WO2016084468A1 - レーダ装置、レーダ出力調整システム、及びレーダ出力調整方法 - Google Patents

レーダ装置、レーダ出力調整システム、及びレーダ出力調整方法 Download PDF

Info

Publication number
WO2016084468A1
WO2016084468A1 PCT/JP2015/077281 JP2015077281W WO2016084468A1 WO 2016084468 A1 WO2016084468 A1 WO 2016084468A1 JP 2015077281 W JP2015077281 W JP 2015077281W WO 2016084468 A1 WO2016084468 A1 WO 2016084468A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
wave
reception level
level
target
Prior art date
Application number
PCT/JP2015/077281
Other languages
English (en)
French (fr)
Inventor
健人 中林
旭 近藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201580063808.7A priority Critical patent/CN107003390B/zh
Priority to US15/529,377 priority patent/US10578711B2/en
Priority to DE112015005289.5T priority patent/DE112015005289B4/de
Publication of WO2016084468A1 publication Critical patent/WO2016084468A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4008Means for monitoring or calibrating of parts of a radar system of transmitters
    • G01S7/4013Means for monitoring or calibrating of parts of a radar system of transmitters involving adjustment of the transmitted power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4008Means for monitoring or calibrating of parts of a radar system of transmitters

Definitions

  • This disclosure relates to a technique for adjusting the transmission power of a radar apparatus.
  • the following is known as one of the techniques for adjusting the transmission level of a radar apparatus on an inspection line before shipment or the like.
  • a radar wave transmitted from a radar apparatus is received by a receiving antenna arranged near the radar apparatus, and the reception level is measured by a power meter or the like.
  • the measurement result of the power meter is taken into a personal computer (PC) and supplied to the radar device via the PC.
  • PC personal computer
  • the radar apparatus changes an adjustment parameter for changing the output of the radar wave so that the measurement result of the transmission level acquired from the PC matches a preset target transmission level (see Patent Document 1).
  • the radar apparatus needs to acquire a transmission level measurement result from an external PC every time the adjustment parameter is changed. That is, every time the adjustment parameter is changed, it is necessary to communicate with the PC each time, and there is a problem that it takes time to adjust the transmission level.
  • This disclosure is intended to provide a technique for reducing the time required for adjusting the transmission power of a radar apparatus.
  • the radar apparatus includes an initial measurement unit, a target setting unit, and an adjustment execution unit.
  • the initial measurement means transmits the radar wave by setting an adjustment parameter for changing the output of the radar wave to an arbitrary value, and transmits the radar wave from a measurement apparatus that is provided outside the radar apparatus and measures the radar wave. Get the initial transmission level, which is the level measurement result.
  • a delayed wave of the radar wave is received from a delay device that is provided outside the radar device and returns the delayed radar wave, and an initial reception level that is a measurement result of the received level of the delayed wave is acquired.
  • the target setting means sets the target reception level according to a preset target transmission level, the initial transmission level and the initial reception level acquired by the initial measurement means.
  • the adjustment execution means repeats updating the adjustment parameter and measuring the reception level until the reception level matches the target reception level.
  • the radar apparatus only needs to perform communication for obtaining the measurement result in the measurement apparatus only once, and thus shortens the time required for adjusting the transmission level. can do.
  • a radar output adjustment system of the present disclosure includes the radar device, a receiving antenna, a measuring device, and a delay device.
  • the receiving antenna receives a radar wave output from the radar apparatus.
  • the measuring device measures received power from the receiving antenna and provides a measurement result to the radar device.
  • the delay device delays and returns the radar wave output from the radar device, and causes the radar device to receive it.
  • a reflector may be used, and the signal received by the reception antenna is delayed using a delay line and then re-radiated toward the radar device using the transmission antenna. May be used.
  • the configuration of the radar output adjustment system can be simplified. Further, when the delay line is used, the transmission level of the radar apparatus can be adjusted in a narrow space as compared with the case where the reflector is used.
  • FIG. 1 is a block diagram showing the configuration of the radar output adjustment system of the first embodiment.
  • FIG. 2 is a flowchart of output adjustment processing executed by the signal processing unit of the radar apparatus.
  • FIG. 3 is an explanatory diagram showing the relationship between the FFT processing result and the reception level.
  • FIG. 4 is a flowchart showing details of the adjustment parameter update process.
  • FIG. 5 is a block diagram showing the configuration of the radar output adjustment system of the second embodiment.
  • a radar output adjustment system 1 includes a radar device 2 to be adjusted and an external device system 4 that is prepared separately from the radar device 2.
  • the external device system 4 includes a receiving antenna 41, a power meter 42, a PC (personal computer) 43, and a reflector 44.
  • the receiving antenna 41 is disposed at a position facing the radar device 2 and receives a radar wave output from the radar device 2.
  • the distance between the receiving antenna 41 and the radar device 2 is preferably as close as possible, and is set to 1 m or less, for example.
  • the power meter 42 measures the reception level (reception power here) of the radar wave received by the reception antenna 41 according to the reception signal from the reception antenna 41. Thereby, the transmission level (here, transmission power) of the radar wave output from the radar apparatus 2 is measured.
  • the PC 43 acquires the measurement result of the power meter 42 and transmits the measurement result to the radar device 2. That is, the PC 43 transmits the transmission level Ps of the radar wave to the radar device 2 that has output the radar wave.
  • the reflector 44 is disposed at a position facing the radar device 2 and reflects the radar wave output from the radar device 2 to the radar device 2. Note that the distance between the radar device 2 and the reflector 44 is set to a distance such that the frequency component of the reflected wave acquired by frequency analysis processing described later is not affected by DC noise, for example, 5 m or more.
  • the DC noise refers to a signal component that wraps directly from the transmission antenna 25 of the radar device 2 to the reception antenna 26 or a signal component that wraps directly in the circuit of the radar device 2.
  • the radar apparatus 2 includes an oscillator 21, an amplifier 22, a distributor 23, a power amplifier 24, a transmission antenna 25, a reception antenna 26, a mixer 27, an amplifier 28, an AD converter 29, and a signal processing unit 30.
  • the oscillator 21 generates a high frequency signal.
  • an FMCW wave whose frequency linearly changes in a triangular wave shape is generated.
  • a millimeter wave band signal is used in the present embodiment, but the present invention is not limited to this.
  • the amplifier 22 amplifies the high frequency signal generated by the oscillator 21.
  • the distributor 23 distributes the output of the amplifier 22 and supplies it to the power amplifier 24 and the mixer 27.
  • the power amplifier 24 amplifies the signal supplied from the distributor 23.
  • the power amplifier 24 can change the amplification factor by changing the adjustment parameter in accordance with the adjustment signal from the signal processing unit 30. Thereby, the transmission level of the radar wave output from the transmission antenna 25 can be changed.
  • a bias voltage applied to a circuit related to amplification is used as the adjustment parameter, and the amplification factor of the power amplifier 24 increases as the adjustment parameter value increases. That is, it is assumed that the transmission level of the radar wave increases as the adjustment parameter value increases.
  • the transmission antenna 25 converts the transmission signal supplied from the power amplifier 24 into a radar wave composed of millimeter wave radio waves and outputs the radar wave.
  • the receiving antenna 26 receives millimeter-wave radio waves coming from the direction of radar wave irradiation by the transmitting antenna 25.
  • the mixer 27 mixes the received signal from the receiving antenna 26 with the local signal from the distributor 23 to generate a beat signal composed of frequency difference components of both signals.
  • the amplifier 28 amplifies the beat signal generated by the mixer 27.
  • the AD converter 29 samples the amplified beat signal output from the amplifier 28 at a predetermined sampling interval and converts it to a digital value to generate reception data.
  • the signal processing unit 30 includes a microcomputer including a CPU 30a, a ROM 30b, and a RAM 30c, and further includes an I / O port 30d that enables data communication with an external PC 43.
  • the signal processing unit 30 executes at least a target detection process and an output adjustment process based on the reception data generated by the AD converter 29.
  • the target detection process is a well-known process for obtaining information on a target that has reflected a radar wave based on the received data, and a description thereof will be omitted.
  • the output adjustment processing according to the present embodiment will be described in detail.
  • an external device system 4 is installed so that radar waves can be transmitted to and received from the radar device 2, and further communication between the signal processing unit 30 and the PC 43 becomes possible. It is executed in a connected state. In addition, this processing is started by the signal processing unit 30 by inputting a start command from the PC 43, for example.
  • the CPU 30a shifts to an inspection mode in which adjustment parameters of the power amplifier 24 can be adjusted.
  • the adjustment parameter G is set to a default value.
  • the default value for example, an intermediate value in the range of the adjustment parameter G is used.
  • the upper limit value or the lower limit value of the adjustment parameter range may be used.
  • the CPU 30a acquires the received data after AD conversion by the AD converter 29 in subsequent S130. More specifically, in the radar apparatus 2, the transmission antenna 25 transmits radio waves, the reception antenna 26 receives the reflected wave from the reflector 44, and the AD converter 29 performs AD conversion on the received signal. The CPU 30a acquires the reception data that has been AD converted in this way.
  • the measurement result of the power meter 42 is acquired from the PC 43 of the external device system 4. More specifically, in the external device system 4, the reception antenna 41 receives the radio wave transmitted from the radar device 2, the power meter 42 measures the transmission level of the received radio wave, and the PC 43 displays the measurement result as the radar device 2. Send to.
  • the CPU 30a acquires the measurement result transmitted in this way via the I / O port 30d. Hereinafter, this measurement result is referred to as an initial transmission level Psi. In this way, the CPU 30a acquires the initial transmission level Psi.
  • the CPU 30a executes a frequency analysis process using the received data acquired in S130, and calculates a frequency spectrum.
  • a fast Fourier transform (FFT) process is executed as the frequency analysis process.
  • the CPU 30a extracts a peak frequency component representing a reflected wave from the reflector 44 from the calculated frequency spectrum, and calculates the reception intensity, that is, the reception level (see FIG. 3).
  • this reception level is referred to as an initial reception level Ari.
  • the CPU 30a acquires the initial reception level Ari.
  • the CPU 30a repeatedly transmits a radar wave and performs an adjustment parameter update process for updating the adjustment parameter so that the reflected wave reception level matches the target reception level Art set in S160. Exit.
  • the CPU 30a initializes a parameter N representing the number of repetitions of the process to 1, and initializes an upper limit value RU and a lower limit value RL of the adjustment range used for narrowing the adjustment parameter G.
  • the upper limit value RU of the adjustment range is set to BIN_max that is the upper limit value of the adjustment parameter G
  • the lower limit value RL of the adjustment range is set to BIN_min that is the lower limit value of the adjustment parameter G.
  • the CPU 30a calculates and sets the adjustment parameter G according to the equation (2) using the upper limit value RU and the lower limit value RL of the adjustment range.
  • G ceil ((RU + RL) / 2) (2) Note that ceil is a function that returns a value obtained by rounding up the value after the decimal point.
  • the CPU 30a sets the intermediate value of the adjustment range calculated according to the equation (2) as the initial value of the adjustment parameter G.
  • the CPU 30a transmits radio waves by the transmission antenna 25, receives the reflected waves from the reflector 44 by the reception antenna 26, and AD converts the received signal by the AD converter 29 in the same manner as S130 in FIG. , Receive AD-converted received data.
  • FFT fast Fourier transform
  • the CPU 30a calculates a deviation ⁇ A of the reception level Ar with respect to the target reception level Art.
  • Nmax is set to a value satisfying 2Nmax-1 ⁇ K ⁇ 2Nmax, where K is the number of stages of values that can be set within the range of the adjustment parameter G.
  • the CPU 30a determines that the parameter N is equal to or greater than the upper limit value Nmax (S370: NO), the CPU 30a ends this processing as an error. At this time, error handling processing is executed separately. On the other hand, if it is determined that the parameter N is smaller than the upper limit value Nmax (S370: YES), the process proceeds to S380, the parameter N is incremented (N ⁇ N + 1), and the process proceeds to S390.
  • the CPU 30a determines whether or not the deviation ⁇ A is greater than 0, that is, whether or not the reception level Ar is greater than the target reception level Art. As a result, if it is determined that the deviation ⁇ A is greater than 0 (S390: YES), the process proceeds to S400, and it is assumed that the adjustment parameter G needs to be lowered in order to match the reception level Ar with the target reception level Art. Is updated with the adjustment parameter G, and the process returns to S320.
  • the CPU 30a determines that the deviation ⁇ A is 0 or less (S390: NO)
  • the CPU 30a proceeds to S410, and adjusts the adjustment parameter G to increase the adjustment parameter G in order to match the reception level Ar with the target reception level Art.
  • the lower limit value RL of the range is updated with the adjustment parameter G, and the process returns to S320.
  • the radar apparatus 2 does not need to perform communication for acquiring the measurement result in the external apparatus system 4 every time the adjustment parameter G is changed. It only needs to be performed once. For this reason, the time required for adjusting the transmission level of the radar wave can be shortened.
  • the adjustment parameter G is updated by binary search. For this reason, it can adjust efficiently.
  • the reflector 44 is used as a configuration for delaying and returning the radar wave.
  • the second embodiment differs from the first embodiment in that a delay line 45 is used as shown in FIG.
  • the external device system 4a constituting the radar output adjustment system 1a of the present embodiment includes a reception antenna 41, a power meter 42, a PC 43, a delay line 45, and a transmission antenna 46. That is, as compared with the external device system 4 of the first embodiment, the reflector 44 is omitted, and a delay line 45 and a transmission antenna 46 are provided instead.
  • the delay line 45 delays the signal from the receiving antenna 41 by a predetermined time and supplies it to the transmitting antenna 46.
  • the transmission antenna 46 is disposed opposite to the radar apparatus 2 and re-radiates the radar wave toward the radar apparatus 2 using the delayed signal from the delay line 45 as a transmission signal.
  • the delay line 45 is set so that the delay amount is such that the peak frequency appears in the frequency region where the influence of the DC noise is sufficiently suppressed, as in the case of the reflector 44.
  • the delay amount can be adjusted by the delay line 45, so that the distance between the radar device 2 and the transmission antenna 46 of the external device system 4a can be arbitrarily set. . For this reason, compared with the case where the reflector 44 is used in the external device system 4 of the first embodiment, the radar output adjustment can be performed in a narrower space.
  • the adjustment parameter G is a bias voltage applied to a circuit related to amplification of the power amplifier 24, but is not limited to this.
  • the adjustment parameter G may be any parameter that can adjust the power of the radar wave output from the transmission antenna 25.
  • a program for causing a computer to function as each means constituting the radar device 2 a medium storing the program, a radar output It can also be realized in various forms such as an adjustment method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 レーダ装置(2)は、調整パラメータを任意の値に設定してレーダ波を送信し、当該レーダ装置の外部から、該レーダ波の送信レベルの計測結果である初期送信レベルを取得する。これと共に、当該レーダ装置の外部から、該レーダ波の遅延波を受信し、該遅延波の受信レベルの計測結果である初期受信レベルを取得する(30:S120~S150)。そして、予め設定された目標送信レベル、取得された初期送信レベルおよび初期受信レベルに従って、目標受信レベルを設定する(30:S160)。そして、受信レベルが目標受信レベルと一致するまで、調整パラメータの更新と受信レベルの計測を繰り返す(30:S170)。

Description

レーダ装置、レーダ出力調整システム、及びレーダ出力調整方法
 本開示は、レーダ装置の送信電力を調整する技術に関する。
 従来では、出荷前等に検査ラインでレーダ装置の送信レベルを調整する手法の一つとして以下のものが知られている。
 従来の手法では、まず、レーダ装置から送信されたレーダ波を、レーダ装置の近くに配置された受信アンテナによって受信し、その受信レベルをパワーメータ等で計測する。このパワーメータの計測結果を、パーソナルコンピュータ(PC)に取り込み、そのPCを介してレーダ装置に供給する。その結果、レーダ装置では、PCから取得した送信レベルの計測結果が、予め設定された目標送信レベルと一致するように、レーダ波の出力を変化させる調整パラメータを変化させる(特許文献1参照)。
特許第4429347号公報
 従来技術では、レーダ装置は、調整パラメータを変化させる毎に、外部のPCから送信レベルの計測結果を取得する必要がある。つまり、調整パラメータを変更する毎に、その都度、PCとの通信を行う必要があり、送信レベルの調整に時間がかかるという問題があった。
 本開示は、レーダ装置の送信電力の調整に要する時間を短縮する技術を提供することを目的とする。
 本開示のレーダ装置は、初期計測手段と、目標設定手段と、調整実行手段とを備える。初期計測手段は、レーダ波の出力を変化させる調整パラメータを任意の値に設定してレーダ波を送信し、当該レーダ装置の外部に設けられ、レーダ波を計測する計測装置から、レーダ波の送信レベルの計測結果である初期送信レベルを取得する。これと共に、当該レーダ装置の外部に設けられ、レーダ波を遅延させて返送する遅延装置から、レーダ波の遅延波を受信し、その遅延波の受信レベルの計測結果である初期受信レベルを取得する。目標設定手段は、予め設定された目標送信レベル、初期計測手段により取得された初期送信レベルおよび初期受信レベルに従って、目標受信レベルを設定する。調整実行手段は、受信レベルが目標受信レベルと一致するまで、調整パラメータの更新と受信レベルの計測を繰り返す。
 このような構成によれば、本開示のレーダ装置は、計測装置での計測結果を取得するために行う通信を、最初の1回だけ実施すればよいため、送信レベルの調整に要する時間を短縮することができる。
 また、本開示のレーダ出力調整システムは、上記レーダ装置と、受信アンテナと、計測装置と、遅延装置とを備える。受信アンテナは、レーダ装置が出力するレーダ波を受信する。計測装置は、受信アンテナによる受信電力を計測すると共に、計測結果をレーダ装置に提供する。遅延装置は、レーダ装置が出力するレーダ波を遅延させて返送し、レーダ装置に受信させる。
 なお、遅延装置としては、リフレクタを用いてもよいし、受信アンテナが受信した信号を、遅延線を用いて遅延させた後、送信アンテナを用いてレーダ装置に向けて再放射するように構成されたものを用いてもよい。
 リフレクタを用いる場合は、レーダ出力調整システムの構成を簡易なものとすることができる。また、遅延線を用いる場合は、リフレクタを用いる場合と比較して、狭いスペースでレーダ装置の送信レベルの調整を実施することができる。
 なお、請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。
図1は、第1実施形態のレーダ出力調整システムの構成を示すブロック図である。 図2は、レーダ装置の信号処理部が実行する出力調整処理のフローチャートである。 図3は、FFTの処理結果と受信レベルとの関係を示す説明図である。 図4は、調整パラメータ更新処理の詳細を表すフローチャートである。 図5は、第2実施形態のレーダ出力調整システムの構成を示すブロック図である。
 以下に本開示の実施形態について、図面を用いて説明する。
 [第1実施形態]
 [構成]
 図1に示すように、本実施形態に係るレーダ出力調整システム1は、調整対象となるレーダ装置2、レーダ装置2とは別体に用意される外部装置系4とを備える。
 [外部装置系]
 本実施形態に係る外部装置系4は、受信アンテナ41、パワーメータ42、PC(パーソナルコンピュータ)43、リフレクタ44を備える。
 受信アンテナ41は、レーダ装置2と対向する位置に配置され、レーダ装置2が出力するレーダ波を受信する。なお、受信アンテナ41とレーダ装置2との間隔はできるだけ接近していることが望ましく、例えば、1m以下に設定される。
 パワーメータ42は、受信アンテナ41からの受信信号に従って受信アンテナ41で受信したレーダ波の受信レベル(ここでは受信電力)を計測する。これにより、レーダ装置2が出力するレーダ波の送信レベル(ここでは送信電力)を計測する。
 PC43は、パワーメータ42の計測結果を取得し、計測結果をレーダ装置2に送信する。つまり、PC43は、レーダ波の送信レベルPsを、レーダ波を出力したレーダ装置2に送信する。
 リフレクタ44は、レーダ装置2と対向する位置に配置され、レーダ装置2が出力するレーダ波をレーダ装置2に反射する。なお、レーダ装置2とリフレクタ44との間隔は、後述する周波数解析処理により取得される反射波の周波数成分が、DCノイズの影響を受けない程度の距離、例えば、5m以上に設定する。また、DCノイズとは、レーダ装置2の送信アンテナ25から受信アンテナ26に直接回り込む信号成分や、レーダ装置2の回路内で同様に直接回り込む信号成分のことをいう。
 [レーダ装置]
 本実施形態に係るレーダ装置2は、発振器21、増幅器22、分配器23、パワーアンプ24、送信アンテナ25、受信アンテナ26、ミキサ27、増幅器28、ADコンバータ29、信号処理部30を備える。
 発振器21は、高周波信号を生成する。ここでは、周波数が三角波状に直線的に変化するFMCW波を生成する。高周波信号として、本実施形態ではミリ波帯のものを使用するが、これに限るものではない。
 増幅器22は、発振器21が生成した高周波信号を増幅する。
 分配器23は、増幅器22の出力を電力分配し、パワーアンプ24およびミキサ27に供給する。
 パワーアンプ24は、分配器23から供給される信号を増幅する。なお、パワーアンプ24は、信号処理部30からの調整信号に従って調整パラメータを変化させることにより、増幅率を変化させることができる。これにより、送信アンテナ25から出力されるレーダ波の送信レベルを変化させることができる。本実施形態では、調整パラメータとして、増幅に関わる回路に印加するバイアス電圧が用いられ、調整パラメータの値が大きいほど、パワーアンプ24の増幅率が大きくなるものとする。つまり、調整パラメータの値が大きいほど、レーダ波の送信レベルが大きくなるものとする。
 送信アンテナ25は、パワーアンプ24から供給される送信信号をミリ波帯の電波からなるレーダ波に変換して出力する。
 受信アンテナ26は、送信アンテナ25によるレーダ波の照射方向から到来するミリ波帯の電波を受信する。
 ミキサ27は、受信アンテナ26からの受信信号に、分配器23からのローカル信号を混合して両信号の周波数差の成分からなるビート信号を生成する。
 増幅器28は、ミキサ27が生成したビート信号を増幅する。
 ADコンバータ29は、増幅器28から出力された増幅後のビート信号を、所定のサンプリング間隔毎にサンプリングして、デジタル値に変換することで受信データを生成する。
 信号処理部30は、CPU30a,ROM30b,RAM30cから構成されたマイクロコンピュータを備え、更に、外部のPC43とのデータ通信を可能とするI/Oポート30dを備えている。信号処理部30は、ADコンバータ29にて生成された受信データに基づいて、少なくとも物標検出処理および出力調整処理を実行する。
 なお、物標検出処理は、受信データに基づいて、レーダ波を反射した物標に関する情報を求める周知の処理であるため説明を省略する。
 以下では、本実施形態に係る出力調整処理について詳述する。
 [出力調整処理]
 本実施形態に係る出力調整処理は、レーダ装置2に対して、レーダ波を送受信することができるように外部装置系4を設置し、更に、信号処理部30とPC43との通信が可能となるように接続した状態で実行される。また、本処理は、例えば、PC43から起動コマンドを入力することによって、信号処理部30で起動される。
 信号処理部30で本処理が起動すると、図2に示すように、CPU30aは、まず、S110にて、パワーアンプ24の調整パラメータの調整が実行可能な検査用モードに移行する。
 続くS120にて、調整パラメータGをデフォルト値に設定する。デフォルト値は、例えば、調整パラメータGの値域の中間値が用いられる。これに限らず、調整パラメータの値域の上限値、または下限値などを用いてもよい。
 CPU30aは、続くS130にて、ADコンバータ29によるAD変換後の受信データを取得する。より具体的には、レーダ装置2では、送信アンテナ25が電波を送信し、リフレクタ44からの反射波を受信アンテナ26が受信し、その受信信号をADコンバータ29がAD変換する。CPU30aは、このようにしてAD変換された受信データを取得する。
 続くS140にて、パワーメータ42での計測結果を外部装置系4のPC43から取得する。より具体的には、外部装置系4では、レーダ装置2から送信された電波を受信アンテナ41が受信し、受信した電波の送信レベルをパワーメータ42が計測し、PC43が計測結果をレーダ装置2に送信する。CPU30aは、このようにして送信された計測結果を、I/Oポート30dを介して取得する。以下では、この計測結果を、初期送信レベルPsiという。CPU30aは、このようにして初期送信レベルPsiを取得する。
 CPU30aは、続くS150にて、S130で取得した受信データを用いて周波数解析処理を実行し、周波数スペクトルを算出する。ここでは、周波数解析処理として、具体的には、高速フーリエ変換(FFT)処理を実行する。
 続いてCPU30aは、算出した周波数スペクトルから、リフレクタ44からの反射波を表すピーク周波数成分を抽出し、その受信強度、即ち、受信レベルを算出する(図3参照)。以下では、この受信レベルを、初期受信レベルAriという。CPU30aは、このようにして初期受信レベルAriを取得する。
 CPU30aは、続くS160にて、予め設定された目標送信レベルPst、S140で取得した初期送信レベルPsi、S150で取得した初期受信レベルAriを用いた(1)式に従って、目標受信レベルArtを算出し設定する。なお、各レベルはデシベル値で表されるものとする。
  Art=Ari+Pst-Psi   (1)
 より具体的には、目標送信レベルPstに対する初期送信レベルPsiの偏差を、初期受信レベルAriに加えて算出された値を、目標受信レベルArtの値として設定する。
 CPU30aは、続くS170にて、レーダ波を繰り返し送信し、反射波の受信レベルがS160で設定した目標受信レベルArtと一致するように、調整パラメータを更新する調整パラメータ更新処理を行って、本処理を終了する。
 次に、本実施形態に係る調整パラメータ更新処理の詳細を、図4のフローチャートに沿って説明する。本処理は、検索アルゴリズムの一つである二分探索の手法を用いて調整パラメータGの値を絞り込むものである。
 CPU30aは、まずS310にて、処理の繰り返し回数を表すパラメータNを1に初期化すると共に、調整パラメータGの絞り込みに使用する調整範囲の上限値RUおよび下限値RLを初期化する。なお、調整範囲の上限値RUは、調整パラメータGの値域の上限値であるBIN_max、調整範囲の下限値RLは、調整パラメータGの値域の下限値であるBIN_minに設定する。
 CPU30aは、続くS320にて、調整範囲の上限値RUおよび下限値RLを用いた(2)式に従って、調整パラメータGを算出し設定する。
  G=ceil((RU+RL)/2)  (2)
 なお、ceilは、小数点以下の値を切り上げた値を返す関数である。CPU30aは、このような(2)式に従って算出した調整範囲の中間値を調整パラメータGの初期値として設定する。
 CPU30aは、続くS330にて、図2のS130と同様に、送信アンテナ25により電波を送信し、リフレクタ44からの反射波を受信アンテナ26により受信し、その受信信号をADコンバータ29によりAD変換し、AD変換された受信データを取得する。
 続くS340にて、図2のS150と同様に、高速フーリエ変換(FFT)処理を実行して、リフレクタ44からの反射波の受信レベルArを取得する。
 CPU30aは、続くS350にて、目標受信レベルArtに対する受信レベルArの偏差ΔAを算出する。
 続くS360にて、偏差ΔAの絶対値が、予め設定された許容値CONVより小さいか否かを判断する。その結果、偏差ΔAの絶対値が許容値CONVより小さいと判断した場合(S360:YES)、受信レベルArが目標受信レベルArtに一致しているものとして本処理を終了する。
 一方、CPU30aは、偏差ΔAの絶対値が許容値CONV以上と判断した場合(S360:NO)、S370に移行し、パラメータNが上限値Nmaxより小さいか否かを判断する。なお、Nmaxは、調整パラメータGの値域内で設定可能な値の段数をKとして、2Nmax-1<K≦2Nmaxを満たす値に設定される。
 その結果、CPU30aは、パラメータNが上限値Nmax以上と判断した場合(S370:NO)、エラーであるものとして本処理を終了する。この時、別途、エラー対処処理を実行する。一方、パラメータNが上限値Nmaxより小さいと判断した場合(S370:YES)、S380に移行し、パラメータNをインクリメント(N←N+1)してS390に進む。
 CPU30aは、S390にて、偏差ΔAが0より大きいか否か、即ち、受信レベルArが目標受信レベルArtより大きいか否かを判断する。
 その結果、偏差ΔAが0より大きいと判断した場合(S390:YES)、S400に移行し、受信レベルArを目標受信レベルArtに一致させるために調整パラメータGを下げる必要があるものとして、調整範囲の上限値RUを調整パラメータGで更新し、S320に戻る。
 一方、CPU30aは、偏差ΔAが0以下と判断した場合(S390:NO)、S410に移行し、受信レベルArを目標受信レベルArtに一致させるために調整パラメータGを上げる必要があるものとして、調整範囲の下限値RLを調整パラメータGで更新し、S320に戻る。
 [効果]
 以上説明したように、本実施形態に係るレーダ装置2は、外部装置系4での計測結果を取得するために行う通信を、調整パラメータGを変更する毎に実施する必要がなく、最初の1回だけ実施すればよい。このため、レーダ波の送信レベルの調整に要する時間を短縮することができる。
 また、本実施形態に係るレーダ装置2では、調整パラメータGの更新を、二分探索によって行っている。このため、効率よく調整を行うことができる。
 [第2実施形態]
 第2実施形態については、基本的な構成は第1実施形態と同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。
 前述した第1実施形態では、レーダ波を遅延させて返送するための構成として、リフレクタ44を用いている。これに対し、第2実施形態では、図5に示すように、遅延線45を利用している点で第1実施形態とは相違する。
 [外部装置系]
 本実施形態のレーダ出力調整システム1aを構成する外部装置系4aは、受信アンテナ41、パワーメータ42、PC43、遅延線45、送信アンテナ46を備える。つまり、第1実施形態の外部装置系4と比較すると、リフレクタ44が省略され、代わりに遅延線45および送信アンテナ46を備えている。
 遅延線45は、受信アンテナ41からの信号を、所定時間だけ遅延させて送信アンテナ46に供給する。送信アンテナ46は、レーダ装置2と対向して配置され、遅延線45による遅延信号を送信信号として、レーダ波をレーダ装置2に向けて再放射する。
 なお、遅延線45は、リフレクタ44の場合と同様に、DCノイズの影響が十分に抑制された周波数領域に、ピーク周波数が現れるような遅延量となるように設定する。
 [効果]
 このように構成された本実施形態に係るレーダ出力調整システム1aでは、第1実施形態と同様の効果を得ることができる。
 また、本実施形態に係るレーダ出力調整システム1aでは、遅延線45によって遅延量の調整が可能なため、レーダ装置2と外部装置系4aの送信アンテナ46との距離を任意に設定することができる。このため、第1実施形態の外部装置系4でリフレクタ44を使用する場合と比較して、より狭い空間でレーダ出力調整を実施することができる。
 [他の実施形態]
 以上、本開示の実施形態について説明したが、本開示は、上記実施形態に限定されることなく、種々の形態を採り得る。
 (1)上記実施形態では、調整パラメータGとして、パワーアンプ24の増幅に関わる回路に印加するバイアス電圧を用いているが、これに限定されるものではない。調整パラメータGは、送信アンテナ25から出力されるレーダ波のパワーを調整できるパラメータであればよい。
 (2)上記実施形態における一つの構成要素が有する機能については、複数の構成要素に分散させてもよい。また、上記実施形態における複数の構成要素が有する機能については、一つの構成要素に統合させてもよい。また、上記実施形態の構成の少なくとも一部については、同様の機能を有する公知の構成に置き換えてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部については、他の上記実施形態の構成に対して付加または置換等してもよい。なお、請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が、本開示の実施形態である。
 (3)本開示は、上記レーダ装置2、上記レーダ出力調整システム1,1aの他、当該レーダ装置2を構成する各手段としてコンピュータを機能させるためのプログラム、このプログラムを記録した媒体、レーダ出力調整方法など、種々の形態で実現することもできる。
 1,1a…レーダ出力調整システム 2…レーダ装置 4,4a…外部装置系 21…発振器 22,28…増幅器 23…分配器 24…パワーアンプ 25,46…送信アンテナ 26,41…受信アンテナ 27…ミキサ 29…ADコンバータ 30…信号処理部 42…パワーメータ 44…リフレクタ 45…遅延線

Claims (8)

  1.  レーダ波を送受信することにより、該レーダ波を反射した物標に関する情報を取得するレーダ装置(2)であって、
     前記レーダ波の出力を変化させる調整パラメータを任意の値に設定して前記レーダ波を送信し、当該レーダ装置の外部に設けられ、前記レーダ波を計測する計測装置から、前記レーダ波の送信レベルの計測結果である初期送信レベルを取得すると共に、当該レーダ装置の外部に設けられ、前記レーダ波を遅延させて返送する遅延装置から、前記レーダ波の遅延波を受信し、該遅延波の受信レベルの計測結果である初期受信レベルを取得する初期計測手段(30:S120~S150)と、
     予め設定された目標送信レベル、前記初期計測手段により取得された前記初期送信レベルおよび前記初期受信レベルに従って、目標受信レベルを設定する目標設定手段(30:S160)と、
     前記受信レベルが前記目標受信レベルと一致するまで、前記調整パラメータの更新と前記受信レベルの計測を繰り返す調整実行手段(30:S170)と、
     を備えるレーダ装置。
  2.  前記目標設定手段は、前記目標送信レベルに対する前記初期送信レベルの偏差を、前記初期受信レベルに加えたものを、前記目標受信レベルとする請求項1に記載のレーダ装置。
  3.  前記調整パラメータは、前記レーダ波を出力する送信アンテナに送信信号を供給するパワーアンプの増幅に関わる回路に印加するバイアス電圧である請求項1または請求項2に記載のレーダ装置。
  4.  前記調整実行手段は、二分探索を用いて前記調整パラメータを更新する請求項1ないし請求項3のいずれか1項に記載のレーダ装置。
  5.  請求項1ないし請求項4のいずれか1項に記載のレーダ装置(2)と、
     前記レーダ装置が出力するレーダ波を受信する受信アンテナ(41)と、
     前記受信アンテナによる受信レベルを計測すると共に、計測結果を前記レーダ装置に送信する計測装置(42)と、
     前記レーダ装置が出力するレーダ波を遅延させて前記レーダ装置に返送する遅延装置(44,45,46)と、
     を備えるレーダ出力調整システム。
  6.  前記遅延装置は、前記レーダ波を反射するリフレクタ(44)である請求項5に記載のレーダ出力調整システム。
  7.  前記遅延装置は、
     前記受信アンテナが受信した信号を遅延させる遅延線(45)と、
     前記遅延線により遅延した信号を送信信号として、前記レーダ装置に向けてレーダ波を送信する送信アンテナ(46)と、
     を備える請求項5に記載のレーダ出力調整システム。
  8.  レーダ波を送受信することにより、該レーダ波を反射した物標に関する情報を取得するレーダ装置(2)のレーダ出力調整方法であって、
     前記レーダ波の出力を変化させる調整パラメータを任意の値に設定して前記レーダ波を送信し、当該レーダ装置の外部に設けられ、前記レーダ波を計測する計測装置から、前記レーダ波の送信レベルの計測結果である初期送信レベルを取得すると共に、当該レーダ装置の外部に設けられ、前記レーダ波を遅延させて返送する遅延装置から、前記レーダ波の遅延波を受信し、該遅延波の受信レベルの計測結果である初期受信レベルを取得する工程(30:S120~S150)と、
     予め設定された目標送信レベル、取得された前記初期送信レベルおよび前記初期受信レベルに従って、目標受信レベルを設定する工程(30:S160)と、
     前記受信レベルが前記目標受信レベルと一致するまで、前記調整パラメータの更新と前記受信レベルの計測を繰り返す工程(30:S170)と、
     を含むレーダ出力調整方法。
PCT/JP2015/077281 2014-11-26 2015-09-28 レーダ装置、レーダ出力調整システム、及びレーダ出力調整方法 WO2016084468A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580063808.7A CN107003390B (zh) 2014-11-26 2015-09-28 雷达装置、雷达输出调整系统以及雷达输出调整方法
US15/529,377 US10578711B2 (en) 2014-11-26 2015-09-28 Radar apparatus, radar output control system, and radar output control method
DE112015005289.5T DE112015005289B4 (de) 2014-11-26 2015-09-28 Radarvorrichtung, Radarausgangssteuerungssystem und Radarausgangssteuerungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-238717 2014-11-26
JP2014238717A JP6350242B2 (ja) 2014-11-26 2014-11-26 レーダ装置およびレーダ出力調整システム

Publications (1)

Publication Number Publication Date
WO2016084468A1 true WO2016084468A1 (ja) 2016-06-02

Family

ID=56074047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077281 WO2016084468A1 (ja) 2014-11-26 2015-09-28 レーダ装置、レーダ出力調整システム、及びレーダ出力調整方法

Country Status (5)

Country Link
US (1) US10578711B2 (ja)
JP (1) JP6350242B2 (ja)
CN (1) CN107003390B (ja)
DE (1) DE112015005289B4 (ja)
WO (1) WO2016084468A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101847820B1 (ko) * 2017-11-07 2018-04-11 유메인주식회사 DAA(Detect And Avoidence)를 위한 자동 바이어스 조정 기능을 갖는 UWB(Ultra Wide Band) 임펄스 레이다 모듈 생산 방법
US20240004030A1 (en) * 2020-11-12 2024-01-04 Sony Group Corporation Sensor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194480A (ja) * 1986-02-21 1987-08-26 Tokyo Keiki Co Ltd レ−ダの性能モニタ装置
JPH10197630A (ja) * 1997-01-09 1998-07-31 Osaka Gas Co Ltd 地中探査レーダの較正装置
JP2007057362A (ja) * 2005-08-24 2007-03-08 Nagoya Electric Works Co Ltd 特性値計測方法およびその装置
JP2009069125A (ja) * 2007-09-18 2009-04-02 Fujitsu Ten Ltd ミリ波レーダ装置のバイアス調整方法、高周波ユニット及びレーダ装置
JP2010237085A (ja) * 2009-03-31 2010-10-21 Japan Radio Co Ltd 目標観測装置
JP2012198138A (ja) * 2011-03-22 2012-10-18 Denso Corp アレイアンテナの軸調整方法及び軸調整システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262787A (en) * 1987-03-06 1993-11-16 Raytheon Company Recirculating delay line radar performance monitor
US5124708A (en) * 1991-02-25 1992-06-23 The United States Of America As Represented By The Secretary Of The Air Force RF stability measuring system for MTI radars
JPH08248118A (ja) * 1995-03-15 1996-09-27 Mitsubishi Electric Corp フェイズドアレイレーダ装置
US6114985A (en) 1997-11-21 2000-09-05 Raytheon Company Automotive forward looking sensor test station
DE10254982A1 (de) * 2002-11-26 2004-06-03 Robert Bosch Gmbh Verfahren und Einrichtung zur adaptiven Leistungsregelung
JP4459584B2 (ja) * 2003-09-26 2010-04-28 富士通テン株式会社 レーダ装置および距離算出方法
DE102004054513A1 (de) 2004-02-26 2005-09-22 Daimlerchrysler Ag Verfahren und Vorrichtung zum Ausrichten eines Senders
JP4241451B2 (ja) * 2004-03-17 2009-03-18 三菱電機株式会社 レーダ試験方法
US8325084B2 (en) * 2007-03-13 2012-12-04 Baron Services, Inc. System for calibration of dual polarization radar with built-in test couplers
JP5396052B2 (ja) * 2008-10-02 2014-01-22 上田日本無線株式会社 レーダ送受信機
JP5849245B2 (ja) * 2010-07-28 2016-01-27 パナソニックIpマネジメント株式会社 レーダ装置
JP5616204B2 (ja) * 2010-11-19 2014-10-29 古野電気株式会社 信号処理装置、レーダ装置、信号処理方法、および信号処理プログラム
JP5814573B2 (ja) * 2011-03-18 2015-11-17 富士通テン株式会社 受信機
US8692707B2 (en) * 2011-10-06 2014-04-08 Toyota Motor Engineering & Manufacturing North America, Inc. Calibration method for automotive radar using phased array
JP2013217886A (ja) * 2012-04-12 2013-10-24 Honda Elesys Co Ltd 車載用のレーダ装置、検知方法、検知プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194480A (ja) * 1986-02-21 1987-08-26 Tokyo Keiki Co Ltd レ−ダの性能モニタ装置
JPH10197630A (ja) * 1997-01-09 1998-07-31 Osaka Gas Co Ltd 地中探査レーダの較正装置
JP2007057362A (ja) * 2005-08-24 2007-03-08 Nagoya Electric Works Co Ltd 特性値計測方法およびその装置
JP2009069125A (ja) * 2007-09-18 2009-04-02 Fujitsu Ten Ltd ミリ波レーダ装置のバイアス調整方法、高周波ユニット及びレーダ装置
JP2010237085A (ja) * 2009-03-31 2010-10-21 Japan Radio Co Ltd 目標観測装置
JP2012198138A (ja) * 2011-03-22 2012-10-18 Denso Corp アレイアンテナの軸調整方法及び軸調整システム

Also Published As

Publication number Publication date
CN107003390B (zh) 2019-08-23
US20180113197A1 (en) 2018-04-26
US10578711B2 (en) 2020-03-03
DE112015005289B4 (de) 2024-02-29
JP6350242B2 (ja) 2018-07-04
DE112015005289T5 (de) 2017-08-17
JP2016099312A (ja) 2016-05-30
CN107003390A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
JP6295011B2 (ja) 送信器、送信方法、位相調整装置、位相調整方法
US20150219752A1 (en) Doppler radar test system
US20160139257A1 (en) Fmcw radar device and fmcw radar signal processing method
JP2017158086A (ja) アクティブフェーズドアレイ送信機、アクティブフェーズドアレイ受信機およびアクティブフェーズドアレイ送受信機
US10469183B1 (en) Antenna device and method for calibrating antenna device
US20210003689A1 (en) Radar device
JP2007033415A (ja) レーダ装置
KR20160102330A (ko) 주파수 변조 연속파 기상 레이더 시스템을 이용한 강수량 측정 장치 및 그 방법
US10505770B2 (en) Reception signal processing device, radar, and object detection method
WO2016084468A1 (ja) レーダ装置、レーダ出力調整システム、及びレーダ出力調整方法
JP5773951B2 (ja) 液位測定装置およびそのvcoプリディストーション方法
US10908258B2 (en) Method for calibrating an active sensor system
JP2008541025A (ja) 目標物体との距離を確定するための方法および装置
KR101998360B1 (ko) 센서 모듈
Hyun et al. Development of 24GHz FMCW level measurement radar system
JP5889037B2 (ja) パルスレーダ装置
JP7012914B1 (ja) アレーアンテナの校正装置および校正方法
JP2015129695A (ja) パルス圧縮レーダ装置及びそのレーダ信号処理方法
JP7042975B2 (ja) 信号処理装置、信号処理方法及びレーダ装置
KR101324172B1 (ko) 다채널 디지털 수신장치의 신호도착시간(toa) 보정방법 및 장치
KR101494390B1 (ko) 근접전계시험 데이터 보상방법 및 이를 이용한 레이더 및 센서
KR101905434B1 (ko) 수동상호변조왜곡 신호 측정 장치 및 방법
JP2007225319A (ja) パルスレーダ装置
RU2632477C1 (ru) Моноимпульсная радиолокационная станция с автоматической калибровкой
KR20150102854A (ko) 주파수 변조 및 연속파를 이용한 큐밴드 장거리 레이더 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862950

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15529377

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015005289

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862950

Country of ref document: EP

Kind code of ref document: A1