WO2016088555A1 - メッシュの製造方法およびメッシュ - Google Patents

メッシュの製造方法およびメッシュ Download PDF

Info

Publication number
WO2016088555A1
WO2016088555A1 PCT/JP2015/082376 JP2015082376W WO2016088555A1 WO 2016088555 A1 WO2016088555 A1 WO 2016088555A1 JP 2015082376 W JP2015082376 W JP 2015082376W WO 2016088555 A1 WO2016088555 A1 WO 2016088555A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh
film material
opening
hole
diameter
Prior art date
Application number
PCT/JP2015/082376
Other languages
English (en)
French (fr)
Inventor
聡 廣野
祐佳 谷岡
隼治 河本
田畑 信
彰朗 角谷
Original Assignee
オムロン株式会社
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社, オムロンヘルスケア株式会社 filed Critical オムロン株式会社
Priority to EP15865808.8A priority Critical patent/EP3210753B1/en
Priority to BR112017011775-4A priority patent/BR112017011775B1/pt
Priority to KR1020177014838A priority patent/KR101850259B1/ko
Priority to CN201580065307.2A priority patent/CN107000327B/zh
Priority to US15/532,488 priority patent/US10525658B2/en
Publication of WO2016088555A1 publication Critical patent/WO2016088555A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73365General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D28/00Producing nets or the like, e.g. meshes, lattices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • B32B38/105Removing layers, or parts of layers, mechanically or chemically on edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/05Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2028/00Nets or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • B32B2038/047Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/244All polymers belonging to those covered by group B32B27/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0843Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2535/00Medical equipment, e.g. bandage, prostheses, catheter

Definitions

  • the present invention relates to a mesh manufacturing method and a mesh.
  • Patent Document 1 discloses a mesh portion provided in a liquid spraying apparatus.
  • the mesh portion is made of resin, has a thin plate-like outer shape, and has a plurality of through holes.
  • This mesh part is provided in order to atomize a chemical
  • the donut-shaped reinforcement part which has a hollow part is joined to the peripheral part of this mesh part. For this reason, since the resin-made mesh part with small thickness and low rigidity can be reinforced with the reinforcement part, it is possible to obtain sufficient strength as a whole.
  • the mesh part is formed, for example with the metal mold
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a mesh manufacturing method and a mesh that can be easily changed in design.
  • the method for producing a mesh according to the present invention is a method for producing a mesh comprising a resin mesh main body and a resin reinforcing member that reinforces the mesh main body, and a laser is applied to the mesh formation region of the resin first film material.
  • the step of forming a plurality of through holes, the step of forming an opening in the resin-made second film material, the first film material and the second film material are laminated, and the mesh formation region and the opening correspond to each other.
  • the design of the through holes in the mesh formation region can be easily changed by changing the laser irradiation conditions and the like.
  • medical solution can be provided easily.
  • the heat influence range can be narrowed by joining the first film material and the second film material by laser welding, it is possible to suppress the occurrence of variation in the spraying performance of the mesh.
  • the above-described mesh manufacturing method may include a step of cutting out the outer edge of the joint between the first film material and the second film material.
  • the first film material is provided with a plurality of mesh formation regions
  • the second film material is formed with a plurality of openings
  • the plurality of mesh formation regions and the plurality of openings correspond to each other.
  • the plurality of openings may be cut out after the plurality of openings are bonded by laser welding.
  • the first film material and the second film material may be joined after the through holes are formed in the first film material.
  • the method for manufacturing a mesh may include a step of measuring the thickness of the first film material, and setting the laser irradiation conditions when forming the through hole according to the measurement result of the thickness of the first film material. Good.
  • the method for producing a mesh according to the present invention is a method for producing a mesh comprising a resin mesh main body and a resin reinforcing member that reinforces the mesh main body, and a resin having an opening in a resin first film material.
  • a step of laminating a second film material made, a step of forming a plurality of through holes by a laser in a mesh formation region of the first film material, and laser welding the first film material and the second film material around the opening And a step of joining.
  • the mesh according to the present invention includes a resin mesh main body and a resin reinforcing member that reinforces the mesh main body.
  • the mesh main body is provided with a mesh formation region, and a plurality of through holes are formed in the mesh formation region by a laser.
  • the reinforcing member is formed in an annular shape so as to surround the mesh formation region. The mesh body and the reinforcing member are joined by laser welding.
  • the through hole is formed such that the opening diameter on one end side is larger than the opening diameter on the other end side, and the diameter gradually decreases from one end side toward the other end side. It may be configured.
  • the through-hole is formed such that the opening diameter on one end side is larger than the opening diameter on the other end side, and the cylindrical portion and gradually from the cylindrical portion toward the other end side. You may have a diameter reducing part to reduce diameter.
  • the through hole is formed so that the opening diameter on one end side is larger than the opening diameter on the other end side, and may have a plurality of cylindrical portions having different opening diameters.
  • the design can be easily changed.
  • a mesh 100 is provided in a nebulizer (inhaler), for example, to atomize a chemical solution.
  • nebulizer inhaler
  • the mesh 100 includes a mesh body 10 and a reinforcing member 20 that reinforces the mesh body 10.
  • the mesh 100 is formed in a circular shape when seen in a plan view and has a diameter of, for example, 6 mm.
  • 1 and 2 are diagrams schematically showing the mesh 100, and the number of through-holes 11 and their dimensional relationships are different from actual ones.
  • the mesh body 10 is a thin film-like member made of resin, and is formed in a circular shape when seen in a plan view.
  • the mesh body 10 is made of, for example, a transparent polycarbonate, has a thickness of 30 ⁇ m, and a diameter of 6 mm. For this reason, the mesh main body 10 is configured to be able to transmit a laser for bonding.
  • a mesh formation region T1 is provided in the center of the mesh body 10, and a large number of fine through holes 11 are formed in the mesh formation region T1.
  • the mesh formation region T1 is a circular region as viewed in plan, and has a diameter of, for example, 2.5 mm.
  • about 2000 through holes 11 are formed by, for example, an ultraviolet laser.
  • the through-hole 11 is formed such that the opening diameter R1 on one end side is larger than the opening diameter R2 on the other end side. That is, the opening diameter R1 of the inlet opening on the lower surface 10a side is larger than the opening diameter R2 of the outlet opening on the upper surface 10b side.
  • the mesh 100 is attached to the nebulizer, the chemical liquid flows in from the inlet opening, and the atomized chemical liquid is ejected from the outlet opening.
  • the opening diameter R1 is about 25 ⁇ m
  • the opening diameter R2 is about 3 ⁇ m.
  • the through hole 11 has a reduced diameter portion 111 formed on the lower surface 10 a side, a cylindrical portion 112 formed so as to be continuous with the reduced diameter portion 111, and a reduced diameter formed so as to be continuous with the cylindrical portion 112. Part 113.
  • the reduced diameter portion 111 is formed so as to decrease in diameter from the lower surface 10a side toward the upper surface 10b side.
  • the reduced diameter portion 111 is formed in a curved shape so that the cross-sectional shape swells inward, and is formed so that the degree of diameter reduction on the upper surface 10b side is smaller than that on the lower surface 10a side.
  • the cylindrical portion 112 has substantially the same opening diameter in the thickness direction (Z direction).
  • the cylindrical portion 112 is disposed between the reduced diameter portions 111 and 113.
  • the reduced diameter portion 113 is disposed on the upper surface 10b side and is formed so as to decrease in diameter from the lower surface 10a side toward the upper surface 10b side.
  • the diameter-reduced portion 113 is formed in a curved shape so that the cross-sectional shape swells inward, and is formed so that the degree of diameter reduction on the upper surface 10b side is smaller than that on the lower surface 10a side.
  • the through hole 11 is configured to be reduced in diameter by two reduced diameter portions 111 and 113 sandwiching the cylindrical portion 112, and is reduced in diameter in two stages.
  • the reinforcing member 20 is a resinous film-like member, and is formed in a circular shape when seen in a plan view.
  • the diameter (outer diameter) of the reinforcing member 20 is 6 mm, for example.
  • the reinforcing member 20 is made of, for example, black polycarbonate, and has a thickness larger than that of the mesh body 10. The thickness is, for example, 410 ⁇ m.
  • the reinforcing member 20 is configured to be able to absorb a joining laser.
  • the reinforcing member 20 is formed in an annular shape and has an opening 21 inside.
  • the opening 21 is formed in a circular shape when seen in a plan view and has an opening diameter of, for example, 2.7 mm.
  • the opening 21 and the mesh formation region T1 are arranged at corresponding positions, and the mesh formation region T1 is surrounded by the annular reinforcing member 20. For this reason, when a chemical solution is ejected from the through-hole 11 in the mesh formation region T1, the chemical solution passes through the opening 21 of the reinforcing member 20.
  • the mesh body 10 and the reinforcing member 20 are joined by laser welding. Specifically, the contact interface is welded and joined in a state where the annular reinforcing member 20 is laminated on the outer edge of the mesh body 10.
  • the resin mesh main body 10 having a small thickness and low rigidity with the reinforcing member 20 it is possible to obtain sufficient strength as the entire mesh 100.
  • the first film material 50 is washed.
  • the first film material 50 is made of, for example, a transparent polycarbonate and has a thickness of 30 ⁇ m. Further, the size of the first film material 50 is not particularly limited, but is, for example, A5 or A6 so as to be easily handled.
  • the first film material 50 is subjected to ultrasonic cleaning with IPA (isopropyl alcohol) or the like for about several tens of seconds to several minutes. Thereafter, the IPA is blown off from the first film material 50 by an air gun or the like.
  • IPA isopropyl alcohol
  • step S2 the first film material 50 is placed on the chuck base 200 as shown in FIG. Then, the first film material 50 is fixed to the chuck base 200 with a vacuum chuck. In addition, it is preferable to chuck the entire surface of the first film material 50 by using a porous ceramic chuck as the chuck base 200. This is because the first film material 50 is adsorbed over the entire surface, so that when the through-hole 11 described later is formed, the first film material 50 is prevented from being lifted even if air escapes from the through-hole 11. This is because it can. Thereby, since it can suppress that the position of the 1st film material 50 which is a process target is shifted, it is possible to suppress that the shape of the through-hole 11 to be formed varies.
  • the chuck base 200 is provided on the XY stage.
  • the mesh formation region T1 is a circular region (for example, a diameter of 2.5 mm) set in advance in the plane of the first film material 50.
  • a plurality of (for example, 320) mesh forming regions T1 are provided in the first film material 50 and arranged in a staggered manner.
  • FIG. 6 is a schematic diagram, and the number and the dimensional relationship are different from the actual ones. The same applies to each drawing described later.
  • examples of a measuring device that measures the thickness include a stylus type step gauge and an optical film thickness meter. Further, the thickness may be measured with a micrometer or the like before the first film material 50 is chucked.
  • the first film material 50 varies in thickness from film to film, and also varies in the same film. For example, there is a maximum variation of about 5 to 6 ⁇ m. Therefore, it is possible to suppress variations in the shape (exit diameter) of the through hole 11 by setting the irradiation condition of the ultraviolet laser described later according to the measured thickness.
  • the number of shots set in advance as a reference is corrected according to the measured thickness. That is, when the measured thickness is larger than the reference thickness, the number of shots is increased from the reference value, and when the measured thickness is smaller than the reference thickness, the number of shots is decreased from the reference value.
  • parameters other than the number of shots for example, output may be changed.
  • step S4 a large number of through holes 11 are formed in a predetermined mesh formation region T1 by an ultraviolet laser.
  • 2000 through holes 11 are formed in a staggered pattern at intervals of 30 ⁇ m in a predetermined mesh formation region T1.
  • a YAG fourth harmonic (wavelength: 266 nm, pulse width: 10 to 15 ns, repetition frequency: 10 kHz) is used as an ultraviolet laser, and a single laser beam is scanned in the X and Y directions with a galvanometer mirror to produce a telecentric f ⁇ lens. Processing is performed with a configuration that condenses light.
  • a lens having a high numerical aperture NA (Numerical Aperture) (for example, 0.18) is used. Further, as described above, the irradiation condition of the ultraviolet laser is corrected according to the thickness of the predetermined mesh formation region T1.
  • the ultraviolet laser in order to form the through-hole 11, the ultraviolet laser is irradiated in a defocused state and the ultraviolet laser is irradiated in a just-focused state. That is, one through hole 11 is formed by irradiating an ultraviolet laser in two stages.
  • an ultraviolet laser is focused perpendicularly to the first film material 50 even when scanning, and even if the focus position is changed, the ultraviolet laser It is possible to make the position irradiated with the same.
  • the XY stage provided with the chuck base 200 is moved in the Z direction so that the surface of the first film material 50 matches the just focus position. Thereafter, the XY stage is moved in the Z direction by a predetermined defocus amount.
  • the defocus amount is, for example, 0.06 mm.
  • the first stage of laser irradiation is performed with an output of, for example, 50 mW. That is, in the defocused state, the first stage processing is performed for the number of holes to be formed (2000).
  • the XY stage is moved in the Z direction so that the surface of the first film material 50 matches the just focus position.
  • the second stage laser irradiation is performed with an output of 10 mW, for example. That is, the second stage processing is performed for the number of holes to be formed (2000) in a just-focused state.
  • a large number of through holes 11 having a shape as shown in FIG. 3 are formed in the mesh formation region T1.
  • the opening diameter R1 of the inlet opening is about 25 ⁇ m
  • the opening diameter R2 of the outlet opening is about 3 ⁇ m.
  • step S5 it is determined in step S5 whether processing for all mesh formation regions T1 is completed. If the processing is not completed for all the mesh formation regions T1, the process proceeds to step S6.
  • step S6 the first film material 60 is moved in the horizontal direction by, for example, about 7 mm by the XY stage, whereby the unprocessed mesh formation region T1 is arranged in the processing region, and the process returns to step S4. Thereby, a large number of through holes 11 are formed in each mesh formation region T1 of the first film material 50.
  • step S5 when the processing is completed for all the mesh formation regions T1 (step S5: Yes), the process proceeds to step S7, and the formed through holes 11 are inspected.
  • the opening diameter R1 of the inlet opening is measured by image processing. In addition, you may make it measure the opening diameter R1 of all the through-holes 11, and may make it extract some through-holes 11 and measure the opening diameter R1.
  • the first film material 50 is removed from the chuck base 200, and the first film material 50 is turned over and fixed to the chuck base 200. Then, the opening diameter R2 of the outlet opening is measured by image processing. In addition, you may make it measure the opening diameter R2 of all the through-holes 11, and may make it extract some through-holes 11 and measure the opening diameter R2.
  • the first film material 50 is processed.
  • the second film material 60 is washed.
  • the second film material 60 is made of, for example, black polycarbonate and has a thickness of 410 ⁇ m.
  • the size of the second film material 60 is not particularly limited, but is the same size (A5 or A6) as the first film material 50, for example.
  • the second film material 60 is subjected to ultrasonic cleaning with IPA or the like for about several tens of seconds to several minutes. Thereafter, the IPA is blown off from the second film material 60 by an air gun or the like.
  • step S12 the second film material 60 is placed on the chuck base 210 as shown in FIG. Then, the second film material 60 is fixed to the chuck base 210 with a vacuum chuck. Note that it is preferable to chuck the entire surface of the second film material 60 by using a porous ceramic chuck as the chuck base 210.
  • the chuck base 210 is provided on the XY stage.
  • an opening 21 is formed at a position corresponding to the mesh formation region T1 described above.
  • the opening 21 has, for example, an opening diameter of 2.7 mm and is formed by a punch or a laser marker.
  • step S14 it is determined in step S14 whether or not all the openings 21 have been formed. All the openings 21 are a predetermined number of openings.
  • the preset number is 320, for example, the same number as the number of mesh formation regions T1 of the first film material 50. And when all the opening parts 21 are not formed, it moves to step S15.
  • step S15 the second film material 60 is moved about 7 mm in the horizontal direction by the XY stage, and the process returns to step S13.
  • the plurality of openings 21 are formed in the second film material 60 so as to correspond to the plurality of mesh formation regions T ⁇ b> 1 of the first film material 50, respectively.
  • the XY stage that transports the second film material 60 preferably has the same driving performance as the XY stage that transports the first film material 50. This is for suppressing the displacement of the opening 21 and the through hole 11 when the first film material 50 and the second film material 60 are laminated.
  • step S14 when all the opening parts 21 are formed (step S14: Yes), it will move to step S16 and the formed opening part 21 will be test
  • the opening diameter is measured by image processing, for example. In addition, you may make it measure the opening diameter of all the opening parts 21, and may make it extract a part of opening parts 21 and measure an opening diameter.
  • the opening 21 may be inspected by checking the position of the punch (for example, whether the punch has reached the bottom dead center).
  • the second film material 60 is processed.
  • step S21 of FIG. 15 the first film material 50 and the second film material 60 are positioned. Specifically, as shown in FIGS. 16 and 17, the second film material 60 subjected to the above processing is placed on the placing table 220. Then, the first film material 50 subjected to the above processing is laminated on the second film material 60. At this time, the inlet opening side of the through hole 11 is arranged upward, and the first film material 50 is positioned with respect to the second film material 60.
  • the positioning is performed, for example, by forming positioning holes (not shown) at predetermined positions of the first film material 50 and the second film material 60, for example, at four corners, and inserting pins into the positioning holes.
  • the plate-like member 221 is configured to transmit a bonding laser.
  • FIG. 17 the illustration of the plate-like member 221 is omitted in view of ease of viewing.
  • step S22 the 1st film material 50 and the 2nd film material 60 are joined by laser welding.
  • the joining laser is irradiated from the plate-shaped member 221 side toward the second film material 60, passes through the plate-shaped member 221 and the first film material 50, and is absorbed by the second film material 60.
  • the annular region T2 (see FIG. 17) around each opening 21 is joined by welding.
  • the first film material 50 and the second film material 60 are welded by a continuous output semiconductor laser having a wavelength of 808 nm.
  • step S23 the joint is inspected by image processing or the like. Thereafter, in step S24, the outer edge of each joint (for example, slightly inside the outer periphery of the annular region T2) is cut out by a punch or the like. Thereby, the mesh 100 as shown in FIG. 1 and FIG. 2 is obtained. That is, in this embodiment, 320 meshes 100 are formed from one first film material 50 and one second film material 60.
  • the through-hole 11 in the mesh formation region T1 by forming the through-hole 11 in the mesh formation region T1 with an ultraviolet laser, the irradiation conditions of the ultraviolet laser are changed, and thereby the design of the through-hole 11 in the mesh formation region T1. Changes can be made easily. Thereby, compared with the case where a metal mold
  • a large number of through holes 11 are collectively formed in the plurality of mesh formation regions T1 of the first film material 50, and a plurality of openings 21 are collectively formed in the second film material 60.
  • the productivity can be improved by joining the first film material 50 and the second film material 60 by laser welding and extracting the plurality of meshes 100.
  • the through-hole 11 is made. Since it can form, it can suppress that the shape of the through-hole 11 varies.
  • the through hole 11 having the cylindrical portion 112 so as to reduce the diameter in two stages, an increase in the spray amount from the mesh 100 is suppressed and an increase in the spray diameter is suppressed. can do. Details will be described later.
  • the 2nd film material 60 absorbs the laser for joining, it can suppress that the 1st film material 50 receives a thermal influence, Therefore
  • the heat affected range can be narrowed by applying pressure by the plate-like member 221 at the time of laser welding, the annular region T2 around each opening 21 is processed when a plurality are processed in parallel. Misalignment due to shrinkage or the like can be suppressed during welding. Thereby, it is possible to perform processing in parallel, productivity is improved, and variation in spray performance can be suppressed.
  • the through hole 11 (see FIG. 3) having the cylindrical portion 112 so as to reduce the diameter in two stages is shown.
  • the present invention is not limited to this, and the through hole 11a according to the first modification shown in FIG.
  • the cylindrical part may not be formed.
  • the through hole 11a is formed such that the opening diameter R3 on one end side is larger than the opening diameter R4 on the other end side, and gradually decreases in diameter from one end side toward the other end side. It is configured. That is, the through hole 11a is formed to continuously reduce the diameter over the entire length in the thickness direction.
  • This through-hole 11a uses, for example, a lens having a low numerical aperture NA (for example, 0.025), performs the first stage processing with a defocus of 0.3 mm with an output of 80 mW, and with a just focus with an output of 80 mW. It can be formed by performing the second stage processing.
  • NA numerical aperture
  • the opening diameter R6 on the other end side becomes larger as the opening diameter R5 on the one end side becomes larger as in the through hole 11b according to the second modification shown in FIG. growing.
  • the through hole 11b is configured to gradually reduce in diameter from one end side to the other end side, and has an overall larger opening diameter than the through hole 11a.
  • the opening diameter R1 of the inlet opening is about 25 ⁇ m
  • the opening diameter R2 of the outlet opening is about 3.3 ⁇ m.
  • the opening diameter R3 of the inlet opening is about 25 ⁇ m
  • the opening diameter R4 of the outlet opening is about 3.3 ⁇ m.
  • the opening diameter R5 of the inlet opening is about 28 ⁇ m
  • the opening diameter R6 of the outlet opening is about 4.9 ⁇ m.
  • Palmicoat registered trademark
  • Areval registered trademark
  • mucofilin registered trademark
  • purified water was respectively injected using a mesh having through-holes 11, and the spray amount and spray diameter at that time were measured. It was. The same applies to the mesh having the through hole 11a and the mesh having the through hole 11b.
  • mucofilin was sprayed with a mesh having through holes 11a, the spray amount was small and the spray diameter could not be measured.
  • the mesh having the through hole 11b has a larger spray amount and a larger spray diameter than the mesh having the through hole 11a. This is considered to be because the opening diameter R6 of the outlet opening of the through hole 11b is larger than the opening diameter R4 of the outlet opening of the through hole 11a. That is, in the case of continuously reducing the diameter, if the amount of spray is increased, the spray diameter becomes large.
  • the spray amount was increased as compared with the mesh having the through hole 11a, and the spray diameter was reduced as compared with the mesh having the through hole 11b. Therefore, it was found that the mesh having the through-holes 11 whose diameter is reduced in two steps can suppress the increase of the spray diameter while increasing the spray amount, so that the spray performance is preferable.
  • the value of the spray diameter about purified water is close with the mesh which has the through-hole 11, and the mesh which has the through-hole 11b, the value of the spray diameter differs remarkably about a chemical
  • a plurality of mesh bodies having 2800 through holes in a staggered manner at intervals of 30 ⁇ m were produced.
  • the through hole has an inlet opening with an opening diameter of 25 ⁇ m and an outlet opening with an opening diameter of 3.5 ⁇ m.
  • a plurality of reinforcing members having different thicknesses were produced. Each reinforcing member has the same opening diameter of 2.3 mm.
  • the mesh main body and the reinforcement member were joined, and the some mesh from which the thickness of a reinforcement member differs was produced. And the spray amount of each mesh was measured and the result was shown in FIG.
  • the thickness of the reinforcing member is preferably 300 ⁇ m to 600 ⁇ m.
  • the opening diameter of the reinforcing member is preferably 2.3 mm to 3.2 m.
  • the mesh body 10 and the reinforcing member 20 are joined by laser welding.
  • the present invention is not limited thereto, and the mesh body and the reinforcing member may be joined by other methods. . Further, the reinforcing member may not be provided.
  • the through hole 11 having the cylindrical portion 112 and the reduced diameter portion 113 is shown.
  • the present invention is not limited to this, and the opening diameter is not limited to the through hole 11c according to the third modification shown in FIG.
  • a plurality of cylindrical portions 111c and 112c having different diameters may be formed.
  • the through hole 11c is formed such that the opening diameter on one end side (inlet opening) is larger than the opening diameter on the other end side (outlet opening).
  • the through-hole 11c has a cylindrical portion 111c formed on one end side and a cylindrical portion 112c formed on the other end side, and the cylindrical portions 111c and 112c pass through a stepped portion. It has come to be connected.
  • the opening diameter of the cylindrical part 111c is larger than the opening diameter of the cylindrical part 112c, and the cylindrical parts 111c and 112c have substantially the same opening diameter in the thickness direction.
  • the through-hole 11c has two cylindrical portions 111c and 112c having different opening diameters
  • the present invention is not limited thereto, and the through-hole has three or more cylindrical portions having different opening diameters. It may be.
  • the thickness of the mesh body 10 is 30 ⁇ m is shown, but the present invention is not limited thereto, and the thickness of the mesh body may be other than 30 ⁇ m.
  • the thickness of the mesh body is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the mesh main body 10 showed the example which is a product made from a polycarbonate, if not only this but a through-hole can be formed and it can be used for a nebulizer, a mesh main body will be another material. May be formed.
  • the material for the mesh body include polysulfone, polyphenylsulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyvinylidene fluoride, polyphenylene ether, polyacetal, polypropylene, polyethylene terephthalate, and the like.
  • the thickness of the reinforcing member 20 is 410 ⁇ m is shown, but the present invention is not limited thereto, and the thickness of the reinforcing member may be other than 410 ⁇ m.
  • the thickness of the reinforcing member is preferably 100 ⁇ m or more, and more preferably 300 ⁇ m or more.
  • the example in which the reinforcing member 20 is made of polycarbonate has been shown. May be formed.
  • the material of the reinforcing member include polysulfone, polyphenylsulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyvinylidene fluoride, polyphenylene ether, polyacetal, polypropylene, polyethylene terephthalate, and the like.
  • through-hole 11 by defocus By performing a helical process in a just focus position, it is made to form a through-hole of a desired shape. Also good.
  • through holes having a desired shape may be formed by changing the mask size by a mask transfer method.
  • NA numerical aperture
  • the diameter of the through hole may be controlled to form a through hole having a desired shape.
  • one through hole 11 is formed by irradiating an ultraviolet laser in two stages.
  • the present invention is not limited to this, and the through hole is formed by three or more stages of laser irradiation. May be.
  • the YAG fourth harmonic is used as the ultraviolet laser.
  • the present invention is not limited to this, and a YAG third harmonic or excimer laser may be used as the ultraviolet laser.
  • the wavelength of the ultraviolet laser is preferably 350 nm or less.
  • light is collected by a telecentric f ⁇ lens
  • the present invention is not limited thereto, and light may be collected by another lens such as an f ⁇ lens or a spherical lens.
  • the present invention is not limited to this, and the laser beam is branched using a diffractive optical element, and a plurality of laser beams are scanned at once. Also good. With this configuration, productivity can be improved.
  • the present invention is not limited to this, and the inspection may not be performed, or only a part of the inspection may be performed.
  • the diameter of the mesh 100, the number of the through holes 11, the interval and arrangement thereof are examples, and can be changed as appropriate.
  • the semiconductor laser is shown as the laser for joining the first film material 50 and the second film material 60.
  • the present invention is not limited to this, and the first film material and the second film material are joined by other lasers. May be.
  • the example in which the first film material 50 transmits the bonding laser and the second film material 60 absorbs the bonding laser has been described.
  • the bonding laser may be transmitted, and the first film material may absorb the bonding laser.
  • cleaning the mesh 100 may be provided.
  • the process of evaluating the spraying performance of the mesh 100 may be provided.
  • the present invention is applicable to a mesh manufacturing method and a mesh in which a plurality of through holes are formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

 メッシュの製造方法は、樹脂製のメッシュ本体と、メッシュ本体を補強する樹脂製の補強部材とを備えるメッシュの製造方法であり、樹脂製の第1フィルム材のメッシュ形成領域にレーザにより複数の貫通孔を形成する工程と、樹脂製の第2フィルム材に開口部を形成する工程と、第1フィルム材および第2フィルム材を積層するとともに、メッシュ形成領域と開口部とを対応する位置に配置する工程と、第1フィルム材および第2フィルム材を開口部の周囲でレーザ溶着によって接合する工程とを備える。

Description

メッシュの製造方法およびメッシュ
 本発明は、メッシュの製造方法およびメッシュに関する。
 従来、多数の微細な貫通孔が形成されたメッシュが知られている(たとえば、特許文献1参照)。
 特許文献1には、液体噴霧装置に設けられるメッシュ部が開示されている。メッシュ部は、樹脂製であり、薄板状の外形を有するとともに、複数の貫通孔が形成されている。このメッシュ部は、薬液を噴霧化するために設けられている。そして、このメッシュ部の周縁部には、中空部を有するドーナツ状の補強部が接合されている。このため、厚みが小さく剛性が低い樹脂製のメッシュ部を補強部で補強することができるので、全体として十分な強度を得ることが可能である。なお、メッシュ部は、たとえば金型によって形成されている。
特開2014-4208号公報
 しかしながら、上記のように、メッシュ部を金型により形成する場合において、貫通孔の開口径や数などを変更するためには、使用する金型を変更する必要がある。すなわち、メッシュ部の設計変更を行うことが困難である。
 本発明は、上記の課題を解決するためになされたものであり、本発明の目的は、設計変更を容易に行うことが可能なメッシュの製造方法およびメッシュを提供することである。
 本発明によるメッシュの製造方法は、樹脂製のメッシュ本体と、メッシュ本体を補強する樹脂製の補強部材とを備えるメッシュの製造方法であり、樹脂製の第1フィルム材のメッシュ形成領域にレーザにより複数の貫通孔を形成する工程と、樹脂製の第2フィルム材に開口部を形成する工程と、第1フィルム材および第2フィルム材を積層するとともに、メッシュ形成領域と開口部とを対応する位置に配置する工程と、第1フィルム材および第2フィルム材を開口部の周囲でレーザ溶着によって接合する工程とを備える。
 このようにメッシュ形成領域の貫通孔をレーザで形成することによって、レーザの照射条件などを変更することにより、メッシュ形成領域の貫通孔の設計変更を容易に行うことができる。これにより、金型などを用いる場合に比べて、貫通孔の開口径や数などが異なるメッシュを安価に製造することができるので、薬液に応じたメッシュを容易に提供することができる。また、第1フィルム材および第2フィルム材をレーザ溶着によって接合することにより、熱影響範囲を狭くすることができるので、メッシュの噴霧性能にばらつきが発生するのを抑制することができる。
 上記メッシュの製造方法において、第1フィルム材および第2フィルム材の接合部の外縁を切り抜く工程を備えていてもよい。
 この場合において、第1フィルム材には複数のメッシュ形成領域が設けられるとともに、第2フィルム材には複数の開口部が形成され、複数のメッシュ形成領域と複数の開口部とがそれぞれ対応する位置に配置され、レーザ溶着によって複数の開口部の周囲を接合した後に、複数の接合部の周囲を切り抜くようにしてもよい。
 上記メッシュの製造方法において、第1フィルム材に貫通孔を形成した後に、第1フィルム材および第2フィルム材を接合するようにしてもよい。
 上記メッシュの製造方法において、第1フィルム材の厚みを計測する工程を備え、第1フィルム材の厚みの計測結果に応じて貫通孔を形成する際のレーザの照射条件を設定するようにしてもよい。
 本発明によるメッシュの製造方法は、樹脂製のメッシュ本体と、メッシュ本体を補強する樹脂製の補強部材とを備えるメッシュの製造方法であり、樹脂製の第1フィルム材に、開口部を有する樹脂製の第2フィルム材を積層する工程と、第1フィルム材のメッシュ形成領域にレーザにより複数の貫通孔を形成する工程と、第1フィルム材および第2フィルム材を開口部の周囲でレーザ溶着によって接合する工程とを備える。
 本発明によるメッシュは、樹脂製のメッシュ本体と、メッシュ本体を補強する樹脂製の補強部材とを備える。メッシュ本体には、メッシュ形成領域が設けられており、メッシュ形成領域にレーザにより複数の貫通孔が形成されている。補強部材は、メッシュ形成領域を取り囲むように環状に形成されている。メッシュ本体および補強部材は、レーザ溶着によって接合されている。
 上記メッシュにおいて、貫通孔は、一方端側の開口径が他方端側の開口径に比べて大きくなるように形成されており、一方端側から他方端側に向けて徐々に縮径するように構成されていてもよい。
 上記メッシュにおいて、貫通孔は、一方端側の開口径が他方端側の開口径に比べて大きくなるように形成されており、円筒状部と、円筒状部から他方端側に向けて徐々に縮径する縮径部とを有していてもよい。
 上記メッシュにおいて、貫通孔は、一方端側の開口径が他方端側の開口径に比べて大きくなるように形成されており、開口径の異なる複数の円筒状部を有していてもよい。
 本発明のメッシュの製造方法およびメッシュによれば、設計変更を容易に行うことができる。
本発明の一実施形態によるメッシュを模式的に示した断面図である。 図1のメッシュを模式的に示した平面図である。 図1のメッシュの貫通孔を拡大して示した断面図である。 本実施形態のメッシュの製造方法を説明するための図であって、第1フィルム材単体に対する加工手順を示した図である。 第1フィルム材がチャックされた状態を模式的に示した断面図である。 第1フィルム材がチャックされた状態を模式的に示した平面図である。 第1フィルム材の1つのメッシュ形成領域に貫通孔が形成された状態を模式的に示した平面図である。 第1フィルム材の全てのメッシュ形成領域に貫通孔が形成された状態を模式的に示した平面図である。 第1フィルム材の全てのメッシュ形成領域に貫通孔が形成された状態を模式的に示した断面図である。 本実施形態のメッシュの製造方法を説明するための図であって、第2フィルム材単体に対する加工手順を示した図である。 第2フィルム材がチャックされた状態を模式的に示した断面図である。 第2フィルム材に1つの開口部が形成された状態を模式的に示した平面図である。 第2フィルム材に全ての開口部が形成された状態を模式的に示した平面図である。 第2フィルム材に全ての開口部が形成された状態を模式的に示した断面図である。 本実施形態のメッシュの製造方法を説明するための図であって、第1フィルム材および第2フィルム材の両方に対する加工手順を示した図である。 第1フィルム材および第2フィルム材が位置決めされた状態を模式的に示した断面図である。 第1フィルム材および第2フィルム材が位置決めされた状態を模式的に示した平面図である。 本実施形態の第1変形例による貫通孔を拡大して示した断面図である。 本実施形態の第2変形例による貫通孔を拡大して示した断面図である。 補強部材の厚みと噴霧量との関係を示したグラフである。 補強部材の開口部の開口径と噴霧量との関係を示したグラフである。 本実施形態の第3変形例による貫通孔を拡大して示した断面図である。
 以下、本発明の一実施形態について図面を参照して説明する。
 -メッシュの構造-
 まず、図1~図3を参照して、本発明の一実施形態によるメッシュ100の構造について説明する。このメッシュ100は、たとえば薬液を噴霧化するためにネブライザ(吸入器)に設けられる。
 メッシュ100は、図1および図2に示すように、メッシュ本体10と、メッシュ本体10を補強する補強部材20とを備える。このメッシュ100は、平面的に見て円形に形成され、その直径がたとえば6mmである。なお、図1および図2は、メッシュ100を説明するために模式的に示した図であり、貫通孔11の数やその寸法関係などは実際のものとは異なっている。
 メッシュ本体10は、樹脂製の薄いフィルム状部材であり、平面的に見て円形に形成されている。このメッシュ本体10は、たとえば、透明なポリカーボネート製であり、厚みが30μmであるとともに、直径が6mmである。このため、メッシュ本体10は、接合用のレーザを透過可能に構成されている。
 また、メッシュ本体10の中央にはメッシュ形成領域T1が設けられており、そのメッシュ形成領域T1に多数の微細な貫通孔11が形成されている。メッシュ形成領域T1は、平面的に見て円形の領域であり、その直径がたとえば2.5mmである。このメッシュ形成領域T1には、たとえば、紫外線レーザにより2000個程度の貫通孔11が形成されている。
 貫通孔11は、図3に示すように、一方端側の開口径R1が他方端側の開口径R2に比べて大きくなるように形成されている。すなわち、下面10a側の入口開口の開口径R1が上面10b側の出口開口の開口径R2に比べて大きくなっている。なお、メッシュ100がネブライザに装着された場合には、入口開口から薬液が流入し、噴霧化した薬液が出口開口から噴出される。たとえば、開口径R1は25μm程度であり、開口径R2は3μm程度である。
 また、貫通孔11は、下面10a側に形成された縮径部111と、縮径部111から連なるように形成された円筒状部112と、円筒状部112から連なるように形成された縮径部113とを有する。
 縮径部111は、下面10a側から上面10b側に向けて縮径するように形成されている。この縮径部111は、断面形状が内側に膨らむように曲線状に形成され、下面10a側に比べて上面10b側の縮径度合いが小さくなるように形成されている。
 円筒状部112は、厚み方向(Z方向)における開口径がほぼ同じになっている。この円筒状部112は、縮径部111および113の間に配置されている。
 縮径部113は、上面10b側に配置され、下面10a側から上面10b側に向けて縮径するように形成されている。この縮径部113は、断面形状が内側に膨らむように曲線状に形成され、下面10a側に比べて上面10b側の縮径度合いが小さくなるように形成されている。
 このため、貫通孔11は、円筒状部112を挟んだ2つの縮径部111および113で縮径するように構成されており、2段階で縮径するようになっている。
 補強部材20は、図1および図2に示すように、樹脂製のフィルム状部材であり、平面的に見て円形に形成されている。なお、補強部材20の直径(外径)は、たとえば6mmである。この補強部材20は、たとえば黒色のポリカーボネート製であり、メッシュ本体10に比べて厚みが大きくなっており、たとえば厚みが410μmである。また、補強部材20は、接合用のレーザを吸収可能に構成されている。
 また、補強部材20は、環状に形成されており、内部に開口部21を有する。開口部21は、平面的に見て円形に形成され、その開口径がたとえば2.7mmである。開口部21およびメッシュ形成領域T1は対応する位置に配置されており、環状の補強部材20によりメッシュ形成領域T1が取り囲まれている。このため、メッシュ形成領域T1の貫通孔11から薬液が噴出された場合には、その薬液が補強部材20の開口部21を通過するようになっている。
 そして、メッシュ本体10および補強部材20は、レーザ溶着によって接合されている。具体的には、環状の補強部材20がメッシュ本体10の外縁部に積層された状態で、その接触界面が溶着接合されている。このように、厚みが小さく剛性が低い樹脂製のメッシュ本体10を補強部材20で補強することにより、メッシュ100全体として十分な強度を得ることが可能である。
 -メッシュの製造方法-
 次に、図1~図17を参照して、本実施形態によるメッシュ100の製造方法について説明する。なお、以下では、第1フィルム材50および第2フィルム材60のそれぞれの単体に対する加工手順を説明した後に、第1フィルム材50および第2フィルム材60の両方に対する加工手順を説明する。
 [第1フィルム材に対する加工手順]
 まず、図4のステップS1において、第1フィルム材50を洗浄する。なお、第1フィルム材50は、たとえば、透明なポリカーボネート製であり、厚みが30μmである。また、第1フィルム材50のサイズは、特に限定されないが、取り扱いが容易なようにたとえばA5またはA6である。この洗浄工程では、IPA(イソプロピルアルコール)などで数十秒~数分程度の超音波洗浄を第1フィルム材50に対して行う。その後、エアガンなどにより、第1フィルム材50からIPAを吹き飛ばす。
 次に、ステップS2において、図5に示すように、第1フィルム材50をチャック台200に載置する。そして、真空チャックで第1フィルム材50をチャック台200に固定する。なお、チャック台200として多孔質セラミックチャックを用いることにより、第1フィルム材50の全面をチャックすることが好ましい。これは、第1フィルム材50が全面的に吸着されるため、後述する貫通孔11の形成時に、その貫通孔11からエアが抜けても、第1フィルム材50が浮き上がるのを抑制することができるためである。これにより、加工対象である第1フィルム材50の位置がずれるのを抑制することができるので、形成される貫通孔11の形状がばらつくのを抑制することが可能である。なお、チャック台200は、XYステージに設けられている。
 次に、ステップS3において、第1フィルム材50のメッシュ形成領域T1の厚みを計測する。メッシュ形成領域T1は、第1フィルム材50の面内において予め設定された円形(たとえば直径が2.5mm)の領域である。具体的には、メッシュ形成領域T1は、図6に示すように、第1フィルム材50に複数(たとえば320個)設けられ、千鳥状に配置されている。なお、図6は模式図であり、数やその寸法関係などは実際のものとは異なっている。後述する各図についても同様である。また、厚みを計測する計測装置の一例としては、触針式の段差計や光学式の膜厚計などを挙げることができる。また、第1フィルム材50をチャックする前にマイクロメータなどで厚みを計測してもよい。
 ここで、第1フィルム材50は、フィルム毎に厚みにばらつきがあるとともに、同一のフィルム内においてもばらつきがある。たとえば、最大で5~6μm程度のばらつきがある。そこで、計測した厚みに応じて後述する紫外線レーザの照射条件を設定することにより、貫通孔11の形状(出口径)がばらつくのを抑制することが可能である。
 具体例としては、予め基準として設定されたショット数を計測した厚みに応じて補正する。すなわち、計測された厚みが基準厚よりも大きい場合には、ショット数を基準値から増やし、計測された厚みが基準厚よりも小さい場合には、ショット数を基準値から減らすようにする。なお、ショット数以外のパラメータ(たとえば、出力)を変更するようにしてもよい。
 次に、ステップS4において、紫外線レーザにより所定のメッシュ形成領域T1に対して多数の貫通孔11を形成する。たとえば、所定のメッシュ形成領域T1内に、2000個の貫通孔11を30μm間隔で千鳥状に形成する。
 本実施形態では、紫外線レーザとしてYAG第4高調波(波長266nm、パルス幅10~15ns、繰り返し周波数10kHz)を用い、ガルバノミラーで単一レーザビームをX方向およびY方向に走査してテレセントリックfθレンズで集光する構成で加工を行う。なお、レンズは、開口数NA(Numerical Aperture)が高い(たとえば、0.18)ものを用いる。また、上記したように、所定のメッシュ形成領域T1の厚みに応じて紫外線レーザの照射条件を補正する。
 ここで、本実施形態では、貫通孔11を形成するために、デフォーカスした状態で紫外線レーザを照射するとともに、ジャストフォーカスした状態で紫外線レーザを照射する。すなわち、2段階で紫外線レーザを照射することにより、1つの貫通孔11を形成する。なお、テレセントリックfθレンズを用いることにより、走査しても第1フィルム材50に対して垂直に紫外線レーザが集光されるようになっており、フォーカス位置を変更した場合であっても、紫外線レーザが照射される位置を同じにすることが可能である。
 具体的には、まず、第1フィルム材50の表面がジャストフォーカス位置に合致するように、チャック台200が設けられたXYステージをZ方向に移動させる。その後、XYステージを所定のデフォーカス量だけZ方向に移動させる。デフォーカス量は、たとえば0.06mmである。そして、出力をたとえば50mWとして1段階目のレーザ照射を行う。すなわち、デフォーカスした状態で、形成する孔数(2000個)分の1段階目の加工を行う。
 その後、第1フィルム材50の表面がジャストフォーカス位置に合致するようにXYステージをZ方向に移動させる。そして、出力をたとえば10mWとして2段階目のレーザ照射を行う。すなわち、ジャストフォーカスした状態で、形成する孔数(2000個)分の2段階目の加工を行う。これにより、図3に示すような形状の貫通孔11がメッシュ形成領域T1に多数形成される。なお、入口開口の開口径R1は25μm程度であり、出口開口の開口径R2は3μm程度である。
 このようにして、図7に示すように、1つのメッシュ形成領域T1に多数の貫通孔11が形成される。そして、1つのメッシュ形成領域T1に対する加工が完了されると、ステップS5において、全てのメッシュ形成領域T1に対する加工が完了したか否かが判断される。そして、全てのメッシュ形成領域T1に対して加工が完了されていない場合には、ステップS6に移る。
 ステップS6では、XYステージにより第1フィルム材60が水平方向にたとえば7mm程度移動されることにより、未加工のメッシュ形成領域T1が加工領域に配置され、ステップS4に戻る。これにより、第1フィルム材50の各メッシュ形成領域T1にそれぞれ多数の貫通孔11が形成される。
 そして、図8および図9に示すように、全てのメッシュ形成領域T1に対して加工が完了されると(ステップS5:Yes)、ステップS7に移り、形成された貫通孔11の検査を行う。
 貫通孔11の検査は、まず、画像処理により入口開口の開口径R1を計測する。なお、全ての貫通孔11の開口径R1を計測するようにしてもよいし、一部の貫通孔11を抜き出して開口径R1を計測するようにしてもよい。
 その後、第1フィルム材50をチャック台200から取り外し、第1フィルム材50を裏返しにしてチャック台200に固定する。そして、画像処理により出口開口の開口径R2を計測する。なお、全ての貫通孔11の開口径R2を計測するようにしてもよいし、一部の貫通孔11を抜き出して開口径R2を計測するようにしてもよい。
 このようにして、第1フィルム材50単体に対する加工が行われる。
 [第2フィルム材に対する加工手順]
 まず、図10のステップS11において、第2フィルム材60を洗浄する。なお、第2フィルム材60は、たとえば、黒色のポリカーボネート製であり、厚みが410μmである。また、第2フィルム材60のサイズは、特に限定されないが、たとえば第1フィルム材50と同じサイズ(A5またはA6)である。この洗浄工程では、IPAなどで数十秒~数分程度の超音波洗浄を第2フィルム材60に対して行う。その後、エアガンなどにより、第2フィルム材60からIPAを吹き飛ばす。
 次に、ステップS12において、図11に示すように、第2フィルム材60をチャック台210に載置する。そして、真空チャックで第2フィルム材60をチャック台210に固定する。なお、チャック台210として多孔質セラミックチャックを用いることにより、第2フィルム材60の全面をチャックすることが好ましい。なお、チャック台210は、XYステージに設けられている。
 そして、ステップS13において、図12に示すように、上記したメッシュ形成領域T1と対応する位置に開口部21を形成する。なお、開口部21は、たとえば、開口径が2.7mmであり、ポンチやレーザマーカなどによって形成される。
 その後、1つの開口部21が形成されると、ステップS14において、全ての開口部21が形成されたか否かが判断される。なお、全ての開口部21とは、予め設定された数の開口部である。また、予め設定された数は、たとえば、第1フィルム材50のメッシュ形成領域T1の数と同じ数であって320個である。そして、全ての開口部21が形成されていない場合には、ステップS15に移る。
 ステップS15では、XYステージにより第2フィルム材60が水平方向にたとえば7mm程度移動され、ステップS13に戻る。これにより、第1フィルム材50の複数のメッシュ形成領域T1にそれぞれ対応するように、複数の開口部21が第2フィルム材60に形成される。なお、第2フィルム材60を搬送するXYステージは、第1フィルム材50を搬送するXYステージと駆動性能が同等であることが好ましい。これは、第1フィルム材50および第2フィルム材60を積層したときに、開口部21と貫通孔11とが位置ずれするのを抑制するためである。
 そして、図13および図14に示すように、全ての開口部21が形成されると(ステップS14:Yes)、ステップS16に移り、形成された開口部21の検査を行う。
 開口部21の検査は、たとえば画像処理によりその開口径を計測する。なお、全ての開口部21の開口径を計測するようにしてもよいし、一部の開口部21を抜き出して開口径を計測するようにしてもよい。また、開口部21をポンチで形成する場合には、そのポンチの位置(たとえば、ポンチが下死点まで到達したか否か)を確認することにより、開口部21の検査としてもよい。
 このようにして、第2フィルム材60単体に対する加工が行われる。
 [第1フィルム材および第2フィルム材に対する加工手順]
 まず、図15のステップS21において、第1フィルム材50および第2フィルム材60が位置決めされる。具体的には、図16および図17に示すように、載置台220上に、上記の加工が施された第2フィルム材60が載置される。そして、第2フィルム材60上に、上記の加工が施された第1フィルム材50が積層される。このとき、貫通孔11の入口開口側が上方に配置され、第1フィルム材50が第2フィルム材60に対して位置決めされる。なお、位置決めは、たとえば、第1フィルム材50および第2フィルム材60の所定の位置、例えば四隅に位置決め孔(図示省略)を形成し、その位置決め孔にピンを挿入することにより行われる。
 その後、板状部材221(図16参照)により、第1フィルム材50および第2フィルム材60を加圧する。なお、板状部材221は、接合用のレーザを透過するように構成されている。また、図17では、見やすさを考慮して板状部材221の図示を省略した。
 そして、ステップS22において、第1フィルム材50および第2フィルム材60がレーザ溶着によって接合される。なお、接合用のレーザは、板状部材221側から第2フィルム材60に向けて照射され、板状部材221および第1フィルム材50を透過して第2フィルム材60で吸収される。具体的には、各開口部21の周囲の環状領域T2(図17参照)が溶着によって接合される。本実施形態では、波長が808nmで連続出力の半導体レーザにより第1フィルム材50および第2フィルム材60が溶着される。
 そして、ステップS23において、画像処理などにより接合部の検査を行う。その後、ステップS24において、各接合部の外縁(たとえば、環状領域T2の外周の僅かに内側)がポンチなどにより切り抜かれる。これにより、図1および図2に示すようなメッシュ100が得られる。すなわち、本実施形態では、1枚の第1フィルム材50と1枚の第2フィルム材60とから320個のメッシュ100が形成される。
 -効果-
 本実施形態では、上記のように、メッシュ形成領域T1の貫通孔11を紫外線レーザで形成することによって、その紫外線レーザの照射条件などを変更することにより、メッシュ形成領域T1の貫通孔11の設計変更を容易に行うことができる。これにより、金型などを用いる場合に比べて、貫通孔11の開口径や数などが異なるメッシュ100を安価に製造することができるので、薬液に応じたメッシュ100を容易に提供することができる。また、第1フィルム材50および第2フィルム材60をレーザ溶着により接合することによって、熱影響範囲を狭くすることができるので、メッシュ100の噴霧性能にばらつきが発生するのを抑制することができる。
 また、本実施形態では、第1フィルム材50の複数のメッシュ形成領域T1に多数の貫通孔11を一括して形成するとともに、第2フィルム材60に複数の開口部21を一括して形成し、第1フィルム材50および第2フィルム材60をレーザ溶着により接合して複数のメッシュ100を抜き出すことによって、生産性の向上を図ることができる。
 また、本実施形態では、貫通孔11を形成した後に、第1フィルム材50および第2フィルム材60を溶着することによって、第1フィルム材50が溶着による熱影響を受ける前に貫通孔11を形成することができるので、貫通孔11の形状がばらつくのを抑制することができる。
 また、本実施形態では、メッシュ形成領域T1の厚みに応じて紫外線レーザの照射条件を補正することによって、貫通孔11の形状(出口径)がばらつくのを抑制することができる。
 また、本実施形態では、2段階で縮径するように円筒状部112を有する貫通孔11を形成することによって、メッシュ100からの噴霧量の増加を図りながら、噴霧径が大きくなるのを抑制することができる。なお、詳細については後述する。
 また、本実施形態では、第2フィルム材60が接合用のレーザを吸収することによって、第1フィルム材50が熱影響を受けるのを抑制することができるので、メッシュ形成領域T1が変形や収縮するのを抑制することができる。
 また、本実施形態では、レーザ溶着時に板状部材221により加圧することによって、熱影響範囲を狭くすることができるので、複数個を並列で処理する際に各開口部21の周囲の環状領域T2の溶着時に収縮などによる位置ずれを抑制することができる。これにより、並列で処理することが可能で生産性が向上するとともに、噴霧性能のばらつきを抑制することができる。
 -貫通孔の形状-
 本実施形態では、2段階で縮径するように円筒状部112を有する貫通孔11(図3参照)を示したが、これに限らず、図18に示す第1変形例による貫通孔11aのように円筒状部が形成されていなくてもよい。この貫通孔11aは、一方端側の開口径R3が他方端側の開口径R4に比べて大きくなるように形成されており、一方端側から他方端側に向けて徐々に縮径するように構成されている。すなわち、貫通孔11aは、厚み方向における全長にわたり連続的に縮径するように形成されている。この貫通孔11aは、たとえば、開口数NAが低い(たとえば、0.025)レンズを用い、出力を80mWとして0.3mmのデフォーカスで1段階目の加工を行い、出力を80mWとしてジャストフォーカスで2段階目の加工を行うことにより形成することが可能である。
 ここで、連続的に縮径する場合には、図19に示す第2変形例による貫通孔11bのように、一方端側の開口径R5が大きくなるに連れて他方端側の開口径R6が大きくなる。この貫通孔11bは、一方端側から他方端側に向けて徐々に縮径するように構成されており、貫通孔11aに比べて全体的に開口径が大きくなっている。
 そこで、貫通孔11~11bを有するメッシュについて噴霧性能の評価実験を行い、その結果を表1に示す。なお、2段階で縮径するように円筒状部112を有する貫通孔11(図3参照)では、入口開口の開口径R1が約25μmであり、出口開口の開口径R2が約3.3μmである。また、連続的に縮径する貫通孔11a(図18参照)では、入口開口の開口径R3が約25μmであり、出口開口の開口径R4が約3.3μmである。また、連続的に縮径する貫通孔11b(図19参照)では、入口開口の開口径R5が約28μmであり、出口開口の開口径R6が約4.9μmである。
Figure JPOXMLDOC01-appb-T000001
 
 この実験では、貫通孔11を有するメッシュを用いて、パルミコート(登録商標)、アレベール(登録商標)、ムコフィリン(登録商標)および浄水をそれぞれ噴射し、その際の噴霧量および噴霧径の計測を行った。貫通孔11aを有するメッシュおよび貫通孔11bを有するメッシュについても同様である。なお、貫通孔11aを有するメッシュでムコフィリンを噴射した場合には、噴霧量が少なく、噴霧径の計測ができなかった。
 表1に示す実験結果から、貫通孔11bを有するメッシュは、貫通孔11aを有するメッシュに比べて、噴霧量が多くなるとともに、噴霧径が大きくなることが判明した。これは、貫通孔11bの出口開口の開口径R6が貫通孔11aの出口開口の開口径R4に比べて大きいためであると考えられる。すなわち、連続的に縮径する場合には、噴霧量の増加を図ると、噴霧径が大きくなってしまう。
 そして、貫通孔11を有するメッシュでは、貫通孔11aを有するメッシュに比べて噴霧量を多くするとともに、貫通孔11bを有するメッシュに比べて噴霧径を小さくすることができた。したがって、2段階で縮径する貫通孔11を有するメッシュでは、噴霧量の増加を図りながら、噴霧径が大きくなるのを抑制することができるので、噴霧性能が好ましいことが判明した。
 なお、貫通孔11を有するメッシュと貫通孔11bを有するメッシュとでは、浄水についての噴霧径の値が近くなっているが、薬液(パルミコート、アレベール、ムコフィリン)については噴霧径の値が顕著に異なっている。つまり、貫通孔11を有するメッシュでは、特に薬液を噴霧する場合に噴霧性能がよいといえる。なお、浄水と薬液とのこのような違いは、粘性や表面張力の違いに起因するものと考えられる。
 -補強部材の形状-
 次に、補強部材の形状と噴霧量との関係について説明する。なお、以下では、補強部材の厚みと噴霧量との関係を説明した後に、補強部材の開口部の開口径と噴霧量との関係について説明する。
 [厚みについて]
 まず、30μmの間隔で千鳥状に2800個の貫通孔を有するメッシュ本体を複数作製した。なお、貫通孔は、入口開口の開口径が25μmであり、出口開口の開口径が3.5μmである。また、厚みが異なる補強部材を複数作製した。なお、各補強部材は、開口部の開口径が2.3mmであり同じになっている。そして、メッシュ本体および補強部材を接合することにより、補強部材の厚みが異なる複数のメッシュを作製した。そして、各メッシュの噴霧量を計測し、その結果を図20に示した。
 図20に示すように、補強部材の厚みが大きく800μm程度である場合、および、補強部材の厚みが小さく200μm程度である場合には、噴霧量が低下することが判明した。なお、各メッシュにおける貫通孔の総開口面積は同じである。したがって、補強部材の厚みとしては、300μm~600μmが好ましい。
 [開口部の開口径について]
 まず、上記と同様のメッシュ本体を複数作製した。また、開口径が異なる補強部材を複数作製した。なお、各補強部材は、厚みが440μmであり同じになっている。そして、メッシュ本体および補強部材を接合することにより、開口径が異なる複数のメッシュを作製した。そして、各メッシュの噴霧量を計測し、その結果を図21に示した。
 図21に示すように、開口径が大きく4mm程度である場合、および、開口径が小さく1.6mm程度である場合には、噴霧量が低下することが判明した。なお、各メッシュにおける貫通孔の総開口面積は同じである。したがって、補強部材の開口径としては、2.3mm~3.2mが好ましい。
 -他の実施形態-
 なお、今回開示した実施形態は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、本実施形態では、メッシュ本体10と補強部材20とがレーザ溶着によって接合される例を示したが、これに限らず、メッシュ本体と補強部材とがその他の方法によって接合されていてもよい。また、補強部材が設けられていなくてもよい。
 また、本実施形態では、円筒状部112と縮径部113とを有する貫通孔11を示したが、これに限らず、図22に示す第3変形例による貫通孔11cのように、開口径の異なる複数の円筒状部111cおよび112cが形成されていてもよい。この貫通孔11cは、一方端側(入口開口)の開口径が他方端側(出口開口)の開口径に比べて大きくなるように形成されている。また、貫通孔11cは、一方端側に形成された円筒状部111cと、他方端側に形成された円筒状部112cとを有しており、円筒状部111cおよび112cが段差部を介して連なるようになっている。円筒状部111cの開口径が円筒状部112cの開口径に比べて大きくなっており、円筒状部111cおよび112cはそれぞれ厚み方向における開口径がほぼ同じである。なお、貫通孔11cは、開口径が異なる2つの円筒状部111cおよび112cを有する例を示したが、これに限らず、貫通孔は、開口径が異なる3つ以上の円筒状部を有していてもよい。
 また、本実施形態では、メッシュ本体10の厚みが30μmである例を示したが、これに限らず、メッシュ本体の厚みが30μm以外であってもよい。なお、メッシュ本体の厚みは、好ましくは100μm以下であり、より好ましくは50μm以下である。
 また、本実施形態では、メッシュ本体10がポリカーボネート製である例を示したが、これに限らず、貫通孔を形成可能であり、ネブライザに用いることが可能であれば、メッシュ本体がその他の材料により形成されていてもよい。メッシュ本体の材料の一例としては、ポリサルホン、ポリフェニルサルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルファイド、ポリフッ化ビニリデン、ポリフェニレンエーテル、ポリアセタール、ポリプロピレン、ポリエチレンテレフタレートなどを挙げることができる。
 また、本実施形態では、補強部材20の厚みが410μmである例を示したが、これに限らず、補強部材の厚みが410μm以外であってもよい。なお、補強部材の厚みは、好ましくは100μm以上であり、より好ましくは300μm以上である。
 また、本実施形態では、補強部材20がポリカーボネート製である例を示したが、これに限らず、メッシュ本体に接合可能であり、ネブライザに用いることが可能であれば、補強部材がその他の材料により形成されていてもよい。補強部材の材料の一例としては、ポリサルホン、ポリフェニルサルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルファイド、ポリフッ化ビニリデン、ポリフェニレンエーテル、ポリアセタール、ポリプロピレン、ポリエチレンテレフタレートなどを挙げることができる。
 また、本実施形態では、デフォーカスにより貫通孔11を形成する例を示したが、これに限らず、ジャストフォーカス位置でヘリカル加工を行うことにより、所望の形状の貫通孔を形成するようにしてもよい。同様に、マスク転写法でマスクサイズを変えることにより、所望の形状の貫通孔を形成するようにしてもよい。同様に、マスクサイズを連続的に可変し、レーザビーム径を変えることで開口数NAを変えることにより、貫通孔の縮径角度を制御し所望の形状の貫通孔を形成するようにしてもよい。
 また、本実施形態では、2段階で紫外線レーザを照射することにより1つの貫通孔11を形成する例を示したが、これに限らず、3段階以上のレーザ照射で貫通孔を形成するようにしてもよい。
 また、本実施形態では、紫外線レーザとしてYAG第4高調波を用いたが、これに限らず、紫外線レーザとしてYAG第3高調波やエキシマレーザを用いてもよい。なお、紫外線レーザの波長は350nm以下が好ましい。
 また、本実施形態では、テレセントリックfθレンズで集光する例を示したが、これに限らず、fθレンズや球面レンズなどのその他のレンズで集光するようにしてもよい。
 また、本実施形態では、単一レーザビームを走査する例を示したが、これに限らず、回折光学素子などを用いてレーザビームを分岐させ、複数のレーザビームを一括で走査するようにしてもよい。このように構成すれば、生産性の向上を図ることができる。
 また、本実施形態では、ガルバノミラーで走査することにより、1つのメッシュ形成領域T1に多数の貫通孔11を形成する例を示したが、これに限らず、ガルバノミラーで走査することにより、複数のメッシュ形成領域にそれぞれ多数の貫通孔を形成するようにしてもよい。このように構成すれば、XYステージを動作させる回数を減らすことができるので、加工時間の短縮を図ることができる。
 また、本実施形態では、各種検査を行う例を示したが、これに限らず、検査を行わないようにしてもよいし、一部の検査のみを行うようにしてもよい。
 また、本実施形態において、メッシュ100の直径、貫通孔11の数およびその間隔や配置などはいずれも一例であって、適宜変更可能である。
 また、本実施形態では、第1フィルム材50および第2フィルム材60を接合するレーザとして半導体レーザを示したが、これに限らず、第1フィルム材および第2フィルム材がその他のレーザにより接合されていてもよい。
 また、本実施形態では、第1フィルム材50および第2フィルム材60を接合するレーザ接合の溶着領域として、各開口部21の周囲の環状領域T2が溶着によって接合されることを示したが、環状領域T2を溶着する前に、線状もしくは点状の溶着箇所を単一もしくは複数箇所形成してもよい。このような構成にすれば、線状もしくは点状の溶着箇所により仮止めすることができるので、環状領域T2をレーザ溶着した時の収縮を更に抑えることができる。したがって、開口部21に対する貫通孔11の位置精度の向上を図ることができる。
 また、本実施形態では、貫通孔11が形成された第1フィルム材50と開口部21が形成された第2フィルム材60とを積層する例を示したが、これに限らず、開口部が形成された第2フィルム材と第1フィルム材とを積層した状態で、第1フィルム材に貫通孔を形成するようにしてもよい。このように構成すれば、開口部に対する貫通孔の位置精度の向上を図ることができる。
 また、本実施形態では、第1フィルム材50が接合用のレーザを透過し、第2フィルム材60が接合用のレーザを吸収する例を示したが、これに限らず、第2フィルム材が接合用のレーザを透過し、第1フィルム材が接合用のレーザを吸収するようにしてもよい。
 また、本実施形態において、切り抜いて複数のメッシュ100を形成した後に、そのメッシュ100を洗浄する工程が設けられていてもよい。また、メッシュ100の噴霧性能を評価する工程が設けられていてもよい。
 本発明は、複数の貫通孔が形成されたメッシュの製造方法およびメッシュに利用可能である。
 10   メッシュ本体
 11   貫通孔
 11a  貫通孔
 11b  貫通孔
 11c  貫通孔
 20   補強部材
 21   開口部
 50   第1フィルム材
 60   第2フィルム材
 100  メッシュ
 111c 円筒状部
 112  円筒状部
 112c 円筒状部
 113  縮径部
 T1   メッシュ形成領域

Claims (10)

  1.  樹脂製のメッシュ本体と、前記メッシュ本体を補強する樹脂製の補強部材とを備えるメッシュの製造方法であって、
     樹脂製の第1フィルム材のメッシュ形成領域にレーザにより複数の貫通孔を形成する工程と、
     樹脂製の第2フィルム材に開口部を形成する工程と、
     前記第1フィルム材および前記第2フィルム材を積層するとともに、前記メッシュ形成領域と前記開口部とを対応する位置に配置する工程と、
     前記第1フィルム材および前記第2フィルム材を前記開口部の周囲でレーザ溶着によって接合する工程とを備えることを特徴とするメッシュの製造方法。
  2.  請求項1に記載のメッシュの製造方法において、
     前記第1フィルム材および前記第2フィルム材の接合部の外縁を切り抜く工程を備えることを特徴とするメッシュの製造方法。
  3.  請求項2に記載のメッシュの製造方法において、
     前記第1フィルム材には複数の前記メッシュ形成領域が設けられるとともに、前記第2フィルム材には複数の前記開口部が形成され、前記複数のメッシュ形成領域と前記複数の開口部とがそれぞれ対応する位置に配置され、
     レーザ溶着によって前記複数の開口部の周囲を接合した後に、複数の接合部の周囲を切り抜くことを特徴とするメッシュの製造方法。
  4.  請求項1~3のいずれか1つに記載のメッシュの製造方法において、
     前記第1フィルム材に前記貫通孔を形成した後に、前記第1フィルム材および前記第2フィルム材を接合することを特徴とするメッシュの製造方法。
  5.  請求項1~4のいずれか1つに記載のメッシュの製造方法において、
     前記第1フィルム材の厚みを計測する工程を備え、
     前記第1フィルム材の厚みの計測結果に応じて前記貫通孔を形成する際のレーザの照射条件を設定することを特徴とするメッシュの製造方法。
  6.  樹脂製のメッシュ本体と、前記メッシュ本体を補強する樹脂製の補強部材とを備えるメッシュの製造方法であって、
     樹脂製の第1フィルム材に、開口部を有する樹脂製の第2フィルム材を積層する工程と、
     前記第1フィルム材のメッシュ形成領域にレーザにより複数の貫通孔を形成する工程と、
     前記第1フィルム材および前記第2フィルム材を前記開口部の周囲でレーザ溶着によって接合する工程とを備えることを特徴とするメッシュの製造方法。
  7.  樹脂製のメッシュ本体と、前記メッシュ本体を補強する樹脂製の補強部材とを備えるメッシュであって、
     前記メッシュ本体には、メッシュ形成領域が設けられており、前記メッシュ形成領域にレーザにより複数の貫通孔が形成され、
     前記補強部材は、前記メッシュ形成領域を取り囲むように環状に形成され、
     前記メッシュ本体および前記補強部材は、レーザ溶着によって接合されていることを特徴とするメッシュ。
  8.  請求項7に記載のメッシュにおいて、
     前記貫通孔は、一方端側の開口径が他方端側の開口径に比べて大きくなるように形成されており、前記一方端側から前記他方端側に向けて徐々に縮径するように構成されていることを特徴とするメッシュ。
  9.  請求項7に記載のメッシュにおいて、
     前記貫通孔は、一方端側の開口径が他方端側の開口径に比べて大きくなるように形成されており、円筒状部と、前記円筒状部から前記他方端側に向けて徐々に縮径する縮径部とを有することを特徴とするメッシュ。
  10.  請求項7に記載のメッシュにおいて、
     前記貫通孔は、一方端側の開口径が他方端側の開口径に比べて大きくなるように形成されており、開口径の異なる複数の円筒状部を有することを特徴とするメッシュ。
     
PCT/JP2015/082376 2014-12-05 2015-11-18 メッシュの製造方法およびメッシュ WO2016088555A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15865808.8A EP3210753B1 (en) 2014-12-05 2015-11-18 Mesh manufacturing method and mesh
BR112017011775-4A BR112017011775B1 (pt) 2014-12-05 2015-11-18 Método para produzir uma malha incluindo um corpo principal de malha de resina, e um membro de reforço de resina configurado para reforçar o corpo principal de malha
KR1020177014838A KR101850259B1 (ko) 2014-12-05 2015-11-18 메시의 제조 방법 및 메시
CN201580065307.2A CN107000327B (zh) 2014-12-05 2015-11-18 网孔体的制造方法以及网孔体
US15/532,488 US10525658B2 (en) 2014-12-05 2015-11-18 Method for producing mesh, and mesh

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-247338 2014-12-05
JP2014247338A JP6415953B2 (ja) 2014-12-05 2014-12-05 メッシュの製造方法

Publications (1)

Publication Number Publication Date
WO2016088555A1 true WO2016088555A1 (ja) 2016-06-09

Family

ID=56091505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082376 WO2016088555A1 (ja) 2014-12-05 2015-11-18 メッシュの製造方法およびメッシュ

Country Status (7)

Country Link
US (1) US10525658B2 (ja)
EP (1) EP3210753B1 (ja)
JP (1) JP6415953B2 (ja)
KR (1) KR101850259B1 (ja)
CN (1) CN107000327B (ja)
BR (1) BR112017011775B1 (ja)
WO (1) WO2016088555A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3112129B1 (en) * 2015-07-01 2019-12-11 W.L. Gore & Associates GmbH Method for the production of a vent
CN112763486B (zh) * 2020-11-30 2022-05-10 成都飞机工业(集团)有限责任公司 一种基于线激光扫描的复材壁板阵列孔检测方法
DE102021117021A1 (de) * 2021-07-01 2023-01-05 Aero Pump Gmbh Kunststoffbearbeitungsverfahren
CN113579507B (zh) * 2021-07-01 2023-06-23 大族激光科技产业集团股份有限公司 网孔加工方法及加工设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306137A (ja) * 2003-03-27 2004-11-04 Kyocera Corp 貫通孔の形成方法
JP2006152138A (ja) * 2004-11-30 2006-06-15 Mitsubishi Polyester Film Copp 工程紙用ポリエステルフィルム
WO2011148492A1 (ja) * 2010-05-27 2011-12-01 三菱電機株式会社 レーザ加工方法およびレーザ加工機
JP2013169748A (ja) * 2012-02-22 2013-09-02 Toyota Industries Corp 車両用窓構体
JP2013203047A (ja) * 2012-03-29 2013-10-07 Sumitomo Chemical Co Ltd 中空成形体および中空成形体の製造方法
JP2014004208A (ja) * 2012-06-26 2014-01-16 Omron Healthcare Co Ltd 液体噴霧装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297226A (ja) * 2005-04-18 2006-11-02 Sumitomo Electric Ind Ltd 噴霧器用メッシュノズルおよび噴霧器
NZ563360A (en) * 2005-05-25 2011-04-29 Aerogen Inc Aerosolising liquid using an apertured membrane aligned within a peizoelectric ring
DE102008054721B3 (de) * 2008-12-16 2010-04-15 Lisa Dräxlmaier GmbH Lichtstreuender Dekorverbund, Verfahren zu seiner Herstellung sowie seine Verwendung für eine Interieurkomponente für ein Fahrzeug
JP2012111076A (ja) * 2010-11-22 2012-06-14 Kao Corp 積層シート
CN107030957B (zh) 2012-03-29 2019-05-28 住友化学株式会社 中空成形体的制造方法、中空成形体及制造装置
JP6071122B2 (ja) * 2012-03-29 2017-02-01 住友化学株式会社 中空成形体の製造方法、中空成形体および製造装置
CN103769337B (zh) * 2014-01-15 2016-03-09 江苏大学 一种中频超声雾化器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306137A (ja) * 2003-03-27 2004-11-04 Kyocera Corp 貫通孔の形成方法
JP2006152138A (ja) * 2004-11-30 2006-06-15 Mitsubishi Polyester Film Copp 工程紙用ポリエステルフィルム
WO2011148492A1 (ja) * 2010-05-27 2011-12-01 三菱電機株式会社 レーザ加工方法およびレーザ加工機
JP2013169748A (ja) * 2012-02-22 2013-09-02 Toyota Industries Corp 車両用窓構体
JP2013203047A (ja) * 2012-03-29 2013-10-07 Sumitomo Chemical Co Ltd 中空成形体および中空成形体の製造方法
JP2014004208A (ja) * 2012-06-26 2014-01-16 Omron Healthcare Co Ltd 液体噴霧装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3210753A4 *

Also Published As

Publication number Publication date
JP2016107515A (ja) 2016-06-20
CN107000327B (zh) 2019-11-22
US10525658B2 (en) 2020-01-07
JP6415953B2 (ja) 2018-10-31
KR20170082558A (ko) 2017-07-14
KR101850259B1 (ko) 2018-04-18
BR112017011775A2 (pt) 2017-12-26
CN107000327A (zh) 2017-08-01
EP3210753A1 (en) 2017-08-30
EP3210753A4 (en) 2018-03-14
US20180264773A1 (en) 2018-09-20
BR112017011775B1 (pt) 2022-03-29
EP3210753B1 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
WO2016088555A1 (ja) メッシュの製造方法およびメッシュ
KR102155259B1 (ko) 성막 마스크의 제조 방법 및 성막 마스크
CN111098045B (zh) 一种用于玻璃无锥度精密深孔阵列的加工系统及方法
JP2010024064A (ja) 構造体の製造方法、液滴吐出ヘッド
JP5803316B2 (ja) 構造物の製造方法
JP2014098196A (ja) 蒸着マスクの製造方法
JP2014503856A (ja) 強度分布が回転対称であるレーザビームにレーザビームの形状を変換するための装置
JP2011110598A (ja) レーザ加工方法およびレーザ加工装置
WO2013118645A1 (ja) 基板加工方法及び基板加工装置
KR20150121334A (ko) 멀티 모달 레이저 가공 장치
CN109093253B (zh) 激光加工品的制造方法和激光加工品
JP2011240383A (ja) パルスレーザ加工装置、シェーディング補正装置およびパルスレーザ加工方法
JP2007253206A (ja) レーザ加工方法、加工対象物固定方法、レーザ加工装置、及び加工対象物固定装置
CN112534080B (zh) 蒸镀掩模的制造方法和有机el显示装置的制造方法
KR102010817B1 (ko) 초음파를 이용한 출력물 모니터링이 가능한 3d 프린터 및 3d 프린트 방법
TW201601925A (zh) 玻璃基板的製造方法及電子裝置
US10014657B2 (en) Laser-machined optical components and related methods for pick and bond assembly
JP2014091642A (ja) レーザ加工方法及び電子デバイスの製造方法
CN114131213A (zh) 一种透明材料封闭图形空心结构的激光改质切割与自动分离的方法
JP7092155B2 (ja) レーザ加工装置およびレーザ加工方法
JP6134914B2 (ja) コンフォーマルマスク材料のレーザ加工方法
JP2012135783A (ja) レーザ加工装置、加工品の製造方法および加工品
JP2010177341A (ja) 積層体の割断方法
CN115255680A (zh) 基于超快激光的微孔加工方法
KR20190073398A (ko) 전자 부품 유지 지그 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865808

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015865808

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177014838

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15532488

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017011775

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017011775

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170602