WO2016084441A1 - 二酸化バナジウム系蓄熱材料の製造方法 - Google Patents
二酸化バナジウム系蓄熱材料の製造方法 Download PDFInfo
- Publication number
- WO2016084441A1 WO2016084441A1 PCT/JP2015/073982 JP2015073982W WO2016084441A1 WO 2016084441 A1 WO2016084441 A1 WO 2016084441A1 JP 2015073982 W JP2015073982 W JP 2015073982W WO 2016084441 A1 WO2016084441 A1 WO 2016084441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat storage
- carbon
- mixing
- storage material
- vanadium
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
Definitions
- the present invention relates to a method for producing a vanadium dioxide VO 2 heat storage material, and more particularly to a method for facilitating mass production of a vanadium dioxide VO 2 heat storage material at low cost.
- the heat storage material has a temperature adjustment function of maintaining a constant temperature with respect to a change in outside air temperature, and is generally known as a heat insulating agent that is not a cold insulating agent or a heat insulating material.
- the heat storage material is also used for waste heat use in factories and automobiles.
- Heat storage materials that use a large specific heat of the substance include those that use the phase change heat of the substance (for example, melting-solidification phase change) (latent heat storage material), heat generated by chemical reaction
- sensible heat storage material has a smaller amount of stored heat than other heat storage materials.
- fever by a chemical reaction cannot be used repeatedly.
- the latent heat storage material can be used repeatedly and has an advantage that the heat storage capacity is larger than other heat storage materials.
- the most typical latent heat storage material is ice, which utilizes the ice-water melting-solidification phase change.
- a solid-liquid phase change is used, there are problems such as a possibility of liquid leakage accompanied by a large volume change due to the phase change.
- a heat storage material using a phase transition generated in a solid state as in Patent Document 1 was invented. Unlike the solid-liquid phase transition, the heat storage material does not cause liquid leakage and does not cause phase separation or decomposition during the phase transition. Furthermore, the volume change at the time of phase transition is smaller than that of the solid-liquid phase transition.
- the heat storage material include vanadium dioxide VO 2 -based oxides.
- VO 2 -based oxides there are V 1-x M x O 2 in which VO 2 and V sites are substituted with M, and examples thereof include V 1-x W x O 2 (0 ⁇ x ⁇ 0.0650).
- V 1-x Ta x O 2 (0 ⁇ x ⁇ 0.117)
- V 1-x Nb x O 2 (0 ⁇ X ⁇ 0.115)
- V 1-x Ru x O 2 (0 ⁇ X ⁇ 0.150
- V 1 ⁇ x Mo x O 2 (0 ⁇ X ⁇ 0.161
- V 1 ⁇ x Re x O 2 (0 ⁇ X ⁇ 0.0964).
- the vanadium dioxide VO 2 heat storage material is manufactured as follows.
- the V 2 O 5 powder is heated to 700 ° C. in a mixed gas of hydrogen and argon (hydrogen 5%, argon 95%) and held for 48 hours, whereby the precursor V 2 O 3 powder Get.
- the V 2 O 3 powder, V 2 O 5 powder, and WO 3 powder are mixed so that the molar ratio between vanadium, tungsten, and oxygen is a predetermined molar ratio.
- the mixture (powder) is put in a quartz tube and vacuum-sealed (degree of vacuum: about 2.67 ⁇ 10 ⁇ 4 Pa).
- the quartz tube containing the mixture is connected to an exhaust device, and the quartz tube is evacuated. Then, the quartz tube is sealed while melting using a gas burner or the like.
- V 1-x W x O 2 is synthesized. Further, in the above synthesis method, by using Ta 2 O 5 , Nb 2 O 5 , RuO 2 , MoO 2 , and ReO 3 instead of WO 3 , V 1-x Ta x O 2 , V 1-x the nb x O 2, V 1- x Ru x O 2, V 1-x Mo x O 2, V 1-x Re x O 2 synthesized.
- Patent Document 2 mentions vanadium dioxide as a thermochromic material.
- a hydrosol obtained by dissolving vanadium and tungsten in hydrogen peroxide solution is spin-coated on a substrate, and then several hundreds.
- a method of forming a glassy film of vanadium dioxide by reduction firing at °C a method of obtaining a fine particle of vanadium oxide by pulverizing a material synthesized by melting a vanadium oxide and tungsten oxide with a bead mill, and a vanadium compound peroxidized
- vanadium oxide is precipitated from a vanadium-containing liquid contained in hydrogen water, further subjected to hydrogen reduction treatment, and then heat-treated to produce vanadium dioxide.
- Patent Document 3 mentions vanadium dioxide single crystal fine particles as a thermochromic material, and as its production method, vanadium pentoxide V 2 O 5 , ammonium vanadate NH 4 VO 3 , vanadium trichloride VOCl 3 , A method is described in which an aqueous solution of sodium metavanadate NaVO 3 or the like and hydrazine N 2 H 4 or its hydrate N 2 H 4 .nH 2 O is hydrothermally reacted.
- Patent Document 4 mentions vanadium dioxide as a thermochromic material, and the production method thereof includes vanadium pentoxide V 2 O 5 , a reducing agent such as oxalic acid (COOH) 2 and its hydrate, A method of producing rod-shaped nanoparticles of vanadium dioxide by hydrothermal reaction of a mixed solution containing water is described.
- Patent Document 5 as a method for producing vanadium dioxide serving as a thermochromic material, a vanadium alkoxide solution containing vanadium alkoxide and alcohol is reacted with a basic aqueous solution to produce a vanadium oxide precursor, and the vanadium oxide precursor A method is described in which vanadium dioxide particles are obtained by firing in a hydrogen atmosphere after firing.
- Patent Document 6 describes a method in which vanadium pentoxide, iron oxide, a carbonaceous reducing agent, and a slag forming agent are heated and melted at 1350 to 1650 ° C. to reduce to ferrovanadium. Yes.
- Non-Patent Document 1 describes that vanadium pentoxide is reduced using carbon at a high temperature to produce vanadium trioxide V 2 O 3 .
- Non-Patent Document 2 describes a method of reducing vanadium pentoxide to produce metal vanadium by reducing a mixture of vanadium pentoxide and a carbon material by arc plasma, but manufacturing vanadium dioxide VO 2 . There is no disclosure about what to do.
- JP 2010-163510 A JP 2011-136873 A JP 2011-178825 A JP 2012-116737 A JP 2013-71859 A JP 2010-111941 A
- vanadium dioxide VO 2 -based heat storage material As a heat storage material, vanadium dioxide VO 2 -based heat storage material is known and relates to a method for manufacturing a vanadium dioxide VO 2 -based heat storage material.
- vanadium pentoxide V 2 O 5 is used in a hydrogen-argon atmosphere.
- Two heat treatments are required, in which a V 2 O 3 precursor is formed by heat treatment, and V 2 O 5 and WO 3 are both vacuum sealed in a quartz tube for heat treatment. Is encapsulated in a quartz tube, which is not suitable for mass production of kilograms or more.
- Patent Documents 2 to 5 mention a melting method or a wet method as a method for producing vanadium dioxide VO 2 .
- any manufacturing method is not necessarily easy to mass-produce. Since expensive reducing agents such as hydrazine and oxalic acid are used, there is a problem that it is not an efficient method for producing vanadium dioxide that can be produced at low cost.
- Patent Document 6 discloses that as a method for reducing vanadium pentoxide V 2 O 5 , iron oxide and a slag forming agent are included, but a carbonaceous reducing agent is added at 1350 to 1650 ° C. Although it is described that it is reduced by heating and melting, there is no description or suggestion that it can be reduced to vanadium dioxide without adding iron oxide and a slag forming agent.
- Non-patent document 1 describes that V 2 O 3 can be prepared by reducing vanadium pentoxide V 2 O 5 with charcoal, but there is also a description of the ability to reduce it to vanadium dioxide VO 2 and its requirements. There is no suggestion.
- Non-Patent Document 2 as a method for reducing the vanadium pentoxide V 2 O 5, describes a method by reducing a mixture of vanadium pentoxide V 2 O 5 and carbon material by the arc plasma to produce metal vanadium
- vanadium dioxide VO 2 can be formed or its requirements. That is, the methods of Patent Document 6 and Non-Patent Documents 1 and 2 have a problem that a VO 2 heat storage material having sufficient heat storage characteristics cannot be manufactured.
- the inventors of the present invention provide a dry reduction method of vanadium pentoxide V 2 O 5 capable of mass production of vanadium dioxide VO 2 , in particular, reducing vanadium pentoxide V 2 O 5 with a carbon material.
- vanadium pentoxide V 2 O 5 when vanadium pentoxide V 2 O 5 is reduced with a carbon material, V 2 O 3 can be produced, but vanadium dioxide VO 2 cannot be produced.
- the present inventors have results of the study, five vanadium oxide V 2 O 5 upon reduction with carbon material, five the mixing ratio of the vanadium oxide V 2 O 5 and carbon material to a mixture of a specific range inert By heating at over 900 ° C.
- vanadium pentoxide V 2 O 5 can be reduced to vanadium dioxide VO 2
- a rutile VO 2 heat storage material can be obtained at a low cost.
- the present invention was completed by finding that it can be mass produced. Furthermore, the present inventors have also found that in the production method, the reaction unevenness is reduced by devising the conditions for filling the mixture in the mortar, so that it can be produced with high quality and high yield.
- the present invention has the following gist.
- (1) including the step (a) of mixing vanadium pentoxide V 2 O 5 and a carbon material, the step (b) of heating the mixed mixture in an inert atmosphere, and in the mixing step (a),
- the mixing ratio of the vanadium pentoxide V 2 O 5 and the carbon material is in the range of 1: 0.41 to 0.54 in terms of a molar ratio of vanadium pentoxide V 2 O 5 : carbon C in the carbon material, and the heating in the step of (b), the manufacturing method of the VO 2 based heat storage material, wherein the heating temperature is below 1542 ° C. exceed 900 ° C..
- the method further comprises a step (c) of filling the mortar with the mixed powder prepared in the step (a) of mixing at a packing density of 0.8 to 1.8 g / cm 3 .
- a method for producing a VO 2 heat storage material is a method for producing a VO 2 heat storage material.
- the carbon material is added and mixed after mixing vanadium pentoxide V 2 O 5 and a substitution element raw material containing a substitution element.
- the mixing ratio of vanadium pentoxide V 2 O 5 and the carbon material is 1: 0.
- a molar ratio of vanadium pentoxide V 2 O 5 carbon C in the carbon material.
- the method for producing a VO 2 heat storage material according to the present invention which is in the range of 43 to 0.51.
- the heat storage material obtained by the production method of the present invention can be suitably used at low cost in applications such as a cold insulation agent, a heat insulation material, energy storage, and exhaust heat utilization. It can also be used as a thermochromic material or its raw material.
- FIG. It is a diagram illustrating an example of X-ray diffraction pattern of VO 2 heat storage material prepared by the manufacturing method of the present invention.
- FIG. It is a schematic diagram which shows the example of arrangement
- the heat storage material in the present invention is a substance that undergoes an electronic phase transition and is a vanadium dioxide VO 2 oxide.
- x is 0 ⁇ x ⁇ 1.
- M is a tetravalent, pentavalent, or hexavalent cation. Examples thereof include Nb 5+ , Mo 6+ , Ru 4+ , Ta 5+ , W 6+ , Re 4+ , Os 4+ and Ir 4+ .
- the type and amount x of M are used to change the heat storage temperature range and are appropriately selected depending on the use of the heat storage material.
- V 2 O 5 vanadium trioxide V 2 O 3
- VO 2 vanadium dioxide
- V 2 O 3 is produced even when V 2 O 5 is simply dry-reduced, and VO 2 cannot be obtained directly.
- V 2 O 5 is a natural and stable compound, and V 2 O 3 is compared. Since VO 2 is an unstable compound and VO 2 is unstable, it has been difficult to produce VO 2 by a dry reduction method.
- the present inventors have revealed that an extensive investigation on a method of reducing V 2 O 5 with carbon in reducing V 2 O 5 carbon material, the specific range of mixing ratio of the V 2 O 5 and carbon material If the mixture is heated to over 900 ° C. and less than 1542 ° C. in an inert atmosphere, V 2 O 5 can be directly reduced to R-type VO 2, and the inert atmosphere can be, for example, an inexpensive nitrogen stream,
- the present invention has been completed by finding that a special hermetic heating furnace (vacuum apparatus) is unnecessary and can be continuously mass-produced easily.
- the reaction of the above formula (3) can be described as following the following course.
- the CO gas generated by 2V 2 O 5 + 2C ⁇ V 2 O 5 + V 2 O 3 + 2CO reacts instantaneously with another V 2 O 5 without being dissipated in the N 2 gas stream, and V 2 O 5 + 2CO ⁇ V 2 O 3 + 2CO 2 is further generated to generate V 2 O 3 , then add another V 2 O 5 to the right and left sides and divide the whole by 2 to obtain equation (3) above Can do.
- the mixture of (V 2 O 5 + V 2 O 3 ) produced in this way is heated in a N 2 gas stream, so that the reaction of V 2 O 5 + V 2 O 3 ⁇ 4VO 2 shown in the above formula (4).
- VO 2 could be generated by one-step heat treatment. It was also found that R-type (rutile structure) VO 2 can be formed by blending C with stoichiometric amount (stoichiometric amount). Therefore, according to the present invention, the reduction process for producing VO 2 from V 2 O 5 can be performed in one step without using a large vacuum apparatus or the like, and mass production is possible.
- the method for producing a heat storage material of the present invention includes a step (a) of mixing V 2 O 5 and a carbon material, and a step (b) of heating the mixture in an inert atmosphere. Furthermore, in the mixing step (a), the mixing ratio of V 2 O 5 and carbon material (carbon C) is 1: 0.41 to 0 in terms of a molar ratio of V 2 O 5 : carbon C in the carbon material. .54, and in the heating step (b), the heating temperature is higher than 900 ° C. and lower than 1542 ° C.
- the present inventor is a VO 2 heat storage material having excellent heat storage characteristics if the mixing ratio of V 2 O 5 and carbon C in the carbon material in the step (a) of the present invention is in a specific range as described above. It was found that can be obtained. If the mixing ratio is less than 0.41, the reduction is insufficient and the heat storage characteristics cannot be sufficiently exhibited. On the other hand, if the mixing ratio exceeds 0.54, the reduction proceeds excessively or a large amount of unreacted carbon is mixed, which is not suitable.
- V 2 O 5 + 1 / 2C ⁇ 2VO 2 + 1 / 2CO 2 (5) Is considered based on the above reaction formula (5). That is, the molar ratio of V 2 O 5 : carbon C is 1: 0.5 stoichiometrically, which is theoretically most preferable. Actually, the effects of the present invention can be obtained within the above-described range that deviates from the stoichiometric ratio. A more preferable range is 1: 0.43 to 0.51 in a molar ratio of V 2 O 5 : carbon C. If it is within this range, a larger amount of heat storage can be obtained.
- a more preferable range is 1: 0.44 to 0.50 in terms of a molar ratio of V 2 O 5 : carbon C. If it is within this range, a larger amount of heat storage can be obtained. That is, the largest amount of stored heat is obtained by setting the stoichiometric amount or a smaller amount of carbon C.
- reaction in the production method of the present invention is presumed that the above-described multistage reaction occurs, but the reaction between V 2 O 5 and the carbon material as shown in the reaction formula (5) directly reaches VO 2. It can also be considered that the reduction reaction is progressing. At that time, carbon dioxide CO 2 is generated as a by-product.
- the present inventor is able to obtain a VO 2 heat storage material having excellent heat storage characteristics by setting the heating temperature to more than 900 ° C. and less than 1542 ° C. I found it.
- the heating temperature is 900 ° C. or lower, the reaction does not proceed sufficiently and a VO 2 heat storage material having excellent heat storage characteristics cannot be obtained. More preferably, it is 1000 ° C. or higher.
- the heating temperature is 1542 ° C. or higher, reduction proceeds excessively or oxygen deficiency occurs, and a VO 2 heat storage material having excellent heat storage characteristics cannot be obtained.
- the temperature of 1400 ° C. or lower is more preferable because the energy for heating and the cost of equipment are suppressed, and more preferably 1300 ° C. or lower.
- Examples of the carbon material in the present invention include coal, charcoal, coke, natural graphite (natural graphite), artificial graphite (artificial graphite), activated carbon, acetylene black, and carbon black. Carbon materials obtained by carbonizing various organic substances can also be used. As the carbon material, a smaller amount of char (residue) is more preferable because impurities contained in the obtained heat storage material are reduced. The specific amount of char is preferably 10% by mass or less, and more preferably 2% by mass or less. Therefore, the carbon C in the molar ratio of V 2 O 5 : carbon C described above is carbon C contained in the carbon material, and excludes impurities such as char other than carbon C.
- the mixing method in the step (a) of the present invention is not particularly limited, and any of wet and dry methods may be used. Mortar mixing, vibration mill, ball mill, planetary ball mill, bead mill, drum mixer, pin mill, V-type mixer, rocking mixer Any existing method such as a tumbler mixer or a super mixer may be used.
- V 2 O 5 in the present invention is preferably 90% or more, more preferably 95% or more, and still more preferably 99% or more in terms of the purity of mol% of vanadium ions with respect to the total cations contained.
- the upper limit purity is 100%.
- the inert atmosphere in the step (b) of the present invention is an atmosphere in which an inert gas such as nitrogen N 2 , argon Ar, helium He, carbon dioxide CO 2 circulates.
- an inert gas such as nitrogen N 2 , argon Ar, helium He, carbon dioxide CO 2 circulates.
- the heating method in the step (b) of the present invention may be any method as long as the mixture can be heated to a predetermined temperature.
- electric heater heating microwave heating, gas combustion heating, infrared heating, etc. Is mentioned.
- the heating time is not particularly limited as long as the reaction is completed, but it is preferably 3 to 13 hours, more preferably 4 to 12 hours depending on the heating temperature. That is, if it is less than 3 hours, VO 2 cannot be generated sufficiently, and if it exceeds 13 hours, only heat loss occurs, which is not preferable.
- the raw material powder is fired simply by putting it in a sachet, but when firing the mixed powder of the present invention, it is more preferable to fill the sachet as densely as possible because reaction unevenness is reduced. . This is because the melting point of the raw material V 2 O 5 is around 690 ° C., and if the packing density of the mixed powder is too low, unreacted V 2 O 5 may be liquefied and foamed with the generated CO 2 gas during the temperature rising process. is there.
- the packing density to greater that the melting point of the V 2 O 5 to the reaction proceeds can reduce the generation amount of V 2 O liquefied V 2 O 5 Guests prevent liquefaction of 5.
- the packing density of the mixed powder filled in the sagger is 1.8 g / cm 3 or more, and if the packing density is less than 0.8 g / cm 3 , reaction unevenness is caused for the above reason. It may be likely to occur.
- Examples of a method for densely filling the mixed powder in the mortar include a method in which the mortar containing the mixed powder is vibrated, or a method in which the mixed powder is poured while the mortar is vibrated. Moreover, after putting mixed powder into a mortar, it can also press from above mixed powder and can raise a packing density.
- the filling density of the present invention is to determine the filling volume by measuring the depth filled with respect to the inner volume of the mortar, while measuring the mass of the mixed powder filled in the mortar, It is calculated
- required by filling volume packing density.
- a VO 2 heat storage with higher quality is achieved by forming a vent hole 3 in the mixed powder 2 filled in the sagger 1.
- Material can be manufactured.
- carbon dioxide CO 2 gas is generated as shown in the reaction formula (5), so that the gas generated when the mixed powder 2 filled in the mortar 1 reacts is effectively discharged out of the system.
- the vent hole 3 is formed.
- the degassing holes 3 can be formed, for example, by inserting a rod into the filled mixed powder 2.
- a hole-forming die 4 having a diameter of about 1 cm to 5 cm can be pushed in instead of a rod.
- Examples of the shape of the gas vent hole 3 include a circular shape, an elliptical shape, and a square shape. Moreover, it is good also as a plate-shaped jig
- FIG. The number of holes to be formed may be one or more, but if it is ten or more, it may be not preferable because it takes time to form the holes.
- 3A to 3D show an example in which the number of the vent holes 3 is 1 to 5. Further, examples of the shape of the gas vent hole 3 are circular (FIGS. 3A to 3C) and square (FIG. 3D).
- the depth of a hole is not specifically limited, It is more preferable that it is 1/4 or more of the filling depth of mixed powder. The maximum depth of the hole is the filling depth of the mixed powder.
- the heat storage temperature range can be made variable by mixing the substitution element material containing the element that substitutes the vanadium site with V 2 O 5 .
- the desired heat storage temperature can be obtained by setting the type and amount of the substitution element.
- the substitution element M include known tetravalent, pentavalent, and hexavalent cations.
- Nb 5+, Mo 6+, Ru 4+, Ta 5+, W 6+, Re 4+, Os 4+ is Ir 4+.
- W 6+ is preferable from the viewpoint of easily changing the heat storage temperature.
- As a raw material for the vanadium-substituted element M an oxide, carbonate, hydroxide, or the like containing M can be used.
- To mix the raw materials of vanadium substituted element M may be mixed with raw material to V 2 O 5 and carbon material, more preferably, premixed with V 2 O 5 the raw material, the mixture with carbon material Mix.
- a heat storage material is produced as an oxide represented by the composition formula (V 1 ⁇ x M x ) O 2 .
- the amount of carbon material considered in the reaction of the above formula (5) may be used. That is, in the case of the composition formula (V 4 + 1 -x M 4+ x ) O 2 , the raw material V 2 O 5 is used at a ratio of V to 1-x with respect to the substitution element M.
- carbon material relative to the amount of V 2 O 5 is V 2 O 5: stoichiometrically in a molar ratio of carbon C 1: 0.5, and the preferably within the range as described above.
- tungsten oxide WO 3 is preferable because the heat storage temperature can be greatly varied with a small amount and the raw material is easy to handle.
- the mixing step (a), V 2 O 5, WO 3 and is preferred to mix the carbon material.
- the mixing step (a) it is more preferable to mix the V 2 O 5 and the substitution element material containing the substitution element M and then add and mix the carbon material. That is, a substituted element material comprising a substitution element M, because since a trace amount with respect to V 2 O 5 Write the V 2 O 5 nearly can diffuse efficiently substitution elements M ions, in advance in order that V It is better to mix 2 O 5 and a substitution element material containing the substitution element M.
- the purity of V 2 O 5 used in the mixing step (a) is desirably higher, but is preferably at least 90% or more. When the purity of V 2 O 5 is 90% or more, a larger amount of heat storage can be obtained. The purity of V 2 O 5 is 95% or more, more preferably 99% or more. Further, if the impurity contains a large amount of Fe ions, a large amount of heat storage may not be obtained.
- Example 1 V 2 O 5 and the carbon material were weighed so as to have the respective ratios shown in Table 1, and a total of 20 g was put in a chrome cast steel vessel and dry-mixed in a vibration mill for 1 minute. Each obtained mixed powder was put into a quartz boat and fired under the conditions shown in Table 1 in a tubular atmosphere firing furnace.
- the sample obtained by firing was subjected to powder X-ray diffraction (XRD) apparatus of CuK ⁇ X-ray source (RINT-2100 manufactured by Rigaku Co., Ltd.) to measure the powder X-ray diffraction pattern and identify the generated phase.
- XRD powder X-ray diffraction
- FIG. 1 the vertical axis represents the diffraction intensity, and the horizontal axis represents the diffraction angle (2 ⁇ )
- JCPDS Joint Committee on Powder Diffraction Standard
- VO 2 having a rutile structure (tetragonal system) well matching the pattern 43-1051 on the card was generated.
- the heat storage amount and the heat storage temperature were measured using a differential scanning calorific value (DSC) measuring device (EXSTAR6000 series DSC6200 manufactured by Seiko Instruments Inc.).
- DSC differential scanning calorific value
- FIG. 2 shows the measurement result of VO 2 .
- the vertical axis represents the differential scanning calorific value
- the horizontal axis represents the temperature.
- the differential scanning calorific value represents a temperature difference when a predetermined amount of heat is applied to a reference material and a sample, or a difference in calorie required to bring both to a predetermined temperature.
- FIG. 2 shows the temperature difference measured when a predetermined amount of heat is applied to the reference material and the sample.
- the amount of stored heat is the amount of heat transferred, and is calculated from the area of the DSC transition peak.
- the heat storage temperature is a transition temperature, and is determined from the DSC transition peak as shown in FIG.
- the area ratio of the impurity phase (different phase) peak to the VO 2 single phase: “S”, the strongest peak of VO 2 phase (around 28 degrees at 2 ⁇ ) is 0.1 or less.
- S, A, and C are within the good range of the present invention.
- Example 2 V 2 O 5 , carbon material, and substitution element material were weighed so as to have the ratios shown in Tables 2-1 to 2-3, and a total of 20 g was put in a chrome cast steel vessel and dry mixed in a vibration mill for 1 minute. .
- Each obtained mixed powder was put into an alumina boat and fired in a tubular atmosphere firing furnace under the conditions shown in Tables 2-1 to 2-3.
- the obtained sample was evaluated in the same manner as in Example 1.
- the product phase is V 1-x M x O 2 .
- M represents a substitution element.
- the composition of the product was analyzed by high frequency inductively coupled plasma (ICP) emission spectroscopic analysis, and the composition of the product coincided with the charged composition in Tables 2-1 to 2-3.
- ICP inductively coupled plasma
- Example 3 V 2 O 5 , carbon material (natural graphite), substitution element material (Nb oxide, Mo oxide) are weighed to the respective proportions shown in Table 3, and a total of 20 g is put into a chrome cast steel vessel and vibrated for 1 minute. Dry mixed in a mill. Each obtained mixed powder was put into an alumina boat and fired under the conditions shown in Table 3 in a tubular atmosphere firing furnace.
- Example 3 The obtained sample was evaluated in the same manner as in Example 1. However, the product phase is V 1-x M x O 2 . M represents a substitution element.
- the composition of the product was analyzed by high frequency inductively coupled plasma (ICP) emission spectroscopy, and the composition of the product was consistent with the charged composition shown in Table 3.
- ICP inductively coupled plasma
- a heat storage material having good characteristics could be produced according to the production method of the present invention using the substitution element raw materials in Table 3 for substitution elements other than W (Nb, Mo).
- Example 4 V 2 O 5 , carbon material (natural graphite), and substitution element material (WO 3 ) are weighed to a total of 20 g so as to have the respective proportions shown in Table 4. First, V 2 O 5 and substitution element material are obtained. It put into the chromium cast steel vessel and dry-mixed with the vibration mill for 1 minute. Next, the carbon material was added and further dry mixed in a vibration mill for 1 minute. Each obtained mixed powder was put into an alumina boat and fired under the conditions shown in Table 4 in a tubular atmosphere firing furnace.
- Example 2 The obtained sample was evaluated in the same manner as in Example 1. However, the product phase is V 1-x M x O 2 . M represents a substitution element.
- the composition of the product was analyzed by high frequency inductively coupled plasma (ICP) emission spectroscopy, and the composition of the product (V 0.990 W 0.010 O 2 ) was consistent with the charged composition shown in Table 4.
- ICP inductively coupled plasma
- V 2 O 5 and carbon material, or V 2 O 5 and carbon material (natural graphite), and substitution element materials are weighed to a total of 10 kg so as to have the proportions shown in Table 5, and 3 hours with a drum mixer After mixing, it was dry mixed through a pin mill.
- the obtained sample was evaluated in the same manner as in Example 1.
- the product phase is V 1-x M x O 2 .
- M represents a substitution element.
- the composition analysis of the product which added the substitution element raw material was performed by the high frequency inductively coupled plasma (ICP) emission spectroscopic analysis method, the composition of the product (V 0.995 W 0.005 O 2 ) Match.
- Example 6 A heat storage material was prepared in the same manner as in Example 3 using the respective substitution element materials of ruthenium oxide RuO 4 , tantalum oxide Ta 2 O 5 , rhenium oxide ReO 3 , osmium oxide OsO 4 , and iridium oxide IrO 2 . The same results as in the above examples were obtained, and it was confirmed that a heat storage material having good characteristics could be produced according to the production method of the present invention.
- Example 7 V 2 O 5 and the carbon material were weighed so as to have the ratios shown in Tables 6-1 to 6-4, and a total of 3 kg was dry-mixed for 1 hour using a Kawata super mixer.
- Each obtained mixed powder was pressed into a mortar of 300 mm ⁇ 300 mm ⁇ 150 mm by pressing the mixed powder so as to have the packing density shown in Tables 6-1 to 6-4, and was fired in an atmosphere in an N 2 stream Were fired under the conditions of Tables 6-1 to 6-4.
- the number of vent holes described in the “hole” column of Tables 6-1 to 6-4 was formed using a 15 mm diameter rod.
- the pot and filling bowl were measured and calculated as filling mass / filling volume.
- XRD powder X-ray diffraction
- RINT-2100 CuK ⁇ X-ray source
- Fig. 1 the vertical axis represents the diffraction intensity, and the horizontal axis represents the diffraction angle (2 ⁇ ) From the measurement result of the powder X-ray diffraction pattern, JCPDS (Joint Committee on Powder Diffraction Standard).
- VO 2 having a rutile structure (tetragonal system) well matching the pattern of 43-1051 on the card was generated, and the heat storage amount and the heat storage temperature (transition temperature) were determined by differential scanning calorimetry ( DSC) was measured using a measuring device (EXSTAR6000 series DSC6200 manufactured by Seiko Instruments Inc.), an example of which is shown in Fig. 2.
- Fig. 2 shows the measurement result of VO 2.
- the vertical axis is the differential scanning.
- the differential scanning calorific value represents the temperature difference when a predetermined amount of heat is applied to the reference material and the sample, or the difference in the amount of heat required to bring both to a predetermined temperature. 2 shows the temperature difference measured when a predetermined amount of heat is applied to the reference material and the sample.
- the area ratio of the impurity phase (different phase) peak to the VO 2 single phase: “S”, the strongest peak of VO 2 phase (around 28 degrees at 2 ⁇ ) is shown. Is 0.1 or less: “A”, the peak area ratio is more than 0.1 and less than 0.2: “C”, the peak area ratio is more than 0.2: “X” Represents. S, A, and C are within the good range of the present invention.
- the “generated phase” and the “heat storage amount” are obtained by measuring the powder taken out from the mortar, but separately, in order to investigate the reaction unevenness, before taking out from the mortar, the central portion and the corner ( The amount of heat storage is measured by taking a sample from within 1 cm from the side wall of the bowl.
- the heat storage difference between the center portion and the corner of the mortar is less than 2 J / g: “S”
- the heat storage difference is 2 J / g or more and less than 5 J / g: “A”
- the heat storage difference is 5 J / g
- the difference in heat storage amount is 10 J / g or more: “C”.
- the difference in the heat storage amount cannot be expressed as uneven reaction, and therefore is represented by “ ⁇ ”.
- S, A, B, and C are within the good range of the present invention.
- 6-69 was obtained by changing the heat treatment time, but in all cases, a sufficient amount of heat storage was obtained.
- No. 6-70 and 6-71 were those in which the heat treatment atmosphere was air, but the VO 2 phase was not obtained because the atmosphere was not an inert atmosphere.
- no. Sufficient heat storage was also obtained in 6-72 to 74.
- No. In 6-84 to 89 a sufficient amount of heat storage was obtained even if the carbon material was charcoal or carbon black.
- the heat storage temperature phase transition temperature
- Example 8 V 2 O 5 , carbon material, and substitution element material were weighed so as to have the ratios shown in Tables 7-1 to 7-12, and a total of 3 kg was dry-mixed with a Kawata super mixer for 1 hour.
- Each of the obtained mixed powders was pressed into a 300 mm ⁇ 300 mm ⁇ 150 mm mortar so as to have the packing density shown in Table 6 and then filled in an atmosphere firing furnace in an N 2 airflow. Firing was carried out under the conditions shown in Table 7-12.
- the number of vent holes described in the “hole” column of Tables 7-1 to 7-12 were formed using a 15 mm diameter rod.
- Example 7 The obtained sample was evaluated in the same manner as in Example 7. However, the product phase is V 1-x M x O 2 . M represents a substitution element.
- the composition of the product was analyzed by high frequency inductively coupled plasma (ICP) emission spectroscopy, and the composition of the product coincided with the charged composition in Tables 7-1 to 7-12.
- ICP inductively coupled plasma
- Example 9 V 2 O 5 , carbon material (natural graphite), and substitution element materials (Nb oxide, Mo oxide) are weighed in the proportions shown in Tables 8-1 to 8-4, and a total of 3 kg is made by Kawata. Dry mixing was carried out with a super mixer for 1 hour. The obtained mixed powders were pressed into mixed powders of 300 mm ⁇ 300 mm ⁇ 150 mm by pressing the mixed powders so as to have the packing densities shown in Tables 8-1 to 8-4, and an atmosphere firing furnace in an N 2 airflow Were fired under the conditions of Tables 8-1 to 8-4. In the mixed powder filled in the mortar, the number of vent holes described in the “hole” column of Tables 8-1 to 8-4 were formed using a 15 mm diameter rod.
- the obtained sample was evaluated in the same manner as in Example 7. However, the product phase is V 1-x M x O 2 . M represents a substitution element.
- the composition of the product was analyzed by high frequency inductively coupled plasma (ICP) emission spectroscopic analysis, and the composition of the product coincided with the charged composition in Tables 8-1 to 8-4.
- ICP inductively coupled plasma
- substitution elements other than W also have good characteristics according to the production method of the present invention using the substitution element raw materials of Table 8.
- a heat storage material could be produced.
- the difference in the amount of heat storage is small as long as the packing density of the mixed powder is 0.8 g / cm 3 or more. There was little unevenness. The maximum packing density was 1.8 g / cm 3 , and the packing density could not be increased further. Moreover, the direction which degassed the mixed powder with which the mortar was filled had the tendency for the heat storage amount difference to become small.
- V 2 O 5 , carbon material (natural graphite), and substitution element material (WO 3 ) are weighed to a total of 3 kg so as to have the respective proportions shown in Table 9.
- V 2 O 5 and substitution element material are obtained.
- the mixture was dry-mixed for 1 hour using a Kawata super mixer.
- the carbon material was added and further dry mixed with the same super mixer for 1 hour.
- Each mixed powder obtained was pressed into a mixed powder of 300 mm ⁇ 300 mm ⁇ 150 mm by pressing the mixed powder so as to have the packing density shown in Table 9, and was subjected to the conditions shown in Table 9 in an atmosphere firing furnace in an N 2 airflow. Baked.
- the number of vent holes described in the “hole” column of Table 9 was formed using a 15 mm diameter rod.
- Example 7 The obtained sample was evaluated in the same manner as in Example 7. However, the product phase is V 1-x M x O 2 . M represents a substitution element.
- the composition of the product was analyzed by high frequency inductively coupled plasma (ICP) emission spectroscopy, and the composition of the product (V 0.990 W 0.010 O 2 ) is consistent with the charged composition shown in Table 9.
- ICP inductively coupled plasma
- Example 11 A heat storage material was prepared in the same manner as in Example 9 using each substitution element material of ruthenium oxide RuO 4 , tantalum oxide Ta 2 O 5 , rhenium oxide ReO 3 , osmium oxide OsO 4 , and iridium oxide IrO 2 . The same results as in the above examples were obtained, and it was confirmed that a heat storage material having good characteristics could be produced according to the production method of the present invention.
- Example 12 In Examples 7 to 12, the depth of the hole was set to 1/3 of the filling depth of the mixed powder, but if the filling depth of the mixed powder is from 1/4 or more of the filling depth of the mixed powder, The effect which forms was confirmed. When the hole depth was 1/5 of the filling depth, the effect of forming holes did not appear.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
V2O5と炭素材とを混合する工程(a)、前記混合した混合物を不活性雰囲気で加熱する工程(b)を含み、前記混合する工程(a)において、V2O5と炭素材との混合割合が、V2O5:炭素材中の炭素Cのモル比で1:0.41~0.54の範囲であり、前記加熱する工程(b)において、該加熱温度が900℃を超え1542℃未満であることを特徴とするVO2系蓄熱材料の製造方法。これにより、十分な蓄熱特性を有し、低コストで量産容易なVO2系蓄熱材料の製造方法を提供する。
Description
本発明は、二酸化バナジウムVO2系蓄熱材料の製造方法に関し、特に二酸化バナジウムVO2系蓄熱材料を低コストで量産容易にする製造方法に関するものである。
蓄熱材料は、外気温の変化に対して一定の温度に保持するという温度調節機能を有するものであり、一般的には、保冷剤や、断熱材ではない保温剤として知られている。また、蓄熱材料は、工場や自動車での廃熱利用等にも使用される。
蓄熱材料としては、物質の大きな比熱を利用するもの(顕熱蓄熱材料)、物質の相変化熱(例えば、融解-凝固の相変化)を利用するもの(潜熱蓄熱材料)、化学反応による発熱を利用するもの等がある。顕熱蓄熱材料は、他の蓄熱熱材料よりも蓄熱量が小さいという問題がある。また、化学反応による発熱を利用した蓄熱材料は、繰り返して使用することができないという問題がある。
一方、潜熱蓄熱材料は、繰り返して使用することができ、また、蓄熱容量が他の蓄熱材料に比べて大きいといった利点がある。最も代表的な潜熱蓄熱材料は氷であり、氷-水の融解-凝固の相変化を利用している。しかしながら、固体-液体の相変化を利用する場合には、相変化による大きな体積変化を伴う、液体の漏れが生じる可能性がある等の問題がある。
以上のような状況の中で、特許文献1にあるような固相状態で生じる相転移を利用した蓄熱材料が発明された。前記蓄熱材料は、固体-液体相転移と異なり、液体の漏れが生じることはなく、相転移時の相分離や分解も生じるおそれがない。更に、相転移時の体積変化が固体-液体相転移に比べ小さいという特徴を有する。
前記の蓄熱材料の具体的例としては、二酸化バナジウムVO2系酸化物が挙げられる。VO2系酸化物においては、VO2及びVサイトをMで置換したV1-xMxO2があり、その例としては、V1-xWxO2(0≦x≦0.0650)、V1-xTaxO2(0≦x≦0.117)、V1-xNbxO2(0≦X≦0.115)、V1-xRuxO2(0≦X≦0.150)、V1-xMoxO2(0≦X≦0.161)、V1-xRexO2(0≦X≦0.0964)が挙げられている。
二酸化バナジウムVO2系蓄熱材料は、特許文献1によれば次のように製造されるとしている。
まず、V2O5粉末を、水素とアルゴンの混合ガス(水素5%、アルゴン95%)中において、700℃まで昇温し、48時間保持することにより、前駆体であるV2O3粉末を得る。当該V2O3粉末と、V2O5粉末及びWO3粉末を、バナジウムとタングステンと酸素との間のモル比が所定のモル比になるように混合する。そして、当該混合物(粉末)を石英管内に入れ、真空封入する(真空度:2.67×10-4Pa程度)。具体的には、混合物を入れた石英管を排気装置に接続し、石英管内を真空排気する。そして、該石英管を、ガスバーナー等を用いて溶かしながら封じ切る。その後、上記混合物を、石英管ごと1000℃まで昇温し、48時間保持する。以上の工程を経て、V1-xWxO2の粉末試料を合成する。また、上記合成方法において、WO3の代わりに、Ta2O5、Nb2O5、RuO2、MoO2、ReO3をそれぞれ用いることにより、V1-xTaxO2、V1-xNbxO2、V1-xRuxO2、V1-xMoxO2、V1-xRexO2を合成する。
また、特許文献2には、サーモクロミック材料として二酸化バナジウムが挙げられており、その製造方法として、バナジウムとタングステンとを過酸化水素水に溶解させたヒドロゾルを基板上にスピンコーティングした後、数100℃で還元焼成して二酸化バナジウムのガラス状被膜を形成する方法、酸化バナジウムと酸化タングステンとを溶融法により合成した材料をビーズミルで粉砕して酸化バナジウムの微粒子を得る方法、及びバナジウム化合物を過酸化水素水に含有させたバナジウム含有液からバナジウム酸化物を析出させ、更に水素還元処理した後に加熱処理して二酸化バナジウムを製造する方法が記載されている。
特許文献3には、サーモクロミック材料として二酸化バナジウム単結晶微粒子が挙げられており、その製造方法として、五酸化二バナジウムV2O5、バナジン酸アンモニウムNH4VO3、三塩化酸化バナジウムVOCl3、メタバナジン酸ナトリウムNaVO3等と、ヒドラジンN2H4またはその水和物N2H4・nH2Oとの水溶液を水熱反応させる方法が記載されている。
特許文献4には、サーモクロミック材料として二酸化バナジウムが挙げられており、その製造方法として、五酸化二バナジウムV2O5と、シュウ酸(COOH)2やその水和物等の還元剤と、水とを含む混合液を水熱反応させることで二酸化バナジウムのロッド状ナノ粒子を作製する方法が記載されている。
特許文献5には、サーモクロミック材料となる二酸化バナジウムの製造方法として、バナジウムアルコキシド及びアルコールを含有するバナジウムアルコキシド溶液と塩基性水溶液とを反応させて酸化バナジウム前駆体を作製し、該酸化バナジウム前駆体を焼成した後に水素雰囲気中で還元することで二酸化バナジウム粒子とする方法が記載されている。
また、五酸化バナジウムを還元する方法として、五酸化バナジウム、酸化鉄、炭素質還元剤、スラグ形成剤を1350~1650℃で加熱溶融してフェロバナジウムに還元する方法が特許文献6に記載されている。
非特許文献1には、五酸化バナジウムを高温で炭素を用いて還元して三酸化バナジウムV2O3を作製することが記載されている。
非特許文献2には、五酸化バナジウムを還元して金属バナジウムを製造する方法として、五酸化バナジウムと炭素材の混合物をアークプラズマで還元する方法が記載されているが、二酸化バナジウムVO2を製造することについては何ら開示されていない。
千谷利三著「新版 無機化学(中巻)」産業図書1980年p.567
宮内彰彦、岡部徹、日本金属学会誌第74巻第11号(2010)701-711
蓄熱材料として二酸化バナジウムVO2系蓄熱材料は公知のものであり、二酸化バナジウムVO2系蓄熱材料の製造方法に関し、特許文献1の製造方法では、五酸化バナジウムV2O5を水素-アルゴン雰囲気で熱処理してV2O3前駆体を形成し、更にV2O5及びWO3等をともに石英管に真空封入して熱処理するという二回の熱処理が必要であり、かつ二回目の熱処理では試料を石英管に封入することになるのでキログラム以上の量産製造には不向きであるという問題がある。
また、蓄熱材料用途ではないが、特許文献2~5では二酸化バナジウムVO2を製造する方法として溶融法や湿式法が挙げられている。しかしながら、いずれの製造方法も必ずしも量産製造が容易であるというものではない。ヒドラジン、シュウ酸等の高価な還元剤を使用したりするので、低コストで製造できるような効率の良い二酸化バナジウムの製造方法ではないという問題がある。
二酸化バナジウムVO2の製造方法ではないが、特許文献6には五酸化バナジウムV2O5を還元する方法として、酸化鉄とスラグ形成剤も含むが炭素質還元剤を加えて1350~1650℃で加熱溶融して還元することが記載されているが、酸化鉄とスラグ形成剤を入れずに二酸化バナジウムに還元できることやその要件についての記載も示唆もない。また、非特許文献1には、五酸化バナジウムV2O5を炭で還元してV2O3を作製できることが記載されているが、二酸化バナジウムVO2に還元できることやその要件についての記載も示唆もない。また、非特許文献2には、五酸化バナジウムV2O5を還元する方法として、五酸化バナジウムV2O5と炭素材の混合物をアークプラズマで還元して金属バナジウムを製造する方法が記載されているが、二酸化バナジウムVO2が形成できることやその要件についての記載も示唆もない。即ち、特許文献6や非特許文献1、2の方法では、十分な蓄熱特性を有するVO2系蓄熱材料を製造できないという問題がある。
本発明では、上記問題点に鑑みてなされたものであり、十分な蓄熱特性を有するVO2系蓄熱材料の製造方法であって、低コストで量産容易なVO2系蓄熱材料の製造方法を提供することを目的とする。
本発明者らは、上記課題を解決すべく、二酸化バナジウムVO2の量産製造が可能な五酸化バナジウムV2O5の乾式還元方法、特に、五酸化バナジウムV2O5を炭素材で還元する方法に着目して鋭意研究を行った。従来技術では、五酸化バナジウムV2O5を炭素材で還元するとV2O3は製造できるが、二酸化バナジウムVO2は製造することができなかった。ところが、本発明者は研究の結果、五酸化バナジウムV2O5を炭素材で還元する際に、五酸化バナジウムV2O5と炭素材との混合割合を特定の範囲の混合物にして不活性雰囲気中で900℃を超え1542℃未満で加熱すれば、五酸化バナジウムV2O5を二酸化バナジウムVO2に還元でき、更に十分な蓄熱特性が得られるルチル構造のVO2系蓄熱材料を低コストで量産できることを見出して本発明を完成した。
更に、本発明者らは、前記製造方法において、前記混合物を匣鉢に充填する条件を工夫することで反応ムラが少なくなるので、高品質で歩留まりよく製造できることも見出している。
更に、本発明者らは、前記製造方法において、前記混合物を匣鉢に充填する条件を工夫することで反応ムラが少なくなるので、高品質で歩留まりよく製造できることも見出している。
すなわち、本発明は、以下の要旨とするものである。
(1)五酸化バナジウムV2O5と炭素材とを混合する工程(a)、前記混合した混合物を不活性雰囲気中で加熱する工程(b)を含み、前記混合する工程(a)において、五酸化バナジウムV2O5と炭素材との混合割合が、五酸化バナジウムV2O5:炭素材中の炭素Cのモル比で1:0.41~0.54の範囲であり、前記加熱する工程(b)において、該加熱温度が900℃を超え1542℃未満であることを特徴とするVO2系蓄熱材料の製造方法。
(2)更に、前記混合する工程(a)で調製した混合粉を充填密度0.8~1.8g/cm3で匣鉢に充填する工程(c)を含むことを特徴とする本発明のVO2系蓄熱材料の製造方法。
(3)前記匣鉢に充填する工程(c)において、匣鉢に充填した混合粉にガス抜き孔を形成することを特徴とする本発明のVO2系蓄熱材料の製造方法。
(4)記混合する工程(a)において、バナジウムサイトを置換する元素を含む置換元素原料を混合することを特徴とする本発明のVO2系蓄熱材料の製造方法。
(5)前記混合する工程(a)が、五酸化バナジウムV2O5、酸化タングステンWO3、及び炭素材とを混合する工程であることを特徴とする本発明のVO2系蓄熱材料の製造方法。
(6)前記混合する工程(a)において、五酸化バナジウムV2O5と置換元素を含む置換元素原料とを混合した後に炭素材を加えて混合する工程であることを特徴とする本発明のVO2系蓄熱材料の製造方法。
(7)前記混合する工程(a)において使用する五酸化バナジウムV2O5の純度が90%以上であることを特徴とする本発明のVO2系蓄熱材料の製造方法。
(8)前記混合する工程(a)において、五酸化バナジウムV2O5と炭素材との混合割合が、五酸化バナジウムV2O5:炭素材中の炭素Cのモル比で1:0.43~0.51の範囲であることを特徴とする本発明のVO2系蓄熱材料の製造方法。
以上のように、本発明によれば、十分な蓄熱特性が得られるVO2系蓄熱材料を低コストで量産容易に製造することができる。また、高品質で歩留まりよく量産製造できる。
本発明の製造方法によって得られた蓄熱材料は、保冷剤、保温材、エネルギー貯蔵、排熱利用等の用途において低コストで好適に使用できる。また、サーモクロミック材料やその原料としても使用できる。
本発明における蓄熱材料とは、電子相転移する物質であって二酸化バナジウムVO2系酸化物である。例えば、組成式(V1-xMx)O2で表される酸化物である。ここで、xは、0≦x<1である。Mは、4価、5価、6価のカチオンである。例えば、Nb5+、Mo6+、Ru4+、Ta5+、W6+、Re4+、Os4+、Ir4+が挙げられる。Mの種類と量xは、蓄熱温度域の可変に利用され、蓄熱材料の用途によって適宜選定されるものである。例えば、Nb5+の場合、0≦x≦0.115、Mo6+の場合、0≦x≦0.161、Ru4+の場合、0≦x≦0.150、Ta5+の場合、0≦x≦0.117、W6+の場合、0≦x≦0.065、Re4+の場合、0≦x0.096であることが好ましい。
五酸化バナジウムV2O5(以下単にV2O5と言う)の乾式還元方法としては、V2O5を水素や炭素で還元する方法があるが、V2O5を水素ガス気流中で加熱する方法では三酸化バナジウムV2O3(以下単にV2O3と言う)に還元されてしまい二酸化バナジウムVO2(以下単にVO2と言う)は得られない。途中で還元を止めてもVO2は得られず、V2O5とV2O3との混合物が得られ、その混合比率の制御は不可能である。VO2を得るためにはV2O5とV2O3との混合物を石英管に真空封入して加熱処理する真空加熱炉が必要である。この方法では、特殊な真空加熱炉が必要でコストが高くつき、連続生産ができず量産製造はできない。
その際の乾式還元方法の反応式は、下記式(1)および(2)の2段階に分けた反応が必要であると考えられる。
V2O5+2H2→V2O3+2H2O(水素ガスフローで加熱)・・・(1)
V2O5+V2O3→4VO2(石英管に真空封入して加熱) ・・・(2)
その際の乾式還元方法の反応式は、下記式(1)および(2)の2段階に分けた反応が必要であると考えられる。
V2O5+2H2→V2O3+2H2O(水素ガスフローで加熱)・・・(1)
V2O5+V2O3→4VO2(石英管に真空封入して加熱) ・・・(2)
また、V2O5と炭素材Cとを配合して強加熱する還元方法でもV2O3に還元されてしまう。
このように、V2O5を単に乾式還元してもV2O3が生成し、直接VO2が得られないのは、V2O5は天然で安定な化合物、V2O3は比較的安定な化合物であり、VO2は不安定な化合物であるから乾式還元方法でVO2を製造することはこれまで困難とされてきた。
本発明者は、V2O5を炭素で還元する方法について鋭意研究したところ、V2O5を炭素材で還元する際に、V2O5と炭素材との混合割合を特定の範囲の混合物にして不活性雰囲気中で900℃を超え1542℃未満で加熱すれば、V2O5をR型VO2に直接還元でき、また、不活性雰囲気は、例えば安価な窒素気流中でよく、特殊な密閉加熱炉(真空装置)は不要で連続的に量産容易に生産可能であることを見出して本発明を完成したものである。
すなわち、本発明で、V2O5からVO2が得られる反応としては、下記式(3)および(4)に基づく二つの反応が一工程の加熱処理で生じているものと推定できる。
つまり、V2O5と炭素材とを混合して不活性ガス(例えば、N2ガス)フローで加熱すると、式(3)の反応が生じる。
2V2O5+C→V2O5+V2O3+CO2・・・(3)
ついで、継続して加熱することで、
V2O5+V2O3→4VO2・・・(4)
の式(4)の反応によりVO2を製造することができる。
つまり、V2O5と炭素材とを混合して不活性ガス(例えば、N2ガス)フローで加熱すると、式(3)の反応が生じる。
2V2O5+C→V2O5+V2O3+CO2・・・(3)
ついで、継続して加熱することで、
V2O5+V2O3→4VO2・・・(4)
の式(4)の反応によりVO2を製造することができる。
上記(3)式の反応については、以下の経過をたどるものと説明することができる。まず、2V2O5+2C→V2O5+V2O3+2COで発生したCOガスがN2気流中で散逸せずに瞬時に別のV2O5と反応して、V2O5+2CO→V2O3+2CO2の反応でさらにV2O3を生成し、もう一つ別のV2O5を右辺・左辺に加えて全体を2で割ると、上記(3)式を得ることができる。
このようにして生成した(V2O5+V2O3)の混合物をN2気流中で加熱することで、上記(4)式に示すV2O5+V2O3→4VO2の反応により、一工程の加熱処理でVO2を生成することができたものと推定できる。
また、Cをストイキオメトリー量(化学量論量)配合することで、R型(ルチル構造)のVO2ができることを知見した。
したがって、本発明によれば、V2O5からVO2を製造する還元処理を一工程で、大型の真空装置等を用いることなく実施でき、量産が可能となる。
このようにして生成した(V2O5+V2O3)の混合物をN2気流中で加熱することで、上記(4)式に示すV2O5+V2O3→4VO2の反応により、一工程の加熱処理でVO2を生成することができたものと推定できる。
また、Cをストイキオメトリー量(化学量論量)配合することで、R型(ルチル構造)のVO2ができることを知見した。
したがって、本発明によれば、V2O5からVO2を製造する還元処理を一工程で、大型の真空装置等を用いることなく実施でき、量産が可能となる。
本発明の蓄熱材料の製造方法は、V2O5と炭素材とを混合する工程(a)、前記混合物を不活性雰囲気で加熱する工程(b)を含むものである。更に、前記混合する工程(a)において、V2O5と炭素材(炭素C)との混合割合が、V2O5:炭素材中の炭素Cのモル比で1:0.41~0.54の範囲であり、前記加熱する工程(b)において、該加熱温度が900℃を超え1542℃未満である。
本発明者は、本発明の工程(a)におけるV2O5と炭素材中の炭素Cとの混合割合が、上述のように特定の範囲であれば蓄熱特性に優れたVO2系蓄熱材料が得られることを見出した。混合割合が0.41未満では還元が不十分となり蓄熱特性を十分発揮できなない。一方、混合割合が0.54を超えると還元が進み過ぎたり、未反応の炭素が多く混合したりするので不適である。
V2O5と炭素材(炭素C)との混合割合の関係は、
V2O5+1/2C→2VO2+1/2CO2 ・・・(5)
の上記反応式(5)に基づいて考えられる。即ち、V2O5:炭素Cのモル比は、化学量論的に1:0.5となり、理論的には最も好ましい。実際には、前記化学量論比から外れる前述のような範囲内であれば、本発明の効果が得られるものである。より好ましい範囲は、V2O5:炭素Cのモル比で1:0.43~0.51である。この範囲内であるとより大きな蓄熱量が得られる。更に好ましい範囲は、V2O5:炭素Cのモル比で1:0.44~0.50である。この範囲内であると更に大きな蓄熱量が得られる。即ち、化学量論量又はそれより少なめの炭素C量とするのが最も大きな蓄熱量が得られる。
V2O5+1/2C→2VO2+1/2CO2 ・・・(5)
の上記反応式(5)に基づいて考えられる。即ち、V2O5:炭素Cのモル比は、化学量論的に1:0.5となり、理論的には最も好ましい。実際には、前記化学量論比から外れる前述のような範囲内であれば、本発明の効果が得られるものである。より好ましい範囲は、V2O5:炭素Cのモル比で1:0.43~0.51である。この範囲内であるとより大きな蓄熱量が得られる。更に好ましい範囲は、V2O5:炭素Cのモル比で1:0.44~0.50である。この範囲内であると更に大きな蓄熱量が得られる。即ち、化学量論量又はそれより少なめの炭素C量とするのが最も大きな蓄熱量が得られる。
本発明の製造方法における反応は、上述のような多段階反応が起こっていると推定しているが、反応式(5)のようなV2O5と炭素材が反応して直接VO2まで還元反応が進んでいるとも考えることができる。その際に、副生成物として二酸化炭素CO2が発生する。
本発明者は、上記混合割合とともに本発明の加熱する工程(b)において、該加熱温度が900℃を超え1542℃未満とすることで蓄熱特性に優れたVO2系蓄熱材料が得られることを見出した。加熱温度が900℃以下では十分に反応が進まず、蓄熱特性に優れたVO2系蓄熱材料が得られない。より好ましくは1000℃以上である。一方、加熱温度が1542℃以上では還元が進みすぎたり、酸素欠損が生じたりして蓄熱特性に優れたVO2系蓄熱材料が得られない。特に、1400℃以下である方が加熱するエネルギーや設備のコストが抑えられるのでより好ましく、更に好ましくは1300℃以下である。
本発明における炭素材とは、例えば、石炭、木炭、コークス、天然黒鉛(天然グラファイト)、人造黒鉛(人造グラファイト)、活性炭、アセチレンブラック、カーボンブラック、等である。また、各種の有機物を炭化して得られる炭素材も使用できる。前記炭素材としては、チャー(残渣)の量が少ない方が、得られる蓄熱材料に含まれる不純物が少なくなるのでより好ましい。具体的なチャーの量は、10質量%以下が好ましく、より好ましくは2質量%以下である。よって、上述のV2O5:炭素Cのモル比における炭素Cは、炭素材に含有する炭素Cであり、炭素C以外のチャー等の不純物を除いたものである。
本発明の工程(a)における混合する方法は、特に限定しないが、湿式、乾式のいずれでもよく、乳鉢混合、振動ミル、ボールミル、遊星ボールミル、ビーズミル、ドラムミキサー、ピンミル、V型ミキサー、ロッキングミキサー、タンブラーミキサー、スーパーミキサー、等の既存の方法であればどのような方法でもよい。
本発明におけるV2O5は、含有する総カチオンに対するバナジウムイオンのモル%とする純度で90%以上が好ましく、より好ましくは95%以上、さらに好ましくは99%以上である。尚、上限純度は100%となる。
本発明の工程(b)における不活性雰囲気とは、窒素N2、アルゴンAr、ヘリウムHe、二酸化炭素CO2等の不活性ガスを流通した雰囲気である。
本発明の工程(b)における加熱する方法は、該混合物を所定の温度に加熱できる方法であればどのような方法でもよく、例えば、電気ヒータ加熱、マイクロ波加熱、ガス燃焼加熱、赤外線加熱等が挙げられる。加熱時間は反応が完了する時間であればよく、特に限定するものではないが、加熱温度に応じて3~13時間加熱するのが好ましく、より好ましくは4~12時間である。すなわち、3時間未満では十分にVO2を生成させることができず、13時間を超えると熱損失になるだけで好ましくない。
更に、前記混合する工程(a)で調製した混合粉を充填密度0.8~1.8g/cm3で匣鉢に充填する工程(c)を有するのが好ましい。通常セラミックス原料の焼成等では原料粉を匣鉢に単に入れるだけで焼成するが、本発明の前記混合粉を焼成するに際して匣鉢にできるだけ密に充填する方が、反応ムラが少なくなるのでより好ましい。これは、原料V2O5の融点が690℃付近であり、混合粉の充填密度が低すぎると昇温過程で未反応V2O5が液化して発生するCO2ガスで発泡する場合がある。しかしながら、充填密度を高くするとV2O5の融点までに反応が進み、V2O5の液化を防いだり液化V2O5の発生量を低減できる。このようなことから、前記混合粉を匣鉢に充填する充填密度が1.8g/cm3以上とするのが好ましく、0.8g/cm3未満の充填密度であると前記理由で反応ムラが生じ易くなる場合がある。一方、前記充填密度を上げる方がより好ましいものであるが、1.8g/cm3を超えるまで充填するのは難しく現実的ではない場合がある。匣鉢に前記混合粉を密に充填する方法としては、例えば、混合粉を入れた匣鉢に振動を与える、或いは匣鉢に振動を与えながら混合粉を入れる方法がある。また、混合粉を匣鉢に入れた後に混合粉の上から押し付けて充填密度を上げることもできる。本発明の充填密度は、匣鉢の内容量に対して充填された深さを測定して充填体積を求め、一方匣鉢に充填された混合粉の質量を測定し、前記充填混合粉質量/充填体積=充填密度で求められる。
前記匣鉢に充填する工程(c)において、図3A~図3Dに示すように、匣鉢1に充填した混合粉2にガス抜き孔3を形成することでより品質に優れたVO2系蓄熱材料を製造できる。本製造方法では、反応式(5)にあるように二酸化炭素CO2のガスが発生するので、匣鉢1に充填した混合粉2が反応する際に発生するガスを効果的に系外に出ていけるようするのが好ましく、そのためにガス抜き孔3を形成する。ガス抜き孔3は、例えば、充填した混合粉2に棒を差し込んで穴を形成することができる。図3Aに示すように、棒の代わりに1cm~5cm程度の径の孔形成型4を押し込んで形成することもできる。ガス抜き孔3の形状としては、例えば、円状、楕円状、四角状等が挙げられる。また、混合粉2を押し付けると同時にガス抜き孔3を形成できるような孔形成の突起部を有する板状の治具としてもよい。形成する孔の数は1つ以上であればよいが、10個以上では孔形成に手間がかかって好ましくない場合がある。図3A~図3Dには、ガス抜き孔3の数が1個~5個の例を示している。また、ガス抜き孔3の形状として円状(図3A~図3C)と四角状(図3D)の例を示している。孔の深さは、特に限定しないが、混合粉の充填深さの1/4以上であるのがより好ましい。孔の最大深さは、混合粉の充填深さである。
前記混合する工程(a)において、バナジウムサイトを置換する元素を含む置換元素原料をV2O5と混合することによって、蓄熱温度域を可変にできる。前記置換元素の種類と置換量を設定することで所望の蓄熱温度にすることができる。前記置換元素Mとしては、公知の4価、5価、6価のカチオンが挙げられる。例えば、Nb5+、Mo6+、Ru4+、Ta5+、W6+、Re4+、Os4+、Ir4+である。前記置換元素Mの中でも、蓄熱温度の可変し易さの観点からW6+が好ましい。バナジウム置換元素Mの原料としては、Mを含む酸化物、炭酸塩、水酸化物等が使用できる。
バナジウム置換元素Mの原料を混合するには、V2O5及び炭素材に該原料を混合すればよいが、より好ましくは、該原料を予めV2O5と混合し、該混合物と炭素材を混合する。置換元素Mの原料を使用する場合には、組成式(V1-xMx)O2で表される酸化物として蓄熱材料を作製する。置換元素Mの価数が4価の場合は、上記(5)式の反応で考える炭素材量とすれば良い。即ち、組成式(V4+
1-xM4+
x)O2である場合、置換元素Mに対してVが1-xとなる割合で原料V2O5を使用するが、使用する原料V2O5の量に対して炭素材はV2O5:炭素Cのモル比で化学量論的に1:0.5となり、上述のような範囲内が好ましい。
一方、置換元素Mの価数が4価以外の5価や6価の場合には、V5+イオンの還元が一部V4+イオンからV3+イオンまで進み、(V4+
1-2xV3+
xM5+
x)O2、(V4+
1-3xV3+
2xM6+
x)O2の組成式となり、これを考慮した炭素材の量となる。即ち、組成式(V4+
1-2xV3+
xM5+
x)O2の場合、置換元素Mに対してVは1-2x+x=1-xの割合であるが、V5+イオンの還元がV4+イオンだけでなく一部はV3+イオンまで還元することになるので見かけ上Mに対するVは1-2x+2x=1の割合であるとして炭素材の化学量論的必要量を決めることになる。よって、置換元素Mの添加量だけVの割合が少なくなるが、炭素材の量は置換元素Mが添加されていても見かけ上VO2であるとしてV2O5:炭素Cのモル比を考えればよい。組成式(V4+
1-3xV3+
2xM6+
x)O2の場合も同様であり、置換元素Mに対してVは1-3x+2x=1-xの割合であるが、V5+イオンの還元がV4+イオンだけでなく一部はV3+イオンまで還元することになるので見かけ上Mに対するVは1-3x+2×2x=1+xの割合であるとして炭素材の化学量論的必要量を決めることになる。
前述のバナジウム置換元素Mの原料の中でも、少量で蓄熱温度を大きく可変できること及び原料が扱い易いことという点から、酸化タングステンWO3が好ましい。よって、前記混合する工程(a)が、V2O5、WO3、及び炭素材とを混合するのが好ましい。
また、前記混合する工程(a)において、V2O5と置換元素Mを含む置換元素原料とを混合した後に炭素材を加えて混合するのがより好ましい。即ち、置換元素Mを含む置換元素原料は、V2O5に対して微量であるのでV2O5近くにある方が効率的に置換元素Mイオンを拡散できるので、その為には予めV2O5と置換元素Mを含む置換元素原料とを混合しておく方がよい。
前記混合する工程(a)において使用するV2O5の純度は高い方が望ましいが、少なくとも90%以上であるのが好ましい。V2O5の純度が90%以上であると、より大きな蓄熱量が得られる。V2O5の純度としては、95%以上、さらに好ましくは99%以上である。また、不純物にFeイオンが多く含まれると大きな蓄熱量が得られない場合がある。
以下、本発明の実施例について説明するが、本発明は、これら実施例に限定されるものではない。表1~表9において、本発明から外れる数値・項目にアンダーラインを付している。
(実施例1)
V2O5及び炭素材を表1の各割合になるように計量し、合計で20gをクロム鋳鋼ベッセルに入れて1分間振動ミルにて乾式混合した。得られた各混合粉を石英ボートに入れ、管状雰囲気焼成炉にて表1の条件で焼成した。
V2O5及び炭素材を表1の各割合になるように計量し、合計で20gをクロム鋳鋼ベッセルに入れて1分間振動ミルにて乾式混合した。得られた各混合粉を石英ボートに入れ、管状雰囲気焼成炉にて表1の条件で焼成した。
焼成して得られた試料は、CuKαのX線源の粉末X線回折(XRD)装置((株)リガク製 RINT-2100を用いて粉末X線回折パターンを測定して生成相の同定を行った。その例を図1に示した。図1において、縦軸は回折強度、横軸は回折角度(2θ)である。粉末X線回折パターンの測定結果から、JCPDS(Joint Comittee on Powder Diffraction Standard)カードにおける43-1051のパターンによく一致するルチル構造(正方晶系)のVO2が生成していることが確認できた。
また、蓄熱量と蓄熱温度(転移温度)は、示差走査熱量(DSC)測定装置(セイコーインスツルメンツ(株)製EXSTAR6000シリーズDSC6200)を用いて測定した。その例を図2に示した。図2はVO2の測定結果である。縦軸は示差走査熱量、横軸は温度である。一般に示差走査熱量は、基準物質と試料に所定の熱量を与えた時の温度差、又は両者を所定の温度にするために要した熱量の差を表すものである。図2は基準物質と試料に所定の熱量を与えた時の温度差を測定したものである。蓄熱量は転移熱量であり、DSCの転移ピークの面積から算出する。蓄熱温度は転移温度であり、DSCの転移ピークから図2に示したようにして求める。
表1の「生成相」欄には、VO2単相:「S」、VO2相の最強ピーク(2θで28度付近)に対する不純物相(異相)ピークの面積比が0.1以下である場合:「A」、前記ピーク面積比が0.1を超え0.2以下の場合:「C」、前記ピーク面積比が0.2を超える場合:「×」として表している。S、A、Cは本発明の良好範囲内である。
表1の「蓄熱量」欄には、蓄熱量が50J/g以上の場合:「S」、蓄熱量が40J/g以上50J/g未満の場合:「A」、蓄熱量が20J/g以上40J/g未満の場合:「C」、蓄熱量が20J/g未満の場合:「X」として表している。S、A、Cは本発明の良好範囲内である。
表1に示しているように、No.1-1及びNo.1-11は、V2O5:炭素Cのモル比が1:0.41~0.54を超えていたので十分な蓄熱量が得られなかったが、No.1-2~No.1-10は本発明の範囲内であり十分な蓄熱量が得られた。No.1-12は、熱処理温度が低すぎるために十分な蓄熱量が得られず、一方、No.1-17は、熱処理温度が高すぎて溶融してしまった。No.1-13~No.1-16、No.1-28、No.1-29は本発明の範囲内であり十分な蓄熱量が得られた。No.1-18~No.1-20は、熱処理時間を変えたものであるが、いずれも十分な蓄熱量が得られた。No.1-21は、熱処理雰囲気を空気にしたものであるが、不活性雰囲気でなかったのでVO2相は得られなかった。一方、熱処理雰囲気をアルゴンにしたNo.1-22でも十分な蓄熱量が得られた。No.1-24及びNo.1-25にあるように、V2O5の純度が高くなるほどより優れた蓄熱量を示した。No.1-26及びNo.1-27では、炭素材を木炭やカーボンブラックにしても十分な蓄熱量が得られた。尚、蓄熱温度(相転移温度)は、蓄熱量が測定できたいずれの試料も64℃~66℃の範囲内であった。
(実施例2)
V2O5、炭素材、置換元素原料を表2-1~表2-3の各割合になるように計量し、合計で20gをクロム鋳鋼ベッセルに入れて1分間振動ミルにて乾式混合した。
V2O5、炭素材、置換元素原料を表2-1~表2-3の各割合になるように計量し、合計で20gをクロム鋳鋼ベッセルに入れて1分間振動ミルにて乾式混合した。
得られた各混合粉をアルミナボートに入れ、管状雰囲気焼成炉にて表2-1~表2-3の条件で焼成した。
得られた試料は、実施例1と同様の方法で評価した。但し、生成相はV1-xMxO2である。尚、Mは置換元素を示す。尚、高周波誘導結合プラズマ(ICP)発光分光分析法で生成物の組成分析をしているが、生成物の組成は表2-1~表2-3の仕込み組成と一致している。
表2-1~表2-3に示しているように、No.2-1、No.2-11、No.2-12、No.2-22、No.2-23、No.2-33、No.2-34、No.2-44は、V2O5:炭素Cのモル比が1:0.41~0.54の範囲内でないので十分な蓄熱量が得られなかったが、No.2-2~No.2-10、No.2-13~No.2-21、No.2-24~No.2-32、No.2-35~No.2-43、No.2-45~No.2-47は本発明の範囲内であり十分な蓄熱量が得られた。No.2-48は、熱処理温度が低すぎるために十分な蓄熱量が得られず、一方、No.2-53は、熱処理温度が高すぎて溶融してしまった。No.2-49~No.2-52は本発明の範囲内であり十分な蓄熱量が得られた。No.2-54~No.2-56は、熱処理時間を変えたものであるが、いずれも十分な蓄熱量が得られた。No.2-57は、熱処理雰囲気を空気にしたものであるが、不活性雰囲気でなかったのでV1-xMxO2相は得られなかった。一方、熱処理雰囲気をアルゴンにしたNo.2-58でも十分な蓄熱量が得られた。No.2-59及びNo.2-61にあるように、V2O5の純度が高くなるほどより優れた蓄熱量を示した。No.2-62及びNo.2-63では、炭素材を木炭やカーボンブラックにしても十分な蓄熱量が得られた。
また、置換元素によって蓄熱温度(転移温度)が変化した。
また、置換元素によって蓄熱温度(転移温度)が変化した。
(実施例3)
V2O5、炭素材(天然黒鉛)、置換元素原料(Nb酸化物、Mo酸化物)を表3の各割合になるように計量し、合計で20gをクロム鋳鋼ベッセルに入れて1分間振動ミルにて乾式混合した。得られた各混合粉をアルミナボートに入れ、管状雰囲気焼成炉にて表3の条件で焼成した。
V2O5、炭素材(天然黒鉛)、置換元素原料(Nb酸化物、Mo酸化物)を表3の各割合になるように計量し、合計で20gをクロム鋳鋼ベッセルに入れて1分間振動ミルにて乾式混合した。得られた各混合粉をアルミナボートに入れ、管状雰囲気焼成炉にて表3の条件で焼成した。
得られた試料は、実施例1と同様の方法で評価した。但し、生成相はV1-xMxO2である。尚、Mは置換元素を示す。尚、高周波誘導結合プラズマ(ICP)発光分光分析法で生成物の組成分析をしているが、生成物の組成は表3の仕込み組成と一致している。
表3に示しているように、W以外の置換元素(Nb、Mo)についても表3の置換元素原料を用いて本発明の製造方法によれば良好な特性を有する蓄熱材料を作製できた。
(実施例4)
V2O5、炭素材(天然黒鉛)、置換元素原料(WO3)を表4の各割合になるように合計で20gになるように計量し、まず、V2O5と置換元素原料をクロム鋳鋼ベッセルに入れて1分間振動ミルにて乾式混合した。次に炭素材を加えて更に1分間振動ミルにて乾式混合した。得られた各混合粉をアルミナボートに入れ、管状雰囲気焼成炉にて表4の条件で焼成した。
V2O5、炭素材(天然黒鉛)、置換元素原料(WO3)を表4の各割合になるように合計で20gになるように計量し、まず、V2O5と置換元素原料をクロム鋳鋼ベッセルに入れて1分間振動ミルにて乾式混合した。次に炭素材を加えて更に1分間振動ミルにて乾式混合した。得られた各混合粉をアルミナボートに入れ、管状雰囲気焼成炉にて表4の条件で焼成した。
得られた試料は、実施例1と同様の方法で評価した。但し、生成相はV1-xMxO2である。尚、Mは置換元素を示す。尚、高周波誘導結合プラズマ(ICP)発光分光分析法で生成物の組成分析をしているが、生成物の組成(V0.990W0.010O2)は表4の仕込み組成と一致している。
表4に示すように、V2O5と置換元素原料を予め混合する方が熱処理条件を短時間にしても優れた特性を有する蓄熱材料が得られた。
(実施例5)
V2O5と炭素材、又は、V2O5と炭素材(天然黒鉛)と置換元素原料を表5の各割合になるように合計で10kgになるように計量し、ドラムミキサーで3時間混合した後、ピンミルを通して乾式混合した。
V2O5と炭素材、又は、V2O5と炭素材(天然黒鉛)と置換元素原料を表5の各割合になるように合計で10kgになるように計量し、ドラムミキサーで3時間混合した後、ピンミルを通して乾式混合した。
得られた各混合粉を匣鉢に2kgずつ入れ、5つの匣鉢を箱型雰囲気焼成炉内に積み上げて表5の条件で焼成した。
得られた試料は、実施例1と同様の方法で評価した。但し、生成相はV1-xMxO2である。尚、Mは置換元素を示す。尚、高周波誘導結合プラズマ(ICP)発光分光分析法で置換元素原料を添加した生成物の組成分析をしているが、生成物の組成(V0.995W0.005O2)は表5の仕込み組成と一致している。
表5に示すように、本発明の製造方法によれば製造量を増やしても良好な特性を有する蓄熱材料が得られることが分かる。
(実施例6)
酸化ルテニウムRuO4、酸化タンタルTa2O5、酸化レニウムReO3、酸化オスニウムOsO4、酸化イリジウムIrO2の各置換元素原料を用いて、実施例3と同様に蓄熱材料を作製した。上記実施例と同様な結果が得られ、本発明の製造方法によれば良好な特性を有する蓄熱材料を作製できることを確認できた。
酸化ルテニウムRuO4、酸化タンタルTa2O5、酸化レニウムReO3、酸化オスニウムOsO4、酸化イリジウムIrO2の各置換元素原料を用いて、実施例3と同様に蓄熱材料を作製した。上記実施例と同様な結果が得られ、本発明の製造方法によれば良好な特性を有する蓄熱材料を作製できることを確認できた。
(実施例7)
V2O5及び炭素材を表6-1~表6-4の各割合になるように計量し、合計で3kgをカワタ製スーパーミキサーにて1時間乾式混合した。得られた各混合粉を表6-1~表6-4に示した充填密度になるように混合粉を押しつけて300mm×300mm×150mmの匣鉢に充填し、N2気流中の雰囲気焼成炉にて表6-1~表6-4の条件で焼成した。尚、匣鉢に充填した混合粉には、表6-1~表6-4の「孔」欄記載の個数のガス抜き孔を15mm径の棒を用いて形成した。
V2O5及び炭素材を表6-1~表6-4の各割合になるように計量し、合計で3kgをカワタ製スーパーミキサーにて1時間乾式混合した。得られた各混合粉を表6-1~表6-4に示した充填密度になるように混合粉を押しつけて300mm×300mm×150mmの匣鉢に充填し、N2気流中の雰囲気焼成炉にて表6-1~表6-4の条件で焼成した。尚、匣鉢に充填した混合粉には、表6-1~表6-4の「孔」欄記載の個数のガス抜き孔を15mm径の棒を用いて形成した。
ここで、充填密度は、孔を形成する前に匣鉢に充填された混合粉の深さ(=150mm-未充填深さ)を測定して充填体積を求め、一方充填質量は天秤で空匣鉢と充填匣鉢を測定して求め、充填質量/充填体積として算出した。
焼成して得られた試料は、CuKαのX線源の粉末X線回折(XRD)装置((株)リガク製 RINT-2100を用いて粉末X線回折パターンを測定して生成相の同定を行った。その例を図1に示した。図1において、縦軸は回折強度、横軸は回折角度(2θ)である。粉末X線回折パターンの測定結果から、JCPDS(Joint Comittee on Powder Diffraction Standard)カードにおける43-1051のパターンによく一致するルチル構造(正方晶系)のVO2が生成していることが確認できた。また、蓄熱量と蓄熱温度(転移温度)は、示差走査熱量(DSC)測定装置(セイコーインスツルメンツ(株)製 EXSTAR6000シリーズDSC6200)を用いて測定した。その例を図2に示した。図2はVO2の測定結果である。縦軸は示差走査熱量、横軸は温度である。一般に示差走査熱量は、基準物質と試料に所定の熱量を与えた時の温度差、又は両者を所定の温度にするために要した熱量の差を表すものである。図2は基準物質と試料に所定の熱量を与えた時の温度差を測定したものである。
表6-1~表6-4の「生成相」欄には、VO2単相:「S」、VO2相の最強ピーク(2θで28度付近)に対する不純物相(異相)ピークの面積比が0.1以下である場合:「A」、前記ピーク面積比が0.1を超え0.2以下の場合:「C」、前記ピーク面積比が0.2を超える場合:「X」として表している。S、A、Cは本発明の良好範囲内である。
表6-1~表6-4の「蓄熱量」欄には、蓄熱量が50J/g以上の場合:「S」、蓄熱量が40J/g以上50J/g未満の場合:「A」、蓄熱量が20J/g以上40J/g未満の場合:「C」、蓄熱量が20J/g未満の場合:「X」として表している。S、A、Cは本発明の良好範囲内である。
前記「生成相」及び「蓄熱量」は、匣鉢から取り出した粉末を測定したものであるが、反応ムラを調べるために別途、匣鉢から取り出す前に匣鉢の中心部と角部(匣鉢側壁から1cm以内)とからサンプルを取って蓄熱量を測定している。匣鉢の中心部と角部の蓄熱量差が、2J/g未満の場合:「S」、蓄熱量差が2J/g以上5J/g未満の場合:「A」、蓄熱量差が5J/g以上10J/g未満の場合:「B」、蓄熱量差が10J/g以上の場合:「C」として表している。また、蓄熱量が20J/g未満のサンプルについては、蓄熱量差が反応ムラとして表現できないので「-」で表している。S、A、B、Cは本発明の良好範囲内である。
表6-1~表6-4に示しているように、No.6-1、6-2及びNo.6-37、6-38は、V2O5:炭素Cのモル比が1:0.41~0.54を超えていたので十分な蓄熱量が得られなかったが、No.6-3~No.6-36は本発明の範囲内であり十分な蓄熱量が得られた。No.6-39、40は、熱処理温度が低すぎるために十分な蓄熱量が得られず、一方、No.6-59、6-60は、熱処理温度が高すぎて溶融してしまった。No.6-41~No.6-58は本発明の範囲内であり十分な蓄熱量が得られた。No.6-61~No.6-69は、熱処理時間を変えたものであるが、いずれも十分な蓄熱量が得られた。No.6-70、6-71は、熱処理雰囲気を空気にしたものであるが、不活性雰囲気でなかったのでVO2相は得られなかった。一方、熱処理雰囲気をアルゴンにしたNo.6-72~74でも十分な蓄熱量が得られた。No.6-75~83にあるように、V2O5の純度が高くなるほどより優れた蓄熱量を示した。No.6-84~89では、炭素材を木炭やカーボンブラックにしても十分な蓄熱量が得られた。尚、蓄熱温度(相転移温度)は、蓄熱量が測定できたいずれの試料も64℃~66℃の範囲内であった。
表6-1~表6-4に示すように、混合粉の充填密度が0.8g/cm3以上であれば蓄熱量差が小さく、反応ムラが少ないものであった。充填密度の最大は1.8g/cm3であり、これ以上充填密度を上げることはできなかった。また、匣鉢に充填した混合粉にガス抜き孔を施した方が蓄熱量差が小さくなる傾向であった。
(実施例8)
V2O5、炭素材、置換元素原料を表7-1~表7-12の各割合になるように計量し、合計で3kgをカワタ製スーパーミキサーにて1時間乾式混合した。得られた各混合粉を表6に示した充填密度になるように混合粉を押しつけて300mm×300mm×150mmの匣鉢に充填し、N2気流中の雰囲気焼成炉にて表7-1~表7-12の条件で焼成した。尚、匣鉢に充填した混合粉には、表7-1~表7-12の「孔」欄記載の個数のガス抜き孔を15mm径の棒を用いて形成した。
V2O5、炭素材、置換元素原料を表7-1~表7-12の各割合になるように計量し、合計で3kgをカワタ製スーパーミキサーにて1時間乾式混合した。得られた各混合粉を表6に示した充填密度になるように混合粉を押しつけて300mm×300mm×150mmの匣鉢に充填し、N2気流中の雰囲気焼成炉にて表7-1~表7-12の条件で焼成した。尚、匣鉢に充填した混合粉には、表7-1~表7-12の「孔」欄記載の個数のガス抜き孔を15mm径の棒を用いて形成した。
得られた試料は、実施例7と同様の方法で評価した。但し、生成相はV1-xMxO2である。尚、Mは置換元素を示す。尚、高周波誘導結合プラズマ(ICP)発光分光分析法で生成物の組成分析をしているが、生成物の組成は表7-1~表7-12の仕込み組成と一致している。
表7-1~表7-12に示しているように、No.7-1~2、No.7-50~53、No.7-101~104、No.7-148~151、No.7-187~188は、V2O5:炭素Cのモル比が1:0.41~0.54の範囲内でないので十分な蓄熱量が得られなかったが、No.7-3~No.2-49、No.7-54~No.7-100、No.7-105~No.7-147、No.7-152~No.7-186、No.7-189~No.7-201は本発明の範囲内であり十分な蓄熱量が得られた。No.7-202~203は、熱処理温度が低すぎるために十分な蓄熱量が得られず、一方、No.7-222~223は、熱処理温度が高すぎて溶融してしまった。No.7-204~No.7-221は本発明の範囲内であり十分な蓄熱量が得られた。No.7-224~No.7-232は、熱処理時間を変えたものであるが、いずれも十分な蓄熱量が得られた。No.7-233~234は、熱処理雰囲気を空気にしたものであるが、不活性雰囲気でなかったのでV1-xMxO2相は得られなかった。一方、熱処理雰囲気をアルゴンにしたNo.7-235~237でも十分な蓄熱量が得られた。No.7-238~246にあるように、V2O5の純度が高くなるほどより優れた蓄熱量を示した。No.7-247~249及びNo.7-250~252では、炭素材を木炭やカーボンブラックにしても十分な蓄熱量が得られた。
また、置換元素によって蓄熱温度(転移温度)が変化した。
また、置換元素によって蓄熱温度(転移温度)が変化した。
表7-1~表7-12に示すように、混合粉の充填密度が0.8g/cm3以上であれば蓄熱量差が小さく、反応ムラが少ないものであった。充填密度の最大は1.8g/cm3であり、これ以上充填密度を上げることはできなかった。また、匣鉢に充填した混合粉にガス抜き孔を施した方が蓄熱量差が小さくなる傾向であった。
(実施例9)
V2O5、炭素材(天然黒鉛)、置換元素原料(Nb酸化物、Mo酸化物)を表8-1~表8-4の各割合になるように計量し、合計で3kgをカワタ製スーパーミキサーにて1時間乾式混合した。得られた各混合粉を表8-1~表8-4に示した充填密度になるように混合粉を押しつけて300mm×300mm×150mmの匣鉢に充填し、N2気流中の雰囲気焼成炉にて表8-1~表8-4の条件で焼成した。尚、匣鉢に充填した混合粉には、表8-1~表8-4の「孔」欄記載の個数のガス抜き孔を15mm径の棒を用いて形成した。
V2O5、炭素材(天然黒鉛)、置換元素原料(Nb酸化物、Mo酸化物)を表8-1~表8-4の各割合になるように計量し、合計で3kgをカワタ製スーパーミキサーにて1時間乾式混合した。得られた各混合粉を表8-1~表8-4に示した充填密度になるように混合粉を押しつけて300mm×300mm×150mmの匣鉢に充填し、N2気流中の雰囲気焼成炉にて表8-1~表8-4の条件で焼成した。尚、匣鉢に充填した混合粉には、表8-1~表8-4の「孔」欄記載の個数のガス抜き孔を15mm径の棒を用いて形成した。
得られた試料は、実施例7と同様の方法で評価した。但し、生成相はV1-xMxO2である。尚、Mは置換元素を示す。尚、高周波誘導結合プラズマ(ICP)発光分光分析法で生成物の組成分析をしているが、生成物の組成は表8-1~表8-4の仕込み組成と一致している。
表8-1~表8-4に示しているように、W以外の置換元素(Nb、Mo)についても表8の置換元素原料を用いて本発明の製造方法によれば良好な特性を有する蓄熱材料を作製できた。
表8-1~表8-4に示すように、W以外の置換元素(Nb、Mo)についても、混合粉の充填密度が0.8g/cm3以上であれば蓄熱量差が小さく、反応ムラが少ないものであった。充填密度の最大は1.8g/cm3であり、これ以上充填密度を上げることはできなかった。また、匣鉢に充填した混合粉にガス抜き孔を施した方が蓄熱量差が小さくなる傾向であった。
(実施例10)
V2O5、炭素材(天然黒鉛)、置換元素原料(WO3)を表9の各割合になるように合計で3kgになるように計量し、まず、V2O5と置換元素原料をカワタ製スーパーミキサーにて1時間乾式混合した。次に炭素材を加えて更に同スーパーミキサーにて1時間乾式混合した。得られた各混合粉を表9に示した充填密度になるように混合粉を押しつけて300mm×300mm×150mmの匣鉢に充填し、N2気流中の雰囲気焼成炉にて表9の条件で焼成した。尚、匣鉢に充填した混合粉には、表9の「孔」欄記載の個数のガス抜き孔を15mm径の棒を用いて形成した。
V2O5、炭素材(天然黒鉛)、置換元素原料(WO3)を表9の各割合になるように合計で3kgになるように計量し、まず、V2O5と置換元素原料をカワタ製スーパーミキサーにて1時間乾式混合した。次に炭素材を加えて更に同スーパーミキサーにて1時間乾式混合した。得られた各混合粉を表9に示した充填密度になるように混合粉を押しつけて300mm×300mm×150mmの匣鉢に充填し、N2気流中の雰囲気焼成炉にて表9の条件で焼成した。尚、匣鉢に充填した混合粉には、表9の「孔」欄記載の個数のガス抜き孔を15mm径の棒を用いて形成した。
得られた試料は、実施例7と同様の方法で評価した。但し、生成相はV1-xMxO2である。尚、Mは置換元素を示す。尚、高周波誘導結合プラズマ(ICP)発光分光分析法で生成物の組成分析をしているが、生成物の組成(V0.990W0.010O2)は表9の仕込み組成と一致している。
表9に示すように、V2O5と置換元素原料を予め混合する方が熱処理条件を短時間にしても優れた特性を有する蓄熱材料が得られた。
表9に示すように、混合粉の充填密度が0.8g/cm3以上であれば蓄熱量差が小さく、反応ムラが少ないものであった。充填密度の最大は1.8g/cm3であり、これ以上充填密度を上げることはできなかった。また、匣鉢に充填した混合粉にガス抜き孔を施した方が蓄熱量差が小さくなる傾向であった。
(実施例11)
酸化ルテニウムRuO4、酸化タンタルTa2O5、酸化レニウムReO3、酸化オスニウムOsO4、酸化イリジウムIrO2の各置換元素原料を用いて、実施例9と同様に蓄熱材料を作製した。上記実施例と同様な結果が得られ、本発明の製造方法によれば良好な特性を有する蓄熱材料を作製できることを確認できた。
酸化ルテニウムRuO4、酸化タンタルTa2O5、酸化レニウムReO3、酸化オスニウムOsO4、酸化イリジウムIrO2の各置換元素原料を用いて、実施例9と同様に蓄熱材料を作製した。上記実施例と同様な結果が得られ、本発明の製造方法によれば良好な特性を有する蓄熱材料を作製できることを確認できた。
(実施例12)
実施例7~12において、孔の深さは、混合粉の充填深さの1/3としたが、混合粉の充填深さの1/4以上から混合粉の充填深さであれば、孔を形成する効果が確認できた。孔の深さが充填深さの1/5では、孔を形成する効果が現れなかった。
実施例7~12において、孔の深さは、混合粉の充填深さの1/3としたが、混合粉の充填深さの1/4以上から混合粉の充填深さであれば、孔を形成する効果が確認できた。孔の深さが充填深さの1/5では、孔を形成する効果が現れなかった。
1 匣鉢
2 混合粉
3 ガス抜き孔
4 孔形成型
2 混合粉
3 ガス抜き孔
4 孔形成型
Claims (8)
- 五酸化バナジウムV2O5と炭素材Cとを混合する工程(a)、
前記混合した混合物を不活性雰囲気中で加熱する工程(b)を含み、
前記混合する工程(a)において、五酸化バナジウムV2O5と炭素材との混合割合が、五酸化バナジウムV2O5:炭素材中の炭素Cのモル比で1:0.41~0.54の範囲であり、
前記加熱する工程(b)において、該加熱温度が900℃を超え1542℃未満であることを特徴とするVO2系蓄熱材料の製造方法。 - 更に、前記混合する工程(a)で調製した混合粉を充填密度0.8~1.8g/cm3で匣鉢に充填する工程(c)を含むことを特徴とする請求項1に記載のVO2系蓄熱材料の製造方法。
- 前記匣鉢に充填する工程(c)において、匣鉢に充填した混合粉にガス抜き孔を形成することを特徴とする請求項2に記載のVO2系蓄熱材料の製造方法。
- 前記混合する工程(a)において、バナジウムサイトを置換する元素を含む置換元素原料を混合することを特徴とする請求項1~3のいずれか1項に記載のVO2系蓄熱材料の製造方法。
- 前記混合する工程(a)が、五酸化バナジウムV2O5、酸化タングステンWO3、及び炭素材とを混合する工程であることを特徴とする請求項1~3のいずれか1項に記載のVO2系蓄熱材料の製造方法。
- 前記混合する工程(a)において、五酸化バナジウムV2O5と置換元素を含む置換元素原料とを混合した後に炭素材を加えて混合する工程であることを特徴とする請求項4又は5に記載のVO2系蓄熱材料の製造方法。
- 前記混合する工程(a)において使用する五酸化バナジウムV2O5の純度が90%以上であることを特徴とする請求項1~6のいずれか1項に記載のVO2系蓄熱材料の製造方法。
- 前記混合する工程(a)において、五酸化バナジウムV2O5と炭素材との混合割合が、五酸化バナジウムV2O5:炭素材中の炭素Cのモル比で1:0.43~0.51の範囲であることを特徴とする請求項1~7のいずれか1項に記載のVO2系蓄熱材料の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015543174A JP5902361B1 (ja) | 2014-11-26 | 2015-08-26 | 二酸化バナジウム系蓄熱材料の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-239072 | 2014-11-26 | ||
JP2014239072 | 2014-11-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016084441A1 true WO2016084441A1 (ja) | 2016-06-02 |
Family
ID=56074022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/073982 WO2016084441A1 (ja) | 2014-11-26 | 2015-08-26 | 二酸化バナジウム系蓄熱材料の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5998270B2 (ja) |
WO (1) | WO2016084441A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019154434A (ja) * | 2018-03-07 | 2019-09-19 | 国立大学法人鳥取大学 | 細胞培養ディッシュ |
WO2020026806A1 (ja) * | 2018-07-31 | 2020-02-06 | 日本化学工業株式会社 | 二酸化バナジウムの製造方法 |
CN112456555A (zh) * | 2020-12-22 | 2021-03-09 | 济南大学 | 一种掺杂二氧化钒纳米粉体的固相制备方法 |
CN114335427A (zh) * | 2021-11-18 | 2022-04-12 | 南京航空航天大学 | 一种三维v2o3@碳纳米纤维复合柔性电极及制备方法和应用 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6632455B2 (ja) * | 2016-04-12 | 2020-01-22 | 新日本電工株式会社 | 二酸化バナジウム系蓄熱材料の製造方法 |
CN110072815B (zh) * | 2016-12-16 | 2023-04-18 | 柯尼卡美能达株式会社 | 含二氧化钒的粒子、热致变色膜、以及含二氧化钒的粒子的制备方法 |
KR102003357B1 (ko) * | 2017-11-30 | 2019-07-24 | 포항공과대학교 산학협력단 | 열변색 스마트 윈도우 상용화를 위한 이산화바나듐 나노입자 대량생산 방법 |
CN113260690B (zh) | 2019-01-09 | 2022-06-28 | 国立研究开发法人产业技术综合研究所 | 烧结用粉末材料和使用它的潜热型固体蓄热构件 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0221564A (ja) * | 1988-05-25 | 1990-01-24 | Saft (Soc Accumulateurs Fixes Traction) Sa | 酸化バナジウム誘導体を用いた熱電池カソード用化合物の製造方法 |
JP2010111941A (ja) * | 2008-10-07 | 2010-05-20 | Kobe Steel Ltd | フェロバナジウムの製造方法 |
JP2010163510A (ja) * | 2009-01-14 | 2010-07-29 | Institute Of Physical & Chemical Research | 蓄熱材 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5110356B1 (ja) * | 1970-08-26 | 1976-04-03 | ||
JPS52115398A (en) * | 1976-03-25 | 1977-09-27 | Toshiba Corp | Manufacturing method of ceramic temperature sensing resistance element |
WO2010090274A1 (ja) * | 2009-02-09 | 2010-08-12 | 独立行政法人産業技術総合研究所 | 微粒子、その製造方法、ならびにそのような微粒子を含む塗料、フィルムおよびインク |
JP2014198645A (ja) * | 2013-03-29 | 2014-10-23 | 積水化学工業株式会社 | 複合酸化バナジウム粒子の製造方法 |
JP6153194B2 (ja) * | 2013-04-17 | 2017-06-28 | 国立研究開発法人理化学研究所 | 蓄熱材 |
JP6501103B2 (ja) * | 2014-11-11 | 2019-04-17 | 国立研究開発法人産業技術総合研究所 | 二酸化バナジウムの製造方法 |
-
2015
- 2015-08-26 WO PCT/JP2015/073982 patent/WO2016084441A1/ja active Application Filing
- 2015-12-24 JP JP2015251669A patent/JP5998270B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0221564A (ja) * | 1988-05-25 | 1990-01-24 | Saft (Soc Accumulateurs Fixes Traction) Sa | 酸化バナジウム誘導体を用いた熱電池カソード用化合物の製造方法 |
JP2010111941A (ja) * | 2008-10-07 | 2010-05-20 | Kobe Steel Ltd | フェロバナジウムの製造方法 |
JP2010163510A (ja) * | 2009-01-14 | 2010-07-29 | Institute Of Physical & Chemical Research | 蓄熱材 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019154434A (ja) * | 2018-03-07 | 2019-09-19 | 国立大学法人鳥取大学 | 細胞培養ディッシュ |
WO2020026806A1 (ja) * | 2018-07-31 | 2020-02-06 | 日本化学工業株式会社 | 二酸化バナジウムの製造方法 |
JPWO2020026806A1 (ja) * | 2018-07-31 | 2021-08-05 | 日本化学工業株式会社 | 二酸化バナジウムの製造方法 |
JP7225238B2 (ja) | 2018-07-31 | 2023-02-20 | 日本化学工業株式会社 | 二酸化バナジウムの製造方法 |
CN112456555A (zh) * | 2020-12-22 | 2021-03-09 | 济南大学 | 一种掺杂二氧化钒纳米粉体的固相制备方法 |
CN112456555B (zh) * | 2020-12-22 | 2022-12-13 | 济南大学 | 一种掺杂二氧化钒纳米粉体的固相制备方法 |
CN114335427A (zh) * | 2021-11-18 | 2022-04-12 | 南京航空航天大学 | 一种三维v2o3@碳纳米纤维复合柔性电极及制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
JP5998270B2 (ja) | 2016-09-28 |
JP2016108570A (ja) | 2016-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016084441A1 (ja) | 二酸化バナジウム系蓄熱材料の製造方法 | |
Wang et al. | Enthalpy of formation of LiNiO2, LiCoO2 and their solid solution, LiNi1− xCoxO2 | |
Liu et al. | Salt melt synthesis of ceramics, semiconductors and carbon nanostructures | |
Toniolo et al. | Synthesis of alumina powders by the glycine–nitrate combustion process | |
JP6351523B2 (ja) | 二酸化バナジウムの製造方法 | |
CN106463702A (zh) | 用于锂离子电池阳极的方法和材料 | |
JP2017132677A (ja) | 二酸化バナジウムの製造方法 | |
Fu et al. | Comparison of microwave-induced combustion and solid-state reaction for synthesis of LiMn2− xCrxO4 powders and their electrochemical properties | |
CN103502151B (zh) | 生产钛酸锂的方法 | |
Ickler et al. | Ethylene glycol/citric acid stabilized wet chemically synthesized Y2CoNiO6, and its structural, dielectric, magnetic and electrochemical behavior | |
JP5990512B2 (ja) | チタン酸リチウム製造用チタン原料及びかかる原料を用いたチタン酸リチウムの製造方法 | |
JP6632455B2 (ja) | 二酸化バナジウム系蓄熱材料の製造方法 | |
JP5902361B1 (ja) | 二酸化バナジウム系蓄熱材料の製造方法 | |
Vershinnikov et al. | Formation of V2AlC MAX phase by SHS involving magnesium reduction of V2O5 | |
Ostroman et al. | Highly Reversible Ti/Sn Oxide Nanocomposite Electrodes for Lithium Ion Batteries Obtained by Oxidation of Ti3Al (1‐x) SnxC2 Phases | |
JP6091881B2 (ja) | BaTi2O5系複合酸化物の製造方法 | |
JP6256263B2 (ja) | チタン酸リチウム粒子の製造方法 | |
Roy et al. | Molten salt-assisted synthesis of carbo-nitride TiC0. 5N0. 5 and MAX phases Ti2AlC0. 5N0. 5 and Ti3AlCN at low temperature under different atmospheres | |
Kim et al. | Nano-sized LiNi0. 5Mn1. 5O4 cathode powders with good electrochemical properties prepared by high temperature flame spray pyrolysis | |
JP6996262B2 (ja) | リチウムニッケル複合酸化物製造用水酸化リチウムの製造方法、リチウムニッケル複合酸化物製造用水酸化リチウム原料、及びリチウムニッケル複合酸化物の製造方法 | |
Das et al. | Sonochemical synthesis of LaMnO3 nano-powder | |
Singh et al. | Effect of oxidant-to-fuel ratios on phase formation of PLZT powder; prepared by gel-combustion | |
JP6660776B2 (ja) | 窒化タンタル(Ta3N5)の製造方法 | |
Li et al. | Effect of salt species on characterization of Bi3NbTiO9 powders prepared by molten salt method | |
Camargo et al. | Synthesis and characterization of lead zirconate titanate powders obtained by the oxidant peroxo method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015543174 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15863426 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15863426 Country of ref document: EP Kind code of ref document: A1 |