WO2016084335A1 - 電縫鋼管およびその製造方法 - Google Patents

電縫鋼管およびその製造方法 Download PDF

Info

Publication number
WO2016084335A1
WO2016084335A1 PCT/JP2015/005716 JP2015005716W WO2016084335A1 WO 2016084335 A1 WO2016084335 A1 WO 2016084335A1 JP 2015005716 W JP2015005716 W JP 2015005716W WO 2016084335 A1 WO2016084335 A1 WO 2016084335A1
Authority
WO
WIPO (PCT)
Prior art keywords
welded
steel pipe
electric resistance
erw
less
Prior art date
Application number
PCT/JP2015/005716
Other languages
English (en)
French (fr)
Inventor
俊介 豊田
岡部 能知
聡太 後藤
穣 松井
哲 籔本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201580064130.4A priority Critical patent/CN107002194B/zh
Priority to KR1020177014071A priority patent/KR101946426B1/ko
Priority to US15/531,336 priority patent/US10584405B2/en
Priority to CA2966570A priority patent/CA2966570A1/en
Priority to JP2016512155A priority patent/JP6319427B2/ja
Priority to EP15862558.2A priority patent/EP3225709A4/en
Publication of WO2016084335A1 publication Critical patent/WO2016084335A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups
    • B23K11/087Seam welding not restricted to one of the preceding subgroups for rectilinear seams
    • B23K11/0873Seam welding not restricted to one of the preceding subgroups for rectilinear seams of the longitudinal seam of tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/17Rigid pipes obtained by bending a sheet longitudinally and connecting the edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Definitions

  • the present invention relates to an electric resistance welded pipe and a method for manufacturing the same, and more particularly to an improvement in toughness and reliability in an electric resistance welded portion.
  • An electric resistance steel pipe is formed by continuously cold-forming a steel strip into a substantially circular cross section (tubular body) with a plurality of rolls, butting the opposite end faces of the tubular body together, and applying a high-frequency current to the abutted part (butting part) Is applied and welded (electrically welded) while applying pressure to form a tubular body (electrically welded steel pipe) having a seam portion.
  • the butt portion is heated to a temperature higher than the melting point by resistance heat generation and pressure is applied, and the steel strip itself becomes the joining metal and is joined. For this reason, electric resistance welding is substantially positioned as fusion welding.
  • Patent Document 1 describes an ERW steel pipe having high crack resistance and excellent sour resistance in an environment containing wet hydrogen sulfide.
  • the Ca / Al ratio in the steel is set to 0.10% or less.
  • the inclusions are stretched in the plate thickness direction as the shape of the inclusion viewed in a cross section perpendicular to the abutting surface and perpendicular to the tube axis direction
  • the inclusions having a ratio of the length in the plate thickness direction to the length in the circumferential direction of 2 or more and a length of 10 ⁇ m or more in the transverse section are within the region of 100 ⁇ m on both sides of the abutting surface in the transverse section.
  • the number per 1 mm 2 of the area is 5 or less.
  • Patent Document 2 describes a gas seal welding method for an electric resistance welded steel pipe.
  • the floating scale on the pipe inner surface side is washed with mist, and the pipe inner surface side sealing device is used for the local sealing of the welded portion except for the holding roller, It is characterized by sealing as non-contact.
  • the scale remains in the welded portion, and the toughness of the welded portion is markedly improved.
  • Patent Document 3 describes a high-strength electric seam line pipe.
  • the high-strength ERW line pipe described in Patent Document 3 is in mass%, C: more than 0.04 to 0.08%, Si: 0.1 to 0.3%, Mn: more than 1.6 to 2 0.0%, P: 0.02% or less, S: 0.003% or less, Nb: 0.04-0.08%, V: 0.05-0.1%, Ni: 0.1-0.
  • the composition includes Ni, Cu, and Mo so as to satisfy a specific relationship, and the metal structure is an acicular ferrite structure having an average crystal grain size of 5 ⁇ m or less, and the tensile strength in the circumferential direction after flattening Is 700 N / mm 2 or more, 0.5% proof stress is 550 N / mm 2 or more, and the oxide occupation area of the ERW welding contact portion is 0.1% (corresponding to 1000 ppm)
  • a high-strength ERW line pipe is as follows.
  • the electric seam line pipe described in Patent Document 3 is manufactured from hot coil through cold roll forming, electric seam welding, seam heat treatment, sizer process, outer diameter 200-610mm, wall thickness / outer This is an ERW steel pipe having a diameter ratio (t / D) of 2% or less. According to this, the electric-welded welded portion has soundness similar to that of the base material, and the line pipe can be further thinned.
  • Patent Document 4 describes an electric seam boiler steel pipe.
  • the electric-resistance-welded boiler steel pipe described in Patent Document 4 is, in mass%, C: 0.01 to 0.20%, Si: 0.01 to 1.0%, Mn: 0.10 to 2.0%, Cr: 0.5 to 3.5%, P: 0.030% or less, S: 0.010% or less, O: 0.020% or less, (Si%) / (Mn% + Cr %) Is 0.005 or more and 1.5 or less, and the area ratio of the ternary mixed oxide of SiO 2 , MnO, and Cr 2 O 3 generated during the electric resistance welding is 0.1% (corresponding to 1000 ppm) or less.
  • This is an electric-welded boiler steel pipe consisting of an electric-welded welded portion with few defects in the electric-welded welded portion and excellent in creep rupture strength and toughness.
  • Non-Patent Document 1 In electro-welding welding, the butt portion (steel strip end) of the tubular body is sufficiently melted to form a droplet and press-contacted under conditions that provide optimum welding heat input. However, when the amount of heat input becomes low, the liquid droplets are pressed without being sufficiently formed. Therefore, as shown in FIG. 1A of Non-Patent Document 1, when the welded portion is destroyed along the welded surface, a large number of oxides are formed on the welded surface in a welded portion welded under a low heat input condition. Is observed. A weld where a large number of oxides are observed on the fracture surface is generally referred to as cold welding (also referred to as cold weld or cold joint). The weld shown in Non-Patent Document 1 is a high-frequency weld, but even in high-frequency welding with small fluctuations in heat input, it means that cold welding (welding defects) may be formed depending on the welding conditions. ing.
  • Patent Document 1 has a problem that it is impossible to avoid the occurrence of cold welding caused by a local decrease in heat input.
  • the technique described in Patent Document 1 is difficult to apply to high-strength steel, and has low temperature toughness, which is problematic for application in cold districts.
  • each technique described in Patent Documents 2, 3, and 4 has a problem that the occurrence of cold welding caused by a local decrease in heat input cannot be avoided.
  • the present invention solves the problems of the prior art, avoids the occurrence of welding defects such as cold welding, and has a high strength ERW steel pipe having excellent internal pressure leakage resistance and excellent ERW weld toughness and its manufacture It aims to provide a method.
  • high strength here means a case where the base material part of the ERW steel pipe is equivalent to API X 56 Great, that is, the yield strength YS: 400 MPa or more.
  • excellent in internal pressure leak resistance means that an internal pressure test was performed under the condition that the test temperature was 0 ° C. and an internal pressure of 95% of the yield strength ( ⁇ y RT ) at normal temperature was loaded. It means that no leak occurs. It should be noted that the internal pressure test was performed in a non-patent document (S. Toyoda, S. Goto, T. Okabe, H. Kimura, S. Igi, Y. Matsui, S. Yabumoto, A. Sato, M. Suzuki, and T. Inoue. : Proc. Of IPC (2012), IPC2012-90448.) The pipe body is held in a refrigerant held at a predetermined temperature (0 ° C.
  • a steel pipe having a length eight times the outer diameter is held in a refrigerant (ethanol) cooled to a predetermined temperature, and gas (atmosphere) is blown from both sealed ends of the steel pipe to a predetermined pressure. To determine whether there is a leak or breakage.
  • ethanol refrigerant
  • gas atmosphere
  • excellent toughness in ERW welds means that the absorbed energy vE at ⁇ 60 ° C. in the Charpy impact test conducted in accordance with the provisions of JIS Z 2242 in ERW welds.
  • the test temperature of the CTOD test conducted in accordance with the provisions of BS 7448-1995 is ⁇ 60 is 110 J or more, and the CTOD value at 0 ° C. is 0.80 mm or more.
  • the present inventors diligently studied various factors affecting the internal pressure leakage resistance and the ERW weld toughness. As a result, it is important to improve the reliability of ERW welds by preventing weld defects, especially cold welding, in ERW welds, and strengthening quality control of ERW welds. I thought.
  • the inventors focused on corona bond during spot welding of a thin plate as a phenomenon similar to cold welding in electric seam welding, and compared cold welding with corona bond in electric seam welding.
  • Corona bond in spot welding of a thin plate refers to the crimped part around the nugget (molten pool). Coronabond is formed by pressing the upper and lower plates and heating them for a short time during spot welding. It is known that small fractured oxides are scattered on the fracture surface of coronabond. ing. On the other hand, at the time of ERW welding, the end faces of the steel strips (steel plates) to be abutted are preheated by a high frequency current. For this reason, it is considered that more oxide is formed at the time of ERW welding than at the time of spot welding.
  • cold welding in ERW welding is “the temperature at the end of the steel strip (steel plate) decreases due to a decrease in heat input, the fluidity of the molten steel decreases, and is generated during heating. It was thought that this was a welding defect in which the oxidized oxide was not completely discharged and remained in the weld joint (seam portion). It has been thought that the prevention of the occurrence of such cold welding results in two points: suppression of generation and remaining of oxide during heating, and improvement of detection sensitivity of generated and remaining oxide.
  • the obtained electric resistance welded steel pipe is an ultrasonic flaw detector (hereinafter, also referred to as “high-sensitivity array UT”) using an array flaw detector 6 arranged in the circumferential direction of the pipe. ), And investigated the soundness of ERW welds, especially the presence or absence of cold welding.
  • the frequency of the used ultrasonic wave was 18 MHz, and the wave width on the welding surface of the seam (electric seam welded portion) 2 was transmitted so that the beam width was 1.5 mm.
  • the position of the transmitting and receiving transducers can be electronically switched to scan the welded portion in the thickness direction, and the thickness cross section of the welded portion is flawed along the longitudinal direction of the pipe. Is possible.
  • the seam of the ERW welded portion is tapered, and the welding heat input is changed from 1.1 to 0.75 with the normal heat input as the standard, and the ERW welding of API 5L X80 standard is performed.
  • a steel pipe (outer diameter 660.4 mm ⁇ ⁇ thickness 25.4 mm) was prepared, and similarly, using “high-sensitivity array UT”, the soundness of the ERW welded part, particularly the presence or absence of cold welding was investigated.
  • the welding heat input was within the control range of 1.1 to 0.9 based on normal, no significant increase in echo height was observed.
  • an increase in echo height was observed when the welding heat input decreased and the control range was 0.8.
  • the Fe (Si, Mn) type oxide formed at the time of ERW welding was observed in the portion where the echo height increased. Further, when the welding heat input decreases and becomes 0.75 below the control range, an increase in the echo height is continuously observed, and a coarse oxide layer is formed in the portion where the echo height is increased. It was. Thus, it was confirmed that the welding heat input amount, the echo height, and the oxide correspond to each other even in the case of an electric resistance welded pipe having a thick wall and having a groove.
  • the present inventors have suppressed the formation of oxides in the ERW welds, and in order to ensure excellent ERW weld toughness and excellent internal pressure leakage resistance, oxides are added to the ERW welds.
  • the content of elements such as C, Si, Mn, etc. that are likely to remain, for example, needs to be adjusted within an appropriate range, and the composition of the ERW steel pipe is C: 0.025 to 0.168 in mass%. %, Si: 0.10 to 0.30%, Mn: 0.60 to 1.90%, P: 0.001 to 0.018%, S: 0.0001 to 0.0029%, Al: 0.0.
  • the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows. [1] By mass% C: 0.025 to 0.168%, Si: 0.10 to 0.30%, Mn: 0.60 to 1.90%, P: 0.001 to 0.018%, S: 0.0001 to 0.0029%, Al: 0.010 to 0.10%, Ca: 0.0001 to 0.0035%, N: 0.0050% or less, O: 0.0030% or less, Further, one or more selected from Nb: 0.001 to 0.070%, V: 0.001 to 0.065%, Ti: 0.001 to 0.033%, 1) Pcm defined by the formula is included so as to satisfy 0.20 or less, and has a composition consisting of the balance Fe and unavoidable impurities, Both the base metal part and the ERW welded part have a pseudopolygonal ferrite phase with a volume ratio of 90% or more and an average particle size of 10 ⁇ m or less as the main phase, and
  • the yield strength YS has a base material part of 400 MPa or more
  • the internal pressure test performed under the conditions that the CTOD value at 0 ° C. has an electric resistance welded portion toughness of 0.80 mm or more, and the test temperature is 0 ° C., the internal pressure is 0.95 ⁇ (room temperature yield strength ⁇ y RT ), ERW steel pipe that does not leak.
  • Pcm C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
  • C, Si, Mn, Cu, Ni, Cr, Mo, V, B Content (mass%) of each element, and elements not contained are 0.
  • Cu may be selected from 0.001 to 0.350%, Ni: 0.001 to 0.350%, and Mo: 0.001 to 0.350% by mass%.
  • the tubular body is formed with a squeeze roll.
  • the end face parts of the pipes are butted together and subjected to electro-resistance welding by high-frequency heating to form a tubular body, and then the welded steel pipe is inspected for the welded surface in the axial direction of the electro-welded portion of the tubular body
  • the steel pipe material is, by mass%, C: 0.025 to 0.168%, Si: 0.10 to 0.30%, Mn: 0.60 to 1.90%, P: 0.001 to 0.018%, S: 0.0001 to 0.0029%, Al: 0.010 to 0.10%, Ca: 0.0001 to 0.0035%, N: 0.0050% or less, O: 0.0030% or less, Further, one or more selected from Nb: 0.001 to 0.070%, V: 0.001 to 0.065%, Ti: 0.001 to 0.033%, 1) Pcm defined by the formula is included so as to satisfy 0.20 or less, and has a composition composed of the balance Fe and inevitable impurities,
  • the steel pipe material is a hot-rolled steel
  • the groove When forming a groove on the end surface in the width direction of the hot-rolled steel sheet by forming with the fin pass roll, the groove is a tapered groove.
  • the groove from the taper start position of the taper groove to the pipe surface is a groove having a total ratio of the distance from the outer surface of the pipe and the distance from the inner surface of the pipe to a thickness of 10 to 80% in terms of the steel sheet thickness,
  • ultrasonic waves are transmitted so that the beam width is in the range of 0.1 mm to 4.0 mm with respect to the welded surface in the tube axial direction of the electro-welded welded portion of the tube, and reflection from the welded surface is performed.
  • an inspection is performed to confirm that there are no more than a predetermined amount of non-metallic parts in the electro-welded welded part of the tube.
  • the electric resistance welded portion of the tube obtained by the electric resistance welding is heated to a heating temperature of 850 to 1150 ° C., and an average cooling is performed in the range of 780 to 630 ° C. at the temperature of the thickness center portion.
  • Test temperature of Charpy impact test conducted in accordance with the provisions of JIS Z 2242 Test temperature of CTOD test conducted in accordance with the provisions of BS 7448-1995 when the absorbed energy vE- 60 at ⁇ 60 ° C. is 110 J or more
  • the internal pressure test performed under the conditions that the CTOD value at 0 ° C. has an electric resistance welded portion toughness of 0.80 mm or more, and the test temperature is 0 ° C., the internal pressure is 0.95 ⁇ (room temperature yield strength ⁇ y RT ), A method for producing an electric resistance welded steel pipe that does not cause leakage.
  • the present invention is a high-strength electric resistance welded steel pipe that avoids occurrence of welding defects such as cold welding and has excellent internal pressure leak resistance and excellent electric resistance welded portion toughness, and a method for manufacturing the same.
  • FIG. 1 is an explanatory view showing a comparison of echo height mapping of the longitudinal section of the welded part of each ERW steel pipe.
  • FIG. 2 is a photomicrograph of an optical microscope showing a cross-sectional structure of an ERW weld with increased echo height.
  • FIG. 3 is an explanatory view showing an outline of a flaw detection method using an ultrasonic flaw detector for a welded portion using an array flaw detector.
  • FIG. 4 is a schematic diagram illustrating a tapered groove. The distance from the taper start position to the tube surface is indicated by a (tube outer surface side) and b (tube inner surface side). The distance from the taper start position to the tube surface is determined along the thickness direction.
  • the ERW steel pipe of the present invention is a high-strength ERW steel pipe having a yield strength YS: 400 MPa or more in the pipe axis direction, avoids the occurrence of welding defects such as cold welding, and has excellent internal pressure leakage resistance and excellent electrical resistance.
  • This is an ERW steel pipe having a sewn weld zone toughness and a highly reliable ERW weld zone.
  • the electric resistance welded steel pipe of the present invention has a test temperature of Charpy impact test conducted in accordance with the provisions of JIS Z 2242: Absorbed energy vE- 60 at ⁇ 60 ° C. is 110 J or more, and conforms to the provisions of BS 7448-1995.
  • the test temperature of the CTOD test conducted as described above The CTOD value at 0 ° C. is 0.80 mm or more, and has excellent ERW weld toughness. Needless to say, the base material toughness also has the toughness described above. Moreover, the electric resistance welded steel pipe of the present invention has excellent internal pressure leak resistance that does not cause a leak in an internal pressure test performed under the conditions of a test temperature: 0 ° C. and an internal pressure: 0.95 ⁇ (room temperature yield strength ⁇ y RT ).
  • the electric resistance welded steel pipe is a squeeze roll after forming a tubular body by cold forming continuously by a forming mill in which a plurality of cage rolls and fin pass rolls are continuously arranged on a steel pipe material.
  • the end surfaces of the tubular body are butted against each other, and the butted portion is heated and melted by high-frequency heating and melted to form a tubular body by electro-welding, and then welded in the axial direction of the electro-welded welded portion of the tubular body
  • the surface is inspected to make a product pipe.
  • the pipe axis direction welding surface is a surface parallel to the pipe axis direction and at a central position in the pipe circumferential direction.
  • the steel pipe material used is a hot rolled steel sheet having a yield strength YS: 360 MPa or more.
  • the “steel plate” includes a steel strip.
  • C 0.025 to 0.168%
  • C is a solid solution strengthening, strengthening by forming a hard phase such as pearlite, pseudo-pearlite, cementite, etc., or strengthening by forming a hard phase such as bainite, martensite by improving hardenability. It is an element having an action contributing to an increase in strength of (steel pipe).
  • C affects the oxide formation of the electric resistance welded part through a decrease in the freezing point, CO formation reaction with O 2 in the gas phase, etc., it is desirable that C be as low as possible.
  • yield strength of the steel pipe material 360 MPa or more, yield strength in the pipe axis direction of the steel pipe base part: 400 MPa or more
  • About content Preferably it is 0.030% or more.
  • the content exceeds 0.168%, the volume ratio of the hard phase of the electric seam welded part and the base material part exceeds 10%, and the toughness decreases.
  • the toughness of ERW welds decreases, the internal pressure leak resistance decreases, and there is no leakage or breakage over the entire length during an internal pressure test that applies an internal pressure of 95% of the yield strength YS at room temperature at 0 ° C. It cannot be guaranteed. Therefore, C is limited to a range of 0.025 to 0.168%.
  • About content Preferably it is 0.084% or less.
  • Si 0.10 to 0.30% Si contributes to the strength increase of a steel plate (steel pipe) through solid solution strengthening.
  • Si has a stronger affinity with O (oxygen) than Fe, and forms a eutectic oxide having a high viscosity together with Mn oxide in the ERW weld. If Si is less than 0.10%, the Mn concentration in the eutectic oxide increases, the melting point of the oxide exceeds the molten steel temperature, and it tends to remain in the ERW weld as an oxide.
  • the oxide present in the ERW weld increases, the toughness of the ERW weld decreases, and leaks over the entire length during an internal pressure test that gives an internal pressure of 95% of the yield strength YS at room temperature at 0 ° C. It can no longer be guaranteed that no destruction will occur. Therefore, the content is 0.10% or more, preferably 0.15% or more.
  • Si is limited to the range of 0.10 to 0.30%.
  • the content is preferably 0.25% or less.
  • Mn 0.60 to 1.90% Mn contributes to increasing the strength of the steel sheet (steel pipe) through solid solution strengthening and transformation structure strengthening. Mn has a stronger affinity for O (oxygen) than Fe, and forms a high-eutectic eutectic oxide together with Si oxide in the electro-welded weld. If the Mn content is less than 0.60%, the Si concentration in the eutectic oxide increases, the melting point of the oxide exceeds the molten steel temperature, and the oxide easily remains in the ERW weld. The toughness of the steel is reduced, and it is impossible to guarantee that no leakage or breakage will occur over the entire length during the internal pressure test performed at 0 ° C.
  • the content is 0.60% or more, preferably 0.85% or more.
  • Mn content exceeds 1.90%
  • Mn concentration in the eutectic oxide increases in the ERW weld
  • the melting point of the oxide exceeds the molten steel temperature
  • the absolute amount as an oxide is It increases and tends to remain as an oxide in the ERW weld
  • the toughness of the ERW weld decreases, and it becomes impossible to guarantee that no leak or breakage will occur over the entire length during an internal pressure test performed at 0 ° C.
  • Mn content exceeds 1.90%
  • the fraction of the hard phase in the base metal part and the ERW weld part exceeds 10%, and the toughness decreases. Therefore, Mn is limited to the range of 0.60 to 1.90%.
  • about content Preferably it is 1.65% or less.
  • P 0.001 to 0.018%
  • P is an element that is present in steel as an impurity, easily segregates at grain boundaries, and co-segregates with Mn and adversely affects toughness. It is desirable to reduce it as much as possible, but it is economical in the steelmaking process. From the viewpoint, it is limited to 0.001% or more. On the other hand, if the content exceeds 0.018%, the toughness of the base metal part and the ERW welded part is significantly reduced. Therefore, P is limited to 0.001 to 0.018%. The content is preferably 0.013% or less.
  • S 0.0001 to 0.0029%
  • S is an element that exists as a sulfide such as MnS and CaS in the base metal part and the electric seam welded part, and has an adverse effect on toughness and the like, and is desirably reduced as much as possible.
  • it was limited to 0.0001% or more from the economical viewpoint in the steelmaking process.
  • the content exceeds 0.0029%, the toughness is remarkably lowered, and it is impossible to guarantee that no leak or breakage occurs over the entire length in the internal pressure test performed at 0 ° C. For this reason, S was limited to the range of 0.0001 to 0.0029%.
  • the content is 0.0001 to 0.0019%.
  • Al 0.010 to 0.10%
  • Al is an element that acts as a deoxidizer in the steelmaking stage. Moreover, Al precipitates as AlN, suppresses grain growth during austenite heating, and contributes to improvement of low temperature toughness.
  • Al has an affinity for O (oxygen) further than Si and Mn, and forms an oxide in a form of a solid solution in a Mn—Si eutectic oxide such as 2MnO ⁇ SiO 2 (Tephrite).
  • Al needs to be contained by 0.010% or more. If it is less than 0.010%, a desired deoxidizing ability cannot be ensured in the steelmaking stage, and the cleanliness of the steel is lowered. Also, the oxide present in the ERW welds increases, the toughness decreases, and it becomes impossible to guarantee that no leak or breakage will occur over the entire length during the internal pressure test conducted at 0 ° C. On the other hand, if the Al content exceeds 0.10%, the Al concentration in the eutectic oxide increases, the melting point of the oxide exceeds the molten steel temperature, and it tends to remain as an oxide in the ERW part. Oxides present increase and toughness decreases.
  • Al is limited to the range of 0.010 to 0.10%.
  • the lower limit side of content Preferably it is 0.03% or more.
  • the upper limit side of content Preferably it is 0.08% or less.
  • Ca 0.0001 to 0.0035%
  • Ca is an element that controls the shape of sulfide in steel in a spherical shape, and contributes particularly to the improvement of toughness in the vicinity of the ERW weld of the steel pipe. In order to acquire such an effect, 0.0001% or more of content is required. Since Ca has a strong affinity with O, if it exceeds 0.0035%, the Ca concentration in the oxide increases, the melting point of the oxide exceeds the molten steel temperature, and the absolute amount as an oxide increases.
  • Ca is limited to the range of 0.0001 to 0.0035%.
  • the lower limit side of content Preferably it is 0.0002% or more.
  • the upper limit side of content Preferably it is 0.0028% or less.
  • N 0.0050% or less
  • N combines with a nitride-forming element such as Ti and precipitates as a nitride, or dissolves in a solid solution and adversely affects the toughness of the steel pipe base material and the ERW weld. For this reason, it is desirable to reduce as much as possible. However, it is preferable to set the lower limit to 0.0001% from the economical viewpoint in the steel making process.
  • the content exceeds 0.0050%, nitrides and solid solution N increase, leading to a decrease in toughness. For this reason, N was limited to 0.0050% or less. In addition, Preferably it is 0.0040% or less.
  • O 0.0030% or less
  • O oxygen
  • the content is preferably 0.0001% or more from the viewpoint of economy in the steelmaking process. If the amount exceeds 0.0030%, the toughness is significantly reduced. For this reason, O was limited to 0.0030% or less. In addition, Preferably it is 0.0020% or less.
  • Nb 0.001 to 0.070%
  • V 0.001 to 0.065%
  • Ti 0.001 to 0.033%
  • Nb, V, and Ti are Any of them is an element which mainly precipitates as carbides and contributes to an increase in the strength of the steel sheet (steel pipe) through precipitation strengthening, and is selectively contained in one or more kinds.
  • Nb mainly precipitates as carbides and contributes to an increase in steel plate (steel pipe) strength through precipitation strengthening. In order to acquire such an effect, 0.001% or more of content is required. If Nb is less than 0.001%, a desired steel plate (steel pipe) strength cannot be ensured. On the other hand, when the content exceeds 0.070%, undissolved large-sized Nb carbonitrides remain and cause a decrease in toughness. For this reason, when contained, Nb is limited to the range of 0.001 to 0.070%. In addition, about the lower limit side of content, Preferably it is 0.005% or more. Moreover, about the upper limit side of content, Preferably it is 0.055% or less.
  • V like Nb, precipitates mainly as carbides and contributes to an increase in steel plate (steel pipe) strength through precipitation strengthening. In order to acquire such an effect, 0.001% or more of content is required. If V is less than 0.001%, a desired steel plate (steel pipe) strength cannot be ensured. On the other hand, if the content exceeds 0.065%, undissolved large V carbonitrides remain, resulting in a decrease in toughness. For this reason, when contained, V is limited to the range of 0.001 to 0.065%. In addition, about the lower limit side of content, Preferably it is 0.005% or more. Moreover, about the upper limit side of content, Preferably it is 0.050% or less.
  • Ti like Nb and V, precipitates mainly as carbides and contributes to an increase in steel plate (steel pipe) strength through precipitation strengthening. In order to acquire such an effect, 0.001% or more of content is required. If Ti is less than 0.001%, a desired steel plate (steel pipe) strength cannot be ensured. On the other hand, if the content exceeds 0.033%, undissolved large Ti carbonitrides remain, leading to a decrease in toughness. For this reason, when Ti is contained, it is limited to the range of 0.001 to 0.033%. In addition, about the lower limit side of content, Preferably it is 0.005% or more. Moreover, about the upper limit side of content, Preferably it is 0.020% or less.
  • the balance is Fe and inevitable impurities.
  • the above components are basic components. In addition to the basic components, if necessary, Cu: 0.001 to 0.350%, Ni: 0.001 to 0.350%, Mo: One or more selected from 0.001 to 0.350%, and / or Cr: 0.001 to 0.350%, B: 0.0001 to 0.0030% You may contain 1 type or 2 types chosen from these.
  • One or more selected from Cu: 0.001 to 0.350%, Ni: 0.001 to 0.350%, Mo: 0.001 to 0.350% Cu, Ni, Mo are Any of these is an element that improves the corrosion resistance of the steel pipe, and it can be selected as necessary and contained in one or more kinds.
  • Cu is an element that has the effect of improving the corrosion resistance of the steel pipe and improving the hardenability.
  • the structure of the base metal part and the ERW welded part of the thick-walled steel pipe is included so as not to become coarse pseudo-polygonal ferrite or polygonal ferrite.
  • the term “coarse” as used herein refers to a structure having a particle size exceeding 10 ⁇ m. In order to acquire such an effect, it is preferable to contain 0.001% or more. However, even if the content exceeds 0.350%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when contained, Cu is preferably limited to a range of 0.001 to 0.350%. In addition, about the lower limit side of content, More preferably, it is 0.05% or more. Moreover, about the upper limit side of content, More preferably, it is 0.290% or less.
  • Ni is an element that improves the corrosion resistance of the steel pipe and improves the hardenability.
  • the structure of the base metal part and the ERW welded part of the thick-walled steel pipe is included so as not to become coarse pseudopolygonal ferrite.
  • it is preferable to contain 0.001% or more.
  • Ni is preferably limited to a range of 0.001 to 0.350%.
  • about the lower limit side of content More preferably, it is 0.05% or more.
  • the upper limit side of content More preferably, it is 0.290% or less.
  • Mo is an element that improves the corrosion resistance of the steel pipe and improves the hardenability.
  • the structure of the base metal part and the ERW welded part of the thick-walled steel pipe is included so as not to become coarse pseudopolygonal ferrite.
  • Mo is preferably limited to a range of 0.001 to 0.350%.
  • about the lower limit side of content More preferably, it is 0.05% or more.
  • about the upper limit side of content More preferably, it is 0.290% or less.
  • Cr and B are both strengthened by transformation structure strengthening of steel sheet (steel pipe). It is an element that increases the amount, and can contain one or two kinds as necessary.
  • B is an element that increases the strength of the steel sheet (steel pipe) by strengthening the transformation structure.
  • B is preferably contained in an amount of 0.0001% or more.
  • B is preferably limited to a range of 0.0001 to 0.0030%.
  • about the lower limit side of content More preferably, it is 0.0003% or more.
  • about the upper limit side of content More preferably, it is 0.0022% or less.
  • Pcm C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
  • C, Si, Mn, Cu, Ni, Cr, Mo, V, B Content of each element (mass%)
  • the Pcm value defined by is adjusted so as to satisfy 0.20 or less.
  • the content of the said element shall be calculated as "zero"%.
  • the structure of the hot-rolled steel sheet is not particularly limited, but is preferably a structure that can ensure the above-described high strength and high-temperature toughness.
  • a structure capable of ensuring such toughness it has a structure composed of a fine pseudo-polygonal ferrite phase having an average particle size of 10 ⁇ m or less as a main phase and the balance of a second phase having a volume ratio of 10% or less.
  • “pseudopolygonal ferrite” includes acicular ferrite and bainitic ferrite.
  • a hot-rolled steel sheet having the above-described composition and preferably having the above-described structure and having a yield strength of 360 MPa or more is used as the steel pipe material.
  • this steel pipe raw material is continuously cold formed by a conventional forming mill in which a plurality of cage rolls and fin pass rolls are continuously arranged to form a tubular body.
  • the specific configuration of the forming mill is not particularly limited, and any method for forming a tubular body using a conventional forming mill can be applied.
  • the yield strength of the steel pipe base material is greater than that of the steel pipe material due to the work strengthening associated with forming into a tubular body.
  • Oxide emission is facilitated by the total distance in the steel plate thickness direction between the taper start position at the width end face of the steel plate and the surface serving as the tube outer surface or the surface serving as the tube inner surface being 10 to 80% of the steel plate thickness.
  • the lower limit of the total distance is preferably 30% or more.
  • the upper limit side of the total distance is preferably 70% or less.
  • the taper shape is not limited to a straight line, and can be an arbitrary curved shape.
  • the obtained tubular body is then inspected on the welded surface in the tube axial direction of the ERW welded portion, and it is confirmed that the tubular body is free from any defects.
  • a tubular ultrasonic flaw detector (hereinafter, also referred to as “high-sensitivity array UT”) using an array flaw array arranged in the circumferential direction of the pipe, schematically shown in FIG. Shall. Details of this ultrasonic inspection apparatus for a tubular body are described in Japanese Patent No. 4544240, Japanese Patent No. 4910770, and Japanese Patent No. 5076984.
  • the beam width is 0.1 mm or less, it is not possible to detect all the welded surfaces that fluctuate in the circumferential direction, and there may be a case where flaw detection leaks.
  • the beam width exceeds 4.0 mm, it is not possible to detect oxides that cause toughness deterioration and leakage due to cold welding.
  • the beam width is not appropriate, there is a possibility that even if the oxide on the weld surface in the tube axis direction is sufficiently small, it cannot be accurately grasped. For this reason, the beam width was limited to 0.1 to 4.0 mm.
  • the lower limit of the beam width is 0.3 mm
  • the upper limit of the beam width is 2.0 mm.
  • a tube that has been confirmed that there are no more than a predetermined amount of non-metallic parts in the electro-welded welded portion of the tube shall be the product tube.
  • the "predetermined amount or more" here refers to a case where the non-metal portion exceeds 0.049 area% in the occupied area with respect to the entire ERW weld.
  • the above-described inspection may be performed with a seam annealing process.
  • the heating temperature of the weld reheating process is less than 850 ° C.
  • the heating temperature is too low to ensure the desired ERW weld toughness.
  • the heating temperature is higher than 1150 ° C.
  • the structure becomes coarse, and the desired toughness of the electric resistance welded portion cannot be ensured.
  • the heating temperature of the seam annealing treatment was limited to 850 to 1150 ° C.
  • the cooling rate after seam annealing in the ERW weld is less than 20 ° C./s, the cooling is too slow, and the microstructure is mainly composed of a fine pseudopolygonal ferrite phase having a crystal grain size of 10 ⁇ m or less. It becomes impossible to ensure, and desired ERW weld hardness and toughness cannot be ensured.
  • rapid cooling exceeds 200 ° C./s, it becomes impossible to ensure a structure having the pseudo-polygonal ferrite phase as a main phase in the electric resistance welded portion, and the desired electric resistance welded portion toughness cannot be ensured.
  • the cooling after the seam annealing treatment was limited to a cooling rate in the range of 20 to 200 ° C./s on average in the temperature range of 780 to 630 ° C. at the temperature of the central portion of the thickness.
  • the cooling stop temperature after the seam annealing treatment is preferably set to 500 ° C. or lower. Note that the cooling stop temperature is more preferably 450 ° C. or lower in order to suppress the formation of pearlite throughout the thickness.
  • a tempering treatment may be further performed after the seam annealing treatment to stabilize the material.
  • the temperature at the center of the wall thickness is calculated from the temperature distribution in the cross section of the weld using electromagnetic field analysis and heat transfer analysis (for example, Okabe et al .: Iron and Steel, Vol. 93 (2007) No. 5, p373-378). The result is obtained by correcting the result with the actual outer surface and inner surface temperatures.
  • the product pipe manufactured by the above-described manufacturing method has the above-mentioned composition, and the pseudo-polygonal ferrite phase having an average particle diameter of 10 ⁇ m or less, in which the base material part and the ERW weld part are 90% or more by volume.
  • This is an ERW steel pipe having a structure composed of a main phase and the remainder consisting of a second phase with a volume ratio of 10% or less and having no non-metal portion in the ERW weld.
  • Such an ERW steel pipe has a yield strength YS: 400 MPa or more in the pipe axis direction, has no welding defects such as cold welding, has excellent internal pressure leak resistance and excellent ERW weld toughness, It is a highly reliable ERW steel pipe.
  • the “pseudopolygonal ferrite” referred to here includes acicular ferrite and bainitic ferrite.
  • the average grain size of “pseudopolygonal ferrite” is determined by measuring the area of a crystal grain surrounded by a grain boundary having an inclination angle between adjacent crystal grains of 15 ° or more with respect to the central thickness in the circumferential cross section. The equivalent circle diameter calculated from the area of the obtained crystal grains is obtained, and the average value thereof is taken.
  • the value measured using the EBSD (Electro Backscatter Diffraction) apparatus is used for the inclination angle between adjacent crystal grains.
  • Table 2-1 and Table 2-2 are collectively referred to as Table 2, and Table 3-1 and Table 3-2 are collectively referred to as Table 3.
  • Table 1 Steel No. N is a missing number.
  • Tables 2 to 3 the steel pipe No. 33 is a missing number.
  • a tubular body is formed by continuously forming in a cold manner by a forming mill in which a plurality of cage rolls and fin pass rolls are continuously arranged. . Thereafter, the end portions of the tubular body (the width end portion of the hot-rolled steel sheet) are butted against each other, and the end portion of the tubular body is heated and melted by high-frequency heating while being pressurized with a squeeze roll, and is electro-welded and welded.
  • a 22-inch (outer diameter 558.8 mm ⁇ ⁇ thickness 25 mm) ERW steel pipe was formed.
  • Test specimens were collected from the base metal part and the electric resistance welded part of the obtained tubular body (electrically welded steel pipe), and subjected to structure observation, tensile test, Charpy impact test, fracture toughness test, and internal pressure test.
  • the test method was as follows. (1) Microstructure observation From the base material portion (position 90 ° circumferentially away from the electro-resistance welded portion) and the central position of the electro-welded welded portion of the obtained tubular body (electrically welded steel pipe) Were collected.
  • the surface perpendicular to the tube axis direction (C cross section) is taken as the observation surface, the specimen for structure observation is polished, corroded (Nital solution corrosion), optical microscope (magnification: 400 times) and scanning electron microscope (magnification: 2000). ) was used to observe the tissue near the center of the wall thickness, and images were taken in each of four or more fields of view.
  • structure photograph scanning electron microscope structure photograph
  • the structure fraction phase was identified, and the tissue fraction was determined by image analysis.
  • the value of an area fraction was made into the value of a volume fraction, assuming that it was three-dimensionally homogeneous.
  • a V-notch test piece was sampled so that the direction was the circumferential direction of the tube, and a Charpy impact test was performed in accordance with the provisions of JIS Z 2242.
  • the test temperature was ⁇ 60 ° C., each of which was tested three times, and the average value was defined as the absorbed energy vE ⁇ 60 (J) of the steel pipe.
  • J the absorbed energy vE ⁇ 60
  • Partial leak refers to a state where a leak occurs in a test steel pipe exceeding 0% and 10% or less when evaluated with 10 or more pipes, and “leak” is a specimen exceeding 10%. A state where a leak has occurred.
  • any of C, Si, Mn, P, S, Al, Ca, N, O, Ti, Nb, V, and Pcm is a steel pipe No. 26-No. 35, 44 to 48, and 50 to 52 cannot secure desired toughness with vE- 60 of less than 110 J and CTOD value of less than 0.80 mm at 0 ° C. in an electric resistance welded portion, and at least electric resistance welding in an internal pressure test. A leak occurred in the part.
  • a steel pipe no. No. 49 has insufficient YS and TS of the base material part.
  • steel pipe No. C in which C deviates from the scope of the present invention is low. No.
  • the steel pipe No. 25 is YS: less than 400 MPa and the desired strength cannot be secured, and the desired toughness can be secured with a vD- 60 of less than 110 J and a CTOD value of less than 0.80 mm at 0 ° C. in both the base metal part and the electric resistance welded part.
  • the steel pipe No. As in the case of 11 to 19, the echo height should be about 20%, but the steel pipe No. which had a beam width outside the scope of the present invention. In 10, 20, and 21, the echo height was a different value, and it could not be determined that the oxide on the weld surface in the pipe axis direction was sufficiently small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 耐内圧リーク性および電縫溶接部靭性に優れた電縫溶接鋼管を提供する。 質量%で、C:0.025~0.168%、Si:0.10~0.30%、Mn:0.60~1.90%を含み、さらにCa、およびNb、V、Tiのうちから選ばれた1種または2種以上を、Pcmが0.20以下を満足するように含む組成の熱延鋼板を、冷間で連続的にロール成形加工し、管状体とする。その際、鋼板の幅方向端面に、テーパー部が鋼板肉厚に対し10~80%のテーパー開先を付与する。そして、管状体の端面同士を突き合わせ、電縫溶接して管体とする。そして、電縫溶接面に対し、ビーム幅が0.1~4.0mmの範囲となるように超音波を送波し、反射波をアレイ探触子を用いた超音波探傷装置により超音波探傷して、電縫溶接部の健全性を確認する。検査後、あるいはその前に、電縫溶接部に、850~1150℃に加熱し、20~200℃/sの冷速で冷却するシ-ムアニーリング処理を施す。これにより、母材部および電縫溶接部がいずれも、平均粒径:10μm以下の擬ポリゴナルフェライト相を主相とする組織を有し、耐内圧シール性、電縫溶接部靭性に優れた降伏強さ400MPa以上の電縫鋼管が得られる。

Description

電縫鋼管およびその製造方法
 本発明は、電縫鋼管およびその製造方法に係り、とくに電縫溶接部における靭性の向上および信頼性の向上に関する。
 電縫鋼管は、鋼帯を複数のロールで連続的に略円形断面(管状体)に冷間成形し、該管状体の相対する端面同士を突き合わせ、該突き合わせた部位(突合せ部)に高周波電流を印加し、圧力を加えながら溶接接合(電縫溶接)されて、シーム部を有する管体(電縫鋼管)とされる。電縫溶接時には、突合せ部は抵抗発熱により融点以上に加熱され圧力を加えられて、鋼帯自身が接合金属となり接合される。このため、電縫溶接は、実質的に、溶融溶接として位置づけられている。
 1970年代以降に著しい進歩を遂げた高周波溶接技術、また1980年代以降に開発・適用された入熱制御・監視技術、あるいはさらにシーム部のオンライン熱処理技術等により、電縫鋼管の性能は飛躍的に向上した。その結果、電縫鋼管は、石油、ガスなどの採掘、輸送用として、外径26インチ以下、肉厚1インチ以下のラインパイプ、油井管等の用途に広く適用されるようになっている。
 しかし、電縫溶接部の信頼性という観点から、電縫鋼管の用途は、電縫溶接部の要求スペックが厳しくないものに限られていた。そのため、最近では、電縫溶接部の信頼性向上のために、種々の提案がなされている。
 例えば、特許文献1には、湿潤硫化水素を含む環境下で割れ抵抗性の高い耐サワー性の優れた電縫鋼管が記載されている。特許文献1に記載された技術では、Caを0.0012質量%以上含有するAl脱酸鋼を素材とする電縫鋼管において、鋼中のCa/Al比を0.10%以下とし、電縫衝合面を中心とし両側100μm以内の部分に含まれる酸化物系介在物のうち、衝合面に直交しかつ管軸方向に直交する横断面でみた介在物の形状として、板厚方向に延伸した介在物であって、円周方向の長さに対する板厚方向の長さの比が2以上でかつ長径10μm以上の介在物の密度が、該横断面で衝合面の両側100μm以内の領域の面積1mmあたりの個数で5以下とするとしている。これにより、厳しい環境でも水素フクレの発生が防止できるとしている。
 また、特許文献2には、電縫鋼管のガスシール溶接方法が記載されている。特許文献2に記載された技術では、フィンパス成形後で溶接前に、パイプ内面側の浮遊スケールをミストで洗浄すると共に、溶接部の局所シールに際しパイプ内面側シール装置は保持ローラを除き、パイプと非接触としてシールすることを特徴としている。これにより、溶接部へのスケール残存を防止し、溶接部の靭性が格段に向上するとしている。
 特許文献3には、高強度電縫ラインパイプが記載されている。特許文献3に記載された高強度電縫ラインパイプは、質量%で、C:0.04超~0.08%、Si:0.1~0.3%、Mn:1.6超~2.0%、P:0.02%以下、S:0.003%以下、Nb:0.04~0.08%、V:0.05~0.1%、Ni:0.1~0.5%、Cu:0.1~0.5%、Mo:0.05~0.20%、Ti:0.01~0.03%、Al:0.05%以下、N:0.005%以下を含み、かつNi、Cu、Moを特定関係を満足するように含有する組成を有し、金属組織が平均結晶粒径5μm以下のアシキュラーフェライト組織であり、偏平後の周方向の引張強さが700N/mm以上、0.5%耐力が550N/mm以上、電縫溶接衝合部の酸化物占有面積が0.1%(1000ppmに相当)以下である、高強度電縫ラインパイプである。特許文献3に記載された電縫ラインパイプは、ホットコイルから冷間でのロール成形、電縫溶接、シーム熱処理、サイザーの工程を経て製造された、外径200~610mmで、肉厚/外径比(t/D)が2%以下の電縫鋼管である。これによれば、電縫溶接部が母材並みの健全性を有し、ラインパイプをさらに薄肉化することができるとしている。
 特許文献4には、電縫ボイラー鋼管が記載されている。特許文献4に記載された電縫ボイラー鋼管は、質量%で、C:0.01~0.20%、Si:0.01~1.0%、Mn:0.10~2.0%、Cr:0.5~3.5%を含有し、P:0.030%以下、S:0.010%以下、O:0.020%以下に制限し、(Si%)/(Mn%+Cr%)を0.005以上1.5以下とし、電縫溶接時に生成するSiO、MnO、およびCrの3元系混合酸化物の面積率が0.1%(1000ppmに相当)以下である電縫溶接部からなる、電縫溶接部の欠陥が少なく、クリープ破断強度および靭性に優れた電縫ボイラー鋼管である。
 安定した電縫溶接部性能を有する電縫鋼管を得るためには、電縫溶接条件を適正に保ち、安定した溶接部品質(シーム部品質)を得る必要がある。そのため、鋼管素材である鋼帯の端部形状の安定化や、成形および溶接時の位置合わせ、あるいは電縫溶接時の入熱量の安定化などが重要となる。
 電縫溶接では、最適な溶接入熱となる条件下では、管状体の突合せ部(鋼帯端部)が十分に溶融し液滴が形成されて圧接されている。しかし、入熱量が低くなると、液滴が十分に形成されないまま、圧接される。そのため、非特許文献1の図1(a)に示されるように、溶接部を溶接面に沿って破壊させると、入熱量が低い条件で溶接された溶接部では、溶接面に多数の酸化物が観察される。破面に、このような多数の酸化物が観察される溶接部は、一般的に、冷接(Cold weldあるいはCold jointともいう)と呼ばれている。非特許文献1に示された溶接部は、高周波溶接部であるが、入熱量変動の小さい高周波溶接においても、溶接条件によっては冷接(溶接欠陥)が形成される場合があることを意味している。
特公平7-24940号公報 特公平8-25035号公報 特開2008-223134号公報 特許第4377869号公報
T.Fukami,et.al.:"Development of the new welding control method for HF-ERW pipes",Proc. of IPC,(2012)No.2012-90219, p.1-8.
 従来から、日本国内のガスパイプラインでは、電縫鋼管を使用した場合には、UOE鋼管や継目無鋼管を使用した場合に比較して、その最大圧力が低く制限されてきた。これは、電縫溶接部の信頼性、とくに上記したような冷接の発生防止、あるいは冷接等の溶接欠陥の検出という点で十分でなかったことに起因すると考えられている。また、1970年代以前に敷設されたような古いラインパイプ(Vintage line-pipe)が、数十年の時間を経てリーク等を引き起こす事例が世界的にも知られており、性能に劣る古い電縫鋼管でのリーク等の原因の1つとして冷接欠陥が挙げられている。
 このような観点から、特許文献1に記載された技術においても、局所的な入熱の低下により引き起こされる冷接の発生を回避することができないという問題がある。また、特許文献1に記載された技術では、高強度鋼への適用が困難であり、しかも、低温靭性が不十分であり、寒冷地用として適用することには問題がある。また、特許文献2、3、4に記載された各技術によっても、局所的な入熱量の低下により引き起こされる冷接の発生は回避できないという問題があった。
 本発明は、かかる従来技術の問題を解決し、冷接等の溶接欠陥の発生を回避し、優れた耐内圧リーク性および優れた電縫溶接部靭性を有する高強度の電縫鋼管およびその製造方法を提供することを目的とする。
 なお、ここでいう「高強度」とは、電縫鋼管の母材部がAPI X 56グレート相当、すなわち降伏強さYS:400MPa以上である場合をいう。
 また、ここで、「耐内圧リーク性に優れた」とは、試験温度:0℃で、常温での降伏強さ(σyRT)の95%の内圧を負荷した条件で、内圧試験を行ない、リークが生じないことを意味する。なお、内圧試験は、非特許文献(S.Toyoda,S.Goto,T.Okabe,H.Kimura,S.Igi,Y.Matsui,S.Yabumoto,A.Sato,M.Suzuki,and T.Inoue:Proc. of IPC(2012),IPC2012-90448.)に記載された要領で、所定の温度(ここでは0℃)に保持した冷媒中に管体を保持し、ノッチ無しの条件で行うものとする。具体的には、外径の8倍の長さの鋼管を、所定の温度に冷却した冷媒(エタノール)中に保持し、該鋼管のシールした両端部から、ガス(大気)を吹き込み所定の圧力まで上昇させて、リークや破壊の有無を判定するものとする。
 また、ここでいう「電縫溶接部靭性に優れた」とは、電縫溶接部において、JIS Z 2242の規定に準拠して行ったシャルピー衝撃試験の試験温度:-60℃での吸収エネルギーvE-60が110J以上で、かつBS 7448-1995の規定に準拠して行ったCTOD試験の試験温度:0℃におけるCTOD値が0.80mm以上である場合をいうものとする。
 本発明者らは、上記した目的を達成するために、耐内圧リーク性および電縫溶接部靭性におよぼす各種要因について鋭意研究した。その結果、電縫溶接部における溶接欠陥、とくに冷接の発生を防止し、さらには電縫溶接部の品質管理を強化して、電縫溶接部の信頼性を高めることが重要であることに想到した。
 まず、本発明者らは、電縫溶接における冷接に類似した現象として、薄板のスポット溶接時のコロナボンド(corona bond)に着目し、電縫溶接における冷接とコロナボンドとを対比した。
 薄板のスポット溶接におけるコロナボンドとは、ナゲット(溶融池)まわりの圧着された部分を言う。コロナボンドは、スポット溶接時に、上下の板が圧着され短時間加熱されて、形成されたものであり、コロナボンドの破面には、小さな塊状の酸化物が点在していることが知られている。一方、電縫溶接時には、衝合される鋼帯(鋼板)端面が高周波電流により予加熱される。このため、電縫溶接時には、スポット溶接時に比べ、より多くの酸化物が形成されると考えられる。本発明者らの試算によれば、電縫溶接時には、鋼帯(鋼板)端面には数ミクロン厚さの酸化物が形成されることが確認されている。そのため、鋼帯(鋼板)端部が外気にさらされる電縫溶接で入熱量が低下し、液滴が十分に形成されないまま圧接されると、電縫溶接部にはミクロンオーダーの酸化物が残存し、冷接が生じることになると考えられる。
 なお、昭和62年2月に社団法人溶接学会抵抗溶接研究委員会より刊行された「抵抗溶接における欠陥と特徴―定義と判定方法―」(第7頁1~5行)には、冷接は、「マクロフラット(Macro-flat):肉眼で見て灰色、平面状でかつ連続または広範囲に観察されるもの。ミクロ的には球状介在物を含む微細ディンプル破面。高周波抵抗(電縫)溶接では冷接(Cold weld)、またはアップセット溶接ではフラット破面(Flat fracture)と呼ばれている。生成原因:入熱不足、突合わせ不良。」との記載がある。
 このようなことから、本発明者らは、電縫溶接における冷接は、「入熱量の低下により鋼帯(鋼板)端部の温度が低下し、溶鋼の流動性が低下し、加熱時に生成した酸化物が排出しきれずに溶接接合部(シーム部)に残存した」溶接欠陥であると考えた。このような冷接の発生防止は、加熱時における酸化物の生成、残存の抑制と、生成して残存する酸化物の検出感度の向上の2点に帰着されることに思い至った。
 まず、本発明者らが行った基礎的実験結果について説明する。
 電縫鋼管製造設備を利用して、薄鋼板(薄鋼帯)を、複数のロールで連続的に冷間成形し、ほぼ円筒形状の管状体に成形し、該管状体の相対する端部同士を突き合わせ、電縫溶接して管体とし、API 5L X65M規格の電縫鋼管(外径323.9mmφ×肉厚10mm)とした。なお、電縫溶接に際して、溶接入熱量を、通常入熱量を基準(=1.0)に対し、さらに0.90、0.80、0.75を加えた4水準に、意図的に変化させた。入熱量は、(電流(A)×電圧(kV))/(造管速度(m/min)/管厚(mm))で定義される。基準とする通常入熱量は、特許第5332287号公報に記載の方法によって決定した。
 得られた電縫鋼管について、図3に模式的に示すような、管の周方向に配列したアレイ探傷子6を用いた管体の超音波探傷装置(以下、「高感度アレイUT」ともいう)で、電縫溶接部の健全性、とくに冷接の有無を調査した。なお、使用した超音波の周波数は18MHzとし、シーム(電縫溶接部)2の溶接面でのビーム幅が1.5mmとなるように送波し、φ1.6mmドリルホール+20dBの感度条件で、欠陥の有無を評価した。なお、図3に示した超音波探傷装置では、送信と受信の振動子の位置を電子的に切り替えて溶接部を厚み方向に走査でき、管長手方向に沿って溶接部の肉厚断面を探傷することが可能である。
 得られた電縫鋼管の溶接部の健全性を、上記した管体の超音波探傷装置で評価し、その結果である溶接部長手方向断面のエコー高さマッピングを図1に示す。通常の入熱量を1.0とする基準条件に対し、通常入熱量の0.8と低入熱条件である鋼管No.IIIでは、欠陥エコーが外面側に部分的に観察される。また、通常入熱量の0.75と極低入熱条件である鋼管No.IVでは、欠陥エコーが外面側に長手方向に連続的に観察される。欠陥エコーが観察された鋼管の溶接部について、C断面(管軸方向に直交方向の断面)組織を観察し、図2に示す。これら欠陥エコーは、未溶着部の残存酸化物に対応しており、すなわち、いわゆる「冷接」に対応することになる。
 なお、基準条件からの隔たりの少ない下限入熱条件の鋼管No.IIでは欠陥エコーは観察されていない。この程度の入熱量の低下は、電縫溶接時の管理範囲内である。
 さらに、電縫溶接部の開先をテーパー開先付きとし、溶接入熱を通常入熱を基準として1.1~0.75の範囲で変化して電縫溶接したAPI 5L X80規格の電縫鋼管(外径660.4mmφ×肉厚25.4mm)を作製し、同様に、「高感度アレイUT」を用いて、電縫溶接部の健全性、とくに冷接の有無を調査した。溶接入熱が通常を基準として1.1~0.9である管理範囲内にある場合には、エコー高さの著しい増大は認められなかった。一方、溶接入熱が低下し、管理範囲を外れ0.8となる場合には、エコー高さの増大が認められた。そして、エコー高さの増大部分では電縫溶接時に形成されたFe(Si,Mn)系酸化物が観察された。また、溶接入熱が低下し、管理範囲を下回る0.75となる場合には、連続的にエコー高さの増大が認められ、エコー高さの増大部分では、粗大な酸化物層が形成されていた。このように、厚肉でかつ開先有で電縫溶接された電縫鋼管の場合にも、溶接入熱量とエコー高さ、酸化物の三者が対応していることを確認した。
 このようなことから、電縫溶接時の入熱量低下にともない、形成された酸化物が排出されずに溶接接合部に残留した溶接欠陥である「冷接」は、上記したようなビーム径に調整した、管の周方向に配列したアレイ探傷子を用いた管体の超音波探傷装置により、欠陥エコーとして、十分に検知可能であることを知見した。
 さらに、本発明者らは、電縫溶接部の酸化物の生成を抑制し、優れた電縫溶接部靭性と優れた耐内圧リーク性を確保するためには、電縫溶接部に酸化物を残存させやすい、たとえばC、Si、Mn等の元素含有量を適正範囲内に調整する必要があることに想到し、電縫鋼管の組成を、質量%で、C:0.025~0.168%、Si:0.10~0.30%、Mn:0.60~1.90%、P:0.001~0.018%、S:0.0001~0.0029%、Al:0.010~0.10%、Ca:0.0001~0.0035%、N:0.0050%以下、O:0.0030%以下、さらに、Nb:0.001~0.070%以下、V:0.001~0.065%以下、Ti:0.001~0.033%以下のうちから選ばれた1種または2種以上を、Pcmが0.20以下を満足するように含む組成とする必要があることを見出した。
 上記したような、加熱時における酸化物の生成、残存の抑制と、生成して残存する酸化物の検出感度の向上とを、合わせ行うことにより、冷接の発生を回避でき、信頼性の高い電縫溶接部を有する高強度電縫鋼管を提供できることを新規に見出した。
 信頼性の高い電縫溶接部を有することの一つの指標として、本発明者らは、試験温度:0℃で、常温での降伏強さの95%の内圧を負荷した条件で、内圧試験を行ない、リークが生じないことを意味する、「耐内圧リーク性」を採用した。内圧試験は、非特許文献(S.Toyoda,S.Goto,T.Okabe,H.Kimura,S.Igi,Y.Matsui,S.Yabumoto,A.Sato,M.Suzuki,and T.Inoue:Proc. of IPC(2012),IPC2012-90448.)に記載された要領で、所定の温度(ここでは0℃)に保持した冷媒中に管体を保持し、ノッチ無しの条件で行うものとする。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、つぎのとおりである。
 [1]質量%で
 C:0.025~0.168%、    Si:0.10~0.30%、
 Mn:0.60~1.90%、     P:0.001~0.018%、
 S:0.0001~0.0029%、  Al:0.010~0.10%、
 Ca:0.0001~0.0035%、 N:0.0050%以下、
 O:0.0030%以下、
さらに、Nb:0.001~0.070%、V:0.001~0.065%、Ti:0.001~0.033%のうちから選ばれた1種または2種以上を、下記(1)式で定義されるPcmが0.20以下を満足するように含み、残部Fe及び不可避的不純物からなる組成を有し、さらに、
母材部および電縫溶接部がいずれも、体積率で90%以上の、平均粒径:10μm以下の擬ポリゴナルフェライト相を主相とし、残部が、体積率で10%以下の第二相とからなる組織を有し、
 管軸方向で降伏強さYS:400MPa以上の母材部を有し、
JIS Z 2242の規定に準拠して行ったシャルピー衝撃試験の試験温度:-60℃での吸収エネルギーvE-60が110J以上で、BS 7448-1995の規定に準拠して行ったCTOD試験の試験温度:0℃におけるCTOD値が0.80mm以上の電縫溶接部靭性を有し、かつ試験温度:0℃、内圧:0.95×(常温降伏強さσyRT)の条件で行う内圧試験において、リークが生じない、電縫鋼管。
                   記
 Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ・・・・(1)
 ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%)であり、含有しない元素は0とする。
 [2]前記組成に加えてさらに、質量%で、Cu:0.001~0.350%、Ni:0.001~0.350%、Mo:0.001~0.350%のうちから選ばれた1種または2種以上を含有する組成とする[1]に記載の電縫鋼管。
 [3]前記組成に加えてさらに、質量%で、Cr:0.001~0.350%、B:0.0001~0.0030%のうちから選ばれた1種または2種を含有する組成とする[1]または[2]に記載の電縫鋼管。
 [4]鋼管素材に、複数の、ケージロールとフィンパスロールとを連続して配設した成形ミルにより、冷間で連続して成形加工を施し管状体としたのち、スクイズロールで該管状体の端面同士を突き合わせ、加圧しながら該突き合わせた部位を高周波加熱により電縫溶接して管体とし、ついで、該管体の電縫溶接部の管軸方向溶接面を検査する電縫鋼管の製造方法において、
 前記鋼管素材が、質量%で
 C:0.025~0.168%、    Si:0.10~0.30%、
 Mn:0.60~1.90%、     P:0.001~0.018%、
 S:0.0001~0.0029%、  Al:0.010~0.10%、
 Ca:0.0001~0.0035%、 N:0.0050%以下、
 O:0.0030%以下、
さらに、Nb:0.001~0.070%、V:0.001~0.065%、Ti:0.001~0.033%のうちから選ばれた1種または2種以上を、下記(1)式で定義されるPcmが0.20以下を満足するように含み、残部Fe及び不可避的不純物からなる組成を有し、
前記鋼管素材を降伏強さYS:360MPa以上を有する熱延鋼板とし、前記フィンパスロールによる成形で、前記熱延鋼板の幅方向端面に開先を付与するにあたり、該開先をテーパー開先とし、該テーパー開先のテーパー開始位置から管表面までの距離が、管外面からの距離と管内面からの距離との合計で鋼板肉厚に対する比率で10~80%である開先とし、
前記検査を、前記管体の電縫溶接部の管軸方向溶接面に対し、ビーム幅が0.1mmから4.0mmの範囲となるように超音波を送波し、該溶接面からの反射波の一部または全部を受波するアレイ探触子を用いた超音波探傷装置により、前記管体の電縫溶接部に非金属部が所定量以上存在しないことを確認する検査とし、
前記検査後に、前記電縫溶接して得られた前記管体の電縫溶接部に、加熱温度:850~1150℃に加熱し、肉厚中央部の温度で780~630℃の範囲を平均冷却速度20~200℃/sの範囲の冷却速度で冷却する溶接部再加熱処理を施す、
JIS Z 2242の規定に準拠して行ったシャルピー衝撃試験の試験温度:-60℃での吸収エネルギーvE-60が110J以上で、BS 7448-1995の規定に準拠して行ったCTOD試験の試験温度:0℃におけるCTOD値が0.80mm以上の電縫溶接部靭性を有し、かつ試験温度:0℃、内圧:0.95×(常温降伏強さσyRT)の条件で行う内圧試験において、リークが生じないものである、電縫鋼管の製造方法。
                   記
 Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ・・・・(1)
 ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%)
 [5]前記組成に加えてさらに、質量%で、Cu:0.001~0.350%、Ni:0.001~0.350%、Mo:0.001~0.350%のうちから選ばれた1種または2種以上を含有する組成とする[4]に記載の電縫鋼管の製造方法。
 [6]前記組成に加えてさらに、質量%で、Cr:0.001~0.350%、B:0.0001~0.0030%のうちから選ばれた1種または2種を含有する組成とする[4]または[5]に記載の電縫鋼管の製造方法。
 本発明は、冷接等の溶接欠陥の発生を回避し、優れた耐内圧リーク性および優れた電縫溶接部靭性を有する高強度の電縫鋼管およびその製造方法である。
図1は、各電縫鋼管の溶接部長手方向断面のエコー高さマッピングを比較して示す説明図である。 図2は、エコー高さが増大した電縫溶接部の断面組織を示す光学顕微鏡組織写真である。 図3は、アレイ探傷子を用いた溶接部の超音波探傷装置を用いた探傷方法の概要を示す説明図である。 図4は、テーパー開先を説明する概略図である。テーパー開始位置から管表面までの距離をa(管外面側)、b(管内面側)で示した。テーパー開始位置から管表面までの距離は、厚さ方向に沿って求める。
 本発明電縫鋼管は、管軸方向で降伏強さYS:400MPa以上を有する高強度電縫鋼管であり、冷接等の溶接欠陥の発生を回避し、優れた耐内圧リーク性および優れた電縫溶接部靭性を有し、信頼性の高い電縫溶接部を有する電縫鋼管である。なお、本発明電縫鋼管は、JIS Z 2242の規定に準拠して行ったシャルピー衝撃試験の試験温度:-60℃での吸収エネルギーvE-60が110J以上で、BS 7448-1995の規定に準拠して行ったCTOD試験の試験温度:0℃におけるCTOD値が0.80mm以上と、優れた電縫溶接部靭性を有する。なお、母材部靭性も上記した靭性を有することはいうまでもない。また、本発明電縫鋼管は、試験温度:0℃、内圧:0.95×(常温降伏強さσyRT)の条件で行う内圧試験において、リークが生じない優れた耐内圧リーク性を有する。
 ついで、本発明電縫鋼管の製造方法について、説明する。
 本発明電縫鋼管は、鋼管素材に、複数の、ケージロールとフィンパスロールとを連続して配設した成形ミルにより、冷間で連続して成形加工を施し管状体としたのち、スクイズロールで該管状体の端面同士を突き合わせ、加圧しながら該突き合わせた部位を高周波加熱により加熱、溶融させて電縫溶接して管体とし、ついで、該管体の電縫溶接部の管軸方向溶接面を検査して製品管とされる。ここで、管軸方向溶接面とは管軸方向に平行であり、かつ、管周方向の中央位置の面である。
 使用する鋼管素材は、降伏強さYS:360MPa以上を有する熱延鋼板とする。なお、「鋼板」には鋼帯をも含むものとする。
 まず、本発明で鋼管素材として使用する熱延鋼板の組成限定理由について説明する。なお、以下、組成における質量%は単に%で示す。
 C:0.025~0.168%
 Cは、固溶強化、あるいはパーライト、擬似パーライト、セメンタイトなどの硬質相を形成することによる強化、あるいは焼入れ性を向上させて、ベイナイト、マルテンサイトなどの硬質相を形成することによる強化で、鋼板(鋼管)の強度増加に寄与する作用を有する元素である。一方で、Cは、電縫溶接時に、凝固点の低下、気相中OとのCO形成反応などを介して、電縫溶接部の酸化物形成に影響を及ぼすため、できるだけ低いほうが望ましいが、所望の高強度(鋼管素材の降伏強さ:360MPa以上、鋼管母材部管軸方向の降伏強さ:400MPa以上)を確保するためには0.025%以上の含有を必要とする。含有量について、好ましくは0.030%以上である。一方、0.168%を超える含有は、電縫溶接部並びに母材部の硬質相の体積率が10%を超え、靭性が低下する。とくに、電縫溶接部の靭性低下に伴い、耐内圧リーク性が低下し、0℃で常温の降伏強さYSの95%の内圧を付与する内圧試験時に全長にわたりリーク、破壊の起こらないことを保証できなくなる。このため、Cは0.025~0.168%の範囲内に限定した。含有量について、好ましくは0.084%以下である。
 Si:0.10~0.30%
 Siは、固溶強化を介して、鋼板(鋼管)の強度増加に寄与する。また、Siは、FeよりもO(酸素)との親和力が強く、電縫溶接部で、Mn酸化物とともに粘度の高い共晶酸化物を形成する。Siが0.10%未満では、共晶酸化物中のMn濃度が増加し、酸化物の融点が溶鋼温度を超え、酸化物として電縫溶接部に残存し易くなる。そのため、電縫溶接部に存在する酸化物が増加し、電縫溶接部の靭性が低下し、0℃で常温の降伏強さYSの95%の内圧を付与する内圧試験時に、全長にわたりリーク、破壊の起こらないことを保証できなくなる。よって、含有量は0.10%以上とし、好ましくは0.15%以上とする。一方、Si含有量が0.30%を超えると、共晶酸化物中のSi濃度が増加し、酸化物の融点が溶鋼温度を超えるとともに、酸化物としての絶対量が増え、電縫溶接部に酸化物として残存し易くなり、電縫溶接部の靭性が低下し、内圧試験時に、全長にわたりリーク、破壊の起こらないことを保証できなくなる。このようなことから、Siは0.10~0.30%の範囲に限定した。なお、含有量について、好ましくは0.25%以下である。
 Mn:0.60~1.90%
 Mnは、固溶強化と変態組織強化を介して、鋼板(鋼管)の強度増加に寄与する。Mnは、FeよりもO(酸素)との親和力が強く、電縫溶接部で、Si酸化物とともに粘度の高い共晶酸化物を形成する。Mn含有量が0.60%未満では、共晶酸化物中のSi濃度が増加し、酸化物の融点が溶鋼温度を超え、酸化物として電縫溶接部に残存し易くなり、電縫溶接部の靭性が低下し、0℃で行なう内圧試験時に、全長にわたりリーク、破壊の起こらないことを保証できなくなる。さらに、Mn含有量が0.60%未満では、母材部並びに電縫溶接部の組織が、粒径:10μm超えの粗大な擬ポリゴナルフェライトやポリゴナルフェライトとなる。そのため、靭性が低下し、0℃で行なう内圧試験時に、全長にわたりリーク、破壊の起こらないことを保証できなくなる。よって、含有量は0.60%以上とし、好ましくは0.85%以上とする。一方、Mn含有量が1.90%を超えると、電縫溶接部で、共晶酸化物中のMn濃度が増加し、酸化物の融点が溶鋼温度を超えるとともに、酸化物としての絶対量が増え、酸化物として電縫溶接部に残存し易くなり、電縫溶接部の靭性が低下し、0℃で行なう内圧試験時に、全長にわたりリーク、破壊の起こらないことを保証できなくなる。さらに、Mn含有量が1.90%を超えると、母材部並びに電縫溶接部における硬質相の分率が10%を超え、靭性が低下する。このようなことから、Mnは0.60~1.90%の範囲に限定した。なお、含有量について、好ましくは1.65%以下である。
 P:0.001~0.018%
 Pは、不純物として鋼中に存在し、粒界等に偏析しやすく、またMnと共偏析し、靭性等に悪影響を及ぼす元素であり、できるだけ低減することが望ましいが、製鋼プロセスにおける経済性の観点から0.001%以上に限定した。一方、0.018%を超える含有は、母材部並びに電縫溶接部の靭性低下が著しくなる。このため、Pは0.001~0.018%に限定した。なお、含有量について、好ましくは0.013%以下である。
 S:0.0001~0.0029%
 Sは、母材部、電縫溶接部で、MnS、CaS等の硫化物として存在し、靭性等に悪影響を及ぼす元素であり、できるだけ低減することが望ましい。しかし、製鋼プロセスにおける経済性の観点から0.0001%以上に限定した。一方、0.0029%を超えて含有すると、靭性が顕著に低下し、0℃で行なう内圧試験時に、全長にわたりリーク、破壊の起こらないことを保証できなくなる。このため、Sは0.0001~0.0029%の範囲に限定した。なお、好ましくは0.0001~0.0019%である。
 Al:0.010~0.10%
 Alは、製鋼段階での脱酸剤として作用する元素である。また、Alは、AlNとして析出し、オーステナイト加熱時の粒成長を抑制し、低温靭性の向上に寄与する。また、Alは、Si、MnよりもさらにO(酸素)との親和力が強く、2MnO・SiO(Tephroite)などのMn-Si共晶酸化物に固溶する形で酸化物を形成する。
 このような効果を得るためには、Alは0.010%以上含有する必要がある。0.010%未満では、製鋼段階で所望の脱酸能を確保できず、鋼の清浄度が低下する。また、電縫溶接部に存在する酸化物が増加し、靭性が低下し、0℃で行なう内圧試験時に、全長にわたりリーク、破壊の起こらないことを保証できなくなる。一方、Alが0.10%を超えて含有すると、共晶酸化物中のAl濃度が上がり、酸化物の融点が溶鋼温度を超え酸化物として電縫部に残存し易くなり、電縫溶接部に存在する酸化物が増加し、靭性が低下する。このため、0℃で行なう内圧試験時に、全長にわたりリーク、破壊の起こらないことを保証できなくなる。このようなことから、Alは0.010~0.10%の範囲に限定した。なお、含有量の下限側について、好ましくは0.03%以上である。また、含有量の上限側について、好ましくは0.08%以下である。
 Ca:0.0001~0.0035%
 Caは、鋼中の硫化物を球状に形態制御する元素であり、とくに鋼管の電縫溶接部近傍の靭性向上に寄与する。このような効果を得るためには、0.0001%以上の含有を必要とする。CaはOとの親和力が強いため、0.0035%を超えて含有すると、酸化物中のCa濃度が増加し、酸化物の融点が溶鋼温度を超えるとともに、酸化物としての絶対量が増え、酸化物として電縫溶接部に残存し易くなり、電縫溶接部の靭性が低下し、0℃で行なう内圧試験時に、全長にわたりリーク、破壊の起こらないことを保証できなくなる。このため、Caは0.0001~0.0035%の範囲に限定した。なお、含有量の下限側について、好ましくは0.0002%以上である。また、含有量の上限側について、好ましくは0.0028%以下である。
 N:0.0050%以下
 Nは、Ti等の窒化物形成元素と結合し、窒化物として析出するか、固溶して、鋼管母材および電縫溶接部の靭性に悪影響を及ぼす。このため、できるだけ低減することが望ましい。しかし、製鋼プロセスにおける経済性の観点から0.0001%を下限とすることが好ましい。一方、0.0050%を超える含有は、窒化物並びに固溶Nが増加し、靭性の低下を招く。このため、Nは0.0050%以下に限定した。なお、好ましくは0.0040%以下である。
 O:0.0030%以下
 O(酸素)は、酸化物系介在物として残存し、靭性、延性等、各種の特性に悪影響を及ぼす。このため、できるだけ低減することが望ましい。しかし、製鋼プロセスにおける経済性の観点から含有量は0.0001%以上とすることが望ましい。0.0030%を超えて多くなると、著しい靭性の低下を招く。このため、Oは0.0030%以下に限定した。なお、好ましくは0.0020%以下である。
 Nb:0.001~0.070%、V:0.001~0.065%、Ti:0.001~0.033%のうちから選ばれた1種または2種以上
 Nb、V、Tiはいずれも、主として炭化物として析出し、析出強化を介して鋼板(鋼管)強度の増加に寄与する元素であり、選択して1種または2種以上含有する。
 Nbは、主に炭化物として析出し、析出強化を介し鋼板(鋼管)強度の増加に寄与する。このような効果を得るためには、0.001%以上の含有を必要とする。Nbが0.001%未満では、所望の鋼板(鋼管)強度を確保できない。一方、0.070%を超えて含有すると、未固溶の大型Nb炭窒化物が残存し、靭性の低下を招く。このため、含有する場合には、Nbは0.001~0.070%の範囲に限定した。なお、含有量の下限側について、好ましくは0.005%以上である。また、含有量の上限側について、好ましくは0.055%以下である。
 Vは、Nbと同様、主に炭化物として析出し、析出強化を介し鋼板(鋼管)強度の増加に寄与する。このような効果を得るためには、0.001%以上の含有を必要とする。Vが0.001%未満では、所望の鋼板(鋼管)強度を確保できない。一方、0.065%を超えて含有すると、未固溶の大型V炭窒化物が残存し、靭性の低下を招く。このため、含有する場合には、Vは0.001~0.065%の範囲に限定した。なお、含有量の下限側について、好ましくは0.005%以上である。また、含有量の上限側について、好ましくは0.050%以下である。
 Tiは、Nb、Vと同様、主に炭化物として析出し、析出強化を介し鋼板(鋼管)強度の増加に寄与する。このような効果を得るためには、0.001%以上の含有を必要とする。Tiが0.001%未満では、所望の鋼板(鋼管)強度を確保できない。一方、0.033%を超えて含有すると、未固溶の大型Ti炭窒化物が残存し、靭性の低下を招く。このため、含有する場合には、Tiは0.001~0.033%の範囲に限定した。なお、含有量の下限側について、好ましくは0.005%以上である。また、含有量の上限側について、好ましくは0.020%以下である。
 残部はFeおよび不可避的不純物である。
 上記した成分が基本の成分であるが、基本の成分に加えてさらに、必要に応じて、選択元素として、Cu:0.001~0.350%、Ni:0.001~0.350%、Mo:0.001~0.350%のうちから選ばれた1種または2種以上、および/または、Cr:0.001~0.350%、B:0.0001~0.0030%のうちから選ばれた1種または2種、を含有してもよい。
 Cu:0.001~0.350%、Ni:0.001~0.350%、Mo:0.001~0.350%のうちから選ばれた1種または2種以上
 Cu、Ni、Moはいずれも、鋼管の耐食性を向上させる元素であり、必要に応じて選択して1種または2種以上含有できる。
 Cuは、鋼管の耐食性を向上させるとともに、焼入れ性を向上させる作用を有する元素である。とくに、厚肉鋼管の母材部および電縫溶接部の組織を、粗大な擬ポリゴナルフェライトやポリゴナルフェライトとならないようにするため、含有させる。ここでいう「粗大」とは粒径:10μmを超えるような組織をいう。このような効果を得るためには、0.001%以上含有することが好ましい。しかし、0.350%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、含有する場合には、Cuは0.001~0.350%の範囲に限定することが好ましい。なお、含有量の下限側について、より好ましくは0.05%以上である。また、含有量の上限側について、より好ましくは0.290%以下である。
 Niは、Cuと同様、鋼管の耐食性を向上させるとともに、焼入れ性を向上させる作用を有する元素である。とくに、厚肉鋼管の母材部および電縫溶接部の組織を、粗大な擬ポリゴナルフェライトとならないようにするため、含有させる。このような効果を得るためには、0.001%以上含有することが好ましい。しかし、0.350%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、含有する場合には、Niは0.001~0.350%の範囲に限定することが好ましい。なお、含有量の下限側について、より好ましくは0.05%以上である。また、含有量の上限側について、より好ましくは0.290%以下である。
 Moは、Ni、Cuと同様、鋼管の耐食性を向上させるとともに、焼入れ性を向上させる作用を有する元素である。とくに、厚肉鋼管の母材部および電縫溶接部の組織を、粗大な擬ポリゴナルフェライトとならないようにするため、含有させる。このような効果を得るためには、0.001%以上含有することが好ましい。しかし、0.350%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、含有する場合には、Moは0.001~0.350%の範囲に限定することが好ましい。なお、含有量の下限側について、より好ましくは0.05%以上である。また、含有量の上限側について、より好ましくは0.290%以下である。
 Cr:0.001~0.350%、B:0.0001~0.0030%のうちから選ばれた1種または2種
 Cr、Bはいずれも、変態組織強化により、鋼板(鋼管)の強度を増加させる元素であり、必要に応じて、1種または2種を含有できる。
 Crは、Mnと同様、変態組織強化により、鋼板(鋼管)の強度を増加させる元素である。このような効果を得るためには、0.001%以上含有する必要がある。また、Crは、FeよりもO(酸素)との親和力が強く、電縫溶接部において、酸化物を形成する。Crを0.350%を超えて含有すると、酸化物中のCr濃度が上がり、酸化物の融点が溶鋼温度を超えるとともに、酸化物としての絶対量が増え、酸化物として電縫部に残存し易くなり、電縫溶接部の靭性が低下する。このため、含有する場合には、Crは0.001~0.350%の範囲に限定することが好ましい。含有量の下限側について、より好ましくは0.02%以上である。また、含有量の上限側について、より好ましくは0.290%以下である。
 Bは、変態組織強化により、鋼板(鋼管)の強度を増加させる元素であり、このような効果を得るためには、0.0001%以上含有することが好ましい。しかし、0.0030%を超えて多量に含有すると、かえって焼入れ性が低下し、所望の高強度を確保できなくなる。このため、含有する場合には、Bは0.0001~0.0030%の範囲に限定することが好ましい。なお、含有量の下限側について、より好ましくは0.0003%以上である。また、含有量の上限側について、より好ましくは0.0022%以下である。
 本発明では、上記した成分を上記した範囲で、かつ次(1)式
 Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B  ・・・・(1)
 ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%)
で定義されるPcm値が0.20以下を満足するように調整して含有する。なお、(1)式に記載されている元素を含有しない場合には、当該元素の含有量を「零」%として計算するものとする。
 Pcm値は、電縫溶接部の急速冷却後の組織形成に関連する値である。電縫溶接部組織を擬ポリゴナルフェライトが体積率で90%以上とするために、Pcm値を制御することは重要であり、本発明ではPcm値を0.20以下とする。電縫溶接部を、擬ポリゴナルフェライトが体積率で90%以上を占有する組織とすることにより、電縫溶接部の所望の靭性を確保でき、0℃で行なう内圧試験時に全長にわたりリーク、破壊の起こらないことを保証できる。なお、Pcm値の下限は、とくに限定しないが、鋼管素材降伏強さYS:360MPa以上(鋼管母材部管軸方向の降伏強さ:400MPa以上)が安定的に確保できる、0.07以上とすることが好ましい。
 本発明で、鋼管素材として使用する熱延鋼板は、上記した組成を有し、降伏強さYS:360MPa以上を有し、かつ、JIS Z 2242の規定に準拠して行ったシャルピー衝撃試験の試験温度:-60℃での吸収エネルギーvE-60が110J以上で、BS 7448-1995の規定に準拠して行ったCTOD試験の試験温度:0℃におけるCTOD値が0.80mm以上と、優れた靭性を有する熱延鋼板である。
 なお、熱延鋼板の組織については、特に限定しないが、上記した高強度と高低温靭性を確保できる組織とすることが好ましい。このような靭性を確保できる組織としては、平均粒径が10μm以下の微細な擬ポリゴナルフェライト相を主相とし、残部が体積率で10%以下の第二相とからなる組織を有することが好ましい。なお、ここでいう「擬ポリゴナルフェライト」とは、アシキュラーフェライト、ベイニティックフェライトを含むものとする。
 上記したような組織を有する高強度熱延鋼板の製造方法については、とくに限定する必要はない。例えば、上記した組成を有する鋼素材(鋳片)を、1100~1280℃に加熱し、粗圧延と仕上圧延からなり、仕上圧延終了温度:750℃以上とする熱間圧延を施し、熱間圧延終了後、直ちに冷却を開始し、780~630℃の温度域を5℃/s以上の平均冷却速度で、600℃以下の冷却停止温度まで冷却し、巻取温度:400~580℃で巻き取ることにより製造できる。
 本発明では、上記した組成を有し、好ましくは上記した組織を有する降伏強さ:360MPa以上を有する熱延鋼板を鋼管素材とする。そして、該鋼管素材を、複数の、ケージロールとフィンパスロールとを連続して配設した、常用の成形ミルにより、冷間で連続して成形加工を施し管状体とする。成形ミルの具体的な構成は、とくに限定する必要はなく、常用の成形ミルを使用した管状体への成形加工方法がいずれも適用できる。また、鋼管母材は、管状体への成形にともなう加工強化により、鋼管素材に比べて降伏強さが大きくなる。
 本発明では、フィンパスロールによる成形で、鋼管素材である鋼板(熱延鋼板)の幅端面にテーパー開先を付与する。付与されるテーパー開先は、テーパー開始位置と管外面となる表面あるいは管内面となる表面との鋼板肉厚方向の距離が合計で鋼板肉厚の10~80%である開先とする(図4参照)。
 鋼板の幅端面におけるテーパー開始位置と管外面となる表面あるいは管内面となる表面との鋼板肉厚方向の距離が合計で鋼板肉厚の10~80%とすることで、酸化物の排出が促進され、電縫溶接部に存在する酸化物量が低減し、靭性が向上して、0℃で常温の実YSの95%の内圧を付与する内圧試験で、全長にわたりリーク、破壊の起こらないことの保証が可能となる。なお、該合計距離の下限側について、好ましくは30%以上である。また、合計距離の上限側について、好ましくは70%以下である。なお、テーパー形状は、直線に限定されず、任意の曲線形状とすることが可能である。
 鋼板の幅端面にテーパー開先を付与された管状体は、ついで、スクイズロールで、管状体の相対する端部(幅端面)を突き合わせ、該突き合わせた部位を、加圧しながら、高周波加熱により加熱、溶融させて電縫溶接する、常用の方法で、管体とされる。
 得られた管体は、ついで、電縫溶接部の管軸方向溶接面を検査され、欠陥が検出されない管体であることを確認される。
 電縫溶接部の検査は、図3に模式的に示す、管の周方向に配列したアレイ探傷子を用いた管体の超音波探傷装置(以下、「高感度アレイUT」ともいう)を用いるものとする。なお、この管体の超音波探傷装置の詳細は、特許第4544240号公報、特許第4910770号公報、特許第5076984号公報に記載されている。
 このようなアレイ探触子を用いた管体の超音波探傷装置を利用して、本発明では、管体の管軸方向溶接面に対し、ビーム幅が0.1mmから4.0mmの範囲となるように超音波を送波し、溶接面における酸化物或いは空隙等の非金属部からの反射波の一部または全部を受波する。管軸方向溶接面の検査結果により、電縫溶接部の欠陥の判断が可能である。
 ビーム幅が0.1mm以下では円周方向に変動する溶接面を全て探傷することができず、探傷もれが発生する場合がある。一方、ビーム幅が4.0mmを超えると、冷接による靭性低下ならびにリークの原因となる酸化物を検出できない。また、ビーム幅が適切でないと、逆に、管軸方向溶接面の酸化物が十分に少ない場合であっても、それを精確に把握できないおそれがある。このため、ビーム幅は0.1~4.0mmに限定した。なお、好ましくは、ビーム幅の下限は0.3mmであり、ビーム幅の上限は2.0mmである。
 上記した検査で、管体の電縫溶接部に非金属部が所定量以上存在しないことを確認された管体を製品管とする。なお、ここでいう「所定量以上」とは、電縫溶接部全体に対する占有面積で非金属部が0.049面積%超えとなる場合をいう。なお、上記した検査は、シームアニーリング処理を行ってもよい。
 電縫溶接部に非金属部が所定量以上存在しないことを確認された管体には、ついで、上記した電縫溶接により形成された電縫溶接部に、加熱温度:850~1150℃に加熱し、肉厚中央部の温度で780~630℃の温度範囲の平均冷却速度で20~200℃/sの範囲の冷却速度で冷却する溶接部再加熱処理(シ-ムアニーリング処理)が施される。得られた管体は、製品管として出荷される。
 溶接部再加熱処理(シームアニーリング処理)の加熱温度が、850℃未満では、加熱温度が低すぎて、所望の電縫溶接部靭性を確保できない。一方、加熱温度が1150℃を超える高温では、組織の粗大化が生じ、所望の電縫溶接部靭性を確保できない。このようなことから、シ-ムアニーリング処理の加熱温度は850~1150℃に限定した。
 また、電縫溶接部におけるシームアニーリング処理後の冷却速度が、20℃/s未満では、冷却が遅すぎて、結晶粒径:10μm以下の微細な擬ポリゴナルフェライト相を主相とする組織を確保できなくなり、所望の電縫溶接部硬さ、靭性を確保できない。一方、200℃/sを超えた急速な冷却となると、電縫溶接部が擬ポリゴナルフェライト相を主相とする組織を確保できなくなり、所望の電縫溶接部靭性を確保できない。このようなことから、シームアニーリング処理後の冷却は、肉厚中央部の温度で780~630℃の温度範囲の平均で20~200℃/sの範囲の冷却速度に限定した。なお、冷却停止温度が500℃を超えると、パーライト組織が生成し、所望の電縫溶接部硬さ、靭性を確保できなくなるおそれがある。このようなことから、シームアニーリング処理後の冷却停止温度は500℃以下とすることが好ましい。なお、肉厚全域で、パーライトの生成を抑制するために冷却停止温度はより好ましくは450℃以下である。なお、シームアニーリング処理後に、材質安定化のためにさらに焼戻処理を行ってもよいことは言うまでもない。
 なお、肉厚中央部の温度は、電磁場解析および伝熱解析(例えば、岡部ら:鉄と鋼,Vol.93(2007)No.5,p373~378)により溶接部断面内の温度分布を計算し、その結果を実際の外面および内面の温度によって補正することにより求める。
 上記した製造方法で製造された製品管は、上記した組成と、母材部および電縫溶接部がいずれも、体積率で90%以上の、平均粒径:10μm以下の擬ポリゴナルフェライト相を主相とし、残部が、体積率で10%以下の第二相とからなる組織を有し、電縫溶接部に非金属部が存在しない電縫鋼管である。このような電縫鋼管は、管軸方向で降伏強さYS:400MPa以上を有し、冷接等の溶接欠陥がなく、優れた耐内圧リーク性および優れた電縫溶接部靭性を有し、信頼性の高い電縫鋼管である。
 なお、ここでいう「擬ポリゴナルフェライト」とは、アシキュラーフェライト、ベイニティックフェライトを含むものとする。また、「擬ポリゴナルフェライト」の平均粒径は、円周方向断面で肉厚中心部について、隣接する結晶粒間の傾角が15°以上の粒界で囲まれた結晶粒の面積を測定し、得られた結晶粒の面積から換算した円相当直径をもとめ、それらの平均値をいうものとする。なお、隣接する結晶粒間の傾角は、EBSD(Electro Backscatter Diffraction)装置を用いて測定した値を用いる。
 以下、さらに実施例に基づき、本発明について説明する。なお、以下の実施例において、表2-1および表2-2をあわせて表2と称し、表3-1および表3-2をあわせて表3と称する。また、表1鋼No.Nは欠番である。表2~3において鋼管No.33は欠番である。
 表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブ(肉厚:250mm)とした。これらスラブを鋼素材とし、該鋼素材に、加熱温度:1200±20℃の範囲内で100±20分間の範囲内で均熱保持する加熱処理を施し、ついで、粗圧延、仕上圧延からなり、累積圧下率:61±10%、仕上圧延温度:810±20℃とする熱間圧延を施して、熱延鋼板(板厚:25mm)とした。なお、熱間圧延終了後、熱延ランナウトテーブル上で、肉厚中央温度で、780℃~630℃の温度域の平均冷却速度:24±8℃で、冷却停止温度:550±20℃まで冷却し、巻取温度:530±40℃で巻き取った。
 これらの熱延鋼板を、所定の幅にスリッティングした後、複数のケージロールとフィンパスロールとを連続して配設した成形ミルにより、冷間で連続して成形加工を施し管状体とした。その後、管状体の端部(熱延鋼板の幅端部)同士を突き合わせて、スクイズロールで加圧しながら、高周波加熱により管状体の端部を加熱し溶融させて電縫溶接して、外径22インチ(外径558.8mmφ×肉厚25mm)の電縫鋼管に造管した。
 なお、鋼種Bの電縫鋼管(鋼管No.10~21)では、電縫溶接の入熱量(電流(A)×電圧(kV))/(造管速度(m/min)/管厚(mm))を、基準(1.00)に対し1.12~0.88の範囲で変動し、n:100本を製造し、すべてについて、「高感度アレイUT」による非破壊検査と内圧試験を実施した。
 なお、成形加工に際しては、フィンパスロールで、鋼板の幅端部に、表2に示す形状のテーパー開先を付与した。付与されたテーパー開先は、幅端面におけるテーパー開始位置と管外面となる表面あるいは管内面となる表面との鋼板肉厚方向の距離が鋼板肉厚の8~92%である開先とした。なお、テーパー開先の傾斜平均角度は、テーパーの無い場合に対して30±8°とした。
 電縫溶接後、特許第4544240号公報、特許第4910770号公報、特許第5076984号公報に記載の「管体の超音波探傷装置」を用いて、管体の管軸方向溶接部の溶接面に対し、表2に示すビーム幅となるように超音波を送波し、溶接面における酸化物或いは空隙等の非金属部からの反射波の一部または全部を受波し、エコー高さを求め、冷接等の欠陥の有無を調査した。
 電縫溶接部を検査された管体には、ついで、電縫溶接部に、オンラインで、誘導加熱装置を用いてシームアニーリング処理を施した。シームアニーリング処理は、表2に示す加熱温度とし、肉厚中央温度で、780℃~630℃の温度域を表2に示す平均冷却速度で、表2に示す冷却停止温度まで冷却する処理とした。
 得られた管体(電縫鋼管)の母材部および電縫溶接部から、試験片を採取し、組織観察、引張試験、シャルピー衝撃試験、破壊靭性試験、内圧試験を実施した。試験方法はつぎの通りとした。
(1)組織観察
 得られた管体(電縫鋼管)の母材部(電縫溶接部から円周方向に90°離れた位置)および電縫溶接部中央位置から、それぞれ組織観察用試験片を採取した。管軸方向に直交する面(C断面)を観察面とし、組織観察用試験片を研磨し、腐食(ナイタール液腐食)し、光学顕微鏡(倍率:400倍)および走査型電子顕微鏡(倍率:2000倍)を用いて、肉厚中央位置付近の組織を観察し、各4視野以上で撮像した。得られた組織写真(走査型電子顕微鏡組織写真)を用い、構成する組織(相)の同定、および画像解析により、その組織分率を求めた。なお、面積分率で求めた場合は、三次元的に均質であるとして、面積分率の値を体積分率の値とした。
 また、発明例では主相である「擬ポリゴナルフェライト」について、EBSD(Electro Backscatter Diffraction)装置を用いて、肉厚中央位置で、隣接する結晶粒間の傾角が15°以上の粒界で囲まれた結晶粒の面積を測定し、得られた面積から円相当直径をもとめ、それらの平均値を、擬ポリゴナルフェライトの平均結晶粒径として求めた。
(2)引張試験
 得られた管体(電縫鋼管)の母材部(電縫溶接部から円周方向に90°離れた位置)から、引張方向が管軸方向となるように、JIS 12号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を求めた。なお、TS:490MPa以上を良好と判断した。
(3)シャルピー衝撃試験
 得られた管体(電縫鋼管)の母材部(電縫溶接部から円周方向に90°離れた位置)および電縫溶接部中央位置から、それぞれ試験片の長手方向が、管の円周方向となるように、Vノッチ試験片を採取し、JIS Z 2242の規定に準拠して、シャルピー衝撃試験を実施した。試験温度は-60℃とし、各3本ずつ試験し、その平均値を当該鋼管の吸収エネルギーvE-60(J)とした。なお、鋼種Bの電縫鋼管では、n:100で評価し、その最低値を示した。
(4)破壊靭性試験
 得られた管体(電縫鋼管)の母材部(電縫溶接部から円周方向に90°離れた位置)および電縫溶接部中央位置から、BS 7448-1995の規定に準拠して、試験片長手方向が管軸方向に直交する方向となるように、CTOD試験片を採取した。そして、BS 7448-1995の規定に準拠して、試験温度:0℃で、CTOD値を求めた。なお、ノッチ位置は、母材部、電縫溶接部中央位置とした。
 なお、鋼種Bの電縫鋼管では、n:100で評価し、その最低値を示した。
(5)内圧試験
 得られた管体(電縫鋼管)を試験鋼管とし、試験温度:0℃、内圧:0.95×(常温降伏強さσyRT)の条件で行う内圧試験を実施した。なお、内圧試験は、S.Toyoda,S.Goto,T.Okabe,H.Kimura,S.Igi,Y.Matsui,S.Yabumoto,A.Sato,M.Suzuki,and T.Inoue:Proc. of IPC(2012),IPC2012-90448.に記載された要領で、所定の温度(ここでは0℃)に保持した冷媒中に管体を保持し、ノッチ無しの条件で、試験鋼管に、内圧:0.95×(常温降伏強さσyRT)を負荷して、リーク、破壊の有無を評価した。なお、「一部リーク」とは、10本以上で評価した場合に0%を超え10%以下の試験鋼管でリークを起した状態をいい、「リーク」とは、10%を超える試験体でリークを起した状態をいう。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明例はいずれも、母材部、電縫溶接部ともに、平均粒径:10μm以下の微細な擬ポリゴナルフェライト相を主相とする組織を有し、試験温度:0℃、内圧:0.95×(常温降伏強さσyRT)の条件で行う内圧試験で破壊はもちろん、リークもなく、耐内圧リーク性に優れ、所望の高強度(YS:400MPa以上)で、かつ母材部はもちろん電縫溶接部においても0℃におけるCTOD値が0.80mm以上の優れた破壊靭性、-60℃におけるシャルピー衝撃試験の吸収エネルギーvE-60:110J以上と優れた靭性を有する電縫鋼管となっている。
 一方、本発明範囲を外れる比較例(後述のとおり、鋼管No.10、20、21を除く)は、所望の高強度が得られていないか、所望の組織が得られていないか、あるいは電縫溶接部に非金属部が存在して、シャルピー衝撃試験の吸収エネルギーvE-60が低いか、破壊靭性が低下しているか、あるいは内圧試験でリークが生じている。
 テーパー開先形状が本発明範囲から外れる鋼管No.1、No.9は、シャルピー衝撃試験のvE-60が110J未満、0℃におけるCTOD値0.80mm未満と、所望の靭性を確保できず、内圧試験でリークが発生した。溶接部再加熱処理における加熱温度および平均冷却速度が範囲外となる鋼管No.55~56および59~60も同様であった。
 また、C、Si、Mn、P、S、Al、Ca、N、O、Ti、Nb、V、Pcmのいずれかが本願成分範囲を外れる鋼管No.26~No.35、44~48、および50~52は、電縫溶接部でvE-60が110J未満、0℃におけるCTOD値0.80mm未満と所望の靭性を確保できず、内圧試験で、少なくとも電縫溶接部でリークが発生した。また、Ti、Nb、Vを含まない鋼管No.49は、母材部のYSおよびTSが不十分である。また、Cが本発明範囲を低く外れる鋼管No.25は、YS:400MPa未満で所望の強度を確保できていないうえ、母材部、電縫溶接部ともにvE-60が110J未満、0℃におけるCTOD値0.80mm未満と所望の靭性を確保できていない。
 また、超音波探傷において、適正なビーム幅の場合には鋼管No. 11~19の場合のようにエコー高さ:20%程度となるべきところ、本発明の範囲を外れるビーム幅であった鋼管No.10、20、21においてはエコー高さが異なる値となり、管軸方向溶接面の酸化物が十分に少ないと判断できなかった。

Claims (6)

  1.  質量%で
     C:0.025~0.168%、    Si:0.10~0.30%、
     Mn:0.60~1.90%、     P:0.001~0.018%、
     S:0.0001~0.0029%、  Al:0.010~0.10%、
     Ca:0.0001~0.0035%、 N:0.0050%以下、
     O:0.0030%以下、
    さらに、Nb:0.001~0.070%、V:0.001~0.065%、Ti:0.001~0.033%のうちから選ばれた1種または2種以上を、下記(1)式で定義されるPcmが0.20以下を満足するように含み、残部Fe及び不可避的不純物からなる組成を有し、さらに、
    母材部および電縫溶接部がいずれも、体積率で90%以上の、平均粒径:10μm以下の擬ポリゴナルフェライト相を主相とし、残部が、体積率で10%以下の第二相とからなる組織を有し、
     管軸方向で降伏強さYS:400MPa以上の母材部を有し、
    JIS Z 2242の規定に準拠して行ったシャルピー衝撃試験の試験温度:-60℃での吸収エネルギーvE-60が110J以上で、BS 7448-1995の規定に準拠して行ったCTOD試験の試験温度:0℃におけるCTOD値が0.80mm以上の電縫溶接部靭性を有し、かつ試験温度:0℃、内圧:0.95×(常温降伏強さσyRT)の条件で行う内圧試験において、リークが生じない、電縫鋼管。
                       記
     Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ・・・・(1)
     ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%)であり、含有しない元素は0とする。
  2.  前記組成に加えてさらに、質量%で、Cu:0.001~0.350%、Ni:0.001~0.350%、Mo:0.001~0.350%のうちから選ばれた1種または2種以上を含有する組成とする請求項1に記載の電縫鋼管。
  3.  前記組成に加えてさらに、質量%で、Cr:0.001~0.350%、B:0.0001~0.0030%のうちから選ばれた1種または2種を含有する組成とする請求項1または2に記載の電縫鋼管。
  4.  鋼管素材に、複数の、ケージロールとフィンパスロールとを連続して配設した成形ミルにより、冷間で連続して成形加工を施し管状体としたのち、スクイズロールで該管状体の端面同士を突き合わせ、加圧しながら該突き合わせた部位を高周波加熱により電縫溶接して管体とし、ついで、該管体の電縫溶接部の管軸方向溶接面を検査する電縫鋼管の製造方法において、
     前記鋼管素材が、質量%で
     C:0.025~0.168%、    Si:0.10~0.30%、
     Mn:0.60~1.90%、     P:0.001~0.018%、
     S:0.0001~0.0029%、  Al:0.010~0.10%、
     Ca:0.0001~0.0035%、 N:0.0050%以下、
     O:0.0030%以下、
    さらに、Nb:0.001~0.070%、V:0.001~0.065%、Ti:0.001~0.033%のうちから選ばれた1種または2種以上を、下記(1)式で定義されるPcmが0.20以下を満足するように含み、残部Fe及び不可避的不純物からなる組成を有し、
    前記鋼管素材を降伏強さYS:360MPa以上を有する熱延鋼板とし、前記フィンパスロールによる成形で、前記熱延鋼板の幅方向端面に開先を付与するにあたり、該開先をテーパー開先とし、該テーパー開先のテーパー開始位置から管表面までの距離が、管外面からの距離と管内面からの距離との合計で鋼板肉厚に対する比率で10~80%である開先とし、
    前記検査を、前記管体の電縫溶接部の管軸方向溶接面に対し、ビーム幅が0.1mmから4.0mmの範囲となるように超音波を送波し、該溶接面からの反射波の一部または全部を受波するアレイ探触子を用いた超音波探傷装置により、前記管体の電縫溶接部に非金属部が所定量以上存在しないことを確認する検査とし、
    前記検査後に、前記電縫溶接して得られた前記管体の電縫溶接部に、加熱温度:850~1150℃に加熱し、肉厚中央部の温度で780~630℃の範囲を平均冷却速度20~200℃/sの範囲の冷却速度で冷却する溶接部再加熱処理を施す、
    JIS Z 2242の規定に準拠して行ったシャルピー衝撃試験の試験温度:-60℃での吸収エネルギーvE-60が110J以上で、BS 7448-1995の規定に準拠して行ったCTOD試験の試験温度:0℃におけるCTOD値が0.80mm以上の電縫溶接部靭性を有し、かつ試験温度:0℃、内圧:0.95×(常温降伏強さσyRT)の条件で行う内圧試験において、リークが生じないものである、電縫鋼管の製造方法。
                       記
     Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ・・・・(1)
     ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%)
  5.  前記組成に加えてさらに、質量%で、Cu:0.001~0.350%、Ni:0.001~0.350%、Mo:0.001~0.350%のうちから選ばれた1種または2種以上を含有する組成とする請求項4に記載の電縫鋼管の製造方法。
  6.  前記組成に加えてさらに、質量%で、Cr:0.001~0.350%、B:0.0001~0.0030%のうちから選ばれた1種または2種を含有する組成とする請求項4または5に記載の電縫鋼管の製造方法。
PCT/JP2015/005716 2014-11-27 2015-11-17 電縫鋼管およびその製造方法 WO2016084335A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580064130.4A CN107002194B (zh) 2014-11-27 2015-11-17 电阻焊钢管及其制造方法
KR1020177014071A KR101946426B1 (ko) 2014-11-27 2015-11-17 전봉 강관 및 그의 제조 방법
US15/531,336 US10584405B2 (en) 2014-11-27 2015-11-17 Electric resistance welded steel pipe and manufacturing method therefor
CA2966570A CA2966570A1 (en) 2014-11-27 2015-11-17 Electric resistance welded steel pipe and manufacturing method therefor
JP2016512155A JP6319427B2 (ja) 2014-11-27 2015-11-17 電縫鋼管およびその製造方法
EP15862558.2A EP3225709A4 (en) 2014-11-27 2015-11-17 Electric resistance-welded steel pipe and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014239971 2014-11-27
JP2014-239971 2014-11-27

Publications (1)

Publication Number Publication Date
WO2016084335A1 true WO2016084335A1 (ja) 2016-06-02

Family

ID=56073930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005716 WO2016084335A1 (ja) 2014-11-27 2015-11-17 電縫鋼管およびその製造方法

Country Status (7)

Country Link
US (1) US10584405B2 (ja)
EP (1) EP3225709A4 (ja)
JP (1) JP6319427B2 (ja)
KR (1) KR101946426B1 (ja)
CN (1) CN107002194B (ja)
CA (1) CA2966570A1 (ja)
WO (1) WO2016084335A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021095617A (ja) * 2019-12-18 2021-06-24 日本製鉄株式会社 ラインパイプ用電縫鋼管及びラインパイプ用電縫鋼管の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106989216A (zh) * 2016-01-20 2017-07-28 浙江三花智能控制股份有限公司 管件本体、管件及管件的加工方法
ES2895456T3 (es) * 2018-12-11 2022-02-21 Ssab Technology Ab Producto de acero de alta resistencia y método de fabricación del mismo
CN110241360B (zh) * 2019-07-30 2020-11-03 马鞍山钢铁股份有限公司 一种厚壁大口径的erw海底管线用热轧钢板卷及其制备方法
CN114729426B (zh) * 2019-11-20 2023-06-23 杰富意钢铁株式会社 电阻焊钢管用热轧钢板及其制造方法、电阻焊钢管及其制造方法、管线管、建筑结构物
CN111187984A (zh) * 2020-02-17 2020-05-22 本钢板材股份有限公司 蜗轮蜗杆传动装置用钢材及其制备方法
JP7119025B2 (ja) * 2020-06-03 2022-08-16 株式会社東芝 制御装置、制御システム、溶接システム、制御方法、接合体の製造方法、プログラム、及び記憶媒体
CN111872645A (zh) * 2020-08-06 2020-11-03 中国石油天然气集团有限公司 一种X80钢级OD1422mm大壁厚直缝焊管制造方法
CN111979497A (zh) * 2020-09-28 2020-11-24 马鞍山钢铁股份有限公司 一种具有优异低温ctod性能的海底管线钢板卷及其生产工艺
WO2024041820A1 (en) 2022-08-25 2024-02-29 Tata Steel Ijmuiden B.V. Hot-rolled high-strength steel sheet with excellent low-temperature impact toughness and method for manufacture the same
CN115609238A (zh) * 2022-10-14 2023-01-17 青岛福晓钢结构有限公司 一种锅炉钢制造工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240145A (ja) * 2007-02-28 2008-10-09 Jfe Steel Kk 溶接部靭性に優れたラインパイプ向け電縫鋼管
WO2013153819A1 (ja) * 2012-04-13 2013-10-17 Jfeスチール株式会社 優れた低温靭性を有する高強度厚肉電縫鋼管及びその製造方法
JP2014009366A (ja) * 2012-06-28 2014-01-20 Jfe Steel Corp 中温域の長期耐軟化性に優れた高強度電縫鋼管及びその製造方法
JP2014062309A (ja) * 2012-09-24 2014-04-10 Jfe Steel Corp 電縫溶接部の耐hic性および低温靭性に優れた電縫鋼管およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724940B2 (ja) 1984-04-09 1995-03-22 新日本製鐵株式会社 耐サワー性の優れた電縫鋼管
JP3419554B2 (ja) 1994-07-19 2003-06-23 株式会社日立製作所 半導体装置の製造方法および製造装置
JP4377869B2 (ja) 1998-12-14 2009-12-02 新日本製鐵株式会社 電縫溶接性に優れたボイラ用鋼およびそれを用いた電縫ボイラ鋼管
JP4268462B2 (ja) 2002-06-26 2009-05-27 新日本製鐵株式会社 高温強度に優れた非調質低降伏比高張力鋼板の製造方法
JP4687268B2 (ja) * 2005-06-21 2011-05-25 Jfeスチール株式会社 溶接部靭性に優れた高強度厚肉ラインパイプ向け電縫鋼管の製造方法
JP4544240B2 (ja) 2005-11-21 2010-09-15 Jfeスチール株式会社 管体の超音波探傷装置および超音波探傷方法
JP5000447B2 (ja) 2007-02-13 2012-08-15 新日本製鐵株式会社 高強度電縫ラインパイプ
JP4910770B2 (ja) 2007-02-28 2012-04-04 Jfeスチール株式会社 管体の超音波探傷装置および超音波探傷方法
JP5076984B2 (ja) 2008-03-13 2012-11-21 Jfeスチール株式会社 電縫管の超音波探傷方法及び超音波探傷装置ならびに製造方法
JP5332287B2 (ja) 2008-04-17 2013-11-06 Jfeスチール株式会社 電縫溶接システム
KR101228610B1 (ko) * 2008-05-26 2013-02-01 신닛테츠스미킨 카부시키카이샤 저온 인성과 연성 파괴 정지 성능이 우수한 라인 파이프용 고강도 열연 강판 및 그 제조 방법
CN102400054A (zh) * 2010-09-07 2012-04-04 鞍钢股份有限公司 直缝电阻焊管用x80管线钢及其热轧板卷的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240145A (ja) * 2007-02-28 2008-10-09 Jfe Steel Kk 溶接部靭性に優れたラインパイプ向け電縫鋼管
WO2013153819A1 (ja) * 2012-04-13 2013-10-17 Jfeスチール株式会社 優れた低温靭性を有する高強度厚肉電縫鋼管及びその製造方法
JP2014009366A (ja) * 2012-06-28 2014-01-20 Jfe Steel Corp 中温域の長期耐軟化性に優れた高強度電縫鋼管及びその製造方法
JP2014062309A (ja) * 2012-09-24 2014-04-10 Jfe Steel Corp 電縫溶接部の耐hic性および低温靭性に優れた電縫鋼管およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3225709A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021095617A (ja) * 2019-12-18 2021-06-24 日本製鉄株式会社 ラインパイプ用電縫鋼管及びラインパイプ用電縫鋼管の製造方法
JP7440741B2 (ja) 2019-12-18 2024-02-29 日本製鉄株式会社 ラインパイプ用電縫鋼管及びラインパイプ用電縫鋼管の製造方法

Also Published As

Publication number Publication date
EP3225709A1 (en) 2017-10-04
US20170356071A1 (en) 2017-12-14
JP6319427B2 (ja) 2018-05-09
EP3225709A4 (en) 2017-12-13
CA2966570A1 (en) 2016-06-02
KR20170072321A (ko) 2017-06-26
CN107002194B (zh) 2022-05-17
KR101946426B1 (ko) 2019-02-11
CN107002194A (zh) 2017-08-01
JPWO2016084335A1 (ja) 2017-04-27
US10584405B2 (en) 2020-03-10

Similar Documents

Publication Publication Date Title
JP6319427B2 (ja) 電縫鋼管およびその製造方法
JP5068645B2 (ja) 延性破壊特性に優れた高強度鋼板及び高強度溶接鋼管並びにそれらの製造方法
JP5516680B2 (ja) 電縫溶接部の耐hic性および低温靭性に優れた電縫鋼管およびその製造方法
JP5353156B2 (ja) ラインパイプ用鋼管及びその製造方法
JP6587041B1 (ja) ラインパイプ用電縫鋼管
KR20100070364A (ko) 라인 파이프용 강판 및 강관
CA2679060C (en) Electric resistance welded steel pipe with excellent weld toughness for line pipe
JP5845623B2 (ja) 耐ねじり疲労特性に優れた電縫鋼管及びその製造方法
US20140227549A1 (en) Welded steel pipe with excellent welded heat-affected zone toughness and process for producing same
JPWO2006049036A1 (ja) 高強度溶接鋼管
Roy et al. Effect of welding parameters on mechanical properties of cold metal transfer welded thin AISI 304 stainless-steel sheets
JP7264269B2 (ja) 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
JP5874402B2 (ja) 耐溶接割れ性と耐スラリー腐食摩耗性に優れた溶接鋼管およびその製造方法
JP6160587B2 (ja) 電縫溶接部の中温域のクリープ特性に優れた高強度電縫鋼管の製造方法
JP6720825B2 (ja) 熱加工制御型590MPa級H形鋼
Al-Anezi et al. Prevention of hydrogen assisted damage in sour service
JP2007210023A (ja) 溶接部脆化割れ特性に優れた高強度溶接鋼管
JP5919650B2 (ja) 電縫溶接部の耐hic性と低温靭性に優れた電縫鋼管およびその製造方法
Hong et al. Improvement of resistance to hydrogen induced cracking in electric resistance welded pipes fabricated with slit coils
Ramesh Kumar et al. Assessment of magnetically impelled arc butt welded dissimilar boiler graded steel tubes: Sae213 t11 and sae213 t91
Al-Anezi et al. Manufacturing, testing, and operational techniques to prevent sour service damages
Ouaissa et al. Investigations on microstructure, mechanical properties and weldability of a low-carbon steel for high strength helical linepipe
Tazedakis et al. Manufacturing of 25mm Heavy-Wall Linepipe Using the High Frequency Induction (HFI) Welding Technique: A Challenge for a Pipe Manufacturer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016512155

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862558

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015862558

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2966570

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20177014071

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15531336

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE