed from the above materials by a coating method such as a wet coating method, a gravure coating method or a bar coating method, a vacuum evaporation method, a sputtering method, or an ion plating method. For example, in the case where indium oxide (ITO) containing tin oxide is formed as the transparent conductive film, the crystallization time of the transparent conductive layer can be reduced if the surface of the resin layer serving as the base layer is smooth. From such a viewpoint, the resin layer is preferably formed by a wet coating method.
光学調整層の厚みは、40nm〜150nmであることが好ましく、50nm〜130nmであることがより好ましく、70nm〜120nmであることがさらに好ましい。光学調整層の厚みが過度に小さいと連続被膜となりにくい。また、光学調整層の厚みが過度に大きいと、透明導電性フィルムの透明性が低下したり、クラックが生じ易くなったりする傾向がある。 The thickness of the optical adjustment layer is preferably from 40 nm to 150 nm, more preferably from 50 nm to 130 nm, even more preferably from 70 nm to 120 nm. If the thickness of the optical adjustment layer is too small, it is difficult to form a continuous film. Further, when the thickness of the optical adjustment layer is excessively large, the transparency of the transparent conductive film tends to decrease, and cracks tend to occur.
(金属配線)
金属配線は、金属層を透明導電膜上に形成した後、エッチングにより形成することも可能であるが、以下のように感光性金属ペーストを用いて形成するのが好ましい。即ち、金属配線は、透明導電膜がパターン化された後に、後述の感光性導電ペーストを前記透明樹脂フィルム上または前記透明導電膜上に塗布し、感光性金属ペースト層を形成し、フォトマスクを積層または近接させフォトマスクを介して感光性金属ペースト層に露光を行い、次いで現像を行い、パターン形成した後、乾燥工程を経て得られる。つまり、公知のフォトリソグラフィ法等により、金属配線のパターン形成が可能である。
(Metal wiring)
The metal wiring can be formed by etching after forming the metal layer on the transparent conductive film, but is preferably formed using a photosensitive metal paste as described below. That is, after the transparent conductive film is patterned, the metal wiring is coated with a photosensitive conductive paste described later on the transparent resin film or the transparent conductive film to form a photosensitive metal paste layer, and a photomask is formed. The photosensitive metal paste layer is exposed to light through a photomask after being laminated or brought close to the photosensitive metal paste layer, followed by development, pattern formation, and a drying step. That is, a metal wiring pattern can be formed by a known photolithography method or the like.
前記感光性導電ペーストは、金属粉末などの導電性粒子と感光性有機成分とを含むことが好ましい。金属粉末の導電性粒子の材料としては、Ag、Au、Pd、Ni、Cu、AlおよびPtの群から選択される少なくとも1種を含むものであることが好ましく、より好ましくはAgである。金属粉末の導電性粒子の体積平均粒子径は0.1μm〜2.5μmであることが好ましい。 The photosensitive conductive paste preferably contains conductive particles such as metal powder and a photosensitive organic component. The material of the conductive particles of the metal powder preferably contains at least one selected from the group consisting of Ag, Au, Pd, Ni, Cu, Al and Pt, and is more preferably Ag. The volume average particle diameter of the conductive particles of the metal powder is preferably 0.1 μm to 2.5 μm.
金属粉末以外の導電性粒子としては、樹脂粒子表面を金属で被覆した金属被覆樹脂粒子でもよい。樹脂粒子の材料としては、前述のような粒子が含まれるが、アクリル系樹脂が好ましい。金属被覆樹脂粒子は樹脂粒子の表面にシランカップリング剤を反応させ、さらにその表面に金属で被覆することにより得られる。シランカップリング剤を用いることにより、樹脂成分の分散が安定化して、均一な金属被覆樹脂粒子を形成することができる。 As the conductive particles other than the metal powder, metal-coated resin particles obtained by coating the surface of a resin particle with a metal may be used. As the material of the resin particles, the above-described particles are included, and an acrylic resin is preferable. Metal-coated resin particles are obtained by reacting a silane coupling agent on the surface of the resin particles and coating the surface with a metal. By using a silane coupling agent, the dispersion of the resin component is stabilized, and uniform metal-coated resin particles can be formed.
感光性導電ペーストはさらにガラスフリットを含んでいてもよい。ガラスフリットは、体積平均粒子径が0.1μm〜1.4μmであることが好ましく、90%粒子径が1〜2μmおよびトップサイズが4.5μm以下であることが好ましい。ガラスフリットの組成としては、特に限定されないが、Bi2O3が全体に対して30重量%〜70重量%の範囲で配合されることが好ましい。Bi2O3以外に含んでいてよい酸化物としては、SiO2、B2O3、ZrO2、Al2O3を含んでよい。Na2O、K2O、Li2Oは実質的に含まないアルカリフリーのガラスフリットであることが好ましい。 The photosensitive conductive paste may further include a glass frit. The glass frit preferably has a volume average particle size of 0.1 μm to 1.4 μm, a 90% particle size of 1 to 2 μm, and a top size of 4.5 μm or less. Although the composition of the glass frit is not particularly limited, it is preferable that Bi 2 O 3 is blended in a range of 30% by weight to 70% by weight based on the whole. The oxides that may be included in addition to Bi 2 O 3 may include SiO 2 , B 2 O 3 , ZrO 2 , and Al 2 O 3 . It is preferable to be an alkali-free glass frit substantially free of Na 2 O, K 2 O, and Li 2 O.
感光性有機成分は、感光性ポリマーおよび/または感光性モノマーを含むことが好ましい。感光性ポリマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート等の炭素−炭素二重結合有する化合物から選択された成分の重合体やこれらの共重合体からなるアクリル樹脂の側鎖または分子末端に光反応性基を付加したもの等が好適に用いられる。好ましい光反応性基としてはビニル基、アリル基、アクリル基、メタクリル基などのエチレン性不飽和基が挙げられる。感光性ポリマーの含有量は、1〜30重量%、2〜30重量%であることが好ましい。 The photosensitive organic component preferably contains a photosensitive polymer and / or a photosensitive monomer. Examples of the photosensitive polymer include a polymer of a component selected from compounds having a carbon-carbon double bond such as methyl (meth) acrylate and ethyl (meth) acrylate, and a side chain or molecule of an acrylic resin composed of a copolymer thereof. Those having a photoreactive group added to the terminal are suitably used. Preferred photoreactive groups include ethylenically unsaturated groups such as vinyl, allyl, acryl and methacryl. The content of the photosensitive polymer is preferably 1 to 30% by weight and 2 to 30% by weight.
感光性モノマーとしては、メタクリルアクリレート、エチルアクリレートなどの(メタ)アクリレート系モノマーや、γ−メタクリロキシプロピルトリメトキシシラン、1−ビニル−2−ピロリドンなどが挙げられ、1種または2種以上を使用することができる。 Examples of the photosensitive monomer include (meth) acrylate monomers such as methacryl acrylate and ethyl acrylate, γ-methacryloxypropyltrimethoxysilane, 1-vinyl-2-pyrrolidone, and the like. One or more kinds are used. can do.
感光性導電ペーストにおいては、感光性有機成分が金属粉末100重量部に対して、5〜40重量%含むことが光の感度の点で好ましく、より好ましくは10重量部〜30重量部である。また、本発明の感光性導電ペーストは必要により光重合開始剤、増感剤、重合禁止剤、有機溶媒を用いることが好ましい。 In the photosensitive conductive paste, the photosensitive organic component preferably contains 5 to 40% by weight based on 100 parts by weight of the metal powder from the viewpoint of light sensitivity, and more preferably 10 to 30 parts by weight. The photosensitive conductive paste of the present invention preferably uses a photopolymerization initiator, a sensitizer, a polymerization inhibitor, and an organic solvent as necessary.
金属層の厚みは、特に制限されない。例えば、金属層の面内の一部をエッチング等により除去してパターン配線を形成する場合は、形成後のパターン配線が所望の抵抗値を有するように金属層の厚みが適宜に設定される。そのため、金属層の厚みは、0.01〜200μmであることが好ましく、0.05〜100μmであることがより好ましい。金属層の厚みが上記範囲であると、パターン配線の抵抗が高くなりすぎず、デバイスの消費電力が大きくならない。また、金属層の成膜の生産効率が上がり、成膜時の積算熱量が小さくなり、フィルムに熱シワが生じにくくなる。 The thickness of the metal layer is not particularly limited. For example, when pattern wiring is formed by removing a part of the surface of the metal layer by etching or the like, the thickness of the metal layer is appropriately set so that the formed pattern wiring has a desired resistance value. Therefore, the thickness of the metal layer is preferably 0.01 to 200 μm, and more preferably 0.05 to 100 μm. When the thickness of the metal layer is within the above range, the resistance of the pattern wiring does not become too high, and the power consumption of the device does not increase. In addition, the production efficiency of forming the metal layer is increased, the integrated heat amount during the film formation is reduced, and the film is less likely to generate thermal wrinkles.
透明導電性フィルムがディスプレイと組合せて使用するタッチパネル用の透明導電性フィルムである場合、表示部分に対応した部分はパターン化された透明導電膜により形成され、感光性導電ペーストから作製された金属配線は非表示部(例えば周縁部)の配線部分に用いられる。透明導電膜は非表示部でも用いられてよく、その場合は金属配線が透明導電膜上に形成されていてもよい。 When the transparent conductive film is a transparent conductive film for a touch panel used in combination with a display, a portion corresponding to a display portion is formed by a patterned transparent conductive film, and a metal wiring made from a photosensitive conductive paste. Is used for a wiring portion of a non-display portion (for example, a peripheral portion). The transparent conductive film may be used in a non-display portion, and in that case, a metal wiring may be formed on the transparent conductive film.
<透明導電性フィルム積層体>
透明導電性フィルム積層体は、前記透明導電性フィルムの透明導電膜とは他方の面側に粘着剤層を介してガラス基板を積層して形成する。透明導電性フィルム積層体は、透明導電性フィルム積層体を210mm×260mmにカットし、透明導電膜を上面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A−B)が、2.0mm以下であることが好ましく、2.0mm未満であることがより好ましく、1.8mm以下であることが更に好ましい。下限値は特に制限されないが、0.5mm以上であることが好ましい。このようにカール量を抑えると、透明導電性フィルム積層体を搬送する際に、エアーで吸引が可能であり、連続して加工搬送が可能となる。
<Transparent conductive film laminate>
The transparent conductive film laminate is formed by laminating a glass substrate via an adhesive layer on the other side of the transparent conductive film from the transparent conductive film. The transparent conductive film laminate was obtained by cutting the transparent conductive film laminate into a piece having a size of 210 mm × 260 mm, heating the transparent conductive film on the upper surface at 130 ° C. for 90 minutes, and then calculating the average curl value A at the four corners and the curl at the center. The difference (A−B) from the value B is preferably 2.0 mm or less, more preferably less than 2.0 mm, and even more preferably 1.8 mm or less. The lower limit is not particularly limited, but is preferably 0.5 mm or more. When the curl amount is suppressed in this manner, air can be sucked when the transparent conductive film laminate is transported, and processing and transport can be continuously performed.
(ガラス基板)
ガラス基板は、透明導電性フィルムの透明導電膜とは他方の面側に粘着剤層を介して透明導電性フィルムを積層する。ガラス基板を形成する材料としては、特に限定されないが、透明性、表面平滑性、熱安定性、水分遮断性、等方性などに優れるものが好ましく、ソーダライムガラス、ホウケイ酸ガラスなどが挙げられる。これらのガラスは、化学強化されていてもよく、表面にアルカリ溶出防止層が形成されていてもよい。また、他の層との接着力を上げるため、ガラス表面をシランカップリング剤で処理していてもよい。
(Glass substrate)
The glass substrate has a transparent conductive film laminated on the other side of the transparent conductive film from the transparent conductive film via an adhesive layer. The material for forming the glass substrate is not particularly limited, but preferably has excellent transparency, surface smoothness, heat stability, moisture barrier properties, isotropy, and the like, and examples thereof include soda lime glass and borosilicate glass. . These glasses may be chemically strengthened and may have an alkali elution preventing layer formed on the surface. Further, the glass surface may be treated with a silane coupling agent in order to increase the adhesive strength with another layer.
ガラス基板の厚みは、0.1〜1.5mmであることが好ましく、0.3〜1.0mmであることがより好ましい。かかる厚みが薄すぎると、透明導電性フィルム積層体を加熱したときにガラスに破損が生じやすく、一方厚すぎると、ディスプレイの薄型化が困難となり、フレキシブル性が低下する。かかる範囲の厚みのガラス基板を、透明導電膜を下にした場合予め大きく凹方向にカールするように設計した透明導電性フィルムと貼り合せて透明導電性フィルム積層体を作製することで、加熱工程後のカール発生を抑制できる。 The thickness of the glass substrate is preferably from 0.1 to 1.5 mm, more preferably from 0.3 to 1.0 mm. If the thickness is too thin, the glass is likely to be damaged when the transparent conductive film laminate is heated, while if it is too thick, it becomes difficult to reduce the thickness of the display and the flexibility is reduced. A glass substrate having a thickness in such a range is bonded to a transparent conductive film designed to curl largely in a concave direction in advance when the transparent conductive film is placed downward, thereby producing a transparent conductive film laminate, thereby performing a heating step. Later curl generation can be suppressed.
(粘着剤層)
粘着剤層としては、透明性を有するものであれば特に制限なく以下の粘着剤を使用できる。粘着剤としては、具体的には、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系、フッ素系、天然ゴム、合成ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、光学的透明性に優れ、適度な濡れ性、凝集性および接着性等の粘着特性を示し、耐候性や耐熱性等にも優れるという点からは、アクリル系粘着剤が好ましく用いられる。
(Adhesive layer)
As the pressure-sensitive adhesive layer, the following pressure-sensitive adhesives can be used without particular limitation as long as they have transparency. Specific examples of the pressure-sensitive adhesive include acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl ethers, vinyl acetate / vinyl chloride copolymers, modified polyolefins, epoxy-based, fluorine-based, natural rubber, and synthetic rubbers. A polymer having a base polymer such as a rubber-based polymer can be appropriately selected and used. In particular, acrylic pressure-sensitive adhesives are preferably used because they are excellent in optical transparency, exhibit appropriate adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and are also excellent in weather resistance and heat resistance.
粘着剤層の形成方法は特に制限されず、剥離ライナーに粘着剤組成物を塗布し、乾燥後、ガラス基板に転写する方法(転写法)、ガラス基板に、直接、粘着剤組成物を塗布、乾燥する方法(直写法)等があげられる。なお粘着剤には、必要に応じて粘着付与剤、可塑剤、充填剤、酸化防止剤、紫外線吸収剤、シランカップリング剤等を適宜に使用することもできる。 The method for forming the pressure-sensitive adhesive layer is not particularly limited, a method of applying the pressure-sensitive adhesive composition to a release liner, drying and transferring the composition to a glass substrate (transfer method), directly applying the pressure-sensitive adhesive composition to the glass substrate, Drying method (direct printing method) and the like can be mentioned. As the pressure-sensitive adhesive, a tackifier, a plasticizer, a filler, an antioxidant, an ultraviolet absorber, a silane coupling agent, and the like can be used as appropriate.
粘着剤層の好ましい厚みは5μm〜100μmであり、より好ましくは10μm〜50μmであり、より好ましくは15μmから35μmである。 The preferred thickness of the pressure-sensitive adhesive layer is 5 μm to 100 μm, more preferably 10 μm to 50 μm, and more preferably 15 μm to 35 μm.
<タッチパネル>
透明導電性フィルム積層体は、例えば、静電容量方式、抵抗膜方式などのタッチパネルなどの電子機器の透明電極として好適に適用できる。また、本発明の透明導電性フィルム積層体は、ガラス基板上に積層しているため、そのままタッチパネルなどの電子機器の透明電極として好適に適用できる。
<Touch panel>
The transparent conductive film laminate can be suitably applied, for example, as a transparent electrode of an electronic device such as a touch panel of a capacitance type, a resistive type or the like. Further, since the transparent conductive film laminate of the present invention is laminated on a glass substrate, it can be suitably applied as it is to a transparent electrode of an electronic device such as a touch panel.
タッチパネルの形成に際しては、前述した透明導電性フィルム積層体を使用して形成することができる。本発明では、透明導電性フィルムの透明導電膜が形成されていない側の面に透明な粘着剤層を介してガラス基板が貼り合わせられた積層体を形成するが、ガラス基板は、1枚の基板からなっていてもよく、2枚以上の基板の積層体(例えば透明な粘着剤層を介して積層したもの)であってもよい。透明導電性フィルムと基板との貼り合わせに用いられる粘着剤層としては、前述の通り、透明性を有するものであれば特に制限なく使用できる。 In forming the touch panel, the touch panel can be formed using the above-described transparent conductive film laminate. In the present invention, a laminate in which a glass substrate is bonded via a transparent pressure-sensitive adhesive layer is formed on the surface of the transparent conductive film on which the transparent conductive film is not formed. It may be composed of a substrate, or may be a laminate of two or more substrates (for example, laminated with a transparent pressure-sensitive adhesive layer interposed therebetween). As described above, the pressure-sensitive adhesive layer used for bonding the transparent conductive film and the substrate can be used without any particular limitation as long as it has transparency.
上記の透明導電性フィルム積層体をタッチパネルの形成に用いた場合、乾燥等の加熱工程後におけるカールの発生量や向きが抑制できるため、透明導電性フィルム積層体の搬送が容易となり、タッチパネル形成時のハンドリング性に優れる。そのため、透明性及び視認性に優れたタッチパネルを生産性高く製造することが可能である。タッチパネル用途以外であれば、電子機器から発せられる電磁波やノイズをシールドするシールド用途に用いることができる。 When the above-mentioned transparent conductive film laminate is used for forming a touch panel, the amount and direction of curl after a heating step such as drying can be suppressed, so that the transparent conductive film laminate can be easily transported, and when a touch panel is formed. Excellent handleability. Therefore, it is possible to manufacture a touch panel excellent in transparency and visibility with high productivity. If it is not used for touch panels, it can be used for shielding to shield electromagnetic waves and noise emitted from electronic devices.
<透明導電性フィルム積層体の製造方法>
本発明の透明導電性フィルム積層体の製造方法は、透明樹脂フィルムに非晶質の透明導電膜が形成された透明導電性フィルムを準備する工程と、透明導電性フィルムの透明導電膜とは他方の面側に粘着剤層を介してガラス基板を積層する工程と、前記透明導電性フィルム積層体を加熱加工する工程と、を含む。透明導電性フィルム積層体を加熱加工する工程としては、例えば、透明導電膜を結晶化する工程や、感光性金属ペースト層により形成した金属配線を乾燥する工程等が挙げられる。透明導電性フィルム積層体としてから、このような加熱加工する工程を経ることが好ましい。これにより、透明導電性フィルムは透明導電膜を下にした場合予め大きく凹方向にカールするように設計されているため、透明導電性フィルム積層体においてカールの発生を抑制できる。
<Method for producing transparent conductive film laminate>
The method for producing a transparent conductive film laminate of the present invention includes a step of preparing a transparent conductive film in which an amorphous transparent conductive film is formed on a transparent resin film, and the other one of the transparent conductive film and the transparent conductive film. And a step of heating the transparent conductive film laminate to form a glass substrate on the side of the substrate via an adhesive layer. Examples of the step of heating the transparent conductive film laminate include a step of crystallizing the transparent conductive film and a step of drying the metal wiring formed by the photosensitive metal paste layer. It is preferable to go through such a heating process after forming the transparent conductive film laminate. Accordingly, since the transparent conductive film is designed to curl largely in the concave direction when the transparent conductive film is placed on the lower side, it is possible to suppress the occurrence of curling in the transparent conductive film laminate.
透明導電性フィルムを準備する工程に用いられる透明導電性フィルムは、透明樹脂フィルム上に硬化樹脂層を形成し、次いで透明導電膜を形成してもよいし、透明樹脂フィルム上に硬化樹脂層が形成された透明樹脂積層体を入手して、次いで硬化樹脂層上に透明導電膜を形成してもよいし、透明樹脂フィルム上に硬化樹脂層および透明導電膜が形成された透明導電性フィルムを入手してもよい。上述の光学調整層に関してもあらかじめ形成された透明樹脂積層体を入手して用いてもよい。 The transparent conductive film used in the step of preparing the transparent conductive film, a cured resin layer may be formed on the transparent resin film, and then a transparent conductive film may be formed, or the cured resin layer may be formed on the transparent resin film. Obtaining the formed transparent resin laminate, then a transparent conductive film may be formed on the cured resin layer, or a transparent conductive film formed with the cured resin layer and the transparent conductive film on the transparent resin film. May be obtained. As for the above-mentioned optical adjustment layer, a transparent resin laminate formed in advance may be obtained and used.
ガラス基板を積層する工程は、離型基材に粘着剤層を形成し、粘着剤層をガラス基板に転写し、透明導電性フィルムの第2の硬化樹脂層の透明樹脂フィルムが形成されていない側に粘着剤層を介してガラス基板を積層しても良いし、ガラス基板に直接粘着剤層を形成することも可能である。また、透明導電性フィルムの透明導電膜とは反対の面側に粘着剤層を形成しガラス基板を積層してもよい。 In the step of laminating the glass substrate, the pressure-sensitive adhesive layer is formed on the release substrate, the pressure-sensitive adhesive layer is transferred to the glass substrate, and the transparent resin film of the second cured resin layer of the transparent conductive film is not formed. A glass substrate may be laminated on the side via an adhesive layer, or the adhesive layer may be formed directly on the glass substrate. Alternatively, an adhesive layer may be formed on the side of the transparent conductive film opposite to the transparent conductive film, and a glass substrate may be laminated.
透明導電膜の構成成分を結晶化させるため、熱処理した工程に投入する。この加熱温度は例えば130℃以下の温度で行うことが好ましく、より好ましくは120℃以下で、処理時間は例えば15分から180分である。その後、透明導電膜をエッチングし、パターンによりパターン部が形成する。本発明は透明導電膜がパターン化された後に、前述の感光性導電ペーストを前記透明樹脂フィルム上または前記透明導電膜上に塗布し、感光性金属ペースト層を形成し、フォトマスクを積層または近接させ、該フォトマスクを介して感光性金属ペースト層に露光を行い、またはスクリーン印刷等で金属配線を得る工程をさらに含むことが好ましい。前記乾燥工程は130℃以下で行うことが好ましく、120℃以下であることが好ましい。透明導電性フィルム積層体は結晶化させるための熱処理、その後のエッチング工程、金属配線工程は、フォトマスクや透明導電膜と金属配線のパターンニングの位置合わせ等があるため、枚葉工程で行う。その際、位置合わせのために吸着板に固定する工程が必要であるが、上記温度範囲で乾燥してもカールの量や向きを制御することができるため、吸着板に固定する工程を流すことが可能となる。 In order to crystallize the components of the transparent conductive film, they are put into a heat-treated step. The heating temperature is preferably, for example, 130 ° C. or lower, more preferably 120 ° C. or lower, and the processing time is, for example, 15 to 180 minutes. Thereafter, the transparent conductive film is etched, and a pattern portion is formed by a pattern. After the transparent conductive film is patterned, the present invention applies the photosensitive conductive paste described above on the transparent resin film or the transparent conductive film, forms a photosensitive metal paste layer, and laminates or closes a photomask. Preferably, the method further includes a step of exposing the photosensitive metal paste layer through the photomask or obtaining metal wiring by screen printing or the like. The drying step is preferably performed at 130 ° C. or lower, and more preferably at 120 ° C. or lower. The heat treatment for crystallization of the transparent conductive film laminate, the subsequent etching step, and the metal wiring step are performed in a single-wafer step because there is a positioning of a photomask or a patterning of the transparent conductive film and the metal wiring and the like. At this time, a step of fixing to the suction plate is necessary for positioning, but since the amount and direction of the curl can be controlled even when dried in the above-mentioned temperature range, the step of fixing to the suction plate may be performed. Becomes possible.
以下、本発明に関して実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
[実施例1]
(球状粒子入り硬化性樹脂組成物の調製)
紫外線硬化性樹脂組成物(DIC社製 商品名「UNIDIC(登録商標)RS29−120」)を100重量部と、最頻粒子径が1.9μmであるアクリル系球状粒子(綜研化学社製 商品名「MX−180TA」)を0.3重量部とを含む、球状粒子入り硬化性樹脂組成物を準備した。
[Example 1]
(Preparation of curable resin composition containing spherical particles)
100 parts by weight of an ultraviolet-curable resin composition (trade name "UNIDIC (registered trademark) RS29-120" manufactured by DIC) and acrylic spherical particles having a mode particle diameter of 1.9 μm (trade name manufactured by Soken Chemical Co., Ltd.) Curable resin composition containing spherical particles containing 0.3 parts by weight of “MX-180TA”).
(硬化樹脂層の形成)
準備した球状粒子入り硬化性樹脂組成物を厚みが35μmでガラス転移温度が165℃のポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)の一方の面に塗布し、塗布層を形成した。次いで、塗布層が形成された側から塗布層に紫外線を照射して、厚みが1.0μmとなる様に第2の硬化樹脂層を形成した。ポリシクロオレフィンフィルムの他方の面に、上記とは球状粒子を添加しないこと以外は同様の方法で、厚みが1.0μmとなる様に第1の硬化樹脂層を形成した。
(Formation of cured resin layer)
The prepared curable resin composition containing spherical particles is applied to one surface of a polycycloolefin film having a thickness of 35 μm and a glass transition temperature of 165 ° C. (trade name “ZEONOR (registered trademark)” manufactured by Zeon Corporation). Was formed. Next, the coating layer was irradiated with ultraviolet rays from the side where the coating layer was formed to form a second cured resin layer having a thickness of 1.0 μm. A first cured resin layer was formed on the other surface of the polycycloolefin film in the same manner as described above except that spherical particles were not added so that the thickness became 1.0 μm.
(光学調整層の形成)
両面に硬化樹脂層が形成されたポリシクロオレフィンフィルムの第1の硬化樹脂層面側に光学調整層として屈折率1.62のジルコニア粒子含有紫外線硬化型組成物(JSR社製 商品名「オプスタ―Z7412」を塗布し、塗布層を形成した。次いで、塗布層が形成された側から塗布層に紫外線を照射して、厚みが100nmとなるように光学調整層を形成した。
(Formation of optical adjustment layer)
An ultraviolet curable composition containing zirconia particles having a refractive index of 1.62 (trade name “OPSTAR-Z7412” manufactured by JSR Corporation) as an optical adjustment layer on the side of the first cured resin layer of the polycycloolefin film having a cured resin layer formed on both sides. Was applied to form a coating layer. Next, the coating layer was irradiated with ultraviolet rays from the side on which the coating layer was formed to form an optical adjustment layer with a thickness of 100 nm.
(透明導電性フィルムの形成)
次に、光学調整層が形成されたポリシクロオレフィンフィルムを、巻き取り式スパッタ装置に投入し、光学調整層の表面に、厚みが27nmの非晶質のインジウム・スズ酸化物層(組成:SnO2 10wt%)を形成して、透明導電膜を形成した。このようにして透明導電性フィルムを作製した。
(Formation of transparent conductive film)
Next, the polycycloolefin film on which the optical adjustment layer was formed was put into a take-up sputtering apparatus, and an amorphous indium tin oxide layer (composition: SnO) having a thickness of 27 nm was formed on the surface of the optical adjustment layer. 2 10 wt%) to form a transparent conductive film. Thus, a transparent conductive film was produced.
(透明導電性フィルム積層体の形成)
通常の溶液重合により、ブチルアクリレート/アクリル酸=100/6(重量比)にて重量平均分子量60万のアクリル系ポリマーを得た。このアクリル系ポリマー100重量部に対し、エポキシ系架橋剤(三菱瓦斯化学製 商品名「テトラッドC(登録商標)」)6重量部を加えてアクリル系粘着剤を準備した。厚みが0.4mmで、210mm×260mmにカットされた薄いソーダガラス上に、前記のようにして得たアクリル系粘着剤を塗布(乾燥後の厚み:20μm)した後、透明導電膜が上になるように透明導電性フィルムを貼り合せて透明導電性フィルム積層体を作製した。
(Formation of transparent conductive film laminate)
By ordinary solution polymerization, an acrylic polymer having a weight average molecular weight of 600,000 was obtained with butyl acrylate / acrylic acid = 100/6 (weight ratio). To 100 parts by weight of the acrylic polymer, 6 parts by weight of an epoxy crosslinking agent (trade name “Tetrad C (registered trademark)” manufactured by Mitsubishi Gas Chemical Company) was added to prepare an acrylic pressure-sensitive adhesive. After applying the acrylic pressure-sensitive adhesive obtained as described above on a thin soda glass having a thickness of 0.4 mm and cut into 210 mm × 260 mm (thickness after drying: 20 μm), a transparent conductive film is formed thereon. Thus, a transparent conductive film laminate was produced by bonding the transparent conductive films.
[実施例2]
実施例1において、透明樹脂フィルムとして厚みが50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと、第2の硬化樹脂層に含まれる球状粒子の最頻粒子径が0.8μmのものを使用したこと、及び第2の硬化樹脂層の厚みを0.5μmとしたこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
[Example 2]
In Example 1, a 50 μm-thick polycycloolefin film (trade name “ZEONOR (registered trademark)” manufactured by Zeon Corporation) was used as the transparent resin film, and the frequency of the spherical particles contained in the second cured resin layer was the highest. A transparent conductive film and a transparent conductive film laminate were prepared in the same manner as in Example 1 except that a particle having a particle diameter of 0.8 μm was used and the thickness of the second cured resin layer was set to 0.5 μm. The body was made.
[実施例3]
実施例1において、光学調整層を形成後にロールtoロール製法により150℃で3分間アニール処理を施した後に、透明導電膜を形成したこと以外は実施例1と同様にして透明導電性フィルム及び透明導電性フィルム積層体を形成した。
[Example 3]
In Example 1, a transparent conductive film and a transparent conductive film were formed in the same manner as in Example 1 except that an optical adjustment layer was formed, an annealing treatment was performed at 150 ° C. for 3 minutes by a roll-to-roll manufacturing method, and then a transparent conductive film was formed. A conductive film laminate was formed.
[実施例4]
実施例1において、透明樹脂フィルムとして厚みが50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
[Example 4]
In Example 1, a transparent conductive film was produced in the same manner as in Example 1 except that a polycycloolefin film having a thickness of 50 μm (trade name “ZEONOR (registered trademark)” manufactured by Zeon Corporation) was used as the transparent resin film. And a transparent conductive film laminate.
[実施例5]
実施例3において、透明樹脂フィルムとして厚みが50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと以外は、実施例3と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
[Example 5]
In Example 3, a transparent conductive film was produced in the same manner as in Example 3, except that a polycycloolefin film having a thickness of 50 μm (trade name “ZEONOR (registered trademark)” manufactured by Zeon Corporation) was used as the transparent resin film. And a transparent conductive film laminate.
[比較例1]
実施例1において、透明樹脂フィルムとして厚みが50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと、及び第2の硬化樹脂層の厚みを3.0μmとしたこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
[Comparative Example 1]
In Example 1, a 50 μm-thick polycycloolefin film (trade name “ZEONOR (registered trademark)” manufactured by Zeon Corporation) was used as the transparent resin film, and the thickness of the second cured resin layer was 3.0 μm. A transparent conductive film and a transparent conductive film laminate were prepared in the same manner as in Example 1 except that the above procedure was performed.
[比較例2]
実施例1において、透明樹脂フィルムとして厚みが75μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
[Comparative Example 2]
In Example 1, a transparent conductive film was produced in the same manner as in Example 1 except that a 75 μm-thick polycycloolefin film (trade name “ZEONOR (registered trademark)” manufactured by Zeon Corporation) was used as the transparent resin film. And a transparent conductive film laminate.
[比較例3]
実施例1において、透明樹脂フィルムとして厚みが50μmでガラス転移温度が70℃のポリエステル樹脂(PET)(三菱樹脂製 商品名「ダイヤホイル(登録商標)」)を使用したこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
[Comparative Example 3]
Example 1 was repeated except that a polyester resin (PET) having a thickness of 50 μm and a glass transition temperature of 70 ° C. (trade name “Diafoil (registered trademark)” manufactured by Mitsubishi Plastics) was used as the transparent resin film in Example 1. A transparent conductive film and a transparent conductive film laminate were prepared in the same manner as described above.
<評価>
(1)厚みの測定
厚みは、1μm以上の厚みを有するものに関しては、マイクロゲージ式厚み計(ミツトヨ社製)にて測定を行った。また、1μm未満の厚みや光学調整層の厚み(100nm)は、瞬間マルチ測光システム(大塚電子社製 MCPD2000)で測定した。ITO膜等の厚みのようにナノサイズの厚みは、FB−2000A(株式会社日立ハイテクノロジーズ製)にて断面観察用サンプルを作製し、断面TEM観察はHF−2000(株式会社日立ハイテクノロジーズ製)を用いて膜厚を測定した。評価した結果を表1に示す。
<Evaluation>
(1) Measurement of Thickness The thickness was measured with a micro gauge type thickness meter (manufactured by Mitutoyo Corporation) for those having a thickness of 1 μm or more. The thickness of less than 1 μm and the thickness of the optical adjustment layer (100 nm) were measured by an instantaneous multi-photometry system (MCPD2000 manufactured by Otsuka Electronics Co., Ltd.). For a nano-sized thickness such as the thickness of an ITO film or the like, a cross-sectional observation sample is prepared by FB-2000A (manufactured by Hitachi High-Technologies Corporation), and the cross-sectional TEM observation is performed by HF-2000 (manufactured by Hitachi High-Technologies Corporation) Was used to measure the film thickness. Table 1 shows the results of the evaluation.
(2)透明導電性フィルムにおけるカール値の測定
実施例及び比較例で得られた透明導電性フィルムを50cm×50cmサイズにカットした。ITO面が下になる状態で130℃、90分間の加熱した後、室温(23℃)にて1時間放冷した。その後、ITO面が下になる状態で水平な面上にサンプルを置き、4隅部の水平面からの高さをそれぞれ測定し、その平均値(カール値A)を算出した。また、中央部の水平面からの高さ(カール値B)を測定した。カール値Aからカール値Bを引いた値(A−B)をカール量として算出した。評価した結果を表1に示す。
(2) Measurement of curl value in transparent conductive film The transparent conductive films obtained in Examples and Comparative Examples were cut into a size of 50 cm x 50 cm. After heating at 130 ° C. for 90 minutes with the ITO surface facing down, it was allowed to cool at room temperature (23 ° C.) for 1 hour. Thereafter, the sample was placed on a horizontal surface with the ITO surface facing down, the heights of the four corners from the horizontal plane were measured, and the average value (curl value A) was calculated. Further, the height (curl value B) of the central portion from the horizontal plane was measured. The value (AB) obtained by subtracting the curl value B from the curl value A was calculated as the curl amount. Table 1 shows the results of the evaluation.
(3)透明導電性フィルム積層体におけるカール値の測定
実施例及び比較例で得られた透明導電性フィルム積層体を210mm×260mm×0.4mmサイズにカットした。ITO面が上になる状態で130℃、90分間の加熱した後、室温(23℃)にて1時間放冷した。その後、ITO面が上になる状態で水平な面上にサンプルを置き、4隅部の水平面からの高さをそれぞれ測定し、その平均値(カール値A)を算出した。また、中央部の水平面からの高さ(カール値B)を測定した。カール値Aからカール値Bを引いた値(A−B)をカール量として算出した。評価した結果を表1に示す。
(3) Measurement of Curl Value in Transparent Conductive Film Laminate The transparent conductive film laminate obtained in each of Examples and Comparative Examples was cut into a size of 210 mm × 260 mm × 0.4 mm. After heating at 130 ° C. for 90 minutes with the ITO surface facing up, it was allowed to cool at room temperature (23 ° C.) for 1 hour. Thereafter, the sample was placed on a horizontal surface with the ITO surface facing upward, the heights of the four corners from the horizontal plane were measured, and the average value (curl value A) was calculated. Further, the height (curl value B) of the central portion from the horizontal plane was measured. The value (AB) obtained by subtracting the curl value B from the curl value A was calculated as the curl amount. Table 1 shows the results of the evaluation.
(4)MD方向とTD方向の熱収縮率
透明導電性フィルムの長手方向(MD方向)および幅方向(TD方向)の熱収縮率を以下のように算出した。具体的には、透明導電性フィルムを、幅100mm、長さ100mmに切り取り(試験片)、4隅部にクロスでキズを付けクロスキズの中央部4点のMD方向とTD方向の加熱前の長さ(mm)をCNC三次元測定機(株式会社ミツトヨ社製 LEGEX774)により測定した。その後、オーブンに投入し、加熱処理(130℃、90分間)を行った。室温で1時間放冷後に再度、4隅部4点のMD方向とTD方向の加熱後の長さ(mm)をCNC三次元測定機により測定し、その測定値を下記式に代入することにより、MD方向とTD方向のそれぞれの熱収縮率を求めた。評価した結果を表1に示す。熱収縮率(%)=[[加熱前の長さ(mm)−加熱後の長さ(mm)]/加熱前の長さ(mm)]×100
(4) Heat Shrinkage in MD and TD The heat shrinkage in the longitudinal direction (MD direction) and the width direction (TD direction) of the transparent conductive film was calculated as follows. Specifically, a transparent conductive film was cut into a width of 100 mm and a length of 100 mm (a test piece), and four corners were scratched with a cross, and four central portions of the cross scratch before heating in the MD and TD directions were measured. The height (mm) was measured by a CNC coordinate measuring machine (LEGEX774 manufactured by Mitutoyo Corporation). Thereafter, the resultant was put into an oven and subjected to a heat treatment (130 ° C., 90 minutes). After cooling at room temperature for one hour, the length (mm) of the four corners after heating in the MD and TD directions at four points is measured again by a CNC coordinate measuring machine, and the measured values are substituted into the following equation. , MD and TD directions were determined. Table 1 shows the results of the evaluation. Heat shrinkage (%) = [[length before heating (mm) −length after heating (mm)] / length before heating (mm)] × 100
(5)ガラス転移温度(Tg)の測定
ガラス転移温度(Tg)は、JIS K7121の規定に準拠して求めた。
(5) Measurement of glass transition temperature (Tg) The glass transition temperature (Tg) was determined in accordance with JIS K7121.
(結果及び考察)
実施例1〜5の透明導電性フィルムでは、カール発生の向きは透明導電膜を下にした場合凹方向であり、カール発生量が7〜28mmと大きくカールが発生したため、透明導電性フィルム積層体では、カール発生の向きは透明導電膜を上にした場合凹方向であり、カール発生量が1.1〜2.0mmとカール発生を抑制できた。また、比較例1〜2の透明導電性フィルムでは、カール発生の向きは透明導電膜を下にした場合凹方向であり、カール発生量が2〜4mmと小さかったため、透明導電性フィルム積層体では、透明導電膜を上にした場合凹方向でありカール発生量が2.5〜4.3mmと大きくカールした。以上より、透明導電性フィルムのカール量と透明導電性フィルム積層体後の反りには相関がみられ、透明導電性フィルムで5mm以上カール量が発生していると、透明導電性フィルム積層体でのカール量を低減できることがわかった。なお、比較例3はカール値としては問題ない値であるが、基材にPETフィルムを用いており、高い位相差があるために偏光板のもとでの基材として使えない。
(Results and discussion)
In the transparent conductive films of Examples 1 to 5, the direction of curl generation was a concave direction when the transparent conductive film was placed downward, and the amount of curl generated was as large as 7 to 28 mm. In the figure, the direction of curl generation was a concave direction when the transparent conductive film was faced up, and the curl generation amount was 1.1 to 2.0 mm, and curl generation could be suppressed. In the transparent conductive films of Comparative Examples 1 and 2, the direction of curl generation was a concave direction when the transparent conductive film was placed down, and the amount of curl was as small as 2 to 4 mm. On the other hand, when the transparent conductive film was placed on the upper side, the curl was in the concave direction, and the amount of curl was greatly curled at 2.5 to 4.3 mm. From the above, there is a correlation between the curl amount of the transparent conductive film and the warpage after the transparent conductive film laminate, and when the curl amount of 5 mm or more occurs in the transparent conductive film, the curl amount in the transparent conductive film laminate is It was found that the curl amount of the sample could be reduced. Comparative Example 3 has no problem as the curl value, but cannot be used as a substrate under a polarizing plate because a PET film is used as the substrate and there is a high retardation.
1 透明樹脂フィルム
2 第1の硬化樹脂層
3 透明導電膜
4 第2の硬化樹脂層
5 光学調整層
6 ガラス基板
7 粘着剤層
10 透明導電性フィルム
DESCRIPTION OF SYMBOLS 1
Claims (10)
前記透明樹脂フィルムは、非晶性樹脂からなり、
前記第1の硬化樹脂層の厚みと前記第2の硬化樹脂層の厚みとは、いずれも2μm以下であり(但し、2μm以上の場合を除く)、
前記透明導電性フィルムを50cm×50cmにカットし、透明導電膜を下面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A−B)が、5mm以上である透明導電性フィルム。 A transparent conductive film in which a first cured resin layer and a transparent conductive film are formed in this order on one surface side of a transparent resin film, and a second cured resin layer is formed on the other surface side of the transparent resin film. A film,
The transparent resin film is made of an amorphous resin,
Both the thickness of the first cured resin layer and the thickness of the second cured resin layer are 2 μm or less (excluding the case of 2 μm or more),
The difference between the average curl value A at the four corners and the curl value B at the center after the transparent conductive film was cut into 50 cm × 50 cm and heated at 130 ° C. for 90 minutes with the transparent conductive film on the lower surface (A−B) ) Is 5 mm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019005607A JP6626996B2 (en) | 2019-01-17 | 2019-01-17 | Transparent conductive film, transparent conductive film laminate, and touch panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019005607A JP6626996B2 (en) | 2019-01-17 | 2019-01-17 | Transparent conductive film, transparent conductive film laminate, and touch panel |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014263894A Division JP6470040B2 (en) | 2014-12-26 | 2014-12-26 | Transparent conductive film, transparent conductive film laminate, and touch panel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019089341A JP2019089341A (en) | 2019-06-13 |
JP6626996B2 true JP6626996B2 (en) | 2019-12-25 |
Family
ID=66837099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019005607A Active JP6626996B2 (en) | 2019-01-17 | 2019-01-17 | Transparent conductive film, transparent conductive film laminate, and touch panel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6626996B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11710581B2 (en) | 2019-06-20 | 2023-07-25 | Showa Denko K.K. | Transparent conducting film laminate and processing method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1029261A (en) * | 1996-07-15 | 1998-02-03 | Fujimori Kogyo Kk | Transparent conductive sheet for inner touch panel |
JPH1069355A (en) * | 1996-08-27 | 1998-03-10 | Fujimori Kogyo Kk | Transparent electrically conductive sheet for inner touch panel |
JP4056342B2 (en) * | 2002-09-26 | 2008-03-05 | 帝人株式会社 | Laminated film with reduced curl |
JP5506011B2 (en) * | 2007-03-02 | 2014-05-28 | 日東電工株式会社 | Transparent conductive film with pressure-sensitive adhesive layer and method for producing the same |
JP2014112510A (en) * | 2012-11-02 | 2014-06-19 | Nitto Denko Corp | Transparent conductive film |
-
2019
- 2019-01-17 JP JP2019005607A patent/JP6626996B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019089341A (en) | 2019-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6495635B2 (en) | Transparent conductive film laminate, touch panel obtained using the same, and method for producing transparent conductive film | |
JP6470040B2 (en) | Transparent conductive film, transparent conductive film laminate, and touch panel | |
JP6512804B2 (en) | Transparent conductive film laminate and use thereof | |
TWI466138B (en) | Transparent conductive film, transparent conductive laminate and touch panel, and method for manufacturing transparent conductive film | |
US9874987B2 (en) | Double-sided transparent conductive film and touch panel | |
US10031631B2 (en) | Transfer film, method for producing transfer film, transparent laminate, method for producing transparent laminate, capacitance-type input device, and image display device | |
US8568603B2 (en) | Method of manufacturing transparent conductive film | |
JP6433707B2 (en) | Transparent conductive laminate and method for producing the same, method for producing transparent conductive film, and method for producing transparent conductive film roll | |
WO2016088807A1 (en) | Transparent electroconductive film and touch sensor in which same is used | |
WO2017051725A1 (en) | Transparent conductive film and touch panel comprising same | |
KR20180089404A (en) | A transparent conductive film laminate, and a touch panel | |
JP2016184533A (en) | Transparent conductor and touch panel | |
JP2016207027A (en) | Transparent conductor and method for manufacturing the same, and touch panel | |
TWI633563B (en) | Transparent conductive film with carrier film and touch panel using the same | |
JP6626996B2 (en) | Transparent conductive film, transparent conductive film laminate, and touch panel | |
WO2018109867A1 (en) | Transparent conductive film with carrier film, and touch panel using transparent conductive film | |
TWM513403U (en) | Touching-sensitive device | |
JP2016134320A (en) | Transparent conductive body and touch panel | |
JP6552099B2 (en) | Transparent conductive film with carrier film and touch panel using the same | |
JP2017061069A (en) | Transparent conductive film laminate and touch panel including the same | |
JP2005183310A (en) | Transparent conductive film and touch panel using this, and manufacturing method of these |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6626996 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |