WO2018186412A1 - Method for analyzing visualization of light-transmissive conductive film, and light-transmissive conductive film - Google Patents

Method for analyzing visualization of light-transmissive conductive film, and light-transmissive conductive film Download PDF

Info

Publication number
WO2018186412A1
WO2018186412A1 PCT/JP2018/014299 JP2018014299W WO2018186412A1 WO 2018186412 A1 WO2018186412 A1 WO 2018186412A1 JP 2018014299 W JP2018014299 W JP 2018014299W WO 2018186412 A1 WO2018186412 A1 WO 2018186412A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement object
film
conductive film
base film
Prior art date
Application number
PCT/JP2018/014299
Other languages
French (fr)
Japanese (ja)
Inventor
淳之介 村上
匡徳 寺田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2018519987A priority Critical patent/JP7176950B2/en
Publication of WO2018186412A1 publication Critical patent/WO2018186412A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to an analysis method for visualizing a light-transmitting conductive film having light transmittance and conductivity. Moreover, this invention relates to the light transmissive conductive film which has light transmittance and electroconductivity.
  • touch panel type liquid crystal display devices have been widely used in electronic devices such as smartphones, mobile phones, notebook computers, tablet PCs, copiers, and car navigation systems.
  • a transparent conductive film (light transmissive conductive film) in which a transparent conductive layer is laminated on a substrate is used.
  • the transparent SiO x thin film has a thickness of 10 to 100 nm, a refractive index of light of 1.40 to 1.80, and an average surface roughness [Ra] of 0.8 to 3.0 nm.
  • the transparent conductive thin film has a thickness of 20 to 35 nm, a SnO 2 / (In 2 O 3 + SnO 2 ) weight ratio of 3 to 15% by weight, and is formed of an indium / tin composite oxide. ing.
  • Patent Document 2 discloses a transparent conductive film in which a base film, a high refractive index layer, a SiO 2 film, and a transparent conductive film are laminated in this order.
  • Patent Document 2 below describes that the high refractive index layer has a refractive index of 1.61 to 1.80 and a thickness of 30 nm or more.
  • Patent Document 2 listed below describes that the SiO 2 film preferably has a refractive index of 1.40 to 1.50, and preferably has a thickness of 3 to 30 nm.
  • a transparent conductive film serving as a touch panel sensor needs to be formed so as not to be visualized by adjusting index matching.
  • a spectrophotometer is used to transmit and reflect light of a transparent conductive film including a conductive layer, and a conductive layer of a transparent conductive film.
  • Each value of ⁇ E * obtained by measuring the transmitted light and reflected light of the film except for may be used.
  • the measurement object 121 can be irradiated with light from the light source 122 and the transmitted light can be received by the light receiving unit 123 to obtain a transmission spectrum.
  • FIG. 6 the measurement object 121 can be irradiated with light from the light source 122 and the transmitted light can be received by the light receiving unit 123 to obtain a transmission spectrum.
  • the measurement object 121 can be irradiated with light from the light source 122 and the reflected light can be received by the light receiving unit 123 to obtain a reflection spectrum.
  • ⁇ E * of reflected light and transmitted light is determined from the measurement results of the transparent conductive film including the conductive layer and the measurement results of the transparent conductive film excluding the conductive layer.
  • this evaluation method is appropriate as an evaluation method for reflection when the background of the display is black, this evaluation method is different from the actual usage situation when the backlight is emitting light. There is a problem that cannot be evaluated.
  • An object of the present invention is to provide a method for analyzing the visualization of a light transmissive conductive film that can more accurately determine the visualization of the light transmissive conductive film. Moreover, the objective of this invention is providing the light transmissive conductive film which can suppress effectively visualization of a light transmissive conductive film.
  • a light transmissive conductive film including a base film and a conductive layer disposed on one surface side of the base film is a first measurement object, and the light transmissive property is measured.
  • the film portion excluding the conductive layer of the conductive film is used as a second measurement object.
  • ⁇ E * represented by the following formula is obtained as ⁇ E * t by measuring the transmitted light that has passed through the measurement object, and the first measurement object and the second measurement object For each of the above, with the white plate disposed on the side opposite to the light source side of the measurement object, the measurement object is irradiated with light using a spectrophotometer and reflected by the measurement object and the white plate Measured reflected light is expressed by the following formula
  • ⁇ E * as ⁇ E * rw and determining the visualization of the light-transmitting conductive film from the values of ⁇ E * t and ⁇ E * rw
  • the base film is a polycarbonate base film or a cycloolefin polymer base film.
  • a light transmissive conductive film comprising a base film and a conductive layer disposed on one surface side of the base film, and the base film is a polycarbonate base film.
  • the substrate film is a polycarbonate substrate film
  • ⁇ E * rw / ⁇ E * t determined by the following measurement is 0.5 or more
  • the base film is the cycloolefin polymer base film
  • a light-transmitting conductive film is provided in which ⁇ E * rw / ⁇ E * t determined by the following measurement is 1.0 or more.
  • ⁇ E * rw / ⁇ E * t measurement method The light-transmitting conductive film is used as a first measurement object, and the film portion of the light-transmitting conductive film excluding the conductive layer is used as a second measurement object.
  • ⁇ E * represented by the following formula is obtained as ⁇ E * t.
  • a white plate is arranged on the opposite side of the measurement object from the light source side, and a spectrophotometer is used to measure the measurement object.
  • ⁇ E * represented by the following formula is obtained as ⁇ E * rw. From the value of ⁇ E * t and the value of ⁇ E * rw, ⁇ E * rw / ⁇ E * t is obtained.
  • the base film is the polycarbonate base film, and the ⁇ E * rw / ⁇ E * t is 0.5 or more.
  • the base film is the cycloolefin polymer base film, and the ⁇ E * rw / ⁇ E * t is 1.0 or more.
  • the material of the conductive layer is indium tin oxide, and the thickness of the conductive layer is 15 nm or more and less than 30 nm.
  • a light transmissive conductive film including a base film and a conductive layer disposed on one surface side of the base film is a first measurement target.
  • the film portion excluding the conductive layer of the light transmissive conductive film is a second object to be measured.
  • the measurement object is irradiated with light using a spectrophotometer for each of the first measurement object and the second measurement object. By measuring the transmitted light that has passed through the measurement object, ⁇ E * represented by the above formula is obtained as ⁇ E * t.
  • a white plate is disposed on the opposite side of the measurement object from the light source side for each of the first measurement object and the second measurement object.
  • the object to be measured is irradiated with light using a spectrophotometer.
  • ⁇ E * represented by the above formula is obtained as ⁇ E * rw by measuring reflected light reflected by the measurement object and the white plate. .
  • the visualization of the light transmissive conductive film is determined from the value of ⁇ E * t and the value of ⁇ E * rw. Since the analysis method for visualizing a light transmissive conductive film according to the present invention includes the above-described configuration, the visualization of the light transmissive conductive film can be more accurately determined.
  • the light-transmitting conductive film according to the present invention is a light-transmitting conductive film including a base film and a conductive layer disposed on one surface side of the base film, and the base film is a polycarbonate group. It is a material film or a cycloolefin polymer base film.
  • ⁇ E * rw / ⁇ E * t determined by the above measurement is 0.5 or more
  • required by said measurement is 1.0 or more. Since the light-transmitting conductive film according to the present invention has the above-described configuration, visualization of the light-transmitting conductive film can be effectively suppressed.
  • FIG. 1 is a cross-sectional view showing a light-transmitting conductive film according to the first embodiment of the present invention.
  • FIG. 2 is a sectional view showing a light transmissive conductive film according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a state before the conductive layer of the light transmissive conductive film according to the first embodiment of the present invention is patterned.
  • FIG. 4 is a schematic diagram for explaining a transmission spectrum measurement method in the present invention.
  • FIG. 5 is a schematic diagram for explaining a method of measuring a reflection spectrum in the present invention.
  • FIG. 6 is a schematic diagram for explaining a conventional transmission spectrum measurement method.
  • FIG. 7 is a schematic diagram for explaining a conventional method of measuring a reflection spectrum.
  • the first measurement object used in the analysis method for visualizing a light transmissive conductive film according to the present invention is a light transmissive conductive film.
  • the light transmissive conductive film includes a base film and a conductive layer.
  • the conductive layer is disposed on one surface side of the base film.
  • the second measurement object used in the analysis method for visualizing a light transmissive conductive film according to the present invention is a film portion excluding the conductive layer of the light transmissive conductive film.
  • a film before forming the conductive layer may be used, or a film obtained by removing the conductive layer from the light-transmitting conductive film may be used.
  • each of the first measurement object and the second measurement object is measured using a spectrophotometer.
  • ⁇ E * represented by the following formula is obtained as ⁇ E * t.
  • light is emitted from the light source 22 and measurement is performed in the light receiving unit 23.
  • the measurement object 21 is irradiated with light using a spectrophotometer.
  • ⁇ E * represented by the following formula is obtained as ⁇ E * rw by measuring the reflected light reflected by the measurement object 21 and the white plate 24. .
  • light is emitted from the light source 22, and measurement is performed in the light receiving unit 23.
  • the visualization of the light transmissive conductive film is determined from the value of ⁇ E * t and the value of ⁇ E * rw.
  • the visualization (bone appearance) of the light transmissive conductive film can be more accurately determined.
  • ⁇ E * rw / ⁇ E * t obtained by the above measurement is 0.5. If it is above, it can be determined that visualization is suppressed.
  • the base film is the cycloolefin polymer base film, it can be determined that visualization is suppressed when ⁇ E * rw / ⁇ E * t obtained by the above measurement is 1.0 or more.
  • the optimum value of ⁇ E * rw / ⁇ E * t depending on the type of substrate film can be found by evaluating in advance the relationship between the value of ⁇ E * rw / ⁇ E * t and the state of visualization. Based on the optimum value of ⁇ E * rw / ⁇ E * t found, the visualization of the light-transmitting conductive film can be determined from the value of ⁇ E * t and the value of ⁇ E * rw. Even when the base film is a base film other than the polycarbonate base film and the cycloolefin polymer base film, the visualization of the light-transmitting conductive film can be similarly determined. For example, also when the said base film is a polyethylene terephthalate base film, visualization of a transparent conductive film can be discriminate
  • the base film is the polycarbonate base film or the cycloolefin.
  • a polymer base film is preferred.
  • the ⁇ E * rw / ⁇ E * t is preferably 0.5 or more, more preferably 1.0 or more, and 3.0 More preferably, it is more preferably 4.0 or more, and particularly preferably 5.0 or more.
  • the base film is a cycloolefin polymer base film
  • the ⁇ E * rw / ⁇ E * t is preferably 1.0 or more, more preferably 3.0 or more. More preferably, it is 0 or more.
  • the light-transmitting conductive film according to the present invention includes a base film and a conductive layer.
  • the conductive layer is disposed on one surface side of the base film.
  • the base film is a polycarbonate base film or a cycloolefin polymer base film.
  • ⁇ E * rw / ⁇ E * t determined by the following measurement is 0.5 or more.
  • ⁇ E * rw / ⁇ E * t determined by the following measurement is 1.0 or more.
  • ⁇ E * rw / ⁇ E * t measurement method The light transmissive conductive film is used as a first measurement object, and the film portion of the light transmissive conductive film excluding the conductive layer is used as a second measurement object.
  • a spectrophotometer is used to irradiate the measurement object with light and measure the transmitted light that has passed through the measurement object.
  • ⁇ E * expressed by the equation is obtained as ⁇ E * t.
  • a white plate is disposed on the opposite side of the measurement object from the light source side, and a spectrophotometer is used to measure the measurement object.
  • ⁇ E * represented by the following formula is obtained as ⁇ E * rw. From the value of ⁇ E * t and the value of ⁇ E * rw, ⁇ E * rw / ⁇ E * t is obtained.
  • the light-transmitting conductive film according to the present invention has the above-described configuration, visualization (bone appearance) of the light-transmitting conductive film can be effectively suppressed.
  • the base film is the polycarbonate base film
  • the ⁇ E * rw / ⁇ E * t is preferably 0.5 or more, and is 1.0 or more. Is more preferably 3.0 or more, still more preferably 4.0 or more, and particularly preferably 5.0 or more.
  • the base film is the polycarbonate base film and the ⁇ E * rw / ⁇ E * t is equal to or higher than the lower limit, visualization of the light-transmitting conductive film can be further effectively suppressed.
  • the base film is the cycloolefin polymer base film
  • the ⁇ E * rw / ⁇ E * t is preferably 1.0 or more, and 3.0 or more. More preferably, it is more preferably 5.0 or more.
  • the base film is the cycloolefin polymer base film and the ⁇ E * rw / ⁇ E * t is equal to or higher than the lower limit, visualization of the light-transmitting conductive film can be more effectively suppressed.
  • the light transmissive conductive film is preferably an annealed light transmissive conductive film.
  • FIG. 1 is a cross-sectional view showing a light-transmitting conductive film according to the first embodiment of the present invention.
  • the light transmissive conductive film 1 shown in FIG. 1 includes a substrate 2, a conductive layer 3, and a protective film 4.
  • the base material 2 has a first surface 2a and a second surface 2b.
  • the first surface 2a and the second surface 2b are opposed to each other.
  • a conductive layer 3 is laminated on the first surface 2 a of the substrate 2.
  • the first surface 2a is a surface on the side where the conductive layer 3 is laminated.
  • the substrate 2 is a member disposed between the conductive layer 3 and the protective film 4 and is a support member for the conductive layer 3.
  • the protective film 4 is laminated on the second surface 2b of the substrate 2.
  • the second surface 2b is a surface on the side where the protective film 4 is laminated.
  • the base material 2 has a base film 11, first and second hard coat layers 12 and 13, and an undercoat layer 14.
  • the base film 11 is made of a light transmissive material.
  • a second hard coat layer 13 and an undercoat layer 14 are laminated in this order.
  • the undercoat layer 14 is in contact with the conductive layer 3.
  • a first hard coat layer 12 is laminated on the surface of the base film 11 on the protective film 4 side.
  • the first hard coat layer 12 is in contact with the protective film 4.
  • the conductive layer 3 is made of a material having optical transparency and conductivity.
  • the conductive layer 3 is a patterned conductive layer.
  • the patterned conductive layer 3 is partially laminated on the first surface 2 a of the substrate 2.
  • the light transmissive conductive film 1 has a portion with the patterned conductive layer 3 and a portion without the patterned conductive layer 3 on the first surface 2 a of the substrate 2.
  • the protective film may be laminated on the second surface of the substrate with an adhesive layer. It is preferable that the 2nd surface of a base material is in contact with the said adhesive layer of a protective film.
  • FIG. 2 is a cross-sectional view showing a light-transmitting conductive film according to the second embodiment of the present invention.
  • the first hard coat layer is not provided.
  • the light transmissive conductive film 1A has a base 2A in which an undercoat layer 14, a second hard coat layer 13, and a base film 11 are laminated in this order.
  • the protective film 4 is laminated directly on the surface of the base film 11 opposite to the conductive layer 3.
  • the first hard coat layer may not be provided like the light transmissive conductive film 1A.
  • a protective film may be directly laminated on the surface of the base film.
  • at least one of the second hard coat layer and the undercoat layer may not be provided.
  • An undercoat layer and a conductive layer may be laminated in this order on the surface of the base film on the conductive layer side, or a conductive layer may be directly laminated on the surface of the base film.
  • the undercoat layer may be a single layer or a multilayer.
  • the undercoat layer is a multilayer, it is preferable that a low refractive layer is provided on the conductive layer side and a high refractive index layer is provided on the base film side.
  • the light transmissive conductive film 1 can be produced, for example, by the following method.
  • 1st hard coat layer 12 is formed on one surface of substrate film 11.
  • an ultraviolet curable resin is used as the material for the first hard coat layer 12
  • a photocurable monomer and a photoinitiator are stirred in a diluent to prepare a coating solution.
  • the obtained coating liquid is applied onto the base film 11 and the resin is cured by irradiating with ultraviolet rays to form the first hard coat layer 12.
  • a second hard coat layer 13 is formed on the surface of the base film 11 opposite to the first hard coat layer 12.
  • an ultraviolet curable resin is used as the material for the second hard coat layer 13
  • the photocurable monomer and the photoinitiator are stirred in a diluent to prepare a coating solution.
  • the obtained coating liquid is applied on the surface of the base film 11 opposite to the first hard coat layer 12 side, and the resin is cured by irradiating with ultraviolet rays to form the second hard coat layer 13. To do.
  • the protective film 4 is formed on the first hard coat layer 12.
  • a protective film having a pressure-sensitive adhesive layer provided on a base sheet is used as the protective film 4
  • the pressure-sensitive adhesive layer side is bonded to the surface of the first hard coat layer 12, and the first hard coat layer 12 is bonded.
  • a protective film 4 can be formed thereon.
  • the undercoat layer 14 is formed on the second hard coat layer 13.
  • SiO 2 is used as the material of the material 14 for the undercoat layer
  • the undercoat layer 14 can be formed on the second hard coat layer 13 by vapor deposition or sputtering.
  • the first and second hard coat layers 12 and 13 and the undercoat layer 14 are formed on the base film 11.
  • the first and second hard coat layers 12 and 13 and the undercoat layer 14 may not be provided.
  • the surface of the base film 11 on the conductive layer 3 side is the first surface 2 a of the base material 2
  • the surface of the base film 11 on the protective film 4 side is the second surface of the base material 2. It is the surface 2b.
  • FIG. 3 is a cross-sectional view showing a state before the conductive layer of the light transmissive conductive film 1 according to the first embodiment of the present invention is patterned.
  • the light transmissive conductive film 1 can be obtained by making the conductive layer 3X in the conductive film 1X shown in FIG.
  • the patterned conductive layer 3 can be formed by partially forming a resist layer on the surface of the conductive layer 3X opposite to the base film 11 side and performing an etching process. After the etching process, washing with water is usually performed.
  • the method for forming the patterned conductive layer is not particularly limited.
  • a method for forming a patterned conductive layer for example, a known patterning method such as a method of etching a metal film formed by vapor deposition or sputtering, various printing methods such as screen printing or inkjet printing, and a photolithography method using a resist. Etc. can be used.
  • the conductive layer formed in a pattern can be improved in crystallinity by annealing.
  • the temperature of the annealing treatment is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, preferably 170 ° C. or lower, more preferably 160 ° C. or lower.
  • the conductive layer can be prevented from being damaged by annealing at a higher temperature. This is presumably because the internal stress of the conductive layer rises moderately due to thermal contraction of the base material.
  • the treatment time for the annealing treatment is preferably 5 minutes or more, more preferably 10 minutes or more, preferably 90 minutes or less, more preferably 60 minutes or less. Within the above range, the conductive layer can be prevented from being damaged by annealing for a longer time.
  • the light transmissive conductive film 1 may be used with the protective film 4 laminated, or may be used after the protective film 4 is peeled off.
  • a protective film is peeled and it measures in the state without a protective film.
  • the total thickness of the substrate is preferably 23 ⁇ m or more, more preferably 50 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the base film preferably has high light transmittance.
  • the material of the base film is not particularly limited.
  • examples include phthalate, triacetylcellulose, and cellulose nanofiber.
  • the base film is a polycarbonate base film or a cycloolefin polymer base film.
  • the base film is a polycarbonate base film or a cycloolefin polymer.
  • a base film is preferred.
  • the thickness of the base film is preferably 5 ⁇ m or more, more preferably 20 ⁇ m or more, preferably 190 ⁇ m or less, more preferably 125 ⁇ m or less.
  • the average transmittance of the base film in the visible light region having a wavelength of 380 to 780 nm is preferably 85% or more, more preferably 88% or more.
  • the average transmittance of the base film in the visible light region having a wavelength of 380 to 780 nm is usually 100% or less.
  • the base film may contain various stabilizers, ultraviolet absorbers, plasticizers, lubricants, or colorants.
  • First and second hard coat layers Each of the first and second hard coat layers is preferably composed of a binder resin.
  • the binder resin is preferably a cured resin.
  • the curable resin include thermosetting resins and active energy ray curable resins such as ultraviolet curable resins. From the viewpoint of improving productivity and economy, the curable resin is preferably an ultraviolet curable resin.
  • the UV curable resin is preferably a resin obtained by polymerizing a photocurable monomer.
  • the ultraviolet curable resin may be a resin in which a monomer other than the photocurable monomer is polymerized. Monomers other than the photocurable monomer and the photocurable monomer may be used alone or in combination.
  • photocurable monomer examples include 1,6-hexanediol diacrylate, 1,4-butanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, tetraethylene glycol diacrylate, tripropylene glycol diacrylate, neo Pentyl glycol diacrylate, 1,4-butanediol dimethacrylate, poly (butanediol) diacrylate, tetraethylene glycol dimethacrylate, 1,3-butylene glycol diacrylate, triethylene glycol diacrylate, triisopropylene glycol diacrylate, Diacrylate compounds such as polyethylene glycol diacrylate and bisphenol A dimethacrylate; trimethylolpro Triacrylate compounds such as ethylene triacrylate, trimethylolpropane trimethacrylate, pentaerythritol monohydroxytriacrylate and trimethylolpropane triethoxytriacrylate; tetraacrylate compounds such
  • the ultraviolet curable resin may be a polyfunctional acrylate compound.
  • the polyfunctional acrylate compound may be a polyfunctional acrylate compound having five or more functions.
  • the said polyfunctional acrylate compound may be used independently and may use multiple together. Moreover, you may add a photoinitiator, a photosensitizer, a leveling agent, a diluent, etc. to the said polyfunctional acrylate compound.
  • the first hard coat layer may contain a filler.
  • the first hard coat layer may be composed of a resin such as the binder resin and a filler.
  • the pattern of the conductive layer can be made even less visible.
  • the first hard coat layer contains a filler, fogging due to surface roughness may occur, and when used in a liquid crystal display device, display light may be difficult to see. Therefore, from the viewpoint of making it difficult to cause fogging, it is preferable that the first hard coat layer does not contain a filler and is constituted only by a resin such as the binder resin.
  • the average particle diameter of the filler is preferably smaller than the thickness of the first hard coat layer, and the filler is the surface of the first hard coat layer. It is preferable that the protrusion does not protrude.
  • the filler is not particularly limited.
  • metal oxide such as silica, iron oxide, aluminum oxide, zinc oxide, titanium oxide, silicon dioxide, antimony oxide, zirconium oxide, tin oxide, cerium oxide, and indium-tin oxide.
  • Product particles resin particles such as silicone, (meth) acryl, styrene, melamine, and the like. More specifically, resin particles such as crosslinked poly (meth) methyl acrylate can be used as the filler.
  • the said filler may be used independently and may use multiple together.
  • each of the first and second hard coat layers may contain various stabilizers, ultraviolet absorbers, plasticizers, lubricants or colorants.
  • the undercoat layer is, for example, a refractive index adjustment layer.
  • the undercoat layer By providing the undercoat layer, the difference in refractive index between the conductive layer and the second hard coat layer or substrate film can be reduced, so that the light transmissive conductive film can be made more transparent. Can be increased.
  • the material for the undercoat layer is not particularly limited as long as it has a refractive index adjustment function.
  • Examples of the material for the undercoat layer include inorganic materials such as SiO 2 , MgF 2 , and Al 2 O 3, and organic materials such as acrylic resins, urethane resins, melamine resins, alkyd resins, and siloxane polymers.
  • the undercoat layer can be formed by a vacuum deposition method, a sputtering method, an ion plating method, or a coating method.
  • the conductive layer is made of a light-transmitting conductive material.
  • the conductive material is not particularly limited, for example, IZO (indium zinc oxide) and In-based oxides such as ITO (indium tin oxide), Sn-based, such as SnO 2 and FTO (fluorine-doped tin oxide) Oxides, Zn-based oxides such as AZO (aluminum zinc oxide) and GZO (gallium zinc oxide), sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum- Examples include lithium alloys, Al / Al 2 O 3 mixtures, Al / LiF mixtures, metals such as gold, CuI, Ag nanowires (AgNW), carbon nanotubes (CNT), and conductive transparent polymers.
  • the said electroconductive material may be used independently and may use multiple together.
  • the conductive material is composed of In-based oxides such as IZO and ITO, Sn-based oxides such as SnO 2 and FTO, Zn such as AZO and GZO. It is preferably a system oxide, and more preferably ITO.
  • the thickness of the conductive layer is preferably 12 nm or more, more preferably 16 nm or more, still more preferably 17 nm or more, preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 19.9 nm or less.
  • the thickness of the conductive layer is not less than the above lower limit, the surface resistance value of the conductive layer of the light transmissive conductive film can be effectively reduced, and the conductivity can be further increased.
  • the thickness of the conductive layer is less than or equal to the above upper limit, the pattern of the conductive layer can be made less visible and the light transmissive conductive film can be made even thinner.
  • the thickness of the conductive layer is preferably 15 nm or more, more preferably 17 nm or more, still more preferably 19 nm or more, and preferably 30 nm. Less than, more preferably 29 nm or less, still more preferably 28 nm or less.
  • the material of the conductive layer is ITO, when the thickness of the conductive layer is equal to or greater than the lower limit, the surface resistance value (sheet resistance value) of the conductive layer of the light transmissive conductive film can be effectively reduced. it can.
  • the sensing sensitivity can be increased and the wiring can be thinned, so that the visibility of the wiring can be reduced.
  • the material of the conductive layer is ITO
  • the transmittance of the light-transmitting conductive film can be increased when the thickness of the conductive layer is not more than the above upper limit (or less than the upper limit). Therefore, when the light transmissive conductive film is used for the touch sensor panel, the visibility of the wiring can be reduced.
  • the surface resistance value (sheet resistance value) of the conductive layer is preferably 500 ⁇ / ⁇ or less, more preferably 300 ⁇ / ⁇ or less, still more preferably 200 ⁇ / ⁇ or less, still more preferably 150 ⁇ / ⁇ or less, and even more preferably 130 ⁇ . / ⁇ or less, particularly preferably 100 ⁇ / ⁇ or less.
  • the surface resistance value of the conductive layer is not more than the above upper limit, the driving speed of the light control film can be improved, and unevenness of the color tone can be suppressed.
  • the surface resistance value of the conductive layer is measured based on JIS K7194 on the surface side opposite to the base film side of the conductive layer.
  • the average transmittance of the conductive layer in the visible light region having a wavelength of 380 to 780 nm is preferably 85% or more, more preferably 88% or more.
  • the average transmittance of the conductive layer in the visible light region having a wavelength of 380 to 780 nm is usually 100% or less.
  • the protective film is comprised by the base material sheet and the adhesive layer.
  • the base sheet has high light transmittance since the state can be visually recognized.
  • the material of the base sheet is not particularly limited, but for example, polyolefin, polyethersulfone, polysulfone, polycarbonate, cycloolefin polymer, polyarylate, polyamide, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate , Triacetyl cellulose, and cellulose nanofibers.
  • the pressure-sensitive adhesive layer can be composed of a (meth) acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a urethane-based adhesive, or an epoxy-based adhesive. From the viewpoint of suppressing an increase in adhesive force due to heat treatment, the adhesive layer is preferably composed of a (meth) acrylic adhesive.
  • the above (meth) acrylic pressure-sensitive adhesive is a pressure-sensitive adhesive obtained by adding a crosslinking agent, a tackifying resin, various stabilizers and the like to a (meth) acrylic polymer as necessary.
  • the (meth) acrylic polymer is not particularly limited, but the (meth) acrylic copolymer obtained by copolymerizing a mixed monomer containing a (meth) acrylic acid ester monomer and another polymerizable monomer capable of copolymerization. A polymer is preferred.
  • the (meth) acrylic acid ester monomer is not particularly limited, and is obtained by an esterification reaction between a primary or secondary alkyl alcohol having 1 to 12 carbon atoms in the alkyl group and (meth) acrylic acid ( A meth) acrylic acid ester monomer is preferred.
  • Specific examples of the (meth) acrylate monomer include ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • the said (meth) acrylic acid ester monomer may be used independently and may use multiple together.
  • Examples of other polymerizable monomers that can be copolymerized include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate; Isobornyl (meth) acrylate, hydroxyalkyl (meth) acrylate, glycerin dimethacrylate, glycidyl (meth) acrylate, 2-methacryloyloxyethyl isocyanate, (meth) acrylic acid, itaconic acid, maleic anhydride, crotonic acid, malein Examples thereof include functional monomers such as acid and fumaric acid.
  • the said other polymerizable monomer which can be copolymerized may be used independently, and may use multiple together.
  • the crosslinking agent is not particularly limited, and for example, an isocyanate crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, a peroxide crosslinking agent, a urea crosslinking agent, a metal alkoxide crosslinking agent, a metal chelate crosslinking agent.
  • the above crosslinking agents may be used alone or in combination.
  • the tackifying resin is not particularly limited, and examples thereof include petroleum resins such as aliphatic copolymers, aromatic copolymers, aliphatic / aromatic copolymers, and alicyclic copolymers.
  • petroleum resins such as aliphatic copolymers, aromatic copolymers, aliphatic / aromatic copolymers, and alicyclic copolymers.
  • the tackifying resin may be a hydrogenated resin.
  • the tackifying resins may be used alone or in combination.
  • the thickness of the protective film is preferably 25 ⁇ m or more, more preferably 50 ⁇ m or more, preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less.
  • Cycloolefin polymer (COP) substrate film A (thickness 100 ⁇ m, “ZF16” manufactured by Nippon Zeon Co., Ltd.) Cycloolefin polymer (COP) base film B (thickness 50 ⁇ m, “ZF16” manufactured by Nippon Zeon Co., Ltd.) Polycarbonate (PC) base film A (thickness 100 ⁇ m, “C110” manufactured by Teijin Limited)
  • Example 1 The COP base film A was prepared as a base film.
  • a hard coat layer 100 parts by weight of urethane acrylate oligomer as a photocurable monomer, 140 parts by weight of a mixed solvent of toluene and methyl isobutyl ketone (MIBK) as a diluent solvent, and 7 weights of Irgacure 194 (manufactured by Ciba Specialty Chemicals) as a photoinitiator
  • MIBK methyl isobutyl ketone
  • the said coating liquid was apply
  • a protective film (thickness 50 ⁇ m) was bonded from the pressure-sensitive adhesive layer side.
  • An SiO 2 film was formed on the second hard coat layer by an AC magnetron sputtering method using polycrystal having a Si purity of 99.9% as a Si target material. Specifically, after evacuating the chamber to 5 ⁇ 10 ⁇ 4 Pa or less, a mixed gas of Ar gas: 95% and oxygen gas: 5% was introduced into the chamber, and SiO 2 having a thickness of 10 nm was introduced. A film was deposited to form an undercoat layer.
  • a conductive layer covering the entire surface of the undercoat layer was formed on the undercoat layer by a DC magnetron sputtering method using a sintered body material of indium oxide: 93 wt% and tin oxide: 7 wt% as a target material. .
  • a mixed gas of Ar gas: 95% and oxygen gas: 5% was introduced into the chamber, and an ITO layer having a thickness of 20 nm was introduced. (Conductive layer) was formed.
  • the film on which the ITO layer was deposited was heated in an oven at 140 ° C. for 60 minutes to obtain a light transmissive conductive film (first measurement object).
  • the obtained light transmissive conductive film was subjected to the entire etching, washing and drying steps in this order, and the ITO layer was removed from the light transmissive conductive film. Thereby, a film (second measurement object) obtained by removing the conductive layer from the light-transmitting conductive film was obtained.
  • Example 2 to 10 and Comparative Examples 1 to 4 The light-transmitting conductive material was the same as in Example 1 except that the type of base film, the thickness of the protective film, the thickness of the ITO layer, and the thickness of the SiO 2 film were changed as shown in Tables 1 and 2 below. A light-transmitting conductive film having a film and a patterned conductive layer was obtained.
  • a spectrophotometer with an integrating sphere (“U-4100” manufactured by Hitachi, Ltd.) was used as the spectrophotometer.
  • a light-transmissive conductive film is cut into 5 cm square, a 200 ⁇ m wide line and space resist pattern is exposed and developed on the conductive layer, and immersed in an ITO etching solution (“ITO-06N” manufactured by Kanto Chemical Co., Ltd.) for 1 minute.
  • ITO-06N ITO etching solution
  • the resist pattern was removed after rinsing and drying to obtain a light-transmitting conductive film having a patterned conductive layer (patterned conductive layer).
  • the light source an LED, a fluorescent lamp, and a white lamp were used, and the arrangement of the electric light and the light-transmitting conductive film having the patterned conductive layer was adjusted so that the patterned conductive layer side was directly under each electric lamp.
  • the light transmissive conductive film was observed from an angle of 45 degrees with respect to the surface of the light transmissive conductive film, and a reflection image of the lamp when the light received from the front of the lamp was reflected by the light transmissive conductive film was observed.
  • the observed reflected image (the image of the electric lamp by the reflected light reflected from the front of the electric lamp) was judged according to the following evaluation criteria.
  • The pattern of the conductive layer is not visually recognized when irradiated with LED light, fluorescent light, or white light.
  • the conductive layer pattern is slightly visually observed when irradiated with LED light. However, when the fluorescent lamp is irradiated, the conductive layer pattern is not visually recognized.
  • ⁇ ... When the LED light is irradiated, the conductive layer pattern is visually observed, but when the fluorescent lamp is irradiated. The pattern of the conductive layer is not visually recognized.
  • ⁇ ... The conductive layer pattern is visually recognized when irradiated with either LED light or fluorescent lamp.

Abstract

Provided is a method for analyzing the visualization of a light-transmissive conductive film, whereby the visualization of a light-transmissive conducive film can be effectively determined. In this method for analyzing the visualization of a light-transmissive conductive film, a light-transmissive conductive film is used as a first measurement target, a film part other than a conductive layer of the light-transmissive conductive film is used as a second measurement target, the measurement targets are irradiated with light by using a spectrophotometer, ΔE* is obtained as ΔE*t by measuring transmission light passing through the measurement targets, a spectrophotometer is used to irradiate the measurement targets with light in a state in which a white plate is disposed on the reverse side of a light source side of the measurement targets, ΔE* is obtained as ΔE*rw by measuring reflection light reflected by the white plate and the measurement targets, and the visualization of the light-transmissive conductive film is determined from the values of ΔE*t and ΔE*rw.

Description

光透過性導電フィルムの可視化の分析方法、及び光透過性導電フィルムMethod for analyzing visualization of light transmissive conductive film, and light transmissive conductive film
 本発明は、光透過性及び導電性を有する光透過性導電フィルムの可視化の分析方法に関する。また、本発明は、光透過性及び導電性を有する光透過性導電フィルムに関する。 The present invention relates to an analysis method for visualizing a light-transmitting conductive film having light transmittance and conductivity. Moreover, this invention relates to the light transmissive conductive film which has light transmittance and electroconductivity.
 近年、スマートフォン、携帯電話、ノートパソコン、タブレットPC、複写機又はカーナビゲーションなどの電子機器において、タッチパネル式の液晶表示装置が、広く用いられている。このような液晶表示装置では、基材上に透明導電層が積層された透明導電フィルム(光透過性導電フィルム)が用いられている。 In recent years, touch panel type liquid crystal display devices have been widely used in electronic devices such as smartphones, mobile phones, notebook computers, tablet PCs, copiers, and car navigation systems. In such a liquid crystal display device, a transparent conductive film (light transmissive conductive film) in which a transparent conductive layer is laminated on a substrate is used.
 下記の特許文献1には、透明なフィルム基材と、透明なSiO(x=1.0~2.0)薄膜と、透明な導電性薄膜とがこの順で積層されている透明導電フィルムが開示されている。上記透明なSiO薄膜は、10~100nmの厚さを有し、1.40~1.80の光の屈折率を有し、0.8~3.0nmの平均表面粗さ〔Ra〕を有する。上記透明な導電性薄膜は、20~35nmの厚さを有し、3~15重量%のSnO/(In+SnO)重量比を有し、インジウム・スズ複合酸化物により形成されている。 Patent Document 1 below discloses a transparent conductive film in which a transparent film base, a transparent SiO x (x = 1.0 to 2.0) thin film, and a transparent conductive thin film are laminated in this order. Is disclosed. The transparent SiO x thin film has a thickness of 10 to 100 nm, a refractive index of light of 1.40 to 1.80, and an average surface roughness [Ra] of 0.8 to 3.0 nm. Have. The transparent conductive thin film has a thickness of 20 to 35 nm, a SnO 2 / (In 2 O 3 + SnO 2 ) weight ratio of 3 to 15% by weight, and is formed of an indium / tin composite oxide. ing.
 下記の特許文献2には、基材フィルムと、高屈折率層と、SiO膜と、透明導電膜とがこの順で積層された透明導電フィルムが開示されている。下記の特許文献2には、上記高屈折率層が、1.61~1.80の屈折率を有し、30nm以上の厚みを有することが記載されている。下記の特許文献2には、上記SiO膜が、1.40~1.50の屈折率を有することが好ましく、3~30nmの厚みを有することが好ましいことが記載されている。 Patent Document 2 below discloses a transparent conductive film in which a base film, a high refractive index layer, a SiO 2 film, and a transparent conductive film are laminated in this order. Patent Document 2 below describes that the high refractive index layer has a refractive index of 1.61 to 1.80 and a thickness of 30 nm or more. Patent Document 2 listed below describes that the SiO 2 film preferably has a refractive index of 1.40 to 1.50, and preferably has a thickness of 3 to 30 nm.
特開2006-19239号公報JP 2006-19239 A WO2013/038718A1WO2013 / 038718A1
 例えば、タッチパネルのセンサーの役割を果たす透明導電フィルムは、インデックスマッチングの調整を行うことで、可視化されないように形成される必要がある。タッチパネルに組み込む前に、透明導電フィルムの可視化の可能性を評価するために、従来、分光光度計を用いて、導電層を備える透明導電フィルムの透過光及び反射光、並びに透明導電フィルムの導電層を除くフィルムの透過光及び反射光を測定することで得られるそれぞれのΔE*の値が用いられる場合がある。例えば、図6に示すように、測定対象物121に対して、光源122から光を照射し、受光部123において透過光を受光して、透過スペクトルを得ることができる。また、図7に示すように、測定対象物121に対して、光源122から光を照射し、受光部123において反射光を受光して、反射スペクトルを得ることができる。導電層を備える透明導電フィルム及び透明導電フィルムの導電層を除くフィルムの各測定結果から、反射光及び透過光のΔE*が求められている。 For example, a transparent conductive film serving as a touch panel sensor needs to be formed so as not to be visualized by adjusting index matching. In order to evaluate the possibility of visualization of a transparent conductive film before incorporating into a touch panel, conventionally, a spectrophotometer is used to transmit and reflect light of a transparent conductive film including a conductive layer, and a conductive layer of a transparent conductive film. Each value of ΔE * obtained by measuring the transmitted light and reflected light of the film except for may be used. For example, as shown in FIG. 6, the measurement object 121 can be irradiated with light from the light source 122 and the transmitted light can be received by the light receiving unit 123 to obtain a transmission spectrum. In addition, as shown in FIG. 7, the measurement object 121 can be irradiated with light from the light source 122 and the reflected light can be received by the light receiving unit 123 to obtain a reflection spectrum. ΔE * of reflected light and transmitted light is determined from the measurement results of the transparent conductive film including the conductive layer and the measurement results of the transparent conductive film excluding the conductive layer.
 この評価方法は、ディスプレイの背景が黒いときの反射の評価方法としては適切であるが、この評価方法では、バックライトが発光している際の評価としては、実際の使用状況と異なるため、正確な評価ができないという問題がある。 Although this evaluation method is appropriate as an evaluation method for reflection when the background of the display is black, this evaluation method is different from the actual usage situation when the backlight is emitting light. There is a problem that cannot be evaluated.
 本発明の目的は、光透過性導電フィルムの可視化をより正確に判別することができる光透過性導電フィルムの可視化の分析方法を提供することである。また、本発明の目的は、光透過性導電フィルムの可視化を効果的に抑えることができる光透過性導電フィルムを提供することである。 An object of the present invention is to provide a method for analyzing the visualization of a light transmissive conductive film that can more accurately determine the visualization of the light transmissive conductive film. Moreover, the objective of this invention is providing the light transmissive conductive film which can suppress effectively visualization of a light transmissive conductive film.
 本発明の広い局面によれば、基材フィルムと、前記基材フィルムの一方の表面側に配置された導電層とを備える光透過性導電フィルムを第1の測定対象物とし、前記光透過性導電フィルムの前記導電層を除くフィルム部分を第2の測定対象物として、前記第1の測定対象物及び前記第2の測定対象物のそれぞれについて、分光光度計を用いて、測定対象物に光を照射し、該測定対象物を透過した透過光を測定することで、下記式で表されるΔE*をΔE*tとして得て、前記第1の測定対象物及び前記第2の測定対象物のそれぞれについて、測定対象物の光源側とは反対側に白色板が配置された状態で、分光光度計を用いて、測定対象物に光を照射し、該測定対象物及び該白色板により反射された反射光を測定することで、下記式で表されるΔE*をΔE*rwとして得て、ΔE*tの値とΔE*rwの値とから、光透過性導電フィルムの可視化を判別する、光透過性導電フィルムの可視化の分析方法が提供される。 According to a wide aspect of the present invention, a light transmissive conductive film including a base film and a conductive layer disposed on one surface side of the base film is a first measurement object, and the light transmissive property is measured. Using a spectrophotometer for each of the first measurement object and the second measurement object, the film portion excluding the conductive layer of the conductive film is used as a second measurement object. And ΔE * represented by the following formula is obtained as ΔE * t by measuring the transmitted light that has passed through the measurement object, and the first measurement object and the second measurement object For each of the above, with the white plate disposed on the side opposite to the light source side of the measurement object, the measurement object is irradiated with light using a spectrophotometer and reflected by the measurement object and the white plate Measured reflected light is expressed by the following formula By providing ΔE * as ΔE * rw and determining the visualization of the light-transmitting conductive film from the values of ΔE * t and ΔE * rw, a method for analyzing the visualization of the light-transmitting conductive film is provided.
 ΔE*=(ΔL*+Δa*+Δb*1/2
 Lab表色系
 ΔL*=第1の測定対象物のL値-第2の測定対象物のL値
 Δa*=第1の測定対象物のa値-第2の測定対象物のa値
 Δb*=第1の測定対象物のb値-第2の測定対象物のb値
ΔE * = (ΔL * 2 + Δa * 2 + Δb * 2 ) 1/2
Lab color system ΔL * = L value of the first measurement object−L value of the second measurement object Δa * = a value of the first measurement object−a value of the second measurement object Δb * = B value of the first measurement object-b value of the second measurement object
 本発明に係る光透過性導電フィルムの可視化の分析方法のある特定の局面では、前記基材フィルムが、ポリカーボネート基材フィルム、又は、シクロオレフィンポリマー基材フィルムである。 In a specific aspect of the analysis method for visualizing a light-transmitting conductive film according to the present invention, the base film is a polycarbonate base film or a cycloolefin polymer base film.
 本発明の広い局面によれば、基材フィルムと、前記基材フィルムの一方の表面側に配置された導電層とを備える光透過性導電フィルムであり、前記基材フィルムが、ポリカーボネート基材フィルム、又は、シクロオレフィンポリマー基材フィルムであり、前記基材フィルムが、前記ポリカーボネート基材フィルムである場合に、下記の測定により求められるΔE*rw/ΔE*tが0.5以上であり、前記基材フィルムが、前記シクロオレフィンポリマー基材フィルムである場合に、下記の測定により求められるΔE*rw/ΔE*tが1.0以上である、光透過性導電フィルムが提供される。 According to a wide aspect of the present invention, it is a light transmissive conductive film comprising a base film and a conductive layer disposed on one surface side of the base film, and the base film is a polycarbonate base film. Or, when the substrate film is a polycarbonate substrate film, ΔE * rw / ΔE * t determined by the following measurement is 0.5 or more, When the base film is the cycloolefin polymer base film, a light-transmitting conductive film is provided in which ΔE * rw / ΔE * t determined by the following measurement is 1.0 or more.
 ΔE*rw/ΔE*tの測定方法:前記光透過性導電フィルムを第1の測定対象物とし、前記光透過性導電フィルムの前記導電層を除くフィルム部分を第2の測定対象物とする。前記第1の測定対象物及び前記第2の測定対象物のそれぞれについて、分光光度計を用いて、測定対象物に光を照射し、該測定対象物を透過した透過光を測定することで、下記式で表されるΔE*をΔE*tとして得る。前記第1の測定対象物及び前記第2の測定対象物のそれぞれについて、測定対象物の光源側とは反対側に白色板が配置された状態で、分光光度計を用いて、測定対象物に光を照射し、該測定対象物及び該白色板により反射された反射光を測定することで、下記式で表されるΔE*をΔE*rwとして得る。ΔE*tの値とΔE*rwの値とから、ΔE*rw/ΔE*tを求める。 ΔE * rw / ΔE * t measurement method: The light-transmitting conductive film is used as a first measurement object, and the film portion of the light-transmitting conductive film excluding the conductive layer is used as a second measurement object. For each of the first measurement object and the second measurement object, using a spectrophotometer, irradiating the measurement object with light and measuring the transmitted light transmitted through the measurement object, ΔE * represented by the following formula is obtained as ΔE * t. For each of the first measurement object and the second measurement object, a white plate is arranged on the opposite side of the measurement object from the light source side, and a spectrophotometer is used to measure the measurement object. By irradiating light and measuring the reflected light reflected by the measurement object and the white plate, ΔE * represented by the following formula is obtained as ΔE * rw. From the value of ΔE * t and the value of ΔE * rw, ΔE * rw / ΔE * t is obtained.
 ΔE*=(ΔL*+Δa*+Δb*1/2
 Lab表色系
 ΔL*=第1の測定対象物のL値-第2の測定対象物のL値
 Δa*=第1の測定対象物のa値-第2の測定対象物のa値
 Δb*=第1の測定対象物のb値-第2の測定対象物のb値
ΔE * = (ΔL * 2 + Δa * 2 + Δb * 2 ) 1/2
Lab color system ΔL * = L value of the first measurement object−L value of the second measurement object Δa * = a value of the first measurement object−a value of the second measurement object Δb * = B value of the first measurement object-b value of the second measurement object
 本発明に係る光透過性導電フィルムのある特定の局面では、前記基材フィルムが、前記ポリカーボネート基材フィルムであり、前記ΔE*rw/ΔE*tが0.5以上である。 In a specific aspect of the light transmissive conductive film according to the present invention, the base film is the polycarbonate base film, and the ΔE * rw / ΔE * t is 0.5 or more.
 本発明に係る光透過性導電フィルムのある特定の局面では、前記基材フィルムが、前記シクロオレフィンポリマー基材フィルムであり、前記ΔE*rw/ΔE*tが1.0以上である。 In a specific aspect of the light-transmitting conductive film according to the present invention, the base film is the cycloolefin polymer base film, and the ΔE * rw / ΔE * t is 1.0 or more.
 本発明に係る光透過性導電フィルムのある特定の局面では、前記導電層の材料が、インジウムスズ酸化物であり、前記導電層の厚みが、15nm以上、30nm未満である。 In a specific aspect of the light transmissive conductive film according to the present invention, the material of the conductive layer is indium tin oxide, and the thickness of the conductive layer is 15 nm or more and less than 30 nm.
 本発明に係る光透過性導電フィルムの可視化の分析方法では、基材フィルムと、上記基材フィルムの一方の表面側に配置された導電層とを備える光透過性導電フィルムを第1の測定対象物とし、上記光透過性導電フィルムの上記導電層を除くフィルム部分を第2の測定対象物とする。本発明に係る光透過性導電フィルムの可視化の分析方法では、上記第1の測定対象物及び上記第2の測定対象物のそれぞれについて、分光光度計を用いて、測定対象物に光を照射し、該測定対象物を透過した透過光を測定することで、上記式で表されるΔE*をΔE*tとして得る。本発明に係る光透過性導電フィルムの可視化の分析方法では、上記第1の測定対象物及び上記第2の測定対象物のそれぞれについて、測定対象物の光源側とは反対側に白色板が配置された状態で、分光光度計を用いて、測定対象物に光を照射する。本発明に係る光透過性導電フィルムの可視化の分析方法では、該測定対象物及び該白色板により反射された反射光を測定することで、上記式で表されるΔE*をΔE*rwとして得る。本発明に係る光透過性導電フィルムの可視化の分析方法では、ΔE*tの値とΔE*rwの値とから、光透過性導電フィルムの可視化を判別する。本発明に係る光透過性導電フィルムの可視化の分析方法では、上記の構成が備えられているので、光透過性導電フィルムの可視化をより正確に判別することができる。 In the analysis method for visualization of a light transmissive conductive film according to the present invention, a light transmissive conductive film including a base film and a conductive layer disposed on one surface side of the base film is a first measurement target. The film portion excluding the conductive layer of the light transmissive conductive film is a second object to be measured. In the analysis method for visualizing a light-transmitting conductive film according to the present invention, the measurement object is irradiated with light using a spectrophotometer for each of the first measurement object and the second measurement object. By measuring the transmitted light that has passed through the measurement object, ΔE * represented by the above formula is obtained as ΔE * t. In the analysis method for visualizing a light-transmitting conductive film according to the present invention, a white plate is disposed on the opposite side of the measurement object from the light source side for each of the first measurement object and the second measurement object. In this state, the object to be measured is irradiated with light using a spectrophotometer. In the analysis method for visualizing a light-transmitting conductive film according to the present invention, ΔE * represented by the above formula is obtained as ΔE * rw by measuring reflected light reflected by the measurement object and the white plate. . In the analysis method for visualizing a light transmissive conductive film according to the present invention, the visualization of the light transmissive conductive film is determined from the value of ΔE * t and the value of ΔE * rw. Since the analysis method for visualizing a light transmissive conductive film according to the present invention includes the above-described configuration, the visualization of the light transmissive conductive film can be more accurately determined.
 本発明に係る光透過性導電フィルムは、基材フィルムと、上記基材フィルムの一方の表面側に配置された導電層とを備える光透過性導電フィルムであり、上記基材フィルムが、ポリカーボネート基材フィルム、又は、シクロオレフィンポリマー基材フィルムである。本発明に係る光透過性導電フィルムでは、上記基材フィルムが、上記ポリカーボネート基材フィルムである場合に、上記の測定により求められるΔE*rw/ΔE*tが0.5以上であり、上記基材フィルムが、上記シクロオレフィンポリマー基材フィルムである場合に、上記の測定により求められるΔE*rw/ΔE*tが1.0以上である。本発明に係る光透過性導電フィルムでは、上記の構成が備えられているので、光透過性導電フィルムの可視化を効果的に抑えることができる。 The light-transmitting conductive film according to the present invention is a light-transmitting conductive film including a base film and a conductive layer disposed on one surface side of the base film, and the base film is a polycarbonate group. It is a material film or a cycloolefin polymer base film. In the light-transmitting conductive film according to the present invention, when the base film is the polycarbonate base film, ΔE * rw / ΔE * t determined by the above measurement is 0.5 or more, When a material film is the said cycloolefin polymer base film, (DELTA) E * rw / (DELTA) E * t calculated | required by said measurement is 1.0 or more. Since the light-transmitting conductive film according to the present invention has the above-described configuration, visualization of the light-transmitting conductive film can be effectively suppressed.
図1は、本発明の第1の実施形態に係る光透過性導電フィルムを示す断面図である。FIG. 1 is a cross-sectional view showing a light-transmitting conductive film according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る光透過性導電フィルムを示す断面図である。FIG. 2 is a sectional view showing a light transmissive conductive film according to the second embodiment of the present invention. 図3は、本発明の第1の実施形態に係る光透過性導電フィルムの導電層をパターン状にする前の状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state before the conductive layer of the light transmissive conductive film according to the first embodiment of the present invention is patterned. 図4は、本発明における透過スペクトルの測定方法を説明するための模式図である。FIG. 4 is a schematic diagram for explaining a transmission spectrum measurement method in the present invention. 図5は、本発明における反射スペクトルの測定方法を説明するための模式図である。FIG. 5 is a schematic diagram for explaining a method of measuring a reflection spectrum in the present invention. 図6は、従来の透過スペクトルの測定方法を説明するための模式図である。FIG. 6 is a schematic diagram for explaining a conventional transmission spectrum measurement method. 図7は、従来の反射スペクトルの測定方法を説明するための模式図である。FIG. 7 is a schematic diagram for explaining a conventional method of measuring a reflection spectrum.
 以下、本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described.
 本発明に係る光透過性導電フィルムの可視化の分析方法に用いられる第1の測定対象物は、光透過性導電フィルムである。該光透過性導電フィルムは、基材フィルムと、導電層とを備える。上記導電層は、上記基材フィルムの一方の表面側に配置されている。 The first measurement object used in the analysis method for visualizing a light transmissive conductive film according to the present invention is a light transmissive conductive film. The light transmissive conductive film includes a base film and a conductive layer. The conductive layer is disposed on one surface side of the base film.
 本発明に係る光透過性導電フィルムの可視化の分析方法に用いられる第2の測定対象物は、上記光透過性導電フィルムの上記導電層を除くフィルム部分である。上記第2の測定対象物として、上記導電層を形成する前のフィルムを用いてもよく、光透過性導電フィルムから導電層を取り除いたフィルムを用いてもよい。 The second measurement object used in the analysis method for visualizing a light transmissive conductive film according to the present invention is a film portion excluding the conductive layer of the light transmissive conductive film. As the second measurement object, a film before forming the conductive layer may be used, or a film obtained by removing the conductive layer from the light-transmitting conductive film may be used.
 本発明に係る光透過性導電フィルムの可視化の分析方法では、図4に示すように、上記第1の測定対象物及び上記第2の測定対象物のそれぞれについて、分光光度計を用いて、測定対象物21に光を照射し、測定対象物21を透過した透過光を測定することで、下記式で表されるΔE*をΔE*tとして得る。図4では、光源22から光が照射され、受光部23において測定が行われる。 In the analysis method for visualizing a light-transmitting conductive film according to the present invention, as shown in FIG. 4, each of the first measurement object and the second measurement object is measured using a spectrophotometer. By irradiating the object 21 with light and measuring the transmitted light transmitted through the measurement object 21, ΔE * represented by the following formula is obtained as ΔE * t. In FIG. 4, light is emitted from the light source 22 and measurement is performed in the light receiving unit 23.
 本発明に係る光透過性導電フィルムの可視化の分析方法では、図5に示すように、上記第1の測定対象物及び上記第2の測定対象物のそれぞれについて、測定対象物21の光源22側とは反対側に白色板24が配置された状態で、分光光度計を用いて、測定対象物21に光を照射する。本発明に係る光透過性導電フィルムの可視化の分析方法では、測定対象物21及び白色板24により反射された反射光を測定することで、下記式で表されるΔE*をΔE*rwとして得る。図5では、光源22から光が照射され、受光部23において測定が行われる。 In the analysis method for visualizing a light-transmitting conductive film according to the present invention, as shown in FIG. 5, the light source 22 side of the measurement object 21 for each of the first measurement object and the second measurement object. In the state where the white plate 24 is arranged on the opposite side of the light, the measurement object 21 is irradiated with light using a spectrophotometer. In the analysis method for visualizing a light-transmitting conductive film according to the present invention, ΔE * represented by the following formula is obtained as ΔE * rw by measuring the reflected light reflected by the measurement object 21 and the white plate 24. . In FIG. 5, light is emitted from the light source 22, and measurement is performed in the light receiving unit 23.
 ΔE*=(ΔL*+Δa*+Δb*1/2
 Lab表色系
 ΔL*=第1の測定対象物のL値-第2の測定対象物のL値
 Δa*=第1の測定対象物のa値-第2の測定対象物のa値
 Δb*=第1の測定対象物のb値-第2の測定対象物のb値
ΔE * = (ΔL * 2 + Δa * 2 + Δb * 2 ) 1/2
Lab color system ΔL * = L value of the first measurement object−L value of the second measurement object Δa * = a value of the first measurement object−a value of the second measurement object Δb * = B value of the first measurement object-b value of the second measurement object
 本発明に係る光透過性導電フィルムの可視化の分析方法では、ΔE*tの値とΔE*rwの値とから、光透過性導電フィルムの可視化を判別する。 In the analysis method for visualizing a light transmissive conductive film according to the present invention, the visualization of the light transmissive conductive film is determined from the value of ΔE * t and the value of ΔE * rw.
 本発明に係る光透過性導電フィルムの可視化の分析方法では、上記の構成が備えられているので、光透過性導電フィルムの可視化(骨見え)をより正確に判別することができる。 In the analysis method for visualizing a light transmissive conductive film according to the present invention, since the above-described configuration is provided, the visualization (bone appearance) of the light transmissive conductive film can be more accurately determined.
 本発明に係る光透過性導電フィルムの可視化の分析方法では、例えば、上記基材フィルムが、ポリカーボネート基材フィルムである場合に、上記の測定により求められるΔE*rw/ΔE*tが0.5以上であると、可視化が抑えられると判別できる。例えば、上記基材フィルムが、上記シクロオレフィンポリマー基材フィルムである場合に、上記の測定により求められるΔE*rw/ΔE*tが1.0以上であると、可視化が抑えられると判別できる。基材フィルムの種類によるΔE*rw/ΔE*tの最適値は、ΔE*rw/ΔE*tの値と、可視化の状態との関係を予め評価することで、見出すことができる。見出されたΔE*rw/ΔE*tの最適値に基づいて、ΔE*tの値とΔE*rwの値とから、光透過性導電フィルムの可視化を判別することができる。上記基材フィルムが、ポリカーボネート基材フィルム及びシクロオレフィンポリマー基材フィルム以外の基材フィルムである場合にも、同様に光透過性導電フィルムの可視化を判別することができる。例えば、上記基材フィルムが、ポリエチレンテレフタレート基材フィルムである場合にも、同様に光透過性導電フィルムの可視化を判別することができる。 In the analysis method for visualizing a light-transmitting conductive film according to the present invention, for example, when the base film is a polycarbonate base film, ΔE * rw / ΔE * t obtained by the above measurement is 0.5. If it is above, it can be determined that visualization is suppressed. For example, when the base film is the cycloolefin polymer base film, it can be determined that visualization is suppressed when ΔE * rw / ΔE * t obtained by the above measurement is 1.0 or more. The optimum value of ΔE * rw / ΔE * t depending on the type of substrate film can be found by evaluating in advance the relationship between the value of ΔE * rw / ΔE * t and the state of visualization. Based on the optimum value of ΔE * rw / ΔE * t found, the visualization of the light-transmitting conductive film can be determined from the value of ΔE * t and the value of ΔE * rw. Even when the base film is a base film other than the polycarbonate base film and the cycloolefin polymer base film, the visualization of the light-transmitting conductive film can be similarly determined. For example, also when the said base film is a polyethylene terephthalate base film, visualization of a transparent conductive film can be discriminate | determined similarly.
 光透過性導電フィルムの可視化をより一層正確に判別する観点からは、本発明に係る光透過性導電フィルムの可視化の分析方法では、上記基材フィルムが、上記ポリカーボネート基材フィルム、又は、シクロオレフィンポリマー基材フィルムであることが好ましい。上記基材フィルムが、上記ポリカーボネート基材フィルムである場合には、上記ΔE*rw/ΔE*tが0.5以上であることが好ましく、1.0以上であることがより好ましく、3.0以上であることがより一層好ましく、4.0以上であることが更に好ましく、5.0以上であることが特に好ましい。上記基材フィルムが、シクロオレフィンポリマー基材フィルムである場合には、上記ΔE*rw/ΔE*tが1.0以上であることが好ましく、3.0以上であることがより好ましく、5.0以上であることが更に好ましい。 From the viewpoint of more accurately discriminating the visualization of the light-transmitting conductive film, in the analysis method for visualizing the light-transmitting conductive film according to the present invention, the base film is the polycarbonate base film or the cycloolefin. A polymer base film is preferred. When the substrate film is the polycarbonate substrate film, the ΔE * rw / ΔE * t is preferably 0.5 or more, more preferably 1.0 or more, and 3.0 More preferably, it is more preferably 4.0 or more, and particularly preferably 5.0 or more. When the base film is a cycloolefin polymer base film, the ΔE * rw / ΔE * t is preferably 1.0 or more, more preferably 3.0 or more. More preferably, it is 0 or more.
 本発明に係る光透過性導電フィルムは、基材フィルムと、導電層とを備える。上記導電層は、上記基材フィルムの一方の表面側に配置されている。本発明に係る光透過性導電フィルムでは、上記基材フィルムが、ポリカーボネート基材フィルム、又は、シクロオレフィンポリマー基材フィルムである。本発明に係る光透過性導電フィルムでは、上記基材フィルムが、上記ポリカーボネート基材フィルムである場合に、下記の測定により求められるΔE*rw/ΔE*tが0.5以上である。本発明に係る光透過性導電フィルムでは、上記基材フィルムが、上記シクロオレフィンポリマー基材フィルムである場合に、下記の測定により求められるΔE*rw/ΔE*tが1.0以上である。 The light-transmitting conductive film according to the present invention includes a base film and a conductive layer. The conductive layer is disposed on one surface side of the base film. In the light transmissive conductive film according to the present invention, the base film is a polycarbonate base film or a cycloolefin polymer base film. In the light-transmitting conductive film according to the present invention, when the substrate film is the polycarbonate substrate film, ΔE * rw / ΔE * t determined by the following measurement is 0.5 or more. In the light-transmitting conductive film according to the present invention, when the base film is the cycloolefin polymer base film, ΔE * rw / ΔE * t determined by the following measurement is 1.0 or more.
 ΔE*rw/ΔE*tの測定方法:上記光透過性導電フィルムを第1の測定対象物とし、上記光透過性導電フィルムの上記導電層を除くフィルム部分を第2の測定対象物とする。上記第1の測定対象物及び上記第2の測定対象物のそれぞれについて、分光光度計を用いて、測定対象物に光を照射し、測定対象物を透過した透過光を測定することで、下記式で表されるΔE*をΔE*tとして得る。上記第1の測定対象物及び上記第2の測定対象物のそれぞれについて、測定対象物の光源側とは反対側に白色板が配置された状態で、分光光度計を用いて、測定対象物に光を照射し、該測定対象物及び該白色板により反射された反射光を測定することで、下記式で表されるΔE*をΔE*rwとして得る。ΔE*tの値とΔE*rwの値とから、ΔE*rw/ΔE*tを求める。 ΔE * rw / ΔE * t measurement method: The light transmissive conductive film is used as a first measurement object, and the film portion of the light transmissive conductive film excluding the conductive layer is used as a second measurement object. For each of the first measurement object and the second measurement object, a spectrophotometer is used to irradiate the measurement object with light and measure the transmitted light that has passed through the measurement object. ΔE * expressed by the equation is obtained as ΔE * t. For each of the first measurement object and the second measurement object, a white plate is disposed on the opposite side of the measurement object from the light source side, and a spectrophotometer is used to measure the measurement object. By irradiating light and measuring the reflected light reflected by the measurement object and the white plate, ΔE * represented by the following formula is obtained as ΔE * rw. From the value of ΔE * t and the value of ΔE * rw, ΔE * rw / ΔE * t is obtained.
 ΔE*=(ΔL*+Δa*+Δb*1/2
 Lab表色系
 ΔL*=第1の測定対象物のL値-第2の測定対象物のL値
 Δa*=第1の測定対象物のa値-第2の測定対象物のa値
 Δb*=第1の測定対象物のb値-第2の測定対象物のb値
ΔE * = (ΔL * 2 + Δa * 2 + Δb * 2 ) 1/2
Lab color system ΔL * = L value of the first measurement object−L value of the second measurement object Δa * = a value of the first measurement object−a value of the second measurement object Δb * = B value of the first measurement object-b value of the second measurement object
 本発明に係る光透過性導電フィルムでは、上記の構成が備えられているので、光透過性導電フィルムの可視化(骨見え)を効果的に抑えることができる。 Since the light-transmitting conductive film according to the present invention has the above-described configuration, visualization (bone appearance) of the light-transmitting conductive film can be effectively suppressed.
 本発明に係る光透過性導電フィルムでは、上記基材フィルムが、上記ポリカーボネート基材フィルムであり、上記ΔE*rw/ΔE*tが0.5以上であることが好ましく、1.0以上であることがより好ましく、3.0以上であることがより一層好ましく、4.0以上であることが更に好ましく、5.0以上であることが特に好ましい。上記基材フィルムが、上記ポリカーボネート基材フィルムであり、上記ΔE*rw/ΔE*tが上記下限以上であると、光透過性導電フィルムの可視化をより一層効果的に抑えることができる。 In the light-transmitting conductive film according to the present invention, the base film is the polycarbonate base film, and the ΔE * rw / ΔE * t is preferably 0.5 or more, and is 1.0 or more. Is more preferably 3.0 or more, still more preferably 4.0 or more, and particularly preferably 5.0 or more. When the base film is the polycarbonate base film and the ΔE * rw / ΔE * t is equal to or higher than the lower limit, visualization of the light-transmitting conductive film can be further effectively suppressed.
 本発明に係る光透過性導電フィルムでは、上記基材フィルムが、上記シクロオレフィンポリマー基材フィルムであり、上記ΔE*rw/ΔE*tが1.0以上であることが好ましく、3.0以上であることがより好ましく、5.0以上であることが更に好ましい。上記基材フィルムが、上記シクロオレフィンポリマー基材フィルムであり、上記ΔE*rw/ΔE*tが上記下限以上であると、光透過性導電フィルムの可視化をより一層効果的に抑えることができる。 In the light-transmitting conductive film according to the present invention, the base film is the cycloolefin polymer base film, and the ΔE * rw / ΔE * t is preferably 1.0 or more, and 3.0 or more. More preferably, it is more preferably 5.0 or more. When the base film is the cycloolefin polymer base film and the ΔE * rw / ΔE * t is equal to or higher than the lower limit, visualization of the light-transmitting conductive film can be more effectively suppressed.
 上記光透過性導電フィルムは、アニール処理された光透過性導電フィルムであることが好ましい。 The light transmissive conductive film is preferably an annealed light transmissive conductive film.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の第1の実施形態に係る光透過性導電フィルムを示す断面図である。 FIG. 1 is a cross-sectional view showing a light-transmitting conductive film according to the first embodiment of the present invention.
 図1に示す光透過性導電フィルム1は、基材2、導電層3及び保護フィルム4を備える。 1 includes a substrate 2, a conductive layer 3, and a protective film 4. The light transmissive conductive film 1 shown in FIG.
 基材2は、第1の表面2a及び第2の表面2bを有する。第1の表面2aと、第2の表面2bとは、互いに対向している。基材2の第1の表面2a上に、導電層3が積層されている。第1の表面2aは、導電層3が積層される側の表面である。基材2は、導電層3と保護フィルム4との間に配置される部材であり、導電層3の支持部材である。 The base material 2 has a first surface 2a and a second surface 2b. The first surface 2a and the second surface 2b are opposed to each other. A conductive layer 3 is laminated on the first surface 2 a of the substrate 2. The first surface 2a is a surface on the side where the conductive layer 3 is laminated. The substrate 2 is a member disposed between the conductive layer 3 and the protective film 4 and is a support member for the conductive layer 3.
 基材2の第2の表面2b上に、保護フィルム4が積層されている。第2の表面2bは、保護フィルム4が積層される側の表面である。保護フィルム4を設けることで、基材2の第2の表面2bを保護することができる。 The protective film 4 is laminated on the second surface 2b of the substrate 2. The second surface 2b is a surface on the side where the protective film 4 is laminated. By providing the protective film 4, the second surface 2 b of the substrate 2 can be protected.
 基材2は、基材フィルム11、第1及び第2のハードコート層12,13及びアンダーコート層14を有する。基材フィルム11は、光透過性を有する材料により構成されている。基材フィルム11の導電層3側の表面上には、第2のハードコート層13及びアンダーコート層14がこの順に積層されている。アンダーコート層14は、導電層3に接している。 The base material 2 has a base film 11, first and second hard coat layers 12 and 13, and an undercoat layer 14. The base film 11 is made of a light transmissive material. On the surface of the base film 11 on the conductive layer 3 side, a second hard coat layer 13 and an undercoat layer 14 are laminated in this order. The undercoat layer 14 is in contact with the conductive layer 3.
 基材フィルム11の保護フィルム4側の表面上には、第1のハードコート層12が積層されている。第1のハードコート層12は、保護フィルム4に接している。 A first hard coat layer 12 is laminated on the surface of the base film 11 on the protective film 4 side. The first hard coat layer 12 is in contact with the protective film 4.
 導電層3は、光透過性及び導電性を有する材料により構成されている。導電層3は、パターン状の導電層である。パターン状の導電層3は、基材2の第1の表面2a上に部分的に積層されている。光透過性導電フィルム1は、基材2の第1の表面2a上において、パターン状の導電層3がある部分と、パターン状の導電層3がない部分とを有する。 The conductive layer 3 is made of a material having optical transparency and conductivity. The conductive layer 3 is a patterned conductive layer. The patterned conductive layer 3 is partially laminated on the first surface 2 a of the substrate 2. The light transmissive conductive film 1 has a portion with the patterned conductive layer 3 and a portion without the patterned conductive layer 3 on the first surface 2 a of the substrate 2.
 保護フィルムは、粘着剤層により、基材の第2の表面上に積層されてもよい。基材の第2の表面は、保護フィルムの上記粘着剤層と接していることが好ましい。 The protective film may be laminated on the second surface of the substrate with an adhesive layer. It is preferable that the 2nd surface of a base material is in contact with the said adhesive layer of a protective film.
 図2は、本発明の第2の実施形態に係る光透過性導電フィルムを示す断面図である。 FIG. 2 is a cross-sectional view showing a light-transmitting conductive film according to the second embodiment of the present invention.
 図2に示す光透過性導電フィルム1Aでは、第1のハードコート層が設けられていない。光透過性導電フィルム1Aは、アンダーコート層14と、第2のハードコート層13と、基材フィルム11とがこの順で積層された基材2Aを有する。光透過性導電フィルム1Aでは、基材フィルム11の導電層3とは反対側の表面上に直接、保護フィルム4が積層されている。 In the light transmissive conductive film 1A shown in FIG. 2, the first hard coat layer is not provided. The light transmissive conductive film 1A has a base 2A in which an undercoat layer 14, a second hard coat layer 13, and a base film 11 are laminated in this order. In the light transmissive conductive film 1 </ b> A, the protective film 4 is laminated directly on the surface of the base film 11 opposite to the conductive layer 3.
 本発明に係る光透過性導電フィルムでは、光透過性導電フィルム1Aのように、第1のハードコート層が設けられていなくてもよい。基材フィルムの表面上に、保護フィルムが直接積層されていてもよい。また、第2のハードコート層及びアンダーコート層のうち少なくとも一方が設けられていなくてもよい。基材フィルムの導電層側の表面上には、アンダーコート層及び導電層がこの順に積層されていてもよく、基材フィルムの表面上に導電層が直接積層されていてもよい。 In the light transmissive conductive film according to the present invention, the first hard coat layer may not be provided like the light transmissive conductive film 1A. A protective film may be directly laminated on the surface of the base film. Further, at least one of the second hard coat layer and the undercoat layer may not be provided. An undercoat layer and a conductive layer may be laminated in this order on the surface of the base film on the conductive layer side, or a conductive layer may be directly laminated on the surface of the base film.
 アンダーコート層は、単層であってもよく、多層であってもよい。アンダーコート層が多層である場合、導電層側に低屈折層が設けられ、基材フィルム側に高屈折率層が設けられていることが好ましい。 The undercoat layer may be a single layer or a multilayer. When the undercoat layer is a multilayer, it is preferable that a low refractive layer is provided on the conductive layer side and a high refractive index layer is provided on the base film side.
 次に、図1に示す光透過性導電フィルム1の製造方法を説明する。 Next, a method for manufacturing the light transmissive conductive film 1 shown in FIG. 1 will be described.
 光透過性導電フィルム1は、例えば、以下の方法により作製することができる。 The light transmissive conductive film 1 can be produced, for example, by the following method.
 基材フィルム11の一方の表面上に、第1のハードコート層12を形成する。第1のハードコート層12の材料として紫外線硬化樹脂を用いる場合は、光硬化性モノマー及び光開始剤を希釈剤中で撹拌して塗工液を作製する。得られた塗工液を基材フィルム11上に塗布し、紫外線を照射して樹脂を硬化させて、第1のハードコート層12を形成する。 1st hard coat layer 12 is formed on one surface of substrate film 11. When an ultraviolet curable resin is used as the material for the first hard coat layer 12, a photocurable monomer and a photoinitiator are stirred in a diluent to prepare a coating solution. The obtained coating liquid is applied onto the base film 11 and the resin is cured by irradiating with ultraviolet rays to form the first hard coat layer 12.
 次に、基材フィルム11の第1のハードコート層12とは反対側の表面上に、第2のハードコート層13を形成する。第2のハードコート層13の材料として紫外線硬化樹脂を用いる場合は、光硬化性モノマー及び光開始剤を、希釈剤中で撹拌して塗工液を作製する。得られた塗工液を基材フィルム11の第1のハードコート層12側とは反対側の表面上に塗布し、紫外線を照射して樹脂を硬化させ、第2のハードコート層13を形成する。 Next, a second hard coat layer 13 is formed on the surface of the base film 11 opposite to the first hard coat layer 12. When an ultraviolet curable resin is used as the material for the second hard coat layer 13, the photocurable monomer and the photoinitiator are stirred in a diluent to prepare a coating solution. The obtained coating liquid is applied on the surface of the base film 11 opposite to the first hard coat layer 12 side, and the resin is cured by irradiating with ultraviolet rays to form the second hard coat layer 13. To do.
 続いて、第1のハードコート層12上に保護フィルム4を形成する。保護フィルム4として、基材シート上に粘着剤層が設けられた保護フィルムを用いる場合は、粘着剤層側を第1のハードコート層12の表面に貼り合わせて、第1のハードコート層12上に保護フィルム4を形成することができる。 Subsequently, the protective film 4 is formed on the first hard coat layer 12. When a protective film having a pressure-sensitive adhesive layer provided on a base sheet is used as the protective film 4, the pressure-sensitive adhesive layer side is bonded to the surface of the first hard coat layer 12, and the first hard coat layer 12 is bonded. A protective film 4 can be formed thereon.
 次に、第2のハードコート層13上にアンダーコート層14を形成する。アンダーコート層の材料14の材料としてSiOを用いる場合は、蒸着又はスパッタリングにより第2のハードコート層13上にアンダーコート層14を形成することができる。 Next, the undercoat layer 14 is formed on the second hard coat layer 13. When SiO 2 is used as the material of the material 14 for the undercoat layer, the undercoat layer 14 can be formed on the second hard coat layer 13 by vapor deposition or sputtering.
 上記のようにして、基材フィルム11上に、第1及び第2のハードコート層12,13及びアンダーコート層14を形成する。なお、本発明において、第1及び第2のハードコート層12,13及びアンダーコート層14は設けなくてもよい。この場合には、基材フィルム11の導電層3側の表面が、基材2の第1の表面2aであり、基材フィルム11の保護フィルム4側の表面が、基材2の第2の表面2bである。 As described above, the first and second hard coat layers 12 and 13 and the undercoat layer 14 are formed on the base film 11. In the present invention, the first and second hard coat layers 12 and 13 and the undercoat layer 14 may not be provided. In this case, the surface of the base film 11 on the conductive layer 3 side is the first surface 2 a of the base material 2, and the surface of the base film 11 on the protective film 4 side is the second surface of the base material 2. It is the surface 2b.
 次に、アンダーコート層14上に、導電層3Xを形成することにより、図3に示す光透過性導電フィルム1Xを作製することができる。図3は、本発明の第1の実施形態に係る光透過性導電フィルム1の導電層をパターン状にする前の状態を示す断面図である。図3に示す導電フィルム1Xにおける導電層3Xをパターン状の導電層3にすることにより、光透過性導電フィルム1を得ることができる。 Next, by forming the conductive layer 3X on the undercoat layer 14, the light transmissive conductive film 1X shown in FIG. 3 can be produced. FIG. 3 is a cross-sectional view showing a state before the conductive layer of the light transmissive conductive film 1 according to the first embodiment of the present invention is patterned. The light transmissive conductive film 1 can be obtained by making the conductive layer 3X in the conductive film 1X shown in FIG.
 導電層3Xの基材フィルム11側とは反対側の表面上に、レジスト層を部分的に形成して、エッチング処理することで、パターン状の導電層3を形成することができる。エッチング処理後には、通常水洗が行われる。 The patterned conductive layer 3 can be formed by partially forming a resist layer on the surface of the conductive layer 3X opposite to the base film 11 side and performing an etching process. After the etching process, washing with water is usually performed.
 パターン状の導電層の形成方法は、特に限定されない。パターン状の導電層の形成方法として、例えば、蒸着又はスパッタリングにより形成した金属膜をエッチングする方法、スクリーン印刷又はインクジェット印刷などの各種印刷方法、並びにレジストを用いたフォトリソグラフィー法等の公知のパターニング方法等を用いることができる。パターン状に形成した導電層は、アニール処理により結晶性を高めることができる。 The method for forming the patterned conductive layer is not particularly limited. As a method for forming a patterned conductive layer, for example, a known patterning method such as a method of etching a metal film formed by vapor deposition or sputtering, various printing methods such as screen printing or inkjet printing, and a photolithography method using a resist. Etc. can be used. The conductive layer formed in a pattern can be improved in crystallinity by annealing.
 アニール処理の温度は、好ましくは120℃以上、より好ましくは130℃以上、好ましくは170℃以下、より好ましくは160℃以下である。上記の範囲内で、より高温でアニール処理することで導電層の傷つきを抑制できる。これは基材の熱収縮によって、導電層の内部応力が適度に上昇するためと推測される。 The temperature of the annealing treatment is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, preferably 170 ° C. or lower, more preferably 160 ° C. or lower. Within the above range, the conductive layer can be prevented from being damaged by annealing at a higher temperature. This is presumably because the internal stress of the conductive layer rises moderately due to thermal contraction of the base material.
 上記アニール処理の処理時間は、好ましくは5分以上、より好ましくは10分以上、好ましくは90分以下、より好ましくは60分以下である。上記の範囲内で、より長時間でアニール処理することで導電層の傷つきを抑制できる。 The treatment time for the annealing treatment is preferably 5 minutes or more, more preferably 10 minutes or more, preferably 90 minutes or less, more preferably 60 minutes or less. Within the above range, the conductive layer can be prevented from being damaged by annealing for a longer time.
 光透過性導電フィルム1は、保護フィルム4を積層したまま使用してもよく、保護フィルム4を剥がして使用してもよい。なお、ΔE*rw及びΔE*tの測定方法においては、保護フィルムを剥離させ、保護フィルムの無い状態で測定する。 The light transmissive conductive film 1 may be used with the protective film 4 laminated, or may be used after the protective film 4 is peeled off. In addition, in the measuring method of (DELTA) E * rw and (DELTA) E * t, a protective film is peeled and it measures in the state without a protective film.
 以下、光透過性導電フィルムを構成する各層の詳細を説明する。 Hereinafter, details of each layer constituting the light transmissive conductive film will be described.
 (基材)
 基材の全体の厚みは、好ましくは23μm以上、より好ましくは50μm以上、好ましくは300μm以下、より好ましくは200μm以下である。
(Base material)
The total thickness of the substrate is preferably 23 μm or more, more preferably 50 μm or more, preferably 300 μm or less, more preferably 200 μm or less.
 基材フィルム;
 基材フィルムは、高い光透過性を有することが好ましい。従って、基材フィルムの材料としては、特に限定されないが、例えば、ポリオレフィン、ポリエーテルサルフォン、ポリスルホン、ポリカーボネート、シクロオレフィンポリマー、ポリアリレート、ポリアミド、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、及びセルロースナノファイバー等が挙げられる。但し、本発明に係る光透過性導電フィルムでは、上記基材フィルムは、ポリカーボネート基材フィルム、又は、シクロオレフィンポリマー基材フィルムである。光透過性導電フィルムの可視化をより一層正確に判別する観点からは、本発明に係る光透過性導電フィルムの可視化の分析方法では、上記基材フィルムは、ポリカーボネート基材フィルム、又は、シクロオレフィンポリマー基材フィルムであることが好ましい。
Base film;
The base film preferably has high light transmittance. Accordingly, the material of the base film is not particularly limited. For example, polyolefin, polyethersulfone, polysulfone, polycarbonate, cycloolefin polymer, polyarylate, polyamide, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate. Examples include phthalate, triacetylcellulose, and cellulose nanofiber. However, in the light-transmitting conductive film according to the present invention, the base film is a polycarbonate base film or a cycloolefin polymer base film. From the viewpoint of more accurately discriminating the visualization of the light-transmitting conductive film, in the method for visualizing the light-transmitting conductive film according to the present invention, the base film is a polycarbonate base film or a cycloolefin polymer. A base film is preferred.
 基材フィルムの厚みは、好ましくは5μm以上、より好ましくは20μm以上、好ましくは190μm以下、より好ましくは125μm以下である。 The thickness of the base film is preferably 5 μm or more, more preferably 20 μm or more, preferably 190 μm or less, more preferably 125 μm or less.
 基材フィルムの波長380~780nmの可視光領域における平均透過率は、好ましくは85%以上、より好ましくは88%以上である。上記基材フィルムの波長380~780nmの可視光領域における平均透過率は、通常100%以下である。 The average transmittance of the base film in the visible light region having a wavelength of 380 to 780 nm is preferably 85% or more, more preferably 88% or more. The average transmittance of the base film in the visible light region having a wavelength of 380 to 780 nm is usually 100% or less.
 また、基材フィルムは、各種安定剤、紫外線吸収剤、可塑剤、滑剤又は着色剤を含んでいてもよい。 The base film may contain various stabilizers, ultraviolet absorbers, plasticizers, lubricants, or colorants.
 第1及び第2のハードコート層;
 第1及び第2のハードコート層はそれぞれ、バインダー樹脂により構成されていることが好ましい。上記バインダー樹脂は、硬化樹脂であることが好ましい。上記硬化樹脂としては、熱硬化樹脂、及び紫外線硬化樹脂等の活性エネルギー線硬化樹脂等が挙げられる。生産性及び経済性を良好にする観点から、上記硬化樹脂は、紫外線硬化樹脂であることが好ましい。
First and second hard coat layers;
Each of the first and second hard coat layers is preferably composed of a binder resin. The binder resin is preferably a cured resin. Examples of the curable resin include thermosetting resins and active energy ray curable resins such as ultraviolet curable resins. From the viewpoint of improving productivity and economy, the curable resin is preferably an ultraviolet curable resin.
 上記紫外線硬化樹脂は、光硬化性モノマーが重合された樹脂であることが好ましい。上記紫外線硬化樹脂は、光硬化性モノマー以外のモノマーが重合された樹脂であってもよい。上記光硬化性モノマー及び上記光硬化性モノマー以外のモノマーは、単独で用いてもよく、複数を併用してもよい。 The UV curable resin is preferably a resin obtained by polymerizing a photocurable monomer. The ultraviolet curable resin may be a resin in which a monomer other than the photocurable monomer is polymerized. Monomers other than the photocurable monomer and the photocurable monomer may be used alone or in combination.
 上記光硬化性モノマーとしては、例えば、1,6-ヘキサンジオールジアクリレート、1,4-ブタンジオールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジメタクリレート、ポリ(ブタンジオール)ジアクリレート、テトラエチレングリコールジメタクリレート、1,3-ブチレングリコールジアクリレート、トリエチレングリコールジアクリレート、トリイソプロピレングリコールジアクリレート、ポリエチレングリコールジアクリレート及びビスフェノールAジメタクリレート等のジアクリレート化合物;トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリトリトールモノヒドロキシトリアクリレート及びトリメチロールプロパントリエトキシトリアクリレート等のトリアクリレート化合物;ペンタエリトリトールテトラアクリレート及びジ-トリメチロールプロパンテトラアクリレート等のテトラアクリレート化合物;並びにジペンタエリトリトール(モノヒドロキシ)ペンタアクリレート等のペンタアクリレート化合物等が挙げられる。上記紫外線硬化樹脂としては、多官能アクリレート化合物であってもよい。上記多官能アクリレート化合物は、5官能以上の多官能アクリレート化合物であってもよい。上記多官能アクリレート化合物は、単独で用いてもよく、複数を併用してもよい。また、上記多官能アクリレート化合物に、光開始剤、光増感剤、レベリング剤、及び希釈剤等を添加してもよい。 Examples of the photocurable monomer include 1,6-hexanediol diacrylate, 1,4-butanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, tetraethylene glycol diacrylate, tripropylene glycol diacrylate, neo Pentyl glycol diacrylate, 1,4-butanediol dimethacrylate, poly (butanediol) diacrylate, tetraethylene glycol dimethacrylate, 1,3-butylene glycol diacrylate, triethylene glycol diacrylate, triisopropylene glycol diacrylate, Diacrylate compounds such as polyethylene glycol diacrylate and bisphenol A dimethacrylate; trimethylolpro Triacrylate compounds such as ethylene triacrylate, trimethylolpropane trimethacrylate, pentaerythritol monohydroxytriacrylate and trimethylolpropane triethoxytriacrylate; tetraacrylate compounds such as pentaerythritol tetraacrylate and di-trimethylolpropane tetraacrylate; and dipenta Examples include pentaacrylate compounds such as erythritol (monohydroxy) pentaacrylate. The ultraviolet curable resin may be a polyfunctional acrylate compound. The polyfunctional acrylate compound may be a polyfunctional acrylate compound having five or more functions. The said polyfunctional acrylate compound may be used independently and may use multiple together. Moreover, you may add a photoinitiator, a photosensitizer, a leveling agent, a diluent, etc. to the said polyfunctional acrylate compound.
 第1のハードコート層は、フィラーを含んでいてもよい。上記第1のハードコート層は、上記バインダー樹脂等の樹脂及びフィラーにより構成されていてもよい。第1のハードコート層がフィラーを含む場合、導電層のパターンをより一層視認され難くすることができる。なお、第1のハードコート層がフィラーを含む場合、表面粗さによる曇りが生じることがあり、液晶表示装置に用いると表示光が見えにくくなることがある。従って、曇りを生じ難くする観点からは、第1のハードコート層がフィラーを含まず、上記バインダー樹脂等の樹脂のみによって構成されていることが好ましい。また、第1のハードコート層がフィラーを含む場合には、上記フィラーの平均粒子径は、第1のハードコート層の厚みより小さいことが好ましく、上記フィラーが、第1のハードコート層の表面において突出していないことが好ましい。 The first hard coat layer may contain a filler. The first hard coat layer may be composed of a resin such as the binder resin and a filler. When the first hard coat layer contains a filler, the pattern of the conductive layer can be made even less visible. Note that when the first hard coat layer contains a filler, fogging due to surface roughness may occur, and when used in a liquid crystal display device, display light may be difficult to see. Therefore, from the viewpoint of making it difficult to cause fogging, it is preferable that the first hard coat layer does not contain a filler and is constituted only by a resin such as the binder resin. When the first hard coat layer contains a filler, the average particle diameter of the filler is preferably smaller than the thickness of the first hard coat layer, and the filler is the surface of the first hard coat layer. It is preferable that the protrusion does not protrude.
 上記フィラーとしては、特に限定されないが、例えば、シリカ、酸化鉄、酸化アルミニウム、酸化亜鉛、酸化チタン、二酸化ケイ素、酸化アンチモン、酸化ジルコニウム、酸化錫、酸化セリウム、インジウム-錫酸化物などの金属酸化物粒子;シリコーン、(メタ)アクリル、スチレン、メラミンなどの樹脂粒子等が挙げられる。上記フィラーとして、より具体的には、架橋ポリ(メタ)アクリル酸メチルなどの樹脂粒子を用いることができる。上記フィラーは、単独で用いてもよく、複数を併用してもよい。 The filler is not particularly limited. For example, metal oxide such as silica, iron oxide, aluminum oxide, zinc oxide, titanium oxide, silicon dioxide, antimony oxide, zirconium oxide, tin oxide, cerium oxide, and indium-tin oxide. Product particles; resin particles such as silicone, (meth) acryl, styrene, melamine, and the like. More specifically, resin particles such as crosslinked poly (meth) methyl acrylate can be used as the filler. The said filler may be used independently and may use multiple together.
 また、第1及び第2のハードコート層はそれぞれ、各種安定剤、紫外線吸収剤、可塑剤、滑剤又は着色剤を含んでいてもよい。 Further, each of the first and second hard coat layers may contain various stabilizers, ultraviolet absorbers, plasticizers, lubricants or colorants.
 アンダーコート層;
 アンダーコート層は、例えば、屈折率調整層である。アンダーコート層を設けることで、導電層と、第2のハードコート層又は基材フィルムとの間の屈折率の差を小さくすることができるので、光透過性導電フィルムの光透過性をより一層高めることができる。
Undercoat layer;
The undercoat layer is, for example, a refractive index adjustment layer. By providing the undercoat layer, the difference in refractive index between the conductive layer and the second hard coat layer or substrate film can be reduced, so that the light transmissive conductive film can be made more transparent. Can be increased.
 アンダーコート層の材料は、屈折率調整機能を有する限り特に限定されない。アンダーコート層の材料としては、SiO、MgF、Alなどの無機材料、並びにアクリル樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂及びシロキサンポリマーなどの有機材料が挙げられる。 The material for the undercoat layer is not particularly limited as long as it has a refractive index adjustment function. Examples of the material for the undercoat layer include inorganic materials such as SiO 2 , MgF 2 , and Al 2 O 3, and organic materials such as acrylic resins, urethane resins, melamine resins, alkyd resins, and siloxane polymers.
 アンダーコート層は、真空蒸着法、スパッタリング法、イオンプレーティング法又は塗工法により形成することができる。 The undercoat layer can be formed by a vacuum deposition method, a sputtering method, an ion plating method, or a coating method.
 (導電層)
 導電層は、光透過性を有する導電性材料により形成されている。上記導電性材料としては、特に限定されないが、例えば、IZO(インジウム亜鉛酸化物)及びITO(インジウムスズ酸化物)などのIn系酸化物、SnO及びFTO(フッ素ドープ酸化スズ)などのSn系酸化物、AZO(アルミニウム亜鉛酸化物)及びGZO(ガリウム亜鉛酸化物)などのZn系酸化物、ナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、Al/Al混合物、Al/LiF混合物、金等の金属、CuI、Agナノワイヤー(AgNW)、カーボンナノチューブ(CNT)並びに導電性透明ポリマーなどが挙げられる。上記導電性材料は、単独で用いてもよく、複数を併用してもよい。
(Conductive layer)
The conductive layer is made of a light-transmitting conductive material. As the conductive material is not particularly limited, for example, IZO (indium zinc oxide) and In-based oxides such as ITO (indium tin oxide), Sn-based, such as SnO 2 and FTO (fluorine-doped tin oxide) Oxides, Zn-based oxides such as AZO (aluminum zinc oxide) and GZO (gallium zinc oxide), sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum- Examples include lithium alloys, Al / Al 2 O 3 mixtures, Al / LiF mixtures, metals such as gold, CuI, Ag nanowires (AgNW), carbon nanotubes (CNT), and conductive transparent polymers. The said electroconductive material may be used independently and may use multiple together.
 導電性をより一層高め、光透過性をより一層高める観点から、上記導電性材料は、IZO及びITOなどのIn系酸化物、SnO及びFTOなどのSn系酸化物、AZO及びGZOなどのZn系酸化物であることが好ましく、ITOであることがより好ましい。 From the viewpoint of further increasing the conductivity and further increasing the light transmittance, the conductive material is composed of In-based oxides such as IZO and ITO, Sn-based oxides such as SnO 2 and FTO, Zn such as AZO and GZO. It is preferably a system oxide, and more preferably ITO.
 導電層の厚みは、好ましくは12nm以上、より好ましくは16nm以上、更に好ましくは17nm以上、好ましくは50nm以下、より好ましくは30nm以下、更に好ましくは19.9nm以下である。 The thickness of the conductive layer is preferably 12 nm or more, more preferably 16 nm or more, still more preferably 17 nm or more, preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 19.9 nm or less.
 導電層の厚みが上記下限以上である場合、光透過性導電フィルムの導電層の表面抵抗値を効果的に低くすることができ、導電性をより一層高めることができる。導電層の厚みが上記上限以下である場合、導電層のパターンをより一層視認され難くすることができ、光透過性導電フィルムをより一層薄くすることができる。 When the thickness of the conductive layer is not less than the above lower limit, the surface resistance value of the conductive layer of the light transmissive conductive film can be effectively reduced, and the conductivity can be further increased. When the thickness of the conductive layer is less than or equal to the above upper limit, the pattern of the conductive layer can be made less visible and the light transmissive conductive film can be made even thinner.
 上記導電層の材料(導電性材料)がITO(インジウムスズ酸化物)である場合、導電層の厚みは、好ましくは15nm以上、より好ましくは17nm以上、更に好ましくは19nm以上であり、好ましくは30nm未満、より好ましくは29nm以下、更に好ましくは28nm以下である。上記導電層の材料がITOである場合において、上記導電層の厚みが上記下限以上であると、光透過性導電フィルムの導電層の表面抵抗値(シート抵抗値)を効果的に低くすることができる。そのため、光透過性導電フィルムをタッチセンサーパネルに用いた際に、センシング感度を高めたり、配線を細くすることができるため配線の視認性を低減したりできる。上記導電層の材料がITOである場合において、上記導電層の厚みが上記上限以下(又は上記上限未満)であると、光透過性導電フィルムの透過率を高めることができる。そのため、光透過性導電フィルムをタッチセンサーパネルに用いた際に、配線の視認性を低減することができる。 When the material of the conductive layer (conductive material) is ITO (indium tin oxide), the thickness of the conductive layer is preferably 15 nm or more, more preferably 17 nm or more, still more preferably 19 nm or more, and preferably 30 nm. Less than, more preferably 29 nm or less, still more preferably 28 nm or less. When the material of the conductive layer is ITO, when the thickness of the conductive layer is equal to or greater than the lower limit, the surface resistance value (sheet resistance value) of the conductive layer of the light transmissive conductive film can be effectively reduced. it can. Therefore, when the light-transmitting conductive film is used for the touch sensor panel, the sensing sensitivity can be increased and the wiring can be thinned, so that the visibility of the wiring can be reduced. When the material of the conductive layer is ITO, the transmittance of the light-transmitting conductive film can be increased when the thickness of the conductive layer is not more than the above upper limit (or less than the upper limit). Therefore, when the light transmissive conductive film is used for the touch sensor panel, the visibility of the wiring can be reduced.
 導電層の表面抵抗値(シート抵抗値)は、好ましくは500Ω/□以下、より好ましくは300Ω/□以下、より一層好ましくは200Ω/□以下、更に好ましくは150Ω/□以下、更に一層好ましくは130Ω/□以下、特に好ましくは100Ω/□以下である。上記導電層の表面抵抗値が上記上限以下であると、調光フィルムの駆動速度を向上させることができ、また、色調の変化のむらを抑えることができる。 The surface resistance value (sheet resistance value) of the conductive layer is preferably 500Ω / □ or less, more preferably 300Ω / □ or less, still more preferably 200Ω / □ or less, still more preferably 150Ω / □ or less, and even more preferably 130Ω. / □ or less, particularly preferably 100Ω / □ or less. When the surface resistance value of the conductive layer is not more than the above upper limit, the driving speed of the light control film can be improved, and unevenness of the color tone can be suppressed.
 上記導電層の表面抵抗値は、上記導電層の基材フィルム側とは反対の表面側で、JIS K7194に基づいて、測定される。 The surface resistance value of the conductive layer is measured based on JIS K7194 on the surface side opposite to the base film side of the conductive layer.
 導電層の波長380~780nmの可視光領域における平均透過率は、好ましくは85%以上、より好ましくは88%以上である。上記導電層の波長380~780nmの可視光領域における平均透過率は、通常100%以下である。 The average transmittance of the conductive layer in the visible light region having a wavelength of 380 to 780 nm is preferably 85% or more, more preferably 88% or more. The average transmittance of the conductive layer in the visible light region having a wavelength of 380 to 780 nm is usually 100% or less.
 (保護フィルム)
 保護フィルムは、基材シート及び粘着剤層により構成されていることが好ましい。
(Protective film)
It is preferable that the protective film is comprised by the base material sheet and the adhesive layer.
 上記基材シートは、状態を視認できることから、高い光透過性を有することが好ましい。上記基材シートの材料としては、特に限定されないが、例えば、ポリオレフィン、ポリエーテルサルフォン、ポリスルホン、ポリカーボネート、シクロオレフィンポリマー、ポリアリレート、ポリアミド、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、及びセルロースナノファイバー等が挙げられる。 It is preferable that the base sheet has high light transmittance since the state can be visually recognized. The material of the base sheet is not particularly limited, but for example, polyolefin, polyethersulfone, polysulfone, polycarbonate, cycloolefin polymer, polyarylate, polyamide, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate , Triacetyl cellulose, and cellulose nanofibers.
 上記粘着剤層は、(メタ)アクリル系粘着剤、ゴム系粘着剤、ウレタン系接着剤又はエポキシ系接着剤により構成することができる。熱処理による粘着力の上昇を抑制する観点から、上記粘着剤層は、(メタ)アクリル系粘着剤により構成されていることが好ましい。 The pressure-sensitive adhesive layer can be composed of a (meth) acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a urethane-based adhesive, or an epoxy-based adhesive. From the viewpoint of suppressing an increase in adhesive force due to heat treatment, the adhesive layer is preferably composed of a (meth) acrylic adhesive.
 上記(メタ)アクリル系粘着剤は、(メタ)アクリル重合体に、必要に応じて架橋剤、粘着付与樹脂及び各種安定剤などを添加した粘着剤である。 The above (meth) acrylic pressure-sensitive adhesive is a pressure-sensitive adhesive obtained by adding a crosslinking agent, a tackifying resin, various stabilizers and the like to a (meth) acrylic polymer as necessary.
 上記(メタ)アクリル重合体は、特に限定されないが、(メタ)アクリル酸エステルモノマーと、共重合可能な他の重合性モノマーとを含む混合モノマーを共重合して得られた(メタ)アクリル共重合体であることが好ましい。 The (meth) acrylic polymer is not particularly limited, but the (meth) acrylic copolymer obtained by copolymerizing a mixed monomer containing a (meth) acrylic acid ester monomer and another polymerizable monomer capable of copolymerization. A polymer is preferred.
 上記(メタ)アクリル酸エステルモノマーとしては、特に限定されないが、アルキル基の炭素数が1~12の1級又は2級のアルキルアルコールと、(メタ)アクリル酸とのエステル化反応により得られる(メタ)アクリル酸エステルモノマーが好ましい。上記(メタ)アクリル酸エステルモノマーとしては、具体的には、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、及び(メタ)アクリル酸-2-エチルヘキシル等が挙げられる。上記(メタ)アクリル酸エステルモノマーは、単独で用いてもよく、複数を併用してもよい。 The (meth) acrylic acid ester monomer is not particularly limited, and is obtained by an esterification reaction between a primary or secondary alkyl alcohol having 1 to 12 carbon atoms in the alkyl group and (meth) acrylic acid ( A meth) acrylic acid ester monomer is preferred. Specific examples of the (meth) acrylate monomer include ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. The said (meth) acrylic acid ester monomer may be used independently and may use multiple together.
 上記共重合可能な他の重合性モノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル;(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ヒドロキシアルキル、グリセリンジメタクリレート、(メタ)アクリル酸グリシジル、2-メタクリロイルオキシエチルイソシアネート、(メタ)アクリル酸、イタコン酸、無水マレイン酸、クロトン酸、マレイン酸及びフマル酸等の官能性モノマー等が挙げられる。上記共重合可能な他の重合性モノマーは、単独で用いてもよく、複数を併用してもよい。 Examples of other polymerizable monomers that can be copolymerized include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate; Isobornyl (meth) acrylate, hydroxyalkyl (meth) acrylate, glycerin dimethacrylate, glycidyl (meth) acrylate, 2-methacryloyloxyethyl isocyanate, (meth) acrylic acid, itaconic acid, maleic anhydride, crotonic acid, malein Examples thereof include functional monomers such as acid and fumaric acid. The said other polymerizable monomer which can be copolymerized may be used independently, and may use multiple together.
 上記架橋剤としては、特に限定されず、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、メラミン系架橋剤、過酸化物系架橋剤、尿素系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、アミン系架橋剤、多官能アクリレートなどが挙げられる。上記架橋剤は、単独で用いてもよく、複数を併用してもよい。 The crosslinking agent is not particularly limited, and for example, an isocyanate crosslinking agent, an epoxy crosslinking agent, a melamine crosslinking agent, a peroxide crosslinking agent, a urea crosslinking agent, a metal alkoxide crosslinking agent, a metal chelate crosslinking agent. Agents, metal salt crosslinking agents, carbodiimide crosslinking agents, oxazoline crosslinking agents, aziridine crosslinking agents, amine crosslinking agents, polyfunctional acrylates and the like. The above crosslinking agents may be used alone or in combination.
 上記粘着付与樹脂としては、特に限定されないが、例えば、脂肪族系共重合体、芳香族系共重合体、脂肪族・芳香族系共重合体及び脂環式系共重合体等の石油系樹脂;クマロン-インデン系樹脂;テルペン系樹脂;テルペンフェノール系樹脂;重合ロジン等のロジン系樹脂;フェノール系樹脂;キシレン系樹脂等が挙げられる。上記粘着付与樹脂は、水素添加された樹脂であってもよい。上記粘着付与樹脂は、単独で用いてもよく、複数を併用してもよい。 The tackifying resin is not particularly limited, and examples thereof include petroleum resins such as aliphatic copolymers, aromatic copolymers, aliphatic / aromatic copolymers, and alicyclic copolymers. Coumarone-indene resin; terpene resin; terpene phenol resin; rosin resin such as polymerized rosin; phenol resin; xylene resin. The tackifying resin may be a hydrogenated resin. The tackifying resins may be used alone or in combination.
 保護フィルムの厚みは、好ましくは25μm以上、より好ましくは50μm以上、好ましくは300μm以下、より好ましくは200μm以下である。 The thickness of the protective film is preferably 25 μm or more, more preferably 50 μm or more, preferably 300 μm or less, more preferably 200 μm or less.
 以下、本発明について、具体的な実施例及び比較例に基づき、更に詳しく説明する。なお、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be described in more detail based on specific examples and comparative examples. The present invention is not limited to the following examples.
 以下の基材フィルムを用意した。 The following base film was prepared.
 シクロオレフィンポリマー(COP)基材フィルムA(厚み100μm、日本ゼオン社製「ZF16」)
 シクロオレフィンポリマー(COP)基材フィルムB(厚み50μm、日本ゼオン社製「ZF16」)
 ポリカーボネート(PC)基材フィルムA(厚み100μm、帝人社製「C110」)
Cycloolefin polymer (COP) substrate film A (thickness 100 μm, “ZF16” manufactured by Nippon Zeon Co., Ltd.)
Cycloolefin polymer (COP) base film B (thickness 50 μm, “ZF16” manufactured by Nippon Zeon Co., Ltd.)
Polycarbonate (PC) base film A (thickness 100 μm, “C110” manufactured by Teijin Limited)
 (実施例1)
 基材フィルムとして、上記COP基材フィルムAを用意した。
Example 1
The COP base film A was prepared as a base film.
 ハードコート層の形成;
 光硬化性モノマーとしてのウレタンアクリレートオリゴマー100重量部と、希釈溶剤としてのトルエン及びメチルイソブチルケトン(MIBK)の混合溶剤140重量部と、光開始剤としてのイルガキュア194(チバスペシャルティケミカル社製)7重量部とを混合撹拌して、塗工液を調製した。
Formation of a hard coat layer;
100 parts by weight of urethane acrylate oligomer as a photocurable monomer, 140 parts by weight of a mixed solvent of toluene and methyl isobutyl ketone (MIBK) as a diluent solvent, and 7 weights of Irgacure 194 (manufactured by Ciba Specialty Chemicals) as a photoinitiator The mixture was mixed and stirred to prepare a coating solution.
 COP基材フィルムAの両面に上記塗工液を塗布し、乾燥させた。乾燥後、高圧水銀ランプにより200mJ/cmの紫外線を照射することにより樹脂を硬化させ、厚み2μmの第1のハードコート層及び厚み2μmの第2のハードコート層を形成した。 The said coating liquid was apply | coated on both surfaces of the COP base film A, and it was made to dry. After drying, the resin was cured by irradiating UV light of 200 mJ / cm 2 with a high-pressure mercury lamp to form a first hard coat layer having a thickness of 2 μm and a second hard coat layer having a thickness of 2 μm.
 保護フィルムの貼り合わせ;
 第1のハードコート層上に、保護フィルム(厚み50μm)を、粘着剤層側から貼り合わせた。
Bonding of protective film;
On the first hard coat layer, a protective film (thickness 50 μm) was bonded from the pressure-sensitive adhesive layer side.
 アンダーコート層の形成;
 第2のハードコート層上に、Si純度99.9%の多結晶をSiターゲット材として用いて、ACマグネトロンスパッタリング法により、SiO膜を形成した。具体的には、チャンバー内を5×10-4Pa以下となるまで真空排気した後に、チャンバー内にArガス:95%及び酸素ガス:5%の混合ガスを導入し、厚さ10nmのSiO膜を堆積させて、アンダーコート層を形成した。
Formation of an undercoat layer;
An SiO 2 film was formed on the second hard coat layer by an AC magnetron sputtering method using polycrystal having a Si purity of 99.9% as a Si target material. Specifically, after evacuating the chamber to 5 × 10 −4 Pa or less, a mixed gas of Ar gas: 95% and oxygen gas: 5% was introduced into the chamber, and SiO 2 having a thickness of 10 nm was introduced. A film was deposited to form an undercoat layer.
 導電層の形成;
 上記アンダーコート層上に、酸化インジウム:93重量%及び酸化スズ:7重量%の焼結体材料をターゲット材として用いて、DCマグネトロンスパッタリング法により、アンダーコート層の全面を覆う導電層を形成した。具体的には、チャンバー内を5×10-4Pa以下となるまで真空排気した後に、チャンバー内にArガス:95%及び酸素ガス:5%の混合ガスを導入し、厚さ20nmのITO層(導電層)を形成した。ITO層を堆積したフィルムをオーブンにて140℃で、60分加熱し、光透過性導電フィルム(第1の測定対象物)を得た。得られた光透過性導電フィルムを、全面エッチング、洗浄、乾燥の各工程をこの順に行い、光透過性導電フィルムからITO層を除去した。それによって、光透過性導電フィルムから導電層を取り除いたフィルム(第2の測定対象物)を得た。
Forming a conductive layer;
A conductive layer covering the entire surface of the undercoat layer was formed on the undercoat layer by a DC magnetron sputtering method using a sintered body material of indium oxide: 93 wt% and tin oxide: 7 wt% as a target material. . Specifically, after evacuating the chamber to 5 × 10 −4 Pa or less, a mixed gas of Ar gas: 95% and oxygen gas: 5% was introduced into the chamber, and an ITO layer having a thickness of 20 nm was introduced. (Conductive layer) was formed. The film on which the ITO layer was deposited was heated in an oven at 140 ° C. for 60 minutes to obtain a light transmissive conductive film (first measurement object). The obtained light transmissive conductive film was subjected to the entire etching, washing and drying steps in this order, and the ITO layer was removed from the light transmissive conductive film. Thereby, a film (second measurement object) obtained by removing the conductive layer from the light-transmitting conductive film was obtained.
 (実施例2~10及び比較例1~4)
 基材フィルムの種類、保護フィルムの厚み、ITO層の厚み、及びSiO膜の厚みを下記の表1,2に示すように変更したこと以外は実施例1と同様にして、光透過性導電フィルム、及びパターン状の導電層を有する光透過性導電フィルムを得た。
(Examples 2 to 10 and Comparative Examples 1 to 4)
The light-transmitting conductive material was the same as in Example 1 except that the type of base film, the thickness of the protective film, the thickness of the ITO layer, and the thickness of the SiO 2 film were changed as shown in Tables 1 and 2 below. A light-transmitting conductive film having a film and a patterned conductive layer was obtained.
 (評価)
 (1)ΔE*rw/ΔE*t
 得られた光透過性導電フィルム(第1の測定対象物)、及び、光透過性導電フィルムから導電層を取り除いたフィルム(第2の測定対象物)について、保護フィルムを剥離した後、上述した方法で、ΔE*tの値と、ΔE*rwの値とを求めた。
(Evaluation)
(1) ΔE * rw / ΔE * t
About the obtained light-transmitting conductive film (first measurement object) and the film (second measurement object) obtained by removing the conductive layer from the light-transmitting conductive film, the protective film was peeled off, and then the above-mentioned. By the method, the value of ΔE * t and the value of ΔE * rw were obtained.
 分光光度計として、積分球付分光光度計(日立製作所社製「U-4100」)を用いた。 A spectrophotometer with an integrating sphere (“U-4100” manufactured by Hitachi, Ltd.) was used as the spectrophotometer.
 ΔE*rwを評価する際に、測定対象物の光源側とは反対側には、標準白色板(BaSO)を積層した。 When evaluating ΔE * rw, a standard white plate (BaSO 4 ) was laminated on the side opposite to the light source side of the measurement object.
 (2)骨見えの評価
 得られた光透過性導電フィルムについて、以下の基準で骨見えの評価を行った。
(2) Evaluation of bone appearance About the obtained light-transmitting conductive film, bone appearance was evaluated according to the following criteria.
 [骨見えの評価サンプルの作成方法]
 光透過性導電フィルムを5cm角に切り出し、導電層の上に200μm幅のラインアンドスペースのレジストパターンを露光現像し、ITOエッチング液(関東化学社製「ITO-06N」)に1分間浸漬し、リンス及び乾燥後にレジストパターンを除去して、パターニングされた導電層(パターン状の導電層)を有する光透過性導電フィルムを得た。
[How to create a bone appearance evaluation sample]
A light-transmissive conductive film is cut into 5 cm square, a 200 μm wide line and space resist pattern is exposed and developed on the conductive layer, and immersed in an ITO etching solution (“ITO-06N” manufactured by Kanto Chemical Co., Ltd.) for 1 minute. The resist pattern was removed after rinsing and drying to obtain a light-transmitting conductive film having a patterned conductive layer (patterned conductive layer).
 光源として、LED、蛍光灯、白色灯を用い、パターニングされた導電層側が各電灯の直下となるように電灯とパターン状の導電層を有する光透過性導電フィルムとの配置を調整した。光透過性導電フィルムの表面に対して45度の角度から光透過性導電フィルムを観察し、電灯の正面から受けた光が光透過性導電フィルムで反射した時の電灯の反射像を観察した。観察した反射像(電灯の正面から反射してくる反射光による電灯の像)を、次の評価基準で判断した。 As the light source, an LED, a fluorescent lamp, and a white lamp were used, and the arrangement of the electric light and the light-transmitting conductive film having the patterned conductive layer was adjusted so that the patterned conductive layer side was directly under each electric lamp. The light transmissive conductive film was observed from an angle of 45 degrees with respect to the surface of the light transmissive conductive film, and a reflection image of the lamp when the light received from the front of the lamp was reflected by the light transmissive conductive film was observed. The observed reflected image (the image of the electric lamp by the reflected light reflected from the front of the electric lamp) was judged according to the following evaluation criteria.
 [骨見えの評価の判定基準]
 ○○…LED光、蛍光灯及び白色灯のいずれを照射した場合においても、目視で導電層のパターンが視認されない
 ○…LED光を照射した場合には、目視で導電層パターンがわずかに視認されるが、蛍光灯を照射した場合には、目視で導電層のパターンが視認されない
 △…LED光を照射した場合には、目視で導電層パターンが視認されるが、蛍光灯を照射した場合には、目視で導電層のパターンが視認されない
 ×…LED光、蛍光灯のいずれを照射した場合においても、目視で導電層パターンが視認される
[Judgment criteria for bone appearance evaluation]
○○: The pattern of the conductive layer is not visually recognized when irradiated with LED light, fluorescent light, or white light. ○ ... The conductive layer pattern is slightly visually observed when irradiated with LED light. However, when the fluorescent lamp is irradiated, the conductive layer pattern is not visually recognized. Δ ... When the LED light is irradiated, the conductive layer pattern is visually observed, but when the fluorescent lamp is irradiated. The pattern of the conductive layer is not visually recognized. × ... The conductive layer pattern is visually recognized when irradiated with either LED light or fluorescent lamp.
 (3)導電層の表面抵抗値(シート抵抗値)
 得られた透明導電フィルムの導電層の表面抵抗値(シート抵抗値)を、抵抗率計(三菱化学アナリテック社製「ロレスタAX MCP-T370」)を用いて、JIS K7105に基づいて、測定した。
(3) Surface resistance value of the conductive layer (sheet resistance value)
The surface resistance value (sheet resistance value) of the conductive layer of the obtained transparent conductive film was measured based on JIS K7105 using a resistivity meter (“Loresta AX MCP-T370” manufactured by Mitsubishi Chemical Analytech Co., Ltd.). .
 詳細及び結果を下記の表1,2に示す。 Details and results are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1,1A,1X…光透過性導電フィルム
 2,2A…基材
 2a…第1の表面
 2b…第2の表面
 3…パターン状の導電層
 3X…導電層
 4…保護フィルム
 11…基材フィルム
 12…第1のハードコート層
 13…第2のハードコート層
 14…アンダーコート層
 21…測定対象物
 22…光源
 23…受光部
 24…白色板
DESCRIPTION OF SYMBOLS 1,1A, 1X ... Light-transmitting conductive film 2, 2A ... Base material 2a ... 1st surface 2b ... 2nd surface 3 ... Patterned conductive layer 3X ... Conductive layer 4 ... Protective film 11 ... Base film 12 ... 1st hard coat layer 13 ... 2nd hard coat layer 14 ... Undercoat layer 21 ... Measurement object 22 ... Light source 23 ... Light-receiving part 24 ... White plate

Claims (6)

  1.  基材フィルムと、前記基材フィルムの一方の表面側に配置された導電層とを備える光透過性導電フィルムを第1の測定対象物とし、前記光透過性導電フィルムの前記導電層を除くフィルム部分を第2の測定対象物として、
     前記第1の測定対象物及び前記第2の測定対象物のそれぞれについて、分光光度計を用いて、測定対象物に光を照射し、該測定対象物を透過した透過光を測定することで、下記式で表されるΔE*をΔE*tとして得て、
     前記第1の測定対象物及び前記第2の測定対象物のそれぞれについて、測定対象物の光源側とは反対側に白色板が配置された状態で、分光光度計を用いて、測定対象物に光を照射し、該測定対象物及び該白色板により反射された反射光を測定することで、下記式で表されるΔE*をΔE*rwとして得て、
     ΔE*tの値とΔE*rwの値とから、光透過性導電フィルムの可視化を判別する、光透過性導電フィルムの可視化の分析方法。
     ΔE*=(ΔL*+Δa*+Δb*1/2
     Lab表色系
     ΔL*=第1の測定対象物のL値-第2の測定対象物のL値
     Δa*=第1の測定対象物のa値-第2の測定対象物のa値
     Δb*=第1の測定対象物のb値-第2の測定対象物のb値
    A light-transmitting conductive film comprising a base film and a conductive layer disposed on one surface side of the base film is a first measurement object, and the film excluding the conductive layer of the light-transmitting conductive film With the part as the second measurement object,
    For each of the first measurement object and the second measurement object, using a spectrophotometer, irradiating the measurement object with light and measuring the transmitted light transmitted through the measurement object, ΔE * represented by the following formula is obtained as ΔE * t,
    For each of the first measurement object and the second measurement object, a white plate is arranged on the opposite side of the measurement object from the light source side, and a spectrophotometer is used to measure the measurement object. By irradiating light and measuring the reflected light reflected by the measurement object and the white plate, ΔE * represented by the following formula is obtained as ΔE * rw,
    A method for analyzing visualization of a light-transmitting conductive film, wherein the visualization of the light-transmitting conductive film is determined from the value of ΔE * t and the value of ΔE * rw.
    ΔE * = (ΔL * 2 + Δa * 2 + Δb * 2 ) 1/2
    Lab color system ΔL * = L value of the first measurement object−L value of the second measurement object Δa * = a value of the first measurement object−a value of the second measurement object Δb * = B value of the first measurement object-b value of the second measurement object
  2.  前記基材フィルムが、ポリカーボネート基材フィルム、又は、シクロオレフィンポリマー基材フィルムである、請求項1に記載の光透過性導電フィルムの可視化の分析方法。 The analysis method for visualizing a light-transmitting conductive film according to claim 1, wherein the base film is a polycarbonate base film or a cycloolefin polymer base film.
  3.  基材フィルムと、前記基材フィルムの一方の表面側に配置された導電層とを備える光透過性導電フィルムであり、
     前記基材フィルムが、ポリカーボネート基材フィルム、又は、シクロオレフィンポリマー基材フィルムであり、
     前記基材フィルムが、前記ポリカーボネート基材フィルムである場合に、下記の測定により求められるΔE*rw/ΔE*tが0.5以上であり、
     前記基材フィルムが、前記シクロオレフィンポリマー基材フィルムである場合に、下記の測定により求められるΔE*rw/ΔE*tが1.0以上である、光透過性導電フィルム。
     ΔE*rw/ΔE*tの測定方法:前記光透過性導電フィルムを第1の測定対象物とし、前記光透過性導電フィルムの前記導電層を除くフィルム部分を第2の測定対象物とする。前記第1の測定対象物及び前記第2の測定対象物のそれぞれについて、分光光度計を用いて、測定対象物に光を照射し、測定対象物を透過した透過光を測定することで、下記式で表されるΔE*をΔE*tとして得る。前記第1の測定対象物及び前記第2の測定対象物のそれぞれについて、測定対象物の光源側とは反対側に白色板が配置された状態で、分光光度計を用いて、測定対象物に光を照射し、該測定対象物及び該白色板により反射された反射光を測定することで、下記式で表されるΔE*をΔE*rwとして得る。ΔE*tの値とΔE*rwの値とから、ΔE*rw/ΔE*tを求める。
     ΔE*=(ΔL*+Δa*+Δb*1/2
     Lab表色系
     ΔL*=第1の測定対象物のL値-第2の測定対象物のL値
     Δa*=第1の測定対象物のa値-第2の測定対象物のa値
     Δb*=第1の測定対象物のb値-第2の測定対象物のb値
    A light transmissive conductive film comprising a base film and a conductive layer disposed on one surface side of the base film;
    The base film is a polycarbonate base film or a cycloolefin polymer base film,
    When the substrate film is the polycarbonate substrate film, ΔE * rw / ΔE * t determined by the following measurement is 0.5 or more,
    When the said base film is the said cycloolefin polymer base film, (DELTA) E * rw / (DELTA) E * t calculated | required by the following measurement is 1.0 or more, The light transmissive conductive film.
    Measuring method of ΔE * rw / ΔE * t: The light transmissive conductive film is used as a first measurement object, and the film portion excluding the conductive layer of the light transmissive conductive film is used as a second measurement object. For each of the first measurement object and the second measurement object, a spectrophotometer is used to irradiate the measurement object with light and to measure the transmitted light transmitted through the measurement object. ΔE * expressed by the equation is obtained as ΔE * t. For each of the first measurement object and the second measurement object, a white plate is arranged on the opposite side of the measurement object from the light source side, and a spectrophotometer is used to measure the measurement object. By irradiating light and measuring the reflected light reflected by the measurement object and the white plate, ΔE * represented by the following formula is obtained as ΔE * rw. From the value of ΔE * t and the value of ΔE * rw, ΔE * rw / ΔE * t is obtained.
    ΔE * = (ΔL * 2 + Δa * 2 + Δb * 2 ) 1/2
    Lab color system ΔL * = L value of the first measurement object−L value of the second measurement object Δa * = a value of the first measurement object−a value of the second measurement object Δb * = B value of the first measurement object-b value of the second measurement object
  4.  前記基材フィルムが、前記ポリカーボネート基材フィルムであり、
     前記ΔE*rw/ΔE*tが0.5以上である、請求項3に記載の光透過性導電フィルム。
    The base film is the polycarbonate base film;
    The light-transmitting conductive film according to claim 3, wherein the ΔE * rw / ΔE * t is 0.5 or more.
  5.  前記基材フィルムが、前記シクロオレフィンポリマー基材フィルムであり、
     前記ΔE*rw/ΔE*tが1.0以上である、請求項3に記載の光透過性導電フィルム。
    The base film is the cycloolefin polymer base film;
    The light-transmitting conductive film according to claim 3, wherein the ΔE * rw / ΔE * t is 1.0 or more.
  6.  前記導電層の材料が、インジウムスズ酸化物であり、
     前記導電層の厚みが、15nm以上、30nm未満である、請求項3~5のいずれか1項に記載の光透過性導電フィルム。
    The material of the conductive layer is indium tin oxide,
    The light transmissive conductive film according to any one of claims 3 to 5, wherein the thickness of the conductive layer is 15 nm or more and less than 30 nm.
PCT/JP2018/014299 2017-04-07 2018-04-03 Method for analyzing visualization of light-transmissive conductive film, and light-transmissive conductive film WO2018186412A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018519987A JP7176950B2 (en) 2017-04-07 2018-04-03 Analysis method for visualization of light-transmitting conductive film, and light-transmitting conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017076783 2017-04-07
JP2017-076783 2017-04-07

Publications (1)

Publication Number Publication Date
WO2018186412A1 true WO2018186412A1 (en) 2018-10-11

Family

ID=63713199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014299 WO2018186412A1 (en) 2017-04-07 2018-04-03 Method for analyzing visualization of light-transmissive conductive film, and light-transmissive conductive film

Country Status (2)

Country Link
JP (1) JP7176950B2 (en)
WO (1) WO2018186412A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080624A (en) * 2001-09-07 2003-03-19 Nof Corp Transparent conducting material and touch panel
JP2010182528A (en) * 2009-02-05 2010-08-19 Toppan Printing Co Ltd Transparent conductive film
JP2012103968A (en) * 2010-11-11 2012-05-31 Okura Ind Co Ltd Transparent conductive film, base film for transparent conductive film and touch panel
JP2013208841A (en) * 2012-03-30 2013-10-10 Teijin Ltd Electroconductive laminate
JP2015201165A (en) * 2014-03-31 2015-11-12 積水ナノコートテクノロジー株式会社 Light transmissive conductive film and touch panel having the same
JP2016013632A (en) * 2014-07-01 2016-01-28 グンゼ株式会社 Transparent conductive laminate, touch panel, and method for manufacturing transparent conductive laminate
WO2016088809A1 (en) * 2014-12-05 2016-06-09 日東電工株式会社 Transparent conductive film laminate and use therefor
JP2016225269A (en) * 2015-05-27 2016-12-28 日東電工株式会社 Transparent conductive film
JP2017045087A (en) * 2015-08-24 2017-03-02 日東電工株式会社 Transparent conductive film having carrier film and touch panel using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5362397B2 (en) 2009-03-11 2013-12-11 グンゼ株式会社 Transparent sheet and transparent touch switch
JP5005112B2 (en) 2009-03-31 2012-08-22 帝人株式会社 Transparent conductive laminate and transparent touch panel
JP5878056B2 (en) 2012-03-27 2016-03-08 日立マクセル株式会社 Hard coat substrate and transparent conductive film using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080624A (en) * 2001-09-07 2003-03-19 Nof Corp Transparent conducting material and touch panel
JP2010182528A (en) * 2009-02-05 2010-08-19 Toppan Printing Co Ltd Transparent conductive film
JP2012103968A (en) * 2010-11-11 2012-05-31 Okura Ind Co Ltd Transparent conductive film, base film for transparent conductive film and touch panel
JP2013208841A (en) * 2012-03-30 2013-10-10 Teijin Ltd Electroconductive laminate
JP2015201165A (en) * 2014-03-31 2015-11-12 積水ナノコートテクノロジー株式会社 Light transmissive conductive film and touch panel having the same
JP2016013632A (en) * 2014-07-01 2016-01-28 グンゼ株式会社 Transparent conductive laminate, touch panel, and method for manufacturing transparent conductive laminate
WO2016088809A1 (en) * 2014-12-05 2016-06-09 日東電工株式会社 Transparent conductive film laminate and use therefor
JP2016225269A (en) * 2015-05-27 2016-12-28 日東電工株式会社 Transparent conductive film
JP2017045087A (en) * 2015-08-24 2017-03-02 日東電工株式会社 Transparent conductive film having carrier film and touch panel using the same

Also Published As

Publication number Publication date
JP7176950B2 (en) 2022-11-22
JPWO2018186412A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
US10626304B2 (en) Polarizing film laminate comprising transparent pressure-sensitive adhesive layer and patterned transparent electroconductive layer, liquid crystal panel and organic EL panel
TWI545591B (en) Transparent conductive film and touch panel
JP6159490B1 (en) Light transmissive conductive film and method for producing annealed light transmissive conductive film
JP2010177194A (en) Transparent conductive material and touch panel
JP2017025205A (en) Cover member with transparent conductive layer having transparent adhesive layer
US10259193B2 (en) Electroconductive film laminate comprising transparent pressure-sensitive adhesive layer
US10369768B2 (en) Cover element provided with transparent pressure-sensitive adhesive layer
JP2004047456A (en) Transparent conductive material and touch panel
JP6560622B2 (en) Light transmissive conductive film laminate
JP2004322380A (en) Transparent electroconductive material and touch panel
US10023766B2 (en) Electroconductive film laminate comprising transparent pressure-sensitive adhesive layer
JP6669468B2 (en) Light-transmitting conductive film and method for producing annealed light-transmitting conductive film
JP7074510B2 (en) Transparent conductive film and light control film for light control film
JP7144318B2 (en) Transparent conductive film for light control film and light control film
WO2018186412A1 (en) Method for analyzing visualization of light-transmissive conductive film, and light-transmissive conductive film
KR102446081B1 (en) Method for producing a light-transmitting conductive film and a light-transmitting conductive film having a patterned conductive layer
JP6745177B2 (en) Light-transmissive conductive film
JP2013174787A (en) Optical member
JP6696866B2 (en) Process for producing light-transmitting conductive film and laminate for producing light-transmitting conductive film
JP6705678B2 (en) Light-transmissive conductive film
JP2019025913A (en) Transparent conductive film for dimming film and dimming film
JP2017174807A (en) Optically transparent conductive film, and method for producing the optically transparent conductive film
JP6849490B2 (en) Method for manufacturing light-transmitting conductive film and light-transmitting conductive film
JP2020104520A (en) Optically-transparent conductive film, and production method of annealed optically-transparent conductive film
JP2017209901A (en) Light transmissive conductive film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018519987

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18781650

Country of ref document: EP

Kind code of ref document: A1