JP6470040B2 - Transparent conductive film, transparent conductive film laminate, and touch panel - Google Patents

Transparent conductive film, transparent conductive film laminate, and touch panel Download PDF

Info

Publication number
JP6470040B2
JP6470040B2 JP2014263894A JP2014263894A JP6470040B2 JP 6470040 B2 JP6470040 B2 JP 6470040B2 JP 2014263894 A JP2014263894 A JP 2014263894A JP 2014263894 A JP2014263894 A JP 2014263894A JP 6470040 B2 JP6470040 B2 JP 6470040B2
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
transparent
thickness
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014263894A
Other languages
Japanese (ja)
Other versions
JP2016124106A (en
Inventor
直樹 津野
直樹 津野
基希 拝師
基希 拝師
細川 和人
和人 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2014263894A priority Critical patent/JP6470040B2/en
Priority to KR1020177016933A priority patent/KR102021215B1/en
Priority to CN201580069969.7A priority patent/CN107107576B/en
Priority to PCT/JP2015/084881 priority patent/WO2016104204A1/en
Priority to TW104142784A priority patent/TWI713482B/en
Publication of JP2016124106A publication Critical patent/JP2016124106A/en
Application granted granted Critical
Publication of JP6470040B2 publication Critical patent/JP6470040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、透明導電性フィルム、透明導電性フィルム積層体及びタッチパネルに関し、特にカールの発生の制御に有用な技術である。   The present invention relates to a transparent conductive film, a transparent conductive film laminate, and a touch panel, and is a technique particularly useful for controlling the occurrence of curling.

従来、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ、タッチパネル等の基板としては、ガラスを基板とするものが多く使われてきた。近年では、ディスプレイの薄型化に伴い、透明性、表面平滑性、耐熱性等に優れるガラス基板での薄型化が注目されている。   Conventionally, as substrates for liquid crystal displays, organic electroluminescence displays, touch panels, etc., glass substrates are often used. In recent years, with the thinning of displays, the thinning of glass substrates with excellent transparency, surface smoothness, heat resistance, and the like has attracted attention.

一方、静電容量タイプのタッチパネル構成においては透明導電性フィルムの基材フィルムとしてポリエチレンテレフタレート(PET)が広く用いられている。しかし、PETフィルムは延伸製膜されており、高い位相差を有しているため、偏光板のもとで使用することが困難である。そのため、特許文献1では、低位相差用基材フィルムとして非晶性樹脂であるシクロオレフィン系樹脂を用いた透明導電性フィルムが提案されている。   On the other hand, in a capacitive touch panel configuration, polyethylene terephthalate (PET) is widely used as a base film of a transparent conductive film. However, since a PET film is stretched and has a high retardation, it is difficult to use it under a polarizing plate. Therefore, Patent Document 1 proposes a transparent conductive film using a cycloolefin-based resin that is an amorphous resin as a low retardation substrate film.

特許文献2では、液晶ディスプレイ等の偏光板の下で使用できるλ/4位相差フィルムとしてポリカーボネートや非晶性のポリオレフィンフィルム上に透明導電膜を形成した透明導電性フィルムが開示されており、この透明導電性フィルムをガラス基板上に積層した積層体や、全面フレキシブルカバーガラスにタッチパネル機能を付与した液晶表示装置が提案されている。   Patent Document 2 discloses a transparent conductive film in which a transparent conductive film is formed on a polycarbonate or an amorphous polyolefin film as a λ / 4 retardation film that can be used under a polarizing plate such as a liquid crystal display. A laminate in which a transparent conductive film is laminated on a glass substrate, and a liquid crystal display device in which a touch panel function is provided on the entire surface of a flexible cover glass have been proposed.

透明導電性フィルムを薄型のガラス基板に貼り合せ透明導電性フィルム積層体とした後に、透明導電膜の結晶化を行ったり、額縁配線用の金属配線加工を行ったりする場合は、130℃以上の加熱工程を経由することが多い。かかる場合、ガラス基板が薄いため加熱時の影響を受けやすく、また樹脂とガラスとで熱収縮率等が異なるため、積層体がカールして、次の工程に搬送できなかったり、金属配線のアライメント調整が困難となり金属配線の加工ができなかったりして、安定かつ連続して生産を行うことが困難となる。   When a transparent conductive film is bonded to a thin glass substrate to form a transparent conductive film laminate, the transparent conductive film is crystallized or metal wiring processing for frame wiring is performed at 130 ° C. or higher. It often goes through a heating process. In such a case, since the glass substrate is thin, it is easily affected by heating, and because the thermal shrinkage rate differs between resin and glass, the laminate curls and cannot be transferred to the next process, or alignment of metal wiring Adjustment becomes difficult and metal wiring cannot be processed, making it difficult to carry out stable and continuous production.

特開2013−114344号公報JP 2013-114344 A 特開2014−137427号公報JP 2014-137427 A

そこで、本発明の目的は、透明導電性フィルムに薄型のガラス基板を貼り合せた透明導電性フィルム積層体において、加熱工程後もカールの発生を抑制でき、その後の工程歩留まりを確保可能な透明導電性フィルム、透明導電性フィルム積層体及びタッチパネルを提供することにある。   Accordingly, an object of the present invention is to provide a transparent conductive film laminate in which a thin glass substrate is bonded to a transparent conductive film, which can suppress the occurrence of curling even after the heating process and can secure the subsequent process yield. It is providing a conductive film, a transparent conductive film laminated body, and a touch panel.

本発明者らは、前記課題を解決すべく鋭意検討した結果、透明導電性フィルム積層体が透明導電膜を上にした場合大きく凹方向にカールしたため、透明導電性フィルムの透明導電膜を下にした場合に予め大きく凹方向にカールするように透明導電性フィルムを設計することで、上記目的を達成し得ることを見出し本発明にいたった。   As a result of intensive studies to solve the above problems, the present inventors curled in a concave direction when the transparent conductive film laminate had the transparent conductive film up, so the transparent conductive film of the transparent conductive film was placed below. In this case, the inventors have found that the above object can be achieved by designing the transparent conductive film so as to curl in a large concave direction in advance.

すなわち、本発明の透明導電性フィルムは、透明樹脂フィルムの一方の面側に第1の硬化樹脂層と、透明導電膜とがこの順に形成され、前記透明樹脂フィルムの他方の面側に第2の硬化樹脂層が形成された透明導電性フィルムであって、前記透明樹脂フィルムは、非晶性樹脂からなり、前記透明導電性フィルムを50cm×50cmにカットし、透明導電膜を下面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A−B)が、5mm以上である透明導電性フィルムであることを特徴とする。なお、本発明における各種の物性値は、特に断りのない限り、実施例等において採用する方法により測定される値である。   That is, in the transparent conductive film of the present invention, the first cured resin layer and the transparent conductive film are formed in this order on one surface side of the transparent resin film, and the second surface side of the transparent resin film is second. The transparent resin film is formed of an amorphous resin, and the transparent conductive film is cut into 50 cm × 50 cm, with the transparent conductive film as the bottom surface and 130 ° C. A difference between the average curl value A at the four corners and the curl value B at the center after heating for 90 minutes at (A-B) is a transparent conductive film having a thickness of 5 mm or more. In addition, unless otherwise indicated, the various physical property values in the present invention are values measured by the methods employed in Examples and the like.

透明樹脂フィルムを形成する非晶性樹脂は、一般に押出し工程やキャスト製膜工程を経て製膜され、必ず残留応力が残っており、加熱により収縮応力が発生する。一方、薄ガラスは、130℃程度の加熱では圧倒的に収縮応力が小さい。そのため、透明導電性フィルムに薄ガラスを貼り合せた透明導電性フィルム積層体において、透明導電性フィルムを上にして加熱した場合凹方向にカールが発生してしまう。また、透明導電性フィルムにおいては、無機物である透明導電膜と有機物である透明樹脂フィルム等との熱収縮率や線膨張係数等が違うため、加熱によるカールが発生する。そこで、本発明では、透明導電性フィルムの透明導電膜を下にした場合予め大きく凹方向にカールするように設計することで、薄ガラスを貼り合せた透明導電性フィルム積層体において加熱工程後のカールの発生をきわめて小さくできることを見出した。すなわち、透明導電性フィルムを50cm×50cmにカットし、透明導電膜を下面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A−B)が、5mm以上とすることで、従来のガラス基板に積層した積層体で生じたであろう収縮力と、透明導電性フィルムに生じた収縮力とで打ち消しあうことができ、薄型のガラス基板と貼り合せた後の透明導電性フィルム積層体において加熱工程後のカールをきわめて小さくできる。これにより、透明導電膜の結晶化や金属配線加工等による加熱後のカールを抑えることが可能となり、安定かつ連続して加工搬送することができ、その後の工程歩留りを確保可能となる。   The amorphous resin that forms the transparent resin film is generally formed through an extrusion process or a cast film forming process, and a residual stress always remains, and a shrinkage stress is generated by heating. On the other hand, thin glass has an overwhelmingly small shrinkage stress when heated to about 130 ° C. Therefore, in a transparent conductive film laminate in which thin glass is bonded to a transparent conductive film, curling occurs in the concave direction when heated with the transparent conductive film facing up. Moreover, in a transparent conductive film, since the thermal contraction rate, the linear expansion coefficient, etc. of a transparent conductive film which is an inorganic substance and a transparent resin film which is an organic substance are different, curling due to heating occurs. Therefore, in the present invention, when the transparent conductive film of the transparent conductive film is placed downward, it is designed so as to curl in a large concave direction in advance, so that in the transparent conductive film laminate bonded with thin glass, after the heating step. It was found that the occurrence of curling can be made extremely small. That is, the difference between the average curl value A at the four corners and the curl value B at the center (A− after cutting the transparent conductive film into 50 cm × 50 cm, heating the transparent conductive film on the bottom surface at 130 ° C. for 90 minutes) By setting B) to 5 mm or more, it is possible to counteract the shrinkage force that would have occurred in the laminate laminated on the conventional glass substrate and the shrinkage force that has occurred in the transparent conductive film, and a thin glass In the transparent conductive film laminate after being bonded to the substrate, the curl after the heating step can be made extremely small. As a result, curling after heating due to crystallization of the transparent conductive film, metal wiring processing, or the like can be suppressed, processing and conveyance can be performed stably and continuously, and subsequent process yield can be ensured.

本発明の透明導電性フィルムにおいて、前記第1の硬化樹脂層の厚みと前記第2の硬化樹脂層の厚みとは、いずれも2μm以下であり、前記第2の硬化樹脂層の厚みは前記第1の硬化樹脂層の厚みと同じかそれより薄いことが好ましい。第1の硬化樹脂層の厚みと第2の硬化樹脂層の厚みとが上記のように薄い範囲であると、硬化樹脂層に起因する収縮力の影響を小さくすることができ、透明樹脂フィルムが加熱時の影響を受けやすくなり、カールがより発生しやすくなる。また、第2の硬化樹脂層の厚みを前記第1の硬化樹脂層の厚みと同じかそれより薄くすると、さらに透明樹脂フィルムが加熱時の影響を受けやすくなり、カールがより発生しやすくなるように透明導電性フィルムを設計できる。   In the transparent conductive film of the present invention, the thickness of the first cured resin layer and the thickness of the second cured resin layer are both 2 μm or less, and the thickness of the second cured resin layer is the first thickness. The thickness of the cured resin layer 1 is preferably equal to or thinner than that. When the thickness of the first cured resin layer and the thickness of the second cured resin layer are in the thin range as described above, the influence of the shrinkage force due to the cured resin layer can be reduced, and the transparent resin film It becomes easy to be affected by heating, and curl is more likely to occur. Further, if the thickness of the second cured resin layer is the same as or thinner than the thickness of the first cured resin layer, the transparent resin film is more easily affected by heating, and curling is more likely to occur. A transparent conductive film can be designed.

本発明の透明導電性フィルムは、前記第1の硬化樹脂層と前記透明導電膜との間に更に1層以上の光学調整層を備えることが好ましい。光学調整層により屈折率を制御できるため、透明導電膜をパターン化した場合でも、パターン形成部とパターン開口部との反射率差を低減することができ、透明導電膜パターンが見えにくく、タッチパネル等の表示装置において視認性が良好になる。
光学調整層塗工後にフィルムにアニール工程を通すことで、MD方向とTD方向の基材熱収縮差調整および基材の収縮力を小さくすることで、カール量がより発生しやすくなるように透明導電性フィルムを設計できる。
The transparent conductive film of the present invention preferably further comprises one or more optical adjustment layers between the first cured resin layer and the transparent conductive film. Since the refractive index can be controlled by the optical adjustment layer, even when the transparent conductive film is patterned, the difference in reflectance between the pattern forming portion and the pattern opening can be reduced, the transparent conductive film pattern is difficult to see, and the touch panel, etc. Visibility is improved in the display device.
By passing the annealing process through the film after applying the optical adjustment layer, it is transparent so that the curl amount is more likely to occur by adjusting the thermal contraction difference of the base material in the MD direction and the TD direction and reducing the shrinkage force of the base material. Conductive films can be designed.

本発明における第2の硬化樹脂層は、樹脂と粒子とを含むことが好ましい。これにより、ロールtoロール製法に耐えうるアンチブロッキング性をより確実に実現でき、搬送容易性を向上させることができる。   It is preferable that the 2nd cured resin layer in this invention contains resin and particle | grains. Thereby, the anti-blocking property which can endure a roll to roll manufacturing method can be implement | achieved more reliably, and conveyance ease can be improved.

本発明における透明樹脂フィルムにおいて、非晶性樹脂がシクロオレフィン系樹脂であり、厚みが20〜75μmであり、ガラス転移温度が130℃以上であり、前記透明導電性フィルムにおいて、130℃で90分間の加熱した後の熱収縮率がMDおよびTD方向で0.2%未満であることが好ましい。透明樹脂フィルムの厚みが比較的薄い範囲にあるため、より加熱時の影響を受けやすく、カールを発生させやすいように透明導電性フィルムを設計できる。また、ガラス転移温度が高いシクロオレフィン系樹脂を用いて、熱収縮率が小さい透明導電性フィルムを用いることで、加熱工程後の過剰な熱収縮を抑制することができ、より高いレベルでカールの発生をコントロールできる。   In the transparent resin film in the present invention, the amorphous resin is a cycloolefin resin, the thickness is 20 to 75 μm, the glass transition temperature is 130 ° C. or higher, and in the transparent conductive film, the temperature is 130 ° C. for 90 minutes. It is preferable that the heat shrinkage ratio after heating is less than 0.2% in the MD and TD directions. Since the thickness of the transparent resin film is in a relatively thin range, the transparent conductive film can be designed so as to be more easily affected by heating and to easily cause curling. In addition, by using a cycloolefin resin having a high glass transition temperature and using a transparent conductive film having a low heat shrinkage rate, excessive heat shrinkage after the heating step can be suppressed, and curling at a higher level can be achieved. You can control the occurrence.

本発明における光学調整層は、バインダー樹脂と微粒子とを含み、屈折率が1.6〜1.8であり、厚みが40〜150nmであることが好ましい。光学調整層に微粒子を含むことによって光学調整層自体の屈折率の調整を容易に行うことができる。また、光学調整層の厚みを前記範囲とすることで、連続被膜となりやすく、透明性を確保できるとともに、カール発生に大きな影響を与えないように制御できる。   The optical adjustment layer in the present invention contains a binder resin and fine particles, preferably has a refractive index of 1.6 to 1.8, and a thickness of 40 to 150 nm. By including fine particles in the optical adjustment layer, the refractive index of the optical adjustment layer itself can be easily adjusted. Moreover, by setting the thickness of the optical adjustment layer in the above range, it is easy to form a continuous film, and it is possible to ensure transparency and control so as not to greatly affect the curling.

本発明における透明導電膜は、インジウム・スズ複合酸化物(ITO)からなり、厚みが10〜35nmであることが好ましい。これにより、透明性を確保でき、タッチパネル等に使用時も視認性を向上させることができるとともに、カール発生の向きや量を設計できる。   The transparent conductive film in the present invention is made of indium-tin composite oxide (ITO) and preferably has a thickness of 10 to 35 nm. Thereby, transparency can be secured, visibility can be improved even when used for a touch panel or the like, and the direction and amount of curling can be designed.

本発明の透明導電性フィルム積層体は、前記透明導電性フィルムの透明導電膜とは反対の面側に粘着剤層を介してガラス基板を積層した透明導電性フィルム積層体であることが好ましい。本発明の透明導電性フィルムは、透明導電膜を下にした場合予め大きく凹方向にカールするように設計しているため、薄ガラスを貼り合せた透明導電性フィルム積層体において加熱工程後のカールの発生を抑制でき、その後の工程歩留まりを確保可能である。   It is preferable that the transparent conductive film laminated body of this invention is a transparent conductive film laminated body which laminated | stacked the glass substrate through the adhesive layer on the surface side opposite to the transparent conductive film of the said transparent conductive film. Since the transparent conductive film of the present invention is designed so as to curl in a large concave direction in advance when the transparent conductive film is on the bottom, the transparent conductive film laminated body laminated with thin glass has a curl after the heating step. Generation can be suppressed, and the subsequent process yield can be secured.

本発明の透明導電性フィルム積層体を210mm×260mmにカットし、透明導電膜を上面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A−B)が、2.0mm以下であることが好ましい。これにより、加熱工程後もカールの発生を抑制でき、その後の工程歩留まりを確保可能となる。   The difference between the average curl value A at the four corners and the curl value B at the center after the transparent conductive film laminate of the present invention was cut into 210 mm × 260 mm and the transparent conductive film was the top surface and heated at 130 ° C. for 90 minutes. (A-B) is preferably 2.0 mm or less. As a result, the occurrence of curling can be suppressed even after the heating step, and the subsequent process yield can be secured.

本発明のタッチパネルは、前記透明導電性フィルム積層体を用いて得られることが好ましい。前記透明導電性フィルム積層体を用いると、乾燥等の加熱工程後のカール発生を抑制することができるため、透明導電性フィルム積層体の加工搬送が容易となり、作業効率が向上する。   The touch panel of the present invention is preferably obtained using the transparent conductive film laminate. When the transparent conductive film laminate is used, curling after a heating step such as drying can be suppressed, so that processing and conveyance of the transparent conductive film laminate is facilitated, and work efficiency is improved.

本発明の一実施形態に係る透明導電性フィルムの模式的断面図である。It is typical sectional drawing of the transparent conductive film which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る透明導電性フィルムの模式的断面図である。It is typical sectional drawing of the transparent conductive film which concerns on other embodiment of this invention. 本発明の一実施形態に係る透明導電性フィルム積層体の模式的断面図である。It is a typical sectional view of the transparent conductive film layered product concerning one embodiment of the present invention.

本発明の透明導電性フィルム積層体の実施形態について、図面を参照しながら以下に説明する。ただし、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大または縮小等して図示した部分がある。上下等の位置関係を示す用語は、単に説明を容易にするために用いられており、本発明の構成を限定する意図は一切ない。   Embodiments of the transparent conductive film laminate of the present invention will be described below with reference to the drawings. However, in some or all of the drawings, parts unnecessary for the description are omitted, and there are parts shown enlarged or reduced for easy explanation. The terms indicating the positional relationship such as up and down are merely used for ease of explanation, and are not intended to limit the configuration of the present invention.

<透明導電性フィルム及び積層体の構造>
図1は、本発明の透明導電性フィルムの一実施形態を模式的に示す断面図であり、図2は、本発明の透明導電性フィルムの他の実施形態を模式的に示す断面図であり、図3は、本発明の透明導電性フィルム積層体の一実施形態を模式的に示す断面図である。図1〜2に示す透明導電性フィルム10は、透明樹脂フィルム1の一方の面側に第1の硬化樹脂層2と、透明導電膜3とがこの順に形成され、前記透明樹脂フィルム1の他方の面側に第2の硬化樹脂層4が形成されている。図2に示すように、前記第1の硬化樹脂層2と前記透明導電膜3との間に更に1層の光学調整層5を備えることができるが、2層以上の光学調整層5を備えることもできる。第1の硬化樹脂層2と第2の硬化樹脂層4とは、アンチブロッキング層やハードコート層として機能するものを含む。また、図3に示すように、透明導電性フィルム積層体は、透明導電性フィルム10の透明導電膜3とは反対の面側に粘着剤層7を介してガラス基板6を積層する。
<Structure of transparent conductive film and laminate>
FIG. 1 is a cross-sectional view schematically showing one embodiment of the transparent conductive film of the present invention, and FIG. 2 is a cross-sectional view schematically showing another embodiment of the transparent conductive film of the present invention. FIG. 3 is a cross-sectional view schematically showing one embodiment of the transparent conductive film laminate of the present invention. The transparent conductive film 10 shown in FIGS. 1-2 has a first cured resin layer 2 and a transparent conductive film 3 formed in this order on one surface side of the transparent resin film 1, and the other of the transparent resin film 1. A second cured resin layer 4 is formed on the surface side. As shown in FIG. 2, one optical adjustment layer 5 can be further provided between the first cured resin layer 2 and the transparent conductive film 3, but two or more optical adjustment layers 5 are provided. You can also. The 1st cured resin layer 2 and the 2nd cured resin layer 4 include what functions as an antiblocking layer or a hard-coat layer. Moreover, as shown in FIG. 3, the transparent conductive film laminated body laminates the glass substrate 6 through the adhesive layer 7 on the surface side opposite to the transparent conductive film 3 of the transparent conductive film 10.

<透明導電性フィルム>
透明導電性フィルムは、透明樹脂フィルムの一方の面側に第1の硬化樹脂層と、透明導電膜とがこの順に形成され、前記透明樹脂フィルムの他方の面側に第2の硬化樹脂層が形成されている。第1の硬化樹脂層と透明導電膜との間に、1層以上の光学調整層をさらに含むことができる。透明導電性フィルムにおいて、130℃で90分間加熱した際のMD方向及びTD方向の熱収縮率は、0.2%未満であることが好ましく、0.2%以下であることがより好ましく、0.15%以下であることが更に好ましく、0.1%以下であることが特に好ましい。下限値は特に制限されないが、0.01%以上であることが好ましい。これにより、加工性、透明性等に優れた透明導電性フィルムとなり、乾燥等の加熱工程後におけるカールの発生量や向きが制御できるため、透明導電性フィルム積層体の加工搬送が容易となる。
<Transparent conductive film>
In the transparent conductive film, a first cured resin layer and a transparent conductive film are formed in this order on one surface side of the transparent resin film, and a second cured resin layer is formed on the other surface side of the transparent resin film. Is formed. One or more optical adjustment layers may be further included between the first cured resin layer and the transparent conductive film. In the transparent conductive film, the thermal shrinkage in the MD and TD directions when heated at 130 ° C. for 90 minutes is preferably less than 0.2%, more preferably 0.2% or less, and 0 More preferably, it is 15% or less, and particularly preferably 0.1% or less. The lower limit is not particularly limited, but is preferably 0.01% or more. Thereby, it becomes a transparent conductive film excellent in processability, transparency, and the like, and the amount and direction of curling after a heating process such as drying can be controlled, so that the transparent conductive film laminate can be easily processed and conveyed.

透明導電性フィルムを50cm×50cmにカットし、透明導電膜を下面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A−B)が、5mm以上であることが好ましく、8mm以上であることがより好ましく、10mm以上であることが更に好ましい。上限値は特に制限されないが、50mm以下であることが好ましく、40mm以下であることがより好ましく、30mm以下であることが更に好ましい。このように透明導電性フィルムのカール量を大きく設定すると、薄型のガラス基板と貼り合せた後の透明導電性フィルム積層体において加熱工程後のカールをきわめて小さくできる。これにより、透明導電膜の結晶化や金属配線加工等による加熱後のカールを抑えることが可能となり、安定かつ連続して加工搬送することができ、その後の工程歩留りを確保可能となる。   The difference between the average curl value A at the four corners and the curl value B at the center after cutting the transparent conductive film into 50 cm × 50 cm and heating the transparent conductive film on the bottom surface at 130 ° C. for 90 minutes (AB) Is preferably 5 mm or more, more preferably 8 mm or more, and still more preferably 10 mm or more. The upper limit is not particularly limited, but is preferably 50 mm or less, more preferably 40 mm or less, and still more preferably 30 mm or less. When the curl amount of the transparent conductive film is set to be large as described above, the curl after the heating step can be extremely reduced in the transparent conductive film laminate after being bonded to the thin glass substrate. As a result, curling after heating due to crystallization of the transparent conductive film, metal wiring processing, or the like can be suppressed, processing and conveyance can be performed stably and continuously, and subsequent process yield can be ensured.

(透明樹脂フィルム)
透明樹脂フィルムは、非晶性樹脂により形成されており、高透明性及び低吸水性の特性を有する。非晶性樹脂の採用により透明導電性フィルムの光学特性の制御が可能となる。非晶性樹脂としては、特に限定されるものではないが、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましく、ポリカーボネート、シクロオレフィン、ポリ塩化ビニル、ポリメチルメタクリレートなどのアクリル系樹脂、ポリスチレン、ポリメチルメタクリレートスチレン共重合体、ポリアクリロニトリル、ポリアクリロニトリルスチレン共重合体、ハイインパクトポリスチレン(HIPS)、アクリロニトルブタジエンスチレン共重合体(ABS樹脂)、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンエーテル等が挙げられる。高透明性、低吸水性、耐熱性等の観点から、シクロオレフィン系樹脂やポリカーボネート系樹脂などが好ましい。
(Transparent resin film)
The transparent resin film is formed of an amorphous resin and has high transparency and low water absorption characteristics. By adopting the amorphous resin, the optical characteristics of the transparent conductive film can be controlled. The amorphous resin is not particularly limited, but is preferably excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy, and the like. Polycarbonate, cycloolefin, polyvinyl chloride, Acrylic resins such as polymethyl methacrylate, polystyrene, polymethyl methacrylate styrene copolymer, polyacrylonitrile, polyacrylonitrile styrene copolymer, high impact polystyrene (HIPS), acrylonitrile butadiene styrene copolymer (ABS resin), poly Examples include arylate, polysulfone, polyethersulfone, and polyphenylene ether. From the viewpoints of high transparency, low water absorption, heat resistance, etc., cycloolefin resins and polycarbonate resins are preferred.

シクロオレフィン系樹脂としては、環状オレフィン(シクロオレフィン)からなるモノマーのユニットを有する樹脂であれば特に限定されるものではない。透明樹脂フィルムに用いられるシクロオレフィン系樹脂としては、シクロオレフィンポリマー(COP)又はシクロオレフィンコポリマー(COC)のいずれであってもよい。シクロオレフィンコポリマーとは、環状オレフィンとエチレン等のオレフィンとの共重合体である非結晶性の環状オレフィン系樹脂のことをいう。   The cycloolefin resin is not particularly limited as long as it is a resin having a monomer unit composed of a cyclic olefin (cycloolefin). The cycloolefin resin used for the transparent resin film may be either a cycloolefin polymer (COP) or a cycloolefin copolymer (COC). The cycloolefin copolymer refers to an amorphous cyclic olefin resin that is a copolymer of a cyclic olefin and an olefin such as ethylene.

上記環状オレフィンとしては、多環式の環状オレフィンと単環式の環状オレフィンとが存在している。かかる多環式の環状オレフィンとしては、ノルボルネン、メチルノルボルネン、ジメチルノルボルネン、エチルノルボルネン、エチリデンノルボルネン、ブチルノルボルネン、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、メチルジシクロペンタジエン、ジメチルジシクロペンタジエン、テトラシクロドデセン、メチルテトラシクロドデセン、ジメチルシクロテトラドデセン、トリシクロペンタジエン、テトラシクロペンタジエンなどが挙げられる。また、単環式の環状オレフィンとしては、シクロブテン、シクロペンテン、シクロオクテン、シクロオクタジエン、シクロオクタトリエン、シクロドデカトリエンなどが挙げられる。   As the cyclic olefin, there are a polycyclic cyclic olefin and a monocyclic cyclic olefin. Such polycyclic olefins include norbornene, methylnorbornene, dimethylnorbornene, ethylnorbornene, ethylidenenorbornene, butylnorbornene, dicyclopentadiene, dihydrodicyclopentadiene, methyldicyclopentadiene, dimethyldicyclopentadiene, tetracyclododecene. , Methyltetracyclododecene, dimethylcyclotetradodecene, tricyclopentadiene, tetracyclopentadiene, and the like. Examples of monocyclic olefins include cyclobutene, cyclopentene, cyclooctene, cyclooctadiene, cyclooctatriene, and cyclododecatriene.

シクロオレフィン系樹脂は、市販品としても入手可能であり、例えば、日本ゼオン社製「ZEONOR」、JSR社製「ARTON」、ポリプラスチック社製「TOPAS」、三井化学社製「APEL」などが挙げられる。   Cycloolefin-based resins are also available as commercial products, such as “ZEONOR” manufactured by ZEON Corporation, “ARTON” manufactured by JSR, “TOPAS” manufactured by Polyplastics, “APEL” manufactured by Mitsui Chemicals, and the like. It is done.

ポリカーボネート系樹脂は、特に限定されないが、例えば、脂肪族ポリカーボネート、芳香族ポリカーボネート、脂肪族−芳香族ポリカーボネートなどが挙げられる。具体的には、例えば、ビスフェノール類を用いたポリカーボネート(PC)としてビスフェノールAポリカーボネート、分岐ビスフェノールAポリカーボネート、発砲ポリカーボネート、コポリカーボネート、ブロックコポリカーボネート、ポリエステルカーボネート、ポリホスホネートカーボネート、ジエチレングリコールビスアリルカーボネート(CR−39)などが挙げられる。ポリカーボネート系樹脂には、ビスフェノールAポリカーボネートブレンド、ポリエステルブレンド、ABSブレンド、ポリオレフィンブレンド、スチレン―無水マレイン酸共重合体ブレンドのような他成分とブレンドしたものも含まれる。ポリカーボネート樹脂の市販品としては、恵和社製「オプコン」、帝人社製「パンライト」、三菱ガス化学製「ユーピロン(紫外線吸収剤含有ポリカーボネート)」等が挙げられる。   The polycarbonate resin is not particularly limited, and examples thereof include aliphatic polycarbonate, aromatic polycarbonate, and aliphatic-aromatic polycarbonate. Specifically, for example, bisphenol A polycarbonate, branched bisphenol A polycarbonate, foamed polycarbonate, copolycarbonate, block copolycarbonate, polyester carbonate, polyphosphonate carbonate, diethylene glycol bisallyl carbonate (CR-) as polycarbonate (PC) using bisphenols 39). Polycarbonate-based resins also include those blended with other components such as bisphenol A polycarbonate blends, polyester blends, ABS blends, polyolefin blends, styrene-maleic anhydride copolymer blends. Examples of commercially available polycarbonate resin include “OPCON” manufactured by Ewa Co., Ltd., “Panlite” manufactured by Teijin Limited, and “Iupilon (UV absorber-containing polycarbonate)” manufactured by Mitsubishi Gas Chemical.

透明樹脂フィルムには、表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、透明樹脂フィルム上に形成される硬化樹脂層や透明導電膜等との密着性を向上させるようにしてもよい。また、硬化樹脂層や透明導電膜を形成する前に、必要に応じて溶剤洗浄や超音波洗浄などにより、透明樹脂フィルム表面を除塵、清浄化してもよい。   The transparent resin film is preliminarily subjected to etching treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and undercoating treatment on the surface, and a cured resin layer formed on the transparent resin film or transparent You may make it improve adhesiveness with an electrically conductive film. In addition, before forming the cured resin layer or the transparent conductive film, the surface of the transparent resin film may be removed and cleaned by solvent cleaning or ultrasonic cleaning as necessary.

透明樹脂フィルムの厚みは、20〜75μmの範囲内であることが好ましく、25〜70μmの範囲内であることがより好ましく、30〜65μmの範囲内であることが更に好ましい。透明樹脂フィルムの厚みが上記範囲の下限未満であると、機械的強度が不足し、フィルム基材をロール状にして透明導電膜を連続的に形成する操作が困難になる場合がある。一方、厚みが上記範囲の上限を超えると、透明導電膜の耐擦傷性やタッチパネル用としての打点特性の向上が図れない場合がある。また、厚みが上記範囲内であると、より加熱時の影響を受けやすくなるため、透明導電性フィルムの透明導電膜を下にした場合予め大きく凹方向にカールするように設計でき、薄ガラスを貼り合せて透明導電性フィルム積層体とした際に加熱工程後のカール発生を抑制できる。   The thickness of the transparent resin film is preferably in the range of 20 to 75 μm, more preferably in the range of 25 to 70 μm, and still more preferably in the range of 30 to 65 μm. When the thickness of the transparent resin film is less than the lower limit of the above range, the mechanical strength may be insufficient, and it may be difficult to continuously form a transparent conductive film by rolling the film substrate. On the other hand, if the thickness exceeds the upper limit of the above range, the scratch resistance of the transparent conductive film and the dot characteristics for touch panels may not be improved. In addition, when the thickness is within the above range, it is more susceptible to heating, so when the transparent conductive film of the transparent conductive film is placed down, it can be designed to curl in a large concave direction in advance, and thin glass When bonded to form a transparent conductive film laminate, curling after the heating step can be suppressed.

上記透明樹脂フィルムの非晶性樹脂のガラス転移温度(Tg)は、特に限定されないが、130℃以上が好ましく、150℃以上がより好ましく、160℃以上が更に好ましい。これにより、透明導電性フィルム積層体とした時に乾燥等の加熱工程後におけるカールの発生を抑制できるため、透明導電性フィルム積層体の加工搬送が容易となる。   Although the glass transition temperature (Tg) of the amorphous resin of the said transparent resin film is not specifically limited, 130 degreeC or more is preferable, 150 degreeC or more is more preferable, 160 degreeC or more is still more preferable. Thereby, when it is set as a transparent conductive film laminated body, since generation | occurrence | production of the curl after heating processes, such as drying, can be suppressed, processing conveyance of a transparent conductive film laminated body becomes easy.

透明樹脂フィルムを形成する樹脂フィルム原反(硬化樹脂層を積層する前の、加熱処理等を施す前のフィルム)の130℃で90分間加熱した際のMD方向及びTD方向の熱収縮率は、0.3%以下であることが好ましく、0.2%以下であることがより好ましく、0.1%以下であることが更に好ましい。これにより、加工性、透明性、加熱時の寸法安定性等に優れた透明樹脂フィルムとなる。また、透明導電性フィルム積層体とした時に乾燥等の加熱工程後におけるカールの発生を抑制できるため、透明導電性フィルム積層体の加工搬送が容易となる。   The thermal shrinkage rate in the MD direction and the TD direction when heated at 130 ° C. for 90 minutes at the resin film original fabric (film before applying the heat treatment, etc. before laminating the cured resin layer) forming the transparent resin film, It is preferably 0.3% or less, more preferably 0.2% or less, and further preferably 0.1% or less. Thereby, it becomes a transparent resin film excellent in workability, transparency, dimensional stability during heating, and the like. Moreover, since it can suppress generation | occurrence | production of the curl after heating processes, such as drying, when it is set as a transparent conductive film laminated body, the process conveyance of a transparent conductive film laminated body becomes easy.

上記透明樹脂フィルムは、面内方向の位相差(R0)が0nm〜10nmmの低位相差のフィルムや面内方向の位相差が80nm〜150nm程度のλ/4フィルムとすることが容易で、偏光板とともに使用される場合においては、視認性を良好にすることが可能となる。なお、面内位相差(R0)は、23℃において波長589nmの光で測定した位相差フィルム(層)面内の位相差値をいう。   The transparent resin film can be easily a low retardation film having an in-plane retardation (R0) of 0 nm to 10 nm or a λ / 4 film having an in-plane retardation of about 80 nm to 150 nm. When used together, the visibility can be improved. The in-plane retardation (R0) refers to an in-plane retardation value measured at 23 ° C. with light having a wavelength of 589 nm.

(硬化樹脂層)
硬化樹脂層は、透明樹脂フィルムの一方の面側に形成された第1の硬化樹脂層と、他方の面側に形成された第2の硬化樹脂層とを含む。非晶性樹脂で形成された透明樹脂フィルムは、透明導電膜の形成や透明導電膜のパターン化または電子機器への搭載などの各工程で傷が入りやすいので、上記のように、透明樹脂フィルムの両面に第1の硬化樹脂層と第2の硬化樹脂層とを形成する。
(Cured resin layer)
The cured resin layer includes a first cured resin layer formed on one surface side of the transparent resin film and a second cured resin layer formed on the other surface side. A transparent resin film formed of an amorphous resin is easily scratched in each process such as formation of a transparent conductive film, patterning of a transparent conductive film, or mounting on an electronic device. A first cured resin layer and a second cured resin layer are formed on both sides of the substrate.

硬化樹脂層は、硬化型樹脂を硬化させることにより得られた層である。硬化樹脂層は、樹脂と粒子とを含むことが好ましい。用いる樹脂としては、硬化樹脂層形成後の皮膜として十分な強度を持ち、透明性のあるものを特に制限なく使用できるが、熱硬化型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂、二液混合型樹脂などがあげられる。これらのなかでも紫外線照射による硬化処理にて、簡単な加工操作にて効率よく硬化樹脂層を形成することができる紫外線硬化型樹脂が好適である。   The cured resin layer is a layer obtained by curing a curable resin. The cured resin layer preferably contains a resin and particles. As the resin to be used, those having sufficient strength as a film after forming the cured resin layer and having transparency can be used without particular limitation, but thermosetting resin, ultraviolet curable resin, electron beam curable resin, two-component Examples thereof include mixed resins. Among these, an ultraviolet curable resin that can efficiently form a cured resin layer by a simple processing operation by a curing treatment by ultraviolet irradiation is preferable.

紫外線硬化型樹脂としては、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系等の各種のものがあげられ、紫外線硬化型のモノマー、オリゴマー、ポリマー等が含まれる。好ましく用いられる紫外線硬化型樹脂は、アクリル系樹脂やエポキシ系樹脂であり、より好ましくはアクリル系樹脂である。   Examples of the ultraviolet curable resin include polyester-based, acrylic-based, urethane-based, amide-based, silicone-based, and epoxy-based resins, and include ultraviolet curable monomers, oligomers, polymers, and the like. The ultraviolet curable resin preferably used is an acrylic resin or an epoxy resin, more preferably an acrylic resin.

硬化樹脂層は粒子を含んでいてもよい。硬化樹脂層に粒子を配合することにより、硬化樹脂層の表面に隆起を形成することができ、透明導電性フィルムに耐ブロッキング性を好適に付与することができる。   The cured resin layer may contain particles. By blending the particles in the cured resin layer, ridges can be formed on the surface of the cured resin layer, and blocking resistance can be suitably imparted to the transparent conductive film.

上記粒子としては、各種金属酸化物、ガラス、プラスチックなどの透明性を有するものを特に制限なく使用することができる。例えばシリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム等の無機系粒子、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル系樹脂、アクリル−スチレン共重合体、ベンゾグアナミン、メラミン、ポリカーボネート等の各種ポリマーからなる架橋又は未架橋の有機系粒子やシリコーン系粒子などがあげられる。前記粒子は、1種または2種以上を適宜に選択して用いることができるが、有機系粒子が好ましい。有機系粒子としては、屈折率の観点から、アクリル系樹脂が好ましい。   As said particle | grains, what has transparency, such as various metal oxides, glass, a plastics, can be especially used without a restriction | limiting. For example, inorganic particles such as silica, alumina, titania, zirconia, calcium oxide, polymethylmethacrylate, polystyrene, polyurethane, acrylic resin, acrylic-styrene copolymer, benzoguanamine, melamine, polycarbonate, or other cross-linked or uncrosslinked polymers. Examples include crosslinked organic particles and silicone particles. The particles can be used by appropriately selecting one type or two or more types, but organic particles are preferable. The organic particles are preferably acrylic resins from the viewpoint of refractive index.

粒子の最頻粒子径は、硬化樹脂層の隆起の突出度や隆起以外の平坦領域の厚みとの関係などを考慮して適宜設定することができ、特に限定されない。なお、透明導電性フィルムに耐ブロッキング性を十分に付与し、かつヘイズの上昇を十分に抑制するという観点から、粒子の最頻粒子径は、0.5〜5μmであることが好ましく、1.0〜2μmであることがより好ましい。なお、本明細書において、「最頻粒子径」とは、粒子分布の極大値を示す粒径をいい、フロー式粒子像分析装置(Sysmex社製、製品名「FPTA−3000S」)を用いて、所定条件下(Sheath液:酢酸エチル、測定モード:HPF測定、測定方式:トータルカウント)で測定することによって求められる。測定試料は、粒子を酢酸エチルで1.0重量%に希釈し、超音波洗浄機を用いて均一に分散させたものを用いる。   The mode particle diameter of the particles can be appropriately set in consideration of the degree of protrusion of the cured resin layer and the thickness of a flat region other than the protrusion, and is not particularly limited. In addition, from the viewpoint of sufficiently imparting blocking resistance to the transparent conductive film and sufficiently suppressing increase in haze, the mode particle diameter of the particles is preferably 0.5 to 5 μm. More preferably, it is 0-2 micrometers. In the present specification, “mode particle size” refers to a particle size showing the maximum value of particle distribution, using a flow type particle image analyzer (product name “FPTA-3000S” manufactured by Sysmex). , By measuring under predetermined conditions (Sheath solution: ethyl acetate, measurement mode: HPF measurement, measurement method: total count). The measurement sample is prepared by diluting the particles to 1.0% by weight with ethyl acetate and uniformly dispersing the particles using an ultrasonic cleaner.

粒子の含有量は、樹脂固形分100重量部に対して0.05〜1.0重量部であることが好ましく、0.1〜0.5重量部であることがより好ましく、0.2〜0.3重量部であることがさらに好ましい。硬化樹脂層中の粒子の含有量が小さいと、硬化樹脂層の表面に耐ブロッキング性や易滑性を付与するのに十分な隆起が形成され難くなる傾向がある。一方、粒子の含有量が大きすぎると、粒子による光散乱に起因して透明導電性フィルムのヘイズが高くなり、視認性が低下する傾向がある。また、粒子の含有量が大きすぎると、硬化樹脂層の形成時(溶液の塗布時)に、スジが発生し、視認性が損なわれたり、透明導電膜の電気特性が不均一となったりする場合がある。   The content of the particles is preferably 0.05 to 1.0 part by weight, more preferably 0.1 to 0.5 part by weight with respect to 100 parts by weight of the resin solid content, and 0.2 to More preferably, it is 0.3 parts by weight. When the content of the particles in the cured resin layer is small, there is a tendency that bulges sufficient to impart blocking resistance and slipperiness to the surface of the cured resin layer are hardly formed. On the other hand, if the content of the particles is too large, the haze of the transparent conductive film increases due to light scattering by the particles, and the visibility tends to decrease. On the other hand, when the content of the particles is too large, streaks are generated during the formation of the cured resin layer (at the time of application of the solution), and the visibility may be impaired, or the electrical characteristics of the transparent conductive film may be uneven. There is a case.

硬化樹脂層は、各硬化型樹脂と必要に応じて加える粒子、架橋剤、開始剤、増感剤などを含む樹脂組成物を透明樹脂フィルム上に塗布し、樹脂組成物が溶剤を含む場合には、溶剤の乾燥を行い、熱、活性エネルギー線またはその両方のいずれかの適用により硬化させることにより得られる。熱は空気循環式オーブンやIRヒーターなど公知の手段を用いることができるがこれらの方法に限定されない。活性エネルギー線の例としては紫外線、電子線、ガンマ線などがあるが特に限定されない。   The cured resin layer is formed by applying a resin composition containing particles, a crosslinking agent, an initiator, a sensitizer and the like to be added to each curable resin as necessary on a transparent resin film, and the resin composition contains a solvent. Is obtained by drying the solvent and curing by application of either heat, active energy rays or both. For the heat, known means such as an air circulation oven or an IR heater can be used, but it is not limited to these methods. Examples of active energy rays include, but are not limited to, ultraviolet rays, electron beams, and gamma rays.

硬化樹脂層は、上記の材料を用いて、ウェットコーティング法(塗工法)等により製膜できる。例えば、透明導電膜として酸化スズを含有する酸化インジウム(ITO)を形成する場合、下地層である硬化樹脂層の表面が平滑であると、透明導電膜の結晶化時間を短縮することもできる。かかる観点から、硬化樹脂層はウェットコーティング法により製膜されることが好ましい。   The cured resin layer can be formed by the wet coating method (coating method) using the above materials. For example, in the case of forming indium oxide (ITO) containing tin oxide as the transparent conductive film, the crystallization time of the transparent conductive film can be shortened if the surface of the cured resin layer that is the base layer is smooth. From this point of view, the cured resin layer is preferably formed by a wet coating method.

第1の硬化樹脂層の厚みと第2の硬化樹脂層の厚みとは、いずれも2μm以下であることが好ましく、より好ましくは0.1μm〜1.5μmであり、更に好ましくは0.3μm〜1.2μmである。また、第2の硬化樹脂層の厚みは第1の硬化樹脂層の厚みと同じかそれより薄いことが好ましい。即ち、第2の硬化樹脂層の厚みは、第1の硬化樹脂層の厚みの10〜100%であることが好ましく、20〜90%であることがより好ましく、30〜80%であることが更に好ましい。これにより、ロールtoロール製法にて搬送した際透明樹脂フィルムの傷つきが防止できる。また、硬化樹脂層の厚みが前記範囲にあると、タッチパネル等の視認性が悪化することを防ぐことができるとともに、透明導電性フィルムの透明導電膜を下にした場合予め大きく凹方向にカールするように設計できるため、薄ガラスを貼り合せて透明導電性フィルム積層体とした際に加熱工程後のカール発生を抑制できる。   The thickness of the first cured resin layer and the thickness of the second cured resin layer are both preferably 2 μm or less, more preferably 0.1 μm to 1.5 μm, still more preferably 0.3 μm to 1.2 μm. The thickness of the second cured resin layer is preferably the same as or thinner than the thickness of the first cured resin layer. That is, the thickness of the second cured resin layer is preferably 10 to 100% of the thickness of the first cured resin layer, more preferably 20 to 90%, and more preferably 30 to 80%. Further preferred. Thereby, damage with a transparent resin film can be prevented when it conveys by the roll to roll manufacturing method. Moreover, when the thickness of the cured resin layer is within the above range, it is possible to prevent the visibility of a touch panel and the like from being deteriorated, and when the transparent conductive film of the transparent conductive film is placed downward, it is largely curled in advance in the concave direction. Therefore, curling after the heating step can be suppressed when thin glass is laminated to form a transparent conductive film laminate.

(透明導電膜)
透明導電膜は、透明樹脂フィルム上に設けることができるが、透明樹脂フィルムの一方の面側に設けられた第1の硬化樹脂層上に設けられることが好ましい。透明導電膜の構成材料は、無機物を含む限り特に限定されず、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステンからなる群より選択される少なくとも1種の金属の金属酸化物が好適に用いられる。当該金属酸化物には、必要に応じて、さらに上記群に示された金属原子を含んでいてもよい。例えば酸化スズを含有する酸化インジウム(ITO)、アンチモンを含有する酸化スズ(ATO)などが好ましく用いられる。
(Transparent conductive film)
The transparent conductive film can be provided on the transparent resin film, but is preferably provided on the first cured resin layer provided on one surface side of the transparent resin film. The constituent material of the transparent conductive film is not particularly limited as long as it contains an inorganic substance. From the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten A metal oxide of at least one selected metal is preferably used. The metal oxide may further contain a metal atom shown in the above group, if necessary. For example, indium oxide (ITO) containing tin oxide and tin oxide (ATO) containing antimony are preferably used.

透明導電膜の厚みは、特に制限されないが、その表面抵抗を1×10Ω/□以下の良好な導電性を有する連続被膜とするには、厚みを10〜35nmとするのが好ましい。膜厚が、厚くなりすぎると透明性の低下などをきたすため、15〜35nmであることがより好ましく、更に好ましくは20〜30nmの範囲内である。透明導電膜の厚みが、10nm未満であると膜表面の電気抵抗が高くなり、かつ連続被膜になり難くなる。一方、透明導電膜の厚みが、35nmを超えると透明性の低下などをきたす場合がある。また、透明導電膜を第1の硬化樹脂層上に前記厚みで形成することで、透明導電性フィルムの透明導電膜を下にした場合予め大きく凹方向にカールするように設計できる。 The thickness of the transparent conductive film is not particularly limited, but the thickness is preferably 10 to 35 nm in order to obtain a continuous film having good conductivity with a surface resistance of 1 × 10 3 Ω / □ or less. When the film thickness becomes too thick, the transparency is lowered, and therefore it is more preferably 15 to 35 nm, and still more preferably in the range of 20 to 30 nm. When the thickness of the transparent conductive film is less than 10 nm, the electrical resistance of the film surface increases and it becomes difficult to form a continuous film. On the other hand, when the thickness of the transparent conductive film exceeds 35 nm, transparency may be lowered. Further, by forming the transparent conductive film on the first cured resin layer with the above-mentioned thickness, when the transparent conductive film of the transparent conductive film is turned down, it can be designed to curl in a large concave direction in advance.

透明導電膜の形成方法は、特に限定されず、従来公知の方法を採用することができる。具体的には、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等のドライプロセスを例示できる。また、必要とする膜厚に応じて適宜の方法を採用することもできる。   The formation method of a transparent conductive film is not specifically limited, A conventionally well-known method is employable. Specific examples include dry processes such as vacuum deposition, sputtering, and ion plating. In addition, an appropriate method can be adopted depending on the required film thickness.

透明導電膜は、必要に応じて加熱アニール処理(例えば、大気雰囲気下、80〜150℃で30〜90分間程度)を施して結晶化することができる。透明導電膜を結晶化することで、透明導電膜が低抵抗化されることに加えて、透明性及び耐久性が向上する。非晶質の透明導電膜を結晶質に転化させる手段は、特に限定されないが、空気循環式オーブンやIRヒーターなどが用いられる。   The transparent conductive film can be crystallized by applying a heat annealing treatment (for example, at 80 to 150 ° C. for about 30 to 90 minutes in an air atmosphere) as necessary. By crystallizing the transparent conductive film, the transparency and durability are improved in addition to the resistance of the transparent conductive film being reduced. The means for converting the amorphous transparent conductive film into crystalline is not particularly limited, and an air circulation oven, an IR heater, or the like is used.

「結晶質」の定義については、透明樹脂フィルム上に透明導電膜が形成された透明導電性フィルムを、20℃、濃度5重量%の塩酸に15分間浸漬した後、水洗・乾燥し、15mm間の端子間抵抗をテスタにて測定を行い、端子間抵抗が10kΩを超えない場合、ITO膜の結晶質への転化が完了したものとする。なお、表面抵抗値の測定は、JIS K7194に準じて、4端子法により測定できる。   Regarding the definition of “crystalline”, a transparent conductive film in which a transparent conductive film is formed on a transparent resin film is immersed in hydrochloric acid having a concentration of 5% by weight at 20 ° C. for 15 minutes, then washed with water and dried for 15 mm. When the inter-terminal resistance is measured with a tester and the inter-terminal resistance does not exceed 10 kΩ, it is assumed that the conversion of the ITO film to crystalline is completed. The surface resistance value can be measured by a four-terminal method according to JIS K7194.

また、透明導電膜は、エッチング等によりパターン化してもよい。透明導電膜のパターン化に関しては、従来公知のフォトリソグラフィの技術を用いて行うことができる。エッチング液としては、酸が好適に用いられる。酸としては、例えば、塩化水素、臭化水素、硫酸、硝酸、リン酸等の無機酸、酢酸等の有機酸、およびこれらの混合物、ならびにそれらの水溶液があげられる。例えば、静電容量方式のタッチパネルやマトリックス式の抵抗膜方式のタッチパネルに用いられる透明導電性フィルムにおいては、透明導電膜がストライプ状にパターン化されることが好ましい。なお、エッチングにより透明導電膜をパターン化する場合、先に透明導電膜の結晶化を行うと、エッチングによるパターン化が困難となる場合がある。そのため、透明導電膜のアニール処理は、透明導電膜をパターン化した後に行うことが好ましい。   The transparent conductive film may be patterned by etching or the like. The patterning of the transparent conductive film can be performed using a conventionally known photolithography technique. An acid is preferably used as the etching solution. Examples of the acid include inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid, phosphoric acid, organic acids such as acetic acid, mixtures thereof, and aqueous solutions thereof. For example, in a transparent conductive film used for a capacitive touch panel or a matrix resistive touch panel, the transparent conductive film is preferably patterned in a stripe shape. Note that, when the transparent conductive film is patterned by etching, if the transparent conductive film is first crystallized, patterning by etching may be difficult. Therefore, it is preferable to perform the annealing treatment of the transparent conductive film after patterning the transparent conductive film.

(光学調整層)
第1の硬化樹脂層と透明導電膜との間に、1層以上の光学調整層をさらに含むことができる。光学調整層は、透明導電性フィルムの透過率の上昇や、透明導電膜がパターン化される場合には、パターンが残るパターン部とパターンが残らない開口部の間で透過率差や反射率差を低減でき、視認性に優れた透明導電性フィルムを得るために用いられる。
(Optical adjustment layer)
One or more optical adjustment layers may be further included between the first cured resin layer and the transparent conductive film. The optical adjustment layer increases the transmittance of the transparent conductive film, or when the transparent conductive film is patterned, the transmittance difference or reflectance difference between the pattern part where the pattern remains and the opening part where the pattern does not remain. Is used to obtain a transparent conductive film excellent in visibility.

光学調整層は、バインダー樹脂と微粒子とを含むことが好ましい。光学調整層に含まれるバインダー樹脂としては、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、アルキド系樹脂、シロキサン系ポリマー、有機シラン縮合物などが挙げられ、アクリル系樹脂を含む紫外線硬化型樹脂が好ましい。   The optical adjustment layer preferably contains a binder resin and fine particles. Examples of the binder resin included in the optical adjustment layer include acrylic resins, urethane resins, melamine resins, alkyd resins, siloxane polymers, and organic silane condensates, and ultraviolet curable resins including acrylic resins. preferable.

光学調整層の屈折率は、1.6〜1.8であることが好ましく、1.62〜1.78であることがより好ましく、1.65〜1.75であることが更に好ましい。これにより、透過率差や反射率差を低減でき、視認性に優れた透明導電性フィルムを得ることができる。   The refractive index of the optical adjustment layer is preferably 1.6 to 1.8, more preferably 1.62 to 1.78, and still more preferably 1.65 to 1.75. Thereby, the transmittance | permeability difference and the reflectance difference can be reduced, and the transparent conductive film excellent in visibility can be obtained.

光学調整層は、平均粒径が1nm〜500nmの微粒子を有していてもよい。光学調整層中の微粒子の含有量は0.1重量%〜90重量%であることが好ましい。光学調整層に用いられる微粒子の平均粒径は、上述のように1nm〜500nmの範囲であることが好ましく、5nm〜300nmであることがより好ましい。また、光学調整層中の微粒子の含有量は10重量%〜80重量%であることがより好ましく、20重量%〜70重量%であることがさらに好ましい。光学調整層中に微粒子を含有することによって、光学調整層自体の屈折率の調整を容易に行うことができる。   The optical adjustment layer may have fine particles having an average particle diameter of 1 nm to 500 nm. The content of fine particles in the optical adjustment layer is preferably 0.1% by weight to 90% by weight. As described above, the average particle size of the fine particles used in the optical adjustment layer is preferably in the range of 1 nm to 500 nm, and more preferably 5 nm to 300 nm. The content of fine particles in the optical adjustment layer is more preferably 10% by weight to 80% by weight, and further preferably 20% by weight to 70% by weight. By containing fine particles in the optical adjustment layer, the refractive index of the optical adjustment layer itself can be easily adjusted.

微粒子を形成する無機酸化物としては、例えば、酸化ケイ素(シリカ)、中空ナノシリカ、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化ニオブ等の微粒子があげられる。これらの中でも、酸化ケイ素(シリカ)、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化ニオブの微粒子が好ましく、酸化ジルコニウムがより好ましい。これらは1種を単独で用いてもよく、2種以上を併用してもよい。   Examples of the inorganic oxide forming the fine particles include fine particles of silicon oxide (silica), hollow nanosilica, titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, niobium oxide, and the like. Among these, fine particles of silicon oxide (silica), titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide and niobium oxide are preferable, and zirconium oxide is more preferable. These may be used alone or in combination of two or more.

光学調整層は、その他の無機物を含有することが可能である。無機物としては、NaF(1.3)、NaAlF(1.35)、LiF(1.36)、MgF(1.38)、CaF(1.4)、BaF(1.3)、BaF(1.3)、LaF(1.55)、CeF(1.63)など(括弧内の数値は屈折率を示す)が挙げられる。 The optical adjustment layer can contain other inorganic substances. The inorganic material, NaF (1.3), Na 3 AlF 6 (1.35), LiF (1.36), MgF 2 (1.38), CaF 2 (1.4), BaF 2 (1.3 ), BaF 2 (1.3), LaF 3 (1.55), CeF (1.63), etc. (the numerical values in parentheses indicate the refractive index).

光学調整層は、上記の材料を用いて、ウェットコーティング法、グラビアコート法やバーコート法などの塗工法、真空蒸着法、スパッタリング法、イオンプレーティング法などにより形成できる。例えば、透明導電膜として酸化スズを含有する酸化インジウム(ITO)を形成する場合、下地層である樹脂層の表面が平滑であると、透明導電層の結晶化時間を短縮することもできる。かかる観点から、樹脂層はウェットコーティング法により製膜されることが好ましい。   The optical adjustment layer can be formed by using the above materials by a coating method such as a wet coating method, a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like. For example, in the case where indium oxide (ITO) containing tin oxide is formed as the transparent conductive film, the crystallization time of the transparent conductive layer can be shortened if the surface of the resin layer that is the base layer is smooth. From this point of view, the resin layer is preferably formed by a wet coating method.

光学調整層の厚みは、40nm〜150nmであることが好ましく、50nm〜130nmであることがより好ましく、70nm〜120nmであることがさらに好ましい。光学調整層の厚みが過度に小さいと連続被膜となりにくい。また、光学調整層の厚みが過度に大きいと、透明導電性フィルムの透明性が低下したり、クラックが生じ易くなったりする傾向がある。   The thickness of the optical adjustment layer is preferably 40 nm to 150 nm, more preferably 50 nm to 130 nm, and even more preferably 70 nm to 120 nm. If the thickness of the optical adjustment layer is too small, it is difficult to form a continuous film. Moreover, when the thickness of the optical adjustment layer is excessively large, the transparency of the transparent conductive film tends to be reduced or cracks tend to occur.

(金属配線)
金属配線は、金属層を透明導電膜上に形成した後、エッチングにより形成することも可能であるが、以下のように感光性金属ペーストを用いて形成するのが好ましい。即ち、金属配線は、透明導電膜がパターン化された後に、後述の感光性導電ペーストを前記透明樹脂フィルム上または前記透明導電膜上に塗布し、感光性金属ペースト層を形成し、フォトマスクを積層または近接させフォトマスクを介して感光性金属ペースト層に露光を行い、次いで現像を行い、パターン形成した後、乾燥工程を経て得られる。つまり、公知のフォトリソグラフィ法等により、金属配線のパターン形成が可能である。
(Metal wiring)
The metal wiring can be formed by etching after forming the metal layer on the transparent conductive film, but is preferably formed using a photosensitive metal paste as follows. That is, after the transparent conductive film is patterned, the metal wiring is formed by applying a photosensitive conductive paste described later on the transparent resin film or the transparent conductive film, forming a photosensitive metal paste layer, and forming a photomask. The photosensitive metal paste layer is exposed through a photomask after being laminated or brought close to each other, then developed and patterned to obtain a drying process. That is, the metal wiring pattern can be formed by a known photolithography method or the like.

前記感光性導電ペーストは、金属粉末などの導電性粒子と感光性有機成分とを含むことが好ましい。金属粉末の導電性粒子の材料としては、Ag、Au、Pd、Ni、Cu、AlおよびPtの群から選択される少なくとも1種を含むものであることが好ましく、より好ましくはAgである。金属粉末の導電性粒子の体積平均粒子径は0.1μm〜2.5μmであることが好ましい。   The photosensitive conductive paste preferably includes conductive particles such as metal powder and a photosensitive organic component. The material of the conductive particles of the metal powder preferably contains at least one selected from the group consisting of Ag, Au, Pd, Ni, Cu, Al, and Pt, and more preferably Ag. The volume average particle diameter of the conductive particles of the metal powder is preferably 0.1 μm to 2.5 μm.

金属粉末以外の導電性粒子としては、樹脂粒子表面を金属で被覆した金属被覆樹脂粒子でもよい。樹脂粒子の材料としては、前述のような粒子が含まれるが、アクリル系樹脂が好ましい。金属被覆樹脂粒子は樹脂粒子の表面にシランカップリング剤を反応させ、さらにその表面に金属で被覆することにより得られる。シランカップリング剤を用いることにより、樹脂成分の分散が安定化して、均一な金属被覆樹脂粒子を形成することができる。   The conductive particles other than the metal powder may be metal-coated resin particles in which the resin particle surfaces are coated with metal. As the material of the resin particles, the above-mentioned particles are included, but an acrylic resin is preferable. The metal-coated resin particles are obtained by reacting the surface of the resin particles with a silane coupling agent and coating the surface with metal. By using the silane coupling agent, the dispersion of the resin component is stabilized, and uniform metal-coated resin particles can be formed.

感光性導電ペーストはさらにガラスフリットを含んでいてもよい。ガラスフリットは、体積平均粒子径が0.1μm〜1.4μmであることが好ましく、90%粒子径が1〜2μmおよびトップサイズが4.5μm以下であることが好ましい。ガラスフリットの組成としては、特に限定されないが、Biが全体に対して30重量%〜70重量%の範囲で配合されることが好ましい。Bi以外に含んでいてよい酸化物としては、SiO、B、ZrO、Alを含んでよい。NaO、KO、LiOは実質的に含まないアルカリフリーのガラスフリットであることが好ましい。 The photosensitive conductive paste may further contain glass frit. The glass frit preferably has a volume average particle size of 0.1 μm to 1.4 μm, a 90% particle size of 1 to 2 μm, and a top size of 4.5 μm or less. As the composition of the glass frit is not particularly limited, Bi 2 O 3 is are preferably blended in a range of 30% to 70% by weight relative to the total. Examples of the oxide that may be contained in addition to Bi 2 O 3 may include SiO 2 , B 2 O 3 , ZrO 2 , and Al 2 O 3 . Na 2 O, K 2 O, and Li 2 O are preferably alkali-free glass frit that is substantially free of them.

感光性有機成分は、感光性ポリマーおよび/または感光性モノマーを含むことが好ましい。感光性ポリマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート等の炭素−炭素二重結合有する化合物から選択された成分の重合体やこれらの共重合体からなるアクリル樹脂の側鎖または分子末端に光反応性基を付加したもの等が好適に用いられる。好ましい光反応性基としてはビニル基、アリル基、アクリル基、メタクリル基などのエチレン性不飽和基が挙げられる。感光性ポリマーの含有量は、1〜30重量%、2〜30重量%であることが好ましい。   The photosensitive organic component preferably contains a photosensitive polymer and / or a photosensitive monomer. As the photosensitive polymer, a polymer of a component selected from a compound having a carbon-carbon double bond such as methyl (meth) acrylate, ethyl (meth) acrylate, or a side chain or molecule of an acrylic resin comprising these copolymers. Those having a photoreactive group added to the terminal are preferably used. Preferred photoreactive groups include ethylenically unsaturated groups such as vinyl, allyl, acrylic and methacrylic groups. The content of the photosensitive polymer is preferably 1 to 30% by weight and 2 to 30% by weight.

感光性モノマーとしては、メタクリルアクリレート、エチルアクリレートなどの(メタ)アクリレート系モノマーや、γ−メタクリロキシプロピルトリメトキシシラン、1−ビニル−2−ピロリドンなどが挙げられ、1種または2種以上を使用することができる。   Examples of the photosensitive monomer include (meth) acrylate monomers such as methacryl acrylate and ethyl acrylate, γ-methacryloxypropyltrimethoxysilane, 1-vinyl-2-pyrrolidone and the like, and one or more are used. can do.

感光性導電ペーストにおいては、感光性有機成分が金属粉末100重量部に対して、5〜40重量%含むことが光の感度の点で好ましく、より好ましくは10重量部〜30重量部である。また、本発明の感光性導電ペーストは必要により光重合開始剤、増感剤、重合禁止剤、有機溶媒を用いることが好ましい。   In the photosensitive conductive paste, the photosensitive organic component is preferably contained in an amount of 5 to 40% by weight with respect to 100 parts by weight of the metal powder in terms of light sensitivity, and more preferably 10 to 30 parts by weight. The photosensitive conductive paste of the present invention preferably uses a photopolymerization initiator, a sensitizer, a polymerization inhibitor, and an organic solvent as necessary.

金属層の厚みは、特に制限されない。例えば、金属層の面内の一部をエッチング等により除去してパターン配線を形成する場合は、形成後のパターン配線が所望の抵抗値を有するように金属層の厚みが適宜に設定される。そのため、金属層の厚みは、0.01〜200μmであることが好ましく、0.05〜100μmであることがより好ましい。金属層の厚みが上記範囲であると、パターン配線の抵抗が高くなりすぎず、デバイスの消費電力が大きくならない。また、金属層の成膜の生産効率が上がり、成膜時の積算熱量が小さくなり、フィルムに熱シワが生じにくくなる。   The thickness of the metal layer is not particularly limited. For example, when the pattern wiring is formed by removing a part of the surface of the metal layer by etching or the like, the thickness of the metal layer is appropriately set so that the formed pattern wiring has a desired resistance value. Therefore, the thickness of the metal layer is preferably 0.01 to 200 μm, and more preferably 0.05 to 100 μm. When the thickness of the metal layer is within the above range, the resistance of the pattern wiring does not become too high, and the power consumption of the device does not increase. In addition, the production efficiency of the metal layer is increased, the integrated heat amount during the film formation is reduced, and the film is less likely to be thermally wrinkled.

透明導電性フィルムがディスプレイと組合せて使用するタッチパネル用の透明導電性フィルムである場合、表示部分に対応した部分はパターン化された透明導電膜により形成され、感光性導電ペーストから作製された金属配線は非表示部(例えば周縁部)の配線部分に用いられる。透明導電膜は非表示部でも用いられてよく、その場合は金属配線が透明導電膜上に形成されていてもよい。   When the transparent conductive film is a transparent conductive film for a touch panel used in combination with a display, the portion corresponding to the display portion is formed by a patterned transparent conductive film, and a metal wiring made from a photosensitive conductive paste Is used for the wiring part of the non-display part (for example, the peripheral part). The transparent conductive film may be used even in a non-display portion, and in that case, metal wiring may be formed on the transparent conductive film.

<透明導電性フィルム積層体>
透明導電性フィルム積層体は、前記透明導電性フィルムの透明導電膜とは他方の面側に粘着剤層を介してガラス基板を積層して形成する。透明導電性フィルム積層体は、透明導電性フィルム積層体を210mm×260mmにカットし、透明導電膜を上面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A−B)が、2.0mm以下であることが好ましく、2.0mm未満であることがより好ましく、1.8mm以下であることが更に好ましい。下限値は特に制限されないが、0.5mm以上であることが好ましい。このようにカール量を抑えると、透明導電性フィルム積層体を搬送する際に、エアーで吸引が可能であり、連続して加工搬送が可能となる。
<Transparent conductive film laminate>
The transparent conductive film laminate is formed by laminating a glass substrate via an adhesive layer on the other side of the transparent conductive film of the transparent conductive film. The transparent conductive film laminate is obtained by cutting the transparent conductive film laminate into 210 mm × 260 mm, with the transparent conductive film as the upper surface and heating at 130 ° C. for 90 minutes, and then the average curl value A at the four corners and the curl at the center. The difference (A−B) from the value B is preferably 2.0 mm or less, more preferably less than 2.0 mm, and still more preferably 1.8 mm or less. The lower limit is not particularly limited, but is preferably 0.5 mm or more. When the curl amount is suppressed in this way, when the transparent conductive film laminate is transported, it can be sucked with air and can be continuously processed and transported.

(ガラス基板)
ガラス基板は、透明導電性フィルムの透明導電膜とは他方の面側に粘着剤層を介して透明導電性フィルムを積層する。ガラス基板を形成する材料としては、特に限定されないが、透明性、表面平滑性、熱安定性、水分遮断性、等方性などに優れるものが好ましく、ソーダライムガラス、ホウケイ酸ガラスなどが挙げられる。これらのガラスは、化学強化されていてもよく、表面にアルカリ溶出防止層が形成されていてもよい。また、他の層との接着力を上げるため、ガラス表面をシランカップリング剤で処理していてもよい。
(Glass substrate)
A glass substrate laminates a transparent conductive film through an adhesive layer on the other surface side of the transparent conductive film of the transparent conductive film. The material for forming the glass substrate is not particularly limited, but materials having excellent transparency, surface smoothness, thermal stability, moisture barrier property, isotropy, and the like are preferable, and examples include soda lime glass and borosilicate glass. . These glasses may be chemically strengthened, and an alkali elution preventing layer may be formed on the surface. Moreover, in order to raise the adhesive force with another layer, the glass surface may be processed with the silane coupling agent.

ガラス基板の厚みは、0.1〜1.5mmであることが好ましく、0.3〜1.0mmであることがより好ましい。かかる厚みが薄すぎると、透明導電性フィルム積層体を加熱したときにガラスに破損が生じやすく、一方厚すぎると、ディスプレイの薄型化が困難となり、フレキシブル性が低下する。かかる範囲の厚みのガラス基板を、透明導電膜を下にした場合予め大きく凹方向にカールするように設計した透明導電性フィルムと貼り合せて透明導電性フィルム積層体を作製することで、加熱工程後のカール発生を抑制できる。   The thickness of the glass substrate is preferably 0.1 to 1.5 mm, and more preferably 0.3 to 1.0 mm. If the thickness is too thin, the glass tends to be damaged when the transparent conductive film laminate is heated. On the other hand, if the thickness is too thick, it is difficult to make the display thinner and the flexibility is lowered. A glass substrate having a thickness in such a range is bonded to a transparent conductive film designed to curl in a large concave direction in advance when the transparent conductive film is placed downward to produce a transparent conductive film laminate, thereby heating step Later curling can be suppressed.

(粘着剤層)
粘着剤層としては、透明性を有するものであれば特に制限なく以下の粘着剤を使用できる。粘着剤としては、具体的には、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系、フッ素系、天然ゴム、合成ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、光学的透明性に優れ、適度な濡れ性、凝集性および接着性等の粘着特性を示し、耐候性や耐熱性等にも優れるという点からは、アクリル系粘着剤が好ましく用いられる。
(Adhesive layer)
As the pressure-sensitive adhesive layer, any of the following pressure-sensitive adhesives can be used as long as it has transparency. Specific examples of the pressure-sensitive adhesive include acrylic polymer, silicone polymer, polyester, polyurethane, polyamide, polyvinyl ether, vinyl acetate / vinyl chloride copolymer, modified polyolefin, epoxy-based, fluorine-based, natural rubber, and synthetic rubber. A polymer having a base polymer such as a rubber-based polymer can be appropriately selected and used. In particular, an acrylic pressure-sensitive adhesive is preferably used from the viewpoint that it is excellent in optical transparency, exhibits adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and is excellent in weather resistance and heat resistance.

粘着剤層の形成方法は特に制限されず、剥離ライナーに粘着剤組成物を塗布し、乾燥後、ガラス基板に転写する方法(転写法)、ガラス基板に、直接、粘着剤組成物を塗布、乾燥する方法(直写法)等があげられる。なお粘着剤には、必要に応じて粘着付与剤、可塑剤、充填剤、酸化防止剤、紫外線吸収剤、シランカップリング剤等を適宜に使用することもできる。   The method for forming the pressure-sensitive adhesive layer is not particularly limited, and is a method in which the pressure-sensitive adhesive composition is applied to a release liner, dried and transferred to a glass substrate (transfer method), and the pressure-sensitive adhesive composition is directly applied to the glass substrate. Examples include a drying method (direct copying method). In addition, a tackifier, a plasticizer, a filler, an antioxidant, an ultraviolet absorber, a silane coupling agent, and the like can be appropriately used as the pressure-sensitive adhesive.

粘着剤層の好ましい厚みは5μm〜100μmであり、より好ましくは10μm〜50μmであり、より好ましくは15μmから35μmである。   The preferable thickness of the pressure-sensitive adhesive layer is 5 μm to 100 μm, more preferably 10 μm to 50 μm, and more preferably 15 μm to 35 μm.

<タッチパネル>
透明導電性フィルム積層体は、例えば、静電容量方式、抵抗膜方式などのタッチパネルなどの電子機器の透明電極として好適に適用できる。また、本発明の透明導電性フィルム積層体は、ガラス基板上に積層しているため、そのままタッチパネルなどの電子機器の透明電極として好適に適用できる。
<Touch panel>
A transparent conductive film laminated body is suitably applicable as a transparent electrode of electronic devices, such as touch panels, such as a capacitance system and a resistive film system, for example. Moreover, since the transparent conductive film laminated body of this invention has laminated | stacked on the glass substrate, it can apply suitably as a transparent electrode of electronic devices, such as a touchscreen, as it is.

タッチパネルの形成に際しては、前述した透明導電性フィルム積層体を使用して形成することができる。本発明では、透明導電性フィルムの透明導電膜が形成されていない側の面に透明な粘着剤層を介してガラス基板が貼り合わせられた積層体を形成するが、ガラス基板は、1枚の基板からなっていてもよく、2枚以上の基板の積層体(例えば透明な粘着剤層を介して積層したもの)であってもよい。透明導電性フィルムと基板との貼り合わせに用いられる粘着剤層としては、前述の通り、透明性を有するものであれば特に制限なく使用できる。   In forming the touch panel, the above-described transparent conductive film laminate can be used. In this invention, although the laminated body by which the glass substrate was bonded together through the transparent adhesive layer is formed in the surface by which the transparent conductive film of the transparent conductive film is not formed, a glass substrate is one sheet. It may consist of a substrate, or may be a laminate of two or more substrates (for example, laminated via a transparent adhesive layer). As described above, the pressure-sensitive adhesive layer used for bonding the transparent conductive film and the substrate can be used without particular limitation as long as it has transparency.

上記の透明導電性フィルム積層体をタッチパネルの形成に用いた場合、乾燥等の加熱工程後におけるカールの発生量や向きが抑制できるため、透明導電性フィルム積層体の搬送が容易となり、タッチパネル形成時のハンドリング性に優れる。そのため、透明性及び視認性に優れたタッチパネルを生産性高く製造することが可能である。タッチパネル用途以外であれば、電子機器から発せられる電磁波やノイズをシールドするシールド用途に用いることができる。   When the above transparent conductive film laminate is used to form a touch panel, the amount and direction of curling after a heating step such as drying can be suppressed, so that the transparent conductive film laminate can be easily transported during touch panel formation. Excellent handleability. Therefore, a touch panel excellent in transparency and visibility can be manufactured with high productivity. If it is other than a touch panel use, it can be used for the shield use which shields the electromagnetic waves and noise which are emitted from an electronic device.

<透明導電性フィルム積層体の製造方法>
本発明の透明導電性フィルム積層体の製造方法は、透明樹脂フィルムに非晶質の透明導電膜が形成された透明導電性フィルムを準備する工程と、透明導電性フィルムの透明導電膜とは他方の面側に粘着剤層を介してガラス基板を積層する工程と、前記透明導電性フィルム積層体を加熱加工する工程と、を含む。透明導電性フィルム積層体を加熱加工する工程としては、例えば、透明導電膜を結晶化する工程や、感光性金属ペースト層により形成した金属配線を乾燥する工程等が挙げられる。透明導電性フィルム積層体としてから、このような加熱加工する工程を経ることが好ましい。これにより、透明導電性フィルムは透明導電膜を下にした場合予め大きく凹方向にカールするように設計されているため、透明導電性フィルム積層体においてカールの発生を抑制できる。
<Method for producing transparent conductive film laminate>
The method for producing a transparent conductive film laminate of the present invention includes a step of preparing a transparent conductive film in which an amorphous transparent conductive film is formed on a transparent resin film, and the transparent conductive film of the transparent conductive film is the other The process of laminating | stacking a glass substrate on the surface side of this through an adhesive layer, and the process of heat-processing the said transparent conductive film laminated body are included. As a process of heat-processing a transparent conductive film laminated body, the process of crystallizing a transparent conductive film, the process of drying the metal wiring formed with the photosensitive metal paste layer, etc. are mentioned, for example. The transparent conductive film laminate is preferably subjected to such a heating process. Thereby, since a transparent conductive film is designed so that it may curl greatly in a concave direction beforehand when a transparent conductive film is turned down, generation | occurrence | production of a curl can be suppressed in a transparent conductive film laminated body.

透明導電性フィルムを準備する工程に用いられる透明導電性フィルムは、透明樹脂フィルム上に硬化樹脂層を形成し、次いで透明導電膜を形成してもよいし、透明樹脂フィルム上に硬化樹脂層が形成された透明樹脂積層体を入手して、次いで硬化樹脂層上に透明導電膜を形成してもよいし、透明樹脂フィルム上に硬化樹脂層および透明導電膜が形成された透明導電性フィルムを入手してもよい。上述の光学調整層に関してもあらかじめ形成された透明樹脂積層体を入手して用いてもよい。   The transparent conductive film used in the step of preparing the transparent conductive film may form a cured resin layer on the transparent resin film and then form a transparent conductive film, or the cured resin layer may be formed on the transparent resin film. The formed transparent resin laminate may be obtained, and then a transparent conductive film may be formed on the cured resin layer, or a transparent conductive film having a cured resin layer and a transparent conductive film formed on the transparent resin film. You may obtain it. Also regarding the optical adjustment layer described above, a transparent resin laminate formed in advance may be obtained and used.

ガラス基板を積層する工程は、離型基材に粘着剤層を形成し、粘着剤層をガラス基板に転写し、透明導電性フィルムの第2の硬化樹脂層の透明樹脂フィルムが形成されていない側に粘着剤層を介してガラス基板を積層しても良いし、ガラス基板に直接粘着剤層を形成することも可能である。また、透明導電性フィルムの透明導電膜とは反対の面側に粘着剤層を形成しガラス基板を積層してもよい。   In the step of laminating the glass substrate, an adhesive layer is formed on the release substrate, the adhesive layer is transferred to the glass substrate, and the transparent resin film of the second cured resin layer of the transparent conductive film is not formed. A glass substrate may be laminated on the side through an adhesive layer, or an adhesive layer may be directly formed on the glass substrate. Moreover, an adhesive layer may be formed in the surface opposite to the transparent conductive film of a transparent conductive film, and a glass substrate may be laminated | stacked.

透明導電膜の構成成分を結晶化させるため、熱処理した工程に投入する。この加熱温度は例えば130℃以下の温度で行うことが好ましく、より好ましくは120℃以下で、処理時間は例えば15分から180分である。その後、透明導電膜をエッチングし、パターンによりパターン部が形成する。本発明は透明導電膜がパターン化された後に、前述の感光性導電ペーストを前記透明樹脂フィルム上または前記透明導電膜上に塗布し、感光性金属ペースト層を形成し、フォトマスクを積層または近接させ、該フォトマスクを介して感光性金属ペースト層に露光を行い、またはスクリーン印刷等で金属配線を得る工程をさらに含むことが好ましい。前記乾燥工程は130℃以下で行うことが好ましく、120℃以下であることが好ましい。透明導電性フィルム積層体は結晶化させるための熱処理、その後のエッチング工程、金属配線工程は、フォトマスクや透明導電膜と金属配線のパターンニングの位置合わせ等があるため、枚葉工程で行う。その際、位置合わせのために吸着板に固定する工程が必要であるが、上記温度範囲で乾燥してもカールの量や向きを制御することができるため、吸着板に固定する工程を流すことが可能となる。   In order to crystallize the constituent components of the transparent conductive film, it is put into a heat-treated process. The heating temperature is preferably, for example, 130 ° C. or lower, more preferably 120 ° C. or lower, and the treatment time is, for example, 15 to 180 minutes. Then, a transparent conductive film is etched and a pattern part is formed with a pattern. In the present invention, after the transparent conductive film is patterned, the above-mentioned photosensitive conductive paste is applied onto the transparent resin film or the transparent conductive film, a photosensitive metal paste layer is formed, and a photomask is stacked or adjacent. It is preferable to further include a step of exposing the photosensitive metal paste layer through the photomask or obtaining metal wiring by screen printing or the like. The drying step is preferably performed at 130 ° C. or less, and preferably 120 ° C. or less. The heat treatment for crystallizing the transparent conductive film laminate, the subsequent etching process, and the metal wiring process are performed in a single-wafer process because there is alignment of patterning of the photomask, the transparent conductive film, and the metal wiring. At that time, a process of fixing to the suction plate is necessary for alignment, but the amount and direction of curling can be controlled even after drying in the above temperature range. Is possible.

以下、本発明に関して実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to a following example, unless the summary is exceeded.

[実施例1]
(球状粒子入り硬化性樹脂組成物の調製)
紫外線硬化性樹脂組成物(DIC社製 商品名「UNIDIC(登録商標)RS29−120」)を100重量部と、最頻粒子径が1.9μmであるアクリル系球状粒子(綜研化学社製 商品名「MX−180TA」)を0.3重量部とを含む、球状粒子入り硬化性樹脂組成物を準備した。
[Example 1]
(Preparation of curable resin composition containing spherical particles)
Acrylic spherical particles (manufactured by Soken Chemical Co., Ltd.) having 100 parts by weight of an ultraviolet curable resin composition (trade name “UNIDIC (registered trademark) RS29-120” manufactured by DIC) and a mode particle diameter of 1.9 μm. A curable resin composition containing spherical particles containing 0.3 part by weight of “MX-180TA”) was prepared.

(硬化樹脂層の形成)
準備した球状粒子入り硬化性樹脂組成物を厚みが35μmでガラス転移温度が165℃のポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)の一方の面に塗布し、塗布層を形成した。次いで、塗布層が形成された側から塗布層に紫外線を照射して、厚みが1.0μmとなる様に第2の硬化樹脂層を形成した。ポリシクロオレフィンフィルムの他方の面に、上記とは球状粒子を添加しないこと以外は同様の方法で、厚みが1.0μmとなる様に第1の硬化樹脂層を形成した。
(Formation of cured resin layer)
The prepared spherical particle-containing curable resin composition is applied to one surface of a polycycloolefin film (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) having a thickness of 35 μm and a glass transition temperature of 165 ° C. Formed. Next, the coating layer was irradiated with ultraviolet rays from the side on which the coating layer was formed, and a second cured resin layer was formed so as to have a thickness of 1.0 μm. A first cured resin layer was formed on the other surface of the polycycloolefin film by the same method except that spherical particles were not added, so that the thickness was 1.0 μm.

(光学調整層の形成)
両面に硬化樹脂層が形成されたポリシクロオレフィンフィルムの第1の硬化樹脂層面側に光学調整層として屈折率1.62のジルコニア粒子含有紫外線硬化型組成物(JSR社製 商品名「オプスタ―Z7412」を塗布し、塗布層を形成した。次いで、塗布層が形成された側から塗布層に紫外線を照射して、厚みが100nmとなるように光学調整層を形成した。
(Formation of optical adjustment layer)
A zirconia particle-containing ultraviolet curable composition having a refractive index of 1.62 as an optical adjustment layer on the first cured resin layer side of the polycycloolefin film having cured resin layers formed on both sides (trade name “OPSTA Z7412 manufactured by JSR Corporation”). Was applied to form a coating layer. Then, the coating layer was irradiated with ultraviolet rays from the side where the coating layer was formed, and an optical adjustment layer was formed so that the thickness was 100 nm.

(透明導電性フィルムの形成)
次に、光学調整層が形成されたポリシクロオレフィンフィルムを、巻き取り式スパッタ装置に投入し、光学調整層の表面に、厚みが27nmの非晶質のインジウム・スズ酸化物層(組成:SnO 10wt%)を形成して、透明導電膜を形成した。このようにして透明導電性フィルムを作製した。
(Formation of transparent conductive film)
Next, the polycycloolefin film on which the optical adjustment layer is formed is put into a take-up sputtering apparatus, and an amorphous indium tin oxide layer (composition: SnO) having a thickness of 27 nm is formed on the surface of the optical adjustment layer. 2 10 wt%) to form a transparent conductive film. In this way, a transparent conductive film was produced.

(透明導電性フィルム積層体の形成)
通常の溶液重合により、ブチルアクリレート/アクリル酸=100/6(重量比)にて重量平均分子量60万のアクリル系ポリマーを得た。このアクリル系ポリマー100重量部に対し、エポキシ系架橋剤(三菱瓦斯化学製 商品名「テトラッドC(登録商標)」)6重量部を加えてアクリル系粘着剤を準備した。厚みが0.4mmで、210mm×260mmにカットされた薄いソーダガラス上に、前記のようにして得たアクリル系粘着剤を塗布(乾燥後の厚み:20μm)した後、透明導電膜が上になるように透明導電性フィルムを貼り合せて透明導電性フィルム積層体を作製した。
(Formation of transparent conductive film laminate)
By normal solution polymerization, an acrylic polymer having a weight average molecular weight of 600,000 was obtained with butyl acrylate / acrylic acid = 100/6 (weight ratio). An acrylic pressure-sensitive adhesive was prepared by adding 6 parts by weight of an epoxy-based crosslinking agent (trade name “Tetrad C (registered trademark)” manufactured by Mitsubishi Gas Chemical) to 100 parts by weight of the acrylic polymer. After applying the acrylic pressure-sensitive adhesive obtained as described above on a thin soda glass having a thickness of 0.4 mm and cut to 210 mm × 260 mm (thickness after drying: 20 μm), the transparent conductive film is on top A transparent conductive film laminate was prepared by laminating a transparent conductive film.

[実施例2]
実施例1において、透明樹脂フィルムとして厚みが50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと、第2の硬化樹脂層に含まれる球状粒子の最頻粒子径が0.8μmのものを使用したこと、及び第2の硬化樹脂層の厚みを0.5μmとしたこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
[Example 2]
In Example 1, a polycycloolefin film (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) having a thickness of 50 μm was used as the transparent resin film, and the frequency of spherical particles contained in the second cured resin layer A transparent conductive film and a transparent conductive film laminate were prepared in the same manner as in Example 1, except that a particle having a particle diameter of 0.8 μm was used and the thickness of the second cured resin layer was 0.5 μm. The body was made.

[実施例3]
実施例1において、光学調整層を形成後にロールtoロール製法により150℃で3分間アニール処理を施した後に、透明導電膜を形成したこと以外は実施例1と同様にして透明導電性フィルム及び透明導電性フィルム積層体を形成した。
[Example 3]
In Example 1, the transparent conductive film and the transparent film were formed in the same manner as in Example 1 except that after forming the optical adjustment layer, the film was annealed at 150 ° C. for 3 minutes by the roll-to-roll manufacturing method, and then the transparent conductive film was formed. A conductive film laminate was formed.

[実施例4]
実施例1において、透明樹脂フィルムとして厚みが50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
[Example 4]
In Example 1, a transparent conductive film was prepared in the same manner as in Example 1 except that a polycycloolefin film having a thickness of 50 μm (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) was used as the transparent resin film. And the transparent conductive film laminated body was produced.

[実施例5]
実施例3において、透明樹脂フィルムとして厚みが50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと以外は、実施例3と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
[Example 5]
In Example 3, a transparent conductive film was prepared in the same manner as in Example 3 except that a polycycloolefin film having a thickness of 50 μm (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) was used as the transparent resin film. And the transparent conductive film laminated body was produced.

[比較例1]
実施例1において、透明樹脂フィルムとして厚みが50μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと、及び第2の硬化樹脂層の厚みを3.0μmとしたこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
[Comparative Example 1]
In Example 1, a polycycloolefin film having a thickness of 50 μm (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) was used as the transparent resin film, and the thickness of the second cured resin layer was 3.0 μm. A transparent conductive film and a transparent conductive film laminate were produced in the same manner as in Example 1 except that.

[比較例2]
実施例1において、透明樹脂フィルムとして厚みが75μmのポリシクロオレフィンフィルム(日本ゼオン製 商品名「ZEONOR(登録商標)」)を使用したこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
[Comparative Example 2]
In Example 1, a transparent conductive film was prepared in the same manner as in Example 1 except that a 75 μm thick polycycloolefin film (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) was used as the transparent resin film. And the transparent conductive film laminated body was produced.

[比較例3]
実施例1において、透明樹脂フィルムとして厚みが50μmでガラス転移温度が70℃のポリエステル樹脂(PET)(三菱樹脂製 商品名「ダイヤホイル(登録商標)」)を使用したこと以外は、実施例1と同様の方法で透明導電性フィルム及び透明導電性フィルム積層体を作製した。
[Comparative Example 3]
Example 1 except that polyester resin (PET) (trade name “Diafoil (registered trademark)” manufactured by Mitsubishi Plastics) having a thickness of 50 μm and a glass transition temperature of 70 ° C. was used as the transparent resin film in Example 1. A transparent conductive film and a transparent conductive film laminate were produced in the same manner as described above.

<評価>
(1)厚みの測定
厚みは、1μm以上の厚みを有するものに関しては、マイクロゲージ式厚み計(ミツトヨ社製)にて測定を行った。また、1μm未満の厚みや光学調整層の厚み(100nm)は、瞬間マルチ測光システム(大塚電子社製 MCPD2000)で測定した。ITO膜等の厚みのようにナノサイズの厚みは、FB−2000A(株式会社日立ハイテクノロジーズ製)にて断面観察用サンプルを作製し、断面TEM観察はHF−2000(株式会社日立ハイテクノロジーズ製)を用いて膜厚を測定した。評価した結果を表1に示す。
<Evaluation>
(1) Measurement of thickness Thickness was measured with a micro gauge thickness meter (Mitutoyo Co., Ltd.) for those having a thickness of 1 μm or more. The thickness of less than 1 μm and the thickness of the optical adjustment layer (100 nm) were measured with an instantaneous multi-photometry system (MCPD2000 manufactured by Otsuka Electronics Co., Ltd.). For nano-sized thickness like the thickness of ITO film etc., FB-2000A (manufactured by Hitachi High-Technologies Co., Ltd.) is used to prepare a sample for cross-sectional observation, and cross-sectional TEM observation is HF-2000 (manufactured by Hitachi High-Technologies Corporation) Was used to measure the film thickness. The evaluation results are shown in Table 1.

(2)透明導電性フィルムにおけるカール値の測定
実施例及び比較例で得られた透明導電性フィルムを50cm×50cmサイズにカットした。ITO面が下になる状態で130℃、90分間の加熱した後、室温(23℃)にて1時間放冷した。その後、ITO面が下になる状態で水平な面上にサンプルを置き、4隅部の水平面からの高さをそれぞれ測定し、その平均値(カール値A)を算出した。また、中央部の水平面からの高さ(カール値B)を測定した。カール値Aからカール値Bを引いた値(A−B)をカール量として算出した。評価した結果を表1に示す。
(2) Measurement of curl value in transparent conductive film The transparent conductive films obtained in Examples and Comparative Examples were cut into 50 cm × 50 cm sizes. After heating at 130 ° C. for 90 minutes with the ITO surface facing down, it was allowed to cool at room temperature (23 ° C.) for 1 hour. Thereafter, the sample was placed on a horizontal surface with the ITO surface down, and the heights from the horizontal surfaces at the four corners were measured, and the average value (curl value A) was calculated. Moreover, the height (curl value B) from the horizontal surface of the center part was measured. A value (A−B) obtained by subtracting the curl value B from the curl value A was calculated as the curl amount. The evaluation results are shown in Table 1.

(3)透明導電性フィルム積層体におけるカール値の測定
実施例及び比較例で得られた透明導電性フィルム積層体を210mm×260mm×0.4mmサイズにカットした。ITO面が上になる状態で130℃、90分間の加熱した後、室温(23℃)にて1時間放冷した。その後、ITO面が上になる状態で水平な面上にサンプルを置き、4隅部の水平面からの高さをそれぞれ測定し、その平均値(カール値A)を算出した。また、中央部の水平面からの高さ(カール値B)を測定した。カール値Aからカール値Bを引いた値(A−B)をカール量として算出した。評価した結果を表1に示す。
(3) Measurement of curl value in transparent conductive film laminate The transparent conductive film laminate obtained in Examples and Comparative Examples was cut into a size of 210 mm × 260 mm × 0.4 mm. After heating at 130 ° C. for 90 minutes with the ITO surface facing up, it was allowed to cool at room temperature (23 ° C.) for 1 hour. Thereafter, the sample was placed on a horizontal surface with the ITO surface facing upward, the heights from the horizontal surfaces at the four corners were measured, and the average value (curl value A) was calculated. Moreover, the height (curl value B) from the horizontal surface of the center part was measured. A value (A−B) obtained by subtracting the curl value B from the curl value A was calculated as the curl amount. The evaluation results are shown in Table 1.

(4)MD方向とTD方向の熱収縮率
透明導電性フィルムの長手方向(MD方向)および幅方向(TD方向)の熱収縮率を以下のように算出した。具体的には、透明導電性フィルムを、幅100mm、長さ100mmに切り取り(試験片)、4隅部にクロスでキズを付けクロスキズの中央部4点のMD方向とTD方向の加熱前の長さ(mm)をCNC三次元測定機(株式会社ミツトヨ社製 LEGEX774)により測定した。その後、オーブンに投入し、加熱処理(130℃、90分間)を行った。室温で1時間放冷後に再度、4隅部4点のMD方向とTD方向の加熱後の長さ(mm)をCNC三次元測定機により測定し、その測定値を下記式に代入することにより、MD方向とTD方向のそれぞれの熱収縮率を求めた。評価した結果を表1に示す。
熱収縮率(%)=[[加熱前の長さ(mm)−加熱後の長さ(mm)]/加熱前の長さ(mm)]×100
(4) Thermal contraction rate in MD direction and TD direction The thermal contraction rate in the longitudinal direction (MD direction) and the width direction (TD direction) of the transparent conductive film was calculated as follows. Specifically, the transparent conductive film is cut to a width of 100 mm and a length of 100 mm (test piece), and the four corners are scratched with a cross, and the length before heating in the MD direction and the TD direction at the four central parts of the cross scratch The thickness (mm) was measured with a CNC three-dimensional measuring machine (LEGEX 774 manufactured by Mitutoyo Corporation). Then, it put into oven and heat-processed (130 degreeC, 90 minutes). After allowing to cool at room temperature for 1 hour, measure the length (mm) of the four corners after heating in the MD and TD directions with a CNC coordinate measuring machine and assign the measured value to the following equation. The thermal shrinkage rates in the MD direction and the TD direction were determined. The evaluation results are shown in Table 1.
Thermal contraction rate (%) = [[length before heating (mm) −length after heating (mm)] / length before heating (mm)] × 100

(5)ガラス転移温度(Tg)の測定
ガラス転移温度(Tg)は、JIS K7121の規定に準拠して求めた。
(5) Measurement of glass transition temperature (Tg) Glass transition temperature (Tg) was calculated | required based on prescription | regulation of JISK7121.

Figure 0006470040
Figure 0006470040

(結果及び考察)
実施例1〜5の透明導電性フィルムでは、カール発生の向きは透明導電膜を下にした場合凹方向であり、カール発生量が7〜28mmと大きくカールが発生したため、透明導電性フィルム積層体では、カール発生の向きは透明導電膜を上にした場合凹方向であり、カール発生量が1.1〜2.0mmとカール発生を抑制できた。また、比較例1〜2の透明導電性フィルムでは、カール発生の向きは透明導電膜を下にした場合凹方向であり、カール発生量が2〜4mmと小さかったため、透明導電性フィルム積層体では、透明導電膜を上にした場合凹方向でありカール発生量が2.5〜4.3mmと大きくカールした。以上より、透明導電性フィルムのカール量と透明導電性フィルム積層体後の反りには相関がみられ、透明導電性フィルムで5mm以上カール量が発生していると、透明導電性フィルム積層体でのカール量を低減できることがわかった。なお、比較例3はカール値としては問題ない値であるが、基材にPETフィルムを用いており、高い位相差があるために偏光板のもとでの基材として使えない。
(Results and discussion)
In the transparent conductive films of Examples 1 to 5, the direction of curl generation was a concave direction when the transparent conductive film was placed downward, and the curl generation amount was as large as 7 to 28 mm. Therefore, the transparent conductive film laminate Then, the direction of curl generation was a concave direction when the transparent conductive film was on top, and the curl generation amount was 1.1 to 2.0 mm. Moreover, in the transparent conductive film of Comparative Examples 1-2, since the direction of curl generation was a concave direction when the transparent conductive film was down, and the amount of curl generation was as small as 2-4 mm, in the transparent conductive film laminate, When the transparent conductive film was placed on top, the direction was concave, and the amount of curling was greatly curled to 2.5 to 4.3 mm. From the above, there is a correlation between the curl amount of the transparent conductive film and the warp after the transparent conductive film laminate, and when a curl amount of 5 mm or more is generated in the transparent conductive film, It has been found that the curl amount of can be reduced. In addition, although the comparative example 3 is a value which does not have a problem as a curl value, since the PET film is used for a base material and there is a high phase difference, it cannot be used as a base material under a polarizing plate.

1 透明樹脂フィルム
2 第1の硬化樹脂層
3 透明導電膜
4 第2の硬化樹脂層
5 光学調整層
6 ガラス基板
7 粘着剤層
10 透明導電性フィルム
DESCRIPTION OF SYMBOLS 1 Transparent resin film 2 1st cured resin layer 3 Transparent electrically conductive film 4 2nd cured resin layer 5 Optical adjustment layer 6 Glass substrate 7 Adhesive layer 10 Transparent conductive film

Claims (9)

透明樹脂フィルムの一方の面側に第1の硬化樹脂層と、光学調整層と、透明導電膜とがこの順に形成され、前記透明樹脂フィルムの他方の面側に第2の硬化樹脂層が形成された透明導電性フィルムであって、
前記透明樹脂フィルムは、非晶性樹脂からなり、
前記透明導電性フィルムを50cm×50cmにカットし、透明導電膜を下面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A−B)が、5mm以上であり、
前記光学調整層は、バインダー樹脂と微粒子とを含み、屈折率が1.6〜1.8であり、厚みが40〜150nmである透明導電性フィルム。
A first cured resin layer, an optical adjustment layer, and a transparent conductive film are formed in this order on one surface side of the transparent resin film, and a second cured resin layer is formed on the other surface side of the transparent resin film. A transparent conductive film,
The transparent resin film is made of an amorphous resin,
The difference between the average curl value A at the four corners and the curl value B at the central part after the transparent conductive film was cut into 50 cm × 50 cm and the transparent conductive film was the bottom surface and heated at 130 ° C. for 90 minutes (AB) ) Is 5 mm or more,
The optical adjustment layer is a transparent conductive film containing a binder resin and fine particles, having a refractive index of 1.6 to 1.8, and a thickness of 40 to 150 nm .
前記第1の硬化樹脂層の厚みと前記第2の硬化樹脂層の厚みとは、いずれも2μm以下であり、前記第2の硬化樹脂層の厚みは前記第1の硬化樹脂層の厚みと同じかそれより薄い請求項1に記載の透明導電性フィルム。   The thickness of the first cured resin layer and the thickness of the second cured resin layer are both 2 μm or less, and the thickness of the second cured resin layer is the same as the thickness of the first cured resin layer. The transparent conductive film according to claim 1, which is thinner. 前記第1の硬化樹脂層と前記透明導電膜との間に更に1層以上の光学調整層を備える請求項1又は2に記載の透明導電性フィルム。   The transparent conductive film according to claim 1, further comprising one or more optical adjustment layers between the first cured resin layer and the transparent conductive film. 前記第2の硬化樹脂層は、樹脂と粒子とを含む請求項1〜3のいずれか1項に記載の透明導電性フィルム。   The transparent conductive film according to claim 1, wherein the second cured resin layer includes a resin and particles. 前記透明樹脂フィルムにおいて、非晶性樹脂がシクロオレフィン系樹脂であり、厚みが20〜75μmであり、ガラス転移温度が130℃以上であり、前記透明導電性フィルムにおいて、130℃で90分間の加熱した後の熱収縮率がMDおよびTD方向で0.2%未満である請求項1〜4のいずれか1項に記載の透明導電性フィルム。   In the transparent resin film, the amorphous resin is a cycloolefin resin, the thickness is 20 to 75 μm, the glass transition temperature is 130 ° C. or higher, and the transparent conductive film is heated at 130 ° C. for 90 minutes. The transparent conductive film according to any one of claims 1 to 4, wherein the heat shrinkage rate after the treatment is less than 0.2% in the MD and TD directions. 前記透明導電膜は、インジウム・スズ複合酸化物からなり、厚みが10〜35nmである請求項1〜5のいずれか1項に記載の透明導電性フィルム。 The transparent conductive film according to claim 1 , wherein the transparent conductive film is made of an indium-tin composite oxide and has a thickness of 10 to 35 nm. 請求項1〜6のいずれか1項に記載の透明導電性フィルムの透明導電膜とは反対の面側に粘着剤層を介してガラス基板を積層した透明導電性フィルム積層体。 The transparent conductive film laminated body which laminated | stacked the glass substrate through the adhesive layer on the surface side opposite to the transparent conductive film of the transparent conductive film of any one of Claims 1-6 . 請求項7に記載の透明導電性フィルム積層体を210mm×260mmにカットし、透明導電膜を上面にし130℃で90分間加熱した後の4隅部の平均カール値Aと中央部のカール値Bとの差(A−B)が、2.0mm以下である透明導電性フィルム積層体。 The transparent conductive film laminate according to claim 7 is cut into 210 mm × 260 mm, and the transparent conductive film is used as an upper surface, and after heating at 130 ° C. for 90 minutes, the average curl value A at the four corners and the curl value B at the central part The transparent conductive film laminated body whose difference (AB) is 2.0 mm or less. 請求項7又は8に記載の透明導電性フィルム積層体を用いて得られるタッチパネル。 A touch panel obtained using the transparent conductive film laminate according to claim 7 .
JP2014263894A 2014-12-26 2014-12-26 Transparent conductive film, transparent conductive film laminate, and touch panel Active JP6470040B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014263894A JP6470040B2 (en) 2014-12-26 2014-12-26 Transparent conductive film, transparent conductive film laminate, and touch panel
KR1020177016933A KR102021215B1 (en) 2014-12-26 2015-12-14 Transparent conductive film, transparent conductive film laminate, and touch panel
CN201580069969.7A CN107107576B (en) 2014-12-26 2015-12-14 Transparent and electrically conductive film, transparent conductivity film laminated body and touch panel
PCT/JP2015/084881 WO2016104204A1 (en) 2014-12-26 2015-12-14 Transparent conductive film, transparent conductive film laminate, and touch panel
TW104142784A TWI713482B (en) 2014-12-26 2015-12-18 Transparent conductive film, transparent conductive film laminate, and touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014263894A JP6470040B2 (en) 2014-12-26 2014-12-26 Transparent conductive film, transparent conductive film laminate, and touch panel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019005607A Division JP6626996B2 (en) 2019-01-17 2019-01-17 Transparent conductive film, transparent conductive film laminate, and touch panel

Publications (2)

Publication Number Publication Date
JP2016124106A JP2016124106A (en) 2016-07-11
JP6470040B2 true JP6470040B2 (en) 2019-02-13

Family

ID=56150233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014263894A Active JP6470040B2 (en) 2014-12-26 2014-12-26 Transparent conductive film, transparent conductive film laminate, and touch panel

Country Status (5)

Country Link
JP (1) JP6470040B2 (en)
KR (1) KR102021215B1 (en)
CN (1) CN107107576B (en)
TW (1) TWI713482B (en)
WO (1) WO2016104204A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6875964B2 (en) * 2016-09-07 2021-05-26 東山フイルム株式会社 Manufacturing method of long hard coat film for transparent conductive film
JP6789168B2 (en) * 2016-10-31 2020-11-25 日東電工株式会社 Transparent conductive film and touch panel using it
JP6689174B2 (en) * 2016-10-31 2020-04-28 日東電工株式会社 Transparent conductive film and touch panel using the same
CN108320838A (en) * 2017-01-18 2018-07-24 尾池工业株式会社 Transparent and electrically conductive film
KR102101475B1 (en) * 2017-06-30 2020-04-16 주식회사 엘지화학 Transparant conductive film
JP7270334B2 (en) * 2017-10-27 2023-05-10 日東電工株式会社 Transparent conductive film and manufacturing method thereof
JP7269873B2 (en) * 2017-12-28 2023-05-09 日東電工株式会社 LIGHT-TRANSMITTING CONDUCTIVE FILM, MANUFACTURING METHOD THEREOF, LIGHT-MODULATING FILM, AND LIGHT-MODULATING MEMBER
JP7054651B2 (en) * 2018-06-19 2022-04-14 日東電工株式会社 Underlayer film, transparent conductive film, transparent conductive film laminate and image display device
KR102134793B1 (en) * 2018-06-29 2020-07-16 주식회사 에프이엠 Transparent electrode film for touch driving of flexible oled, method of manufacturing thereof and touch panel using the same
KR102538731B1 (en) * 2018-12-27 2023-05-31 코니카 미놀타 가부시키가이샤 Laminated film for supporting the transparent conductive layer
JP7150628B2 (en) * 2019-01-31 2022-10-11 日東電工株式会社 Transparent conductive film laminate
CN111665971A (en) * 2019-03-06 2020-09-15 南昌欧菲光科技有限公司 Transparent conductive film, touch screen and preparation method thereof
US11710581B2 (en) 2019-06-20 2023-07-25 Showa Denko K.K. Transparent conducting film laminate and processing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029261A (en) * 1996-07-15 1998-02-03 Fujimori Kogyo Kk Transparent conductive sheet for inner touch panel
JPH1069355A (en) * 1996-08-27 1998-03-10 Fujimori Kogyo Kk Transparent electrically conductive sheet for inner touch panel
JP4056342B2 (en) * 2002-09-26 2008-03-05 帝人株式会社 Laminated film with reduced curl
JP5506011B2 (en) * 2007-03-02 2014-05-28 日東電工株式会社 Transparent conductive film with pressure-sensitive adhesive layer and method for producing the same
JP5264979B2 (en) 2011-11-25 2013-08-14 日東電工株式会社 Touch panel sensor
JP2014112510A (en) * 2012-11-02 2014-06-19 Nitto Denko Corp Transparent conductive film
JP2014137427A (en) 2013-01-15 2014-07-28 Nissha Printing Co Ltd Polarizer attached with touch function compatible with polarizing sunglass and manufacturing method of the same, and liquid crystal display device
JP2014164882A (en) * 2013-02-22 2014-09-08 Dainippon Printing Co Ltd Laminate having excellent reliability and workability and method for producing laminate

Also Published As

Publication number Publication date
KR20170086612A (en) 2017-07-26
WO2016104204A1 (en) 2016-06-30
TWI713482B (en) 2020-12-21
KR102021215B1 (en) 2019-09-11
CN107107576A (en) 2017-08-29
TW201630735A (en) 2016-09-01
JP2016124106A (en) 2016-07-11
CN107107576B (en) 2019-09-06

Similar Documents

Publication Publication Date Title
JP6470040B2 (en) Transparent conductive film, transparent conductive film laminate, and touch panel
JP6495635B2 (en) Transparent conductive film laminate, touch panel obtained using the same, and method for producing transparent conductive film
KR102002235B1 (en) Transparent conductive film laminate and use therefor
US10031631B2 (en) Transfer film, method for producing transfer film, transparent laminate, method for producing transparent laminate, capacitance-type input device, and image display device
KR102021214B1 (en) Transparent electroconductive film and touch sensor in which same is used
JP6433707B2 (en) Transparent conductive laminate and method for producing the same, method for producing transparent conductive film, and method for producing transparent conductive film roll
WO2017051725A1 (en) Transparent conductive film and touch panel comprising same
JP2013045633A (en) Method for producing transparent conductive film
WO2017099125A1 (en) Transparent conductive film laminate, and touch panel including same
WO2018109867A1 (en) Transparent conductive film with carrier film, and touch panel using transparent conductive film
TWI633563B (en) Transparent conductive film with carrier film and touch panel using the same
JP6626996B2 (en) Transparent conductive film, transparent conductive film laminate, and touch panel
TWM513403U (en) Touching-sensitive device
JP6552099B2 (en) Transparent conductive film with carrier film and touch panel using the same
JP2017061069A (en) Transparent conductive film laminate and touch panel including the same
JP2005183310A (en) Transparent conductive film and touch panel using this, and manufacturing method of these
JP5993041B2 (en) Method for producing transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190117

R150 Certificate of patent or registration of utility model

Ref document number: 6470040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250